| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
 | 2 |  * This file provides the ACPI based P-state support. This | 
 | 3 |  * module works with generic cpufreq infrastructure. Most of | 
 | 4 |  * the code is based on i386 version | 
 | 5 |  * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c) | 
 | 6 |  * | 
 | 7 |  * Copyright (C) 2005 Intel Corp | 
 | 8 |  *      Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> | 
 | 9 |  */ | 
 | 10 |  | 
 | 11 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 | 12 |  | 
 | 13 | #include <linux/kernel.h> | 
 | 14 | #include <linux/slab.h> | 
 | 15 | #include <linux/module.h> | 
 | 16 | #include <linux/init.h> | 
 | 17 | #include <linux/cpufreq.h> | 
 | 18 | #include <linux/proc_fs.h> | 
 | 19 | #include <linux/seq_file.h> | 
 | 20 | #include <asm/io.h> | 
 | 21 | #include <linux/uaccess.h> | 
 | 22 | #include <asm/pal.h> | 
 | 23 |  | 
 | 24 | #include <linux/acpi.h> | 
 | 25 | #include <acpi/processor.h> | 
 | 26 |  | 
 | 27 | MODULE_AUTHOR("Venkatesh Pallipadi"); | 
 | 28 | MODULE_DESCRIPTION("ACPI Processor P-States Driver"); | 
 | 29 | MODULE_LICENSE("GPL"); | 
 | 30 |  | 
 | 31 |  | 
 | 32 | struct cpufreq_acpi_io { | 
 | 33 | 	struct acpi_processor_performance	acpi_data; | 
 | 34 | 	unsigned int				resume; | 
 | 35 | }; | 
 | 36 |  | 
 | 37 | struct cpufreq_acpi_req { | 
 | 38 | 	unsigned int		cpu; | 
 | 39 | 	unsigned int		state; | 
 | 40 | }; | 
 | 41 |  | 
 | 42 | static struct cpufreq_acpi_io	*acpi_io_data[NR_CPUS]; | 
 | 43 |  | 
 | 44 | static struct cpufreq_driver acpi_cpufreq_driver; | 
 | 45 |  | 
 | 46 |  | 
 | 47 | static int | 
 | 48 | processor_set_pstate ( | 
 | 49 | 	u32	value) | 
 | 50 | { | 
 | 51 | 	s64 retval; | 
 | 52 |  | 
 | 53 | 	pr_debug("processor_set_pstate\n"); | 
 | 54 |  | 
 | 55 | 	retval = ia64_pal_set_pstate((u64)value); | 
 | 56 |  | 
 | 57 | 	if (retval) { | 
 | 58 | 		pr_debug("Failed to set freq to 0x%x, with error 0x%lx\n", | 
 | 59 | 		        value, retval); | 
 | 60 | 		return -ENODEV; | 
 | 61 | 	} | 
 | 62 | 	return (int)retval; | 
 | 63 | } | 
 | 64 |  | 
 | 65 |  | 
 | 66 | static int | 
 | 67 | processor_get_pstate ( | 
 | 68 | 	u32	*value) | 
 | 69 | { | 
 | 70 | 	u64	pstate_index = 0; | 
 | 71 | 	s64 	retval; | 
 | 72 |  | 
 | 73 | 	pr_debug("processor_get_pstate\n"); | 
 | 74 |  | 
 | 75 | 	retval = ia64_pal_get_pstate(&pstate_index, | 
 | 76 | 	                             PAL_GET_PSTATE_TYPE_INSTANT); | 
 | 77 | 	*value = (u32) pstate_index; | 
 | 78 |  | 
 | 79 | 	if (retval) | 
 | 80 | 		pr_debug("Failed to get current freq with " | 
 | 81 | 			"error 0x%lx, idx 0x%x\n", retval, *value); | 
 | 82 |  | 
 | 83 | 	return (int)retval; | 
 | 84 | } | 
 | 85 |  | 
 | 86 |  | 
 | 87 | /* To be used only after data->acpi_data is initialized */ | 
 | 88 | static unsigned | 
 | 89 | extract_clock ( | 
 | 90 | 	struct cpufreq_acpi_io *data, | 
 | 91 | 	unsigned value) | 
 | 92 | { | 
 | 93 | 	unsigned long i; | 
 | 94 |  | 
 | 95 | 	pr_debug("extract_clock\n"); | 
 | 96 |  | 
 | 97 | 	for (i = 0; i < data->acpi_data.state_count; i++) { | 
 | 98 | 		if (value == data->acpi_data.states[i].status) | 
 | 99 | 			return data->acpi_data.states[i].core_frequency; | 
 | 100 | 	} | 
 | 101 | 	return data->acpi_data.states[i-1].core_frequency; | 
 | 102 | } | 
 | 103 |  | 
 | 104 |  | 
 | 105 | static long | 
 | 106 | processor_get_freq ( | 
 | 107 | 	void *arg) | 
 | 108 | { | 
 | 109 | 	struct cpufreq_acpi_req *req = arg; | 
 | 110 | 	unsigned int		cpu = req->cpu; | 
 | 111 | 	struct cpufreq_acpi_io	*data = acpi_io_data[cpu]; | 
 | 112 | 	u32			value; | 
 | 113 | 	int			ret; | 
 | 114 |  | 
 | 115 | 	pr_debug("processor_get_freq\n"); | 
 | 116 | 	if (smp_processor_id() != cpu) | 
 | 117 | 		return -EAGAIN; | 
 | 118 |  | 
 | 119 | 	/* processor_get_pstate gets the instantaneous frequency */ | 
 | 120 | 	ret = processor_get_pstate(&value); | 
 | 121 | 	if (ret) { | 
 | 122 | 		pr_warn("get performance failed with error %d\n", ret); | 
 | 123 | 		return ret; | 
 | 124 | 	} | 
 | 125 | 	return 1000 * extract_clock(data, value); | 
 | 126 | } | 
 | 127 |  | 
 | 128 |  | 
 | 129 | static long | 
 | 130 | processor_set_freq ( | 
 | 131 | 	void *arg) | 
 | 132 | { | 
 | 133 | 	struct cpufreq_acpi_req *req = arg; | 
 | 134 | 	unsigned int		cpu = req->cpu; | 
 | 135 | 	struct cpufreq_acpi_io	*data = acpi_io_data[cpu]; | 
 | 136 | 	int			ret, state = req->state; | 
 | 137 | 	u32			value; | 
 | 138 |  | 
 | 139 | 	pr_debug("processor_set_freq\n"); | 
 | 140 | 	if (smp_processor_id() != cpu) | 
 | 141 | 		return -EAGAIN; | 
 | 142 |  | 
 | 143 | 	if (state == data->acpi_data.state) { | 
 | 144 | 		if (unlikely(data->resume)) { | 
 | 145 | 			pr_debug("Called after resume, resetting to P%d\n", state); | 
 | 146 | 			data->resume = 0; | 
 | 147 | 		} else { | 
 | 148 | 			pr_debug("Already at target state (P%d)\n", state); | 
 | 149 | 			return 0; | 
 | 150 | 		} | 
 | 151 | 	} | 
 | 152 |  | 
 | 153 | 	pr_debug("Transitioning from P%d to P%d\n", | 
 | 154 | 		data->acpi_data.state, state); | 
 | 155 |  | 
 | 156 | 	/* | 
 | 157 | 	 * First we write the target state's 'control' value to the | 
 | 158 | 	 * control_register. | 
 | 159 | 	 */ | 
 | 160 | 	value = (u32) data->acpi_data.states[state].control; | 
 | 161 |  | 
 | 162 | 	pr_debug("Transitioning to state: 0x%08x\n", value); | 
 | 163 |  | 
 | 164 | 	ret = processor_set_pstate(value); | 
 | 165 | 	if (ret) { | 
 | 166 | 		pr_warn("Transition failed with error %d\n", ret); | 
 | 167 | 		return -ENODEV; | 
 | 168 | 	} | 
 | 169 |  | 
 | 170 | 	data->acpi_data.state = state; | 
 | 171 | 	return 0; | 
 | 172 | } | 
 | 173 |  | 
 | 174 |  | 
 | 175 | static unsigned int | 
 | 176 | acpi_cpufreq_get ( | 
 | 177 | 	unsigned int		cpu) | 
 | 178 | { | 
 | 179 | 	struct cpufreq_acpi_req req; | 
 | 180 | 	long ret; | 
 | 181 |  | 
 | 182 | 	req.cpu = cpu; | 
 | 183 | 	ret = work_on_cpu(cpu, processor_get_freq, &req); | 
 | 184 |  | 
 | 185 | 	return ret > 0 ? (unsigned int) ret : 0; | 
 | 186 | } | 
 | 187 |  | 
 | 188 |  | 
 | 189 | static int | 
 | 190 | acpi_cpufreq_target ( | 
 | 191 | 	struct cpufreq_policy   *policy, | 
 | 192 | 	unsigned int index) | 
 | 193 | { | 
 | 194 | 	struct cpufreq_acpi_req req; | 
 | 195 |  | 
 | 196 | 	req.cpu = policy->cpu; | 
 | 197 | 	req.state = index; | 
 | 198 |  | 
 | 199 | 	return work_on_cpu(req.cpu, processor_set_freq, &req); | 
 | 200 | } | 
 | 201 |  | 
 | 202 | static int | 
 | 203 | acpi_cpufreq_cpu_init ( | 
 | 204 | 	struct cpufreq_policy   *policy) | 
 | 205 | { | 
 | 206 | 	unsigned int		i; | 
 | 207 | 	unsigned int		cpu = policy->cpu; | 
 | 208 | 	struct cpufreq_acpi_io	*data; | 
 | 209 | 	unsigned int		result = 0; | 
 | 210 | 	struct cpufreq_frequency_table *freq_table; | 
 | 211 |  | 
 | 212 | 	pr_debug("acpi_cpufreq_cpu_init\n"); | 
 | 213 |  | 
 | 214 | 	data = kzalloc(sizeof(*data), GFP_KERNEL); | 
 | 215 | 	if (!data) | 
 | 216 | 		return (-ENOMEM); | 
 | 217 |  | 
 | 218 | 	acpi_io_data[cpu] = data; | 
 | 219 |  | 
 | 220 | 	result = acpi_processor_register_performance(&data->acpi_data, cpu); | 
 | 221 |  | 
 | 222 | 	if (result) | 
 | 223 | 		goto err_free; | 
 | 224 |  | 
 | 225 | 	/* capability check */ | 
 | 226 | 	if (data->acpi_data.state_count <= 1) { | 
 | 227 | 		pr_debug("No P-States\n"); | 
 | 228 | 		result = -ENODEV; | 
 | 229 | 		goto err_unreg; | 
 | 230 | 	} | 
 | 231 |  | 
 | 232 | 	if ((data->acpi_data.control_register.space_id != | 
 | 233 | 					ACPI_ADR_SPACE_FIXED_HARDWARE) || | 
 | 234 | 	    (data->acpi_data.status_register.space_id != | 
 | 235 | 					ACPI_ADR_SPACE_FIXED_HARDWARE)) { | 
 | 236 | 		pr_debug("Unsupported address space [%d, %d]\n", | 
 | 237 | 			(u32) (data->acpi_data.control_register.space_id), | 
 | 238 | 			(u32) (data->acpi_data.status_register.space_id)); | 
 | 239 | 		result = -ENODEV; | 
 | 240 | 		goto err_unreg; | 
 | 241 | 	} | 
 | 242 |  | 
 | 243 | 	/* alloc freq_table */ | 
 | 244 | 	freq_table = kcalloc(data->acpi_data.state_count + 1, | 
 | 245 | 	                           sizeof(*freq_table), | 
 | 246 | 	                           GFP_KERNEL); | 
 | 247 | 	if (!freq_table) { | 
 | 248 | 		result = -ENOMEM; | 
 | 249 | 		goto err_unreg; | 
 | 250 | 	} | 
 | 251 |  | 
 | 252 | 	/* detect transition latency */ | 
 | 253 | 	policy->cpuinfo.transition_latency = 0; | 
 | 254 | 	for (i=0; i<data->acpi_data.state_count; i++) { | 
 | 255 | 		if ((data->acpi_data.states[i].transition_latency * 1000) > | 
 | 256 | 		    policy->cpuinfo.transition_latency) { | 
 | 257 | 			policy->cpuinfo.transition_latency = | 
 | 258 | 			    data->acpi_data.states[i].transition_latency * 1000; | 
 | 259 | 		} | 
 | 260 | 	} | 
 | 261 |  | 
 | 262 | 	/* table init */ | 
 | 263 | 	for (i = 0; i <= data->acpi_data.state_count; i++) | 
 | 264 | 	{ | 
 | 265 | 		if (i < data->acpi_data.state_count) { | 
 | 266 | 			freq_table[i].frequency = | 
 | 267 | 			      data->acpi_data.states[i].core_frequency * 1000; | 
 | 268 | 		} else { | 
 | 269 | 			freq_table[i].frequency = CPUFREQ_TABLE_END; | 
 | 270 | 		} | 
 | 271 | 	} | 
 | 272 |  | 
 | 273 | 	policy->freq_table = freq_table; | 
 | 274 |  | 
 | 275 | 	/* notify BIOS that we exist */ | 
 | 276 | 	acpi_processor_notify_smm(THIS_MODULE); | 
 | 277 |  | 
 | 278 | 	pr_info("CPU%u - ACPI performance management activated\n", cpu); | 
 | 279 |  | 
 | 280 | 	for (i = 0; i < data->acpi_data.state_count; i++) | 
 | 281 | 		pr_debug("     %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n", | 
 | 282 | 			(i == data->acpi_data.state?'*':' '), i, | 
 | 283 | 			(u32) data->acpi_data.states[i].core_frequency, | 
 | 284 | 			(u32) data->acpi_data.states[i].power, | 
 | 285 | 			(u32) data->acpi_data.states[i].transition_latency, | 
 | 286 | 			(u32) data->acpi_data.states[i].bus_master_latency, | 
 | 287 | 			(u32) data->acpi_data.states[i].status, | 
 | 288 | 			(u32) data->acpi_data.states[i].control); | 
 | 289 |  | 
 | 290 | 	/* the first call to ->target() should result in us actually | 
 | 291 | 	 * writing something to the appropriate registers. */ | 
 | 292 | 	data->resume = 1; | 
 | 293 |  | 
 | 294 | 	return (result); | 
 | 295 |  | 
 | 296 |  err_unreg: | 
 | 297 | 	acpi_processor_unregister_performance(cpu); | 
 | 298 |  err_free: | 
 | 299 | 	kfree(data); | 
 | 300 | 	acpi_io_data[cpu] = NULL; | 
 | 301 |  | 
 | 302 | 	return (result); | 
 | 303 | } | 
 | 304 |  | 
 | 305 |  | 
 | 306 | static int | 
 | 307 | acpi_cpufreq_cpu_exit ( | 
 | 308 | 	struct cpufreq_policy   *policy) | 
 | 309 | { | 
 | 310 | 	struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; | 
 | 311 |  | 
 | 312 | 	pr_debug("acpi_cpufreq_cpu_exit\n"); | 
 | 313 |  | 
 | 314 | 	if (data) { | 
 | 315 | 		acpi_io_data[policy->cpu] = NULL; | 
 | 316 | 		acpi_processor_unregister_performance(policy->cpu); | 
 | 317 | 		kfree(policy->freq_table); | 
 | 318 | 		kfree(data); | 
 | 319 | 	} | 
 | 320 |  | 
 | 321 | 	return (0); | 
 | 322 | } | 
 | 323 |  | 
 | 324 |  | 
 | 325 | static struct cpufreq_driver acpi_cpufreq_driver = { | 
 | 326 | 	.verify 	= cpufreq_generic_frequency_table_verify, | 
 | 327 | 	.target_index	= acpi_cpufreq_target, | 
 | 328 | 	.get 		= acpi_cpufreq_get, | 
 | 329 | 	.init		= acpi_cpufreq_cpu_init, | 
 | 330 | 	.exit		= acpi_cpufreq_cpu_exit, | 
 | 331 | 	.name		= "acpi-cpufreq", | 
 | 332 | 	.attr		= cpufreq_generic_attr, | 
 | 333 | }; | 
 | 334 |  | 
 | 335 |  | 
 | 336 | static int __init | 
 | 337 | acpi_cpufreq_init (void) | 
 | 338 | { | 
 | 339 | 	pr_debug("acpi_cpufreq_init\n"); | 
 | 340 |  | 
 | 341 |  	return cpufreq_register_driver(&acpi_cpufreq_driver); | 
 | 342 | } | 
 | 343 |  | 
 | 344 |  | 
 | 345 | static void __exit | 
 | 346 | acpi_cpufreq_exit (void) | 
 | 347 | { | 
 | 348 | 	pr_debug("acpi_cpufreq_exit\n"); | 
 | 349 |  | 
 | 350 | 	cpufreq_unregister_driver(&acpi_cpufreq_driver); | 
 | 351 | 	return; | 
 | 352 | } | 
 | 353 |  | 
 | 354 |  | 
 | 355 | late_initcall(acpi_cpufreq_init); | 
 | 356 | module_exit(acpi_cpufreq_exit); | 
 | 357 |  |