|  | /* | 
|  | * raid5.c : Multiple Devices driver for Linux | 
|  | *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman | 
|  | *	   Copyright (C) 1999, 2000 Ingo Molnar | 
|  | *	   Copyright (C) 2002, 2003 H. Peter Anvin | 
|  | * | 
|  | * RAID-4/5/6 management functions. | 
|  | * Thanks to Penguin Computing for making the RAID-6 development possible | 
|  | * by donating a test server! | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2, or (at your option) | 
|  | * any later version. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * (for example /usr/src/linux/COPYING); if not, write to the Free | 
|  | * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * BITMAP UNPLUGGING: | 
|  | * | 
|  | * The sequencing for updating the bitmap reliably is a little | 
|  | * subtle (and I got it wrong the first time) so it deserves some | 
|  | * explanation. | 
|  | * | 
|  | * We group bitmap updates into batches.  Each batch has a number. | 
|  | * We may write out several batches at once, but that isn't very important. | 
|  | * conf->seq_write is the number of the last batch successfully written. | 
|  | * conf->seq_flush is the number of the last batch that was closed to | 
|  | *    new additions. | 
|  | * When we discover that we will need to write to any block in a stripe | 
|  | * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq | 
|  | * the number of the batch it will be in. This is seq_flush+1. | 
|  | * When we are ready to do a write, if that batch hasn't been written yet, | 
|  | *   we plug the array and queue the stripe for later. | 
|  | * When an unplug happens, we increment bm_flush, thus closing the current | 
|  | *   batch. | 
|  | * When we notice that bm_flush > bm_write, we write out all pending updates | 
|  | * to the bitmap, and advance bm_write to where bm_flush was. | 
|  | * This may occasionally write a bit out twice, but is sure never to | 
|  | * miss any bits. | 
|  | */ | 
|  |  | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/raid/pq.h> | 
|  | #include <linux/async_tx.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/async.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/flex_array.h> | 
|  |  | 
|  | #include <trace/events/block.h> | 
|  | #include <linux/list_sort.h> | 
|  |  | 
|  | #include "md.h" | 
|  | #include "raid5.h" | 
|  | #include "raid0.h" | 
|  | #include "md-bitmap.h" | 
|  | #include "raid5-log.h" | 
|  |  | 
|  | #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED) | 
|  |  | 
|  | #define cpu_to_group(cpu) cpu_to_node(cpu) | 
|  | #define ANY_GROUP NUMA_NO_NODE | 
|  |  | 
|  | static bool devices_handle_discard_safely = false; | 
|  | module_param(devices_handle_discard_safely, bool, 0644); | 
|  | MODULE_PARM_DESC(devices_handle_discard_safely, | 
|  | "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions"); | 
|  | static struct workqueue_struct *raid5_wq; | 
|  |  | 
|  | static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect) | 
|  | { | 
|  | int hash = (sect >> STRIPE_SHIFT) & HASH_MASK; | 
|  | return &conf->stripe_hashtbl[hash]; | 
|  | } | 
|  |  | 
|  | static inline int stripe_hash_locks_hash(sector_t sect) | 
|  | { | 
|  | return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK; | 
|  | } | 
|  |  | 
|  | static inline void lock_device_hash_lock(struct r5conf *conf, int hash) | 
|  | { | 
|  | spin_lock_irq(conf->hash_locks + hash); | 
|  | spin_lock(&conf->device_lock); | 
|  | } | 
|  |  | 
|  | static inline void unlock_device_hash_lock(struct r5conf *conf, int hash) | 
|  | { | 
|  | spin_unlock(&conf->device_lock); | 
|  | spin_unlock_irq(conf->hash_locks + hash); | 
|  | } | 
|  |  | 
|  | static inline void lock_all_device_hash_locks_irq(struct r5conf *conf) | 
|  | { | 
|  | int i; | 
|  | spin_lock_irq(conf->hash_locks); | 
|  | for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) | 
|  | spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks); | 
|  | spin_lock(&conf->device_lock); | 
|  | } | 
|  |  | 
|  | static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf) | 
|  | { | 
|  | int i; | 
|  | spin_unlock(&conf->device_lock); | 
|  | for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--) | 
|  | spin_unlock(conf->hash_locks + i); | 
|  | spin_unlock_irq(conf->hash_locks); | 
|  | } | 
|  |  | 
|  | /* Find first data disk in a raid6 stripe */ | 
|  | static inline int raid6_d0(struct stripe_head *sh) | 
|  | { | 
|  | if (sh->ddf_layout) | 
|  | /* ddf always start from first device */ | 
|  | return 0; | 
|  | /* md starts just after Q block */ | 
|  | if (sh->qd_idx == sh->disks - 1) | 
|  | return 0; | 
|  | else | 
|  | return sh->qd_idx + 1; | 
|  | } | 
|  | static inline int raid6_next_disk(int disk, int raid_disks) | 
|  | { | 
|  | disk++; | 
|  | return (disk < raid_disks) ? disk : 0; | 
|  | } | 
|  |  | 
|  | /* When walking through the disks in a raid5, starting at raid6_d0, | 
|  | * We need to map each disk to a 'slot', where the data disks are slot | 
|  | * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk | 
|  | * is raid_disks-1.  This help does that mapping. | 
|  | */ | 
|  | static int raid6_idx_to_slot(int idx, struct stripe_head *sh, | 
|  | int *count, int syndrome_disks) | 
|  | { | 
|  | int slot = *count; | 
|  |  | 
|  | if (sh->ddf_layout) | 
|  | (*count)++; | 
|  | if (idx == sh->pd_idx) | 
|  | return syndrome_disks; | 
|  | if (idx == sh->qd_idx) | 
|  | return syndrome_disks + 1; | 
|  | if (!sh->ddf_layout) | 
|  | (*count)++; | 
|  | return slot; | 
|  | } | 
|  |  | 
|  | static void print_raid5_conf (struct r5conf *conf); | 
|  |  | 
|  | static int stripe_operations_active(struct stripe_head *sh) | 
|  | { | 
|  | return sh->check_state || sh->reconstruct_state || | 
|  | test_bit(STRIPE_BIOFILL_RUN, &sh->state) || | 
|  | test_bit(STRIPE_COMPUTE_RUN, &sh->state); | 
|  | } | 
|  |  | 
|  | static bool stripe_is_lowprio(struct stripe_head *sh) | 
|  | { | 
|  | return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) || | 
|  | test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) && | 
|  | !test_bit(STRIPE_R5C_CACHING, &sh->state); | 
|  | } | 
|  |  | 
|  | static void raid5_wakeup_stripe_thread(struct stripe_head *sh) | 
|  | { | 
|  | struct r5conf *conf = sh->raid_conf; | 
|  | struct r5worker_group *group; | 
|  | int thread_cnt; | 
|  | int i, cpu = sh->cpu; | 
|  |  | 
|  | if (!cpu_online(cpu)) { | 
|  | cpu = cpumask_any(cpu_online_mask); | 
|  | sh->cpu = cpu; | 
|  | } | 
|  |  | 
|  | if (list_empty(&sh->lru)) { | 
|  | struct r5worker_group *group; | 
|  | group = conf->worker_groups + cpu_to_group(cpu); | 
|  | if (stripe_is_lowprio(sh)) | 
|  | list_add_tail(&sh->lru, &group->loprio_list); | 
|  | else | 
|  | list_add_tail(&sh->lru, &group->handle_list); | 
|  | group->stripes_cnt++; | 
|  | sh->group = group; | 
|  | } | 
|  |  | 
|  | if (conf->worker_cnt_per_group == 0) { | 
|  | md_wakeup_thread(conf->mddev->thread); | 
|  | return; | 
|  | } | 
|  |  | 
|  | group = conf->worker_groups + cpu_to_group(sh->cpu); | 
|  |  | 
|  | group->workers[0].working = true; | 
|  | /* at least one worker should run to avoid race */ | 
|  | queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work); | 
|  |  | 
|  | thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1; | 
|  | /* wakeup more workers */ | 
|  | for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) { | 
|  | if (group->workers[i].working == false) { | 
|  | group->workers[i].working = true; | 
|  | queue_work_on(sh->cpu, raid5_wq, | 
|  | &group->workers[i].work); | 
|  | thread_cnt--; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh, | 
|  | struct list_head *temp_inactive_list) | 
|  | { | 
|  | int i; | 
|  | int injournal = 0;	/* number of date pages with R5_InJournal */ | 
|  |  | 
|  | BUG_ON(!list_empty(&sh->lru)); | 
|  | BUG_ON(atomic_read(&conf->active_stripes)==0); | 
|  |  | 
|  | if (r5c_is_writeback(conf->log)) | 
|  | for (i = sh->disks; i--; ) | 
|  | if (test_bit(R5_InJournal, &sh->dev[i].flags)) | 
|  | injournal++; | 
|  | /* | 
|  | * In the following cases, the stripe cannot be released to cached | 
|  | * lists. Therefore, we make the stripe write out and set | 
|  | * STRIPE_HANDLE: | 
|  | *   1. when quiesce in r5c write back; | 
|  | *   2. when resync is requested fot the stripe. | 
|  | */ | 
|  | if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) || | 
|  | (conf->quiesce && r5c_is_writeback(conf->log) && | 
|  | !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) { | 
|  | if (test_bit(STRIPE_R5C_CACHING, &sh->state)) | 
|  | r5c_make_stripe_write_out(sh); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | } | 
|  |  | 
|  | if (test_bit(STRIPE_HANDLE, &sh->state)) { | 
|  | if (test_bit(STRIPE_DELAYED, &sh->state) && | 
|  | !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) | 
|  | list_add_tail(&sh->lru, &conf->delayed_list); | 
|  | else if (test_bit(STRIPE_BIT_DELAY, &sh->state) && | 
|  | sh->bm_seq - conf->seq_write > 0) | 
|  | list_add_tail(&sh->lru, &conf->bitmap_list); | 
|  | else { | 
|  | clear_bit(STRIPE_DELAYED, &sh->state); | 
|  | clear_bit(STRIPE_BIT_DELAY, &sh->state); | 
|  | if (conf->worker_cnt_per_group == 0) { | 
|  | if (stripe_is_lowprio(sh)) | 
|  | list_add_tail(&sh->lru, | 
|  | &conf->loprio_list); | 
|  | else | 
|  | list_add_tail(&sh->lru, | 
|  | &conf->handle_list); | 
|  | } else { | 
|  | raid5_wakeup_stripe_thread(sh); | 
|  | return; | 
|  | } | 
|  | } | 
|  | md_wakeup_thread(conf->mddev->thread); | 
|  | } else { | 
|  | BUG_ON(stripe_operations_active(sh)); | 
|  | if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) | 
|  | if (atomic_dec_return(&conf->preread_active_stripes) | 
|  | < IO_THRESHOLD) | 
|  | md_wakeup_thread(conf->mddev->thread); | 
|  | atomic_dec(&conf->active_stripes); | 
|  | if (!test_bit(STRIPE_EXPANDING, &sh->state)) { | 
|  | if (!r5c_is_writeback(conf->log)) | 
|  | list_add_tail(&sh->lru, temp_inactive_list); | 
|  | else { | 
|  | WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags)); | 
|  | if (injournal == 0) | 
|  | list_add_tail(&sh->lru, temp_inactive_list); | 
|  | else if (injournal == conf->raid_disks - conf->max_degraded) { | 
|  | /* full stripe */ | 
|  | if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) | 
|  | atomic_inc(&conf->r5c_cached_full_stripes); | 
|  | if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) | 
|  | atomic_dec(&conf->r5c_cached_partial_stripes); | 
|  | list_add_tail(&sh->lru, &conf->r5c_full_stripe_list); | 
|  | r5c_check_cached_full_stripe(conf); | 
|  | } else | 
|  | /* | 
|  | * STRIPE_R5C_PARTIAL_STRIPE is set in | 
|  | * r5c_try_caching_write(). No need to | 
|  | * set it again. | 
|  | */ | 
|  | list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __release_stripe(struct r5conf *conf, struct stripe_head *sh, | 
|  | struct list_head *temp_inactive_list) | 
|  | { | 
|  | if (atomic_dec_and_test(&sh->count)) | 
|  | do_release_stripe(conf, sh, temp_inactive_list); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list | 
|  | * | 
|  | * Be careful: Only one task can add/delete stripes from temp_inactive_list at | 
|  | * given time. Adding stripes only takes device lock, while deleting stripes | 
|  | * only takes hash lock. | 
|  | */ | 
|  | static void release_inactive_stripe_list(struct r5conf *conf, | 
|  | struct list_head *temp_inactive_list, | 
|  | int hash) | 
|  | { | 
|  | int size; | 
|  | bool do_wakeup = false; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (hash == NR_STRIPE_HASH_LOCKS) { | 
|  | size = NR_STRIPE_HASH_LOCKS; | 
|  | hash = NR_STRIPE_HASH_LOCKS - 1; | 
|  | } else | 
|  | size = 1; | 
|  | while (size) { | 
|  | struct list_head *list = &temp_inactive_list[size - 1]; | 
|  |  | 
|  | /* | 
|  | * We don't hold any lock here yet, raid5_get_active_stripe() might | 
|  | * remove stripes from the list | 
|  | */ | 
|  | if (!list_empty_careful(list)) { | 
|  | spin_lock_irqsave(conf->hash_locks + hash, flags); | 
|  | if (list_empty(conf->inactive_list + hash) && | 
|  | !list_empty(list)) | 
|  | atomic_dec(&conf->empty_inactive_list_nr); | 
|  | list_splice_tail_init(list, conf->inactive_list + hash); | 
|  | do_wakeup = true; | 
|  | spin_unlock_irqrestore(conf->hash_locks + hash, flags); | 
|  | } | 
|  | size--; | 
|  | hash--; | 
|  | } | 
|  |  | 
|  | if (do_wakeup) { | 
|  | wake_up(&conf->wait_for_stripe); | 
|  | if (atomic_read(&conf->active_stripes) == 0) | 
|  | wake_up(&conf->wait_for_quiescent); | 
|  | if (conf->retry_read_aligned) | 
|  | md_wakeup_thread(conf->mddev->thread); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* should hold conf->device_lock already */ | 
|  | static int release_stripe_list(struct r5conf *conf, | 
|  | struct list_head *temp_inactive_list) | 
|  | { | 
|  | struct stripe_head *sh, *t; | 
|  | int count = 0; | 
|  | struct llist_node *head; | 
|  |  | 
|  | head = llist_del_all(&conf->released_stripes); | 
|  | head = llist_reverse_order(head); | 
|  | llist_for_each_entry_safe(sh, t, head, release_list) { | 
|  | int hash; | 
|  |  | 
|  | /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */ | 
|  | smp_mb(); | 
|  | clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state); | 
|  | /* | 
|  | * Don't worry the bit is set here, because if the bit is set | 
|  | * again, the count is always > 1. This is true for | 
|  | * STRIPE_ON_UNPLUG_LIST bit too. | 
|  | */ | 
|  | hash = sh->hash_lock_index; | 
|  | __release_stripe(conf, sh, &temp_inactive_list[hash]); | 
|  | count++; | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | void raid5_release_stripe(struct stripe_head *sh) | 
|  | { | 
|  | struct r5conf *conf = sh->raid_conf; | 
|  | unsigned long flags; | 
|  | struct list_head list; | 
|  | int hash; | 
|  | bool wakeup; | 
|  |  | 
|  | /* Avoid release_list until the last reference. | 
|  | */ | 
|  | if (atomic_add_unless(&sh->count, -1, 1)) | 
|  | return; | 
|  |  | 
|  | if (unlikely(!conf->mddev->thread) || | 
|  | test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state)) | 
|  | goto slow_path; | 
|  | wakeup = llist_add(&sh->release_list, &conf->released_stripes); | 
|  | if (wakeup) | 
|  | md_wakeup_thread(conf->mddev->thread); | 
|  | return; | 
|  | slow_path: | 
|  | /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */ | 
|  | if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) { | 
|  | INIT_LIST_HEAD(&list); | 
|  | hash = sh->hash_lock_index; | 
|  | do_release_stripe(conf, sh, &list); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | release_inactive_stripe_list(conf, &list, hash); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void remove_hash(struct stripe_head *sh) | 
|  | { | 
|  | pr_debug("remove_hash(), stripe %llu\n", | 
|  | (unsigned long long)sh->sector); | 
|  |  | 
|  | hlist_del_init(&sh->hash); | 
|  | } | 
|  |  | 
|  | static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh) | 
|  | { | 
|  | struct hlist_head *hp = stripe_hash(conf, sh->sector); | 
|  |  | 
|  | pr_debug("insert_hash(), stripe %llu\n", | 
|  | (unsigned long long)sh->sector); | 
|  |  | 
|  | hlist_add_head(&sh->hash, hp); | 
|  | } | 
|  |  | 
|  | /* find an idle stripe, make sure it is unhashed, and return it. */ | 
|  | static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash) | 
|  | { | 
|  | struct stripe_head *sh = NULL; | 
|  | struct list_head *first; | 
|  |  | 
|  | if (list_empty(conf->inactive_list + hash)) | 
|  | goto out; | 
|  | first = (conf->inactive_list + hash)->next; | 
|  | sh = list_entry(first, struct stripe_head, lru); | 
|  | list_del_init(first); | 
|  | remove_hash(sh); | 
|  | atomic_inc(&conf->active_stripes); | 
|  | BUG_ON(hash != sh->hash_lock_index); | 
|  | if (list_empty(conf->inactive_list + hash)) | 
|  | atomic_inc(&conf->empty_inactive_list_nr); | 
|  | out: | 
|  | return sh; | 
|  | } | 
|  |  | 
|  | static void shrink_buffers(struct stripe_head *sh) | 
|  | { | 
|  | struct page *p; | 
|  | int i; | 
|  | int num = sh->raid_conf->pool_size; | 
|  |  | 
|  | for (i = 0; i < num ; i++) { | 
|  | WARN_ON(sh->dev[i].page != sh->dev[i].orig_page); | 
|  | p = sh->dev[i].page; | 
|  | if (!p) | 
|  | continue; | 
|  | sh->dev[i].page = NULL; | 
|  | put_page(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int grow_buffers(struct stripe_head *sh, gfp_t gfp) | 
|  | { | 
|  | int i; | 
|  | int num = sh->raid_conf->pool_size; | 
|  |  | 
|  | for (i = 0; i < num; i++) { | 
|  | struct page *page; | 
|  |  | 
|  | if (!(page = alloc_page(gfp))) { | 
|  | return 1; | 
|  | } | 
|  | sh->dev[i].page = page; | 
|  | sh->dev[i].orig_page = page; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, | 
|  | struct stripe_head *sh); | 
|  |  | 
|  | static void init_stripe(struct stripe_head *sh, sector_t sector, int previous) | 
|  | { | 
|  | struct r5conf *conf = sh->raid_conf; | 
|  | int i, seq; | 
|  |  | 
|  | BUG_ON(atomic_read(&sh->count) != 0); | 
|  | BUG_ON(test_bit(STRIPE_HANDLE, &sh->state)); | 
|  | BUG_ON(stripe_operations_active(sh)); | 
|  | BUG_ON(sh->batch_head); | 
|  |  | 
|  | pr_debug("init_stripe called, stripe %llu\n", | 
|  | (unsigned long long)sector); | 
|  | retry: | 
|  | seq = read_seqcount_begin(&conf->gen_lock); | 
|  | sh->generation = conf->generation - previous; | 
|  | sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks; | 
|  | sh->sector = sector; | 
|  | stripe_set_idx(sector, conf, previous, sh); | 
|  | sh->state = 0; | 
|  |  | 
|  | for (i = sh->disks; i--; ) { | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  |  | 
|  | if (dev->toread || dev->read || dev->towrite || dev->written || | 
|  | test_bit(R5_LOCKED, &dev->flags)) { | 
|  | pr_err("sector=%llx i=%d %p %p %p %p %d\n", | 
|  | (unsigned long long)sh->sector, i, dev->toread, | 
|  | dev->read, dev->towrite, dev->written, | 
|  | test_bit(R5_LOCKED, &dev->flags)); | 
|  | WARN_ON(1); | 
|  | } | 
|  | dev->flags = 0; | 
|  | dev->sector = raid5_compute_blocknr(sh, i, previous); | 
|  | } | 
|  | if (read_seqcount_retry(&conf->gen_lock, seq)) | 
|  | goto retry; | 
|  | sh->overwrite_disks = 0; | 
|  | insert_hash(conf, sh); | 
|  | sh->cpu = smp_processor_id(); | 
|  | set_bit(STRIPE_BATCH_READY, &sh->state); | 
|  | } | 
|  |  | 
|  | static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector, | 
|  | short generation) | 
|  | { | 
|  | struct stripe_head *sh; | 
|  |  | 
|  | pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector); | 
|  | hlist_for_each_entry(sh, stripe_hash(conf, sector), hash) | 
|  | if (sh->sector == sector && sh->generation == generation) | 
|  | return sh; | 
|  | pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Need to check if array has failed when deciding whether to: | 
|  | *  - start an array | 
|  | *  - remove non-faulty devices | 
|  | *  - add a spare | 
|  | *  - allow a reshape | 
|  | * This determination is simple when no reshape is happening. | 
|  | * However if there is a reshape, we need to carefully check | 
|  | * both the before and after sections. | 
|  | * This is because some failed devices may only affect one | 
|  | * of the two sections, and some non-in_sync devices may | 
|  | * be insync in the section most affected by failed devices. | 
|  | */ | 
|  | int raid5_calc_degraded(struct r5conf *conf) | 
|  | { | 
|  | int degraded, degraded2; | 
|  | int i; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | degraded = 0; | 
|  | for (i = 0; i < conf->previous_raid_disks; i++) { | 
|  | struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); | 
|  | if (rdev && test_bit(Faulty, &rdev->flags)) | 
|  | rdev = rcu_dereference(conf->disks[i].replacement); | 
|  | if (!rdev || test_bit(Faulty, &rdev->flags)) | 
|  | degraded++; | 
|  | else if (test_bit(In_sync, &rdev->flags)) | 
|  | ; | 
|  | else | 
|  | /* not in-sync or faulty. | 
|  | * If the reshape increases the number of devices, | 
|  | * this is being recovered by the reshape, so | 
|  | * this 'previous' section is not in_sync. | 
|  | * If the number of devices is being reduced however, | 
|  | * the device can only be part of the array if | 
|  | * we are reverting a reshape, so this section will | 
|  | * be in-sync. | 
|  | */ | 
|  | if (conf->raid_disks >= conf->previous_raid_disks) | 
|  | degraded++; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | if (conf->raid_disks == conf->previous_raid_disks) | 
|  | return degraded; | 
|  | rcu_read_lock(); | 
|  | degraded2 = 0; | 
|  | for (i = 0; i < conf->raid_disks; i++) { | 
|  | struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); | 
|  | if (rdev && test_bit(Faulty, &rdev->flags)) | 
|  | rdev = rcu_dereference(conf->disks[i].replacement); | 
|  | if (!rdev || test_bit(Faulty, &rdev->flags)) | 
|  | degraded2++; | 
|  | else if (test_bit(In_sync, &rdev->flags)) | 
|  | ; | 
|  | else | 
|  | /* not in-sync or faulty. | 
|  | * If reshape increases the number of devices, this | 
|  | * section has already been recovered, else it | 
|  | * almost certainly hasn't. | 
|  | */ | 
|  | if (conf->raid_disks <= conf->previous_raid_disks) | 
|  | degraded2++; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | if (degraded2 > degraded) | 
|  | return degraded2; | 
|  | return degraded; | 
|  | } | 
|  |  | 
|  | static int has_failed(struct r5conf *conf) | 
|  | { | 
|  | int degraded; | 
|  |  | 
|  | if (conf->mddev->reshape_position == MaxSector) | 
|  | return conf->mddev->degraded > conf->max_degraded; | 
|  |  | 
|  | degraded = raid5_calc_degraded(conf); | 
|  | if (degraded > conf->max_degraded) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct stripe_head * | 
|  | raid5_get_active_stripe(struct r5conf *conf, sector_t sector, | 
|  | int previous, int noblock, int noquiesce) | 
|  | { | 
|  | struct stripe_head *sh; | 
|  | int hash = stripe_hash_locks_hash(sector); | 
|  | int inc_empty_inactive_list_flag; | 
|  |  | 
|  | pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector); | 
|  |  | 
|  | spin_lock_irq(conf->hash_locks + hash); | 
|  |  | 
|  | do { | 
|  | wait_event_lock_irq(conf->wait_for_quiescent, | 
|  | conf->quiesce == 0 || noquiesce, | 
|  | *(conf->hash_locks + hash)); | 
|  | sh = __find_stripe(conf, sector, conf->generation - previous); | 
|  | if (!sh) { | 
|  | if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) { | 
|  | sh = get_free_stripe(conf, hash); | 
|  | if (!sh && !test_bit(R5_DID_ALLOC, | 
|  | &conf->cache_state)) | 
|  | set_bit(R5_ALLOC_MORE, | 
|  | &conf->cache_state); | 
|  | } | 
|  | if (noblock && sh == NULL) | 
|  | break; | 
|  |  | 
|  | r5c_check_stripe_cache_usage(conf); | 
|  | if (!sh) { | 
|  | set_bit(R5_INACTIVE_BLOCKED, | 
|  | &conf->cache_state); | 
|  | r5l_wake_reclaim(conf->log, 0); | 
|  | wait_event_lock_irq( | 
|  | conf->wait_for_stripe, | 
|  | !list_empty(conf->inactive_list + hash) && | 
|  | (atomic_read(&conf->active_stripes) | 
|  | < (conf->max_nr_stripes * 3 / 4) | 
|  | || !test_bit(R5_INACTIVE_BLOCKED, | 
|  | &conf->cache_state)), | 
|  | *(conf->hash_locks + hash)); | 
|  | clear_bit(R5_INACTIVE_BLOCKED, | 
|  | &conf->cache_state); | 
|  | } else { | 
|  | init_stripe(sh, sector, previous); | 
|  | atomic_inc(&sh->count); | 
|  | } | 
|  | } else if (!atomic_inc_not_zero(&sh->count)) { | 
|  | spin_lock(&conf->device_lock); | 
|  | if (!atomic_read(&sh->count)) { | 
|  | if (!test_bit(STRIPE_HANDLE, &sh->state)) | 
|  | atomic_inc(&conf->active_stripes); | 
|  | BUG_ON(list_empty(&sh->lru) && | 
|  | !test_bit(STRIPE_EXPANDING, &sh->state)); | 
|  | inc_empty_inactive_list_flag = 0; | 
|  | if (!list_empty(conf->inactive_list + hash)) | 
|  | inc_empty_inactive_list_flag = 1; | 
|  | list_del_init(&sh->lru); | 
|  | if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) | 
|  | atomic_inc(&conf->empty_inactive_list_nr); | 
|  | if (sh->group) { | 
|  | sh->group->stripes_cnt--; | 
|  | sh->group = NULL; | 
|  | } | 
|  | } | 
|  | atomic_inc(&sh->count); | 
|  | spin_unlock(&conf->device_lock); | 
|  | } | 
|  | } while (sh == NULL); | 
|  |  | 
|  | spin_unlock_irq(conf->hash_locks + hash); | 
|  | return sh; | 
|  | } | 
|  |  | 
|  | static bool is_full_stripe_write(struct stripe_head *sh) | 
|  | { | 
|  | BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded)); | 
|  | return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded); | 
|  | } | 
|  |  | 
|  | static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) | 
|  | { | 
|  | if (sh1 > sh2) { | 
|  | spin_lock_irq(&sh2->stripe_lock); | 
|  | spin_lock_nested(&sh1->stripe_lock, 1); | 
|  | } else { | 
|  | spin_lock_irq(&sh1->stripe_lock); | 
|  | spin_lock_nested(&sh2->stripe_lock, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2) | 
|  | { | 
|  | spin_unlock(&sh1->stripe_lock); | 
|  | spin_unlock_irq(&sh2->stripe_lock); | 
|  | } | 
|  |  | 
|  | /* Only freshly new full stripe normal write stripe can be added to a batch list */ | 
|  | static bool stripe_can_batch(struct stripe_head *sh) | 
|  | { | 
|  | struct r5conf *conf = sh->raid_conf; | 
|  |  | 
|  | if (raid5_has_log(conf) || raid5_has_ppl(conf)) | 
|  | return false; | 
|  | return test_bit(STRIPE_BATCH_READY, &sh->state) && | 
|  | !test_bit(STRIPE_BITMAP_PENDING, &sh->state) && | 
|  | is_full_stripe_write(sh); | 
|  | } | 
|  |  | 
|  | /* we only do back search */ | 
|  | static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh) | 
|  | { | 
|  | struct stripe_head *head; | 
|  | sector_t head_sector, tmp_sec; | 
|  | int hash; | 
|  | int dd_idx; | 
|  | int inc_empty_inactive_list_flag; | 
|  |  | 
|  | /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */ | 
|  | tmp_sec = sh->sector; | 
|  | if (!sector_div(tmp_sec, conf->chunk_sectors)) | 
|  | return; | 
|  | head_sector = sh->sector - STRIPE_SECTORS; | 
|  |  | 
|  | hash = stripe_hash_locks_hash(head_sector); | 
|  | spin_lock_irq(conf->hash_locks + hash); | 
|  | head = __find_stripe(conf, head_sector, conf->generation); | 
|  | if (head && !atomic_inc_not_zero(&head->count)) { | 
|  | spin_lock(&conf->device_lock); | 
|  | if (!atomic_read(&head->count)) { | 
|  | if (!test_bit(STRIPE_HANDLE, &head->state)) | 
|  | atomic_inc(&conf->active_stripes); | 
|  | BUG_ON(list_empty(&head->lru) && | 
|  | !test_bit(STRIPE_EXPANDING, &head->state)); | 
|  | inc_empty_inactive_list_flag = 0; | 
|  | if (!list_empty(conf->inactive_list + hash)) | 
|  | inc_empty_inactive_list_flag = 1; | 
|  | list_del_init(&head->lru); | 
|  | if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag) | 
|  | atomic_inc(&conf->empty_inactive_list_nr); | 
|  | if (head->group) { | 
|  | head->group->stripes_cnt--; | 
|  | head->group = NULL; | 
|  | } | 
|  | } | 
|  | atomic_inc(&head->count); | 
|  | spin_unlock(&conf->device_lock); | 
|  | } | 
|  | spin_unlock_irq(conf->hash_locks + hash); | 
|  |  | 
|  | if (!head) | 
|  | return; | 
|  | if (!stripe_can_batch(head)) | 
|  | goto out; | 
|  |  | 
|  | lock_two_stripes(head, sh); | 
|  | /* clear_batch_ready clear the flag */ | 
|  | if (!stripe_can_batch(head) || !stripe_can_batch(sh)) | 
|  | goto unlock_out; | 
|  |  | 
|  | if (sh->batch_head) | 
|  | goto unlock_out; | 
|  |  | 
|  | dd_idx = 0; | 
|  | while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx) | 
|  | dd_idx++; | 
|  | if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf || | 
|  | bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite)) | 
|  | goto unlock_out; | 
|  |  | 
|  | if (head->batch_head) { | 
|  | spin_lock(&head->batch_head->batch_lock); | 
|  | /* This batch list is already running */ | 
|  | if (!stripe_can_batch(head)) { | 
|  | spin_unlock(&head->batch_head->batch_lock); | 
|  | goto unlock_out; | 
|  | } | 
|  | /* | 
|  | * We must assign batch_head of this stripe within the | 
|  | * batch_lock, otherwise clear_batch_ready of batch head | 
|  | * stripe could clear BATCH_READY bit of this stripe and | 
|  | * this stripe->batch_head doesn't get assigned, which | 
|  | * could confuse clear_batch_ready for this stripe | 
|  | */ | 
|  | sh->batch_head = head->batch_head; | 
|  |  | 
|  | /* | 
|  | * at this point, head's BATCH_READY could be cleared, but we | 
|  | * can still add the stripe to batch list | 
|  | */ | 
|  | list_add(&sh->batch_list, &head->batch_list); | 
|  | spin_unlock(&head->batch_head->batch_lock); | 
|  | } else { | 
|  | head->batch_head = head; | 
|  | sh->batch_head = head->batch_head; | 
|  | spin_lock(&head->batch_lock); | 
|  | list_add_tail(&sh->batch_list, &head->batch_list); | 
|  | spin_unlock(&head->batch_lock); | 
|  | } | 
|  |  | 
|  | if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) | 
|  | if (atomic_dec_return(&conf->preread_active_stripes) | 
|  | < IO_THRESHOLD) | 
|  | md_wakeup_thread(conf->mddev->thread); | 
|  |  | 
|  | if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) { | 
|  | int seq = sh->bm_seq; | 
|  | if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) && | 
|  | sh->batch_head->bm_seq > seq) | 
|  | seq = sh->batch_head->bm_seq; | 
|  | set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state); | 
|  | sh->batch_head->bm_seq = seq; | 
|  | } | 
|  |  | 
|  | atomic_inc(&sh->count); | 
|  | unlock_out: | 
|  | unlock_two_stripes(head, sh); | 
|  | out: | 
|  | raid5_release_stripe(head); | 
|  | } | 
|  |  | 
|  | /* Determine if 'data_offset' or 'new_data_offset' should be used | 
|  | * in this stripe_head. | 
|  | */ | 
|  | static int use_new_offset(struct r5conf *conf, struct stripe_head *sh) | 
|  | { | 
|  | sector_t progress = conf->reshape_progress; | 
|  | /* Need a memory barrier to make sure we see the value | 
|  | * of conf->generation, or ->data_offset that was set before | 
|  | * reshape_progress was updated. | 
|  | */ | 
|  | smp_rmb(); | 
|  | if (progress == MaxSector) | 
|  | return 0; | 
|  | if (sh->generation == conf->generation - 1) | 
|  | return 0; | 
|  | /* We are in a reshape, and this is a new-generation stripe, | 
|  | * so use new_data_offset. | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void dispatch_bio_list(struct bio_list *tmp) | 
|  | { | 
|  | struct bio *bio; | 
|  |  | 
|  | while ((bio = bio_list_pop(tmp))) | 
|  | generic_make_request(bio); | 
|  | } | 
|  |  | 
|  | static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b) | 
|  | { | 
|  | const struct r5pending_data *da = list_entry(a, | 
|  | struct r5pending_data, sibling); | 
|  | const struct r5pending_data *db = list_entry(b, | 
|  | struct r5pending_data, sibling); | 
|  | if (da->sector > db->sector) | 
|  | return 1; | 
|  | if (da->sector < db->sector) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void dispatch_defer_bios(struct r5conf *conf, int target, | 
|  | struct bio_list *list) | 
|  | { | 
|  | struct r5pending_data *data; | 
|  | struct list_head *first, *next = NULL; | 
|  | int cnt = 0; | 
|  |  | 
|  | if (conf->pending_data_cnt == 0) | 
|  | return; | 
|  |  | 
|  | list_sort(NULL, &conf->pending_list, cmp_stripe); | 
|  |  | 
|  | first = conf->pending_list.next; | 
|  |  | 
|  | /* temporarily move the head */ | 
|  | if (conf->next_pending_data) | 
|  | list_move_tail(&conf->pending_list, | 
|  | &conf->next_pending_data->sibling); | 
|  |  | 
|  | while (!list_empty(&conf->pending_list)) { | 
|  | data = list_first_entry(&conf->pending_list, | 
|  | struct r5pending_data, sibling); | 
|  | if (&data->sibling == first) | 
|  | first = data->sibling.next; | 
|  | next = data->sibling.next; | 
|  |  | 
|  | bio_list_merge(list, &data->bios); | 
|  | list_move(&data->sibling, &conf->free_list); | 
|  | cnt++; | 
|  | if (cnt >= target) | 
|  | break; | 
|  | } | 
|  | conf->pending_data_cnt -= cnt; | 
|  | BUG_ON(conf->pending_data_cnt < 0 || cnt < target); | 
|  |  | 
|  | if (next != &conf->pending_list) | 
|  | conf->next_pending_data = list_entry(next, | 
|  | struct r5pending_data, sibling); | 
|  | else | 
|  | conf->next_pending_data = NULL; | 
|  | /* list isn't empty */ | 
|  | if (first != &conf->pending_list) | 
|  | list_move_tail(&conf->pending_list, first); | 
|  | } | 
|  |  | 
|  | static void flush_deferred_bios(struct r5conf *conf) | 
|  | { | 
|  | struct bio_list tmp = BIO_EMPTY_LIST; | 
|  |  | 
|  | if (conf->pending_data_cnt == 0) | 
|  | return; | 
|  |  | 
|  | spin_lock(&conf->pending_bios_lock); | 
|  | dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp); | 
|  | BUG_ON(conf->pending_data_cnt != 0); | 
|  | spin_unlock(&conf->pending_bios_lock); | 
|  |  | 
|  | dispatch_bio_list(&tmp); | 
|  | } | 
|  |  | 
|  | static void defer_issue_bios(struct r5conf *conf, sector_t sector, | 
|  | struct bio_list *bios) | 
|  | { | 
|  | struct bio_list tmp = BIO_EMPTY_LIST; | 
|  | struct r5pending_data *ent; | 
|  |  | 
|  | spin_lock(&conf->pending_bios_lock); | 
|  | ent = list_first_entry(&conf->free_list, struct r5pending_data, | 
|  | sibling); | 
|  | list_move_tail(&ent->sibling, &conf->pending_list); | 
|  | ent->sector = sector; | 
|  | bio_list_init(&ent->bios); | 
|  | bio_list_merge(&ent->bios, bios); | 
|  | conf->pending_data_cnt++; | 
|  | if (conf->pending_data_cnt >= PENDING_IO_MAX) | 
|  | dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp); | 
|  |  | 
|  | spin_unlock(&conf->pending_bios_lock); | 
|  |  | 
|  | dispatch_bio_list(&tmp); | 
|  | } | 
|  |  | 
|  | static void | 
|  | raid5_end_read_request(struct bio *bi); | 
|  | static void | 
|  | raid5_end_write_request(struct bio *bi); | 
|  |  | 
|  | static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s) | 
|  | { | 
|  | struct r5conf *conf = sh->raid_conf; | 
|  | int i, disks = sh->disks; | 
|  | struct stripe_head *head_sh = sh; | 
|  | struct bio_list pending_bios = BIO_EMPTY_LIST; | 
|  | bool should_defer; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | if (log_stripe(sh, s) == 0) | 
|  | return; | 
|  |  | 
|  | should_defer = conf->batch_bio_dispatch && conf->group_cnt; | 
|  |  | 
|  | for (i = disks; i--; ) { | 
|  | int op, op_flags = 0; | 
|  | int replace_only = 0; | 
|  | struct bio *bi, *rbi; | 
|  | struct md_rdev *rdev, *rrdev = NULL; | 
|  |  | 
|  | sh = head_sh; | 
|  | if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) { | 
|  | op = REQ_OP_WRITE; | 
|  | if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags)) | 
|  | op_flags = REQ_FUA; | 
|  | if (test_bit(R5_Discard, &sh->dev[i].flags)) | 
|  | op = REQ_OP_DISCARD; | 
|  | } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) | 
|  | op = REQ_OP_READ; | 
|  | else if (test_and_clear_bit(R5_WantReplace, | 
|  | &sh->dev[i].flags)) { | 
|  | op = REQ_OP_WRITE; | 
|  | replace_only = 1; | 
|  | } else | 
|  | continue; | 
|  | if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags)) | 
|  | op_flags |= REQ_SYNC; | 
|  |  | 
|  | again: | 
|  | bi = &sh->dev[i].req; | 
|  | rbi = &sh->dev[i].rreq; /* For writing to replacement */ | 
|  |  | 
|  | rcu_read_lock(); | 
|  | rrdev = rcu_dereference(conf->disks[i].replacement); | 
|  | smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */ | 
|  | rdev = rcu_dereference(conf->disks[i].rdev); | 
|  | if (!rdev) { | 
|  | rdev = rrdev; | 
|  | rrdev = NULL; | 
|  | } | 
|  | if (op_is_write(op)) { | 
|  | if (replace_only) | 
|  | rdev = NULL; | 
|  | if (rdev == rrdev) | 
|  | /* We raced and saw duplicates */ | 
|  | rrdev = NULL; | 
|  | } else { | 
|  | if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev) | 
|  | rdev = rrdev; | 
|  | rrdev = NULL; | 
|  | } | 
|  |  | 
|  | if (rdev && test_bit(Faulty, &rdev->flags)) | 
|  | rdev = NULL; | 
|  | if (rdev) | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | if (rrdev && test_bit(Faulty, &rrdev->flags)) | 
|  | rrdev = NULL; | 
|  | if (rrdev) | 
|  | atomic_inc(&rrdev->nr_pending); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* We have already checked bad blocks for reads.  Now | 
|  | * need to check for writes.  We never accept write errors | 
|  | * on the replacement, so we don't to check rrdev. | 
|  | */ | 
|  | while (op_is_write(op) && rdev && | 
|  | test_bit(WriteErrorSeen, &rdev->flags)) { | 
|  | sector_t first_bad; | 
|  | int bad_sectors; | 
|  | int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, | 
|  | &first_bad, &bad_sectors); | 
|  | if (!bad) | 
|  | break; | 
|  |  | 
|  | if (bad < 0) { | 
|  | set_bit(BlockedBadBlocks, &rdev->flags); | 
|  | if (!conf->mddev->external && | 
|  | conf->mddev->sb_flags) { | 
|  | /* It is very unlikely, but we might | 
|  | * still need to write out the | 
|  | * bad block log - better give it | 
|  | * a chance*/ | 
|  | md_check_recovery(conf->mddev); | 
|  | } | 
|  | /* | 
|  | * Because md_wait_for_blocked_rdev | 
|  | * will dec nr_pending, we must | 
|  | * increment it first. | 
|  | */ | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | md_wait_for_blocked_rdev(rdev, conf->mddev); | 
|  | } else { | 
|  | /* Acknowledged bad block - skip the write */ | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  | rdev = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rdev) { | 
|  | if (s->syncing || s->expanding || s->expanded | 
|  | || s->replacing) | 
|  | md_sync_acct(rdev->bdev, STRIPE_SECTORS); | 
|  |  | 
|  | set_bit(STRIPE_IO_STARTED, &sh->state); | 
|  |  | 
|  | bio_set_dev(bi, rdev->bdev); | 
|  | bio_set_op_attrs(bi, op, op_flags); | 
|  | bi->bi_end_io = op_is_write(op) | 
|  | ? raid5_end_write_request | 
|  | : raid5_end_read_request; | 
|  | bi->bi_private = sh; | 
|  |  | 
|  | pr_debug("%s: for %llu schedule op %d on disc %d\n", | 
|  | __func__, (unsigned long long)sh->sector, | 
|  | bi->bi_opf, i); | 
|  | atomic_inc(&sh->count); | 
|  | if (sh != head_sh) | 
|  | atomic_inc(&head_sh->count); | 
|  | if (use_new_offset(conf, sh)) | 
|  | bi->bi_iter.bi_sector = (sh->sector | 
|  | + rdev->new_data_offset); | 
|  | else | 
|  | bi->bi_iter.bi_sector = (sh->sector | 
|  | + rdev->data_offset); | 
|  | if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags)) | 
|  | bi->bi_opf |= REQ_NOMERGE; | 
|  |  | 
|  | if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) | 
|  | WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); | 
|  |  | 
|  | if (!op_is_write(op) && | 
|  | test_bit(R5_InJournal, &sh->dev[i].flags)) | 
|  | /* | 
|  | * issuing read for a page in journal, this | 
|  | * must be preparing for prexor in rmw; read | 
|  | * the data into orig_page | 
|  | */ | 
|  | sh->dev[i].vec.bv_page = sh->dev[i].orig_page; | 
|  | else | 
|  | sh->dev[i].vec.bv_page = sh->dev[i].page; | 
|  | bi->bi_vcnt = 1; | 
|  | bi->bi_io_vec[0].bv_len = STRIPE_SIZE; | 
|  | bi->bi_io_vec[0].bv_offset = 0; | 
|  | bi->bi_iter.bi_size = STRIPE_SIZE; | 
|  | bi->bi_write_hint = sh->dev[i].write_hint; | 
|  | if (!rrdev) | 
|  | sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET; | 
|  | /* | 
|  | * If this is discard request, set bi_vcnt 0. We don't | 
|  | * want to confuse SCSI because SCSI will replace payload | 
|  | */ | 
|  | if (op == REQ_OP_DISCARD) | 
|  | bi->bi_vcnt = 0; | 
|  | if (rrdev) | 
|  | set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags); | 
|  |  | 
|  | if (conf->mddev->gendisk) | 
|  | trace_block_bio_remap(bi->bi_disk->queue, | 
|  | bi, disk_devt(conf->mddev->gendisk), | 
|  | sh->dev[i].sector); | 
|  | if (should_defer && op_is_write(op)) | 
|  | bio_list_add(&pending_bios, bi); | 
|  | else | 
|  | generic_make_request(bi); | 
|  | } | 
|  | if (rrdev) { | 
|  | if (s->syncing || s->expanding || s->expanded | 
|  | || s->replacing) | 
|  | md_sync_acct(rrdev->bdev, STRIPE_SECTORS); | 
|  |  | 
|  | set_bit(STRIPE_IO_STARTED, &sh->state); | 
|  |  | 
|  | bio_set_dev(rbi, rrdev->bdev); | 
|  | bio_set_op_attrs(rbi, op, op_flags); | 
|  | BUG_ON(!op_is_write(op)); | 
|  | rbi->bi_end_io = raid5_end_write_request; | 
|  | rbi->bi_private = sh; | 
|  |  | 
|  | pr_debug("%s: for %llu schedule op %d on " | 
|  | "replacement disc %d\n", | 
|  | __func__, (unsigned long long)sh->sector, | 
|  | rbi->bi_opf, i); | 
|  | atomic_inc(&sh->count); | 
|  | if (sh != head_sh) | 
|  | atomic_inc(&head_sh->count); | 
|  | if (use_new_offset(conf, sh)) | 
|  | rbi->bi_iter.bi_sector = (sh->sector | 
|  | + rrdev->new_data_offset); | 
|  | else | 
|  | rbi->bi_iter.bi_sector = (sh->sector | 
|  | + rrdev->data_offset); | 
|  | if (test_bit(R5_SkipCopy, &sh->dev[i].flags)) | 
|  | WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); | 
|  | sh->dev[i].rvec.bv_page = sh->dev[i].page; | 
|  | rbi->bi_vcnt = 1; | 
|  | rbi->bi_io_vec[0].bv_len = STRIPE_SIZE; | 
|  | rbi->bi_io_vec[0].bv_offset = 0; | 
|  | rbi->bi_iter.bi_size = STRIPE_SIZE; | 
|  | rbi->bi_write_hint = sh->dev[i].write_hint; | 
|  | sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET; | 
|  | /* | 
|  | * If this is discard request, set bi_vcnt 0. We don't | 
|  | * want to confuse SCSI because SCSI will replace payload | 
|  | */ | 
|  | if (op == REQ_OP_DISCARD) | 
|  | rbi->bi_vcnt = 0; | 
|  | if (conf->mddev->gendisk) | 
|  | trace_block_bio_remap(rbi->bi_disk->queue, | 
|  | rbi, disk_devt(conf->mddev->gendisk), | 
|  | sh->dev[i].sector); | 
|  | if (should_defer && op_is_write(op)) | 
|  | bio_list_add(&pending_bios, rbi); | 
|  | else | 
|  | generic_make_request(rbi); | 
|  | } | 
|  | if (!rdev && !rrdev) { | 
|  | if (op_is_write(op)) | 
|  | set_bit(STRIPE_DEGRADED, &sh->state); | 
|  | pr_debug("skip op %d on disc %d for sector %llu\n", | 
|  | bi->bi_opf, i, (unsigned long long)sh->sector); | 
|  | clear_bit(R5_LOCKED, &sh->dev[i].flags); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | } | 
|  |  | 
|  | if (!head_sh->batch_head) | 
|  | continue; | 
|  | sh = list_first_entry(&sh->batch_list, struct stripe_head, | 
|  | batch_list); | 
|  | if (sh != head_sh) | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (should_defer && !bio_list_empty(&pending_bios)) | 
|  | defer_issue_bios(conf, head_sh->sector, &pending_bios); | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor * | 
|  | async_copy_data(int frombio, struct bio *bio, struct page **page, | 
|  | sector_t sector, struct dma_async_tx_descriptor *tx, | 
|  | struct stripe_head *sh, int no_skipcopy) | 
|  | { | 
|  | struct bio_vec bvl; | 
|  | struct bvec_iter iter; | 
|  | struct page *bio_page; | 
|  | int page_offset; | 
|  | struct async_submit_ctl submit; | 
|  | enum async_tx_flags flags = 0; | 
|  |  | 
|  | if (bio->bi_iter.bi_sector >= sector) | 
|  | page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512; | 
|  | else | 
|  | page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512; | 
|  |  | 
|  | if (frombio) | 
|  | flags |= ASYNC_TX_FENCE; | 
|  | init_async_submit(&submit, flags, tx, NULL, NULL, NULL); | 
|  |  | 
|  | bio_for_each_segment(bvl, bio, iter) { | 
|  | int len = bvl.bv_len; | 
|  | int clen; | 
|  | int b_offset = 0; | 
|  |  | 
|  | if (page_offset < 0) { | 
|  | b_offset = -page_offset; | 
|  | page_offset += b_offset; | 
|  | len -= b_offset; | 
|  | } | 
|  |  | 
|  | if (len > 0 && page_offset + len > STRIPE_SIZE) | 
|  | clen = STRIPE_SIZE - page_offset; | 
|  | else | 
|  | clen = len; | 
|  |  | 
|  | if (clen > 0) { | 
|  | b_offset += bvl.bv_offset; | 
|  | bio_page = bvl.bv_page; | 
|  | if (frombio) { | 
|  | if (sh->raid_conf->skip_copy && | 
|  | b_offset == 0 && page_offset == 0 && | 
|  | clen == STRIPE_SIZE && | 
|  | !no_skipcopy) | 
|  | *page = bio_page; | 
|  | else | 
|  | tx = async_memcpy(*page, bio_page, page_offset, | 
|  | b_offset, clen, &submit); | 
|  | } else | 
|  | tx = async_memcpy(bio_page, *page, b_offset, | 
|  | page_offset, clen, &submit); | 
|  | } | 
|  | /* chain the operations */ | 
|  | submit.depend_tx = tx; | 
|  |  | 
|  | if (clen < len) /* hit end of page */ | 
|  | break; | 
|  | page_offset +=  len; | 
|  | } | 
|  |  | 
|  | return tx; | 
|  | } | 
|  |  | 
|  | static void ops_complete_biofill(void *stripe_head_ref) | 
|  | { | 
|  | struct stripe_head *sh = stripe_head_ref; | 
|  | int i; | 
|  |  | 
|  | pr_debug("%s: stripe %llu\n", __func__, | 
|  | (unsigned long long)sh->sector); | 
|  |  | 
|  | /* clear completed biofills */ | 
|  | for (i = sh->disks; i--; ) { | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  |  | 
|  | /* acknowledge completion of a biofill operation */ | 
|  | /* and check if we need to reply to a read request, | 
|  | * new R5_Wantfill requests are held off until | 
|  | * !STRIPE_BIOFILL_RUN | 
|  | */ | 
|  | if (test_and_clear_bit(R5_Wantfill, &dev->flags)) { | 
|  | struct bio *rbi, *rbi2; | 
|  |  | 
|  | BUG_ON(!dev->read); | 
|  | rbi = dev->read; | 
|  | dev->read = NULL; | 
|  | while (rbi && rbi->bi_iter.bi_sector < | 
|  | dev->sector + STRIPE_SECTORS) { | 
|  | rbi2 = r5_next_bio(rbi, dev->sector); | 
|  | bio_endio(rbi); | 
|  | rbi = rbi2; | 
|  | } | 
|  | } | 
|  | } | 
|  | clear_bit(STRIPE_BIOFILL_RUN, &sh->state); | 
|  |  | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | raid5_release_stripe(sh); | 
|  | } | 
|  |  | 
|  | static void ops_run_biofill(struct stripe_head *sh) | 
|  | { | 
|  | struct dma_async_tx_descriptor *tx = NULL; | 
|  | struct async_submit_ctl submit; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(sh->batch_head); | 
|  | pr_debug("%s: stripe %llu\n", __func__, | 
|  | (unsigned long long)sh->sector); | 
|  |  | 
|  | for (i = sh->disks; i--; ) { | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  | if (test_bit(R5_Wantfill, &dev->flags)) { | 
|  | struct bio *rbi; | 
|  | spin_lock_irq(&sh->stripe_lock); | 
|  | dev->read = rbi = dev->toread; | 
|  | dev->toread = NULL; | 
|  | spin_unlock_irq(&sh->stripe_lock); | 
|  | while (rbi && rbi->bi_iter.bi_sector < | 
|  | dev->sector + STRIPE_SECTORS) { | 
|  | tx = async_copy_data(0, rbi, &dev->page, | 
|  | dev->sector, tx, sh, 0); | 
|  | rbi = r5_next_bio(rbi, dev->sector); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | atomic_inc(&sh->count); | 
|  | init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL); | 
|  | async_trigger_callback(&submit); | 
|  | } | 
|  |  | 
|  | static void mark_target_uptodate(struct stripe_head *sh, int target) | 
|  | { | 
|  | struct r5dev *tgt; | 
|  |  | 
|  | if (target < 0) | 
|  | return; | 
|  |  | 
|  | tgt = &sh->dev[target]; | 
|  | set_bit(R5_UPTODATE, &tgt->flags); | 
|  | BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); | 
|  | clear_bit(R5_Wantcompute, &tgt->flags); | 
|  | } | 
|  |  | 
|  | static void ops_complete_compute(void *stripe_head_ref) | 
|  | { | 
|  | struct stripe_head *sh = stripe_head_ref; | 
|  |  | 
|  | pr_debug("%s: stripe %llu\n", __func__, | 
|  | (unsigned long long)sh->sector); | 
|  |  | 
|  | /* mark the computed target(s) as uptodate */ | 
|  | mark_target_uptodate(sh, sh->ops.target); | 
|  | mark_target_uptodate(sh, sh->ops.target2); | 
|  |  | 
|  | clear_bit(STRIPE_COMPUTE_RUN, &sh->state); | 
|  | if (sh->check_state == check_state_compute_run) | 
|  | sh->check_state = check_state_compute_result; | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | raid5_release_stripe(sh); | 
|  | } | 
|  |  | 
|  | /* return a pointer to the address conversion region of the scribble buffer */ | 
|  | static addr_conv_t *to_addr_conv(struct stripe_head *sh, | 
|  | struct raid5_percpu *percpu, int i) | 
|  | { | 
|  | void *addr; | 
|  |  | 
|  | addr = flex_array_get(percpu->scribble, i); | 
|  | return addr + sizeof(struct page *) * (sh->disks + 2); | 
|  | } | 
|  |  | 
|  | /* return a pointer to the address conversion region of the scribble buffer */ | 
|  | static struct page **to_addr_page(struct raid5_percpu *percpu, int i) | 
|  | { | 
|  | void *addr; | 
|  |  | 
|  | addr = flex_array_get(percpu->scribble, i); | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor * | 
|  | ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu) | 
|  | { | 
|  | int disks = sh->disks; | 
|  | struct page **xor_srcs = to_addr_page(percpu, 0); | 
|  | int target = sh->ops.target; | 
|  | struct r5dev *tgt = &sh->dev[target]; | 
|  | struct page *xor_dest = tgt->page; | 
|  | int count = 0; | 
|  | struct dma_async_tx_descriptor *tx; | 
|  | struct async_submit_ctl submit; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(sh->batch_head); | 
|  |  | 
|  | pr_debug("%s: stripe %llu block: %d\n", | 
|  | __func__, (unsigned long long)sh->sector, target); | 
|  | BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); | 
|  |  | 
|  | for (i = disks; i--; ) | 
|  | if (i != target) | 
|  | xor_srcs[count++] = sh->dev[i].page; | 
|  |  | 
|  | atomic_inc(&sh->count); | 
|  |  | 
|  | init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL, | 
|  | ops_complete_compute, sh, to_addr_conv(sh, percpu, 0)); | 
|  | if (unlikely(count == 1)) | 
|  | tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); | 
|  | else | 
|  | tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); | 
|  |  | 
|  | return tx; | 
|  | } | 
|  |  | 
|  | /* set_syndrome_sources - populate source buffers for gen_syndrome | 
|  | * @srcs - (struct page *) array of size sh->disks | 
|  | * @sh - stripe_head to parse | 
|  | * | 
|  | * Populates srcs in proper layout order for the stripe and returns the | 
|  | * 'count' of sources to be used in a call to async_gen_syndrome.  The P | 
|  | * destination buffer is recorded in srcs[count] and the Q destination | 
|  | * is recorded in srcs[count+1]]. | 
|  | */ | 
|  | static int set_syndrome_sources(struct page **srcs, | 
|  | struct stripe_head *sh, | 
|  | int srctype) | 
|  | { | 
|  | int disks = sh->disks; | 
|  | int syndrome_disks = sh->ddf_layout ? disks : (disks - 2); | 
|  | int d0_idx = raid6_d0(sh); | 
|  | int count; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < disks; i++) | 
|  | srcs[i] = NULL; | 
|  |  | 
|  | count = 0; | 
|  | i = d0_idx; | 
|  | do { | 
|  | int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  |  | 
|  | if (i == sh->qd_idx || i == sh->pd_idx || | 
|  | (srctype == SYNDROME_SRC_ALL) || | 
|  | (srctype == SYNDROME_SRC_WANT_DRAIN && | 
|  | (test_bit(R5_Wantdrain, &dev->flags) || | 
|  | test_bit(R5_InJournal, &dev->flags))) || | 
|  | (srctype == SYNDROME_SRC_WRITTEN && | 
|  | (dev->written || | 
|  | test_bit(R5_InJournal, &dev->flags)))) { | 
|  | if (test_bit(R5_InJournal, &dev->flags)) | 
|  | srcs[slot] = sh->dev[i].orig_page; | 
|  | else | 
|  | srcs[slot] = sh->dev[i].page; | 
|  | } | 
|  | i = raid6_next_disk(i, disks); | 
|  | } while (i != d0_idx); | 
|  |  | 
|  | return syndrome_disks; | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor * | 
|  | ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu) | 
|  | { | 
|  | int disks = sh->disks; | 
|  | struct page **blocks = to_addr_page(percpu, 0); | 
|  | int target; | 
|  | int qd_idx = sh->qd_idx; | 
|  | struct dma_async_tx_descriptor *tx; | 
|  | struct async_submit_ctl submit; | 
|  | struct r5dev *tgt; | 
|  | struct page *dest; | 
|  | int i; | 
|  | int count; | 
|  |  | 
|  | BUG_ON(sh->batch_head); | 
|  | if (sh->ops.target < 0) | 
|  | target = sh->ops.target2; | 
|  | else if (sh->ops.target2 < 0) | 
|  | target = sh->ops.target; | 
|  | else | 
|  | /* we should only have one valid target */ | 
|  | BUG(); | 
|  | BUG_ON(target < 0); | 
|  | pr_debug("%s: stripe %llu block: %d\n", | 
|  | __func__, (unsigned long long)sh->sector, target); | 
|  |  | 
|  | tgt = &sh->dev[target]; | 
|  | BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); | 
|  | dest = tgt->page; | 
|  |  | 
|  | atomic_inc(&sh->count); | 
|  |  | 
|  | if (target == qd_idx) { | 
|  | count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); | 
|  | blocks[count] = NULL; /* regenerating p is not necessary */ | 
|  | BUG_ON(blocks[count+1] != dest); /* q should already be set */ | 
|  | init_async_submit(&submit, ASYNC_TX_FENCE, NULL, | 
|  | ops_complete_compute, sh, | 
|  | to_addr_conv(sh, percpu, 0)); | 
|  | tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit); | 
|  | } else { | 
|  | /* Compute any data- or p-drive using XOR */ | 
|  | count = 0; | 
|  | for (i = disks; i-- ; ) { | 
|  | if (i == target || i == qd_idx) | 
|  | continue; | 
|  | blocks[count++] = sh->dev[i].page; | 
|  | } | 
|  |  | 
|  | init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, | 
|  | NULL, ops_complete_compute, sh, | 
|  | to_addr_conv(sh, percpu, 0)); | 
|  | tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit); | 
|  | } | 
|  |  | 
|  | return tx; | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor * | 
|  | ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu) | 
|  | { | 
|  | int i, count, disks = sh->disks; | 
|  | int syndrome_disks = sh->ddf_layout ? disks : disks-2; | 
|  | int d0_idx = raid6_d0(sh); | 
|  | int faila = -1, failb = -1; | 
|  | int target = sh->ops.target; | 
|  | int target2 = sh->ops.target2; | 
|  | struct r5dev *tgt = &sh->dev[target]; | 
|  | struct r5dev *tgt2 = &sh->dev[target2]; | 
|  | struct dma_async_tx_descriptor *tx; | 
|  | struct page **blocks = to_addr_page(percpu, 0); | 
|  | struct async_submit_ctl submit; | 
|  |  | 
|  | BUG_ON(sh->batch_head); | 
|  | pr_debug("%s: stripe %llu block1: %d block2: %d\n", | 
|  | __func__, (unsigned long long)sh->sector, target, target2); | 
|  | BUG_ON(target < 0 || target2 < 0); | 
|  | BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags)); | 
|  | BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags)); | 
|  |  | 
|  | /* we need to open-code set_syndrome_sources to handle the | 
|  | * slot number conversion for 'faila' and 'failb' | 
|  | */ | 
|  | for (i = 0; i < disks ; i++) | 
|  | blocks[i] = NULL; | 
|  | count = 0; | 
|  | i = d0_idx; | 
|  | do { | 
|  | int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks); | 
|  |  | 
|  | blocks[slot] = sh->dev[i].page; | 
|  |  | 
|  | if (i == target) | 
|  | faila = slot; | 
|  | if (i == target2) | 
|  | failb = slot; | 
|  | i = raid6_next_disk(i, disks); | 
|  | } while (i != d0_idx); | 
|  |  | 
|  | BUG_ON(faila == failb); | 
|  | if (failb < faila) | 
|  | swap(faila, failb); | 
|  | pr_debug("%s: stripe: %llu faila: %d failb: %d\n", | 
|  | __func__, (unsigned long long)sh->sector, faila, failb); | 
|  |  | 
|  | atomic_inc(&sh->count); | 
|  |  | 
|  | if (failb == syndrome_disks+1) { | 
|  | /* Q disk is one of the missing disks */ | 
|  | if (faila == syndrome_disks) { | 
|  | /* Missing P+Q, just recompute */ | 
|  | init_async_submit(&submit, ASYNC_TX_FENCE, NULL, | 
|  | ops_complete_compute, sh, | 
|  | to_addr_conv(sh, percpu, 0)); | 
|  | return async_gen_syndrome(blocks, 0, syndrome_disks+2, | 
|  | STRIPE_SIZE, &submit); | 
|  | } else { | 
|  | struct page *dest; | 
|  | int data_target; | 
|  | int qd_idx = sh->qd_idx; | 
|  |  | 
|  | /* Missing D+Q: recompute D from P, then recompute Q */ | 
|  | if (target == qd_idx) | 
|  | data_target = target2; | 
|  | else | 
|  | data_target = target; | 
|  |  | 
|  | count = 0; | 
|  | for (i = disks; i-- ; ) { | 
|  | if (i == data_target || i == qd_idx) | 
|  | continue; | 
|  | blocks[count++] = sh->dev[i].page; | 
|  | } | 
|  | dest = sh->dev[data_target].page; | 
|  | init_async_submit(&submit, | 
|  | ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, | 
|  | NULL, NULL, NULL, | 
|  | to_addr_conv(sh, percpu, 0)); | 
|  | tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, | 
|  | &submit); | 
|  |  | 
|  | count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL); | 
|  | init_async_submit(&submit, ASYNC_TX_FENCE, tx, | 
|  | ops_complete_compute, sh, | 
|  | to_addr_conv(sh, percpu, 0)); | 
|  | return async_gen_syndrome(blocks, 0, count+2, | 
|  | STRIPE_SIZE, &submit); | 
|  | } | 
|  | } else { | 
|  | init_async_submit(&submit, ASYNC_TX_FENCE, NULL, | 
|  | ops_complete_compute, sh, | 
|  | to_addr_conv(sh, percpu, 0)); | 
|  | if (failb == syndrome_disks) { | 
|  | /* We're missing D+P. */ | 
|  | return async_raid6_datap_recov(syndrome_disks+2, | 
|  | STRIPE_SIZE, faila, | 
|  | blocks, &submit); | 
|  | } else { | 
|  | /* We're missing D+D. */ | 
|  | return async_raid6_2data_recov(syndrome_disks+2, | 
|  | STRIPE_SIZE, faila, failb, | 
|  | blocks, &submit); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ops_complete_prexor(void *stripe_head_ref) | 
|  | { | 
|  | struct stripe_head *sh = stripe_head_ref; | 
|  |  | 
|  | pr_debug("%s: stripe %llu\n", __func__, | 
|  | (unsigned long long)sh->sector); | 
|  |  | 
|  | if (r5c_is_writeback(sh->raid_conf->log)) | 
|  | /* | 
|  | * raid5-cache write back uses orig_page during prexor. | 
|  | * After prexor, it is time to free orig_page | 
|  | */ | 
|  | r5c_release_extra_page(sh); | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor * | 
|  | ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu, | 
|  | struct dma_async_tx_descriptor *tx) | 
|  | { | 
|  | int disks = sh->disks; | 
|  | struct page **xor_srcs = to_addr_page(percpu, 0); | 
|  | int count = 0, pd_idx = sh->pd_idx, i; | 
|  | struct async_submit_ctl submit; | 
|  |  | 
|  | /* existing parity data subtracted */ | 
|  | struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; | 
|  |  | 
|  | BUG_ON(sh->batch_head); | 
|  | pr_debug("%s: stripe %llu\n", __func__, | 
|  | (unsigned long long)sh->sector); | 
|  |  | 
|  | for (i = disks; i--; ) { | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  | /* Only process blocks that are known to be uptodate */ | 
|  | if (test_bit(R5_InJournal, &dev->flags)) | 
|  | xor_srcs[count++] = dev->orig_page; | 
|  | else if (test_bit(R5_Wantdrain, &dev->flags)) | 
|  | xor_srcs[count++] = dev->page; | 
|  | } | 
|  |  | 
|  | init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, | 
|  | ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); | 
|  | tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); | 
|  |  | 
|  | return tx; | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor * | 
|  | ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu, | 
|  | struct dma_async_tx_descriptor *tx) | 
|  | { | 
|  | struct page **blocks = to_addr_page(percpu, 0); | 
|  | int count; | 
|  | struct async_submit_ctl submit; | 
|  |  | 
|  | pr_debug("%s: stripe %llu\n", __func__, | 
|  | (unsigned long long)sh->sector); | 
|  |  | 
|  | count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN); | 
|  |  | 
|  | init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx, | 
|  | ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0)); | 
|  | tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit); | 
|  |  | 
|  | return tx; | 
|  | } | 
|  |  | 
|  | static struct dma_async_tx_descriptor * | 
|  | ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx) | 
|  | { | 
|  | struct r5conf *conf = sh->raid_conf; | 
|  | int disks = sh->disks; | 
|  | int i; | 
|  | struct stripe_head *head_sh = sh; | 
|  |  | 
|  | pr_debug("%s: stripe %llu\n", __func__, | 
|  | (unsigned long long)sh->sector); | 
|  |  | 
|  | for (i = disks; i--; ) { | 
|  | struct r5dev *dev; | 
|  | struct bio *chosen; | 
|  |  | 
|  | sh = head_sh; | 
|  | if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) { | 
|  | struct bio *wbi; | 
|  |  | 
|  | again: | 
|  | dev = &sh->dev[i]; | 
|  | /* | 
|  | * clear R5_InJournal, so when rewriting a page in | 
|  | * journal, it is not skipped by r5l_log_stripe() | 
|  | */ | 
|  | clear_bit(R5_InJournal, &dev->flags); | 
|  | spin_lock_irq(&sh->stripe_lock); | 
|  | chosen = dev->towrite; | 
|  | dev->towrite = NULL; | 
|  | sh->overwrite_disks = 0; | 
|  | BUG_ON(dev->written); | 
|  | wbi = dev->written = chosen; | 
|  | spin_unlock_irq(&sh->stripe_lock); | 
|  | WARN_ON(dev->page != dev->orig_page); | 
|  |  | 
|  | while (wbi && wbi->bi_iter.bi_sector < | 
|  | dev->sector + STRIPE_SECTORS) { | 
|  | if (wbi->bi_opf & REQ_FUA) | 
|  | set_bit(R5_WantFUA, &dev->flags); | 
|  | if (wbi->bi_opf & REQ_SYNC) | 
|  | set_bit(R5_SyncIO, &dev->flags); | 
|  | if (bio_op(wbi) == REQ_OP_DISCARD) | 
|  | set_bit(R5_Discard, &dev->flags); | 
|  | else { | 
|  | tx = async_copy_data(1, wbi, &dev->page, | 
|  | dev->sector, tx, sh, | 
|  | r5c_is_writeback(conf->log)); | 
|  | if (dev->page != dev->orig_page && | 
|  | !r5c_is_writeback(conf->log)) { | 
|  | set_bit(R5_SkipCopy, &dev->flags); | 
|  | clear_bit(R5_UPTODATE, &dev->flags); | 
|  | clear_bit(R5_OVERWRITE, &dev->flags); | 
|  | } | 
|  | } | 
|  | wbi = r5_next_bio(wbi, dev->sector); | 
|  | } | 
|  |  | 
|  | if (head_sh->batch_head) { | 
|  | sh = list_first_entry(&sh->batch_list, | 
|  | struct stripe_head, | 
|  | batch_list); | 
|  | if (sh == head_sh) | 
|  | continue; | 
|  | goto again; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return tx; | 
|  | } | 
|  |  | 
|  | static void ops_complete_reconstruct(void *stripe_head_ref) | 
|  | { | 
|  | struct stripe_head *sh = stripe_head_ref; | 
|  | int disks = sh->disks; | 
|  | int pd_idx = sh->pd_idx; | 
|  | int qd_idx = sh->qd_idx; | 
|  | int i; | 
|  | bool fua = false, sync = false, discard = false; | 
|  |  | 
|  | pr_debug("%s: stripe %llu\n", __func__, | 
|  | (unsigned long long)sh->sector); | 
|  |  | 
|  | for (i = disks; i--; ) { | 
|  | fua |= test_bit(R5_WantFUA, &sh->dev[i].flags); | 
|  | sync |= test_bit(R5_SyncIO, &sh->dev[i].flags); | 
|  | discard |= test_bit(R5_Discard, &sh->dev[i].flags); | 
|  | } | 
|  |  | 
|  | for (i = disks; i--; ) { | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  |  | 
|  | if (dev->written || i == pd_idx || i == qd_idx) { | 
|  | if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) { | 
|  | set_bit(R5_UPTODATE, &dev->flags); | 
|  | if (test_bit(STRIPE_EXPAND_READY, &sh->state)) | 
|  | set_bit(R5_Expanded, &dev->flags); | 
|  | } | 
|  | if (fua) | 
|  | set_bit(R5_WantFUA, &dev->flags); | 
|  | if (sync) | 
|  | set_bit(R5_SyncIO, &dev->flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sh->reconstruct_state == reconstruct_state_drain_run) | 
|  | sh->reconstruct_state = reconstruct_state_drain_result; | 
|  | else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) | 
|  | sh->reconstruct_state = reconstruct_state_prexor_drain_result; | 
|  | else { | 
|  | BUG_ON(sh->reconstruct_state != reconstruct_state_run); | 
|  | sh->reconstruct_state = reconstruct_state_result; | 
|  | } | 
|  |  | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | raid5_release_stripe(sh); | 
|  | } | 
|  |  | 
|  | static void | 
|  | ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu, | 
|  | struct dma_async_tx_descriptor *tx) | 
|  | { | 
|  | int disks = sh->disks; | 
|  | struct page **xor_srcs; | 
|  | struct async_submit_ctl submit; | 
|  | int count, pd_idx = sh->pd_idx, i; | 
|  | struct page *xor_dest; | 
|  | int prexor = 0; | 
|  | unsigned long flags; | 
|  | int j = 0; | 
|  | struct stripe_head *head_sh = sh; | 
|  | int last_stripe; | 
|  |  | 
|  | pr_debug("%s: stripe %llu\n", __func__, | 
|  | (unsigned long long)sh->sector); | 
|  |  | 
|  | for (i = 0; i < sh->disks; i++) { | 
|  | if (pd_idx == i) | 
|  | continue; | 
|  | if (!test_bit(R5_Discard, &sh->dev[i].flags)) | 
|  | break; | 
|  | } | 
|  | if (i >= sh->disks) { | 
|  | atomic_inc(&sh->count); | 
|  | set_bit(R5_Discard, &sh->dev[pd_idx].flags); | 
|  | ops_complete_reconstruct(sh); | 
|  | return; | 
|  | } | 
|  | again: | 
|  | count = 0; | 
|  | xor_srcs = to_addr_page(percpu, j); | 
|  | /* check if prexor is active which means only process blocks | 
|  | * that are part of a read-modify-write (written) | 
|  | */ | 
|  | if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) { | 
|  | prexor = 1; | 
|  | xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page; | 
|  | for (i = disks; i--; ) { | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  | if (head_sh->dev[i].written || | 
|  | test_bit(R5_InJournal, &head_sh->dev[i].flags)) | 
|  | xor_srcs[count++] = dev->page; | 
|  | } | 
|  | } else { | 
|  | xor_dest = sh->dev[pd_idx].page; | 
|  | for (i = disks; i--; ) { | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  | if (i != pd_idx) | 
|  | xor_srcs[count++] = dev->page; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* 1/ if we prexor'd then the dest is reused as a source | 
|  | * 2/ if we did not prexor then we are redoing the parity | 
|  | * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST | 
|  | * for the synchronous xor case | 
|  | */ | 
|  | last_stripe = !head_sh->batch_head || | 
|  | list_first_entry(&sh->batch_list, | 
|  | struct stripe_head, batch_list) == head_sh; | 
|  | if (last_stripe) { | 
|  | flags = ASYNC_TX_ACK | | 
|  | (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST); | 
|  |  | 
|  | atomic_inc(&head_sh->count); | 
|  | init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh, | 
|  | to_addr_conv(sh, percpu, j)); | 
|  | } else { | 
|  | flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST; | 
|  | init_async_submit(&submit, flags, tx, NULL, NULL, | 
|  | to_addr_conv(sh, percpu, j)); | 
|  | } | 
|  |  | 
|  | if (unlikely(count == 1)) | 
|  | tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit); | 
|  | else | 
|  | tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit); | 
|  | if (!last_stripe) { | 
|  | j++; | 
|  | sh = list_first_entry(&sh->batch_list, struct stripe_head, | 
|  | batch_list); | 
|  | goto again; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu, | 
|  | struct dma_async_tx_descriptor *tx) | 
|  | { | 
|  | struct async_submit_ctl submit; | 
|  | struct page **blocks; | 
|  | int count, i, j = 0; | 
|  | struct stripe_head *head_sh = sh; | 
|  | int last_stripe; | 
|  | int synflags; | 
|  | unsigned long txflags; | 
|  |  | 
|  | pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector); | 
|  |  | 
|  | for (i = 0; i < sh->disks; i++) { | 
|  | if (sh->pd_idx == i || sh->qd_idx == i) | 
|  | continue; | 
|  | if (!test_bit(R5_Discard, &sh->dev[i].flags)) | 
|  | break; | 
|  | } | 
|  | if (i >= sh->disks) { | 
|  | atomic_inc(&sh->count); | 
|  | set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); | 
|  | set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); | 
|  | ops_complete_reconstruct(sh); | 
|  | return; | 
|  | } | 
|  |  | 
|  | again: | 
|  | blocks = to_addr_page(percpu, j); | 
|  |  | 
|  | if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) { | 
|  | synflags = SYNDROME_SRC_WRITTEN; | 
|  | txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST; | 
|  | } else { | 
|  | synflags = SYNDROME_SRC_ALL; | 
|  | txflags = ASYNC_TX_ACK; | 
|  | } | 
|  |  | 
|  | count = set_syndrome_sources(blocks, sh, synflags); | 
|  | last_stripe = !head_sh->batch_head || | 
|  | list_first_entry(&sh->batch_list, | 
|  | struct stripe_head, batch_list) == head_sh; | 
|  |  | 
|  | if (last_stripe) { | 
|  | atomic_inc(&head_sh->count); | 
|  | init_async_submit(&submit, txflags, tx, ops_complete_reconstruct, | 
|  | head_sh, to_addr_conv(sh, percpu, j)); | 
|  | } else | 
|  | init_async_submit(&submit, 0, tx, NULL, NULL, | 
|  | to_addr_conv(sh, percpu, j)); | 
|  | tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit); | 
|  | if (!last_stripe) { | 
|  | j++; | 
|  | sh = list_first_entry(&sh->batch_list, struct stripe_head, | 
|  | batch_list); | 
|  | goto again; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ops_complete_check(void *stripe_head_ref) | 
|  | { | 
|  | struct stripe_head *sh = stripe_head_ref; | 
|  |  | 
|  | pr_debug("%s: stripe %llu\n", __func__, | 
|  | (unsigned long long)sh->sector); | 
|  |  | 
|  | sh->check_state = check_state_check_result; | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | raid5_release_stripe(sh); | 
|  | } | 
|  |  | 
|  | static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu) | 
|  | { | 
|  | int disks = sh->disks; | 
|  | int pd_idx = sh->pd_idx; | 
|  | int qd_idx = sh->qd_idx; | 
|  | struct page *xor_dest; | 
|  | struct page **xor_srcs = to_addr_page(percpu, 0); | 
|  | struct dma_async_tx_descriptor *tx; | 
|  | struct async_submit_ctl submit; | 
|  | int count; | 
|  | int i; | 
|  |  | 
|  | pr_debug("%s: stripe %llu\n", __func__, | 
|  | (unsigned long long)sh->sector); | 
|  |  | 
|  | BUG_ON(sh->batch_head); | 
|  | count = 0; | 
|  | xor_dest = sh->dev[pd_idx].page; | 
|  | xor_srcs[count++] = xor_dest; | 
|  | for (i = disks; i--; ) { | 
|  | if (i == pd_idx || i == qd_idx) | 
|  | continue; | 
|  | xor_srcs[count++] = sh->dev[i].page; | 
|  | } | 
|  |  | 
|  | init_async_submit(&submit, 0, NULL, NULL, NULL, | 
|  | to_addr_conv(sh, percpu, 0)); | 
|  | tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, | 
|  | &sh->ops.zero_sum_result, &submit); | 
|  |  | 
|  | atomic_inc(&sh->count); | 
|  | init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL); | 
|  | tx = async_trigger_callback(&submit); | 
|  | } | 
|  |  | 
|  | static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp) | 
|  | { | 
|  | struct page **srcs = to_addr_page(percpu, 0); | 
|  | struct async_submit_ctl submit; | 
|  | int count; | 
|  |  | 
|  | pr_debug("%s: stripe %llu checkp: %d\n", __func__, | 
|  | (unsigned long long)sh->sector, checkp); | 
|  |  | 
|  | BUG_ON(sh->batch_head); | 
|  | count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL); | 
|  | if (!checkp) | 
|  | srcs[count] = NULL; | 
|  |  | 
|  | atomic_inc(&sh->count); | 
|  | init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check, | 
|  | sh, to_addr_conv(sh, percpu, 0)); | 
|  | async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE, | 
|  | &sh->ops.zero_sum_result, percpu->spare_page, &submit); | 
|  | } | 
|  |  | 
|  | static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request) | 
|  | { | 
|  | int overlap_clear = 0, i, disks = sh->disks; | 
|  | struct dma_async_tx_descriptor *tx = NULL; | 
|  | struct r5conf *conf = sh->raid_conf; | 
|  | int level = conf->level; | 
|  | struct raid5_percpu *percpu; | 
|  | unsigned long cpu; | 
|  |  | 
|  | cpu = get_cpu(); | 
|  | percpu = per_cpu_ptr(conf->percpu, cpu); | 
|  | if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) { | 
|  | ops_run_biofill(sh); | 
|  | overlap_clear++; | 
|  | } | 
|  |  | 
|  | if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) { | 
|  | if (level < 6) | 
|  | tx = ops_run_compute5(sh, percpu); | 
|  | else { | 
|  | if (sh->ops.target2 < 0 || sh->ops.target < 0) | 
|  | tx = ops_run_compute6_1(sh, percpu); | 
|  | else | 
|  | tx = ops_run_compute6_2(sh, percpu); | 
|  | } | 
|  | /* terminate the chain if reconstruct is not set to be run */ | 
|  | if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) | 
|  | async_tx_ack(tx); | 
|  | } | 
|  |  | 
|  | if (test_bit(STRIPE_OP_PREXOR, &ops_request)) { | 
|  | if (level < 6) | 
|  | tx = ops_run_prexor5(sh, percpu, tx); | 
|  | else | 
|  | tx = ops_run_prexor6(sh, percpu, tx); | 
|  | } | 
|  |  | 
|  | if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request)) | 
|  | tx = ops_run_partial_parity(sh, percpu, tx); | 
|  |  | 
|  | if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) { | 
|  | tx = ops_run_biodrain(sh, tx); | 
|  | overlap_clear++; | 
|  | } | 
|  |  | 
|  | if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) { | 
|  | if (level < 6) | 
|  | ops_run_reconstruct5(sh, percpu, tx); | 
|  | else | 
|  | ops_run_reconstruct6(sh, percpu, tx); | 
|  | } | 
|  |  | 
|  | if (test_bit(STRIPE_OP_CHECK, &ops_request)) { | 
|  | if (sh->check_state == check_state_run) | 
|  | ops_run_check_p(sh, percpu); | 
|  | else if (sh->check_state == check_state_run_q) | 
|  | ops_run_check_pq(sh, percpu, 0); | 
|  | else if (sh->check_state == check_state_run_pq) | 
|  | ops_run_check_pq(sh, percpu, 1); | 
|  | else | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (overlap_clear && !sh->batch_head) | 
|  | for (i = disks; i--; ) { | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  | if (test_and_clear_bit(R5_Overlap, &dev->flags)) | 
|  | wake_up(&sh->raid_conf->wait_for_overlap); | 
|  | } | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh) | 
|  | { | 
|  | if (sh->ppl_page) | 
|  | __free_page(sh->ppl_page); | 
|  | kmem_cache_free(sc, sh); | 
|  | } | 
|  |  | 
|  | static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp, | 
|  | int disks, struct r5conf *conf) | 
|  | { | 
|  | struct stripe_head *sh; | 
|  | int i; | 
|  |  | 
|  | sh = kmem_cache_zalloc(sc, gfp); | 
|  | if (sh) { | 
|  | spin_lock_init(&sh->stripe_lock); | 
|  | spin_lock_init(&sh->batch_lock); | 
|  | INIT_LIST_HEAD(&sh->batch_list); | 
|  | INIT_LIST_HEAD(&sh->lru); | 
|  | INIT_LIST_HEAD(&sh->r5c); | 
|  | INIT_LIST_HEAD(&sh->log_list); | 
|  | atomic_set(&sh->count, 1); | 
|  | sh->raid_conf = conf; | 
|  | sh->log_start = MaxSector; | 
|  | for (i = 0; i < disks; i++) { | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  |  | 
|  | bio_init(&dev->req, &dev->vec, 1); | 
|  | bio_init(&dev->rreq, &dev->rvec, 1); | 
|  | } | 
|  |  | 
|  | if (raid5_has_ppl(conf)) { | 
|  | sh->ppl_page = alloc_page(gfp); | 
|  | if (!sh->ppl_page) { | 
|  | free_stripe(sc, sh); | 
|  | sh = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  | return sh; | 
|  | } | 
|  | static int grow_one_stripe(struct r5conf *conf, gfp_t gfp) | 
|  | { | 
|  | struct stripe_head *sh; | 
|  |  | 
|  | sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf); | 
|  | if (!sh) | 
|  | return 0; | 
|  |  | 
|  | if (grow_buffers(sh, gfp)) { | 
|  | shrink_buffers(sh); | 
|  | free_stripe(conf->slab_cache, sh); | 
|  | return 0; | 
|  | } | 
|  | sh->hash_lock_index = | 
|  | conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS; | 
|  | /* we just created an active stripe so... */ | 
|  | atomic_inc(&conf->active_stripes); | 
|  |  | 
|  | raid5_release_stripe(sh); | 
|  | conf->max_nr_stripes++; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int grow_stripes(struct r5conf *conf, int num) | 
|  | { | 
|  | struct kmem_cache *sc; | 
|  | size_t namelen = sizeof(conf->cache_name[0]); | 
|  | int devs = max(conf->raid_disks, conf->previous_raid_disks); | 
|  |  | 
|  | if (conf->mddev->gendisk) | 
|  | snprintf(conf->cache_name[0], namelen, | 
|  | "raid%d-%s", conf->level, mdname(conf->mddev)); | 
|  | else | 
|  | snprintf(conf->cache_name[0], namelen, | 
|  | "raid%d-%p", conf->level, conf->mddev); | 
|  | snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]); | 
|  |  | 
|  | conf->active_name = 0; | 
|  | sc = kmem_cache_create(conf->cache_name[conf->active_name], | 
|  | sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), | 
|  | 0, 0, NULL); | 
|  | if (!sc) | 
|  | return 1; | 
|  | conf->slab_cache = sc; | 
|  | conf->pool_size = devs; | 
|  | while (num--) | 
|  | if (!grow_one_stripe(conf, GFP_KERNEL)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * scribble_len - return the required size of the scribble region | 
|  | * @num - total number of disks in the array | 
|  | * | 
|  | * The size must be enough to contain: | 
|  | * 1/ a struct page pointer for each device in the array +2 | 
|  | * 2/ room to convert each entry in (1) to its corresponding dma | 
|  | *    (dma_map_page()) or page (page_address()) address. | 
|  | * | 
|  | * Note: the +2 is for the destination buffers of the ddf/raid6 case where we | 
|  | * calculate over all devices (not just the data blocks), using zeros in place | 
|  | * of the P and Q blocks. | 
|  | */ | 
|  | static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags) | 
|  | { | 
|  | struct flex_array *ret; | 
|  | size_t len; | 
|  |  | 
|  | len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2); | 
|  | ret = flex_array_alloc(len, cnt, flags); | 
|  | if (!ret) | 
|  | return NULL; | 
|  | /* always prealloc all elements, so no locking is required */ | 
|  | if (flex_array_prealloc(ret, 0, cnt, flags)) { | 
|  | flex_array_free(ret); | 
|  | return NULL; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors) | 
|  | { | 
|  | unsigned long cpu; | 
|  | int err = 0; | 
|  |  | 
|  | /* | 
|  | * Never shrink. And mddev_suspend() could deadlock if this is called | 
|  | * from raid5d. In that case, scribble_disks and scribble_sectors | 
|  | * should equal to new_disks and new_sectors | 
|  | */ | 
|  | if (conf->scribble_disks >= new_disks && | 
|  | conf->scribble_sectors >= new_sectors) | 
|  | return 0; | 
|  | mddev_suspend(conf->mddev); | 
|  | get_online_cpus(); | 
|  | for_each_present_cpu(cpu) { | 
|  | struct raid5_percpu *percpu; | 
|  | struct flex_array *scribble; | 
|  |  | 
|  | percpu = per_cpu_ptr(conf->percpu, cpu); | 
|  | scribble = scribble_alloc(new_disks, | 
|  | new_sectors / STRIPE_SECTORS, | 
|  | GFP_NOIO); | 
|  |  | 
|  | if (scribble) { | 
|  | flex_array_free(percpu->scribble); | 
|  | percpu->scribble = scribble; | 
|  | } else { | 
|  | err = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | } | 
|  | put_online_cpus(); | 
|  | mddev_resume(conf->mddev); | 
|  | if (!err) { | 
|  | conf->scribble_disks = new_disks; | 
|  | conf->scribble_sectors = new_sectors; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int resize_stripes(struct r5conf *conf, int newsize) | 
|  | { | 
|  | /* Make all the stripes able to hold 'newsize' devices. | 
|  | * New slots in each stripe get 'page' set to a new page. | 
|  | * | 
|  | * This happens in stages: | 
|  | * 1/ create a new kmem_cache and allocate the required number of | 
|  | *    stripe_heads. | 
|  | * 2/ gather all the old stripe_heads and transfer the pages across | 
|  | *    to the new stripe_heads.  This will have the side effect of | 
|  | *    freezing the array as once all stripe_heads have been collected, | 
|  | *    no IO will be possible.  Old stripe heads are freed once their | 
|  | *    pages have been transferred over, and the old kmem_cache is | 
|  | *    freed when all stripes are done. | 
|  | * 3/ reallocate conf->disks to be suitable bigger.  If this fails, | 
|  | *    we simple return a failure status - no need to clean anything up. | 
|  | * 4/ allocate new pages for the new slots in the new stripe_heads. | 
|  | *    If this fails, we don't bother trying the shrink the | 
|  | *    stripe_heads down again, we just leave them as they are. | 
|  | *    As each stripe_head is processed the new one is released into | 
|  | *    active service. | 
|  | * | 
|  | * Once step2 is started, we cannot afford to wait for a write, | 
|  | * so we use GFP_NOIO allocations. | 
|  | */ | 
|  | struct stripe_head *osh, *nsh; | 
|  | LIST_HEAD(newstripes); | 
|  | struct disk_info *ndisks; | 
|  | int err = 0; | 
|  | struct kmem_cache *sc; | 
|  | int i; | 
|  | int hash, cnt; | 
|  |  | 
|  | md_allow_write(conf->mddev); | 
|  |  | 
|  | /* Step 1 */ | 
|  | sc = kmem_cache_create(conf->cache_name[1-conf->active_name], | 
|  | sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev), | 
|  | 0, 0, NULL); | 
|  | if (!sc) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Need to ensure auto-resizing doesn't interfere */ | 
|  | mutex_lock(&conf->cache_size_mutex); | 
|  |  | 
|  | for (i = conf->max_nr_stripes; i; i--) { | 
|  | nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf); | 
|  | if (!nsh) | 
|  | break; | 
|  |  | 
|  | list_add(&nsh->lru, &newstripes); | 
|  | } | 
|  | if (i) { | 
|  | /* didn't get enough, give up */ | 
|  | while (!list_empty(&newstripes)) { | 
|  | nsh = list_entry(newstripes.next, struct stripe_head, lru); | 
|  | list_del(&nsh->lru); | 
|  | free_stripe(sc, nsh); | 
|  | } | 
|  | kmem_cache_destroy(sc); | 
|  | mutex_unlock(&conf->cache_size_mutex); | 
|  | return -ENOMEM; | 
|  | } | 
|  | /* Step 2 - Must use GFP_NOIO now. | 
|  | * OK, we have enough stripes, start collecting inactive | 
|  | * stripes and copying them over | 
|  | */ | 
|  | hash = 0; | 
|  | cnt = 0; | 
|  | list_for_each_entry(nsh, &newstripes, lru) { | 
|  | lock_device_hash_lock(conf, hash); | 
|  | wait_event_cmd(conf->wait_for_stripe, | 
|  | !list_empty(conf->inactive_list + hash), | 
|  | unlock_device_hash_lock(conf, hash), | 
|  | lock_device_hash_lock(conf, hash)); | 
|  | osh = get_free_stripe(conf, hash); | 
|  | unlock_device_hash_lock(conf, hash); | 
|  |  | 
|  | for(i=0; i<conf->pool_size; i++) { | 
|  | nsh->dev[i].page = osh->dev[i].page; | 
|  | nsh->dev[i].orig_page = osh->dev[i].page; | 
|  | } | 
|  | nsh->hash_lock_index = hash; | 
|  | free_stripe(conf->slab_cache, osh); | 
|  | cnt++; | 
|  | if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS + | 
|  | !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) { | 
|  | hash++; | 
|  | cnt = 0; | 
|  | } | 
|  | } | 
|  | kmem_cache_destroy(conf->slab_cache); | 
|  |  | 
|  | /* Step 3. | 
|  | * At this point, we are holding all the stripes so the array | 
|  | * is completely stalled, so now is a good time to resize | 
|  | * conf->disks and the scribble region | 
|  | */ | 
|  | ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO); | 
|  | if (ndisks) { | 
|  | for (i = 0; i < conf->pool_size; i++) | 
|  | ndisks[i] = conf->disks[i]; | 
|  |  | 
|  | for (i = conf->pool_size; i < newsize; i++) { | 
|  | ndisks[i].extra_page = alloc_page(GFP_NOIO); | 
|  | if (!ndisks[i].extra_page) | 
|  | err = -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (err) { | 
|  | for (i = conf->pool_size; i < newsize; i++) | 
|  | if (ndisks[i].extra_page) | 
|  | put_page(ndisks[i].extra_page); | 
|  | kfree(ndisks); | 
|  | } else { | 
|  | kfree(conf->disks); | 
|  | conf->disks = ndisks; | 
|  | } | 
|  | } else | 
|  | err = -ENOMEM; | 
|  |  | 
|  | mutex_unlock(&conf->cache_size_mutex); | 
|  |  | 
|  | conf->slab_cache = sc; | 
|  | conf->active_name = 1-conf->active_name; | 
|  |  | 
|  | /* Step 4, return new stripes to service */ | 
|  | while(!list_empty(&newstripes)) { | 
|  | nsh = list_entry(newstripes.next, struct stripe_head, lru); | 
|  | list_del_init(&nsh->lru); | 
|  |  | 
|  | for (i=conf->raid_disks; i < newsize; i++) | 
|  | if (nsh->dev[i].page == NULL) { | 
|  | struct page *p = alloc_page(GFP_NOIO); | 
|  | nsh->dev[i].page = p; | 
|  | nsh->dev[i].orig_page = p; | 
|  | if (!p) | 
|  | err = -ENOMEM; | 
|  | } | 
|  | raid5_release_stripe(nsh); | 
|  | } | 
|  | /* critical section pass, GFP_NOIO no longer needed */ | 
|  |  | 
|  | if (!err) | 
|  | conf->pool_size = newsize; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int drop_one_stripe(struct r5conf *conf) | 
|  | { | 
|  | struct stripe_head *sh; | 
|  | int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK; | 
|  |  | 
|  | spin_lock_irq(conf->hash_locks + hash); | 
|  | sh = get_free_stripe(conf, hash); | 
|  | spin_unlock_irq(conf->hash_locks + hash); | 
|  | if (!sh) | 
|  | return 0; | 
|  | BUG_ON(atomic_read(&sh->count)); | 
|  | shrink_buffers(sh); | 
|  | free_stripe(conf->slab_cache, sh); | 
|  | atomic_dec(&conf->active_stripes); | 
|  | conf->max_nr_stripes--; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void shrink_stripes(struct r5conf *conf) | 
|  | { | 
|  | while (conf->max_nr_stripes && | 
|  | drop_one_stripe(conf)) | 
|  | ; | 
|  |  | 
|  | kmem_cache_destroy(conf->slab_cache); | 
|  | conf->slab_cache = NULL; | 
|  | } | 
|  |  | 
|  | static void raid5_end_read_request(struct bio * bi) | 
|  | { | 
|  | struct stripe_head *sh = bi->bi_private; | 
|  | struct r5conf *conf = sh->raid_conf; | 
|  | int disks = sh->disks, i; | 
|  | char b[BDEVNAME_SIZE]; | 
|  | struct md_rdev *rdev = NULL; | 
|  | sector_t s; | 
|  |  | 
|  | for (i=0 ; i<disks; i++) | 
|  | if (bi == &sh->dev[i].req) | 
|  | break; | 
|  |  | 
|  | pr_debug("end_read_request %llu/%d, count: %d, error %d.\n", | 
|  | (unsigned long long)sh->sector, i, atomic_read(&sh->count), | 
|  | bi->bi_status); | 
|  | if (i == disks) { | 
|  | bio_reset(bi); | 
|  | BUG(); | 
|  | return; | 
|  | } | 
|  | if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) | 
|  | /* If replacement finished while this request was outstanding, | 
|  | * 'replacement' might be NULL already. | 
|  | * In that case it moved down to 'rdev'. | 
|  | * rdev is not removed until all requests are finished. | 
|  | */ | 
|  | rdev = conf->disks[i].replacement; | 
|  | if (!rdev) | 
|  | rdev = conf->disks[i].rdev; | 
|  |  | 
|  | if (use_new_offset(conf, sh)) | 
|  | s = sh->sector + rdev->new_data_offset; | 
|  | else | 
|  | s = sh->sector + rdev->data_offset; | 
|  | if (!bi->bi_status) { | 
|  | set_bit(R5_UPTODATE, &sh->dev[i].flags); | 
|  | if (test_bit(R5_ReadError, &sh->dev[i].flags)) { | 
|  | /* Note that this cannot happen on a | 
|  | * replacement device.  We just fail those on | 
|  | * any error | 
|  | */ | 
|  | pr_info_ratelimited( | 
|  | "md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n", | 
|  | mdname(conf->mddev), STRIPE_SECTORS, | 
|  | (unsigned long long)s, | 
|  | bdevname(rdev->bdev, b)); | 
|  | atomic_add(STRIPE_SECTORS, &rdev->corrected_errors); | 
|  | clear_bit(R5_ReadError, &sh->dev[i].flags); | 
|  | clear_bit(R5_ReWrite, &sh->dev[i].flags); | 
|  | } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) | 
|  | clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); | 
|  |  | 
|  | if (test_bit(R5_InJournal, &sh->dev[i].flags)) | 
|  | /* | 
|  | * end read for a page in journal, this | 
|  | * must be preparing for prexor in rmw | 
|  | */ | 
|  | set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags); | 
|  |  | 
|  | if (atomic_read(&rdev->read_errors)) | 
|  | atomic_set(&rdev->read_errors, 0); | 
|  | } else { | 
|  | const char *bdn = bdevname(rdev->bdev, b); | 
|  | int retry = 0; | 
|  | int set_bad = 0; | 
|  |  | 
|  | clear_bit(R5_UPTODATE, &sh->dev[i].flags); | 
|  | if (!(bi->bi_status == BLK_STS_PROTECTION)) | 
|  | atomic_inc(&rdev->read_errors); | 
|  | if (test_bit(R5_ReadRepl, &sh->dev[i].flags)) | 
|  | pr_warn_ratelimited( | 
|  | "md/raid:%s: read error on replacement device (sector %llu on %s).\n", | 
|  | mdname(conf->mddev), | 
|  | (unsigned long long)s, | 
|  | bdn); | 
|  | else if (conf->mddev->degraded >= conf->max_degraded) { | 
|  | set_bad = 1; | 
|  | pr_warn_ratelimited( | 
|  | "md/raid:%s: read error not correctable (sector %llu on %s).\n", | 
|  | mdname(conf->mddev), | 
|  | (unsigned long long)s, | 
|  | bdn); | 
|  | } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) { | 
|  | /* Oh, no!!! */ | 
|  | set_bad = 1; | 
|  | pr_warn_ratelimited( | 
|  | "md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n", | 
|  | mdname(conf->mddev), | 
|  | (unsigned long long)s, | 
|  | bdn); | 
|  | } else if (atomic_read(&rdev->read_errors) | 
|  | > conf->max_nr_stripes) | 
|  | pr_warn("md/raid:%s: Too many read errors, failing device %s.\n", | 
|  | mdname(conf->mddev), bdn); | 
|  | else | 
|  | retry = 1; | 
|  | if (set_bad && test_bit(In_sync, &rdev->flags) | 
|  | && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) | 
|  | retry = 1; | 
|  | if (retry) | 
|  | if (sh->qd_idx >= 0 && sh->pd_idx == i) | 
|  | set_bit(R5_ReadError, &sh->dev[i].flags); | 
|  | else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) { | 
|  | set_bit(R5_ReadError, &sh->dev[i].flags); | 
|  | clear_bit(R5_ReadNoMerge, &sh->dev[i].flags); | 
|  | } else | 
|  | set_bit(R5_ReadNoMerge, &sh->dev[i].flags); | 
|  | else { | 
|  | clear_bit(R5_ReadError, &sh->dev[i].flags); | 
|  | clear_bit(R5_ReWrite, &sh->dev[i].flags); | 
|  | if (!(set_bad | 
|  | && test_bit(In_sync, &rdev->flags) | 
|  | && rdev_set_badblocks( | 
|  | rdev, sh->sector, STRIPE_SECTORS, 0))) | 
|  | md_error(conf->mddev, rdev); | 
|  | } | 
|  | } | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  | bio_reset(bi); | 
|  | clear_bit(R5_LOCKED, &sh->dev[i].flags); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | raid5_release_stripe(sh); | 
|  | } | 
|  |  | 
|  | static void raid5_end_write_request(struct bio *bi) | 
|  | { | 
|  | struct stripe_head *sh = bi->bi_private; | 
|  | struct r5conf *conf = sh->raid_conf; | 
|  | int disks = sh->disks, i; | 
|  | struct md_rdev *uninitialized_var(rdev); | 
|  | sector_t first_bad; | 
|  | int bad_sectors; | 
|  | int replacement = 0; | 
|  |  | 
|  | for (i = 0 ; i < disks; i++) { | 
|  | if (bi == &sh->dev[i].req) { | 
|  | rdev = conf->disks[i].rdev; | 
|  | break; | 
|  | } | 
|  | if (bi == &sh->dev[i].rreq) { | 
|  | rdev = conf->disks[i].replacement; | 
|  | if (rdev) | 
|  | replacement = 1; | 
|  | else | 
|  | /* rdev was removed and 'replacement' | 
|  | * replaced it.  rdev is not removed | 
|  | * until all requests are finished. | 
|  | */ | 
|  | rdev = conf->disks[i].rdev; | 
|  | break; | 
|  | } | 
|  | } | 
|  | pr_debug("end_write_request %llu/%d, count %d, error: %d.\n", | 
|  | (unsigned long long)sh->sector, i, atomic_read(&sh->count), | 
|  | bi->bi_status); | 
|  | if (i == disks) { | 
|  | bio_reset(bi); | 
|  | BUG(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (replacement) { | 
|  | if (bi->bi_status) | 
|  | md_error(conf->mddev, rdev); | 
|  | else if (is_badblock(rdev, sh->sector, | 
|  | STRIPE_SECTORS, | 
|  | &first_bad, &bad_sectors)) | 
|  | set_bit(R5_MadeGoodRepl, &sh->dev[i].flags); | 
|  | } else { | 
|  | if (bi->bi_status) { | 
|  | set_bit(STRIPE_DEGRADED, &sh->state); | 
|  | set_bit(WriteErrorSeen, &rdev->flags); | 
|  | set_bit(R5_WriteError, &sh->dev[i].flags); | 
|  | if (!test_and_set_bit(WantReplacement, &rdev->flags)) | 
|  | set_bit(MD_RECOVERY_NEEDED, | 
|  | &rdev->mddev->recovery); | 
|  | } else if (is_badblock(rdev, sh->sector, | 
|  | STRIPE_SECTORS, | 
|  | &first_bad, &bad_sectors)) { | 
|  | set_bit(R5_MadeGood, &sh->dev[i].flags); | 
|  | if (test_bit(R5_ReadError, &sh->dev[i].flags)) | 
|  | /* That was a successful write so make | 
|  | * sure it looks like we already did | 
|  | * a re-write. | 
|  | */ | 
|  | set_bit(R5_ReWrite, &sh->dev[i].flags); | 
|  | } | 
|  | } | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  |  | 
|  | if (sh->batch_head && bi->bi_status && !replacement) | 
|  | set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state); | 
|  |  | 
|  | bio_reset(bi); | 
|  | if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags)) | 
|  | clear_bit(R5_LOCKED, &sh->dev[i].flags); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | raid5_release_stripe(sh); | 
|  |  | 
|  | if (sh->batch_head && sh != sh->batch_head) | 
|  | raid5_release_stripe(sh->batch_head); | 
|  | } | 
|  |  | 
|  | static void raid5_error(struct mddev *mddev, struct md_rdev *rdev) | 
|  | { | 
|  | char b[BDEVNAME_SIZE]; | 
|  | struct r5conf *conf = mddev->private; | 
|  | unsigned long flags; | 
|  | pr_debug("raid456: error called\n"); | 
|  |  | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | set_bit(Faulty, &rdev->flags); | 
|  | clear_bit(In_sync, &rdev->flags); | 
|  | mddev->degraded = raid5_calc_degraded(conf); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | set_bit(MD_RECOVERY_INTR, &mddev->recovery); | 
|  |  | 
|  | set_bit(Blocked, &rdev->flags); | 
|  | set_mask_bits(&mddev->sb_flags, 0, | 
|  | BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING)); | 
|  | pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n" | 
|  | "md/raid:%s: Operation continuing on %d devices.\n", | 
|  | mdname(mddev), | 
|  | bdevname(rdev->bdev, b), | 
|  | mdname(mddev), | 
|  | conf->raid_disks - mddev->degraded); | 
|  | r5c_update_on_rdev_error(mddev, rdev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Input: a 'big' sector number, | 
|  | * Output: index of the data and parity disk, and the sector # in them. | 
|  | */ | 
|  | sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector, | 
|  | int previous, int *dd_idx, | 
|  | struct stripe_head *sh) | 
|  | { | 
|  | sector_t stripe, stripe2; | 
|  | sector_t chunk_number; | 
|  | unsigned int chunk_offset; | 
|  | int pd_idx, qd_idx; | 
|  | int ddf_layout = 0; | 
|  | sector_t new_sector; | 
|  | int algorithm = previous ? conf->prev_algo | 
|  | : conf->algorithm; | 
|  | int sectors_per_chunk = previous ? conf->prev_chunk_sectors | 
|  | : conf->chunk_sectors; | 
|  | int raid_disks = previous ? conf->previous_raid_disks | 
|  | : conf->raid_disks; | 
|  | int data_disks = raid_disks - conf->max_degraded; | 
|  |  | 
|  | /* First compute the information on this sector */ | 
|  |  | 
|  | /* | 
|  | * Compute the chunk number and the sector offset inside the chunk | 
|  | */ | 
|  | chunk_offset = sector_div(r_sector, sectors_per_chunk); | 
|  | chunk_number = r_sector; | 
|  |  | 
|  | /* | 
|  | * Compute the stripe number | 
|  | */ | 
|  | stripe = chunk_number; | 
|  | *dd_idx = sector_div(stripe, data_disks); | 
|  | stripe2 = stripe; | 
|  | /* | 
|  | * Select the parity disk based on the user selected algorithm. | 
|  | */ | 
|  | pd_idx = qd_idx = -1; | 
|  | switch(conf->level) { | 
|  | case 4: | 
|  | pd_idx = data_disks; | 
|  | break; | 
|  | case 5: | 
|  | switch (algorithm) { | 
|  | case ALGORITHM_LEFT_ASYMMETRIC: | 
|  | pd_idx = data_disks - sector_div(stripe2, raid_disks); | 
|  | if (*dd_idx >= pd_idx) | 
|  | (*dd_idx)++; | 
|  | break; | 
|  | case ALGORITHM_RIGHT_ASYMMETRIC: | 
|  | pd_idx = sector_div(stripe2, raid_disks); | 
|  | if (*dd_idx >= pd_idx) | 
|  | (*dd_idx)++; | 
|  | break; | 
|  | case ALGORITHM_LEFT_SYMMETRIC: | 
|  | pd_idx = data_disks - sector_div(stripe2, raid_disks); | 
|  | *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; | 
|  | break; | 
|  | case ALGORITHM_RIGHT_SYMMETRIC: | 
|  | pd_idx = sector_div(stripe2, raid_disks); | 
|  | *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; | 
|  | break; | 
|  | case ALGORITHM_PARITY_0: | 
|  | pd_idx = 0; | 
|  | (*dd_idx)++; | 
|  | break; | 
|  | case ALGORITHM_PARITY_N: | 
|  | pd_idx = data_disks; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | break; | 
|  | case 6: | 
|  |  | 
|  | switch (algorithm) { | 
|  | case ALGORITHM_LEFT_ASYMMETRIC: | 
|  | pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); | 
|  | qd_idx = pd_idx + 1; | 
|  | if (pd_idx == raid_disks-1) { | 
|  | (*dd_idx)++;	/* Q D D D P */ | 
|  | qd_idx = 0; | 
|  | } else if (*dd_idx >= pd_idx) | 
|  | (*dd_idx) += 2; /* D D P Q D */ | 
|  | break; | 
|  | case ALGORITHM_RIGHT_ASYMMETRIC: | 
|  | pd_idx = sector_div(stripe2, raid_disks); | 
|  | qd_idx = pd_idx + 1; | 
|  | if (pd_idx == raid_disks-1) { | 
|  | (*dd_idx)++;	/* Q D D D P */ | 
|  | qd_idx = 0; | 
|  | } else if (*dd_idx >= pd_idx) | 
|  | (*dd_idx) += 2; /* D D P Q D */ | 
|  | break; | 
|  | case ALGORITHM_LEFT_SYMMETRIC: | 
|  | pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); | 
|  | qd_idx = (pd_idx + 1) % raid_disks; | 
|  | *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; | 
|  | break; | 
|  | case ALGORITHM_RIGHT_SYMMETRIC: | 
|  | pd_idx = sector_div(stripe2, raid_disks); | 
|  | qd_idx = (pd_idx + 1) % raid_disks; | 
|  | *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks; | 
|  | break; | 
|  |  | 
|  | case ALGORITHM_PARITY_0: | 
|  | pd_idx = 0; | 
|  | qd_idx = 1; | 
|  | (*dd_idx) += 2; | 
|  | break; | 
|  | case ALGORITHM_PARITY_N: | 
|  | pd_idx = data_disks; | 
|  | qd_idx = data_disks + 1; | 
|  | break; | 
|  |  | 
|  | case ALGORITHM_ROTATING_ZERO_RESTART: | 
|  | /* Exactly the same as RIGHT_ASYMMETRIC, but or | 
|  | * of blocks for computing Q is different. | 
|  | */ | 
|  | pd_idx = sector_div(stripe2, raid_disks); | 
|  | qd_idx = pd_idx + 1; | 
|  | if (pd_idx == raid_disks-1) { | 
|  | (*dd_idx)++;	/* Q D D D P */ | 
|  | qd_idx = 0; | 
|  | } else if (*dd_idx >= pd_idx) | 
|  | (*dd_idx) += 2; /* D D P Q D */ | 
|  | ddf_layout = 1; | 
|  | break; | 
|  |  | 
|  | case ALGORITHM_ROTATING_N_RESTART: | 
|  | /* Same a left_asymmetric, by first stripe is | 
|  | * D D D P Q  rather than | 
|  | * Q D D D P | 
|  | */ | 
|  | stripe2 += 1; | 
|  | pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); | 
|  | qd_idx = pd_idx + 1; | 
|  | if (pd_idx == raid_disks-1) { | 
|  | (*dd_idx)++;	/* Q D D D P */ | 
|  | qd_idx = 0; | 
|  | } else if (*dd_idx >= pd_idx) | 
|  | (*dd_idx) += 2; /* D D P Q D */ | 
|  | ddf_layout = 1; | 
|  | break; | 
|  |  | 
|  | case ALGORITHM_ROTATING_N_CONTINUE: | 
|  | /* Same as left_symmetric but Q is before P */ | 
|  | pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks); | 
|  | qd_idx = (pd_idx + raid_disks - 1) % raid_disks; | 
|  | *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks; | 
|  | ddf_layout = 1; | 
|  | break; | 
|  |  | 
|  | case ALGORITHM_LEFT_ASYMMETRIC_6: | 
|  | /* RAID5 left_asymmetric, with Q on last device */ | 
|  | pd_idx = data_disks - sector_div(stripe2, raid_disks-1); | 
|  | if (*dd_idx >= pd_idx) | 
|  | (*dd_idx)++; | 
|  | qd_idx = raid_disks - 1; | 
|  | break; | 
|  |  | 
|  | case ALGORITHM_RIGHT_ASYMMETRIC_6: | 
|  | pd_idx = sector_div(stripe2, raid_disks-1); | 
|  | if (*dd_idx >= pd_idx) | 
|  | (*dd_idx)++; | 
|  | qd_idx = raid_disks - 1; | 
|  | break; | 
|  |  | 
|  | case ALGORITHM_LEFT_SYMMETRIC_6: | 
|  | pd_idx = data_disks - sector_div(stripe2, raid_disks-1); | 
|  | *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); | 
|  | qd_idx = raid_disks - 1; | 
|  | break; | 
|  |  | 
|  | case ALGORITHM_RIGHT_SYMMETRIC_6: | 
|  | pd_idx = sector_div(stripe2, raid_disks-1); | 
|  | *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1); | 
|  | qd_idx = raid_disks - 1; | 
|  | break; | 
|  |  | 
|  | case ALGORITHM_PARITY_0_6: | 
|  | pd_idx = 0; | 
|  | (*dd_idx)++; | 
|  | qd_idx = raid_disks - 1; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (sh) { | 
|  | sh->pd_idx = pd_idx; | 
|  | sh->qd_idx = qd_idx; | 
|  | sh->ddf_layout = ddf_layout; | 
|  | } | 
|  | /* | 
|  | * Finally, compute the new sector number | 
|  | */ | 
|  | new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset; | 
|  | return new_sector; | 
|  | } | 
|  |  | 
|  | sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous) | 
|  | { | 
|  | struct r5conf *conf = sh->raid_conf; | 
|  | int raid_disks = sh->disks; | 
|  | int data_disks = raid_disks - conf->max_degraded; | 
|  | sector_t new_sector = sh->sector, check; | 
|  | int sectors_per_chunk = previous ? conf->prev_chunk_sectors | 
|  | : conf->chunk_sectors; | 
|  | int algorithm = previous ? conf->prev_algo | 
|  | : conf->algorithm; | 
|  | sector_t stripe; | 
|  | int chunk_offset; | 
|  | sector_t chunk_number; | 
|  | int dummy1, dd_idx = i; | 
|  | sector_t r_sector; | 
|  | struct stripe_head sh2; | 
|  |  | 
|  | chunk_offset = sector_div(new_sector, sectors_per_chunk); | 
|  | stripe = new_sector; | 
|  |  | 
|  | if (i == sh->pd_idx) | 
|  | return 0; | 
|  | switch(conf->level) { | 
|  | case 4: break; | 
|  | case 5: | 
|  | switch (algorithm) { | 
|  | case ALGORITHM_LEFT_ASYMMETRIC: | 
|  | case ALGORITHM_RIGHT_ASYMMETRIC: | 
|  | if (i > sh->pd_idx) | 
|  | i--; | 
|  | break; | 
|  | case ALGORITHM_LEFT_SYMMETRIC: | 
|  | case ALGORITHM_RIGHT_SYMMETRIC: | 
|  | if (i < sh->pd_idx) | 
|  | i += raid_disks; | 
|  | i -= (sh->pd_idx + 1); | 
|  | break; | 
|  | case ALGORITHM_PARITY_0: | 
|  | i -= 1; | 
|  | break; | 
|  | case ALGORITHM_PARITY_N: | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | break; | 
|  | case 6: | 
|  | if (i == sh->qd_idx) | 
|  | return 0; /* It is the Q disk */ | 
|  | switch (algorithm) { | 
|  | case ALGORITHM_LEFT_ASYMMETRIC: | 
|  | case ALGORITHM_RIGHT_ASYMMETRIC: | 
|  | case ALGORITHM_ROTATING_ZERO_RESTART: | 
|  | case ALGORITHM_ROTATING_N_RESTART: | 
|  | if (sh->pd_idx == raid_disks-1) | 
|  | i--;	/* Q D D D P */ | 
|  | else if (i > sh->pd_idx) | 
|  | i -= 2; /* D D P Q D */ | 
|  | break; | 
|  | case ALGORITHM_LEFT_SYMMETRIC: | 
|  | case ALGORITHM_RIGHT_SYMMETRIC: | 
|  | if (sh->pd_idx == raid_disks-1) | 
|  | i--; /* Q D D D P */ | 
|  | else { | 
|  | /* D D P Q D */ | 
|  | if (i < sh->pd_idx) | 
|  | i += raid_disks; | 
|  | i -= (sh->pd_idx + 2); | 
|  | } | 
|  | break; | 
|  | case ALGORITHM_PARITY_0: | 
|  | i -= 2; | 
|  | break; | 
|  | case ALGORITHM_PARITY_N: | 
|  | break; | 
|  | case ALGORITHM_ROTATING_N_CONTINUE: | 
|  | /* Like left_symmetric, but P is before Q */ | 
|  | if (sh->pd_idx == 0) | 
|  | i--;	/* P D D D Q */ | 
|  | else { | 
|  | /* D D Q P D */ | 
|  | if (i < sh->pd_idx) | 
|  | i += raid_disks; | 
|  | i -= (sh->pd_idx + 1); | 
|  | } | 
|  | break; | 
|  | case ALGORITHM_LEFT_ASYMMETRIC_6: | 
|  | case ALGORITHM_RIGHT_ASYMMETRIC_6: | 
|  | if (i > sh->pd_idx) | 
|  | i--; | 
|  | break; | 
|  | case ALGORITHM_LEFT_SYMMETRIC_6: | 
|  | case ALGORITHM_RIGHT_SYMMETRIC_6: | 
|  | if (i < sh->pd_idx) | 
|  | i += data_disks + 1; | 
|  | i -= (sh->pd_idx + 1); | 
|  | break; | 
|  | case ALGORITHM_PARITY_0_6: | 
|  | i -= 1; | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | chunk_number = stripe * data_disks + i; | 
|  | r_sector = chunk_number * sectors_per_chunk + chunk_offset; | 
|  |  | 
|  | check = raid5_compute_sector(conf, r_sector, | 
|  | previous, &dummy1, &sh2); | 
|  | if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx | 
|  | || sh2.qd_idx != sh->qd_idx) { | 
|  | pr_warn("md/raid:%s: compute_blocknr: map not correct\n", | 
|  | mdname(conf->mddev)); | 
|  | return 0; | 
|  | } | 
|  | return r_sector; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There are cases where we want handle_stripe_dirtying() and | 
|  | * schedule_reconstruction() to delay towrite to some dev of a stripe. | 
|  | * | 
|  | * This function checks whether we want to delay the towrite. Specifically, | 
|  | * we delay the towrite when: | 
|  | * | 
|  | *   1. degraded stripe has a non-overwrite to the missing dev, AND this | 
|  | *      stripe has data in journal (for other devices). | 
|  | * | 
|  | *      In this case, when reading data for the non-overwrite dev, it is | 
|  | *      necessary to handle complex rmw of write back cache (prexor with | 
|  | *      orig_page, and xor with page). To keep read path simple, we would | 
|  | *      like to flush data in journal to RAID disks first, so complex rmw | 
|  | *      is handled in the write patch (handle_stripe_dirtying). | 
|  | * | 
|  | *   2. when journal space is critical (R5C_LOG_CRITICAL=1) | 
|  | * | 
|  | *      It is important to be able to flush all stripes in raid5-cache. | 
|  | *      Therefore, we need reserve some space on the journal device for | 
|  | *      these flushes. If flush operation includes pending writes to the | 
|  | *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe | 
|  | *      for the flush out. If we exclude these pending writes from flush | 
|  | *      operation, we only need (conf->max_degraded + 1) pages per stripe. | 
|  | *      Therefore, excluding pending writes in these cases enables more | 
|  | *      efficient use of the journal device. | 
|  | * | 
|  | *      Note: To make sure the stripe makes progress, we only delay | 
|  | *      towrite for stripes with data already in journal (injournal > 0). | 
|  | *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to | 
|  | *      no_space_stripes list. | 
|  | * | 
|  | *   3. during journal failure | 
|  | *      In journal failure, we try to flush all cached data to raid disks | 
|  | *      based on data in stripe cache. The array is read-only to upper | 
|  | *      layers, so we would skip all pending writes. | 
|  | * | 
|  | */ | 
|  | static inline bool delay_towrite(struct r5conf *conf, | 
|  | struct r5dev *dev, | 
|  | struct stripe_head_state *s) | 
|  | { | 
|  | /* case 1 above */ | 
|  | if (!test_bit(R5_OVERWRITE, &dev->flags) && | 
|  | !test_bit(R5_Insync, &dev->flags) && s->injournal) | 
|  | return true; | 
|  | /* case 2 above */ | 
|  | if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) && | 
|  | s->injournal > 0) | 
|  | return true; | 
|  | /* case 3 above */ | 
|  | if (s->log_failed && s->injournal) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void | 
|  | schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s, | 
|  | int rcw, int expand) | 
|  | { | 
|  | int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks; | 
|  | struct r5conf *conf = sh->raid_conf; | 
|  | int level = conf->level; | 
|  |  | 
|  | if (rcw) { | 
|  | /* | 
|  | * In some cases, handle_stripe_dirtying initially decided to | 
|  | * run rmw and allocates extra page for prexor. However, rcw is | 
|  | * cheaper later on. We need to free the extra page now, | 
|  | * because we won't be able to do that in ops_complete_prexor(). | 
|  | */ | 
|  | r5c_release_extra_page(sh); | 
|  |  | 
|  | for (i = disks; i--; ) { | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  |  | 
|  | if (dev->towrite && !delay_towrite(conf, dev, s)) { | 
|  | set_bit(R5_LOCKED, &dev->flags); | 
|  | set_bit(R5_Wantdrain, &dev->flags); | 
|  | if (!expand) | 
|  | clear_bit(R5_UPTODATE, &dev->flags); | 
|  | s->locked++; | 
|  | } else if (test_bit(R5_InJournal, &dev->flags)) { | 
|  | set_bit(R5_LOCKED, &dev->flags); | 
|  | s->locked++; | 
|  | } | 
|  | } | 
|  | /* if we are not expanding this is a proper write request, and | 
|  | * there will be bios with new data to be drained into the | 
|  | * stripe cache | 
|  | */ | 
|  | if (!expand) { | 
|  | if (!s->locked) | 
|  | /* False alarm, nothing to do */ | 
|  | return; | 
|  | sh->reconstruct_state = reconstruct_state_drain_run; | 
|  | set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); | 
|  | } else | 
|  | sh->reconstruct_state = reconstruct_state_run; | 
|  |  | 
|  | set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); | 
|  |  | 
|  | if (s->locked + conf->max_degraded == disks) | 
|  | if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state)) | 
|  | atomic_inc(&conf->pending_full_writes); | 
|  | } else { | 
|  | BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) || | 
|  | test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags))); | 
|  | BUG_ON(level == 6 && | 
|  | (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) || | 
|  | test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags)))); | 
|  |  | 
|  | for (i = disks; i--; ) { | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  | if (i == pd_idx || i == qd_idx) | 
|  | continue; | 
|  |  | 
|  | if (dev->towrite && | 
|  | (test_bit(R5_UPTODATE, &dev->flags) || | 
|  | test_bit(R5_Wantcompute, &dev->flags))) { | 
|  | set_bit(R5_Wantdrain, &dev->flags); | 
|  | set_bit(R5_LOCKED, &dev->flags); | 
|  | clear_bit(R5_UPTODATE, &dev->flags); | 
|  | s->locked++; | 
|  | } else if (test_bit(R5_InJournal, &dev->flags)) { | 
|  | set_bit(R5_LOCKED, &dev->flags); | 
|  | s->locked++; | 
|  | } | 
|  | } | 
|  | if (!s->locked) | 
|  | /* False alarm - nothing to do */ | 
|  | return; | 
|  | sh->reconstruct_state = reconstruct_state_prexor_drain_run; | 
|  | set_bit(STRIPE_OP_PREXOR, &s->ops_request); | 
|  | set_bit(STRIPE_OP_BIODRAIN, &s->ops_request); | 
|  | set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request); | 
|  | } | 
|  |  | 
|  | /* keep the parity disk(s) locked while asynchronous operations | 
|  | * are in flight | 
|  | */ | 
|  | set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); | 
|  | clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); | 
|  | s->locked++; | 
|  |  | 
|  | if (level == 6) { | 
|  | int qd_idx = sh->qd_idx; | 
|  | struct r5dev *dev = &sh->dev[qd_idx]; | 
|  |  | 
|  | set_bit(R5_LOCKED, &dev->flags); | 
|  | clear_bit(R5_UPTODATE, &dev->flags); | 
|  | s->locked++; | 
|  | } | 
|  |  | 
|  | if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page && | 
|  | test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) && | 
|  | !test_bit(STRIPE_FULL_WRITE, &sh->state) && | 
|  | test_bit(R5_Insync, &sh->dev[pd_idx].flags)) | 
|  | set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request); | 
|  |  | 
|  | pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n", | 
|  | __func__, (unsigned long long)sh->sector, | 
|  | s->locked, s->ops_request); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Each stripe/dev can have one or more bion attached. | 
|  | * toread/towrite point to the first in a chain. | 
|  | * The bi_next chain must be in order. | 
|  | */ | 
|  | static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, | 
|  | int forwrite, int previous) | 
|  | { | 
|  | struct bio **bip; | 
|  | struct r5conf *conf = sh->raid_conf; | 
|  | int firstwrite=0; | 
|  |  | 
|  | pr_debug("adding bi b#%llu to stripe s#%llu\n", | 
|  | (unsigned long long)bi->bi_iter.bi_sector, | 
|  | (unsigned long long)sh->sector); | 
|  |  | 
|  | spin_lock_irq(&sh->stripe_lock); | 
|  | sh->dev[dd_idx].write_hint = bi->bi_write_hint; | 
|  | /* Don't allow new IO added to stripes in batch list */ | 
|  | if (sh->batch_head) | 
|  | goto overlap; | 
|  | if (forwrite) { | 
|  | bip = &sh->dev[dd_idx].towrite; | 
|  | if (*bip == NULL) | 
|  | firstwrite = 1; | 
|  | } else | 
|  | bip = &sh->dev[dd_idx].toread; | 
|  | while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) { | 
|  | if (bio_end_sector(*bip) > bi->bi_iter.bi_sector) | 
|  | goto overlap; | 
|  | bip = & (*bip)->bi_next; | 
|  | } | 
|  | if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi)) | 
|  | goto overlap; | 
|  |  | 
|  | if (forwrite && raid5_has_ppl(conf)) { | 
|  | /* | 
|  | * With PPL only writes to consecutive data chunks within a | 
|  | * stripe are allowed because for a single stripe_head we can | 
|  | * only have one PPL entry at a time, which describes one data | 
|  | * range. Not really an overlap, but wait_for_overlap can be | 
|  | * used to handle this. | 
|  | */ | 
|  | sector_t sector; | 
|  | sector_t first = 0; | 
|  | sector_t last = 0; | 
|  | int count = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < sh->disks; i++) { | 
|  | if (i != sh->pd_idx && | 
|  | (i == dd_idx || sh->dev[i].towrite)) { | 
|  | sector = sh->dev[i].sector; | 
|  | if (count == 0 || sector < first) | 
|  | first = sector; | 
|  | if (sector > last) | 
|  | last = sector; | 
|  | count++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (first + conf->chunk_sectors * (count - 1) != last) | 
|  | goto overlap; | 
|  | } | 
|  |  | 
|  | if (!forwrite || previous) | 
|  | clear_bit(STRIPE_BATCH_READY, &sh->state); | 
|  |  | 
|  | BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next); | 
|  | if (*bip) | 
|  | bi->bi_next = *bip; | 
|  | *bip = bi; | 
|  | bio_inc_remaining(bi); | 
|  | md_write_inc(conf->mddev, bi); | 
|  |  | 
|  | if (forwrite) { | 
|  | /* check if page is covered */ | 
|  | sector_t sector = sh->dev[dd_idx].sector; | 
|  | for (bi=sh->dev[dd_idx].towrite; | 
|  | sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && | 
|  | bi && bi->bi_iter.bi_sector <= sector; | 
|  | bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { | 
|  | if (bio_end_sector(bi) >= sector) | 
|  | sector = bio_end_sector(bi); | 
|  | } | 
|  | if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) | 
|  | if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags)) | 
|  | sh->overwrite_disks++; | 
|  | } | 
|  |  | 
|  | pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n", | 
|  | (unsigned long long)(*bip)->bi_iter.bi_sector, | 
|  | (unsigned long long)sh->sector, dd_idx); | 
|  |  | 
|  | if (conf->mddev->bitmap && firstwrite) { | 
|  | /* Cannot hold spinlock over bitmap_startwrite, | 
|  | * but must ensure this isn't added to a batch until | 
|  | * we have added to the bitmap and set bm_seq. | 
|  | * So set STRIPE_BITMAP_PENDING to prevent | 
|  | * batching. | 
|  | * If multiple add_stripe_bio() calls race here they | 
|  | * much all set STRIPE_BITMAP_PENDING.  So only the first one | 
|  | * to complete "bitmap_startwrite" gets to set | 
|  | * STRIPE_BIT_DELAY.  This is important as once a stripe | 
|  | * is added to a batch, STRIPE_BIT_DELAY cannot be changed | 
|  | * any more. | 
|  | */ | 
|  | set_bit(STRIPE_BITMAP_PENDING, &sh->state); | 
|  | spin_unlock_irq(&sh->stripe_lock); | 
|  | md_bitmap_startwrite(conf->mddev->bitmap, sh->sector, | 
|  | STRIPE_SECTORS, 0); | 
|  | spin_lock_irq(&sh->stripe_lock); | 
|  | clear_bit(STRIPE_BITMAP_PENDING, &sh->state); | 
|  | if (!sh->batch_head) { | 
|  | sh->bm_seq = conf->seq_flush+1; | 
|  | set_bit(STRIPE_BIT_DELAY, &sh->state); | 
|  | } | 
|  | } | 
|  | spin_unlock_irq(&sh->stripe_lock); | 
|  |  | 
|  | if (stripe_can_batch(sh)) | 
|  | stripe_add_to_batch_list(conf, sh); | 
|  | return 1; | 
|  |  | 
|  | overlap: | 
|  | set_bit(R5_Overlap, &sh->dev[dd_idx].flags); | 
|  | spin_unlock_irq(&sh->stripe_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void end_reshape(struct r5conf *conf); | 
|  |  | 
|  | static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous, | 
|  | struct stripe_head *sh) | 
|  | { | 
|  | int sectors_per_chunk = | 
|  | previous ? conf->prev_chunk_sectors : conf->chunk_sectors; | 
|  | int dd_idx; | 
|  | int chunk_offset = sector_div(stripe, sectors_per_chunk); | 
|  | int disks = previous ? conf->previous_raid_disks : conf->raid_disks; | 
|  |  | 
|  | raid5_compute_sector(conf, | 
|  | stripe * (disks - conf->max_degraded) | 
|  | *sectors_per_chunk + chunk_offset, | 
|  | previous, | 
|  | &dd_idx, sh); | 
|  | } | 
|  |  | 
|  | static void | 
|  | handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh, | 
|  | struct stripe_head_state *s, int disks) | 
|  | { | 
|  | int i; | 
|  | BUG_ON(sh->batch_head); | 
|  | for (i = disks; i--; ) { | 
|  | struct bio *bi; | 
|  | int bitmap_end = 0; | 
|  |  | 
|  | if (test_bit(R5_ReadError, &sh->dev[i].flags)) { | 
|  | struct md_rdev *rdev; | 
|  | rcu_read_lock(); | 
|  | rdev = rcu_dereference(conf->disks[i].rdev); | 
|  | if (rdev && test_bit(In_sync, &rdev->flags) && | 
|  | !test_bit(Faulty, &rdev->flags)) | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | else | 
|  | rdev = NULL; | 
|  | rcu_read_unlock(); | 
|  | if (rdev) { | 
|  | if (!rdev_set_badblocks( | 
|  | rdev, | 
|  | sh->sector, | 
|  | STRIPE_SECTORS, 0)) | 
|  | md_error(conf->mddev, rdev); | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  | } | 
|  | } | 
|  | spin_lock_irq(&sh->stripe_lock); | 
|  | /* fail all writes first */ | 
|  | bi = sh->dev[i].towrite; | 
|  | sh->dev[i].towrite = NULL; | 
|  | sh->overwrite_disks = 0; | 
|  | spin_unlock_irq(&sh->stripe_lock); | 
|  | if (bi) | 
|  | bitmap_end = 1; | 
|  |  | 
|  | log_stripe_write_finished(sh); | 
|  |  | 
|  | if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) | 
|  | wake_up(&conf->wait_for_overlap); | 
|  |  | 
|  | while (bi && bi->bi_iter.bi_sector < | 
|  | sh->dev[i].sector + STRIPE_SECTORS) { | 
|  | struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); | 
|  |  | 
|  | md_write_end(conf->mddev); | 
|  | bio_io_error(bi); | 
|  | bi = nextbi; | 
|  | } | 
|  | if (bitmap_end) | 
|  | md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, | 
|  | STRIPE_SECTORS, 0, 0); | 
|  | bitmap_end = 0; | 
|  | /* and fail all 'written' */ | 
|  | bi = sh->dev[i].written; | 
|  | sh->dev[i].written = NULL; | 
|  | if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) { | 
|  | WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags)); | 
|  | sh->dev[i].page = sh->dev[i].orig_page; | 
|  | } | 
|  |  | 
|  | if (bi) bitmap_end = 1; | 
|  | while (bi && bi->bi_iter.bi_sector < | 
|  | sh->dev[i].sector + STRIPE_SECTORS) { | 
|  | struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); | 
|  |  | 
|  | md_write_end(conf->mddev); | 
|  | bio_io_error(bi); | 
|  | bi = bi2; | 
|  | } | 
|  |  | 
|  | /* fail any reads if this device is non-operational and | 
|  | * the data has not reached the cache yet. | 
|  | */ | 
|  | if (!test_bit(R5_Wantfill, &sh->dev[i].flags) && | 
|  | s->failed > conf->max_degraded && | 
|  | (!test_bit(R5_Insync, &sh->dev[i].flags) || | 
|  | test_bit(R5_ReadError, &sh->dev[i].flags))) { | 
|  | spin_lock_irq(&sh->stripe_lock); | 
|  | bi = sh->dev[i].toread; | 
|  | sh->dev[i].toread = NULL; | 
|  | spin_unlock_irq(&sh->stripe_lock); | 
|  | if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) | 
|  | wake_up(&conf->wait_for_overlap); | 
|  | if (bi) | 
|  | s->to_read--; | 
|  | while (bi && bi->bi_iter.bi_sector < | 
|  | sh->dev[i].sector + STRIPE_SECTORS) { | 
|  | struct bio *nextbi = | 
|  | r5_next_bio(bi, sh->dev[i].sector); | 
|  |  | 
|  | bio_io_error(bi); | 
|  | bi = nextbi; | 
|  | } | 
|  | } | 
|  | if (bitmap_end) | 
|  | md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, | 
|  | STRIPE_SECTORS, 0, 0); | 
|  | /* If we were in the middle of a write the parity block might | 
|  | * still be locked - so just clear all R5_LOCKED flags | 
|  | */ | 
|  | clear_bit(R5_LOCKED, &sh->dev[i].flags); | 
|  | } | 
|  | s->to_write = 0; | 
|  | s->written = 0; | 
|  |  | 
|  | if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) | 
|  | if (atomic_dec_and_test(&conf->pending_full_writes)) | 
|  | md_wakeup_thread(conf->mddev->thread); | 
|  | } | 
|  |  | 
|  | static void | 
|  | handle_failed_sync(struct r5conf *conf, struct stripe_head *sh, | 
|  | struct stripe_head_state *s) | 
|  | { | 
|  | int abort = 0; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(sh->batch_head); | 
|  | clear_bit(STRIPE_SYNCING, &sh->state); | 
|  | if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) | 
|  | wake_up(&conf->wait_for_overlap); | 
|  | s->syncing = 0; | 
|  | s->replacing = 0; | 
|  | /* There is nothing more to do for sync/check/repair. | 
|  | * Don't even need to abort as that is handled elsewhere | 
|  | * if needed, and not always wanted e.g. if there is a known | 
|  | * bad block here. | 
|  | * For recover/replace we need to record a bad block on all | 
|  | * non-sync devices, or abort the recovery | 
|  | */ | 
|  | if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) { | 
|  | /* During recovery devices cannot be removed, so | 
|  | * locking and refcounting of rdevs is not needed | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | for (i = 0; i < conf->raid_disks; i++) { | 
|  | struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); | 
|  | if (rdev | 
|  | && !test_bit(Faulty, &rdev->flags) | 
|  | && !test_bit(In_sync, &rdev->flags) | 
|  | && !rdev_set_badblocks(rdev, sh->sector, | 
|  | STRIPE_SECTORS, 0)) | 
|  | abort = 1; | 
|  | rdev = rcu_dereference(conf->disks[i].replacement); | 
|  | if (rdev | 
|  | && !test_bit(Faulty, &rdev->flags) | 
|  | && !test_bit(In_sync, &rdev->flags) | 
|  | && !rdev_set_badblocks(rdev, sh->sector, | 
|  | STRIPE_SECTORS, 0)) | 
|  | abort = 1; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | if (abort) | 
|  | conf->recovery_disabled = | 
|  | conf->mddev->recovery_disabled; | 
|  | } | 
|  | md_done_sync(conf->mddev, STRIPE_SECTORS, !abort); | 
|  | } | 
|  |  | 
|  | static int want_replace(struct stripe_head *sh, int disk_idx) | 
|  | { | 
|  | struct md_rdev *rdev; | 
|  | int rv = 0; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement); | 
|  | if (rdev | 
|  | && !test_bit(Faulty, &rdev->flags) | 
|  | && !test_bit(In_sync, &rdev->flags) | 
|  | && (rdev->recovery_offset <= sh->sector | 
|  | || rdev->mddev->recovery_cp <= sh->sector)) | 
|  | rv = 1; | 
|  | rcu_read_unlock(); | 
|  | return rv; | 
|  | } | 
|  |  | 
|  | static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s, | 
|  | int disk_idx, int disks) | 
|  | { | 
|  | struct r5dev *dev = &sh->dev[disk_idx]; | 
|  | struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]], | 
|  | &sh->dev[s->failed_num[1]] }; | 
|  | int i; | 
|  |  | 
|  |  | 
|  | if (test_bit(R5_LOCKED, &dev->flags) || | 
|  | test_bit(R5_UPTODATE, &dev->flags)) | 
|  | /* No point reading this as we already have it or have | 
|  | * decided to get it. | 
|  | */ | 
|  | return 0; | 
|  |  | 
|  | if (dev->toread || | 
|  | (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags))) | 
|  | /* We need this block to directly satisfy a request */ | 
|  | return 1; | 
|  |  | 
|  | if (s->syncing || s->expanding || | 
|  | (s->replacing && want_replace(sh, disk_idx))) | 
|  | /* When syncing, or expanding we read everything. | 
|  | * When replacing, we need the replaced block. | 
|  | */ | 
|  | return 1; | 
|  |  | 
|  | if ((s->failed >= 1 && fdev[0]->toread) || | 
|  | (s->failed >= 2 && fdev[1]->toread)) | 
|  | /* If we want to read from a failed device, then | 
|  | * we need to actually read every other device. | 
|  | */ | 
|  | return 1; | 
|  |  | 
|  | /* Sometimes neither read-modify-write nor reconstruct-write | 
|  | * cycles can work.  In those cases we read every block we | 
|  | * can.  Then the parity-update is certain to have enough to | 
|  | * work with. | 
|  | * This can only be a problem when we need to write something, | 
|  | * and some device has failed.  If either of those tests | 
|  | * fail we need look no further. | 
|  | */ | 
|  | if (!s->failed || !s->to_write) | 
|  | return 0; | 
|  |  | 
|  | if (test_bit(R5_Insync, &dev->flags) && | 
|  | !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) | 
|  | /* Pre-reads at not permitted until after short delay | 
|  | * to gather multiple requests.  However if this | 
|  | * device is no Insync, the block could only be computed | 
|  | * and there is no need to delay that. | 
|  | */ | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < s->failed && i < 2; i++) { | 
|  | if (fdev[i]->towrite && | 
|  | !test_bit(R5_UPTODATE, &fdev[i]->flags) && | 
|  | !test_bit(R5_OVERWRITE, &fdev[i]->flags)) | 
|  | /* If we have a partial write to a failed | 
|  | * device, then we will need to reconstruct | 
|  | * the content of that device, so all other | 
|  | * devices must be read. | 
|  | */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* If we are forced to do a reconstruct-write, either because | 
|  | * the current RAID6 implementation only supports that, or | 
|  | * because parity cannot be trusted and we are currently | 
|  | * recovering it, there is extra need to be careful. | 
|  | * If one of the devices that we would need to read, because | 
|  | * it is not being overwritten (and maybe not written at all) | 
|  | * is missing/faulty, then we need to read everything we can. | 
|  | */ | 
|  | if (sh->raid_conf->level != 6 && | 
|  | sh->sector < sh->raid_conf->mddev->recovery_cp) | 
|  | /* reconstruct-write isn't being forced */ | 
|  | return 0; | 
|  | for (i = 0; i < s->failed && i < 2; i++) { | 
|  | if (s->failed_num[i] != sh->pd_idx && | 
|  | s->failed_num[i] != sh->qd_idx && | 
|  | !test_bit(R5_UPTODATE, &fdev[i]->flags) && | 
|  | !test_bit(R5_OVERWRITE, &fdev[i]->flags)) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* fetch_block - checks the given member device to see if its data needs | 
|  | * to be read or computed to satisfy a request. | 
|  | * | 
|  | * Returns 1 when no more member devices need to be checked, otherwise returns | 
|  | * 0 to tell the loop in handle_stripe_fill to continue | 
|  | */ | 
|  | static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s, | 
|  | int disk_idx, int disks) | 
|  | { | 
|  | struct r5dev *dev = &sh->dev[disk_idx]; | 
|  |  | 
|  | /* is the data in this block needed, and can we get it? */ | 
|  | if (need_this_block(sh, s, disk_idx, disks)) { | 
|  | /* we would like to get this block, possibly by computing it, | 
|  | * otherwise read it if the backing disk is insync | 
|  | */ | 
|  | BUG_ON(test_bit(R5_Wantcompute, &dev->flags)); | 
|  | BUG_ON(test_bit(R5_Wantread, &dev->flags)); | 
|  | BUG_ON(sh->batch_head); | 
|  |  | 
|  | /* | 
|  | * In the raid6 case if the only non-uptodate disk is P | 
|  | * then we already trusted P to compute the other failed | 
|  | * drives. It is safe to compute rather than re-read P. | 
|  | * In other cases we only compute blocks from failed | 
|  | * devices, otherwise check/repair might fail to detect | 
|  | * a real inconsistency. | 
|  | */ | 
|  |  | 
|  | if ((s->uptodate == disks - 1) && | 
|  | ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) || | 
|  | (s->failed && (disk_idx == s->failed_num[0] || | 
|  | disk_idx == s->failed_num[1])))) { | 
|  | /* have disk failed, and we're requested to fetch it; | 
|  | * do compute it | 
|  | */ | 
|  | pr_debug("Computing stripe %llu block %d\n", | 
|  | (unsigned long long)sh->sector, disk_idx); | 
|  | set_bit(STRIPE_COMPUTE_RUN, &sh->state); | 
|  | set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); | 
|  | set_bit(R5_Wantcompute, &dev->flags); | 
|  | sh->ops.target = disk_idx; | 
|  | sh->ops.target2 = -1; /* no 2nd target */ | 
|  | s->req_compute = 1; | 
|  | /* Careful: from this point on 'uptodate' is in the eye | 
|  | * of raid_run_ops which services 'compute' operations | 
|  | * before writes. R5_Wantcompute flags a block that will | 
|  | * be R5_UPTODATE by the time it is needed for a | 
|  | * subsequent operation. | 
|  | */ | 
|  | s->uptodate++; | 
|  | return 1; | 
|  | } else if (s->uptodate == disks-2 && s->failed >= 2) { | 
|  | /* Computing 2-failure is *very* expensive; only | 
|  | * do it if failed >= 2 | 
|  | */ | 
|  | int other; | 
|  | for (other = disks; other--; ) { | 
|  | if (other == disk_idx) | 
|  | continue; | 
|  | if (!test_bit(R5_UPTODATE, | 
|  | &sh->dev[other].flags)) | 
|  | break; | 
|  | } | 
|  | BUG_ON(other < 0); | 
|  | pr_debug("Computing stripe %llu blocks %d,%d\n", | 
|  | (unsigned long long)sh->sector, | 
|  | disk_idx, other); | 
|  | set_bit(STRIPE_COMPUTE_RUN, &sh->state); | 
|  | set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); | 
|  | set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags); | 
|  | set_bit(R5_Wantcompute, &sh->dev[other].flags); | 
|  | sh->ops.target = disk_idx; | 
|  | sh->ops.target2 = other; | 
|  | s->uptodate += 2; | 
|  | s->req_compute = 1; | 
|  | return 1; | 
|  | } else if (test_bit(R5_Insync, &dev->flags)) { | 
|  | set_bit(R5_LOCKED, &dev->flags); | 
|  | set_bit(R5_Wantread, &dev->flags); | 
|  | s->locked++; | 
|  | pr_debug("Reading block %d (sync=%d)\n", | 
|  | disk_idx, s->syncing); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * handle_stripe_fill - read or compute data to satisfy pending requests. | 
|  | */ | 
|  | static void handle_stripe_fill(struct stripe_head *sh, | 
|  | struct stripe_head_state *s, | 
|  | int disks) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* look for blocks to read/compute, skip this if a compute | 
|  | * is already in flight, or if the stripe contents are in the | 
|  | * midst of changing due to a write | 
|  | */ | 
|  | if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state && | 
|  | !sh->reconstruct_state) { | 
|  |  | 
|  | /* | 
|  | * For degraded stripe with data in journal, do not handle | 
|  | * read requests yet, instead, flush the stripe to raid | 
|  | * disks first, this avoids handling complex rmw of write | 
|  | * back cache (prexor with orig_page, and then xor with | 
|  | * page) in the read path | 
|  | */ | 
|  | if (s->injournal && s->failed) { | 
|  | if (test_bit(STRIPE_R5C_CACHING, &sh->state)) | 
|  | r5c_make_stripe_write_out(sh); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (i = disks; i--; ) | 
|  | if (fetch_block(sh, s, i, disks)) | 
|  | break; | 
|  | } | 
|  | out: | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | } | 
|  |  | 
|  | static void break_stripe_batch_list(struct stripe_head *head_sh, | 
|  | unsigned long handle_flags); | 
|  | /* handle_stripe_clean_event | 
|  | * any written block on an uptodate or failed drive can be returned. | 
|  | * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but | 
|  | * never LOCKED, so we don't need to test 'failed' directly. | 
|  | */ | 
|  | static void handle_stripe_clean_event(struct r5conf *conf, | 
|  | struct stripe_head *sh, int disks) | 
|  | { | 
|  | int i; | 
|  | struct r5dev *dev; | 
|  | int discard_pending = 0; | 
|  | struct stripe_head *head_sh = sh; | 
|  | bool do_endio = false; | 
|  |  | 
|  | for (i = disks; i--; ) | 
|  | if (sh->dev[i].written) { | 
|  | dev = &sh->dev[i]; | 
|  | if (!test_bit(R5_LOCKED, &dev->flags) && | 
|  | (test_bit(R5_UPTODATE, &dev->flags) || | 
|  | test_bit(R5_Discard, &dev->flags) || | 
|  | test_bit(R5_SkipCopy, &dev->flags))) { | 
|  | /* We can return any write requests */ | 
|  | struct bio *wbi, *wbi2; | 
|  | pr_debug("Return write for disc %d\n", i); | 
|  | if (test_and_clear_bit(R5_Discard, &dev->flags)) | 
|  | clear_bit(R5_UPTODATE, &dev->flags); | 
|  | if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) { | 
|  | WARN_ON(test_bit(R5_UPTODATE, &dev->flags)); | 
|  | } | 
|  | do_endio = true; | 
|  |  | 
|  | returnbi: | 
|  | dev->page = dev->orig_page; | 
|  | wbi = dev->written; | 
|  | dev->written = NULL; | 
|  | while (wbi && wbi->bi_iter.bi_sector < | 
|  | dev->sector + STRIPE_SECTORS) { | 
|  | wbi2 = r5_next_bio(wbi, dev->sector); | 
|  | md_write_end(conf->mddev); | 
|  | bio_endio(wbi); | 
|  | wbi = wbi2; | 
|  | } | 
|  | md_bitmap_endwrite(conf->mddev->bitmap, sh->sector, | 
|  | STRIPE_SECTORS, | 
|  | !test_bit(STRIPE_DEGRADED, &sh->state), | 
|  | 0); | 
|  | if (head_sh->batch_head) { | 
|  | sh = list_first_entry(&sh->batch_list, | 
|  | struct stripe_head, | 
|  | batch_list); | 
|  | if (sh != head_sh) { | 
|  | dev = &sh->dev[i]; | 
|  | goto returnbi; | 
|  | } | 
|  | } | 
|  | sh = head_sh; | 
|  | dev = &sh->dev[i]; | 
|  | } else if (test_bit(R5_Discard, &dev->flags)) | 
|  | discard_pending = 1; | 
|  | } | 
|  |  | 
|  | log_stripe_write_finished(sh); | 
|  |  | 
|  | if (!discard_pending && | 
|  | test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) { | 
|  | int hash; | 
|  | clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags); | 
|  | clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); | 
|  | if (sh->qd_idx >= 0) { | 
|  | clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags); | 
|  | clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags); | 
|  | } | 
|  | /* now that discard is done we can proceed with any sync */ | 
|  | clear_bit(STRIPE_DISCARD, &sh->state); | 
|  | /* | 
|  | * SCSI discard will change some bio fields and the stripe has | 
|  | * no updated data, so remove it from hash list and the stripe | 
|  | * will be reinitialized | 
|  | */ | 
|  | unhash: | 
|  | hash = sh->hash_lock_index; | 
|  | spin_lock_irq(conf->hash_locks + hash); | 
|  | remove_hash(sh); | 
|  | spin_unlock_irq(conf->hash_locks + hash); | 
|  | if (head_sh->batch_head) { | 
|  | sh = list_first_entry(&sh->batch_list, | 
|  | struct stripe_head, batch_list); | 
|  | if (sh != head_sh) | 
|  | goto unhash; | 
|  | } | 
|  | sh = head_sh; | 
|  |  | 
|  | if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  |  | 
|  | } | 
|  |  | 
|  | if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state)) | 
|  | if (atomic_dec_and_test(&conf->pending_full_writes)) | 
|  | md_wakeup_thread(conf->mddev->thread); | 
|  |  | 
|  | if (head_sh->batch_head && do_endio) | 
|  | break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For RMW in write back cache, we need extra page in prexor to store the | 
|  | * old data. This page is stored in dev->orig_page. | 
|  | * | 
|  | * This function checks whether we have data for prexor. The exact logic | 
|  | * is: | 
|  | *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE) | 
|  | */ | 
|  | static inline bool uptodate_for_rmw(struct r5dev *dev) | 
|  | { | 
|  | return (test_bit(R5_UPTODATE, &dev->flags)) && | 
|  | (!test_bit(R5_InJournal, &dev->flags) || | 
|  | test_bit(R5_OrigPageUPTDODATE, &dev->flags)); | 
|  | } | 
|  |  | 
|  | static int handle_stripe_dirtying(struct r5conf *conf, | 
|  | struct stripe_head *sh, | 
|  | struct stripe_head_state *s, | 
|  | int disks) | 
|  | { | 
|  | int rmw = 0, rcw = 0, i; | 
|  | sector_t recovery_cp = conf->mddev->recovery_cp; | 
|  |  | 
|  | /* Check whether resync is now happening or should start. | 
|  | * If yes, then the array is dirty (after unclean shutdown or | 
|  | * initial creation), so parity in some stripes might be inconsistent. | 
|  | * In this case, we need to always do reconstruct-write, to ensure | 
|  | * that in case of drive failure or read-error correction, we | 
|  | * generate correct data from the parity. | 
|  | */ | 
|  | if (conf->rmw_level == PARITY_DISABLE_RMW || | 
|  | (recovery_cp < MaxSector && sh->sector >= recovery_cp && | 
|  | s->failed == 0)) { | 
|  | /* Calculate the real rcw later - for now make it | 
|  | * look like rcw is cheaper | 
|  | */ | 
|  | rcw = 1; rmw = 2; | 
|  | pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n", | 
|  | conf->rmw_level, (unsigned long long)recovery_cp, | 
|  | (unsigned long long)sh->sector); | 
|  | } else for (i = disks; i--; ) { | 
|  | /* would I have to read this buffer for read_modify_write */ | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  | if (((dev->towrite && !delay_towrite(conf, dev, s)) || | 
|  | i == sh->pd_idx || i == sh->qd_idx || | 
|  | test_bit(R5_InJournal, &dev->flags)) && | 
|  | !test_bit(R5_LOCKED, &dev->flags) && | 
|  | !(uptodate_for_rmw(dev) || | 
|  | test_bit(R5_Wantcompute, &dev->flags))) { | 
|  | if (test_bit(R5_Insync, &dev->flags)) | 
|  | rmw++; | 
|  | else | 
|  | rmw += 2*disks;  /* cannot read it */ | 
|  | } | 
|  | /* Would I have to read this buffer for reconstruct_write */ | 
|  | if (!test_bit(R5_OVERWRITE, &dev->flags) && | 
|  | i != sh->pd_idx && i != sh->qd_idx && | 
|  | !test_bit(R5_LOCKED, &dev->flags) && | 
|  | !(test_bit(R5_UPTODATE, &dev->flags) || | 
|  | test_bit(R5_Wantcompute, &dev->flags))) { | 
|  | if (test_bit(R5_Insync, &dev->flags)) | 
|  | rcw++; | 
|  | else | 
|  | rcw += 2*disks; | 
|  | } | 
|  | } | 
|  |  | 
|  | pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n", | 
|  | (unsigned long long)sh->sector, sh->state, rmw, rcw); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) { | 
|  | /* prefer read-modify-write, but need to get some data */ | 
|  | if (conf->mddev->queue) | 
|  | blk_add_trace_msg(conf->mddev->queue, | 
|  | "raid5 rmw %llu %d", | 
|  | (unsigned long long)sh->sector, rmw); | 
|  | for (i = disks; i--; ) { | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  | if (test_bit(R5_InJournal, &dev->flags) && | 
|  | dev->page == dev->orig_page && | 
|  | !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) { | 
|  | /* alloc page for prexor */ | 
|  | struct page *p = alloc_page(GFP_NOIO); | 
|  |  | 
|  | if (p) { | 
|  | dev->orig_page = p; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * alloc_page() failed, try use | 
|  | * disk_info->extra_page | 
|  | */ | 
|  | if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE, | 
|  | &conf->cache_state)) { | 
|  | r5c_use_extra_page(sh); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* extra_page in use, add to delayed_list */ | 
|  | set_bit(STRIPE_DELAYED, &sh->state); | 
|  | s->waiting_extra_page = 1; | 
|  | return -EAGAIN; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = disks; i--; ) { | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  | if (((dev->towrite && !delay_towrite(conf, dev, s)) || | 
|  | i == sh->pd_idx || i == sh->qd_idx || | 
|  | test_bit(R5_InJournal, &dev->flags)) && | 
|  | !test_bit(R5_LOCKED, &dev->flags) && | 
|  | !(uptodate_for_rmw(dev) || | 
|  | test_bit(R5_Wantcompute, &dev->flags)) && | 
|  | test_bit(R5_Insync, &dev->flags)) { | 
|  | if (test_bit(STRIPE_PREREAD_ACTIVE, | 
|  | &sh->state)) { | 
|  | pr_debug("Read_old block %d for r-m-w\n", | 
|  | i); | 
|  | set_bit(R5_LOCKED, &dev->flags); | 
|  | set_bit(R5_Wantread, &dev->flags); | 
|  | s->locked++; | 
|  | } else { | 
|  | set_bit(STRIPE_DELAYED, &sh->state); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) { | 
|  | /* want reconstruct write, but need to get some data */ | 
|  | int qread =0; | 
|  | rcw = 0; | 
|  | for (i = disks; i--; ) { | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  | if (!test_bit(R5_OVERWRITE, &dev->flags) && | 
|  | i != sh->pd_idx && i != sh->qd_idx && | 
|  | !test_bit(R5_LOCKED, &dev->flags) && | 
|  | !(test_bit(R5_UPTODATE, &dev->flags) || | 
|  | test_bit(R5_Wantcompute, &dev->flags))) { | 
|  | rcw++; | 
|  | if (test_bit(R5_Insync, &dev->flags) && | 
|  | test_bit(STRIPE_PREREAD_ACTIVE, | 
|  | &sh->state)) { | 
|  | pr_debug("Read_old block " | 
|  | "%d for Reconstruct\n", i); | 
|  | set_bit(R5_LOCKED, &dev->flags); | 
|  | set_bit(R5_Wantread, &dev->flags); | 
|  | s->locked++; | 
|  | qread++; | 
|  | } else { | 
|  | set_bit(STRIPE_DELAYED, &sh->state); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | } | 
|  | } | 
|  | } | 
|  | if (rcw && conf->mddev->queue) | 
|  | blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d", | 
|  | (unsigned long long)sh->sector, | 
|  | rcw, qread, test_bit(STRIPE_DELAYED, &sh->state)); | 
|  | } | 
|  |  | 
|  | if (rcw > disks && rmw > disks && | 
|  | !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) | 
|  | set_bit(STRIPE_DELAYED, &sh->state); | 
|  |  | 
|  | /* now if nothing is locked, and if we have enough data, | 
|  | * we can start a write request | 
|  | */ | 
|  | /* since handle_stripe can be called at any time we need to handle the | 
|  | * case where a compute block operation has been submitted and then a | 
|  | * subsequent call wants to start a write request.  raid_run_ops only | 
|  | * handles the case where compute block and reconstruct are requested | 
|  | * simultaneously.  If this is not the case then new writes need to be | 
|  | * held off until the compute completes. | 
|  | */ | 
|  | if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) && | 
|  | (s->locked == 0 && (rcw == 0 || rmw == 0) && | 
|  | !test_bit(STRIPE_BIT_DELAY, &sh->state))) | 
|  | schedule_reconstruction(sh, s, rcw == 0, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh, | 
|  | struct stripe_head_state *s, int disks) | 
|  | { | 
|  | struct r5dev *dev = NULL; | 
|  |  | 
|  | BUG_ON(sh->batch_head); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  |  | 
|  | switch (sh->check_state) { | 
|  | case check_state_idle: | 
|  | /* start a new check operation if there are no failures */ | 
|  | if (s->failed == 0) { | 
|  | BUG_ON(s->uptodate != disks); | 
|  | sh->check_state = check_state_run; | 
|  | set_bit(STRIPE_OP_CHECK, &s->ops_request); | 
|  | clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags); | 
|  | s->uptodate--; | 
|  | break; | 
|  | } | 
|  | dev = &sh->dev[s->failed_num[0]]; | 
|  | /* fall through */ | 
|  | case check_state_compute_result: | 
|  | sh->check_state = check_state_idle; | 
|  | if (!dev) | 
|  | dev = &sh->dev[sh->pd_idx]; | 
|  |  | 
|  | /* check that a write has not made the stripe insync */ | 
|  | if (test_bit(STRIPE_INSYNC, &sh->state)) | 
|  | break; | 
|  |  | 
|  | /* either failed parity check, or recovery is happening */ | 
|  | BUG_ON(!test_bit(R5_UPTODATE, &dev->flags)); | 
|  | BUG_ON(s->uptodate != disks); | 
|  |  | 
|  | set_bit(R5_LOCKED, &dev->flags); | 
|  | s->locked++; | 
|  | set_bit(R5_Wantwrite, &dev->flags); | 
|  |  | 
|  | clear_bit(STRIPE_DEGRADED, &sh->state); | 
|  | set_bit(STRIPE_INSYNC, &sh->state); | 
|  | break; | 
|  | case check_state_run: | 
|  | break; /* we will be called again upon completion */ | 
|  | case check_state_check_result: | 
|  | sh->check_state = check_state_idle; | 
|  |  | 
|  | /* if a failure occurred during the check operation, leave | 
|  | * STRIPE_INSYNC not set and let the stripe be handled again | 
|  | */ | 
|  | if (s->failed) | 
|  | break; | 
|  |  | 
|  | /* handle a successful check operation, if parity is correct | 
|  | * we are done.  Otherwise update the mismatch count and repair | 
|  | * parity if !MD_RECOVERY_CHECK | 
|  | */ | 
|  | if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0) | 
|  | /* parity is correct (on disc, | 
|  | * not in buffer any more) | 
|  | */ | 
|  | set_bit(STRIPE_INSYNC, &sh->state); | 
|  | else { | 
|  | atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); | 
|  | if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { | 
|  | /* don't try to repair!! */ | 
|  | set_bit(STRIPE_INSYNC, &sh->state); | 
|  | pr_warn_ratelimited("%s: mismatch sector in range " | 
|  | "%llu-%llu\n", mdname(conf->mddev), | 
|  | (unsigned long long) sh->sector, | 
|  | (unsigned long long) sh->sector + | 
|  | STRIPE_SECTORS); | 
|  | } else { | 
|  | sh->check_state = check_state_compute_run; | 
|  | set_bit(STRIPE_COMPUTE_RUN, &sh->state); | 
|  | set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); | 
|  | set_bit(R5_Wantcompute, | 
|  | &sh->dev[sh->pd_idx].flags); | 
|  | sh->ops.target = sh->pd_idx; | 
|  | sh->ops.target2 = -1; | 
|  | s->uptodate++; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case check_state_compute_run: | 
|  | break; | 
|  | default: | 
|  | pr_err("%s: unknown check_state: %d sector: %llu\n", | 
|  | __func__, sh->check_state, | 
|  | (unsigned long long) sh->sector); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh, | 
|  | struct stripe_head_state *s, | 
|  | int disks) | 
|  | { | 
|  | int pd_idx = sh->pd_idx; | 
|  | int qd_idx = sh->qd_idx; | 
|  | struct r5dev *dev; | 
|  |  | 
|  | BUG_ON(sh->batch_head); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  |  | 
|  | BUG_ON(s->failed > 2); | 
|  |  | 
|  | /* Want to check and possibly repair P and Q. | 
|  | * However there could be one 'failed' device, in which | 
|  | * case we can only check one of them, possibly using the | 
|  | * other to generate missing data | 
|  | */ | 
|  |  | 
|  | switch (sh->check_state) { | 
|  | case check_state_idle: | 
|  | /* start a new check operation if there are < 2 failures */ | 
|  | if (s->failed == s->q_failed) { | 
|  | /* The only possible failed device holds Q, so it | 
|  | * makes sense to check P (If anything else were failed, | 
|  | * we would have used P to recreate it). | 
|  | */ | 
|  | sh->check_state = check_state_run; | 
|  | } | 
|  | if (!s->q_failed && s->failed < 2) { | 
|  | /* Q is not failed, and we didn't use it to generate | 
|  | * anything, so it makes sense to check it | 
|  | */ | 
|  | if (sh->check_state == check_state_run) | 
|  | sh->check_state = check_state_run_pq; | 
|  | else | 
|  | sh->check_state = check_state_run_q; | 
|  | } | 
|  |  | 
|  | /* discard potentially stale zero_sum_result */ | 
|  | sh->ops.zero_sum_result = 0; | 
|  |  | 
|  | if (sh->check_state == check_state_run) { | 
|  | /* async_xor_zero_sum destroys the contents of P */ | 
|  | clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); | 
|  | s->uptodate--; | 
|  | } | 
|  | if (sh->check_state >= check_state_run && | 
|  | sh->check_state <= check_state_run_pq) { | 
|  | /* async_syndrome_zero_sum preserves P and Q, so | 
|  | * no need to mark them !uptodate here | 
|  | */ | 
|  | set_bit(STRIPE_OP_CHECK, &s->ops_request); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* we have 2-disk failure */ | 
|  | BUG_ON(s->failed != 2); | 
|  | /* fall through */ | 
|  | case check_state_compute_result: | 
|  | sh->check_state = check_state_idle; | 
|  |  | 
|  | /* check that a write has not made the stripe insync */ | 
|  | if (test_bit(STRIPE_INSYNC, &sh->state)) | 
|  | break; | 
|  |  | 
|  | /* now write out any block on a failed drive, | 
|  | * or P or Q if they were recomputed | 
|  | */ | 
|  | dev = NULL; | 
|  | if (s->failed == 2) { | 
|  | dev = &sh->dev[s->failed_num[1]]; | 
|  | s->locked++; | 
|  | set_bit(R5_LOCKED, &dev->flags); | 
|  | set_bit(R5_Wantwrite, &dev->flags); | 
|  | } | 
|  | if (s->failed >= 1) { | 
|  | dev = &sh->dev[s->failed_num[0]]; | 
|  | s->locked++; | 
|  | set_bit(R5_LOCKED, &dev->flags); | 
|  | set_bit(R5_Wantwrite, &dev->flags); | 
|  | } | 
|  | if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { | 
|  | dev = &sh->dev[pd_idx]; | 
|  | s->locked++; | 
|  | set_bit(R5_LOCKED, &dev->flags); | 
|  | set_bit(R5_Wantwrite, &dev->flags); | 
|  | } | 
|  | if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { | 
|  | dev = &sh->dev[qd_idx]; | 
|  | s->locked++; | 
|  | set_bit(R5_LOCKED, &dev->flags); | 
|  | set_bit(R5_Wantwrite, &dev->flags); | 
|  | } | 
|  | if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags), | 
|  | "%s: disk%td not up to date\n", | 
|  | mdname(conf->mddev), | 
|  | dev - (struct r5dev *) &sh->dev)) { | 
|  | clear_bit(R5_LOCKED, &dev->flags); | 
|  | clear_bit(R5_Wantwrite, &dev->flags); | 
|  | s->locked--; | 
|  | } | 
|  | clear_bit(STRIPE_DEGRADED, &sh->state); | 
|  |  | 
|  | set_bit(STRIPE_INSYNC, &sh->state); | 
|  | break; | 
|  | case check_state_run: | 
|  | case check_state_run_q: | 
|  | case check_state_run_pq: | 
|  | break; /* we will be called again upon completion */ | 
|  | case check_state_check_result: | 
|  | sh->check_state = check_state_idle; | 
|  |  | 
|  | /* handle a successful check operation, if parity is correct | 
|  | * we are done.  Otherwise update the mismatch count and repair | 
|  | * parity if !MD_RECOVERY_CHECK | 
|  | */ | 
|  | if (sh->ops.zero_sum_result == 0) { | 
|  | /* both parities are correct */ | 
|  | if (!s->failed) | 
|  | set_bit(STRIPE_INSYNC, &sh->state); | 
|  | else { | 
|  | /* in contrast to the raid5 case we can validate | 
|  | * parity, but still have a failure to write | 
|  | * back | 
|  | */ | 
|  | sh->check_state = check_state_compute_result; | 
|  | /* Returning at this point means that we may go | 
|  | * off and bring p and/or q uptodate again so | 
|  | * we make sure to check zero_sum_result again | 
|  | * to verify if p or q need writeback | 
|  | */ | 
|  | } | 
|  | } else { | 
|  | atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches); | 
|  | if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) { | 
|  | /* don't try to repair!! */ | 
|  | set_bit(STRIPE_INSYNC, &sh->state); | 
|  | pr_warn_ratelimited("%s: mismatch sector in range " | 
|  | "%llu-%llu\n", mdname(conf->mddev), | 
|  | (unsigned long long) sh->sector, | 
|  | (unsigned long long) sh->sector + | 
|  | STRIPE_SECTORS); | 
|  | } else { | 
|  | int *target = &sh->ops.target; | 
|  |  | 
|  | sh->ops.target = -1; | 
|  | sh->ops.target2 = -1; | 
|  | sh->check_state = check_state_compute_run; | 
|  | set_bit(STRIPE_COMPUTE_RUN, &sh->state); | 
|  | set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request); | 
|  | if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) { | 
|  | set_bit(R5_Wantcompute, | 
|  | &sh->dev[pd_idx].flags); | 
|  | *target = pd_idx; | 
|  | target = &sh->ops.target2; | 
|  | s->uptodate++; | 
|  | } | 
|  | if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) { | 
|  | set_bit(R5_Wantcompute, | 
|  | &sh->dev[qd_idx].flags); | 
|  | *target = qd_idx; | 
|  | s->uptodate++; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case check_state_compute_run: | 
|  | break; | 
|  | default: | 
|  | pr_warn("%s: unknown check_state: %d sector: %llu\n", | 
|  | __func__, sh->check_state, | 
|  | (unsigned long long) sh->sector); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* We have read all the blocks in this stripe and now we need to | 
|  | * copy some of them into a target stripe for expand. | 
|  | */ | 
|  | struct dma_async_tx_descriptor *tx = NULL; | 
|  | BUG_ON(sh->batch_head); | 
|  | clear_bit(STRIPE_EXPAND_SOURCE, &sh->state); | 
|  | for (i = 0; i < sh->disks; i++) | 
|  | if (i != sh->pd_idx && i != sh->qd_idx) { | 
|  | int dd_idx, j; | 
|  | struct stripe_head *sh2; | 
|  | struct async_submit_ctl submit; | 
|  |  | 
|  | sector_t bn = raid5_compute_blocknr(sh, i, 1); | 
|  | sector_t s = raid5_compute_sector(conf, bn, 0, | 
|  | &dd_idx, NULL); | 
|  | sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1); | 
|  | if (sh2 == NULL) | 
|  | /* so far only the early blocks of this stripe | 
|  | * have been requested.  When later blocks | 
|  | * get requested, we will try again | 
|  | */ | 
|  | continue; | 
|  | if (!test_bit(STRIPE_EXPANDING, &sh2->state) || | 
|  | test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) { | 
|  | /* must have already done this block */ | 
|  | raid5_release_stripe(sh2); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* place all the copies on one channel */ | 
|  | init_async_submit(&submit, 0, tx, NULL, NULL, NULL); | 
|  | tx = async_memcpy(sh2->dev[dd_idx].page, | 
|  | sh->dev[i].page, 0, 0, STRIPE_SIZE, | 
|  | &submit); | 
|  |  | 
|  | set_bit(R5_Expanded, &sh2->dev[dd_idx].flags); | 
|  | set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags); | 
|  | for (j = 0; j < conf->raid_disks; j++) | 
|  | if (j != sh2->pd_idx && | 
|  | j != sh2->qd_idx && | 
|  | !test_bit(R5_Expanded, &sh2->dev[j].flags)) | 
|  | break; | 
|  | if (j == conf->raid_disks) { | 
|  | set_bit(STRIPE_EXPAND_READY, &sh2->state); | 
|  | set_bit(STRIPE_HANDLE, &sh2->state); | 
|  | } | 
|  | raid5_release_stripe(sh2); | 
|  |  | 
|  | } | 
|  | /* done submitting copies, wait for them to complete */ | 
|  | async_tx_quiesce(&tx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * handle_stripe - do things to a stripe. | 
|  | * | 
|  | * We lock the stripe by setting STRIPE_ACTIVE and then examine the | 
|  | * state of various bits to see what needs to be done. | 
|  | * Possible results: | 
|  | *    return some read requests which now have data | 
|  | *    return some write requests which are safely on storage | 
|  | *    schedule a read on some buffers | 
|  | *    schedule a write of some buffers | 
|  | *    return confirmation of parity correctness | 
|  | * | 
|  | */ | 
|  |  | 
|  | static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s) | 
|  | { | 
|  | struct r5conf *conf = sh->raid_conf; | 
|  | int disks = sh->disks; | 
|  | struct r5dev *dev; | 
|  | int i; | 
|  | int do_recovery = 0; | 
|  |  | 
|  | memset(s, 0, sizeof(*s)); | 
|  |  | 
|  | s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head; | 
|  | s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head; | 
|  | s->failed_num[0] = -1; | 
|  | s->failed_num[1] = -1; | 
|  | s->log_failed = r5l_log_disk_error(conf); | 
|  |  | 
|  | /* Now to look around and see what can be done */ | 
|  | rcu_read_lock(); | 
|  | for (i=disks; i--; ) { | 
|  | struct md_rdev *rdev; | 
|  | sector_t first_bad; | 
|  | int bad_sectors; | 
|  | int is_bad = 0; | 
|  |  | 
|  | dev = &sh->dev[i]; | 
|  |  | 
|  | pr_debug("check %d: state 0x%lx read %p write %p written %p\n", | 
|  | i, dev->flags, | 
|  | dev->toread, dev->towrite, dev->written); | 
|  | /* maybe we can reply to a read | 
|  | * | 
|  | * new wantfill requests are only permitted while | 
|  | * ops_complete_biofill is guaranteed to be inactive | 
|  | */ | 
|  | if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread && | 
|  | !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) | 
|  | set_bit(R5_Wantfill, &dev->flags); | 
|  |  | 
|  | /* now count some things */ | 
|  | if (test_bit(R5_LOCKED, &dev->flags)) | 
|  | s->locked++; | 
|  | if (test_bit(R5_UPTODATE, &dev->flags)) | 
|  | s->uptodate++; | 
|  | if (test_bit(R5_Wantcompute, &dev->flags)) { | 
|  | s->compute++; | 
|  | BUG_ON(s->compute > 2); | 
|  | } | 
|  |  | 
|  | if (test_bit(R5_Wantfill, &dev->flags)) | 
|  | s->to_fill++; | 
|  | else if (dev->toread) | 
|  | s->to_read++; | 
|  | if (dev->towrite) { | 
|  | s->to_write++; | 
|  | if (!test_bit(R5_OVERWRITE, &dev->flags)) | 
|  | s->non_overwrite++; | 
|  | } | 
|  | if (dev->written) | 
|  | s->written++; | 
|  | /* Prefer to use the replacement for reads, but only | 
|  | * if it is recovered enough and has no bad blocks. | 
|  | */ | 
|  | rdev = rcu_dereference(conf->disks[i].replacement); | 
|  | if (rdev && !test_bit(Faulty, &rdev->flags) && | 
|  | rdev->recovery_offset >= sh->sector + STRIPE_SECTORS && | 
|  | !is_badblock(rdev, sh->sector, STRIPE_SECTORS, | 
|  | &first_bad, &bad_sectors)) | 
|  | set_bit(R5_ReadRepl, &dev->flags); | 
|  | else { | 
|  | if (rdev && !test_bit(Faulty, &rdev->flags)) | 
|  | set_bit(R5_NeedReplace, &dev->flags); | 
|  | else | 
|  | clear_bit(R5_NeedReplace, &dev->flags); | 
|  | rdev = rcu_dereference(conf->disks[i].rdev); | 
|  | clear_bit(R5_ReadRepl, &dev->flags); | 
|  | } | 
|  | if (rdev && test_bit(Faulty, &rdev->flags)) | 
|  | rdev = NULL; | 
|  | if (rdev) { | 
|  | is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS, | 
|  | &first_bad, &bad_sectors); | 
|  | if (s->blocked_rdev == NULL | 
|  | && (test_bit(Blocked, &rdev->flags) | 
|  | || is_bad < 0)) { | 
|  | if (is_bad < 0) | 
|  | set_bit(BlockedBadBlocks, | 
|  | &rdev->flags); | 
|  | s->blocked_rdev = rdev; | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | } | 
|  | } | 
|  | clear_bit(R5_Insync, &dev->flags); | 
|  | if (!rdev) | 
|  | /* Not in-sync */; | 
|  | else if (is_bad) { | 
|  | /* also not in-sync */ | 
|  | if (!test_bit(WriteErrorSeen, &rdev->flags) && | 
|  | test_bit(R5_UPTODATE, &dev->flags)) { | 
|  | /* treat as in-sync, but with a read error | 
|  | * which we can now try to correct | 
|  | */ | 
|  | set_bit(R5_Insync, &dev->flags); | 
|  | set_bit(R5_ReadError, &dev->flags); | 
|  | } | 
|  | } else if (test_bit(In_sync, &rdev->flags)) | 
|  | set_bit(R5_Insync, &dev->flags); | 
|  | else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset) | 
|  | /* in sync if before recovery_offset */ | 
|  | set_bit(R5_Insync, &dev->flags); | 
|  | else if (test_bit(R5_UPTODATE, &dev->flags) && | 
|  | test_bit(R5_Expanded, &dev->flags)) | 
|  | /* If we've reshaped into here, we assume it is Insync. | 
|  | * We will shortly update recovery_offset to make | 
|  | * it official. | 
|  | */ | 
|  | set_bit(R5_Insync, &dev->flags); | 
|  |  | 
|  | if (test_bit(R5_WriteError, &dev->flags)) { | 
|  | /* This flag does not apply to '.replacement' | 
|  | * only to .rdev, so make sure to check that*/ | 
|  | struct md_rdev *rdev2 = rcu_dereference( | 
|  | conf->disks[i].rdev); | 
|  | if (rdev2 == rdev) | 
|  | clear_bit(R5_Insync, &dev->flags); | 
|  | if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { | 
|  | s->handle_bad_blocks = 1; | 
|  | atomic_inc(&rdev2->nr_pending); | 
|  | } else | 
|  | clear_bit(R5_WriteError, &dev->flags); | 
|  | } | 
|  | if (test_bit(R5_MadeGood, &dev->flags)) { | 
|  | /* This flag does not apply to '.replacement' | 
|  | * only to .rdev, so make sure to check that*/ | 
|  | struct md_rdev *rdev2 = rcu_dereference( | 
|  | conf->disks[i].rdev); | 
|  | if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { | 
|  | s->handle_bad_blocks = 1; | 
|  | atomic_inc(&rdev2->nr_pending); | 
|  | } else | 
|  | clear_bit(R5_MadeGood, &dev->flags); | 
|  | } | 
|  | if (test_bit(R5_MadeGoodRepl, &dev->flags)) { | 
|  | struct md_rdev *rdev2 = rcu_dereference( | 
|  | conf->disks[i].replacement); | 
|  | if (rdev2 && !test_bit(Faulty, &rdev2->flags)) { | 
|  | s->handle_bad_blocks = 1; | 
|  | atomic_inc(&rdev2->nr_pending); | 
|  | } else | 
|  | clear_bit(R5_MadeGoodRepl, &dev->flags); | 
|  | } | 
|  | if (!test_bit(R5_Insync, &dev->flags)) { | 
|  | /* The ReadError flag will just be confusing now */ | 
|  | clear_bit(R5_ReadError, &dev->flags); | 
|  | clear_bit(R5_ReWrite, &dev->flags); | 
|  | } | 
|  | if (test_bit(R5_ReadError, &dev->flags)) | 
|  | clear_bit(R5_Insync, &dev->flags); | 
|  | if (!test_bit(R5_Insync, &dev->flags)) { | 
|  | if (s->failed < 2) | 
|  | s->failed_num[s->failed] = i; | 
|  | s->failed++; | 
|  | if (rdev && !test_bit(Faulty, &rdev->flags)) | 
|  | do_recovery = 1; | 
|  | else if (!rdev) { | 
|  | rdev = rcu_dereference( | 
|  | conf->disks[i].replacement); | 
|  | if (rdev && !test_bit(Faulty, &rdev->flags)) | 
|  | do_recovery = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (test_bit(R5_InJournal, &dev->flags)) | 
|  | s->injournal++; | 
|  | if (test_bit(R5_InJournal, &dev->flags) && dev->written) | 
|  | s->just_cached++; | 
|  | } | 
|  | if (test_bit(STRIPE_SYNCING, &sh->state)) { | 
|  | /* If there is a failed device being replaced, | 
|  | *     we must be recovering. | 
|  | * else if we are after recovery_cp, we must be syncing | 
|  | * else if MD_RECOVERY_REQUESTED is set, we also are syncing. | 
|  | * else we can only be replacing | 
|  | * sync and recovery both need to read all devices, and so | 
|  | * use the same flag. | 
|  | */ | 
|  | if (do_recovery || | 
|  | sh->sector >= conf->mddev->recovery_cp || | 
|  | test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery))) | 
|  | s->syncing = 1; | 
|  | else | 
|  | s->replacing = 1; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static int clear_batch_ready(struct stripe_head *sh) | 
|  | { | 
|  | /* Return '1' if this is a member of batch, or | 
|  | * '0' if it is a lone stripe or a head which can now be | 
|  | * handled. | 
|  | */ | 
|  | struct stripe_head *tmp; | 
|  | if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state)) | 
|  | return (sh->batch_head && sh->batch_head != sh); | 
|  | spin_lock(&sh->stripe_lock); | 
|  | if (!sh->batch_head) { | 
|  | spin_unlock(&sh->stripe_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this stripe could be added to a batch list before we check | 
|  | * BATCH_READY, skips it | 
|  | */ | 
|  | if (sh->batch_head != sh) { | 
|  | spin_unlock(&sh->stripe_lock); | 
|  | return 1; | 
|  | } | 
|  | spin_lock(&sh->batch_lock); | 
|  | list_for_each_entry(tmp, &sh->batch_list, batch_list) | 
|  | clear_bit(STRIPE_BATCH_READY, &tmp->state); | 
|  | spin_unlock(&sh->batch_lock); | 
|  | spin_unlock(&sh->stripe_lock); | 
|  |  | 
|  | /* | 
|  | * BATCH_READY is cleared, no new stripes can be added. | 
|  | * batch_list can be accessed without lock | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void break_stripe_batch_list(struct stripe_head *head_sh, | 
|  | unsigned long handle_flags) | 
|  | { | 
|  | struct stripe_head *sh, *next; | 
|  | int i; | 
|  | int do_wakeup = 0; | 
|  |  | 
|  | list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) { | 
|  |  | 
|  | list_del_init(&sh->batch_list); | 
|  |  | 
|  | WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) | | 
|  | (1 << STRIPE_SYNCING) | | 
|  | (1 << STRIPE_REPLACED) | | 
|  | (1 << STRIPE_DELAYED) | | 
|  | (1 << STRIPE_BIT_DELAY) | | 
|  | (1 << STRIPE_FULL_WRITE) | | 
|  | (1 << STRIPE_BIOFILL_RUN) | | 
|  | (1 << STRIPE_COMPUTE_RUN)  | | 
|  | (1 << STRIPE_OPS_REQ_PENDING) | | 
|  | (1 << STRIPE_DISCARD) | | 
|  | (1 << STRIPE_BATCH_READY) | | 
|  | (1 << STRIPE_BATCH_ERR) | | 
|  | (1 << STRIPE_BITMAP_PENDING)), | 
|  | "stripe state: %lx\n", sh->state); | 
|  | WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) | | 
|  | (1 << STRIPE_REPLACED)), | 
|  | "head stripe state: %lx\n", head_sh->state); | 
|  |  | 
|  | set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS | | 
|  | (1 << STRIPE_PREREAD_ACTIVE) | | 
|  | (1 << STRIPE_DEGRADED) | | 
|  | (1 << STRIPE_ON_UNPLUG_LIST)), | 
|  | head_sh->state & (1 << STRIPE_INSYNC)); | 
|  |  | 
|  | sh->check_state = head_sh->check_state; | 
|  | sh->reconstruct_state = head_sh->reconstruct_state; | 
|  | spin_lock_irq(&sh->stripe_lock); | 
|  | sh->batch_head = NULL; | 
|  | spin_unlock_irq(&sh->stripe_lock); | 
|  | for (i = 0; i < sh->disks; i++) { | 
|  | if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags)) | 
|  | do_wakeup = 1; | 
|  | sh->dev[i].flags = head_sh->dev[i].flags & | 
|  | (~((1 << R5_WriteError) | (1 << R5_Overlap))); | 
|  | } | 
|  | if (handle_flags == 0 || | 
|  | sh->state & handle_flags) | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | raid5_release_stripe(sh); | 
|  | } | 
|  | spin_lock_irq(&head_sh->stripe_lock); | 
|  | head_sh->batch_head = NULL; | 
|  | spin_unlock_irq(&head_sh->stripe_lock); | 
|  | for (i = 0; i < head_sh->disks; i++) | 
|  | if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags)) | 
|  | do_wakeup = 1; | 
|  | if (head_sh->state & handle_flags) | 
|  | set_bit(STRIPE_HANDLE, &head_sh->state); | 
|  |  | 
|  | if (do_wakeup) | 
|  | wake_up(&head_sh->raid_conf->wait_for_overlap); | 
|  | } | 
|  |  | 
|  | static void handle_stripe(struct stripe_head *sh) | 
|  | { | 
|  | struct stripe_head_state s; | 
|  | struct r5conf *conf = sh->raid_conf; | 
|  | int i; | 
|  | int prexor; | 
|  | int disks = sh->disks; | 
|  | struct r5dev *pdev, *qdev; | 
|  |  | 
|  | clear_bit(STRIPE_HANDLE, &sh->state); | 
|  | if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) { | 
|  | /* already being handled, ensure it gets handled | 
|  | * again when current action finishes */ | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (clear_batch_ready(sh) ) { | 
|  | clear_bit_unlock(STRIPE_ACTIVE, &sh->state); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state)) | 
|  | break_stripe_batch_list(sh, 0); | 
|  |  | 
|  | if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) { | 
|  | spin_lock(&sh->stripe_lock); | 
|  | /* | 
|  | * Cannot process 'sync' concurrently with 'discard'. | 
|  | * Flush data in r5cache before 'sync'. | 
|  | */ | 
|  | if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) && | 
|  | !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) && | 
|  | !test_bit(STRIPE_DISCARD, &sh->state) && | 
|  | test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) { | 
|  | set_bit(STRIPE_SYNCING, &sh->state); | 
|  | clear_bit(STRIPE_INSYNC, &sh->state); | 
|  | clear_bit(STRIPE_REPLACED, &sh->state); | 
|  | } | 
|  | spin_unlock(&sh->stripe_lock); | 
|  | } | 
|  | clear_bit(STRIPE_DELAYED, &sh->state); | 
|  |  | 
|  | pr_debug("handling stripe %llu, state=%#lx cnt=%d, " | 
|  | "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n", | 
|  | (unsigned long long)sh->sector, sh->state, | 
|  | atomic_read(&sh->count), sh->pd_idx, sh->qd_idx, | 
|  | sh->check_state, sh->reconstruct_state); | 
|  |  | 
|  | analyse_stripe(sh, &s); | 
|  |  | 
|  | if (test_bit(STRIPE_LOG_TRAPPED, &sh->state)) | 
|  | goto finish; | 
|  |  | 
|  | if (s.handle_bad_blocks || | 
|  | test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) { | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | goto finish; | 
|  | } | 
|  |  | 
|  | if (unlikely(s.blocked_rdev)) { | 
|  | if (s.syncing || s.expanding || s.expanded || | 
|  | s.replacing || s.to_write || s.written) { | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | goto finish; | 
|  | } | 
|  | /* There is nothing for the blocked_rdev to block */ | 
|  | rdev_dec_pending(s.blocked_rdev, conf->mddev); | 
|  | s.blocked_rdev = NULL; | 
|  | } | 
|  |  | 
|  | if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) { | 
|  | set_bit(STRIPE_OP_BIOFILL, &s.ops_request); | 
|  | set_bit(STRIPE_BIOFILL_RUN, &sh->state); | 
|  | } | 
|  |  | 
|  | pr_debug("locked=%d uptodate=%d to_read=%d" | 
|  | " to_write=%d failed=%d failed_num=%d,%d\n", | 
|  | s.locked, s.uptodate, s.to_read, s.to_write, s.failed, | 
|  | s.failed_num[0], s.failed_num[1]); | 
|  | /* | 
|  | * check if the array has lost more than max_degraded devices and, | 
|  | * if so, some requests might need to be failed. | 
|  | * | 
|  | * When journal device failed (log_failed), we will only process | 
|  | * the stripe if there is data need write to raid disks | 
|  | */ | 
|  | if (s.failed > conf->max_degraded || | 
|  | (s.log_failed && s.injournal == 0)) { | 
|  | sh->check_state = 0; | 
|  | sh->reconstruct_state = 0; | 
|  | break_stripe_batch_list(sh, 0); | 
|  | if (s.to_read+s.to_write+s.written) | 
|  | handle_failed_stripe(conf, sh, &s, disks); | 
|  | if (s.syncing + s.replacing) | 
|  | handle_failed_sync(conf, sh, &s); | 
|  | } | 
|  |  | 
|  | /* Now we check to see if any write operations have recently | 
|  | * completed | 
|  | */ | 
|  | prexor = 0; | 
|  | if (sh->reconstruct_state == reconstruct_state_prexor_drain_result) | 
|  | prexor = 1; | 
|  | if (sh->reconstruct_state == reconstruct_state_drain_result || | 
|  | sh->reconstruct_state == reconstruct_state_prexor_drain_result) { | 
|  | sh->reconstruct_state = reconstruct_state_idle; | 
|  |  | 
|  | /* All the 'written' buffers and the parity block are ready to | 
|  | * be written back to disk | 
|  | */ | 
|  | BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) && | 
|  | !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)); | 
|  | BUG_ON(sh->qd_idx >= 0 && | 
|  | !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) && | 
|  | !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags)); | 
|  | for (i = disks; i--; ) { | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  | if (test_bit(R5_LOCKED, &dev->flags) && | 
|  | (i == sh->pd_idx || i == sh->qd_idx || | 
|  | dev->written || test_bit(R5_InJournal, | 
|  | &dev->flags))) { | 
|  | pr_debug("Writing block %d\n", i); | 
|  | set_bit(R5_Wantwrite, &dev->flags); | 
|  | if (prexor) | 
|  | continue; | 
|  | if (s.failed > 1) | 
|  | continue; | 
|  | if (!test_bit(R5_Insync, &dev->flags) || | 
|  | ((i == sh->pd_idx || i == sh->qd_idx)  && | 
|  | s.failed == 0)) | 
|  | set_bit(STRIPE_INSYNC, &sh->state); | 
|  | } | 
|  | } | 
|  | if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) | 
|  | s.dec_preread_active = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * might be able to return some write requests if the parity blocks | 
|  | * are safe, or on a failed drive | 
|  | */ | 
|  | pdev = &sh->dev[sh->pd_idx]; | 
|  | s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx) | 
|  | || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx); | 
|  | qdev = &sh->dev[sh->qd_idx]; | 
|  | s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx) | 
|  | || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx) | 
|  | || conf->level < 6; | 
|  |  | 
|  | if (s.written && | 
|  | (s.p_failed || ((test_bit(R5_Insync, &pdev->flags) | 
|  | && !test_bit(R5_LOCKED, &pdev->flags) | 
|  | && (test_bit(R5_UPTODATE, &pdev->flags) || | 
|  | test_bit(R5_Discard, &pdev->flags))))) && | 
|  | (s.q_failed || ((test_bit(R5_Insync, &qdev->flags) | 
|  | && !test_bit(R5_LOCKED, &qdev->flags) | 
|  | && (test_bit(R5_UPTODATE, &qdev->flags) || | 
|  | test_bit(R5_Discard, &qdev->flags)))))) | 
|  | handle_stripe_clean_event(conf, sh, disks); | 
|  |  | 
|  | if (s.just_cached) | 
|  | r5c_handle_cached_data_endio(conf, sh, disks); | 
|  | log_stripe_write_finished(sh); | 
|  |  | 
|  | /* Now we might consider reading some blocks, either to check/generate | 
|  | * parity, or to satisfy requests | 
|  | * or to load a block that is being partially written. | 
|  | */ | 
|  | if (s.to_read || s.non_overwrite | 
|  | || (conf->level == 6 && s.to_write && s.failed) | 
|  | || (s.syncing && (s.uptodate + s.compute < disks)) | 
|  | || s.replacing | 
|  | || s.expanding) | 
|  | handle_stripe_fill(sh, &s, disks); | 
|  |  | 
|  | /* | 
|  | * When the stripe finishes full journal write cycle (write to journal | 
|  | * and raid disk), this is the clean up procedure so it is ready for | 
|  | * next operation. | 
|  | */ | 
|  | r5c_finish_stripe_write_out(conf, sh, &s); | 
|  |  | 
|  | /* | 
|  | * Now to consider new write requests, cache write back and what else, | 
|  | * if anything should be read.  We do not handle new writes when: | 
|  | * 1/ A 'write' operation (copy+xor) is already in flight. | 
|  | * 2/ A 'check' operation is in flight, as it may clobber the parity | 
|  | *    block. | 
|  | * 3/ A r5c cache log write is in flight. | 
|  | */ | 
|  |  | 
|  | if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) { | 
|  | if (!r5c_is_writeback(conf->log)) { | 
|  | if (s.to_write) | 
|  | handle_stripe_dirtying(conf, sh, &s, disks); | 
|  | } else { /* write back cache */ | 
|  | int ret = 0; | 
|  |  | 
|  | /* First, try handle writes in caching phase */ | 
|  | if (s.to_write) | 
|  | ret = r5c_try_caching_write(conf, sh, &s, | 
|  | disks); | 
|  | /* | 
|  | * If caching phase failed: ret == -EAGAIN | 
|  | *    OR | 
|  | * stripe under reclaim: !caching && injournal | 
|  | * | 
|  | * fall back to handle_stripe_dirtying() | 
|  | */ | 
|  | if (ret == -EAGAIN || | 
|  | /* stripe under reclaim: !caching && injournal */ | 
|  | (!test_bit(STRIPE_R5C_CACHING, &sh->state) && | 
|  | s.injournal > 0)) { | 
|  | ret = handle_stripe_dirtying(conf, sh, &s, | 
|  | disks); | 
|  | if (ret == -EAGAIN) | 
|  | goto finish; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* maybe we need to check and possibly fix the parity for this stripe | 
|  | * Any reads will already have been scheduled, so we just see if enough | 
|  | * data is available.  The parity check is held off while parity | 
|  | * dependent operations are in flight. | 
|  | */ | 
|  | if (sh->check_state || | 
|  | (s.syncing && s.locked == 0 && | 
|  | !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && | 
|  | !test_bit(STRIPE_INSYNC, &sh->state))) { | 
|  | if (conf->level == 6) | 
|  | handle_parity_checks6(conf, sh, &s, disks); | 
|  | else | 
|  | handle_parity_checks5(conf, sh, &s, disks); | 
|  | } | 
|  |  | 
|  | if ((s.replacing || s.syncing) && s.locked == 0 | 
|  | && !test_bit(STRIPE_COMPUTE_RUN, &sh->state) | 
|  | && !test_bit(STRIPE_REPLACED, &sh->state)) { | 
|  | /* Write out to replacement devices where possible */ | 
|  | for (i = 0; i < conf->raid_disks; i++) | 
|  | if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) { | 
|  | WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags)); | 
|  | set_bit(R5_WantReplace, &sh->dev[i].flags); | 
|  | set_bit(R5_LOCKED, &sh->dev[i].flags); | 
|  | s.locked++; | 
|  | } | 
|  | if (s.replacing) | 
|  | set_bit(STRIPE_INSYNC, &sh->state); | 
|  | set_bit(STRIPE_REPLACED, &sh->state); | 
|  | } | 
|  | if ((s.syncing || s.replacing) && s.locked == 0 && | 
|  | !test_bit(STRIPE_COMPUTE_RUN, &sh->state) && | 
|  | test_bit(STRIPE_INSYNC, &sh->state)) { | 
|  | md_done_sync(conf->mddev, STRIPE_SECTORS, 1); | 
|  | clear_bit(STRIPE_SYNCING, &sh->state); | 
|  | if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags)) | 
|  | wake_up(&conf->wait_for_overlap); | 
|  | } | 
|  |  | 
|  | /* If the failed drives are just a ReadError, then we might need | 
|  | * to progress the repair/check process | 
|  | */ | 
|  | if (s.failed <= conf->max_degraded && !conf->mddev->ro) | 
|  | for (i = 0; i < s.failed; i++) { | 
|  | struct r5dev *dev = &sh->dev[s.failed_num[i]]; | 
|  | if (test_bit(R5_ReadError, &dev->flags) | 
|  | && !test_bit(R5_LOCKED, &dev->flags) | 
|  | && test_bit(R5_UPTODATE, &dev->flags) | 
|  | ) { | 
|  | if (!test_bit(R5_ReWrite, &dev->flags)) { | 
|  | set_bit(R5_Wantwrite, &dev->flags); | 
|  | set_bit(R5_ReWrite, &dev->flags); | 
|  | set_bit(R5_LOCKED, &dev->flags); | 
|  | s.locked++; | 
|  | } else { | 
|  | /* let's read it back */ | 
|  | set_bit(R5_Wantread, &dev->flags); | 
|  | set_bit(R5_LOCKED, &dev->flags); | 
|  | s.locked++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Finish reconstruct operations initiated by the expansion process */ | 
|  | if (sh->reconstruct_state == reconstruct_state_result) { | 
|  | struct stripe_head *sh_src | 
|  | = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1); | 
|  | if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) { | 
|  | /* sh cannot be written until sh_src has been read. | 
|  | * so arrange for sh to be delayed a little | 
|  | */ | 
|  | set_bit(STRIPE_DELAYED, &sh->state); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, | 
|  | &sh_src->state)) | 
|  | atomic_inc(&conf->preread_active_stripes); | 
|  | raid5_release_stripe(sh_src); | 
|  | goto finish; | 
|  | } | 
|  | if (sh_src) | 
|  | raid5_release_stripe(sh_src); | 
|  |  | 
|  | sh->reconstruct_state = reconstruct_state_idle; | 
|  | clear_bit(STRIPE_EXPANDING, &sh->state); | 
|  | for (i = conf->raid_disks; i--; ) { | 
|  | set_bit(R5_Wantwrite, &sh->dev[i].flags); | 
|  | set_bit(R5_LOCKED, &sh->dev[i].flags); | 
|  | s.locked++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) && | 
|  | !sh->reconstruct_state) { | 
|  | /* Need to write out all blocks after computing parity */ | 
|  | sh->disks = conf->raid_disks; | 
|  | stripe_set_idx(sh->sector, conf, 0, sh); | 
|  | schedule_reconstruction(sh, &s, 1, 1); | 
|  | } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) { | 
|  | clear_bit(STRIPE_EXPAND_READY, &sh->state); | 
|  | atomic_dec(&conf->reshape_stripes); | 
|  | wake_up(&conf->wait_for_overlap); | 
|  | md_done_sync(conf->mddev, STRIPE_SECTORS, 1); | 
|  | } | 
|  |  | 
|  | if (s.expanding && s.locked == 0 && | 
|  | !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) | 
|  | handle_stripe_expansion(conf, sh); | 
|  |  | 
|  | finish: | 
|  | /* wait for this device to become unblocked */ | 
|  | if (unlikely(s.blocked_rdev)) { | 
|  | if (conf->mddev->external) | 
|  | md_wait_for_blocked_rdev(s.blocked_rdev, | 
|  | conf->mddev); | 
|  | else | 
|  | /* Internal metadata will immediately | 
|  | * be written by raid5d, so we don't | 
|  | * need to wait here. | 
|  | */ | 
|  | rdev_dec_pending(s.blocked_rdev, | 
|  | conf->mddev); | 
|  | } | 
|  |  | 
|  | if (s.handle_bad_blocks) | 
|  | for (i = disks; i--; ) { | 
|  | struct md_rdev *rdev; | 
|  | struct r5dev *dev = &sh->dev[i]; | 
|  | if (test_and_clear_bit(R5_WriteError, &dev->flags)) { | 
|  | /* We own a safe reference to the rdev */ | 
|  | rdev = conf->disks[i].rdev; | 
|  | if (!rdev_set_badblocks(rdev, sh->sector, | 
|  | STRIPE_SECTORS, 0)) | 
|  | md_error(conf->mddev, rdev); | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  | } | 
|  | if (test_and_clear_bit(R5_MadeGood, &dev->flags)) { | 
|  | rdev = conf->disks[i].rdev; | 
|  | rdev_clear_badblocks(rdev, sh->sector, | 
|  | STRIPE_SECTORS, 0); | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  | } | 
|  | if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) { | 
|  | rdev = conf->disks[i].replacement; | 
|  | if (!rdev) | 
|  | /* rdev have been moved down */ | 
|  | rdev = conf->disks[i].rdev; | 
|  | rdev_clear_badblocks(rdev, sh->sector, | 
|  | STRIPE_SECTORS, 0); | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (s.ops_request) | 
|  | raid_run_ops(sh, s.ops_request); | 
|  |  | 
|  | ops_run_io(sh, &s); | 
|  |  | 
|  | if (s.dec_preread_active) { | 
|  | /* We delay this until after ops_run_io so that if make_request | 
|  | * is waiting on a flush, it won't continue until the writes | 
|  | * have actually been submitted. | 
|  | */ | 
|  | atomic_dec(&conf->preread_active_stripes); | 
|  | if (atomic_read(&conf->preread_active_stripes) < | 
|  | IO_THRESHOLD) | 
|  | md_wakeup_thread(conf->mddev->thread); | 
|  | } | 
|  |  | 
|  | clear_bit_unlock(STRIPE_ACTIVE, &sh->state); | 
|  | } | 
|  |  | 
|  | static void raid5_activate_delayed(struct r5conf *conf) | 
|  | { | 
|  | if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { | 
|  | while (!list_empty(&conf->delayed_list)) { | 
|  | struct list_head *l = conf->delayed_list.next; | 
|  | struct stripe_head *sh; | 
|  | sh = list_entry(l, struct stripe_head, lru); | 
|  | list_del_init(l); | 
|  | clear_bit(STRIPE_DELAYED, &sh->state); | 
|  | if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) | 
|  | atomic_inc(&conf->preread_active_stripes); | 
|  | list_add_tail(&sh->lru, &conf->hold_list); | 
|  | raid5_wakeup_stripe_thread(sh); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void activate_bit_delay(struct r5conf *conf, | 
|  | struct list_head *temp_inactive_list) | 
|  | { | 
|  | /* device_lock is held */ | 
|  | struct list_head head; | 
|  | list_add(&head, &conf->bitmap_list); | 
|  | list_del_init(&conf->bitmap_list); | 
|  | while (!list_empty(&head)) { | 
|  | struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru); | 
|  | int hash; | 
|  | list_del_init(&sh->lru); | 
|  | atomic_inc(&sh->count); | 
|  | hash = sh->hash_lock_index; | 
|  | __release_stripe(conf, sh, &temp_inactive_list[hash]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int raid5_congested(struct mddev *mddev, int bits) | 
|  | { | 
|  | struct r5conf *conf = mddev->private; | 
|  |  | 
|  | /* No difference between reads and writes.  Just check | 
|  | * how busy the stripe_cache is | 
|  | */ | 
|  |  | 
|  | if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) | 
|  | return 1; | 
|  |  | 
|  | /* Also checks whether there is pressure on r5cache log space */ | 
|  | if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) | 
|  | return 1; | 
|  | if (conf->quiesce) | 
|  | return 1; | 
|  | if (atomic_read(&conf->empty_inactive_list_nr)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int in_chunk_boundary(struct mddev *mddev, struct bio *bio) | 
|  | { | 
|  | struct r5conf *conf = mddev->private; | 
|  | sector_t sector = bio->bi_iter.bi_sector; | 
|  | unsigned int chunk_sectors; | 
|  | unsigned int bio_sectors = bio_sectors(bio); | 
|  |  | 
|  | WARN_ON_ONCE(bio->bi_partno); | 
|  |  | 
|  | chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors); | 
|  | return  chunk_sectors >= | 
|  | ((sector & (chunk_sectors - 1)) + bio_sectors); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt ) | 
|  | *  later sampled by raid5d. | 
|  | */ | 
|  | static void add_bio_to_retry(struct bio *bi,struct r5conf *conf) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  |  | 
|  | bi->bi_next = conf->retry_read_aligned_list; | 
|  | conf->retry_read_aligned_list = bi; | 
|  |  | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | md_wakeup_thread(conf->mddev->thread); | 
|  | } | 
|  |  | 
|  | static struct bio *remove_bio_from_retry(struct r5conf *conf, | 
|  | unsigned int *offset) | 
|  | { | 
|  | struct bio *bi; | 
|  |  | 
|  | bi = conf->retry_read_aligned; | 
|  | if (bi) { | 
|  | *offset = conf->retry_read_offset; | 
|  | conf->retry_read_aligned = NULL; | 
|  | return bi; | 
|  | } | 
|  | bi = conf->retry_read_aligned_list; | 
|  | if(bi) { | 
|  | conf->retry_read_aligned_list = bi->bi_next; | 
|  | bi->bi_next = NULL; | 
|  | *offset = 0; | 
|  | } | 
|  |  | 
|  | return bi; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  The "raid5_align_endio" should check if the read succeeded and if it | 
|  | *  did, call bio_endio on the original bio (having bio_put the new bio | 
|  | *  first). | 
|  | *  If the read failed.. | 
|  | */ | 
|  | static void raid5_align_endio(struct bio *bi) | 
|  | { | 
|  | struct bio* raid_bi  = bi->bi_private; | 
|  | struct mddev *mddev; | 
|  | struct r5conf *conf; | 
|  | struct md_rdev *rdev; | 
|  | blk_status_t error = bi->bi_status; | 
|  |  | 
|  | bio_put(bi); | 
|  |  | 
|  | rdev = (void*)raid_bi->bi_next; | 
|  | raid_bi->bi_next = NULL; | 
|  | mddev = rdev->mddev; | 
|  | conf = mddev->private; | 
|  |  | 
|  | rdev_dec_pending(rdev, conf->mddev); | 
|  |  | 
|  | if (!error) { | 
|  | bio_endio(raid_bi); | 
|  | if (atomic_dec_and_test(&conf->active_aligned_reads)) | 
|  | wake_up(&conf->wait_for_quiescent); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pr_debug("raid5_align_endio : io error...handing IO for a retry\n"); | 
|  |  | 
|  | add_bio_to_retry(raid_bi, conf); | 
|  | } | 
|  |  | 
|  | static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio) | 
|  | { | 
|  | struct r5conf *conf = mddev->private; | 
|  | int dd_idx; | 
|  | struct bio* align_bi; | 
|  | struct md_rdev *rdev; | 
|  | sector_t end_sector; | 
|  |  | 
|  | if (!in_chunk_boundary(mddev, raid_bio)) { | 
|  | pr_debug("%s: non aligned\n", __func__); | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * use bio_clone_fast to make a copy of the bio | 
|  | */ | 
|  | align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set); | 
|  | if (!align_bi) | 
|  | return 0; | 
|  | /* | 
|  | *   set bi_end_io to a new function, and set bi_private to the | 
|  | *     original bio. | 
|  | */ | 
|  | align_bi->bi_end_io  = raid5_align_endio; | 
|  | align_bi->bi_private = raid_bio; | 
|  | /* | 
|  | *	compute position | 
|  | */ | 
|  | align_bi->bi_iter.bi_sector = | 
|  | raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, | 
|  | 0, &dd_idx, NULL); | 
|  |  | 
|  | end_sector = bio_end_sector(align_bi); | 
|  | rcu_read_lock(); | 
|  | rdev = rcu_dereference(conf->disks[dd_idx].replacement); | 
|  | if (!rdev || test_bit(Faulty, &rdev->flags) || | 
|  | rdev->recovery_offset < end_sector) { | 
|  | rdev = rcu_dereference(conf->disks[dd_idx].rdev); | 
|  | if (rdev && | 
|  | (test_bit(Faulty, &rdev->flags) || | 
|  | !(test_bit(In_sync, &rdev->flags) || | 
|  | rdev->recovery_offset >= end_sector))) | 
|  | rdev = NULL; | 
|  | } | 
|  |  | 
|  | if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) { | 
|  | rcu_read_unlock(); | 
|  | bio_put(align_bi); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (rdev) { | 
|  | sector_t first_bad; | 
|  | int bad_sectors; | 
|  |  | 
|  | atomic_inc(&rdev->nr_pending); | 
|  | rcu_read_unlock(); | 
|  | raid_bio->bi_next = (void*)rdev; | 
|  | bio_set_dev(align_bi, rdev->bdev); | 
|  | bio_clear_flag(align_bi, BIO_SEG_VALID); | 
|  |  | 
|  | if (is_badblock(rdev, align_bi->bi_iter.bi_sector, | 
|  | bio_sectors(align_bi), | 
|  | &first_bad, &bad_sectors)) { | 
|  | bio_put(align_bi); | 
|  | rdev_dec_pending(rdev, mddev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* No reshape active, so we can trust rdev->data_offset */ | 
|  | align_bi->bi_iter.bi_sector += rdev->data_offset; | 
|  |  | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | wait_event_lock_irq(conf->wait_for_quiescent, | 
|  | conf->quiesce == 0, | 
|  | conf->device_lock); | 
|  | atomic_inc(&conf->active_aligned_reads); | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  |  | 
|  | if (mddev->gendisk) | 
|  | trace_block_bio_remap(align_bi->bi_disk->queue, | 
|  | align_bi, disk_devt(mddev->gendisk), | 
|  | raid_bio->bi_iter.bi_sector); | 
|  | generic_make_request(align_bi); | 
|  | return 1; | 
|  | } else { | 
|  | rcu_read_unlock(); | 
|  | bio_put(align_bi); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio) | 
|  | { | 
|  | struct bio *split; | 
|  | sector_t sector = raid_bio->bi_iter.bi_sector; | 
|  | unsigned chunk_sects = mddev->chunk_sectors; | 
|  | unsigned sectors = chunk_sects - (sector & (chunk_sects-1)); | 
|  |  | 
|  | if (sectors < bio_sectors(raid_bio)) { | 
|  | struct r5conf *conf = mddev->private; | 
|  | split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split); | 
|  | bio_chain(split, raid_bio); | 
|  | generic_make_request(raid_bio); | 
|  | raid_bio = split; | 
|  | } | 
|  |  | 
|  | if (!raid5_read_one_chunk(mddev, raid_bio)) | 
|  | return raid_bio; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* __get_priority_stripe - get the next stripe to process | 
|  | * | 
|  | * Full stripe writes are allowed to pass preread active stripes up until | 
|  | * the bypass_threshold is exceeded.  In general the bypass_count | 
|  | * increments when the handle_list is handled before the hold_list; however, it | 
|  | * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a | 
|  | * stripe with in flight i/o.  The bypass_count will be reset when the | 
|  | * head of the hold_list has changed, i.e. the head was promoted to the | 
|  | * handle_list. | 
|  | */ | 
|  | static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group) | 
|  | { | 
|  | struct stripe_head *sh, *tmp; | 
|  | struct list_head *handle_list = NULL; | 
|  | struct r5worker_group *wg; | 
|  | bool second_try = !r5c_is_writeback(conf->log) && | 
|  | !r5l_log_disk_error(conf); | 
|  | bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) || | 
|  | r5l_log_disk_error(conf); | 
|  |  | 
|  | again: | 
|  | wg = NULL; | 
|  | sh = NULL; | 
|  | if (conf->worker_cnt_per_group == 0) { | 
|  | handle_list = try_loprio ? &conf->loprio_list : | 
|  | &conf->handle_list; | 
|  | } else if (group != ANY_GROUP) { | 
|  | handle_list = try_loprio ? &conf->worker_groups[group].loprio_list : | 
|  | &conf->worker_groups[group].handle_list; | 
|  | wg = &conf->worker_groups[group]; | 
|  | } else { | 
|  | int i; | 
|  | for (i = 0; i < conf->group_cnt; i++) { | 
|  | handle_list = try_loprio ? &conf->worker_groups[i].loprio_list : | 
|  | &conf->worker_groups[i].handle_list; | 
|  | wg = &conf->worker_groups[i]; | 
|  | if (!list_empty(handle_list)) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n", | 
|  | __func__, | 
|  | list_empty(handle_list) ? "empty" : "busy", | 
|  | list_empty(&conf->hold_list) ? "empty" : "busy", | 
|  | atomic_read(&conf->pending_full_writes), conf->bypass_count); | 
|  |  | 
|  | if (!list_empty(handle_list)) { | 
|  | sh = list_entry(handle_list->next, typeof(*sh), lru); | 
|  |  | 
|  | if (list_empty(&conf->hold_list)) | 
|  | conf->bypass_count = 0; | 
|  | else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) { | 
|  | if (conf->hold_list.next == conf->last_hold) | 
|  | conf->bypass_count++; | 
|  | else { | 
|  | conf->last_hold = conf->hold_list.next; | 
|  | conf->bypass_count -= conf->bypass_threshold; | 
|  | if (conf->bypass_count < 0) | 
|  | conf->bypass_count = 0; | 
|  | } | 
|  | } | 
|  | } else if (!list_empty(&conf->hold_list) && | 
|  | ((conf->bypass_threshold && | 
|  | conf->bypass_count > conf->bypass_threshold) || | 
|  | atomic_read(&conf->pending_full_writes) == 0)) { | 
|  |  | 
|  | list_for_each_entry(tmp, &conf->hold_list,  lru) { | 
|  | if (conf->worker_cnt_per_group == 0 || | 
|  | group == ANY_GROUP || | 
|  | !cpu_online(tmp->cpu) || | 
|  | cpu_to_group(tmp->cpu) == group) { | 
|  | sh = tmp; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sh) { | 
|  | conf->bypass_count -= conf->bypass_threshold; | 
|  | if (conf->bypass_count < 0) | 
|  | conf->bypass_count = 0; | 
|  | } | 
|  | wg = NULL; | 
|  | } | 
|  |  | 
|  | if (!sh) { | 
|  | if (second_try) | 
|  | return NULL; | 
|  | second_try = true; | 
|  | try_loprio = !try_loprio; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (wg) { | 
|  | wg->stripes_cnt--; | 
|  | sh->group = NULL; | 
|  | } | 
|  | list_del_init(&sh->lru); | 
|  | BUG_ON(atomic_inc_return(&sh->count) != 1); | 
|  | return sh; | 
|  | } | 
|  |  | 
|  | struct raid5_plug_cb { | 
|  | struct blk_plug_cb	cb; | 
|  | struct list_head	list; | 
|  | struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS]; | 
|  | }; | 
|  |  | 
|  | static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule) | 
|  | { | 
|  | struct raid5_plug_cb *cb = container_of( | 
|  | blk_cb, struct raid5_plug_cb, cb); | 
|  | struct stripe_head *sh; | 
|  | struct mddev *mddev = cb->cb.data; | 
|  | struct r5conf *conf = mddev->private; | 
|  | int cnt = 0; | 
|  | int hash; | 
|  |  | 
|  | if (cb->list.next && !list_empty(&cb->list)) { | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | while (!list_empty(&cb->list)) { | 
|  | sh = list_first_entry(&cb->list, struct stripe_head, lru); | 
|  | list_del_init(&sh->lru); | 
|  | /* | 
|  | * avoid race release_stripe_plug() sees | 
|  | * STRIPE_ON_UNPLUG_LIST clear but the stripe | 
|  | * is still in our list | 
|  | */ | 
|  | smp_mb__before_atomic(); | 
|  | clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state); | 
|  | /* | 
|  | * STRIPE_ON_RELEASE_LIST could be set here. In that | 
|  | * case, the count is always > 1 here | 
|  | */ | 
|  | hash = sh->hash_lock_index; | 
|  | __release_stripe(conf, sh, &cb->temp_inactive_list[hash]); | 
|  | cnt++; | 
|  | } | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | } | 
|  | release_inactive_stripe_list(conf, cb->temp_inactive_list, | 
|  | NR_STRIPE_HASH_LOCKS); | 
|  | if (mddev->queue) | 
|  | trace_block_unplug(mddev->queue, cnt, !from_schedule); | 
|  | kfree(cb); | 
|  | } | 
|  |  | 
|  | static void release_stripe_plug(struct mddev *mddev, | 
|  | struct stripe_head *sh) | 
|  | { | 
|  | struct blk_plug_cb *blk_cb = blk_check_plugged( | 
|  | raid5_unplug, mddev, | 
|  | sizeof(struct raid5_plug_cb)); | 
|  | struct raid5_plug_cb *cb; | 
|  |  | 
|  | if (!blk_cb) { | 
|  | raid5_release_stripe(sh); | 
|  | return; | 
|  | } | 
|  |  | 
|  | cb = container_of(blk_cb, struct raid5_plug_cb, cb); | 
|  |  | 
|  | if (cb->list.next == NULL) { | 
|  | int i; | 
|  | INIT_LIST_HEAD(&cb->list); | 
|  | for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) | 
|  | INIT_LIST_HEAD(cb->temp_inactive_list + i); | 
|  | } | 
|  |  | 
|  | if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)) | 
|  | list_add_tail(&sh->lru, &cb->list); | 
|  | else | 
|  | raid5_release_stripe(sh); | 
|  | } | 
|  |  | 
|  | static void make_discard_request(struct mddev *mddev, struct bio *bi) | 
|  | { | 
|  | struct r5conf *conf = mddev->private; | 
|  | sector_t logical_sector, last_sector; | 
|  | struct stripe_head *sh; | 
|  | int stripe_sectors; | 
|  |  | 
|  | if (mddev->reshape_position != MaxSector) | 
|  | /* Skip discard while reshape is happening */ | 
|  | return; | 
|  |  | 
|  | logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); | 
|  | last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9); | 
|  |  | 
|  | bi->bi_next = NULL; | 
|  |  | 
|  | stripe_sectors = conf->chunk_sectors * | 
|  | (conf->raid_disks - conf->max_degraded); | 
|  | logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector, | 
|  | stripe_sectors); | 
|  | sector_div(last_sector, stripe_sectors); | 
|  |  | 
|  | logical_sector *= conf->chunk_sectors; | 
|  | last_sector *= conf->chunk_sectors; | 
|  |  | 
|  | for (; logical_sector < last_sector; | 
|  | logical_sector += STRIPE_SECTORS) { | 
|  | DEFINE_WAIT(w); | 
|  | int d; | 
|  | again: | 
|  | sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0); | 
|  | prepare_to_wait(&conf->wait_for_overlap, &w, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); | 
|  | if (test_bit(STRIPE_SYNCING, &sh->state)) { | 
|  | raid5_release_stripe(sh); | 
|  | schedule(); | 
|  | goto again; | 
|  | } | 
|  | clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags); | 
|  | spin_lock_irq(&sh->stripe_lock); | 
|  | for (d = 0; d < conf->raid_disks; d++) { | 
|  | if (d == sh->pd_idx || d == sh->qd_idx) | 
|  | continue; | 
|  | if (sh->dev[d].towrite || sh->dev[d].toread) { | 
|  | set_bit(R5_Overlap, &sh->dev[d].flags); | 
|  | spin_unlock_irq(&sh->stripe_lock); | 
|  | raid5_release_stripe(sh); | 
|  | schedule(); | 
|  | goto again; | 
|  | } | 
|  | } | 
|  | set_bit(STRIPE_DISCARD, &sh->state); | 
|  | finish_wait(&conf->wait_for_overlap, &w); | 
|  | sh->overwrite_disks = 0; | 
|  | for (d = 0; d < conf->raid_disks; d++) { | 
|  | if (d == sh->pd_idx || d == sh->qd_idx) | 
|  | continue; | 
|  | sh->dev[d].towrite = bi; | 
|  | set_bit(R5_OVERWRITE, &sh->dev[d].flags); | 
|  | bio_inc_remaining(bi); | 
|  | md_write_inc(mddev, bi); | 
|  | sh->overwrite_disks++; | 
|  | } | 
|  | spin_unlock_irq(&sh->stripe_lock); | 
|  | if (conf->mddev->bitmap) { | 
|  | for (d = 0; | 
|  | d < conf->raid_disks - conf->max_degraded; | 
|  | d++) | 
|  | md_bitmap_startwrite(mddev->bitmap, | 
|  | sh->sector, | 
|  | STRIPE_SECTORS, | 
|  | 0); | 
|  | sh->bm_seq = conf->seq_flush + 1; | 
|  | set_bit(STRIPE_BIT_DELAY, &sh->state); | 
|  | } | 
|  |  | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | clear_bit(STRIPE_DELAYED, &sh->state); | 
|  | if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) | 
|  | atomic_inc(&conf->preread_active_stripes); | 
|  | release_stripe_plug(mddev, sh); | 
|  | } | 
|  |  | 
|  | bio_endio(bi); | 
|  | } | 
|  |  | 
|  | static bool raid5_make_request(struct mddev *mddev, struct bio * bi) | 
|  | { | 
|  | struct r5conf *conf = mddev->private; | 
|  | int dd_idx; | 
|  | sector_t new_sector; | 
|  | sector_t logical_sector, last_sector; | 
|  | struct stripe_head *sh; | 
|  | const int rw = bio_data_dir(bi); | 
|  | DEFINE_WAIT(w); | 
|  | bool do_prepare; | 
|  | bool do_flush = false; | 
|  |  | 
|  | if (unlikely(bi->bi_opf & REQ_PREFLUSH)) { | 
|  | int ret = log_handle_flush_request(conf, bi); | 
|  |  | 
|  | if (ret == 0) | 
|  | return true; | 
|  | if (ret == -ENODEV) { | 
|  | if (md_flush_request(mddev, bi)) | 
|  | return true; | 
|  | } | 
|  | /* ret == -EAGAIN, fallback */ | 
|  | /* | 
|  | * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH, | 
|  | * we need to flush journal device | 
|  | */ | 
|  | do_flush = bi->bi_opf & REQ_PREFLUSH; | 
|  | } | 
|  |  | 
|  | if (!md_write_start(mddev, bi)) | 
|  | return false; | 
|  | /* | 
|  | * If array is degraded, better not do chunk aligned read because | 
|  | * later we might have to read it again in order to reconstruct | 
|  | * data on failed drives. | 
|  | */ | 
|  | if (rw == READ && mddev->degraded == 0 && | 
|  | mddev->reshape_position == MaxSector) { | 
|  | bi = chunk_aligned_read(mddev, bi); | 
|  | if (!bi) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) { | 
|  | make_discard_request(mddev, bi); | 
|  | md_write_end(mddev); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1); | 
|  | last_sector = bio_end_sector(bi); | 
|  | bi->bi_next = NULL; | 
|  |  | 
|  | prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE); | 
|  | for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { | 
|  | int previous; | 
|  | int seq; | 
|  |  | 
|  | do_prepare = false; | 
|  | retry: | 
|  | seq = read_seqcount_begin(&conf->gen_lock); | 
|  | previous = 0; | 
|  | if (do_prepare) | 
|  | prepare_to_wait(&conf->wait_for_overlap, &w, | 
|  | TASK_UNINTERRUPTIBLE); | 
|  | if (unlikely(conf->reshape_progress != MaxSector)) { | 
|  | /* spinlock is needed as reshape_progress may be | 
|  | * 64bit on a 32bit platform, and so it might be | 
|  | * possible to see a half-updated value | 
|  | * Of course reshape_progress could change after | 
|  | * the lock is dropped, so once we get a reference | 
|  | * to the stripe that we think it is, we will have | 
|  | * to check again. | 
|  | */ | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | if (mddev->reshape_backwards | 
|  | ? logical_sector < conf->reshape_progress | 
|  | : logical_sector >= conf->reshape_progress) { | 
|  | previous = 1; | 
|  | } else { | 
|  | if (mddev->reshape_backwards | 
|  | ? logical_sector < conf->reshape_safe | 
|  | : logical_sector >= conf->reshape_safe) { | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | schedule(); | 
|  | do_prepare = true; | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | } | 
|  |  | 
|  | new_sector = raid5_compute_sector(conf, logical_sector, | 
|  | previous, | 
|  | &dd_idx, NULL); | 
|  | pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n", | 
|  | (unsigned long long)new_sector, | 
|  | (unsigned long long)logical_sector); | 
|  |  | 
|  | sh = raid5_get_active_stripe(conf, new_sector, previous, | 
|  | (bi->bi_opf & REQ_RAHEAD), 0); | 
|  | if (sh) { | 
|  | if (unlikely(previous)) { | 
|  | /* expansion might have moved on while waiting for a | 
|  | * stripe, so we must do the range check again. | 
|  | * Expansion could still move past after this | 
|  | * test, but as we are holding a reference to | 
|  | * 'sh', we know that if that happens, | 
|  | *  STRIPE_EXPANDING will get set and the expansion | 
|  | * won't proceed until we finish with the stripe. | 
|  | */ | 
|  | int must_retry = 0; | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | if (mddev->reshape_backwards | 
|  | ? logical_sector >= conf->reshape_progress | 
|  | : logical_sector < conf->reshape_progress) | 
|  | /* mismatch, need to try again */ | 
|  | must_retry = 1; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | if (must_retry) { | 
|  | raid5_release_stripe(sh); | 
|  | schedule(); | 
|  | do_prepare = true; | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  | if (read_seqcount_retry(&conf->gen_lock, seq)) { | 
|  | /* Might have got the wrong stripe_head | 
|  | * by accident | 
|  | */ | 
|  | raid5_release_stripe(sh); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (test_bit(STRIPE_EXPANDING, &sh->state) || | 
|  | !add_stripe_bio(sh, bi, dd_idx, rw, previous)) { | 
|  | /* Stripe is busy expanding or | 
|  | * add failed due to overlap.  Flush everything | 
|  | * and wait a while | 
|  | */ | 
|  | md_wakeup_thread(mddev->thread); | 
|  | raid5_release_stripe(sh); | 
|  | schedule(); | 
|  | do_prepare = true; | 
|  | goto retry; | 
|  | } | 
|  | if (do_flush) { | 
|  | set_bit(STRIPE_R5C_PREFLUSH, &sh->state); | 
|  | /* we only need flush for one stripe */ | 
|  | do_flush = false; | 
|  | } | 
|  |  | 
|  | if (!sh->batch_head || sh == sh->batch_head) | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | clear_bit(STRIPE_DELAYED, &sh->state); | 
|  | if ((!sh->batch_head || sh == sh->batch_head) && | 
|  | (bi->bi_opf & REQ_SYNC) && | 
|  | !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) | 
|  | atomic_inc(&conf->preread_active_stripes); | 
|  | release_stripe_plug(mddev, sh); | 
|  | } else { | 
|  | /* cannot get stripe for read-ahead, just give-up */ | 
|  | bi->bi_status = BLK_STS_IOERR; | 
|  | break; | 
|  | } | 
|  | } | 
|  | finish_wait(&conf->wait_for_overlap, &w); | 
|  |  | 
|  | if (rw == WRITE) | 
|  | md_write_end(mddev); | 
|  | bio_endio(bi); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks); | 
|  |  | 
|  | static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped) | 
|  | { | 
|  | /* reshaping is quite different to recovery/resync so it is | 
|  | * handled quite separately ... here. | 
|  | * | 
|  | * On each call to sync_request, we gather one chunk worth of | 
|  | * destination stripes and flag them as expanding. | 
|  | * Then we find all the source stripes and request reads. | 
|  | * As the reads complete, handle_stripe will copy the data | 
|  | * into the destination stripe and release that stripe. | 
|  | */ | 
|  | struct r5conf *conf = mddev->private; | 
|  | struct stripe_head *sh; | 
|  | struct md_rdev *rdev; | 
|  | sector_t first_sector, last_sector; | 
|  | int raid_disks = conf->previous_raid_disks; | 
|  | int data_disks = raid_disks - conf->max_degraded; | 
|  | int new_data_disks = conf->raid_disks - conf->max_degraded; | 
|  | int i; | 
|  | int dd_idx; | 
|  | sector_t writepos, readpos, safepos; | 
|  | sector_t stripe_addr; | 
|  | int reshape_sectors; | 
|  | struct list_head stripes; | 
|  | sector_t retn; | 
|  |  | 
|  | if (sector_nr == 0) { | 
|  | /* If restarting in the middle, skip the initial sectors */ | 
|  | if (mddev->reshape_backwards && | 
|  | conf->reshape_progress < raid5_size(mddev, 0, 0)) { | 
|  | sector_nr = raid5_size(mddev, 0, 0) | 
|  | - conf->reshape_progress; | 
|  | } else if (mddev->reshape_backwards && | 
|  | conf->reshape_progress == MaxSector) { | 
|  | /* shouldn't happen, but just in case, finish up.*/ | 
|  | sector_nr = MaxSector; | 
|  | } else if (!mddev->reshape_backwards && | 
|  | conf->reshape_progress > 0) | 
|  | sector_nr = conf->reshape_progress; | 
|  | sector_div(sector_nr, new_data_disks); | 
|  | if (sector_nr) { | 
|  | mddev->curr_resync_completed = sector_nr; | 
|  | sysfs_notify(&mddev->kobj, NULL, "sync_completed"); | 
|  | *skipped = 1; | 
|  | retn = sector_nr; | 
|  | goto finish; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We need to process a full chunk at a time. | 
|  | * If old and new chunk sizes differ, we need to process the | 
|  | * largest of these | 
|  | */ | 
|  |  | 
|  | reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors); | 
|  |  | 
|  | /* We update the metadata at least every 10 seconds, or when | 
|  | * the data about to be copied would over-write the source of | 
|  | * the data at the front of the range.  i.e. one new_stripe | 
|  | * along from reshape_progress new_maps to after where | 
|  | * reshape_safe old_maps to | 
|  | */ | 
|  | writepos = conf->reshape_progress; | 
|  | sector_div(writepos, new_data_disks); | 
|  | readpos = conf->reshape_progress; | 
|  | sector_div(readpos, data_disks); | 
|  | safepos = conf->reshape_safe; | 
|  | sector_div(safepos, data_disks); | 
|  | if (mddev->reshape_backwards) { | 
|  | BUG_ON(writepos < reshape_sectors); | 
|  | writepos -= reshape_sectors; | 
|  | readpos += reshape_sectors; | 
|  | safepos += reshape_sectors; | 
|  | } else { | 
|  | writepos += reshape_sectors; | 
|  | /* readpos and safepos are worst-case calculations. | 
|  | * A negative number is overly pessimistic, and causes | 
|  | * obvious problems for unsigned storage.  So clip to 0. | 
|  | */ | 
|  | readpos -= min_t(sector_t, reshape_sectors, readpos); | 
|  | safepos -= min_t(sector_t, reshape_sectors, safepos); | 
|  | } | 
|  |  | 
|  | /* Having calculated the 'writepos' possibly use it | 
|  | * to set 'stripe_addr' which is where we will write to. | 
|  | */ | 
|  | if (mddev->reshape_backwards) { | 
|  | BUG_ON(conf->reshape_progress == 0); | 
|  | stripe_addr = writepos; | 
|  | BUG_ON((mddev->dev_sectors & | 
|  | ~((sector_t)reshape_sectors - 1)) | 
|  | - reshape_sectors - stripe_addr | 
|  | != sector_nr); | 
|  | } else { | 
|  | BUG_ON(writepos != sector_nr + reshape_sectors); | 
|  | stripe_addr = sector_nr; | 
|  | } | 
|  |  | 
|  | /* 'writepos' is the most advanced device address we might write. | 
|  | * 'readpos' is the least advanced device address we might read. | 
|  | * 'safepos' is the least address recorded in the metadata as having | 
|  | *     been reshaped. | 
|  | * If there is a min_offset_diff, these are adjusted either by | 
|  | * increasing the safepos/readpos if diff is negative, or | 
|  | * increasing writepos if diff is positive. | 
|  | * If 'readpos' is then behind 'writepos', there is no way that we can | 
|  | * ensure safety in the face of a crash - that must be done by userspace | 
|  | * making a backup of the data.  So in that case there is no particular | 
|  | * rush to update metadata. | 
|  | * Otherwise if 'safepos' is behind 'writepos', then we really need to | 
|  | * update the metadata to advance 'safepos' to match 'readpos' so that | 
|  | * we can be safe in the event of a crash. | 
|  | * So we insist on updating metadata if safepos is behind writepos and | 
|  | * readpos is beyond writepos. | 
|  | * In any case, update the metadata every 10 seconds. | 
|  | * Maybe that number should be configurable, but I'm not sure it is | 
|  | * worth it.... maybe it could be a multiple of safemode_delay??? | 
|  | */ | 
|  | if (conf->min_offset_diff < 0) { | 
|  | safepos += -conf->min_offset_diff; | 
|  | readpos += -conf->min_offset_diff; | 
|  | } else | 
|  | writepos += conf->min_offset_diff; | 
|  |  | 
|  | if ((mddev->reshape_backwards | 
|  | ? (safepos > writepos && readpos < writepos) | 
|  | : (safepos < writepos && readpos > writepos)) || | 
|  | time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) { | 
|  | /* Cannot proceed until we've updated the superblock... */ | 
|  | wait_event(conf->wait_for_overlap, | 
|  | atomic_read(&conf->reshape_stripes)==0 | 
|  | || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); | 
|  | if (atomic_read(&conf->reshape_stripes) != 0) | 
|  | return 0; | 
|  | mddev->reshape_position = conf->reshape_progress; | 
|  | mddev->curr_resync_completed = sector_nr; | 
|  | if (!mddev->reshape_backwards) | 
|  | /* Can update recovery_offset */ | 
|  | rdev_for_each(rdev, mddev) | 
|  | if (rdev->raid_disk >= 0 && | 
|  | !test_bit(Journal, &rdev->flags) && | 
|  | !test_bit(In_sync, &rdev->flags) && | 
|  | rdev->recovery_offset < sector_nr) | 
|  | rdev->recovery_offset = sector_nr; | 
|  |  | 
|  | conf->reshape_checkpoint = jiffies; | 
|  | set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); | 
|  | md_wakeup_thread(mddev->thread); | 
|  | wait_event(mddev->sb_wait, mddev->sb_flags == 0 || | 
|  | test_bit(MD_RECOVERY_INTR, &mddev->recovery)); | 
|  | if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) | 
|  | return 0; | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | conf->reshape_safe = mddev->reshape_position; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | wake_up(&conf->wait_for_overlap); | 
|  | sysfs_notify(&mddev->kobj, NULL, "sync_completed"); | 
|  | } | 
|  |  | 
|  | INIT_LIST_HEAD(&stripes); | 
|  | for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) { | 
|  | int j; | 
|  | int skipped_disk = 0; | 
|  | sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1); | 
|  | set_bit(STRIPE_EXPANDING, &sh->state); | 
|  | atomic_inc(&conf->reshape_stripes); | 
|  | /* If any of this stripe is beyond the end of the old | 
|  | * array, then we need to zero those blocks | 
|  | */ | 
|  | for (j=sh->disks; j--;) { | 
|  | sector_t s; | 
|  | if (j == sh->pd_idx) | 
|  | continue; | 
|  | if (conf->level == 6 && | 
|  | j == sh->qd_idx) | 
|  | continue; | 
|  | s = raid5_compute_blocknr(sh, j, 0); | 
|  | if (s < raid5_size(mddev, 0, 0)) { | 
|  | skipped_disk = 1; | 
|  | continue; | 
|  | } | 
|  | memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE); | 
|  | set_bit(R5_Expanded, &sh->dev[j].flags); | 
|  | set_bit(R5_UPTODATE, &sh->dev[j].flags); | 
|  | } | 
|  | if (!skipped_disk) { | 
|  | set_bit(STRIPE_EXPAND_READY, &sh->state); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | } | 
|  | list_add(&sh->lru, &stripes); | 
|  | } | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | if (mddev->reshape_backwards) | 
|  | conf->reshape_progress -= reshape_sectors * new_data_disks; | 
|  | else | 
|  | conf->reshape_progress += reshape_sectors * new_data_disks; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | /* Ok, those stripe are ready. We can start scheduling | 
|  | * reads on the source stripes. | 
|  | * The source stripes are determined by mapping the first and last | 
|  | * block on the destination stripes. | 
|  | */ | 
|  | first_sector = | 
|  | raid5_compute_sector(conf, stripe_addr*(new_data_disks), | 
|  | 1, &dd_idx, NULL); | 
|  | last_sector = | 
|  | raid5_compute_sector(conf, ((stripe_addr+reshape_sectors) | 
|  | * new_data_disks - 1), | 
|  | 1, &dd_idx, NULL); | 
|  | if (last_sector >= mddev->dev_sectors) | 
|  | last_sector = mddev->dev_sectors - 1; | 
|  | while (first_sector <= last_sector) { | 
|  | sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1); | 
|  | set_bit(STRIPE_EXPAND_SOURCE, &sh->state); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  | raid5_release_stripe(sh); | 
|  | first_sector += STRIPE_SECTORS; | 
|  | } | 
|  | /* Now that the sources are clearly marked, we can release | 
|  | * the destination stripes | 
|  | */ | 
|  | while (!list_empty(&stripes)) { | 
|  | sh = list_entry(stripes.next, struct stripe_head, lru); | 
|  | list_del_init(&sh->lru); | 
|  | raid5_release_stripe(sh); | 
|  | } | 
|  | /* If this takes us to the resync_max point where we have to pause, | 
|  | * then we need to write out the superblock. | 
|  | */ | 
|  | sector_nr += reshape_sectors; | 
|  | retn = reshape_sectors; | 
|  | finish: | 
|  | if (mddev->curr_resync_completed > mddev->resync_max || | 
|  | (sector_nr - mddev->curr_resync_completed) * 2 | 
|  | >= mddev->resync_max - mddev->curr_resync_completed) { | 
|  | /* Cannot proceed until we've updated the superblock... */ | 
|  | wait_event(conf->wait_for_overlap, | 
|  | atomic_read(&conf->reshape_stripes) == 0 | 
|  | || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); | 
|  | if (atomic_read(&conf->reshape_stripes) != 0) | 
|  | goto ret; | 
|  | mddev->reshape_position = conf->reshape_progress; | 
|  | mddev->curr_resync_completed = sector_nr; | 
|  | if (!mddev->reshape_backwards) | 
|  | /* Can update recovery_offset */ | 
|  | rdev_for_each(rdev, mddev) | 
|  | if (rdev->raid_disk >= 0 && | 
|  | !test_bit(Journal, &rdev->flags) && | 
|  | !test_bit(In_sync, &rdev->flags) && | 
|  | rdev->recovery_offset < sector_nr) | 
|  | rdev->recovery_offset = sector_nr; | 
|  | conf->reshape_checkpoint = jiffies; | 
|  | set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); | 
|  | md_wakeup_thread(mddev->thread); | 
|  | wait_event(mddev->sb_wait, | 
|  | !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) | 
|  | || test_bit(MD_RECOVERY_INTR, &mddev->recovery)); | 
|  | if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) | 
|  | goto ret; | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | conf->reshape_safe = mddev->reshape_position; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | wake_up(&conf->wait_for_overlap); | 
|  | sysfs_notify(&mddev->kobj, NULL, "sync_completed"); | 
|  | } | 
|  | ret: | 
|  | return retn; | 
|  | } | 
|  |  | 
|  | static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr, | 
|  | int *skipped) | 
|  | { | 
|  | struct r5conf *conf = mddev->private; | 
|  | struct stripe_head *sh; | 
|  | sector_t max_sector = mddev->dev_sectors; | 
|  | sector_t sync_blocks; | 
|  | int still_degraded = 0; | 
|  | int i; | 
|  |  | 
|  | if (sector_nr >= max_sector) { | 
|  | /* just being told to finish up .. nothing much to do */ | 
|  |  | 
|  | if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) { | 
|  | end_reshape(conf); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (mddev->curr_resync < max_sector) /* aborted */ | 
|  | md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync, | 
|  | &sync_blocks, 1); | 
|  | else /* completed sync */ | 
|  | conf->fullsync = 0; | 
|  | md_bitmap_close_sync(mddev->bitmap); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Allow raid5_quiesce to complete */ | 
|  | wait_event(conf->wait_for_overlap, conf->quiesce != 2); | 
|  |  | 
|  | if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) | 
|  | return reshape_request(mddev, sector_nr, skipped); | 
|  |  | 
|  | /* No need to check resync_max as we never do more than one | 
|  | * stripe, and as resync_max will always be on a chunk boundary, | 
|  | * if the check in md_do_sync didn't fire, there is no chance | 
|  | * of overstepping resync_max here | 
|  | */ | 
|  |  | 
|  | /* if there is too many failed drives and we are trying | 
|  | * to resync, then assert that we are finished, because there is | 
|  | * nothing we can do. | 
|  | */ | 
|  | if (mddev->degraded >= conf->max_degraded && | 
|  | test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) { | 
|  | sector_t rv = mddev->dev_sectors - sector_nr; | 
|  | *skipped = 1; | 
|  | return rv; | 
|  | } | 
|  | if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) && | 
|  | !conf->fullsync && | 
|  | !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) && | 
|  | sync_blocks >= STRIPE_SECTORS) { | 
|  | /* we can skip this block, and probably more */ | 
|  | sync_blocks /= STRIPE_SECTORS; | 
|  | *skipped = 1; | 
|  | return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */ | 
|  | } | 
|  |  | 
|  | md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false); | 
|  |  | 
|  | sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0); | 
|  | if (sh == NULL) { | 
|  | sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0); | 
|  | /* make sure we don't swamp the stripe cache if someone else | 
|  | * is trying to get access | 
|  | */ | 
|  | schedule_timeout_uninterruptible(1); | 
|  | } | 
|  | /* Need to check if array will still be degraded after recovery/resync | 
|  | * Note in case of > 1 drive failures it's possible we're rebuilding | 
|  | * one drive while leaving another faulty drive in array. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | for (i = 0; i < conf->raid_disks; i++) { | 
|  | struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev); | 
|  |  | 
|  | if (rdev == NULL || test_bit(Faulty, &rdev->flags)) | 
|  | still_degraded = 1; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded); | 
|  |  | 
|  | set_bit(STRIPE_SYNC_REQUESTED, &sh->state); | 
|  | set_bit(STRIPE_HANDLE, &sh->state); | 
|  |  | 
|  | raid5_release_stripe(sh); | 
|  |  | 
|  | return STRIPE_SECTORS; | 
|  | } | 
|  |  | 
|  | static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio, | 
|  | unsigned int offset) | 
|  | { | 
|  | /* We may not be able to submit a whole bio at once as there | 
|  | * may not be enough stripe_heads available. | 
|  | * We cannot pre-allocate enough stripe_heads as we may need | 
|  | * more than exist in the cache (if we allow ever large chunks). | 
|  | * So we do one stripe head at a time and record in | 
|  | * ->bi_hw_segments how many have been done. | 
|  | * | 
|  | * We *know* that this entire raid_bio is in one chunk, so | 
|  | * it will be only one 'dd_idx' and only need one call to raid5_compute_sector. | 
|  | */ | 
|  | struct stripe_head *sh; | 
|  | int dd_idx; | 
|  | sector_t sector, logical_sector, last_sector; | 
|  | int scnt = 0; | 
|  | int handled = 0; | 
|  |  | 
|  | logical_sector = raid_bio->bi_iter.bi_sector & | 
|  | ~((sector_t)STRIPE_SECTORS-1); | 
|  | sector = raid5_compute_sector(conf, logical_sector, | 
|  | 0, &dd_idx, NULL); | 
|  | last_sector = bio_end_sector(raid_bio); | 
|  |  | 
|  | for (; logical_sector < last_sector; | 
|  | logical_sector += STRIPE_SECTORS, | 
|  | sector += STRIPE_SECTORS, | 
|  | scnt++) { | 
|  |  | 
|  | if (scnt < offset) | 
|  | /* already done this stripe */ | 
|  | continue; | 
|  |  | 
|  | sh = raid5_get_active_stripe(conf, sector, 0, 1, 1); | 
|  |  | 
|  | if (!sh) { | 
|  | /* failed to get a stripe - must wait */ | 
|  | conf->retry_read_aligned = raid_bio; | 
|  | conf->retry_read_offset = scnt; | 
|  | return handled; | 
|  | } | 
|  |  | 
|  | if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) { | 
|  | raid5_release_stripe(sh); | 
|  | conf->retry_read_aligned = raid_bio; | 
|  | conf->retry_read_offset = scnt; | 
|  | return handled; | 
|  | } | 
|  |  | 
|  | set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags); | 
|  | handle_stripe(sh); | 
|  | raid5_release_stripe(sh); | 
|  | handled++; | 
|  | } | 
|  |  | 
|  | bio_endio(raid_bio); | 
|  |  | 
|  | if (atomic_dec_and_test(&conf->active_aligned_reads)) | 
|  | wake_up(&conf->wait_for_quiescent); | 
|  | return handled; | 
|  | } | 
|  |  | 
|  | static int handle_active_stripes(struct r5conf *conf, int group, | 
|  | struct r5worker *worker, | 
|  | struct list_head *temp_inactive_list) | 
|  | { | 
|  | struct stripe_head *batch[MAX_STRIPE_BATCH], *sh; | 
|  | int i, batch_size = 0, hash; | 
|  | bool release_inactive = false; | 
|  |  | 
|  | while (batch_size < MAX_STRIPE_BATCH && | 
|  | (sh = __get_priority_stripe(conf, group)) != NULL) | 
|  | batch[batch_size++] = sh; | 
|  |  | 
|  | if (batch_size == 0) { | 
|  | for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) | 
|  | if (!list_empty(temp_inactive_list + i)) | 
|  | break; | 
|  | if (i == NR_STRIPE_HASH_LOCKS) { | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | log_flush_stripe_to_raid(conf); | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | return batch_size; | 
|  | } | 
|  | release_inactive = true; | 
|  | } | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  |  | 
|  | release_inactive_stripe_list(conf, temp_inactive_list, | 
|  | NR_STRIPE_HASH_LOCKS); | 
|  |  | 
|  | r5l_flush_stripe_to_raid(conf->log); | 
|  | if (release_inactive) { | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < batch_size; i++) | 
|  | handle_stripe(batch[i]); | 
|  | log_write_stripe_run(conf); | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | for (i = 0; i < batch_size; i++) { | 
|  | hash = batch[i]->hash_lock_index; | 
|  | __release_stripe(conf, batch[i], &temp_inactive_list[hash]); | 
|  | } | 
|  | return batch_size; | 
|  | } | 
|  |  | 
|  | static void raid5_do_work(struct work_struct *work) | 
|  | { | 
|  | struct r5worker *worker = container_of(work, struct r5worker, work); | 
|  | struct r5worker_group *group = worker->group; | 
|  | struct r5conf *conf = group->conf; | 
|  | struct mddev *mddev = conf->mddev; | 
|  | int group_id = group - conf->worker_groups; | 
|  | int handled; | 
|  | struct blk_plug plug; | 
|  |  | 
|  | pr_debug("+++ raid5worker active\n"); | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | handled = 0; | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | while (1) { | 
|  | int batch_size, released; | 
|  |  | 
|  | released = release_stripe_list(conf, worker->temp_inactive_list); | 
|  |  | 
|  | batch_size = handle_active_stripes(conf, group_id, worker, | 
|  | worker->temp_inactive_list); | 
|  | worker->working = false; | 
|  | if (!batch_size && !released) | 
|  | break; | 
|  | handled += batch_size; | 
|  | wait_event_lock_irq(mddev->sb_wait, | 
|  | !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags), | 
|  | conf->device_lock); | 
|  | } | 
|  | pr_debug("%d stripes handled\n", handled); | 
|  |  | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  |  | 
|  | flush_deferred_bios(conf); | 
|  |  | 
|  | r5l_flush_stripe_to_raid(conf->log); | 
|  |  | 
|  | async_tx_issue_pending_all(); | 
|  | blk_finish_plug(&plug); | 
|  |  | 
|  | pr_debug("--- raid5worker inactive\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is our raid5 kernel thread. | 
|  | * | 
|  | * We scan the hash table for stripes which can be handled now. | 
|  | * During the scan, completed stripes are saved for us by the interrupt | 
|  | * handler, so that they will not have to wait for our next wakeup. | 
|  | */ | 
|  | static void raid5d(struct md_thread *thread) | 
|  | { | 
|  | struct mddev *mddev = thread->mddev; | 
|  | struct r5conf *conf = mddev->private; | 
|  | int handled; | 
|  | struct blk_plug plug; | 
|  |  | 
|  | pr_debug("+++ raid5d active\n"); | 
|  |  | 
|  | md_check_recovery(mddev); | 
|  |  | 
|  | blk_start_plug(&plug); | 
|  | handled = 0; | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | while (1) { | 
|  | struct bio *bio; | 
|  | int batch_size, released; | 
|  | unsigned int offset; | 
|  |  | 
|  | released = release_stripe_list(conf, conf->temp_inactive_list); | 
|  | if (released) | 
|  | clear_bit(R5_DID_ALLOC, &conf->cache_state); | 
|  |  | 
|  | if ( | 
|  | !list_empty(&conf->bitmap_list)) { | 
|  | /* Now is a good time to flush some bitmap updates */ | 
|  | conf->seq_flush++; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | md_bitmap_unplug(mddev->bitmap); | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | conf->seq_write = conf->seq_flush; | 
|  | activate_bit_delay(conf, conf->temp_inactive_list); | 
|  | } | 
|  | raid5_activate_delayed(conf); | 
|  |  | 
|  | while ((bio = remove_bio_from_retry(conf, &offset))) { | 
|  | int ok; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | ok = retry_aligned_read(conf, bio, offset); | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | if (!ok) | 
|  | break; | 
|  | handled++; | 
|  | } | 
|  |  | 
|  | batch_size = handle_active_stripes(conf, ANY_GROUP, NULL, | 
|  | conf->temp_inactive_list); | 
|  | if (!batch_size && !released) | 
|  | break; | 
|  | handled += batch_size; | 
|  |  | 
|  | if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) { | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | md_check_recovery(mddev); | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | } | 
|  | } | 
|  | pr_debug("%d stripes handled\n", handled); | 
|  |  | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) && | 
|  | mutex_trylock(&conf->cache_size_mutex)) { | 
|  | grow_one_stripe(conf, __GFP_NOWARN); | 
|  | /* Set flag even if allocation failed.  This helps | 
|  | * slow down allocation requests when mem is short | 
|  | */ | 
|  | set_bit(R5_DID_ALLOC, &conf->cache_state); | 
|  | mutex_unlock(&conf->cache_size_mutex); | 
|  | } | 
|  |  | 
|  | flush_deferred_bios(conf); | 
|  |  | 
|  | r5l_flush_stripe_to_raid(conf->log); | 
|  |  | 
|  | async_tx_issue_pending_all(); | 
|  | blk_finish_plug(&plug); | 
|  |  | 
|  | pr_debug("--- raid5d inactive\n"); | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | raid5_show_stripe_cache_size(struct mddev *mddev, char *page) | 
|  | { | 
|  | struct r5conf *conf; | 
|  | int ret = 0; | 
|  | spin_lock(&mddev->lock); | 
|  | conf = mddev->private; | 
|  | if (conf) | 
|  | ret = sprintf(page, "%d\n", conf->min_nr_stripes); | 
|  | spin_unlock(&mddev->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int | 
|  | raid5_set_cache_size(struct mddev *mddev, int size) | 
|  | { | 
|  | int result = 0; | 
|  | struct r5conf *conf = mddev->private; | 
|  |  | 
|  | if (size <= 16 || size > 32768) | 
|  | return -EINVAL; | 
|  |  | 
|  | conf->min_nr_stripes = size; | 
|  | mutex_lock(&conf->cache_size_mutex); | 
|  | while (size < conf->max_nr_stripes && | 
|  | drop_one_stripe(conf)) | 
|  | ; | 
|  | mutex_unlock(&conf->cache_size_mutex); | 
|  |  | 
|  | md_allow_write(mddev); | 
|  |  | 
|  | mutex_lock(&conf->cache_size_mutex); | 
|  | while (size > conf->max_nr_stripes) | 
|  | if (!grow_one_stripe(conf, GFP_KERNEL)) { | 
|  | conf->min_nr_stripes = conf->max_nr_stripes; | 
|  | result = -ENOMEM; | 
|  | break; | 
|  | } | 
|  | mutex_unlock(&conf->cache_size_mutex); | 
|  |  | 
|  | return result; | 
|  | } | 
|  | EXPORT_SYMBOL(raid5_set_cache_size); | 
|  |  | 
|  | static ssize_t | 
|  | raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len) | 
|  | { | 
|  | struct r5conf *conf; | 
|  | unsigned long new; | 
|  | int err; | 
|  |  | 
|  | if (len >= PAGE_SIZE) | 
|  | return -EINVAL; | 
|  | if (kstrtoul(page, 10, &new)) | 
|  | return -EINVAL; | 
|  | err = mddev_lock(mddev); | 
|  | if (err) | 
|  | return err; | 
|  | conf = mddev->private; | 
|  | if (!conf) | 
|  | err = -ENODEV; | 
|  | else | 
|  | err = raid5_set_cache_size(mddev, new); | 
|  | mddev_unlock(mddev); | 
|  |  | 
|  | return err ?: len; | 
|  | } | 
|  |  | 
|  | static struct md_sysfs_entry | 
|  | raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR, | 
|  | raid5_show_stripe_cache_size, | 
|  | raid5_store_stripe_cache_size); | 
|  |  | 
|  | static ssize_t | 
|  | raid5_show_rmw_level(struct mddev  *mddev, char *page) | 
|  | { | 
|  | struct r5conf *conf = mddev->private; | 
|  | if (conf) | 
|  | return sprintf(page, "%d\n", conf->rmw_level); | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len) | 
|  | { | 
|  | struct r5conf *conf = mddev->private; | 
|  | unsigned long new; | 
|  |  | 
|  | if (!conf) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (len >= PAGE_SIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (kstrtoul(page, 10, &new)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (new != PARITY_DISABLE_RMW && | 
|  | new != PARITY_ENABLE_RMW && | 
|  | new != PARITY_PREFER_RMW) | 
|  | return -EINVAL; | 
|  |  | 
|  | conf->rmw_level = new; | 
|  | return len; | 
|  | } | 
|  |  | 
|  | static struct md_sysfs_entry | 
|  | raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR, | 
|  | raid5_show_rmw_level, | 
|  | raid5_store_rmw_level); | 
|  |  | 
|  |  | 
|  | static ssize_t | 
|  | raid5_show_preread_threshold(struct mddev *mddev, char *page) | 
|  | { | 
|  | struct r5conf *conf; | 
|  | int ret = 0; | 
|  | spin_lock(&mddev->lock); | 
|  | conf = mddev->private; | 
|  | if (conf) | 
|  | ret = sprintf(page, "%d\n", conf->bypass_threshold); | 
|  | spin_unlock(&mddev->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len) | 
|  | { | 
|  | struct r5conf *conf; | 
|  | unsigned long new; | 
|  | int err; | 
|  |  | 
|  | if (len >= PAGE_SIZE) | 
|  | return -EINVAL; | 
|  | if (kstrtoul(page, 10, &new)) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = mddev_lock(mddev); | 
|  | if (err) | 
|  | return err; | 
|  | conf = mddev->private; | 
|  | if (!conf) | 
|  | err = -ENODEV; | 
|  | else if (new > conf->min_nr_stripes) | 
|  | err = -EINVAL; | 
|  | else | 
|  | conf->bypass_threshold = new; | 
|  | mddev_unlock(mddev); | 
|  | return err ?: len; | 
|  | } | 
|  |  | 
|  | static struct md_sysfs_entry | 
|  | raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold, | 
|  | S_IRUGO | S_IWUSR, | 
|  | raid5_show_preread_threshold, | 
|  | raid5_store_preread_threshold); | 
|  |  | 
|  | static ssize_t | 
|  | raid5_show_skip_copy(struct mddev *mddev, char *page) | 
|  | { | 
|  | struct r5conf *conf; | 
|  | int ret = 0; | 
|  | spin_lock(&mddev->lock); | 
|  | conf = mddev->private; | 
|  | if (conf) | 
|  | ret = sprintf(page, "%d\n", conf->skip_copy); | 
|  | spin_unlock(&mddev->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len) | 
|  | { | 
|  | struct r5conf *conf; | 
|  | unsigned long new; | 
|  | int err; | 
|  |  | 
|  | if (len >= PAGE_SIZE) | 
|  | return -EINVAL; | 
|  | if (kstrtoul(page, 10, &new)) | 
|  | return -EINVAL; | 
|  | new = !!new; | 
|  |  | 
|  | err = mddev_lock(mddev); | 
|  | if (err) | 
|  | return err; | 
|  | conf = mddev->private; | 
|  | if (!conf) | 
|  | err = -ENODEV; | 
|  | else if (new != conf->skip_copy) { | 
|  | mddev_suspend(mddev); | 
|  | conf->skip_copy = new; | 
|  | if (new) | 
|  | mddev->queue->backing_dev_info->capabilities |= | 
|  | BDI_CAP_STABLE_WRITES; | 
|  | else | 
|  | mddev->queue->backing_dev_info->capabilities &= | 
|  | ~BDI_CAP_STABLE_WRITES; | 
|  | mddev_resume(mddev); | 
|  | } | 
|  | mddev_unlock(mddev); | 
|  | return err ?: len; | 
|  | } | 
|  |  | 
|  | static struct md_sysfs_entry | 
|  | raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR, | 
|  | raid5_show_skip_copy, | 
|  | raid5_store_skip_copy); | 
|  |  | 
|  | static ssize_t | 
|  | stripe_cache_active_show(struct mddev *mddev, char *page) | 
|  | { | 
|  | struct r5conf *conf = mddev->private; | 
|  | if (conf) | 
|  | return sprintf(page, "%d\n", atomic_read(&conf->active_stripes)); | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct md_sysfs_entry | 
|  | raid5_stripecache_active = __ATTR_RO(stripe_cache_active); | 
|  |  | 
|  | static ssize_t | 
|  | raid5_show_group_thread_cnt(struct mddev *mddev, char *page) | 
|  | { | 
|  | struct r5conf *conf; | 
|  | int ret = 0; | 
|  | spin_lock(&mddev->lock); | 
|  | conf = mddev->private; | 
|  | if (conf) | 
|  | ret = sprintf(page, "%d\n", conf->worker_cnt_per_group); | 
|  | spin_unlock(&mddev->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int alloc_thread_groups(struct r5conf *conf, int cnt, | 
|  | int *group_cnt, | 
|  | int *worker_cnt_per_group, | 
|  | struct r5worker_group **worker_groups); | 
|  | static ssize_t | 
|  | raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len) | 
|  | { | 
|  | struct r5conf *conf; | 
|  | unsigned int new; | 
|  | int err; | 
|  | struct r5worker_group *new_groups, *old_groups; | 
|  | int group_cnt, worker_cnt_per_group; | 
|  |  | 
|  | if (len >= PAGE_SIZE) | 
|  | return -EINVAL; | 
|  | if (kstrtouint(page, 10, &new)) | 
|  | return -EINVAL; | 
|  | /* 8192 should be big enough */ | 
|  | if (new > 8192) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = mddev_lock(mddev); | 
|  | if (err) | 
|  | return err; | 
|  | conf = mddev->private; | 
|  | if (!conf) | 
|  | err = -ENODEV; | 
|  | else if (new != conf->worker_cnt_per_group) { | 
|  | mddev_suspend(mddev); | 
|  |  | 
|  | old_groups = conf->worker_groups; | 
|  | if (old_groups) | 
|  | flush_workqueue(raid5_wq); | 
|  |  | 
|  | err = alloc_thread_groups(conf, new, | 
|  | &group_cnt, &worker_cnt_per_group, | 
|  | &new_groups); | 
|  | if (!err) { | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | conf->group_cnt = group_cnt; | 
|  | conf->worker_cnt_per_group = worker_cnt_per_group; | 
|  | conf->worker_groups = new_groups; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  |  | 
|  | if (old_groups) | 
|  | kfree(old_groups[0].workers); | 
|  | kfree(old_groups); | 
|  | } | 
|  | mddev_resume(mddev); | 
|  | } | 
|  | mddev_unlock(mddev); | 
|  |  | 
|  | return err ?: len; | 
|  | } | 
|  |  | 
|  | static struct md_sysfs_entry | 
|  | raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR, | 
|  | raid5_show_group_thread_cnt, | 
|  | raid5_store_group_thread_cnt); | 
|  |  | 
|  | static struct attribute *raid5_attrs[] =  { | 
|  | &raid5_stripecache_size.attr, | 
|  | &raid5_stripecache_active.attr, | 
|  | &raid5_preread_bypass_threshold.attr, | 
|  | &raid5_group_thread_cnt.attr, | 
|  | &raid5_skip_copy.attr, | 
|  | &raid5_rmw_level.attr, | 
|  | &r5c_journal_mode.attr, | 
|  | NULL, | 
|  | }; | 
|  | static struct attribute_group raid5_attrs_group = { | 
|  | .name = NULL, | 
|  | .attrs = raid5_attrs, | 
|  | }; | 
|  |  | 
|  | static int alloc_thread_groups(struct r5conf *conf, int cnt, | 
|  | int *group_cnt, | 
|  | int *worker_cnt_per_group, | 
|  | struct r5worker_group **worker_groups) | 
|  | { | 
|  | int i, j, k; | 
|  | ssize_t size; | 
|  | struct r5worker *workers; | 
|  |  | 
|  | *worker_cnt_per_group = cnt; | 
|  | if (cnt == 0) { | 
|  | *group_cnt = 0; | 
|  | *worker_groups = NULL; | 
|  | return 0; | 
|  | } | 
|  | *group_cnt = num_possible_nodes(); | 
|  | size = sizeof(struct r5worker) * cnt; | 
|  | workers = kcalloc(size, *group_cnt, GFP_NOIO); | 
|  | *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group), | 
|  | GFP_NOIO); | 
|  | if (!*worker_groups || !workers) { | 
|  | kfree(workers); | 
|  | kfree(*worker_groups); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < *group_cnt; i++) { | 
|  | struct r5worker_group *group; | 
|  |  | 
|  | group = &(*worker_groups)[i]; | 
|  | INIT_LIST_HEAD(&group->handle_list); | 
|  | INIT_LIST_HEAD(&group->loprio_list); | 
|  | group->conf = conf; | 
|  | group->workers = workers + i * cnt; | 
|  |  | 
|  | for (j = 0; j < cnt; j++) { | 
|  | struct r5worker *worker = group->workers + j; | 
|  | worker->group = group; | 
|  | INIT_WORK(&worker->work, raid5_do_work); | 
|  |  | 
|  | for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++) | 
|  | INIT_LIST_HEAD(worker->temp_inactive_list + k); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_thread_groups(struct r5conf *conf) | 
|  | { | 
|  | if (conf->worker_groups) | 
|  | kfree(conf->worker_groups[0].workers); | 
|  | kfree(conf->worker_groups); | 
|  | conf->worker_groups = NULL; | 
|  | } | 
|  |  | 
|  | static sector_t | 
|  | raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks) | 
|  | { | 
|  | struct r5conf *conf = mddev->private; | 
|  |  | 
|  | if (!sectors) | 
|  | sectors = mddev->dev_sectors; | 
|  | if (!raid_disks) | 
|  | /* size is defined by the smallest of previous and new size */ | 
|  | raid_disks = min(conf->raid_disks, conf->previous_raid_disks); | 
|  |  | 
|  | sectors &= ~((sector_t)conf->chunk_sectors - 1); | 
|  | sectors &= ~((sector_t)conf->prev_chunk_sectors - 1); | 
|  | return sectors * (raid_disks - conf->max_degraded); | 
|  | } | 
|  |  | 
|  | static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) | 
|  | { | 
|  | safe_put_page(percpu->spare_page); | 
|  | if (percpu->scribble) | 
|  | flex_array_free(percpu->scribble); | 
|  | percpu->spare_page = NULL; | 
|  | percpu->scribble = NULL; | 
|  | } | 
|  |  | 
|  | static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu) | 
|  | { | 
|  | if (conf->level == 6 && !percpu->spare_page) | 
|  | percpu->spare_page = alloc_page(GFP_KERNEL); | 
|  | if (!percpu->scribble) | 
|  | percpu->scribble = scribble_alloc(max(conf->raid_disks, | 
|  | conf->previous_raid_disks), | 
|  | max(conf->chunk_sectors, | 
|  | conf->prev_chunk_sectors) | 
|  | / STRIPE_SECTORS, | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) { | 
|  | free_scratch_buffer(conf, percpu); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node) | 
|  | { | 
|  | struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); | 
|  |  | 
|  | free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void raid5_free_percpu(struct r5conf *conf) | 
|  | { | 
|  | if (!conf->percpu) | 
|  | return; | 
|  |  | 
|  | cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); | 
|  | free_percpu(conf->percpu); | 
|  | } | 
|  |  | 
|  | static void free_conf(struct r5conf *conf) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | log_exit(conf); | 
|  |  | 
|  | unregister_shrinker(&conf->shrinker); | 
|  | free_thread_groups(conf); | 
|  | shrink_stripes(conf); | 
|  | raid5_free_percpu(conf); | 
|  | for (i = 0; i < conf->pool_size; i++) | 
|  | if (conf->disks[i].extra_page) | 
|  | put_page(conf->disks[i].extra_page); | 
|  | kfree(conf->disks); | 
|  | bioset_exit(&conf->bio_split); | 
|  | kfree(conf->stripe_hashtbl); | 
|  | kfree(conf->pending_data); | 
|  | kfree(conf); | 
|  | } | 
|  |  | 
|  | static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node) | 
|  | { | 
|  | struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node); | 
|  | struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu); | 
|  |  | 
|  | if (alloc_scratch_buffer(conf, percpu)) { | 
|  | pr_warn("%s: failed memory allocation for cpu%u\n", | 
|  | __func__, cpu); | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int raid5_alloc_percpu(struct r5conf *conf) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | conf->percpu = alloc_percpu(struct raid5_percpu); | 
|  | if (!conf->percpu) | 
|  | return -ENOMEM; | 
|  |  | 
|  | err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node); | 
|  | if (!err) { | 
|  | conf->scribble_disks = max(conf->raid_disks, | 
|  | conf->previous_raid_disks); | 
|  | conf->scribble_sectors = max(conf->chunk_sectors, | 
|  | conf->prev_chunk_sectors); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static unsigned long raid5_cache_scan(struct shrinker *shrink, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); | 
|  | unsigned long ret = SHRINK_STOP; | 
|  |  | 
|  | if (mutex_trylock(&conf->cache_size_mutex)) { | 
|  | ret= 0; | 
|  | while (ret < sc->nr_to_scan && | 
|  | conf->max_nr_stripes > conf->min_nr_stripes) { | 
|  | if (drop_one_stripe(conf) == 0) { | 
|  | ret = SHRINK_STOP; | 
|  | break; | 
|  | } | 
|  | ret++; | 
|  | } | 
|  | mutex_unlock(&conf->cache_size_mutex); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static unsigned long raid5_cache_count(struct shrinker *shrink, | 
|  | struct shrink_control *sc) | 
|  | { | 
|  | struct r5conf *conf = container_of(shrink, struct r5conf, shrinker); | 
|  |  | 
|  | if (conf->max_nr_stripes < conf->min_nr_stripes) | 
|  | /* unlikely, but not impossible */ | 
|  | return 0; | 
|  | return conf->max_nr_stripes - conf->min_nr_stripes; | 
|  | } | 
|  |  | 
|  | static struct r5conf *setup_conf(struct mddev *mddev) | 
|  | { | 
|  | struct r5conf *conf; | 
|  | int raid_disk, memory, max_disks; | 
|  | struct md_rdev *rdev; | 
|  | struct disk_info *disk; | 
|  | char pers_name[6]; | 
|  | int i; | 
|  | int group_cnt, worker_cnt_per_group; | 
|  | struct r5worker_group *new_group; | 
|  | int ret; | 
|  |  | 
|  | if (mddev->new_level != 5 | 
|  | && mddev->new_level != 4 | 
|  | && mddev->new_level != 6) { | 
|  | pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n", | 
|  | mdname(mddev), mddev->new_level); | 
|  | return ERR_PTR(-EIO); | 
|  | } | 
|  | if ((mddev->new_level == 5 | 
|  | && !algorithm_valid_raid5(mddev->new_layout)) || | 
|  | (mddev->new_level == 6 | 
|  | && !algorithm_valid_raid6(mddev->new_layout))) { | 
|  | pr_warn("md/raid:%s: layout %d not supported\n", | 
|  | mdname(mddev), mddev->new_layout); | 
|  | return ERR_PTR(-EIO); | 
|  | } | 
|  | if (mddev->new_level == 6 && mddev->raid_disks < 4) { | 
|  | pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n", | 
|  | mdname(mddev), mddev->raid_disks); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | if (!mddev->new_chunk_sectors || | 
|  | (mddev->new_chunk_sectors << 9) % PAGE_SIZE || | 
|  | !is_power_of_2(mddev->new_chunk_sectors)) { | 
|  | pr_warn("md/raid:%s: invalid chunk size %d\n", | 
|  | mdname(mddev), mddev->new_chunk_sectors << 9); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL); | 
|  | if (conf == NULL) | 
|  | goto abort; | 
|  | INIT_LIST_HEAD(&conf->free_list); | 
|  | INIT_LIST_HEAD(&conf->pending_list); | 
|  | conf->pending_data = kcalloc(PENDING_IO_MAX, | 
|  | sizeof(struct r5pending_data), | 
|  | GFP_KERNEL); | 
|  | if (!conf->pending_data) | 
|  | goto abort; | 
|  | for (i = 0; i < PENDING_IO_MAX; i++) | 
|  | list_add(&conf->pending_data[i].sibling, &conf->free_list); | 
|  | /* Don't enable multi-threading by default*/ | 
|  | if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group, | 
|  | &new_group)) { | 
|  | conf->group_cnt = group_cnt; | 
|  | conf->worker_cnt_per_group = worker_cnt_per_group; | 
|  | conf->worker_groups = new_group; | 
|  | } else | 
|  | goto abort; | 
|  | spin_lock_init(&conf->device_lock); | 
|  | seqcount_init(&conf->gen_lock); | 
|  | mutex_init(&conf->cache_size_mutex); | 
|  | init_waitqueue_head(&conf->wait_for_quiescent); | 
|  | init_waitqueue_head(&conf->wait_for_stripe); | 
|  | init_waitqueue_head(&conf->wait_for_overlap); | 
|  | INIT_LIST_HEAD(&conf->handle_list); | 
|  | INIT_LIST_HEAD(&conf->loprio_list); | 
|  | INIT_LIST_HEAD(&conf->hold_list); | 
|  | INIT_LIST_HEAD(&conf->delayed_list); | 
|  | INIT_LIST_HEAD(&conf->bitmap_list); | 
|  | init_llist_head(&conf->released_stripes); | 
|  | atomic_set(&conf->active_stripes, 0); | 
|  | atomic_set(&conf->preread_active_stripes, 0); | 
|  | atomic_set(&conf->active_aligned_reads, 0); | 
|  | spin_lock_init(&conf->pending_bios_lock); | 
|  | conf->batch_bio_dispatch = true; | 
|  | rdev_for_each(rdev, mddev) { | 
|  | if (test_bit(Journal, &rdev->flags)) | 
|  | continue; | 
|  | if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) { | 
|  | conf->batch_bio_dispatch = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | conf->bypass_threshold = BYPASS_THRESHOLD; | 
|  | conf->recovery_disabled = mddev->recovery_disabled - 1; | 
|  |  | 
|  | conf->raid_disks = mddev->raid_disks; | 
|  | if (mddev->reshape_position == MaxSector) | 
|  | conf->previous_raid_disks = mddev->raid_disks; | 
|  | else | 
|  | conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks; | 
|  | max_disks = max(conf->raid_disks, conf->previous_raid_disks); | 
|  |  | 
|  | conf->disks = kcalloc(max_disks, sizeof(struct disk_info), | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if (!conf->disks) | 
|  | goto abort; | 
|  |  | 
|  | for (i = 0; i < max_disks; i++) { | 
|  | conf->disks[i].extra_page = alloc_page(GFP_KERNEL); | 
|  | if (!conf->disks[i].extra_page) | 
|  | goto abort; | 
|  | } | 
|  |  | 
|  | ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0); | 
|  | if (ret) | 
|  | goto abort; | 
|  | conf->mddev = mddev; | 
|  |  | 
|  | if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL) | 
|  | goto abort; | 
|  |  | 
|  | /* We init hash_locks[0] separately to that it can be used | 
|  | * as the reference lock in the spin_lock_nest_lock() call | 
|  | * in lock_all_device_hash_locks_irq in order to convince | 
|  | * lockdep that we know what we are doing. | 
|  | */ | 
|  | spin_lock_init(conf->hash_locks); | 
|  | for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++) | 
|  | spin_lock_init(conf->hash_locks + i); | 
|  |  | 
|  | for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) | 
|  | INIT_LIST_HEAD(conf->inactive_list + i); | 
|  |  | 
|  | for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) | 
|  | INIT_LIST_HEAD(conf->temp_inactive_list + i); | 
|  |  | 
|  | atomic_set(&conf->r5c_cached_full_stripes, 0); | 
|  | INIT_LIST_HEAD(&conf->r5c_full_stripe_list); | 
|  | atomic_set(&conf->r5c_cached_partial_stripes, 0); | 
|  | INIT_LIST_HEAD(&conf->r5c_partial_stripe_list); | 
|  | atomic_set(&conf->r5c_flushing_full_stripes, 0); | 
|  | atomic_set(&conf->r5c_flushing_partial_stripes, 0); | 
|  |  | 
|  | conf->level = mddev->new_level; | 
|  | conf->chunk_sectors = mddev->new_chunk_sectors; | 
|  | if (raid5_alloc_percpu(conf) != 0) | 
|  | goto abort; | 
|  |  | 
|  | pr_debug("raid456: run(%s) called.\n", mdname(mddev)); | 
|  |  | 
|  | rdev_for_each(rdev, mddev) { | 
|  | raid_disk = rdev->raid_disk; | 
|  | if (raid_disk >= max_disks | 
|  | || raid_disk < 0 || test_bit(Journal, &rdev->flags)) | 
|  | continue; | 
|  | disk = conf->disks + raid_disk; | 
|  |  | 
|  | if (test_bit(Replacement, &rdev->flags)) { | 
|  | if (disk->replacement) | 
|  | goto abort; | 
|  | disk->replacement = rdev; | 
|  | } else { | 
|  | if (disk->rdev) | 
|  | goto abort; | 
|  | disk->rdev = rdev; | 
|  | } | 
|  |  | 
|  | if (test_bit(In_sync, &rdev->flags)) { | 
|  | char b[BDEVNAME_SIZE]; | 
|  | pr_info("md/raid:%s: device %s operational as raid disk %d\n", | 
|  | mdname(mddev), bdevname(rdev->bdev, b), raid_disk); | 
|  | } else if (rdev->saved_raid_disk != raid_disk) | 
|  | /* Cannot rely on bitmap to complete recovery */ | 
|  | conf->fullsync = 1; | 
|  | } | 
|  |  | 
|  | conf->level = mddev->new_level; | 
|  | if (conf->level == 6) { | 
|  | conf->max_degraded = 2; | 
|  | if (raid6_call.xor_syndrome) | 
|  | conf->rmw_level = PARITY_ENABLE_RMW; | 
|  | else | 
|  | conf->rmw_level = PARITY_DISABLE_RMW; | 
|  | } else { | 
|  | conf->max_degraded = 1; | 
|  | conf->rmw_level = PARITY_ENABLE_RMW; | 
|  | } | 
|  | conf->algorithm = mddev->new_layout; | 
|  | conf->reshape_progress = mddev->reshape_position; | 
|  | if (conf->reshape_progress != MaxSector) { | 
|  | conf->prev_chunk_sectors = mddev->chunk_sectors; | 
|  | conf->prev_algo = mddev->layout; | 
|  | } else { | 
|  | conf->prev_chunk_sectors = conf->chunk_sectors; | 
|  | conf->prev_algo = conf->algorithm; | 
|  | } | 
|  |  | 
|  | conf->min_nr_stripes = NR_STRIPES; | 
|  | if (mddev->reshape_position != MaxSector) { | 
|  | int stripes = max_t(int, | 
|  | ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4, | 
|  | ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4); | 
|  | conf->min_nr_stripes = max(NR_STRIPES, stripes); | 
|  | if (conf->min_nr_stripes != NR_STRIPES) | 
|  | pr_info("md/raid:%s: force stripe size %d for reshape\n", | 
|  | mdname(mddev), conf->min_nr_stripes); | 
|  | } | 
|  | memory = conf->min_nr_stripes * (sizeof(struct stripe_head) + | 
|  | max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; | 
|  | atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS); | 
|  | if (grow_stripes(conf, conf->min_nr_stripes)) { | 
|  | pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n", | 
|  | mdname(mddev), memory); | 
|  | goto abort; | 
|  | } else | 
|  | pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory); | 
|  | /* | 
|  | * Losing a stripe head costs more than the time to refill it, | 
|  | * it reduces the queue depth and so can hurt throughput. | 
|  | * So set it rather large, scaled by number of devices. | 
|  | */ | 
|  | conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4; | 
|  | conf->shrinker.scan_objects = raid5_cache_scan; | 
|  | conf->shrinker.count_objects = raid5_cache_count; | 
|  | conf->shrinker.batch = 128; | 
|  | conf->shrinker.flags = 0; | 
|  | if (register_shrinker(&conf->shrinker)) { | 
|  | pr_warn("md/raid:%s: couldn't register shrinker.\n", | 
|  | mdname(mddev)); | 
|  | goto abort; | 
|  | } | 
|  |  | 
|  | sprintf(pers_name, "raid%d", mddev->new_level); | 
|  | conf->thread = md_register_thread(raid5d, mddev, pers_name); | 
|  | if (!conf->thread) { | 
|  | pr_warn("md/raid:%s: couldn't allocate thread.\n", | 
|  | mdname(mddev)); | 
|  | goto abort; | 
|  | } | 
|  |  | 
|  | return conf; | 
|  |  | 
|  | abort: | 
|  | if (conf) { | 
|  | free_conf(conf); | 
|  | return ERR_PTR(-EIO); | 
|  | } else | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded) | 
|  | { | 
|  | switch (algo) { | 
|  | case ALGORITHM_PARITY_0: | 
|  | if (raid_disk < max_degraded) | 
|  | return 1; | 
|  | break; | 
|  | case ALGORITHM_PARITY_N: | 
|  | if (raid_disk >= raid_disks - max_degraded) | 
|  | return 1; | 
|  | break; | 
|  | case ALGORITHM_PARITY_0_6: | 
|  | if (raid_disk == 0 || | 
|  | raid_disk == raid_disks - 1) | 
|  | return 1; | 
|  | break; | 
|  | case ALGORITHM_LEFT_ASYMMETRIC_6: | 
|  | case ALGORITHM_RIGHT_ASYMMETRIC_6: | 
|  | case ALGORITHM_LEFT_SYMMETRIC_6: | 
|  | case ALGORITHM_RIGHT_SYMMETRIC_6: | 
|  | if (raid_disk == raid_disks - 1) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int raid5_run(struct mddev *mddev) | 
|  | { | 
|  | struct r5conf *conf; | 
|  | int working_disks = 0; | 
|  | int dirty_parity_disks = 0; | 
|  | struct md_rdev *rdev; | 
|  | struct md_rdev *journal_dev = NULL; | 
|  | sector_t reshape_offset = 0; | 
|  | int i; | 
|  | long long min_offset_diff = 0; | 
|  | int first = 1; | 
|  |  | 
|  | if (mddev_init_writes_pending(mddev) < 0) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (mddev->recovery_cp != MaxSector) | 
|  | pr_notice("md/raid:%s: not clean -- starting background reconstruction\n", | 
|  | mdname(mddev)); | 
|  |  | 
|  | rdev_for_each(rdev, mddev) { | 
|  | long long diff; | 
|  |  | 
|  | if (test_bit(Journal, &rdev->flags)) { | 
|  | journal_dev = rdev; | 
|  | continue; | 
|  | } | 
|  | if (rdev->raid_disk < 0) | 
|  | continue; | 
|  | diff = (rdev->new_data_offset - rdev->data_offset); | 
|  | if (first) { | 
|  | min_offset_diff = diff; | 
|  | first = 0; | 
|  | } else if (mddev->reshape_backwards && | 
|  | diff < min_offset_diff) | 
|  | min_offset_diff = diff; | 
|  | else if (!mddev->reshape_backwards && | 
|  | diff > min_offset_diff) | 
|  | min_offset_diff = diff; | 
|  | } | 
|  |  | 
|  | if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) && | 
|  | (mddev->bitmap_info.offset || mddev->bitmap_info.file)) { | 
|  | pr_notice("md/raid:%s: array cannot have both journal and bitmap\n", | 
|  | mdname(mddev)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (mddev->reshape_position != MaxSector) { | 
|  | /* Check that we can continue the reshape. | 
|  | * Difficulties arise if the stripe we would write to | 
|  | * next is at or after the stripe we would read from next. | 
|  | * For a reshape that changes the number of devices, this | 
|  | * is only possible for a very short time, and mdadm makes | 
|  | * sure that time appears to have past before assembling | 
|  | * the array.  So we fail if that time hasn't passed. | 
|  | * For a reshape that keeps the number of devices the same | 
|  | * mdadm must be monitoring the reshape can keeping the | 
|  | * critical areas read-only and backed up.  It will start | 
|  | * the array in read-only mode, so we check for that. | 
|  | */ | 
|  | sector_t here_new, here_old; | 
|  | int old_disks; | 
|  | int max_degraded = (mddev->level == 6 ? 2 : 1); | 
|  | int chunk_sectors; | 
|  | int new_data_disks; | 
|  |  | 
|  | if (journal_dev) { | 
|  | pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n", | 
|  | mdname(mddev)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (mddev->new_level != mddev->level) { | 
|  | pr_warn("md/raid:%s: unsupported reshape required - aborting.\n", | 
|  | mdname(mddev)); | 
|  | return -EINVAL; | 
|  | } | 
|  | old_disks = mddev->raid_disks - mddev->delta_disks; | 
|  | /* reshape_position must be on a new-stripe boundary, and one | 
|  | * further up in new geometry must map after here in old | 
|  | * geometry. | 
|  | * If the chunk sizes are different, then as we perform reshape | 
|  | * in units of the largest of the two, reshape_position needs | 
|  | * be a multiple of the largest chunk size times new data disks. | 
|  | */ | 
|  | here_new = mddev->reshape_position; | 
|  | chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors); | 
|  | new_data_disks = mddev->raid_disks - max_degraded; | 
|  | if (sector_div(here_new, chunk_sectors * new_data_disks)) { | 
|  | pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n", | 
|  | mdname(mddev)); | 
|  | return -EINVAL; | 
|  | } | 
|  | reshape_offset = here_new * chunk_sectors; | 
|  | /* here_new is the stripe we will write to */ | 
|  | here_old = mddev->reshape_position; | 
|  | sector_div(here_old, chunk_sectors * (old_disks-max_degraded)); | 
|  | /* here_old is the first stripe that we might need to read | 
|  | * from */ | 
|  | if (mddev->delta_disks == 0) { | 
|  | /* We cannot be sure it is safe to start an in-place | 
|  | * reshape.  It is only safe if user-space is monitoring | 
|  | * and taking constant backups. | 
|  | * mdadm always starts a situation like this in | 
|  | * readonly mode so it can take control before | 
|  | * allowing any writes.  So just check for that. | 
|  | */ | 
|  | if (abs(min_offset_diff) >= mddev->chunk_sectors && | 
|  | abs(min_offset_diff) >= mddev->new_chunk_sectors) | 
|  | /* not really in-place - so OK */; | 
|  | else if (mddev->ro == 0) { | 
|  | pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n", | 
|  | mdname(mddev)); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else if (mddev->reshape_backwards | 
|  | ? (here_new * chunk_sectors + min_offset_diff <= | 
|  | here_old * chunk_sectors) | 
|  | : (here_new * chunk_sectors >= | 
|  | here_old * chunk_sectors + (-min_offset_diff))) { | 
|  | /* Reading from the same stripe as writing to - bad */ | 
|  | pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n", | 
|  | mdname(mddev)); | 
|  | return -EINVAL; | 
|  | } | 
|  | pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev)); | 
|  | /* OK, we should be able to continue; */ | 
|  | } else { | 
|  | BUG_ON(mddev->level != mddev->new_level); | 
|  | BUG_ON(mddev->layout != mddev->new_layout); | 
|  | BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors); | 
|  | BUG_ON(mddev->delta_disks != 0); | 
|  | } | 
|  |  | 
|  | if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && | 
|  | test_bit(MD_HAS_PPL, &mddev->flags)) { | 
|  | pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n", | 
|  | mdname(mddev)); | 
|  | clear_bit(MD_HAS_PPL, &mddev->flags); | 
|  | clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags); | 
|  | } | 
|  |  | 
|  | if (mddev->private == NULL) | 
|  | conf = setup_conf(mddev); | 
|  | else | 
|  | conf = mddev->private; | 
|  |  | 
|  | if (IS_ERR(conf)) | 
|  | return PTR_ERR(conf); | 
|  |  | 
|  | if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) { | 
|  | if (!journal_dev) { | 
|  | pr_warn("md/raid:%s: journal disk is missing, force array readonly\n", | 
|  | mdname(mddev)); | 
|  | mddev->ro = 1; | 
|  | set_disk_ro(mddev->gendisk, 1); | 
|  | } else if (mddev->recovery_cp == MaxSector) | 
|  | set_bit(MD_JOURNAL_CLEAN, &mddev->flags); | 
|  | } | 
|  |  | 
|  | conf->min_offset_diff = min_offset_diff; | 
|  | mddev->thread = conf->thread; | 
|  | conf->thread = NULL; | 
|  | mddev->private = conf; | 
|  |  | 
|  | for (i = 0; i < conf->raid_disks && conf->previous_raid_disks; | 
|  | i++) { | 
|  | rdev = conf->disks[i].rdev; | 
|  | if (!rdev && conf->disks[i].replacement) { | 
|  | /* The replacement is all we have yet */ | 
|  | rdev = conf->disks[i].replacement; | 
|  | conf->disks[i].replacement = NULL; | 
|  | clear_bit(Replacement, &rdev->flags); | 
|  | conf->disks[i].rdev = rdev; | 
|  | } | 
|  | if (!rdev) | 
|  | continue; | 
|  | if (conf->disks[i].replacement && | 
|  | conf->reshape_progress != MaxSector) { | 
|  | /* replacements and reshape simply do not mix. */ | 
|  | pr_warn("md: cannot handle concurrent replacement and reshape.\n"); | 
|  | goto abort; | 
|  | } | 
|  | if (test_bit(In_sync, &rdev->flags)) { | 
|  | working_disks++; | 
|  | continue; | 
|  | } | 
|  | /* This disc is not fully in-sync.  However if it | 
|  | * just stored parity (beyond the recovery_offset), | 
|  | * when we don't need to be concerned about the | 
|  | * array being dirty. | 
|  | * When reshape goes 'backwards', we never have | 
|  | * partially completed devices, so we only need | 
|  | * to worry about reshape going forwards. | 
|  | */ | 
|  | /* Hack because v0.91 doesn't store recovery_offset properly. */ | 
|  | if (mddev->major_version == 0 && | 
|  | mddev->minor_version > 90) | 
|  | rdev->recovery_offset = reshape_offset; | 
|  |  | 
|  | if (rdev->recovery_offset < reshape_offset) { | 
|  | /* We need to check old and new layout */ | 
|  | if (!only_parity(rdev->raid_disk, | 
|  | conf->algorithm, | 
|  | conf->raid_disks, | 
|  | conf->max_degraded)) | 
|  | continue; | 
|  | } | 
|  | if (!only_parity(rdev->raid_disk, | 
|  | conf->prev_algo, | 
|  | conf->previous_raid_disks, | 
|  | conf->max_degraded)) | 
|  | continue; | 
|  | dirty_parity_disks++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 0 for a fully functional array, 1 or 2 for a degraded array. | 
|  | */ | 
|  | mddev->degraded = raid5_calc_degraded(conf); | 
|  |  | 
|  | if (has_failed(conf)) { | 
|  | pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n", | 
|  | mdname(mddev), mddev->degraded, conf->raid_disks); | 
|  | goto abort; | 
|  | } | 
|  |  | 
|  | /* device size must be a multiple of chunk size */ | 
|  | mddev->dev_sectors &= ~(mddev->chunk_sectors - 1); | 
|  | mddev->resync_max_sectors = mddev->dev_sectors; | 
|  |  | 
|  | if (mddev->degraded > dirty_parity_disks && | 
|  | mddev->recovery_cp != MaxSector) { | 
|  | if (test_bit(MD_HAS_PPL, &mddev->flags)) | 
|  | pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n", | 
|  | mdname(mddev)); | 
|  | else if (mddev->ok_start_degraded) | 
|  | pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n", | 
|  | mdname(mddev)); | 
|  | else { | 
|  | pr_crit("md/raid:%s: cannot start dirty degraded array.\n", | 
|  | mdname(mddev)); | 
|  | goto abort; | 
|  | } | 
|  | } | 
|  |  | 
|  | pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n", | 
|  | mdname(mddev), conf->level, | 
|  | mddev->raid_disks-mddev->degraded, mddev->raid_disks, | 
|  | mddev->new_layout); | 
|  |  | 
|  | print_raid5_conf(conf); | 
|  |  | 
|  | if (conf->reshape_progress != MaxSector) { | 
|  | conf->reshape_safe = conf->reshape_progress; | 
|  | atomic_set(&conf->reshape_stripes, 0); | 
|  | clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); | 
|  | clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); | 
|  | set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); | 
|  | set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); | 
|  | mddev->sync_thread = md_register_thread(md_do_sync, mddev, | 
|  | "reshape"); | 
|  | if (!mddev->sync_thread) | 
|  | goto abort; | 
|  | } | 
|  |  | 
|  | /* Ok, everything is just fine now */ | 
|  | if (mddev->to_remove == &raid5_attrs_group) | 
|  | mddev->to_remove = NULL; | 
|  | else if (mddev->kobj.sd && | 
|  | sysfs_create_group(&mddev->kobj, &raid5_attrs_group)) | 
|  | pr_warn("raid5: failed to create sysfs attributes for %s\n", | 
|  | mdname(mddev)); | 
|  | md_set_array_sectors(mddev, raid5_size(mddev, 0, 0)); | 
|  |  | 
|  | if (mddev->queue) { | 
|  | int chunk_size; | 
|  | /* read-ahead size must cover two whole stripes, which | 
|  | * is 2 * (datadisks) * chunksize where 'n' is the | 
|  | * number of raid devices | 
|  | */ | 
|  | int data_disks = conf->previous_raid_disks - conf->max_degraded; | 
|  | int stripe = data_disks * | 
|  | ((mddev->chunk_sectors << 9) / PAGE_SIZE); | 
|  | if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe) | 
|  | mddev->queue->backing_dev_info->ra_pages = 2 * stripe; | 
|  |  | 
|  | chunk_size = mddev->chunk_sectors << 9; | 
|  | blk_queue_io_min(mddev->queue, chunk_size); | 
|  | blk_queue_io_opt(mddev->queue, chunk_size * | 
|  | (conf->raid_disks - conf->max_degraded)); | 
|  | mddev->queue->limits.raid_partial_stripes_expensive = 1; | 
|  | /* | 
|  | * We can only discard a whole stripe. It doesn't make sense to | 
|  | * discard data disk but write parity disk | 
|  | */ | 
|  | stripe = stripe * PAGE_SIZE; | 
|  | /* Round up to power of 2, as discard handling | 
|  | * currently assumes that */ | 
|  | while ((stripe-1) & stripe) | 
|  | stripe = (stripe | (stripe-1)) + 1; | 
|  | mddev->queue->limits.discard_alignment = stripe; | 
|  | mddev->queue->limits.discard_granularity = stripe; | 
|  |  | 
|  | blk_queue_max_write_same_sectors(mddev->queue, 0); | 
|  | blk_queue_max_write_zeroes_sectors(mddev->queue, 0); | 
|  |  | 
|  | rdev_for_each(rdev, mddev) { | 
|  | disk_stack_limits(mddev->gendisk, rdev->bdev, | 
|  | rdev->data_offset << 9); | 
|  | disk_stack_limits(mddev->gendisk, rdev->bdev, | 
|  | rdev->new_data_offset << 9); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * zeroing is required, otherwise data | 
|  | * could be lost. Consider a scenario: discard a stripe | 
|  | * (the stripe could be inconsistent if | 
|  | * discard_zeroes_data is 0); write one disk of the | 
|  | * stripe (the stripe could be inconsistent again | 
|  | * depending on which disks are used to calculate | 
|  | * parity); the disk is broken; The stripe data of this | 
|  | * disk is lost. | 
|  | * | 
|  | * We only allow DISCARD if the sysadmin has confirmed that | 
|  | * only safe devices are in use by setting a module parameter. | 
|  | * A better idea might be to turn DISCARD into WRITE_ZEROES | 
|  | * requests, as that is required to be safe. | 
|  | */ | 
|  | if (devices_handle_discard_safely && | 
|  | mddev->queue->limits.max_discard_sectors >= (stripe >> 9) && | 
|  | mddev->queue->limits.discard_granularity >= stripe) | 
|  | blk_queue_flag_set(QUEUE_FLAG_DISCARD, | 
|  | mddev->queue); | 
|  | else | 
|  | blk_queue_flag_clear(QUEUE_FLAG_DISCARD, | 
|  | mddev->queue); | 
|  |  | 
|  | blk_queue_max_hw_sectors(mddev->queue, UINT_MAX); | 
|  | } | 
|  |  | 
|  | if (log_init(conf, journal_dev, raid5_has_ppl(conf))) | 
|  | goto abort; | 
|  |  | 
|  | return 0; | 
|  | abort: | 
|  | md_unregister_thread(&mddev->thread); | 
|  | print_raid5_conf(conf); | 
|  | free_conf(conf); | 
|  | mddev->private = NULL; | 
|  | pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev)); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | static void raid5_free(struct mddev *mddev, void *priv) | 
|  | { | 
|  | struct r5conf *conf = priv; | 
|  |  | 
|  | free_conf(conf); | 
|  | mddev->to_remove = &raid5_attrs_group; | 
|  | } | 
|  |  | 
|  | static void raid5_status(struct seq_file *seq, struct mddev *mddev) | 
|  | { | 
|  | struct r5conf *conf = mddev->private; | 
|  | int i; | 
|  |  | 
|  | seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level, | 
|  | conf->chunk_sectors / 2, mddev->layout); | 
|  | seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded); | 
|  | rcu_read_lock(); | 
|  | for (i = 0; i < conf->raid_disks; i++) { | 
|  | struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev); | 
|  | seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_"); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | seq_printf (seq, "]"); | 
|  | } | 
|  |  | 
|  | static void print_raid5_conf (struct r5conf *conf) | 
|  | { | 
|  | int i; | 
|  | struct disk_info *tmp; | 
|  |  | 
|  | pr_debug("RAID conf printout:\n"); | 
|  | if (!conf) { | 
|  | pr_debug("(conf==NULL)\n"); | 
|  | return; | 
|  | } | 
|  | pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level, | 
|  | conf->raid_disks, | 
|  | conf->raid_disks - conf->mddev->degraded); | 
|  |  | 
|  | for (i = 0; i < conf->raid_disks; i++) { | 
|  | char b[BDEVNAME_SIZE]; | 
|  | tmp = conf->disks + i; | 
|  | if (tmp->rdev) | 
|  | pr_debug(" disk %d, o:%d, dev:%s\n", | 
|  | i, !test_bit(Faulty, &tmp->rdev->flags), | 
|  | bdevname(tmp->rdev->bdev, b)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int raid5_spare_active(struct mddev *mddev) | 
|  | { | 
|  | int i; | 
|  | struct r5conf *conf = mddev->private; | 
|  | struct disk_info *tmp; | 
|  | int count = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | for (i = 0; i < conf->raid_disks; i++) { | 
|  | tmp = conf->disks + i; | 
|  | if (tmp->replacement | 
|  | && tmp->replacement->recovery_offset == MaxSector | 
|  | && !test_bit(Faulty, &tmp->replacement->flags) | 
|  | && !test_and_set_bit(In_sync, &tmp->replacement->flags)) { | 
|  | /* Replacement has just become active. */ | 
|  | if (!tmp->rdev | 
|  | || !test_and_clear_bit(In_sync, &tmp->rdev->flags)) | 
|  | count++; | 
|  | if (tmp->rdev) { | 
|  | /* Replaced device not technically faulty, | 
|  | * but we need to be sure it gets removed | 
|  | * and never re-added. | 
|  | */ | 
|  | set_bit(Faulty, &tmp->rdev->flags); | 
|  | sysfs_notify_dirent_safe( | 
|  | tmp->rdev->sysfs_state); | 
|  | } | 
|  | sysfs_notify_dirent_safe(tmp->replacement->sysfs_state); | 
|  | } else if (tmp->rdev | 
|  | && tmp->rdev->recovery_offset == MaxSector | 
|  | && !test_bit(Faulty, &tmp->rdev->flags) | 
|  | && !test_and_set_bit(In_sync, &tmp->rdev->flags)) { | 
|  | count++; | 
|  | sysfs_notify_dirent_safe(tmp->rdev->sysfs_state); | 
|  | } | 
|  | } | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | mddev->degraded = raid5_calc_degraded(conf); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | print_raid5_conf(conf); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev) | 
|  | { | 
|  | struct r5conf *conf = mddev->private; | 
|  | int err = 0; | 
|  | int number = rdev->raid_disk; | 
|  | struct md_rdev **rdevp; | 
|  | struct disk_info *p = conf->disks + number; | 
|  |  | 
|  | print_raid5_conf(conf); | 
|  | if (test_bit(Journal, &rdev->flags) && conf->log) { | 
|  | /* | 
|  | * we can't wait pending write here, as this is called in | 
|  | * raid5d, wait will deadlock. | 
|  | * neilb: there is no locking about new writes here, | 
|  | * so this cannot be safe. | 
|  | */ | 
|  | if (atomic_read(&conf->active_stripes) || | 
|  | atomic_read(&conf->r5c_cached_full_stripes) || | 
|  | atomic_read(&conf->r5c_cached_partial_stripes)) { | 
|  | return -EBUSY; | 
|  | } | 
|  | log_exit(conf); | 
|  | return 0; | 
|  | } | 
|  | if (rdev == p->rdev) | 
|  | rdevp = &p->rdev; | 
|  | else if (rdev == p->replacement) | 
|  | rdevp = &p->replacement; | 
|  | else | 
|  | return 0; | 
|  |  | 
|  | if (number >= conf->raid_disks && | 
|  | conf->reshape_progress == MaxSector) | 
|  | clear_bit(In_sync, &rdev->flags); | 
|  |  | 
|  | if (test_bit(In_sync, &rdev->flags) || | 
|  | atomic_read(&rdev->nr_pending)) { | 
|  | err = -EBUSY; | 
|  | goto abort; | 
|  | } | 
|  | /* Only remove non-faulty devices if recovery | 
|  | * isn't possible. | 
|  | */ | 
|  | if (!test_bit(Faulty, &rdev->flags) && | 
|  | mddev->recovery_disabled != conf->recovery_disabled && | 
|  | !has_failed(conf) && | 
|  | (!p->replacement || p->replacement == rdev) && | 
|  | number < conf->raid_disks) { | 
|  | err = -EBUSY; | 
|  | goto abort; | 
|  | } | 
|  | *rdevp = NULL; | 
|  | if (!test_bit(RemoveSynchronized, &rdev->flags)) { | 
|  | synchronize_rcu(); | 
|  | if (atomic_read(&rdev->nr_pending)) { | 
|  | /* lost the race, try later */ | 
|  | err = -EBUSY; | 
|  | *rdevp = rdev; | 
|  | } | 
|  | } | 
|  | if (!err) { | 
|  | err = log_modify(conf, rdev, false); | 
|  | if (err) | 
|  | goto abort; | 
|  | } | 
|  | if (p->replacement) { | 
|  | /* We must have just cleared 'rdev' */ | 
|  | p->rdev = p->replacement; | 
|  | clear_bit(Replacement, &p->replacement->flags); | 
|  | smp_mb(); /* Make sure other CPUs may see both as identical | 
|  | * but will never see neither - if they are careful | 
|  | */ | 
|  | p->replacement = NULL; | 
|  |  | 
|  | if (!err) | 
|  | err = log_modify(conf, p->rdev, true); | 
|  | } | 
|  |  | 
|  | clear_bit(WantReplacement, &rdev->flags); | 
|  | abort: | 
|  |  | 
|  | print_raid5_conf(conf); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev) | 
|  | { | 
|  | struct r5conf *conf = mddev->private; | 
|  | int ret, err = -EEXIST; | 
|  | int disk; | 
|  | struct disk_info *p; | 
|  | int first = 0; | 
|  | int last = conf->raid_disks - 1; | 
|  |  | 
|  | if (test_bit(Journal, &rdev->flags)) { | 
|  | if (conf->log) | 
|  | return -EBUSY; | 
|  |  | 
|  | rdev->raid_disk = 0; | 
|  | /* | 
|  | * The array is in readonly mode if journal is missing, so no | 
|  | * write requests running. We should be safe | 
|  | */ | 
|  | ret = log_init(conf, rdev, false); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = r5l_start(conf->log); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | if (mddev->recovery_disabled == conf->recovery_disabled) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (rdev->saved_raid_disk < 0 && has_failed(conf)) | 
|  | /* no point adding a device */ | 
|  | return -EINVAL; | 
|  |  | 
|  | if (rdev->raid_disk >= 0) | 
|  | first = last = rdev->raid_disk; | 
|  |  | 
|  | /* | 
|  | * find the disk ... but prefer rdev->saved_raid_disk | 
|  | * if possible. | 
|  | */ | 
|  | if (rdev->saved_raid_disk >= 0 && | 
|  | rdev->saved_raid_disk >= first && | 
|  | conf->disks[rdev->saved_raid_disk].rdev == NULL) | 
|  | first = rdev->saved_raid_disk; | 
|  |  | 
|  | for (disk = first; disk <= last; disk++) { | 
|  | p = conf->disks + disk; | 
|  | if (p->rdev == NULL) { | 
|  | clear_bit(In_sync, &rdev->flags); | 
|  | rdev->raid_disk = disk; | 
|  | if (rdev->saved_raid_disk != disk) | 
|  | conf->fullsync = 1; | 
|  | rcu_assign_pointer(p->rdev, rdev); | 
|  |  | 
|  | err = log_modify(conf, rdev, true); | 
|  |  | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | for (disk = first; disk <= last; disk++) { | 
|  | p = conf->disks + disk; | 
|  | if (test_bit(WantReplacement, &p->rdev->flags) && | 
|  | p->replacement == NULL) { | 
|  | clear_bit(In_sync, &rdev->flags); | 
|  | set_bit(Replacement, &rdev->flags); | 
|  | rdev->raid_disk = disk; | 
|  | err = 0; | 
|  | conf->fullsync = 1; | 
|  | rcu_assign_pointer(p->replacement, rdev); | 
|  | break; | 
|  | } | 
|  | } | 
|  | out: | 
|  | print_raid5_conf(conf); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int raid5_resize(struct mddev *mddev, sector_t sectors) | 
|  | { | 
|  | /* no resync is happening, and there is enough space | 
|  | * on all devices, so we can resize. | 
|  | * We need to make sure resync covers any new space. | 
|  | * If the array is shrinking we should possibly wait until | 
|  | * any io in the removed space completes, but it hardly seems | 
|  | * worth it. | 
|  | */ | 
|  | sector_t newsize; | 
|  | struct r5conf *conf = mddev->private; | 
|  |  | 
|  | if (raid5_has_log(conf) || raid5_has_ppl(conf)) | 
|  | return -EINVAL; | 
|  | sectors &= ~((sector_t)conf->chunk_sectors - 1); | 
|  | newsize = raid5_size(mddev, sectors, mddev->raid_disks); | 
|  | if (mddev->external_size && | 
|  | mddev->array_sectors > newsize) | 
|  | return -EINVAL; | 
|  | if (mddev->bitmap) { | 
|  | int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | md_set_array_sectors(mddev, newsize); | 
|  | if (sectors > mddev->dev_sectors && | 
|  | mddev->recovery_cp > mddev->dev_sectors) { | 
|  | mddev->recovery_cp = mddev->dev_sectors; | 
|  | set_bit(MD_RECOVERY_NEEDED, &mddev->recovery); | 
|  | } | 
|  | mddev->dev_sectors = sectors; | 
|  | mddev->resync_max_sectors = sectors; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int check_stripe_cache(struct mddev *mddev) | 
|  | { | 
|  | /* Can only proceed if there are plenty of stripe_heads. | 
|  | * We need a minimum of one full stripe,, and for sensible progress | 
|  | * it is best to have about 4 times that. | 
|  | * If we require 4 times, then the default 256 4K stripe_heads will | 
|  | * allow for chunk sizes up to 256K, which is probably OK. | 
|  | * If the chunk size is greater, user-space should request more | 
|  | * stripe_heads first. | 
|  | */ | 
|  | struct r5conf *conf = mddev->private; | 
|  | if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4 | 
|  | > conf->min_nr_stripes || | 
|  | ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4 | 
|  | > conf->min_nr_stripes) { | 
|  | pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n", | 
|  | mdname(mddev), | 
|  | ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9) | 
|  | / STRIPE_SIZE)*4); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int check_reshape(struct mddev *mddev) | 
|  | { | 
|  | struct r5conf *conf = mddev->private; | 
|  |  | 
|  | if (raid5_has_log(conf) || raid5_has_ppl(conf)) | 
|  | return -EINVAL; | 
|  | if (mddev->delta_disks == 0 && | 
|  | mddev->new_layout == mddev->layout && | 
|  | mddev->new_chunk_sectors == mddev->chunk_sectors) | 
|  | return 0; /* nothing to do */ | 
|  | if (has_failed(conf)) | 
|  | return -EINVAL; | 
|  | if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) { | 
|  | /* We might be able to shrink, but the devices must | 
|  | * be made bigger first. | 
|  | * For raid6, 4 is the minimum size. | 
|  | * Otherwise 2 is the minimum | 
|  | */ | 
|  | int min = 2; | 
|  | if (mddev->level == 6) | 
|  | min = 4; | 
|  | if (mddev->raid_disks + mddev->delta_disks < min) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!check_stripe_cache(mddev)) | 
|  | return -ENOSPC; | 
|  |  | 
|  | if (mddev->new_chunk_sectors > mddev->chunk_sectors || | 
|  | mddev->delta_disks > 0) | 
|  | if (resize_chunks(conf, | 
|  | conf->previous_raid_disks | 
|  | + max(0, mddev->delta_disks), | 
|  | max(mddev->new_chunk_sectors, | 
|  | mddev->chunk_sectors) | 
|  | ) < 0) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size) | 
|  | return 0; /* never bother to shrink */ | 
|  | return resize_stripes(conf, (conf->previous_raid_disks | 
|  | + mddev->delta_disks)); | 
|  | } | 
|  |  | 
|  | static int raid5_start_reshape(struct mddev *mddev) | 
|  | { | 
|  | struct r5conf *conf = mddev->private; | 
|  | struct md_rdev *rdev; | 
|  | int spares = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (!check_stripe_cache(mddev)) | 
|  | return -ENOSPC; | 
|  |  | 
|  | if (has_failed(conf)) | 
|  | return -EINVAL; | 
|  |  | 
|  | rdev_for_each(rdev, mddev) { | 
|  | if (!test_bit(In_sync, &rdev->flags) | 
|  | && !test_bit(Faulty, &rdev->flags)) | 
|  | spares++; | 
|  | } | 
|  |  | 
|  | if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded) | 
|  | /* Not enough devices even to make a degraded array | 
|  | * of that size | 
|  | */ | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Refuse to reduce size of the array.  Any reductions in | 
|  | * array size must be through explicit setting of array_size | 
|  | * attribute. | 
|  | */ | 
|  | if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks) | 
|  | < mddev->array_sectors) { | 
|  | pr_warn("md/raid:%s: array size must be reduced before number of disks\n", | 
|  | mdname(mddev)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | atomic_set(&conf->reshape_stripes, 0); | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | write_seqcount_begin(&conf->gen_lock); | 
|  | conf->previous_raid_disks = conf->raid_disks; | 
|  | conf->raid_disks += mddev->delta_disks; | 
|  | conf->prev_chunk_sectors = conf->chunk_sectors; | 
|  | conf->chunk_sectors = mddev->new_chunk_sectors; | 
|  | conf->prev_algo = conf->algorithm; | 
|  | conf->algorithm = mddev->new_layout; | 
|  | conf->generation++; | 
|  | /* Code that selects data_offset needs to see the generation update | 
|  | * if reshape_progress has been set - so a memory barrier needed. | 
|  | */ | 
|  | smp_mb(); | 
|  | if (mddev->reshape_backwards) | 
|  | conf->reshape_progress = raid5_size(mddev, 0, 0); | 
|  | else | 
|  | conf->reshape_progress = 0; | 
|  | conf->reshape_safe = conf->reshape_progress; | 
|  | write_seqcount_end(&conf->gen_lock); | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  |  | 
|  | /* Now make sure any requests that proceeded on the assumption | 
|  | * the reshape wasn't running - like Discard or Read - have | 
|  | * completed. | 
|  | */ | 
|  | mddev_suspend(mddev); | 
|  | mddev_resume(mddev); | 
|  |  | 
|  | /* Add some new drives, as many as will fit. | 
|  | * We know there are enough to make the newly sized array work. | 
|  | * Don't add devices if we are reducing the number of | 
|  | * devices in the array.  This is because it is not possible | 
|  | * to correctly record the "partially reconstructed" state of | 
|  | * such devices during the reshape and confusion could result. | 
|  | */ | 
|  | if (mddev->delta_disks >= 0) { | 
|  | rdev_for_each(rdev, mddev) | 
|  | if (rdev->raid_disk < 0 && | 
|  | !test_bit(Faulty, &rdev->flags)) { | 
|  | if (raid5_add_disk(mddev, rdev) == 0) { | 
|  | if (rdev->raid_disk | 
|  | >= conf->previous_raid_disks) | 
|  | set_bit(In_sync, &rdev->flags); | 
|  | else | 
|  | rdev->recovery_offset = 0; | 
|  |  | 
|  | if (sysfs_link_rdev(mddev, rdev)) | 
|  | /* Failure here is OK */; | 
|  | } | 
|  | } else if (rdev->raid_disk >= conf->previous_raid_disks | 
|  | && !test_bit(Faulty, &rdev->flags)) { | 
|  | /* This is a spare that was manually added */ | 
|  | set_bit(In_sync, &rdev->flags); | 
|  | } | 
|  |  | 
|  | /* When a reshape changes the number of devices, | 
|  | * ->degraded is measured against the larger of the | 
|  | * pre and post number of devices. | 
|  | */ | 
|  | spin_lock_irqsave(&conf->device_lock, flags); | 
|  | mddev->degraded = raid5_calc_degraded(conf); | 
|  | spin_unlock_irqrestore(&conf->device_lock, flags); | 
|  | } | 
|  | mddev->raid_disks = conf->raid_disks; | 
|  | mddev->reshape_position = conf->reshape_progress; | 
|  | set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); | 
|  |  | 
|  | clear_bit(MD_RECOVERY_SYNC, &mddev->recovery); | 
|  | clear_bit(MD_RECOVERY_CHECK, &mddev->recovery); | 
|  | clear_bit(MD_RECOVERY_DONE, &mddev->recovery); | 
|  | set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery); | 
|  | set_bit(MD_RECOVERY_RUNNING, &mddev->recovery); | 
|  | mddev->sync_thread = md_register_thread(md_do_sync, mddev, | 
|  | "reshape"); | 
|  | if (!mddev->sync_thread) { | 
|  | mddev->recovery = 0; | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | write_seqcount_begin(&conf->gen_lock); | 
|  | mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks; | 
|  | mddev->new_chunk_sectors = | 
|  | conf->chunk_sectors = conf->prev_chunk_sectors; | 
|  | mddev->new_layout = conf->algorithm = conf->prev_algo; | 
|  | rdev_for_each(rdev, mddev) | 
|  | rdev->new_data_offset = rdev->data_offset; | 
|  | smp_wmb(); | 
|  | conf->generation --; | 
|  | conf->reshape_progress = MaxSector; | 
|  | mddev->reshape_position = MaxSector; | 
|  | write_seqcount_end(&conf->gen_lock); | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  | conf->reshape_checkpoint = jiffies; | 
|  | md_wakeup_thread(mddev->sync_thread); | 
|  | md_new_event(mddev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This is called from the reshape thread and should make any | 
|  | * changes needed in 'conf' | 
|  | */ | 
|  | static void end_reshape(struct r5conf *conf) | 
|  | { | 
|  |  | 
|  | if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) { | 
|  | struct md_rdev *rdev; | 
|  |  | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | conf->previous_raid_disks = conf->raid_disks; | 
|  | md_finish_reshape(conf->mddev); | 
|  | smp_wmb(); | 
|  | conf->reshape_progress = MaxSector; | 
|  | conf->mddev->reshape_position = MaxSector; | 
|  | rdev_for_each(rdev, conf->mddev) | 
|  | if (rdev->raid_disk >= 0 && | 
|  | !test_bit(Journal, &rdev->flags) && | 
|  | !test_bit(In_sync, &rdev->flags)) | 
|  | rdev->recovery_offset = MaxSector; | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | wake_up(&conf->wait_for_overlap); | 
|  |  | 
|  | /* read-ahead size must cover two whole stripes, which is | 
|  | * 2 * (datadisks) * chunksize where 'n' is the number of raid devices | 
|  | */ | 
|  | if (conf->mddev->queue) { | 
|  | int data_disks = conf->raid_disks - conf->max_degraded; | 
|  | int stripe = data_disks * ((conf->chunk_sectors << 9) | 
|  | / PAGE_SIZE); | 
|  | if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe) | 
|  | conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This is called from the raid5d thread with mddev_lock held. | 
|  | * It makes config changes to the device. | 
|  | */ | 
|  | static void raid5_finish_reshape(struct mddev *mddev) | 
|  | { | 
|  | struct r5conf *conf = mddev->private; | 
|  |  | 
|  | if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) { | 
|  |  | 
|  | if (mddev->delta_disks <= 0) { | 
|  | int d; | 
|  | spin_lock_irq(&conf->device_lock); | 
|  | mddev->degraded = raid5_calc_degraded(conf); | 
|  | spin_unlock_irq(&conf->device_lock); | 
|  | for (d = conf->raid_disks ; | 
|  | d < conf->raid_disks - mddev->delta_disks; | 
|  | d++) { | 
|  | struct md_rdev *rdev = conf->disks[d].rdev; | 
|  | if (rdev) | 
|  | clear_bit(In_sync, &rdev->flags); | 
|  | rdev = conf->disks[d].replacement; | 
|  | if (rdev) | 
|  | clear_bit(In_sync, &rdev->flags); | 
|  | } | 
|  | } | 
|  | mddev->layout = conf->algorithm; | 
|  | mddev->chunk_sectors = conf->chunk_sectors; | 
|  | mddev->reshape_position = MaxSector; | 
|  | mddev->delta_disks = 0; | 
|  | mddev->reshape_backwards = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void raid5_quiesce(struct mddev *mddev, int quiesce) | 
|  | { | 
|  | struct r5conf *conf = mddev->private; | 
|  |  | 
|  | if (quiesce) { | 
|  | /* stop all writes */ | 
|  | lock_all_device_hash_locks_irq(conf); | 
|  | /* '2' tells resync/reshape to pause so that all | 
|  | * active stripes can drain | 
|  | */ | 
|  | r5c_flush_cache(conf, INT_MAX); | 
|  | conf->quiesce = 2; | 
|  | wait_event_cmd(conf->wait_for_quiescent, | 
|  | atomic_read(&conf->active_stripes) == 0 && | 
|  | atomic_read(&conf->active_aligned_reads) == 0, | 
|  | unlock_all_device_hash_locks_irq(conf), | 
|  | lock_all_device_hash_locks_irq(conf)); | 
|  | conf->quiesce = 1; | 
|  | unlock_all_device_hash_locks_irq(conf); | 
|  | /* allow reshape to continue */ | 
|  | wake_up(&conf->wait_for_overlap); | 
|  | } else { | 
|  | /* re-enable writes */ | 
|  | lock_all_device_hash_locks_irq(conf); | 
|  | conf->quiesce = 0; | 
|  | wake_up(&conf->wait_for_quiescent); | 
|  | wake_up(&conf->wait_for_overlap); | 
|  | unlock_all_device_hash_locks_irq(conf); | 
|  | } | 
|  | log_quiesce(conf, quiesce); | 
|  | } | 
|  |  | 
|  | static void *raid45_takeover_raid0(struct mddev *mddev, int level) | 
|  | { | 
|  | struct r0conf *raid0_conf = mddev->private; | 
|  | sector_t sectors; | 
|  |  | 
|  | /* for raid0 takeover only one zone is supported */ | 
|  | if (raid0_conf->nr_strip_zones > 1) { | 
|  | pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n", | 
|  | mdname(mddev)); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | sectors = raid0_conf->strip_zone[0].zone_end; | 
|  | sector_div(sectors, raid0_conf->strip_zone[0].nb_dev); | 
|  | mddev->dev_sectors = sectors; | 
|  | mddev->new_level = level; | 
|  | mddev->new_layout = ALGORITHM_PARITY_N; | 
|  | mddev->new_chunk_sectors = mddev->chunk_sectors; | 
|  | mddev->raid_disks += 1; | 
|  | mddev->delta_disks = 1; | 
|  | /* make sure it will be not marked as dirty */ | 
|  | mddev->recovery_cp = MaxSector; | 
|  |  | 
|  | return setup_conf(mddev); | 
|  | } | 
|  |  | 
|  | static void *raid5_takeover_raid1(struct mddev *mddev) | 
|  | { | 
|  | int chunksect; | 
|  | void *ret; | 
|  |  | 
|  | if (mddev->raid_disks != 2 || | 
|  | mddev->degraded > 1) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* Should check if there are write-behind devices? */ | 
|  |  | 
|  | chunksect = 64*2; /* 64K by default */ | 
|  |  | 
|  | /* The array must be an exact multiple of chunksize */ | 
|  | while (chunksect && (mddev->array_sectors & (chunksect-1))) | 
|  | chunksect >>= 1; | 
|  |  | 
|  | if ((chunksect<<9) < STRIPE_SIZE) | 
|  | /* array size does not allow a suitable chunk size */ | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | mddev->new_level = 5; | 
|  | mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC; | 
|  | mddev->new_chunk_sectors = chunksect; | 
|  |  | 
|  | ret = setup_conf(mddev); | 
|  | if (!IS_ERR(ret)) | 
|  | mddev_clear_unsupported_flags(mddev, | 
|  | UNSUPPORTED_MDDEV_FLAGS); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void *raid5_takeover_raid6(struct mddev *mddev) | 
|  | { | 
|  | int new_layout; | 
|  |  | 
|  | switch (mddev->layout) { | 
|  | case ALGORITHM_LEFT_ASYMMETRIC_6: | 
|  | new_layout = ALGORITHM_LEFT_ASYMMETRIC; | 
|  | break; | 
|  | case ALGORITHM_RIGHT_ASYMMETRIC_6: | 
|  | new_layout = ALGORITHM_RIGHT_ASYMMETRIC; | 
|  | break; | 
|  | case ALGORITHM_LEFT_SYMMETRIC_6: | 
|  | new_layout = ALGORITHM_LEFT_SYMMETRIC; | 
|  | break; | 
|  | case ALGORITHM_RIGHT_SYMMETRIC_6: | 
|  | new_layout = ALGORITHM_RIGHT_SYMMETRIC; | 
|  | break; | 
|  | case ALGORITHM_PARITY_0_6: | 
|  | new_layout = ALGORITHM_PARITY_0; | 
|  | break; | 
|  | case ALGORITHM_PARITY_N: | 
|  | new_layout = ALGORITHM_PARITY_N; | 
|  | break; | 
|  | default: | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  | mddev->new_level = 5; | 
|  | mddev->new_layout = new_layout; | 
|  | mddev->delta_disks = -1; | 
|  | mddev->raid_disks -= 1; | 
|  | return setup_conf(mddev); | 
|  | } | 
|  |  | 
|  | static int raid5_check_reshape(struct mddev *mddev) | 
|  | { | 
|  | /* For a 2-drive array, the layout and chunk size can be changed | 
|  | * immediately as not restriping is needed. | 
|  | * For larger arrays we record the new value - after validation | 
|  | * to be used by a reshape pass. | 
|  | */ | 
|  | struct r5conf *conf = mddev->private; | 
|  | int new_chunk = mddev->new_chunk_sectors; | 
|  |  | 
|  | if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout)) | 
|  | return -EINVAL; | 
|  | if (new_chunk > 0) { | 
|  | if (!is_power_of_2(new_chunk)) | 
|  | return -EINVAL; | 
|  | if (new_chunk < (PAGE_SIZE>>9)) | 
|  | return -EINVAL; | 
|  | if (mddev->array_sectors & (new_chunk-1)) | 
|  | /* not factor of array size */ | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* They look valid */ | 
|  |  | 
|  | if (mddev->raid_disks == 2) { | 
|  | /* can make the change immediately */ | 
|  | if (mddev->new_layout >= 0) { | 
|  | conf->algorithm = mddev->new_layout; | 
|  | mddev->layout = mddev->new_layout; | 
|  | } | 
|  | if (new_chunk > 0) { | 
|  | conf->chunk_sectors = new_chunk ; | 
|  | mddev->chunk_sectors = new_chunk; | 
|  | } | 
|  | set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags); | 
|  | md_wakeup_thread(mddev->thread); | 
|  | } | 
|  | return check_reshape(mddev); | 
|  | } | 
|  |  | 
|  | static int raid6_check_reshape(struct mddev *mddev) | 
|  | { | 
|  | int new_chunk = mddev->new_chunk_sectors; | 
|  |  | 
|  | if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout)) | 
|  | return -EINVAL; | 
|  | if (new_chunk > 0) { | 
|  | if (!is_power_of_2(new_chunk)) | 
|  | return -EINVAL; | 
|  | if (new_chunk < (PAGE_SIZE >> 9)) | 
|  | return -EINVAL; | 
|  | if (mddev->array_sectors & (new_chunk-1)) | 
|  | /* not factor of array size */ | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* They look valid */ | 
|  | return check_reshape(mddev); | 
|  | } | 
|  |  | 
|  | static void *raid5_takeover(struct mddev *mddev) | 
|  | { | 
|  | /* raid5 can take over: | 
|  | *  raid0 - if there is only one strip zone - make it a raid4 layout | 
|  | *  raid1 - if there are two drives.  We need to know the chunk size | 
|  | *  raid4 - trivial - just use a raid4 layout. | 
|  | *  raid6 - Providing it is a *_6 layout | 
|  | */ | 
|  | if (mddev->level == 0) | 
|  | return raid45_takeover_raid0(mddev, 5); | 
|  | if (mddev->level == 1) | 
|  | return raid5_takeover_raid1(mddev); | 
|  | if (mddev->level == 4) { | 
|  | mddev->new_layout = ALGORITHM_PARITY_N; | 
|  | mddev->new_level = 5; | 
|  | return setup_conf(mddev); | 
|  | } | 
|  | if (mddev->level == 6) | 
|  | return raid5_takeover_raid6(mddev); | 
|  |  | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | static void *raid4_takeover(struct mddev *mddev) | 
|  | { | 
|  | /* raid4 can take over: | 
|  | *  raid0 - if there is only one strip zone | 
|  | *  raid5 - if layout is right | 
|  | */ | 
|  | if (mddev->level == 0) | 
|  | return raid45_takeover_raid0(mddev, 4); | 
|  | if (mddev->level == 5 && | 
|  | mddev->layout == ALGORITHM_PARITY_N) { | 
|  | mddev->new_layout = 0; | 
|  | mddev->new_level = 4; | 
|  | return setup_conf(mddev); | 
|  | } | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | static struct md_personality raid5_personality; | 
|  |  | 
|  | static void *raid6_takeover(struct mddev *mddev) | 
|  | { | 
|  | /* Currently can only take over a raid5.  We map the | 
|  | * personality to an equivalent raid6 personality | 
|  | * with the Q block at the end. | 
|  | */ | 
|  | int new_layout; | 
|  |  | 
|  | if (mddev->pers != &raid5_personality) | 
|  | return ERR_PTR(-EINVAL); | 
|  | if (mddev->degraded > 1) | 
|  | return ERR_PTR(-EINVAL); | 
|  | if (mddev->raid_disks > 253) | 
|  | return ERR_PTR(-EINVAL); | 
|  | if (mddev->raid_disks < 3) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | switch (mddev->layout) { | 
|  | case ALGORITHM_LEFT_ASYMMETRIC: | 
|  | new_layout = ALGORITHM_LEFT_ASYMMETRIC_6; | 
|  | break; | 
|  | case ALGORITHM_RIGHT_ASYMMETRIC: | 
|  | new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6; | 
|  | break; | 
|  | case ALGORITHM_LEFT_SYMMETRIC: | 
|  | new_layout = ALGORITHM_LEFT_SYMMETRIC_6; | 
|  | break; | 
|  | case ALGORITHM_RIGHT_SYMMETRIC: | 
|  | new_layout = ALGORITHM_RIGHT_SYMMETRIC_6; | 
|  | break; | 
|  | case ALGORITHM_PARITY_0: | 
|  | new_layout = ALGORITHM_PARITY_0_6; | 
|  | break; | 
|  | case ALGORITHM_PARITY_N: | 
|  | new_layout = ALGORITHM_PARITY_N; | 
|  | break; | 
|  | default: | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  | mddev->new_level = 6; | 
|  | mddev->new_layout = new_layout; | 
|  | mddev->delta_disks = 1; | 
|  | mddev->raid_disks += 1; | 
|  | return setup_conf(mddev); | 
|  | } | 
|  |  | 
|  | static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf) | 
|  | { | 
|  | struct r5conf *conf; | 
|  | int err; | 
|  |  | 
|  | err = mddev_lock(mddev); | 
|  | if (err) | 
|  | return err; | 
|  | conf = mddev->private; | 
|  | if (!conf) { | 
|  | mddev_unlock(mddev); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if (strncmp(buf, "ppl", 3) == 0) { | 
|  | /* ppl only works with RAID 5 */ | 
|  | if (!raid5_has_ppl(conf) && conf->level == 5) { | 
|  | err = log_init(conf, NULL, true); | 
|  | if (!err) { | 
|  | err = resize_stripes(conf, conf->pool_size); | 
|  | if (err) | 
|  | log_exit(conf); | 
|  | } | 
|  | } else | 
|  | err = -EINVAL; | 
|  | } else if (strncmp(buf, "resync", 6) == 0) { | 
|  | if (raid5_has_ppl(conf)) { | 
|  | mddev_suspend(mddev); | 
|  | log_exit(conf); | 
|  | mddev_resume(mddev); | 
|  | err = resize_stripes(conf, conf->pool_size); | 
|  | } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) && | 
|  | r5l_log_disk_error(conf)) { | 
|  | bool journal_dev_exists = false; | 
|  | struct md_rdev *rdev; | 
|  |  | 
|  | rdev_for_each(rdev, mddev) | 
|  | if (test_bit(Journal, &rdev->flags)) { | 
|  | journal_dev_exists = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!journal_dev_exists) { | 
|  | mddev_suspend(mddev); | 
|  | clear_bit(MD_HAS_JOURNAL, &mddev->flags); | 
|  | mddev_resume(mddev); | 
|  | } else  /* need remove journal device first */ | 
|  | err = -EBUSY; | 
|  | } else | 
|  | err = -EINVAL; | 
|  | } else { | 
|  | err = -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!err) | 
|  | md_update_sb(mddev, 1); | 
|  |  | 
|  | mddev_unlock(mddev); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int raid5_start(struct mddev *mddev) | 
|  | { | 
|  | struct r5conf *conf = mddev->private; | 
|  |  | 
|  | return r5l_start(conf->log); | 
|  | } | 
|  |  | 
|  | static struct md_personality raid6_personality = | 
|  | { | 
|  | .name		= "raid6", | 
|  | .level		= 6, | 
|  | .owner		= THIS_MODULE, | 
|  | .make_request	= raid5_make_request, | 
|  | .run		= raid5_run, | 
|  | .start		= raid5_start, | 
|  | .free		= raid5_free, | 
|  | .status		= raid5_status, | 
|  | .error_handler	= raid5_error, | 
|  | .hot_add_disk	= raid5_add_disk, | 
|  | .hot_remove_disk= raid5_remove_disk, | 
|  | .spare_active	= raid5_spare_active, | 
|  | .sync_request	= raid5_sync_request, | 
|  | .resize		= raid5_resize, | 
|  | .size		= raid5_size, | 
|  | .check_reshape	= raid6_check_reshape, | 
|  | .start_reshape  = raid5_start_reshape, | 
|  | .finish_reshape = raid5_finish_reshape, | 
|  | .quiesce	= raid5_quiesce, | 
|  | .takeover	= raid6_takeover, | 
|  | .congested	= raid5_congested, | 
|  | .change_consistency_policy = raid5_change_consistency_policy, | 
|  | }; | 
|  | static struct md_personality raid5_personality = | 
|  | { | 
|  | .name		= "raid5", | 
|  | .level		= 5, | 
|  | .owner		= THIS_MODULE, | 
|  | .make_request	= raid5_make_request, | 
|  | .run		= raid5_run, | 
|  | .start		= raid5_start, | 
|  | .free		= raid5_free, | 
|  | .status		= raid5_status, | 
|  | .error_handler	= raid5_error, | 
|  | .hot_add_disk	= raid5_add_disk, | 
|  | .hot_remove_disk= raid5_remove_disk, | 
|  | .spare_active	= raid5_spare_active, | 
|  | .sync_request	= raid5_sync_request, | 
|  | .resize		= raid5_resize, | 
|  | .size		= raid5_size, | 
|  | .check_reshape	= raid5_check_reshape, | 
|  | .start_reshape  = raid5_start_reshape, | 
|  | .finish_reshape = raid5_finish_reshape, | 
|  | .quiesce	= raid5_quiesce, | 
|  | .takeover	= raid5_takeover, | 
|  | .congested	= raid5_congested, | 
|  | .change_consistency_policy = raid5_change_consistency_policy, | 
|  | }; | 
|  |  | 
|  | static struct md_personality raid4_personality = | 
|  | { | 
|  | .name		= "raid4", | 
|  | .level		= 4, | 
|  | .owner		= THIS_MODULE, | 
|  | .make_request	= raid5_make_request, | 
|  | .run		= raid5_run, | 
|  | .start		= raid5_start, | 
|  | .free		= raid5_free, | 
|  | .status		= raid5_status, | 
|  | .error_handler	= raid5_error, | 
|  | .hot_add_disk	= raid5_add_disk, | 
|  | .hot_remove_disk= raid5_remove_disk, | 
|  | .spare_active	= raid5_spare_active, | 
|  | .sync_request	= raid5_sync_request, | 
|  | .resize		= raid5_resize, | 
|  | .size		= raid5_size, | 
|  | .check_reshape	= raid5_check_reshape, | 
|  | .start_reshape  = raid5_start_reshape, | 
|  | .finish_reshape = raid5_finish_reshape, | 
|  | .quiesce	= raid5_quiesce, | 
|  | .takeover	= raid4_takeover, | 
|  | .congested	= raid5_congested, | 
|  | .change_consistency_policy = raid5_change_consistency_policy, | 
|  | }; | 
|  |  | 
|  | static int __init raid5_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | raid5_wq = alloc_workqueue("raid5wq", | 
|  | WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0); | 
|  | if (!raid5_wq) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE, | 
|  | "md/raid5:prepare", | 
|  | raid456_cpu_up_prepare, | 
|  | raid456_cpu_dead); | 
|  | if (ret) { | 
|  | destroy_workqueue(raid5_wq); | 
|  | return ret; | 
|  | } | 
|  | register_md_personality(&raid6_personality); | 
|  | register_md_personality(&raid5_personality); | 
|  | register_md_personality(&raid4_personality); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void raid5_exit(void) | 
|  | { | 
|  | unregister_md_personality(&raid6_personality); | 
|  | unregister_md_personality(&raid5_personality); | 
|  | unregister_md_personality(&raid4_personality); | 
|  | cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE); | 
|  | destroy_workqueue(raid5_wq); | 
|  | } | 
|  |  | 
|  | module_init(raid5_init); | 
|  | module_exit(raid5_exit); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD"); | 
|  | MODULE_ALIAS("md-personality-4"); /* RAID5 */ | 
|  | MODULE_ALIAS("md-raid5"); | 
|  | MODULE_ALIAS("md-raid4"); | 
|  | MODULE_ALIAS("md-level-5"); | 
|  | MODULE_ALIAS("md-level-4"); | 
|  | MODULE_ALIAS("md-personality-8"); /* RAID6 */ | 
|  | MODULE_ALIAS("md-raid6"); | 
|  | MODULE_ALIAS("md-level-6"); | 
|  |  | 
|  | /* This used to be two separate modules, they were: */ | 
|  | MODULE_ALIAS("raid5"); | 
|  | MODULE_ALIAS("raid6"); |