blob: ac4ffe8013d8a81a1c78ec15daf5ee75ad180869 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18#ifndef _TCP_H
19#define _TCP_H
20
21#define FASTRETRANS_DEBUG 1
22
23#include <linux/list.h>
24#include <linux/tcp.h>
25#include <linux/bug.h>
26#include <linux/slab.h>
27#include <linux/cache.h>
28#include <linux/percpu.h>
29#include <linux/skbuff.h>
30#include <linux/cryptohash.h>
31#include <linux/kref.h>
32#include <linux/ktime.h>
33
34#include <net/inet_connection_sock.h>
35#include <net/inet_timewait_sock.h>
36#include <net/inet_hashtables.h>
37#include <net/checksum.h>
38#include <net/request_sock.h>
39#include <net/sock_reuseport.h>
40#include <net/sock.h>
41#include <net/snmp.h>
42#include <net/ip.h>
43#include <net/tcp_states.h>
44#include <net/inet_ecn.h>
45#include <net/dst.h>
46
47#include <linux/seq_file.h>
48#include <linux/memcontrol.h>
49#include <linux/bpf-cgroup.h>
50
51extern struct inet_hashinfo tcp_hashinfo;
52
53extern struct percpu_counter tcp_orphan_count;
54void tcp_time_wait(struct sock *sk, int state, int timeo);
55
56#define MAX_TCP_HEADER (128 + MAX_HEADER)
57#define MAX_TCP_OPTION_SPACE 40
58#define TCP_MIN_SND_MSS 48
59#define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60
61/*
62 * Never offer a window over 32767 without using window scaling. Some
63 * poor stacks do signed 16bit maths!
64 */
65#define MAX_TCP_WINDOW 32767U
66
67/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68#define TCP_MIN_MSS 88U
69
70/* The least MTU to use for probing */
71#define TCP_BASE_MSS 1024
72
73/* probing interval, default to 10 minutes as per RFC4821 */
74#define TCP_PROBE_INTERVAL 600
75
76/* Specify interval when tcp mtu probing will stop */
77#define TCP_PROBE_THRESHOLD 8
78
79/* After receiving this amount of duplicate ACKs fast retransmit starts. */
80#define TCP_FASTRETRANS_THRESH 3
81
82/* Maximal number of ACKs sent quickly to accelerate slow-start. */
83#define TCP_MAX_QUICKACKS 16U
84
85/* Maximal number of window scale according to RFC1323 */
86#define TCP_MAX_WSCALE 14U
87
88/* urg_data states */
89#define TCP_URG_VALID 0x0100
90#define TCP_URG_NOTYET 0x0200
91#define TCP_URG_READ 0x0400
92
93#define TCP_RETR1 3 /*
94 * This is how many retries it does before it
95 * tries to figure out if the gateway is
96 * down. Minimal RFC value is 3; it corresponds
97 * to ~3sec-8min depending on RTO.
98 */
99
100#define TCP_RETR2 15 /*
101 * This should take at least
102 * 90 minutes to time out.
103 * RFC1122 says that the limit is 100 sec.
104 * 15 is ~13-30min depending on RTO.
105 */
106
107#define TCP_SYN_RETRIES 6 /* This is how many retries are done
108 * when active opening a connection.
109 * RFC1122 says the minimum retry MUST
110 * be at least 180secs. Nevertheless
111 * this value is corresponding to
112 * 63secs of retransmission with the
113 * current initial RTO.
114 */
115
116#define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
117 * when passive opening a connection.
118 * This is corresponding to 31secs of
119 * retransmission with the current
120 * initial RTO.
121 */
122
123#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124 * state, about 60 seconds */
125#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
126 /* BSD style FIN_WAIT2 deadlock breaker.
127 * It used to be 3min, new value is 60sec,
128 * to combine FIN-WAIT-2 timeout with
129 * TIME-WAIT timer.
130 */
131
132#define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
133#if HZ >= 100
134#define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
135#define TCP_ATO_MIN ((unsigned)(HZ/25))
136#else
137#define TCP_DELACK_MIN 4U
138#define TCP_ATO_MIN 4U
139#endif
140#define TCP_RTO_MAX ((unsigned)(120*HZ))
141#define TCP_RTO_MIN ((unsigned)(HZ/5))
142#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
143#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
144#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
145 * used as a fallback RTO for the
146 * initial data transmission if no
147 * valid RTT sample has been acquired,
148 * most likely due to retrans in 3WHS.
149 */
150
151#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
152 * for local resources.
153 */
154#define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
155#define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
156#define TCP_KEEPALIVE_INTVL (75*HZ)
157
158#define MAX_TCP_KEEPIDLE 32767
159#define MAX_TCP_KEEPINTVL 32767
160#define MAX_TCP_KEEPCNT 127
161#define MAX_TCP_SYNCNT 127
162
163#define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
164
165#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
166#define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
167 * after this time. It should be equal
168 * (or greater than) TCP_TIMEWAIT_LEN
169 * to provide reliability equal to one
170 * provided by timewait state.
171 */
172#define TCP_PAWS_WINDOW 1 /* Replay window for per-host
173 * timestamps. It must be less than
174 * minimal timewait lifetime.
175 */
176/*
177 * TCP option
178 */
179
180#define TCPOPT_NOP 1 /* Padding */
181#define TCPOPT_EOL 0 /* End of options */
182#define TCPOPT_MSS 2 /* Segment size negotiating */
183#define TCPOPT_WINDOW 3 /* Window scaling */
184#define TCPOPT_SACK_PERM 4 /* SACK Permitted */
185#define TCPOPT_SACK 5 /* SACK Block */
186#define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
187#define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
188#define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
189#define TCPOPT_EXP 254 /* Experimental */
190/* Magic number to be after the option value for sharing TCP
191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
192 */
193#define TCPOPT_FASTOPEN_MAGIC 0xF989
194#define TCPOPT_SMC_MAGIC 0xE2D4C3D9
195
196/*
197 * TCP option lengths
198 */
199
200#define TCPOLEN_MSS 4
201#define TCPOLEN_WINDOW 3
202#define TCPOLEN_SACK_PERM 2
203#define TCPOLEN_TIMESTAMP 10
204#define TCPOLEN_MD5SIG 18
205#define TCPOLEN_FASTOPEN_BASE 2
206#define TCPOLEN_EXP_FASTOPEN_BASE 4
207#define TCPOLEN_EXP_SMC_BASE 6
208
209/* But this is what stacks really send out. */
210#define TCPOLEN_TSTAMP_ALIGNED 12
211#define TCPOLEN_WSCALE_ALIGNED 4
212#define TCPOLEN_SACKPERM_ALIGNED 4
213#define TCPOLEN_SACK_BASE 2
214#define TCPOLEN_SACK_BASE_ALIGNED 4
215#define TCPOLEN_SACK_PERBLOCK 8
216#define TCPOLEN_MD5SIG_ALIGNED 20
217#define TCPOLEN_MSS_ALIGNED 4
218#define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
219
220/* Flags in tp->nonagle */
221#define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
222#define TCP_NAGLE_CORK 2 /* Socket is corked */
223#define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
224
225/* TCP thin-stream limits */
226#define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
227
228/* TCP initial congestion window as per rfc6928 */
229#define TCP_INIT_CWND 10
230
231/* Bit Flags for sysctl_tcp_fastopen */
232#define TFO_CLIENT_ENABLE 1
233#define TFO_SERVER_ENABLE 2
234#define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
235
236/* Accept SYN data w/o any cookie option */
237#define TFO_SERVER_COOKIE_NOT_REQD 0x200
238
239/* Force enable TFO on all listeners, i.e., not requiring the
240 * TCP_FASTOPEN socket option.
241 */
242#define TFO_SERVER_WO_SOCKOPT1 0x400
243
244
245/* sysctl variables for tcp */
246extern int sysctl_tcp_max_orphans;
247extern long sysctl_tcp_mem[3];
248
249#define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
250#define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
251#define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
252
253extern atomic_long_t tcp_memory_allocated;
254extern struct percpu_counter tcp_sockets_allocated;
255extern unsigned long tcp_memory_pressure;
256
257/* optimized version of sk_under_memory_pressure() for TCP sockets */
258static inline bool tcp_under_memory_pressure(const struct sock *sk)
259{
260 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
261 mem_cgroup_under_socket_pressure(sk->sk_memcg))
262 return true;
263
264 return tcp_memory_pressure;
265}
266/*
267 * The next routines deal with comparing 32 bit unsigned ints
268 * and worry about wraparound (automatic with unsigned arithmetic).
269 */
270
271static inline bool before(__u32 seq1, __u32 seq2)
272{
273 return (__s32)(seq1-seq2) < 0;
274}
275#define after(seq2, seq1) before(seq1, seq2)
276
277/* is s2<=s1<=s3 ? */
278static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
279{
280 return seq3 - seq2 >= seq1 - seq2;
281}
282
283static inline bool tcp_out_of_memory(struct sock *sk)
284{
285 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
286 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
287 return true;
288 return false;
289}
290
291void sk_forced_mem_schedule(struct sock *sk, int size);
292
293static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
294{
295 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
296 int orphans = percpu_counter_read_positive(ocp);
297
298 if (orphans << shift > sysctl_tcp_max_orphans) {
299 orphans = percpu_counter_sum_positive(ocp);
300 if (orphans << shift > sysctl_tcp_max_orphans)
301 return true;
302 }
303 return false;
304}
305
306bool tcp_check_oom(struct sock *sk, int shift);
307
308
309extern struct proto tcp_prot;
310
311#define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
312#define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
313#define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
314#define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
315
316void tcp_tasklet_init(void);
317
318void tcp_v4_err(struct sk_buff *skb, u32);
319
320void tcp_shutdown(struct sock *sk, int how);
321
322int tcp_v4_early_demux(struct sk_buff *skb);
323int tcp_v4_rcv(struct sk_buff *skb);
324
325int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
326int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
327int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
328int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
329 int flags);
330int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
331 size_t size, int flags);
332ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
333 size_t size, int flags);
334void tcp_release_cb(struct sock *sk);
335void tcp_wfree(struct sk_buff *skb);
336void tcp_write_timer_handler(struct sock *sk);
337void tcp_delack_timer_handler(struct sock *sk);
338int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
339int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
340void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
341void tcp_rcv_space_adjust(struct sock *sk);
342int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
343void tcp_twsk_destructor(struct sock *sk);
344ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
345 struct pipe_inode_info *pipe, size_t len,
346 unsigned int flags);
347
348void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
349static inline void tcp_dec_quickack_mode(struct sock *sk,
350 const unsigned int pkts)
351{
352 struct inet_connection_sock *icsk = inet_csk(sk);
353
354 if (icsk->icsk_ack.quick) {
355 if (pkts >= icsk->icsk_ack.quick) {
356 icsk->icsk_ack.quick = 0;
357 /* Leaving quickack mode we deflate ATO. */
358 icsk->icsk_ack.ato = TCP_ATO_MIN;
359 } else
360 icsk->icsk_ack.quick -= pkts;
361 }
362}
363
364#define TCP_ECN_OK 1
365#define TCP_ECN_QUEUE_CWR 2
366#define TCP_ECN_DEMAND_CWR 4
367#define TCP_ECN_SEEN 8
368
369enum tcp_tw_status {
370 TCP_TW_SUCCESS = 0,
371 TCP_TW_RST = 1,
372 TCP_TW_ACK = 2,
373 TCP_TW_SYN = 3
374};
375
376
377enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
378 struct sk_buff *skb,
379 const struct tcphdr *th);
380struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
381 struct request_sock *req, bool fastopen,
382 bool *lost_race);
383int tcp_child_process(struct sock *parent, struct sock *child,
384 struct sk_buff *skb);
385void tcp_enter_loss(struct sock *sk);
386void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
387void tcp_clear_retrans(struct tcp_sock *tp);
388void tcp_update_metrics(struct sock *sk);
389void tcp_init_metrics(struct sock *sk);
390void tcp_metrics_init(void);
391bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
392void tcp_close(struct sock *sk, long timeout);
393void tcp_init_sock(struct sock *sk);
394void tcp_init_transfer(struct sock *sk, int bpf_op);
395__poll_t tcp_poll(struct file *file, struct socket *sock,
396 struct poll_table_struct *wait);
397int tcp_getsockopt(struct sock *sk, int level, int optname,
398 char __user *optval, int __user *optlen);
399int tcp_setsockopt(struct sock *sk, int level, int optname,
400 char __user *optval, unsigned int optlen);
401int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
402 char __user *optval, int __user *optlen);
403int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
404 char __user *optval, unsigned int optlen);
405void tcp_set_keepalive(struct sock *sk, int val);
406void tcp_syn_ack_timeout(const struct request_sock *req);
407int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
408 int flags, int *addr_len);
409int tcp_set_rcvlowat(struct sock *sk, int val);
410void tcp_data_ready(struct sock *sk);
411int tcp_mmap(struct file *file, struct socket *sock,
412 struct vm_area_struct *vma);
413void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
414 struct tcp_options_received *opt_rx,
415 int estab, struct tcp_fastopen_cookie *foc);
416const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
417
418/*
419 * TCP v4 functions exported for the inet6 API
420 */
421
422void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
423void tcp_v4_mtu_reduced(struct sock *sk);
424void tcp_req_err(struct sock *sk, u32 seq, bool abort);
425int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
426struct sock *tcp_create_openreq_child(const struct sock *sk,
427 struct request_sock *req,
428 struct sk_buff *skb);
429void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
430struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
431 struct request_sock *req,
432 struct dst_entry *dst,
433 struct request_sock *req_unhash,
434 bool *own_req);
435int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
436int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
437int tcp_connect(struct sock *sk);
438enum tcp_synack_type {
439 TCP_SYNACK_NORMAL,
440 TCP_SYNACK_FASTOPEN,
441 TCP_SYNACK_COOKIE,
442};
443struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
444 struct request_sock *req,
445 struct tcp_fastopen_cookie *foc,
446 enum tcp_synack_type synack_type);
447int tcp_disconnect(struct sock *sk, int flags);
448
449void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
450int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
451void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
452
453/* From syncookies.c */
454struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
455 struct request_sock *req,
456 struct dst_entry *dst, u32 tsoff);
457int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
458 u32 cookie);
459struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
460#ifdef CONFIG_SYN_COOKIES
461
462/* Syncookies use a monotonic timer which increments every 60 seconds.
463 * This counter is used both as a hash input and partially encoded into
464 * the cookie value. A cookie is only validated further if the delta
465 * between the current counter value and the encoded one is less than this,
466 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
467 * the counter advances immediately after a cookie is generated).
468 */
469#define MAX_SYNCOOKIE_AGE 2
470#define TCP_SYNCOOKIE_PERIOD (60 * HZ)
471#define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
472
473/* syncookies: remember time of last synqueue overflow
474 * But do not dirty this field too often (once per second is enough)
475 * It is racy as we do not hold a lock, but race is very minor.
476 */
477static inline void tcp_synq_overflow(const struct sock *sk)
478{
479 unsigned int last_overflow;
480 unsigned int now = jiffies;
481
482 if (sk->sk_reuseport) {
483 struct sock_reuseport *reuse;
484
485 reuse = rcu_dereference(sk->sk_reuseport_cb);
486 if (likely(reuse)) {
487 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
488 if (!time_between32(now, last_overflow,
489 last_overflow + HZ))
490 WRITE_ONCE(reuse->synq_overflow_ts, now);
491 return;
492 }
493 }
494
495 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
496 if (!time_between32(now, last_overflow, last_overflow + HZ))
497 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
498}
499
500/* syncookies: no recent synqueue overflow on this listening socket? */
501static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
502{
503 unsigned int last_overflow;
504 unsigned int now = jiffies;
505
506 if (sk->sk_reuseport) {
507 struct sock_reuseport *reuse;
508
509 reuse = rcu_dereference(sk->sk_reuseport_cb);
510 if (likely(reuse)) {
511 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
512 return !time_between32(now, last_overflow - HZ,
513 last_overflow +
514 TCP_SYNCOOKIE_VALID);
515 }
516 }
517
518 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
519
520 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
521 * then we're under synflood. However, we have to use
522 * 'last_overflow - HZ' as lower bound. That's because a concurrent
523 * tcp_synq_overflow() could update .ts_recent_stamp after we read
524 * jiffies but before we store .ts_recent_stamp into last_overflow,
525 * which could lead to rejecting a valid syncookie.
526 */
527 return !time_between32(now, last_overflow - HZ,
528 last_overflow + TCP_SYNCOOKIE_VALID);
529}
530
531static inline u32 tcp_cookie_time(void)
532{
533 u64 val = get_jiffies_64();
534
535 do_div(val, TCP_SYNCOOKIE_PERIOD);
536 return val;
537}
538
539u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
540 u16 *mssp);
541__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
542u64 cookie_init_timestamp(struct request_sock *req);
543bool cookie_timestamp_decode(const struct net *net,
544 struct tcp_options_received *opt);
545bool cookie_ecn_ok(const struct tcp_options_received *opt,
546 const struct net *net, const struct dst_entry *dst);
547
548/* From net/ipv6/syncookies.c */
549int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
550 u32 cookie);
551struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
552
553u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
554 const struct tcphdr *th, u16 *mssp);
555__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
556#endif
557/* tcp_output.c */
558
559void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
560 int nonagle);
561int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
562int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
563void tcp_retransmit_timer(struct sock *sk);
564void tcp_xmit_retransmit_queue(struct sock *);
565void tcp_simple_retransmit(struct sock *);
566void tcp_enter_recovery(struct sock *sk, bool ece_ack);
567int tcp_trim_head(struct sock *, struct sk_buff *, u32);
568enum tcp_queue {
569 TCP_FRAG_IN_WRITE_QUEUE,
570 TCP_FRAG_IN_RTX_QUEUE,
571};
572int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
573 struct sk_buff *skb, u32 len,
574 unsigned int mss_now, gfp_t gfp);
575
576void tcp_send_probe0(struct sock *);
577void tcp_send_partial(struct sock *);
578int tcp_write_wakeup(struct sock *, int mib);
579void tcp_send_fin(struct sock *sk);
580void tcp_send_active_reset(struct sock *sk, gfp_t priority);
581int tcp_send_synack(struct sock *);
582void tcp_push_one(struct sock *, unsigned int mss_now);
583void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
584void tcp_send_ack(struct sock *sk);
585void tcp_send_delayed_ack(struct sock *sk);
586void tcp_send_loss_probe(struct sock *sk);
587bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
588void tcp_skb_collapse_tstamp(struct sk_buff *skb,
589 const struct sk_buff *next_skb);
590
591/* tcp_input.c */
592void tcp_rearm_rto(struct sock *sk);
593void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
594void tcp_reset(struct sock *sk);
595void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
596void tcp_fin(struct sock *sk);
597
598/* tcp_timer.c */
599void tcp_init_xmit_timers(struct sock *);
600static inline void tcp_clear_xmit_timers(struct sock *sk)
601{
602 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
603 __sock_put(sk);
604
605 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
606 __sock_put(sk);
607
608 inet_csk_clear_xmit_timers(sk);
609}
610
611unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
612unsigned int tcp_current_mss(struct sock *sk);
613
614/* Bound MSS / TSO packet size with the half of the window */
615static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
616{
617 int cutoff;
618
619 /* When peer uses tiny windows, there is no use in packetizing
620 * to sub-MSS pieces for the sake of SWS or making sure there
621 * are enough packets in the pipe for fast recovery.
622 *
623 * On the other hand, for extremely large MSS devices, handling
624 * smaller than MSS windows in this way does make sense.
625 */
626 if (tp->max_window > TCP_MSS_DEFAULT)
627 cutoff = (tp->max_window >> 1);
628 else
629 cutoff = tp->max_window;
630
631 if (cutoff && pktsize > cutoff)
632 return max_t(int, cutoff, 68U - tp->tcp_header_len);
633 else
634 return pktsize;
635}
636
637/* tcp.c */
638void tcp_get_info(struct sock *, struct tcp_info *);
639
640/* Read 'sendfile()'-style from a TCP socket */
641int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
642 sk_read_actor_t recv_actor);
643
644void tcp_initialize_rcv_mss(struct sock *sk);
645
646int tcp_mtu_to_mss(struct sock *sk, int pmtu);
647int tcp_mss_to_mtu(struct sock *sk, int mss);
648void tcp_mtup_init(struct sock *sk);
649void tcp_init_buffer_space(struct sock *sk);
650
651static inline void tcp_bound_rto(const struct sock *sk)
652{
653 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
654 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
655}
656
657static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
658{
659 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
660}
661
662static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
663{
664 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
665 ntohl(TCP_FLAG_ACK) |
666 snd_wnd);
667}
668
669static inline void tcp_fast_path_on(struct tcp_sock *tp)
670{
671 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
672}
673
674static inline void tcp_fast_path_check(struct sock *sk)
675{
676 struct tcp_sock *tp = tcp_sk(sk);
677
678 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
679 tp->rcv_wnd &&
680 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
681 !tp->urg_data)
682 tcp_fast_path_on(tp);
683}
684
685/* Compute the actual rto_min value */
686static inline u32 tcp_rto_min(struct sock *sk)
687{
688 const struct dst_entry *dst = __sk_dst_get(sk);
689 u32 rto_min = TCP_RTO_MIN;
690
691 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
692 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
693 return rto_min;
694}
695
696static inline u32 tcp_rto_min_us(struct sock *sk)
697{
698 return jiffies_to_usecs(tcp_rto_min(sk));
699}
700
701static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
702{
703 return dst_metric_locked(dst, RTAX_CC_ALGO);
704}
705
706/* Minimum RTT in usec. ~0 means not available. */
707static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
708{
709 return minmax_get(&tp->rtt_min);
710}
711
712/* Compute the actual receive window we are currently advertising.
713 * Rcv_nxt can be after the window if our peer push more data
714 * than the offered window.
715 */
716static inline u32 tcp_receive_window(const struct tcp_sock *tp)
717{
718 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
719
720 if (win < 0)
721 win = 0;
722 return (u32) win;
723}
724
725/* Choose a new window, without checks for shrinking, and without
726 * scaling applied to the result. The caller does these things
727 * if necessary. This is a "raw" window selection.
728 */
729u32 __tcp_select_window(struct sock *sk);
730
731void tcp_send_window_probe(struct sock *sk);
732
733/* TCP uses 32bit jiffies to save some space.
734 * Note that this is different from tcp_time_stamp, which
735 * historically has been the same until linux-4.13.
736 */
737#define tcp_jiffies32 ((u32)jiffies)
738
739/*
740 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
741 * It is no longer tied to jiffies, but to 1 ms clock.
742 * Note: double check if you want to use tcp_jiffies32 instead of this.
743 */
744#define TCP_TS_HZ 1000
745
746static inline u64 tcp_clock_ns(void)
747{
748 return local_clock();
749}
750
751static inline u64 tcp_clock_us(void)
752{
753 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
754}
755
756/* This should only be used in contexts where tp->tcp_mstamp is up to date */
757static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
758{
759 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
760}
761
762/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
763static inline u32 tcp_time_stamp_raw(void)
764{
765 return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
766}
767
768
769/* Refresh 1us clock of a TCP socket,
770 * ensuring monotically increasing values.
771 */
772static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
773{
774 u64 val = tcp_clock_us();
775
776 if (val > tp->tcp_mstamp)
777 tp->tcp_mstamp = val;
778}
779
780static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
781{
782 return max_t(s64, t1 - t0, 0);
783}
784
785static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
786{
787 return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
788}
789
790
791#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
792
793#define TCPHDR_FIN 0x01
794#define TCPHDR_SYN 0x02
795#define TCPHDR_RST 0x04
796#define TCPHDR_PSH 0x08
797#define TCPHDR_ACK 0x10
798#define TCPHDR_URG 0x20
799#define TCPHDR_ECE 0x40
800#define TCPHDR_CWR 0x80
801
802#define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
803
804/* This is what the send packet queuing engine uses to pass
805 * TCP per-packet control information to the transmission code.
806 * We also store the host-order sequence numbers in here too.
807 * This is 44 bytes if IPV6 is enabled.
808 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
809 */
810struct tcp_skb_cb {
811 __u32 seq; /* Starting sequence number */
812 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
813 union {
814 /* Note : tcp_tw_isn is used in input path only
815 * (isn chosen by tcp_timewait_state_process())
816 *
817 * tcp_gso_segs/size are used in write queue only,
818 * cf tcp_skb_pcount()/tcp_skb_mss()
819 */
820 __u32 tcp_tw_isn;
821 struct {
822 u16 tcp_gso_segs;
823 u16 tcp_gso_size;
824 };
825 };
826 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
827
828 __u8 sacked; /* State flags for SACK. */
829#define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
830#define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
831#define TCPCB_LOST 0x04 /* SKB is lost */
832#define TCPCB_TAGBITS 0x07 /* All tag bits */
833#define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp) */
834#define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
835#define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
836 TCPCB_REPAIRED)
837
838 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
839 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
840 eor:1, /* Is skb MSG_EOR marked? */
841 has_rxtstamp:1, /* SKB has a RX timestamp */
842 unused:5;
843 __u32 ack_seq; /* Sequence number ACK'd */
844 union {
845 struct {
846 /* There is space for up to 24 bytes */
847 __u32 in_flight:30,/* Bytes in flight at transmit */
848 is_app_limited:1, /* cwnd not fully used? */
849 unused:1;
850 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
851 __u32 delivered;
852 /* start of send pipeline phase */
853 u64 first_tx_mstamp;
854 /* when we reached the "delivered" count */
855 u64 delivered_mstamp;
856 } tx; /* only used for outgoing skbs */
857 union {
858 struct inet_skb_parm h4;
859#if IS_ENABLED(CONFIG_IPV6)
860 struct inet6_skb_parm h6;
861#endif
862 } header; /* For incoming skbs */
863 struct {
864 __u32 flags;
865 struct sock *sk_redir;
866 void *data_end;
867 } bpf;
868 };
869};
870
871#define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
872
873static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
874{
875 TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
876}
877
878#if IS_ENABLED(CONFIG_IPV6)
879/* This is the variant of inet6_iif() that must be used by TCP,
880 * as TCP moves IP6CB into a different location in skb->cb[]
881 */
882static inline int tcp_v6_iif(const struct sk_buff *skb)
883{
884 return TCP_SKB_CB(skb)->header.h6.iif;
885}
886
887static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
888{
889 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
890
891 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
892}
893
894/* TCP_SKB_CB reference means this can not be used from early demux */
895static inline int tcp_v6_sdif(const struct sk_buff *skb)
896{
897#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
898 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
899 return TCP_SKB_CB(skb)->header.h6.iif;
900#endif
901 return 0;
902}
903#endif
904
905static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
906{
907#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
908 if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
909 skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
910 return true;
911#endif
912 return false;
913}
914
915/* TCP_SKB_CB reference means this can not be used from early demux */
916static inline int tcp_v4_sdif(struct sk_buff *skb)
917{
918#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
919 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
920 return TCP_SKB_CB(skb)->header.h4.iif;
921#endif
922 return 0;
923}
924
925/* Due to TSO, an SKB can be composed of multiple actual
926 * packets. To keep these tracked properly, we use this.
927 */
928static inline int tcp_skb_pcount(const struct sk_buff *skb)
929{
930 return TCP_SKB_CB(skb)->tcp_gso_segs;
931}
932
933static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
934{
935 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
936}
937
938static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
939{
940 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
941}
942
943/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
944static inline int tcp_skb_mss(const struct sk_buff *skb)
945{
946 return TCP_SKB_CB(skb)->tcp_gso_size;
947}
948
949static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
950{
951 return likely(!TCP_SKB_CB(skb)->eor);
952}
953
954/* Events passed to congestion control interface */
955enum tcp_ca_event {
956 CA_EVENT_TX_START, /* first transmit when no packets in flight */
957 CA_EVENT_CWND_RESTART, /* congestion window restart */
958 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
959 CA_EVENT_LOSS, /* loss timeout */
960 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
961 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
962};
963
964/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
965enum tcp_ca_ack_event_flags {
966 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
967 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
968 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
969};
970
971/*
972 * Interface for adding new TCP congestion control handlers
973 */
974#define TCP_CA_NAME_MAX 16
975#define TCP_CA_MAX 128
976#define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
977
978#define TCP_CA_UNSPEC 0
979
980/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
981#define TCP_CONG_NON_RESTRICTED 0x1
982/* Requires ECN/ECT set on all packets */
983#define TCP_CONG_NEEDS_ECN 0x2
984
985union tcp_cc_info;
986
987struct ack_sample {
988 u32 pkts_acked;
989 s32 rtt_us;
990 u32 in_flight;
991};
992
993/* A rate sample measures the number of (original/retransmitted) data
994 * packets delivered "delivered" over an interval of time "interval_us".
995 * The tcp_rate.c code fills in the rate sample, and congestion
996 * control modules that define a cong_control function to run at the end
997 * of ACK processing can optionally chose to consult this sample when
998 * setting cwnd and pacing rate.
999 * A sample is invalid if "delivered" or "interval_us" is negative.
1000 */
1001struct rate_sample {
1002 u64 prior_mstamp; /* starting timestamp for interval */
1003 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1004 s32 delivered; /* number of packets delivered over interval */
1005 long interval_us; /* time for tp->delivered to incr "delivered" */
1006 u32 snd_interval_us; /* snd interval for delivered packets */
1007 u32 rcv_interval_us; /* rcv interval for delivered packets */
1008 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1009 int losses; /* number of packets marked lost upon ACK */
1010 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1011 u32 prior_in_flight; /* in flight before this ACK */
1012 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1013 bool is_retrans; /* is sample from retransmission? */
1014 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1015};
1016
1017struct tcp_congestion_ops {
1018 struct list_head list;
1019 u32 key;
1020 u32 flags;
1021
1022 /* initialize private data (optional) */
1023 void (*init)(struct sock *sk);
1024 /* cleanup private data (optional) */
1025 void (*release)(struct sock *sk);
1026
1027 /* return slow start threshold (required) */
1028 u32 (*ssthresh)(struct sock *sk);
1029 /* do new cwnd calculation (required) */
1030 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1031 /* call before changing ca_state (optional) */
1032 void (*set_state)(struct sock *sk, u8 new_state);
1033 /* call when cwnd event occurs (optional) */
1034 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1035 /* call when ack arrives (optional) */
1036 void (*in_ack_event)(struct sock *sk, u32 flags);
1037 /* new value of cwnd after loss (required) */
1038 u32 (*undo_cwnd)(struct sock *sk);
1039 /* hook for packet ack accounting (optional) */
1040 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1041 /* override sysctl_tcp_min_tso_segs */
1042 u32 (*min_tso_segs)(struct sock *sk);
1043 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1044 u32 (*sndbuf_expand)(struct sock *sk);
1045 /* call when packets are delivered to update cwnd and pacing rate,
1046 * after all the ca_state processing. (optional)
1047 */
1048 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1049 /* get info for inet_diag (optional) */
1050 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1051 union tcp_cc_info *info);
1052
1053 char name[TCP_CA_NAME_MAX];
1054 struct module *owner;
1055};
1056
1057int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1058void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1059
1060void tcp_assign_congestion_control(struct sock *sk);
1061void tcp_init_congestion_control(struct sock *sk);
1062void tcp_cleanup_congestion_control(struct sock *sk);
1063int tcp_set_default_congestion_control(struct net *net, const char *name);
1064void tcp_get_default_congestion_control(struct net *net, char *name);
1065void tcp_get_available_congestion_control(char *buf, size_t len);
1066void tcp_get_allowed_congestion_control(char *buf, size_t len);
1067int tcp_set_allowed_congestion_control(char *allowed);
1068int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1069 bool reinit, bool cap_net_admin);
1070u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1071void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1072
1073u32 tcp_reno_ssthresh(struct sock *sk);
1074u32 tcp_reno_undo_cwnd(struct sock *sk);
1075void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1076extern struct tcp_congestion_ops tcp_reno;
1077
1078struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1079u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1080#ifdef CONFIG_INET
1081char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1082#else
1083static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1084{
1085 return NULL;
1086}
1087#endif
1088
1089static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1090{
1091 const struct inet_connection_sock *icsk = inet_csk(sk);
1092
1093 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1094}
1095
1096static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1097{
1098 struct inet_connection_sock *icsk = inet_csk(sk);
1099
1100 if (icsk->icsk_ca_ops->set_state)
1101 icsk->icsk_ca_ops->set_state(sk, ca_state);
1102 icsk->icsk_ca_state = ca_state;
1103}
1104
1105static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1106{
1107 const struct inet_connection_sock *icsk = inet_csk(sk);
1108
1109 if (icsk->icsk_ca_ops->cwnd_event)
1110 icsk->icsk_ca_ops->cwnd_event(sk, event);
1111}
1112
1113/* From tcp_rate.c */
1114void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1115void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1116 struct rate_sample *rs);
1117void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1118 bool is_sack_reneg, struct rate_sample *rs);
1119void tcp_rate_check_app_limited(struct sock *sk);
1120
1121/* These functions determine how the current flow behaves in respect of SACK
1122 * handling. SACK is negotiated with the peer, and therefore it can vary
1123 * between different flows.
1124 *
1125 * tcp_is_sack - SACK enabled
1126 * tcp_is_reno - No SACK
1127 */
1128static inline int tcp_is_sack(const struct tcp_sock *tp)
1129{
1130 return tp->rx_opt.sack_ok;
1131}
1132
1133static inline bool tcp_is_reno(const struct tcp_sock *tp)
1134{
1135 return !tcp_is_sack(tp);
1136}
1137
1138static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1139{
1140 return tp->sacked_out + tp->lost_out;
1141}
1142
1143/* This determines how many packets are "in the network" to the best
1144 * of our knowledge. In many cases it is conservative, but where
1145 * detailed information is available from the receiver (via SACK
1146 * blocks etc.) we can make more aggressive calculations.
1147 *
1148 * Use this for decisions involving congestion control, use just
1149 * tp->packets_out to determine if the send queue is empty or not.
1150 *
1151 * Read this equation as:
1152 *
1153 * "Packets sent once on transmission queue" MINUS
1154 * "Packets left network, but not honestly ACKed yet" PLUS
1155 * "Packets fast retransmitted"
1156 */
1157static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1158{
1159 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1160}
1161
1162#define TCP_INFINITE_SSTHRESH 0x7fffffff
1163
1164static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1165{
1166 return tp->snd_cwnd < tp->snd_ssthresh;
1167}
1168
1169static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1170{
1171 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1172}
1173
1174static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1175{
1176 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1177 (1 << inet_csk(sk)->icsk_ca_state);
1178}
1179
1180/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1181 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1182 * ssthresh.
1183 */
1184static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1185{
1186 const struct tcp_sock *tp = tcp_sk(sk);
1187
1188 if (tcp_in_cwnd_reduction(sk))
1189 return tp->snd_ssthresh;
1190 else
1191 return max(tp->snd_ssthresh,
1192 ((tp->snd_cwnd >> 1) +
1193 (tp->snd_cwnd >> 2)));
1194}
1195
1196/* Use define here intentionally to get WARN_ON location shown at the caller */
1197#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1198
1199void tcp_enter_cwr(struct sock *sk);
1200__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1201
1202/* The maximum number of MSS of available cwnd for which TSO defers
1203 * sending if not using sysctl_tcp_tso_win_divisor.
1204 */
1205static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1206{
1207 return 3;
1208}
1209
1210/* Returns end sequence number of the receiver's advertised window */
1211static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1212{
1213 return tp->snd_una + tp->snd_wnd;
1214}
1215
1216/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1217 * flexible approach. The RFC suggests cwnd should not be raised unless
1218 * it was fully used previously. And that's exactly what we do in
1219 * congestion avoidance mode. But in slow start we allow cwnd to grow
1220 * as long as the application has used half the cwnd.
1221 * Example :
1222 * cwnd is 10 (IW10), but application sends 9 frames.
1223 * We allow cwnd to reach 18 when all frames are ACKed.
1224 * This check is safe because it's as aggressive as slow start which already
1225 * risks 100% overshoot. The advantage is that we discourage application to
1226 * either send more filler packets or data to artificially blow up the cwnd
1227 * usage, and allow application-limited process to probe bw more aggressively.
1228 */
1229static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1230{
1231 const struct tcp_sock *tp = tcp_sk(sk);
1232
1233 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1234 if (tcp_in_slow_start(tp))
1235 return tp->snd_cwnd < 2 * tp->max_packets_out;
1236
1237 return tp->is_cwnd_limited;
1238}
1239
1240/* BBR congestion control needs pacing.
1241 * Same remark for SO_MAX_PACING_RATE.
1242 * sch_fq packet scheduler is efficiently handling pacing,
1243 * but is not always installed/used.
1244 * Return true if TCP stack should pace packets itself.
1245 */
1246static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1247{
1248 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1249}
1250
1251/* Something is really bad, we could not queue an additional packet,
1252 * because qdisc is full or receiver sent a 0 window.
1253 * We do not want to add fuel to the fire, or abort too early,
1254 * so make sure the timer we arm now is at least 200ms in the future,
1255 * regardless of current icsk_rto value (as it could be ~2ms)
1256 */
1257static inline unsigned long tcp_probe0_base(const struct sock *sk)
1258{
1259 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1260}
1261
1262/* Variant of inet_csk_rto_backoff() used for zero window probes */
1263static inline unsigned long tcp_probe0_when(const struct sock *sk,
1264 unsigned long max_when)
1265{
1266 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1267
1268 return (unsigned long)min_t(u64, when, max_when);
1269}
1270
1271static inline void tcp_check_probe_timer(struct sock *sk)
1272{
1273 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1274 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1275 tcp_probe0_base(sk), TCP_RTO_MAX);
1276}
1277
1278static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1279{
1280 tp->snd_wl1 = seq;
1281}
1282
1283static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1284{
1285 tp->snd_wl1 = seq;
1286}
1287
1288/*
1289 * Calculate(/check) TCP checksum
1290 */
1291static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1292 __be32 daddr, __wsum base)
1293{
1294 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1295}
1296
1297static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1298{
1299 return __skb_checksum_complete(skb);
1300}
1301
1302static inline bool tcp_checksum_complete(struct sk_buff *skb)
1303{
1304 return !skb_csum_unnecessary(skb) &&
1305 __tcp_checksum_complete(skb);
1306}
1307
1308bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1309int tcp_filter(struct sock *sk, struct sk_buff *skb);
1310
1311#undef STATE_TRACE
1312
1313#ifdef STATE_TRACE
1314static const char *statename[]={
1315 "Unused","Established","Syn Sent","Syn Recv",
1316 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1317 "Close Wait","Last ACK","Listen","Closing"
1318};
1319#endif
1320void tcp_set_state(struct sock *sk, int state);
1321
1322void tcp_done(struct sock *sk);
1323
1324int tcp_abort(struct sock *sk, int err);
1325
1326static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1327{
1328 rx_opt->dsack = 0;
1329 rx_opt->num_sacks = 0;
1330}
1331
1332u32 tcp_default_init_rwnd(u32 mss);
1333void tcp_cwnd_restart(struct sock *sk, s32 delta);
1334
1335static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1336{
1337 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1338 struct tcp_sock *tp = tcp_sk(sk);
1339 s32 delta;
1340
1341 if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1342 ca_ops->cong_control)
1343 return;
1344 delta = tcp_jiffies32 - tp->lsndtime;
1345 if (delta > inet_csk(sk)->icsk_rto)
1346 tcp_cwnd_restart(sk, delta);
1347}
1348
1349/* Determine a window scaling and initial window to offer. */
1350void tcp_select_initial_window(const struct sock *sk, int __space,
1351 __u32 mss, __u32 *rcv_wnd,
1352 __u32 *window_clamp, int wscale_ok,
1353 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1354
1355static inline int tcp_win_from_space(const struct sock *sk, int space)
1356{
1357 int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1358
1359 return tcp_adv_win_scale <= 0 ?
1360 (space>>(-tcp_adv_win_scale)) :
1361 space - (space>>tcp_adv_win_scale);
1362}
1363
1364/* Note: caller must be prepared to deal with negative returns */
1365static inline int tcp_space(const struct sock *sk)
1366{
1367 return tcp_win_from_space(sk, sk->sk_rcvbuf - sk->sk_backlog.len -
1368 atomic_read(&sk->sk_rmem_alloc));
1369}
1370
1371static inline int tcp_full_space(const struct sock *sk)
1372{
1373 return tcp_win_from_space(sk, sk->sk_rcvbuf);
1374}
1375
1376extern void tcp_openreq_init_rwin(struct request_sock *req,
1377 const struct sock *sk_listener,
1378 const struct dst_entry *dst);
1379
1380void tcp_enter_memory_pressure(struct sock *sk);
1381void tcp_leave_memory_pressure(struct sock *sk);
1382
1383static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1384{
1385 struct net *net = sock_net((struct sock *)tp);
1386
1387 return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1388}
1389
1390static inline int keepalive_time_when(const struct tcp_sock *tp)
1391{
1392 struct net *net = sock_net((struct sock *)tp);
1393
1394 return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1395}
1396
1397static inline int keepalive_probes(const struct tcp_sock *tp)
1398{
1399 struct net *net = sock_net((struct sock *)tp);
1400
1401 return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1402}
1403
1404static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1405{
1406 const struct inet_connection_sock *icsk = &tp->inet_conn;
1407
1408 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1409 tcp_jiffies32 - tp->rcv_tstamp);
1410}
1411
1412static inline int tcp_fin_time(const struct sock *sk)
1413{
1414 int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1415 const int rto = inet_csk(sk)->icsk_rto;
1416
1417 if (fin_timeout < (rto << 2) - (rto >> 1))
1418 fin_timeout = (rto << 2) - (rto >> 1);
1419
1420 return fin_timeout;
1421}
1422
1423static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1424 int paws_win)
1425{
1426 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1427 return true;
1428 if (unlikely(!time_before32(ktime_get_seconds(),
1429 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1430 return true;
1431 /*
1432 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1433 * then following tcp messages have valid values. Ignore 0 value,
1434 * or else 'negative' tsval might forbid us to accept their packets.
1435 */
1436 if (!rx_opt->ts_recent)
1437 return true;
1438 return false;
1439}
1440
1441static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1442 int rst)
1443{
1444 if (tcp_paws_check(rx_opt, 0))
1445 return false;
1446
1447 /* RST segments are not recommended to carry timestamp,
1448 and, if they do, it is recommended to ignore PAWS because
1449 "their cleanup function should take precedence over timestamps."
1450 Certainly, it is mistake. It is necessary to understand the reasons
1451 of this constraint to relax it: if peer reboots, clock may go
1452 out-of-sync and half-open connections will not be reset.
1453 Actually, the problem would be not existing if all
1454 the implementations followed draft about maintaining clock
1455 via reboots. Linux-2.2 DOES NOT!
1456
1457 However, we can relax time bounds for RST segments to MSL.
1458 */
1459 if (rst && !time_before32(ktime_get_seconds(),
1460 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1461 return false;
1462 return true;
1463}
1464
1465bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1466 int mib_idx, u32 *last_oow_ack_time);
1467
1468static inline void tcp_mib_init(struct net *net)
1469{
1470 /* See RFC 2012 */
1471 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1472 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1473 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1474 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1475}
1476
1477/* from STCP */
1478static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1479{
1480 tp->lost_skb_hint = NULL;
1481}
1482
1483static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1484{
1485 tcp_clear_retrans_hints_partial(tp);
1486 tp->retransmit_skb_hint = NULL;
1487}
1488
1489union tcp_md5_addr {
1490 struct in_addr a4;
1491#if IS_ENABLED(CONFIG_IPV6)
1492 struct in6_addr a6;
1493#endif
1494};
1495
1496/* - key database */
1497struct tcp_md5sig_key {
1498 struct hlist_node node;
1499 u8 keylen;
1500 u8 family; /* AF_INET or AF_INET6 */
1501 union tcp_md5_addr addr;
1502 u8 prefixlen;
1503 u8 key[TCP_MD5SIG_MAXKEYLEN];
1504 struct rcu_head rcu;
1505};
1506
1507/* - sock block */
1508struct tcp_md5sig_info {
1509 struct hlist_head head;
1510 struct rcu_head rcu;
1511};
1512
1513/* - pseudo header */
1514struct tcp4_pseudohdr {
1515 __be32 saddr;
1516 __be32 daddr;
1517 __u8 pad;
1518 __u8 protocol;
1519 __be16 len;
1520};
1521
1522struct tcp6_pseudohdr {
1523 struct in6_addr saddr;
1524 struct in6_addr daddr;
1525 __be32 len;
1526 __be32 protocol; /* including padding */
1527};
1528
1529union tcp_md5sum_block {
1530 struct tcp4_pseudohdr ip4;
1531#if IS_ENABLED(CONFIG_IPV6)
1532 struct tcp6_pseudohdr ip6;
1533#endif
1534};
1535
1536/* - pool: digest algorithm, hash description and scratch buffer */
1537struct tcp_md5sig_pool {
1538 struct ahash_request *md5_req;
1539 void *scratch;
1540};
1541
1542/* - functions */
1543int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1544 const struct sock *sk, const struct sk_buff *skb);
1545int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1546 int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1547 gfp_t gfp);
1548int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1549 int family, u8 prefixlen);
1550struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1551 const struct sock *addr_sk);
1552
1553#ifdef CONFIG_TCP_MD5SIG
1554struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1555 const union tcp_md5_addr *addr,
1556 int family);
1557#define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1558#else
1559static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1560 const union tcp_md5_addr *addr,
1561 int family)
1562{
1563 return NULL;
1564}
1565#define tcp_twsk_md5_key(twsk) NULL
1566#endif
1567
1568bool tcp_alloc_md5sig_pool(void);
1569
1570struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1571static inline void tcp_put_md5sig_pool(void)
1572{
1573 local_bh_enable();
1574}
1575
1576int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1577 unsigned int header_len);
1578int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1579 const struct tcp_md5sig_key *key);
1580
1581/* From tcp_fastopen.c */
1582void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1583 struct tcp_fastopen_cookie *cookie);
1584void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1585 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1586 u16 try_exp);
1587struct tcp_fastopen_request {
1588 /* Fast Open cookie. Size 0 means a cookie request */
1589 struct tcp_fastopen_cookie cookie;
1590 struct msghdr *data; /* data in MSG_FASTOPEN */
1591 size_t size;
1592 int copied; /* queued in tcp_connect() */
1593};
1594void tcp_free_fastopen_req(struct tcp_sock *tp);
1595void tcp_fastopen_destroy_cipher(struct sock *sk);
1596void tcp_fastopen_ctx_destroy(struct net *net);
1597int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1598 void *key, unsigned int len);
1599void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1600struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1601 struct request_sock *req,
1602 struct tcp_fastopen_cookie *foc,
1603 const struct dst_entry *dst);
1604void tcp_fastopen_init_key_once(struct net *net);
1605bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1606 struct tcp_fastopen_cookie *cookie);
1607bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1608#define TCP_FASTOPEN_KEY_LENGTH 16
1609
1610/* Fastopen key context */
1611struct tcp_fastopen_context {
1612 struct crypto_cipher *tfm;
1613 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
1614 struct rcu_head rcu;
1615};
1616
1617extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1618void tcp_fastopen_active_disable(struct sock *sk);
1619bool tcp_fastopen_active_should_disable(struct sock *sk);
1620void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1621void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1622
1623/* Latencies incurred by various limits for a sender. They are
1624 * chronograph-like stats that are mutually exclusive.
1625 */
1626enum tcp_chrono {
1627 TCP_CHRONO_UNSPEC,
1628 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1629 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1630 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1631 __TCP_CHRONO_MAX,
1632};
1633
1634void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1635void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1636
1637/* This helper is needed, because skb->tcp_tsorted_anchor uses
1638 * the same memory storage than skb->destructor/_skb_refdst
1639 */
1640static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1641{
1642 skb->destructor = NULL;
1643 skb->_skb_refdst = 0UL;
1644}
1645
1646#define tcp_skb_tsorted_save(skb) { \
1647 unsigned long _save = skb->_skb_refdst; \
1648 skb->_skb_refdst = 0UL;
1649
1650#define tcp_skb_tsorted_restore(skb) \
1651 skb->_skb_refdst = _save; \
1652}
1653
1654void tcp_write_queue_purge(struct sock *sk);
1655
1656static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1657{
1658 return skb_rb_first(&sk->tcp_rtx_queue);
1659}
1660
1661static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1662{
1663 return skb_rb_last(&sk->tcp_rtx_queue);
1664}
1665
1666static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1667{
1668 return skb_peek(&sk->sk_write_queue);
1669}
1670
1671static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1672{
1673 return skb_peek_tail(&sk->sk_write_queue);
1674}
1675
1676#define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1677 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1678
1679static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1680{
1681 return skb_peek(&sk->sk_write_queue);
1682}
1683
1684static inline bool tcp_skb_is_last(const struct sock *sk,
1685 const struct sk_buff *skb)
1686{
1687 return skb_queue_is_last(&sk->sk_write_queue, skb);
1688}
1689
1690static inline bool tcp_write_queue_empty(const struct sock *sk)
1691{
1692 return skb_queue_empty(&sk->sk_write_queue);
1693}
1694
1695static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1696{
1697 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1698}
1699
1700static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1701{
1702 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1703}
1704
1705static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1706{
1707 if (tcp_write_queue_empty(sk))
1708 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1709}
1710
1711static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1712{
1713 __skb_queue_tail(&sk->sk_write_queue, skb);
1714}
1715
1716static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1717{
1718 __tcp_add_write_queue_tail(sk, skb);
1719
1720 /* Queue it, remembering where we must start sending. */
1721 if (sk->sk_write_queue.next == skb)
1722 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1723}
1724
1725/* Insert new before skb on the write queue of sk. */
1726static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1727 struct sk_buff *skb,
1728 struct sock *sk)
1729{
1730 __skb_queue_before(&sk->sk_write_queue, skb, new);
1731}
1732
1733static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1734{
1735 tcp_skb_tsorted_anchor_cleanup(skb);
1736 __skb_unlink(skb, &sk->sk_write_queue);
1737}
1738
1739void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1740
1741static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1742{
1743 tcp_skb_tsorted_anchor_cleanup(skb);
1744 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1745}
1746
1747static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1748{
1749 list_del(&skb->tcp_tsorted_anchor);
1750 tcp_rtx_queue_unlink(skb, sk);
1751 sk_wmem_free_skb(sk, skb);
1752}
1753
1754static inline void tcp_push_pending_frames(struct sock *sk)
1755{
1756 if (tcp_send_head(sk)) {
1757 struct tcp_sock *tp = tcp_sk(sk);
1758
1759 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1760 }
1761}
1762
1763/* Start sequence of the skb just after the highest skb with SACKed
1764 * bit, valid only if sacked_out > 0 or when the caller has ensured
1765 * validity by itself.
1766 */
1767static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1768{
1769 if (!tp->sacked_out)
1770 return tp->snd_una;
1771
1772 if (tp->highest_sack == NULL)
1773 return tp->snd_nxt;
1774
1775 return TCP_SKB_CB(tp->highest_sack)->seq;
1776}
1777
1778static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1779{
1780 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1781}
1782
1783static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1784{
1785 return tcp_sk(sk)->highest_sack;
1786}
1787
1788static inline void tcp_highest_sack_reset(struct sock *sk)
1789{
1790 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1791}
1792
1793/* Called when old skb is about to be deleted and replaced by new skb */
1794static inline void tcp_highest_sack_replace(struct sock *sk,
1795 struct sk_buff *old,
1796 struct sk_buff *new)
1797{
1798 if (old == tcp_highest_sack(sk))
1799 tcp_sk(sk)->highest_sack = new;
1800}
1801
1802/* This helper checks if socket has IP_TRANSPARENT set */
1803static inline bool inet_sk_transparent(const struct sock *sk)
1804{
1805 switch (sk->sk_state) {
1806 case TCP_TIME_WAIT:
1807 return inet_twsk(sk)->tw_transparent;
1808 case TCP_NEW_SYN_RECV:
1809 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1810 }
1811 return inet_sk(sk)->transparent;
1812}
1813
1814/* Determines whether this is a thin stream (which may suffer from
1815 * increased latency). Used to trigger latency-reducing mechanisms.
1816 */
1817static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1818{
1819 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1820}
1821
1822/* /proc */
1823enum tcp_seq_states {
1824 TCP_SEQ_STATE_LISTENING,
1825 TCP_SEQ_STATE_ESTABLISHED,
1826};
1827
1828void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1829void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1830void tcp_seq_stop(struct seq_file *seq, void *v);
1831
1832struct tcp_seq_afinfo {
1833 sa_family_t family;
1834};
1835
1836struct tcp_iter_state {
1837 struct seq_net_private p;
1838 enum tcp_seq_states state;
1839 struct sock *syn_wait_sk;
1840 int bucket, offset, sbucket, num;
1841 loff_t last_pos;
1842};
1843
1844extern struct request_sock_ops tcp_request_sock_ops;
1845extern struct request_sock_ops tcp6_request_sock_ops;
1846
1847void tcp_v4_destroy_sock(struct sock *sk);
1848
1849struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1850 netdev_features_t features);
1851struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1852int tcp_gro_complete(struct sk_buff *skb);
1853
1854void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1855
1856static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1857{
1858 struct net *net = sock_net((struct sock *)tp);
1859 return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1860}
1861
1862static inline bool tcp_stream_memory_free(const struct sock *sk)
1863{
1864 const struct tcp_sock *tp = tcp_sk(sk);
1865 u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1866
1867 return notsent_bytes < tcp_notsent_lowat(tp);
1868}
1869
1870#ifdef CONFIG_PROC_FS
1871int tcp4_proc_init(void);
1872void tcp4_proc_exit(void);
1873#endif
1874
1875int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1876int tcp_conn_request(struct request_sock_ops *rsk_ops,
1877 const struct tcp_request_sock_ops *af_ops,
1878 struct sock *sk, struct sk_buff *skb);
1879
1880/* TCP af-specific functions */
1881struct tcp_sock_af_ops {
1882#ifdef CONFIG_TCP_MD5SIG
1883 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
1884 const struct sock *addr_sk);
1885 int (*calc_md5_hash)(char *location,
1886 const struct tcp_md5sig_key *md5,
1887 const struct sock *sk,
1888 const struct sk_buff *skb);
1889 int (*md5_parse)(struct sock *sk,
1890 int optname,
1891 char __user *optval,
1892 int optlen);
1893#endif
1894};
1895
1896struct tcp_request_sock_ops {
1897 u16 mss_clamp;
1898#ifdef CONFIG_TCP_MD5SIG
1899 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1900 const struct sock *addr_sk);
1901 int (*calc_md5_hash) (char *location,
1902 const struct tcp_md5sig_key *md5,
1903 const struct sock *sk,
1904 const struct sk_buff *skb);
1905#endif
1906 void (*init_req)(struct request_sock *req,
1907 const struct sock *sk_listener,
1908 struct sk_buff *skb);
1909#ifdef CONFIG_SYN_COOKIES
1910 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
1911 __u16 *mss);
1912#endif
1913 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1914 const struct request_sock *req);
1915 u32 (*init_seq)(const struct sk_buff *skb);
1916 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1917 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1918 struct flowi *fl, struct request_sock *req,
1919 struct tcp_fastopen_cookie *foc,
1920 enum tcp_synack_type synack_type);
1921};
1922
1923#ifdef CONFIG_SYN_COOKIES
1924static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1925 const struct sock *sk, struct sk_buff *skb,
1926 __u16 *mss)
1927{
1928 tcp_synq_overflow(sk);
1929 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1930 return ops->cookie_init_seq(skb, mss);
1931}
1932#else
1933static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1934 const struct sock *sk, struct sk_buff *skb,
1935 __u16 *mss)
1936{
1937 return 0;
1938}
1939#endif
1940
1941int tcpv4_offload_init(void);
1942
1943void tcp_v4_init(void);
1944void tcp_init(void);
1945
1946/* tcp_recovery.c */
1947void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
1948void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
1949extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
1950 u32 reo_wnd);
1951extern void tcp_rack_mark_lost(struct sock *sk);
1952extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1953 u64 xmit_time);
1954extern void tcp_rack_reo_timeout(struct sock *sk);
1955extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
1956
1957/* At how many usecs into the future should the RTO fire? */
1958static inline s64 tcp_rto_delta_us(const struct sock *sk)
1959{
1960 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
1961 u32 rto = inet_csk(sk)->icsk_rto;
1962 u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1963
1964 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1965}
1966
1967/*
1968 * Save and compile IPv4 options, return a pointer to it
1969 */
1970static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1971 struct sk_buff *skb)
1972{
1973 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1974 struct ip_options_rcu *dopt = NULL;
1975
1976 if (opt->optlen) {
1977 int opt_size = sizeof(*dopt) + opt->optlen;
1978
1979 dopt = kmalloc(opt_size, GFP_ATOMIC);
1980 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
1981 kfree(dopt);
1982 dopt = NULL;
1983 }
1984 }
1985 return dopt;
1986}
1987
1988/* locally generated TCP pure ACKs have skb->truesize == 2
1989 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1990 * This is much faster than dissecting the packet to find out.
1991 * (Think of GRE encapsulations, IPv4, IPv6, ...)
1992 */
1993static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1994{
1995 return skb->truesize == 2;
1996}
1997
1998static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1999{
2000 skb->truesize = 2;
2001}
2002
2003static inline int tcp_inq(struct sock *sk)
2004{
2005 struct tcp_sock *tp = tcp_sk(sk);
2006 int answ;
2007
2008 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2009 answ = 0;
2010 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2011 !tp->urg_data ||
2012 before(tp->urg_seq, tp->copied_seq) ||
2013 !before(tp->urg_seq, tp->rcv_nxt)) {
2014
2015 answ = tp->rcv_nxt - tp->copied_seq;
2016
2017 /* Subtract 1, if FIN was received */
2018 if (answ && sock_flag(sk, SOCK_DONE))
2019 answ--;
2020 } else {
2021 answ = tp->urg_seq - tp->copied_seq;
2022 }
2023
2024 return answ;
2025}
2026
2027int tcp_peek_len(struct socket *sock);
2028
2029static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2030{
2031 u16 segs_in;
2032
2033 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2034 tp->segs_in += segs_in;
2035 if (skb->len > tcp_hdrlen(skb))
2036 tp->data_segs_in += segs_in;
2037}
2038
2039/*
2040 * TCP listen path runs lockless.
2041 * We forced "struct sock" to be const qualified to make sure
2042 * we don't modify one of its field by mistake.
2043 * Here, we increment sk_drops which is an atomic_t, so we can safely
2044 * make sock writable again.
2045 */
2046static inline void tcp_listendrop(const struct sock *sk)
2047{
2048 atomic_inc(&((struct sock *)sk)->sk_drops);
2049 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2050}
2051
2052enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2053
2054/*
2055 * Interface for adding Upper Level Protocols over TCP
2056 */
2057
2058#define TCP_ULP_NAME_MAX 16
2059#define TCP_ULP_MAX 128
2060#define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2061
2062enum {
2063 TCP_ULP_TLS,
2064 TCP_ULP_BPF,
2065};
2066
2067struct tcp_ulp_ops {
2068 struct list_head list;
2069
2070 /* initialize ulp */
2071 int (*init)(struct sock *sk);
2072 /* cleanup ulp */
2073 void (*release)(struct sock *sk);
2074
2075 int uid;
2076 char name[TCP_ULP_NAME_MAX];
2077 bool user_visible;
2078 struct module *owner;
2079};
2080int tcp_register_ulp(struct tcp_ulp_ops *type);
2081void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2082int tcp_set_ulp(struct sock *sk, const char *name);
2083int tcp_set_ulp_id(struct sock *sk, const int ulp);
2084void tcp_get_available_ulp(char *buf, size_t len);
2085void tcp_cleanup_ulp(struct sock *sk);
2086
2087#define MODULE_ALIAS_TCP_ULP(name) \
2088 __MODULE_INFO(alias, alias_userspace, name); \
2089 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2090
2091/* Call BPF_SOCK_OPS program that returns an int. If the return value
2092 * is < 0, then the BPF op failed (for example if the loaded BPF
2093 * program does not support the chosen operation or there is no BPF
2094 * program loaded).
2095 */
2096#ifdef CONFIG_BPF
2097static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2098{
2099 struct bpf_sock_ops_kern sock_ops;
2100 int ret;
2101
2102 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2103 if (sk_fullsock(sk)) {
2104 sock_ops.is_fullsock = 1;
2105 sock_owned_by_me(sk);
2106 }
2107
2108 sock_ops.sk = sk;
2109 sock_ops.op = op;
2110 if (nargs > 0)
2111 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2112
2113 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2114 if (ret == 0)
2115 ret = sock_ops.reply;
2116 else
2117 ret = -1;
2118 return ret;
2119}
2120
2121static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2122{
2123 u32 args[2] = {arg1, arg2};
2124
2125 return tcp_call_bpf(sk, op, 2, args);
2126}
2127
2128static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2129 u32 arg3)
2130{
2131 u32 args[3] = {arg1, arg2, arg3};
2132
2133 return tcp_call_bpf(sk, op, 3, args);
2134}
2135
2136#else
2137static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2138{
2139 return -EPERM;
2140}
2141
2142static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2143{
2144 return -EPERM;
2145}
2146
2147static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2148 u32 arg3)
2149{
2150 return -EPERM;
2151}
2152
2153#endif
2154
2155static inline u32 tcp_timeout_init(struct sock *sk)
2156{
2157 int timeout;
2158
2159 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2160
2161 if (timeout <= 0)
2162 timeout = TCP_TIMEOUT_INIT;
2163 return timeout;
2164}
2165
2166static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2167{
2168 int rwnd;
2169
2170 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2171
2172 if (rwnd < 0)
2173 rwnd = 0;
2174 return rwnd;
2175}
2176
2177static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2178{
2179 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2180}
2181
2182#if IS_ENABLED(CONFIG_SMC)
2183extern struct static_key_false tcp_have_smc;
2184#endif
2185
2186#if IS_ENABLED(CONFIG_TLS_DEVICE)
2187void clean_acked_data_enable(struct inet_connection_sock *icsk,
2188 void (*cad)(struct sock *sk, u32 ack_seq));
2189void clean_acked_data_disable(struct inet_connection_sock *icsk);
2190
2191#endif
2192
2193#endif /* _TCP_H */