blob: 0a613e0ef3bf9908c38575cb1137c700dd61aefd [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2 *
3 * This software is available to you under a choice of one of two
4 * licenses. You may choose to be licensed under the terms of the GNU
5 * General Public License (GPL) Version 2, available from the file
6 * COPYING in the main directory of this source tree, or the
7 * OpenIB.org BSD license below:
8 *
9 * Redistribution and use in source and binary forms, with or
10 * without modification, are permitted provided that the following
11 * conditions are met:
12 *
13 * - Redistributions of source code must retain the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer.
16 *
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31
32#include <crypto/aead.h>
33#include <linux/highmem.h>
34#include <linux/module.h>
35#include <linux/netdevice.h>
36#include <net/dst.h>
37#include <net/inet_connection_sock.h>
38#include <net/tcp.h>
39#include <net/tls.h>
40
41/* device_offload_lock is used to synchronize tls_dev_add
42 * against NETDEV_DOWN notifications.
43 */
44static DECLARE_RWSEM(device_offload_lock);
45
46static void tls_device_gc_task(struct work_struct *work);
47
48static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
49static LIST_HEAD(tls_device_gc_list);
50static LIST_HEAD(tls_device_list);
51static DEFINE_SPINLOCK(tls_device_lock);
52
53static void tls_device_free_ctx(struct tls_context *ctx)
54{
55 if (ctx->tx_conf == TLS_HW) {
56 kfree(tls_offload_ctx_tx(ctx));
57 kfree(ctx->tx.rec_seq);
58 kfree(ctx->tx.iv);
59 }
60
61 if (ctx->rx_conf == TLS_HW)
62 kfree(tls_offload_ctx_rx(ctx));
63
64 tls_ctx_free(ctx);
65}
66
67static void tls_device_gc_task(struct work_struct *work)
68{
69 struct tls_context *ctx, *tmp;
70 unsigned long flags;
71 LIST_HEAD(gc_list);
72
73 spin_lock_irqsave(&tls_device_lock, flags);
74 list_splice_init(&tls_device_gc_list, &gc_list);
75 spin_unlock_irqrestore(&tls_device_lock, flags);
76
77 list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
78 struct net_device *netdev = ctx->netdev;
79
80 if (netdev && ctx->tx_conf == TLS_HW) {
81 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
82 TLS_OFFLOAD_CTX_DIR_TX);
83 dev_put(netdev);
84 ctx->netdev = NULL;
85 }
86
87 list_del(&ctx->list);
88 tls_device_free_ctx(ctx);
89 }
90}
91
92static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
93 struct net_device *netdev)
94{
95 if (sk->sk_destruct != tls_device_sk_destruct) {
96 refcount_set(&ctx->refcount, 1);
97 dev_hold(netdev);
98 ctx->netdev = netdev;
99 spin_lock_irq(&tls_device_lock);
100 list_add_tail(&ctx->list, &tls_device_list);
101 spin_unlock_irq(&tls_device_lock);
102
103 ctx->sk_destruct = sk->sk_destruct;
104 sk->sk_destruct = tls_device_sk_destruct;
105 }
106}
107
108static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
109{
110 unsigned long flags;
111
112 spin_lock_irqsave(&tls_device_lock, flags);
113 list_move_tail(&ctx->list, &tls_device_gc_list);
114
115 /* schedule_work inside the spinlock
116 * to make sure tls_device_down waits for that work.
117 */
118 schedule_work(&tls_device_gc_work);
119
120 spin_unlock_irqrestore(&tls_device_lock, flags);
121}
122
123/* We assume that the socket is already connected */
124static struct net_device *get_netdev_for_sock(struct sock *sk)
125{
126 struct dst_entry *dst = sk_dst_get(sk);
127 struct net_device *netdev = NULL;
128
129 if (likely(dst)) {
130 netdev = dst->dev;
131 dev_hold(netdev);
132 }
133
134 dst_release(dst);
135
136 return netdev;
137}
138
139static void destroy_record(struct tls_record_info *record)
140{
141 int nr_frags = record->num_frags;
142 skb_frag_t *frag;
143
144 while (nr_frags-- > 0) {
145 frag = &record->frags[nr_frags];
146 __skb_frag_unref(frag);
147 }
148 kfree(record);
149}
150
151static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
152{
153 struct tls_record_info *info, *temp;
154
155 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
156 list_del(&info->list);
157 destroy_record(info);
158 }
159
160 offload_ctx->retransmit_hint = NULL;
161}
162
163static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
164{
165 struct tls_context *tls_ctx = tls_get_ctx(sk);
166 struct tls_record_info *info, *temp;
167 struct tls_offload_context_tx *ctx;
168 u64 deleted_records = 0;
169 unsigned long flags;
170
171 if (!tls_ctx)
172 return;
173
174 ctx = tls_offload_ctx_tx(tls_ctx);
175
176 spin_lock_irqsave(&ctx->lock, flags);
177 info = ctx->retransmit_hint;
178 if (info && !before(acked_seq, info->end_seq)) {
179 ctx->retransmit_hint = NULL;
180 list_del(&info->list);
181 destroy_record(info);
182 deleted_records++;
183 }
184
185 list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
186 if (before(acked_seq, info->end_seq))
187 break;
188 list_del(&info->list);
189
190 destroy_record(info);
191 deleted_records++;
192 }
193
194 ctx->unacked_record_sn += deleted_records;
195 spin_unlock_irqrestore(&ctx->lock, flags);
196}
197
198/* At this point, there should be no references on this
199 * socket and no in-flight SKBs associated with this
200 * socket, so it is safe to free all the resources.
201 */
202void tls_device_sk_destruct(struct sock *sk)
203{
204 struct tls_context *tls_ctx = tls_get_ctx(sk);
205 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
206
207 tls_ctx->sk_destruct(sk);
208
209 if (tls_ctx->tx_conf == TLS_HW) {
210 if (ctx->open_record)
211 destroy_record(ctx->open_record);
212 delete_all_records(ctx);
213 crypto_free_aead(ctx->aead_send);
214 clean_acked_data_disable(inet_csk(sk));
215 }
216
217 if (refcount_dec_and_test(&tls_ctx->refcount))
218 tls_device_queue_ctx_destruction(tls_ctx);
219}
220EXPORT_SYMBOL(tls_device_sk_destruct);
221
222static void tls_append_frag(struct tls_record_info *record,
223 struct page_frag *pfrag,
224 int size)
225{
226 skb_frag_t *frag;
227
228 frag = &record->frags[record->num_frags - 1];
229 if (frag->page.p == pfrag->page &&
230 frag->page_offset + frag->size == pfrag->offset) {
231 frag->size += size;
232 } else {
233 ++frag;
234 frag->page.p = pfrag->page;
235 frag->page_offset = pfrag->offset;
236 frag->size = size;
237 ++record->num_frags;
238 get_page(pfrag->page);
239 }
240
241 pfrag->offset += size;
242 record->len += size;
243}
244
245static int tls_push_record(struct sock *sk,
246 struct tls_context *ctx,
247 struct tls_offload_context_tx *offload_ctx,
248 struct tls_record_info *record,
249 struct page_frag *pfrag,
250 int flags,
251 unsigned char record_type)
252{
253 struct tcp_sock *tp = tcp_sk(sk);
254 struct page_frag dummy_tag_frag;
255 skb_frag_t *frag;
256 int i;
257
258 /* fill prepend */
259 frag = &record->frags[0];
260 tls_fill_prepend(ctx,
261 skb_frag_address(frag),
262 record->len - ctx->tx.prepend_size,
263 record_type);
264
265 /* HW doesn't care about the data in the tag, because it fills it. */
266 dummy_tag_frag.page = skb_frag_page(frag);
267 dummy_tag_frag.offset = 0;
268
269 tls_append_frag(record, &dummy_tag_frag, ctx->tx.tag_size);
270 record->end_seq = tp->write_seq + record->len;
271 spin_lock_irq(&offload_ctx->lock);
272 list_add_tail(&record->list, &offload_ctx->records_list);
273 spin_unlock_irq(&offload_ctx->lock);
274 offload_ctx->open_record = NULL;
275 set_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
276 tls_advance_record_sn(sk, &ctx->tx);
277
278 for (i = 0; i < record->num_frags; i++) {
279 frag = &record->frags[i];
280 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
281 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
282 frag->size, frag->page_offset);
283 sk_mem_charge(sk, frag->size);
284 get_page(skb_frag_page(frag));
285 }
286 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
287
288 /* all ready, send */
289 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
290}
291
292static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
293 struct page_frag *pfrag,
294 size_t prepend_size)
295{
296 struct tls_record_info *record;
297 skb_frag_t *frag;
298
299 record = kmalloc(sizeof(*record), GFP_KERNEL);
300 if (!record)
301 return -ENOMEM;
302
303 frag = &record->frags[0];
304 __skb_frag_set_page(frag, pfrag->page);
305 frag->page_offset = pfrag->offset;
306 skb_frag_size_set(frag, prepend_size);
307
308 get_page(pfrag->page);
309 pfrag->offset += prepend_size;
310
311 record->num_frags = 1;
312 record->len = prepend_size;
313 offload_ctx->open_record = record;
314 return 0;
315}
316
317static int tls_do_allocation(struct sock *sk,
318 struct tls_offload_context_tx *offload_ctx,
319 struct page_frag *pfrag,
320 size_t prepend_size)
321{
322 int ret;
323
324 if (!offload_ctx->open_record) {
325 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
326 sk->sk_allocation))) {
327 sk->sk_prot->enter_memory_pressure(sk);
328 sk_stream_moderate_sndbuf(sk);
329 return -ENOMEM;
330 }
331
332 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
333 if (ret)
334 return ret;
335
336 if (pfrag->size > pfrag->offset)
337 return 0;
338 }
339
340 if (!sk_page_frag_refill(sk, pfrag))
341 return -ENOMEM;
342
343 return 0;
344}
345
346static int tls_push_data(struct sock *sk,
347 struct iov_iter *msg_iter,
348 size_t size, int flags,
349 unsigned char record_type)
350{
351 struct tls_context *tls_ctx = tls_get_ctx(sk);
352 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
353 int tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
354 int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
355 struct tls_record_info *record = ctx->open_record;
356 struct page_frag *pfrag;
357 size_t orig_size = size;
358 u32 max_open_record_len;
359 int copy, rc = 0;
360 bool done = false;
361 long timeo;
362
363 if (flags &
364 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
365 return -ENOTSUPP;
366
367 if (sk->sk_err)
368 return -sk->sk_err;
369
370 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
371 rc = tls_complete_pending_work(sk, tls_ctx, flags, &timeo);
372 if (rc < 0)
373 return rc;
374
375 pfrag = sk_page_frag(sk);
376
377 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
378 * we need to leave room for an authentication tag.
379 */
380 max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
381 tls_ctx->tx.prepend_size;
382 do {
383 rc = tls_do_allocation(sk, ctx, pfrag,
384 tls_ctx->tx.prepend_size);
385 if (rc) {
386 rc = sk_stream_wait_memory(sk, &timeo);
387 if (!rc)
388 continue;
389
390 record = ctx->open_record;
391 if (!record)
392 break;
393handle_error:
394 if (record_type != TLS_RECORD_TYPE_DATA) {
395 /* avoid sending partial
396 * record with type !=
397 * application_data
398 */
399 size = orig_size;
400 destroy_record(record);
401 ctx->open_record = NULL;
402 } else if (record->len > tls_ctx->tx.prepend_size) {
403 goto last_record;
404 }
405
406 break;
407 }
408
409 record = ctx->open_record;
410 copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
411 copy = min_t(size_t, copy, (max_open_record_len - record->len));
412
413 if (copy_from_iter_nocache(page_address(pfrag->page) +
414 pfrag->offset,
415 copy, msg_iter) != copy) {
416 rc = -EFAULT;
417 goto handle_error;
418 }
419 tls_append_frag(record, pfrag, copy);
420
421 size -= copy;
422 if (!size) {
423last_record:
424 tls_push_record_flags = flags;
425 if (more) {
426 tls_ctx->pending_open_record_frags =
427 record->num_frags;
428 break;
429 }
430
431 done = true;
432 }
433
434 if (done || record->len >= max_open_record_len ||
435 (record->num_frags >= MAX_SKB_FRAGS - 1)) {
436 rc = tls_push_record(sk,
437 tls_ctx,
438 ctx,
439 record,
440 pfrag,
441 tls_push_record_flags,
442 record_type);
443 if (rc < 0)
444 break;
445 }
446 } while (!done);
447
448 if (orig_size - size > 0)
449 rc = orig_size - size;
450
451 return rc;
452}
453
454int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
455{
456 unsigned char record_type = TLS_RECORD_TYPE_DATA;
457 int rc;
458
459 lock_sock(sk);
460
461 if (unlikely(msg->msg_controllen)) {
462 rc = tls_proccess_cmsg(sk, msg, &record_type);
463 if (rc)
464 goto out;
465 }
466
467 rc = tls_push_data(sk, &msg->msg_iter, size,
468 msg->msg_flags, record_type);
469
470out:
471 release_sock(sk);
472 return rc;
473}
474
475int tls_device_sendpage(struct sock *sk, struct page *page,
476 int offset, size_t size, int flags)
477{
478 struct iov_iter msg_iter;
479 char *kaddr = kmap(page);
480 struct kvec iov;
481 int rc;
482
483 if (flags & MSG_SENDPAGE_NOTLAST)
484 flags |= MSG_MORE;
485
486 lock_sock(sk);
487
488 if (flags & MSG_OOB) {
489 rc = -ENOTSUPP;
490 goto out;
491 }
492
493 iov.iov_base = kaddr + offset;
494 iov.iov_len = size;
495 iov_iter_kvec(&msg_iter, WRITE | ITER_KVEC, &iov, 1, size);
496 rc = tls_push_data(sk, &msg_iter, size,
497 flags, TLS_RECORD_TYPE_DATA);
498 kunmap(page);
499
500out:
501 release_sock(sk);
502 return rc;
503}
504
505struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
506 u32 seq, u64 *p_record_sn)
507{
508 u64 record_sn = context->hint_record_sn;
509 struct tls_record_info *info;
510
511 info = context->retransmit_hint;
512 if (!info ||
513 before(seq, info->end_seq - info->len)) {
514 /* if retransmit_hint is irrelevant start
515 * from the beggining of the list
516 */
517 info = list_first_entry(&context->records_list,
518 struct tls_record_info, list);
519 record_sn = context->unacked_record_sn;
520 }
521
522 list_for_each_entry_from(info, &context->records_list, list) {
523 if (before(seq, info->end_seq)) {
524 if (!context->retransmit_hint ||
525 after(info->end_seq,
526 context->retransmit_hint->end_seq)) {
527 context->hint_record_sn = record_sn;
528 context->retransmit_hint = info;
529 }
530 *p_record_sn = record_sn;
531 return info;
532 }
533 record_sn++;
534 }
535
536 return NULL;
537}
538EXPORT_SYMBOL(tls_get_record);
539
540static int tls_device_push_pending_record(struct sock *sk, int flags)
541{
542 struct iov_iter msg_iter;
543
544 iov_iter_kvec(&msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
545 return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
546}
547
548static void tls_device_resync_rx(struct tls_context *tls_ctx,
549 struct sock *sk, u32 seq, u64 rcd_sn)
550{
551 struct net_device *netdev;
552
553 if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
554 return;
555 netdev = READ_ONCE(tls_ctx->netdev);
556 if (netdev)
557 netdev->tlsdev_ops->tls_dev_resync_rx(netdev, sk, seq, rcd_sn);
558 clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
559}
560
561void handle_device_resync(struct sock *sk, u32 seq, u64 rcd_sn)
562{
563 struct tls_context *tls_ctx = tls_get_ctx(sk);
564 struct tls_offload_context_rx *rx_ctx;
565 u32 is_req_pending;
566 s64 resync_req;
567 u32 req_seq;
568
569 if (tls_ctx->rx_conf != TLS_HW)
570 return;
571
572 rx_ctx = tls_offload_ctx_rx(tls_ctx);
573 resync_req = atomic64_read(&rx_ctx->resync_req);
574 req_seq = ntohl(resync_req >> 32) - ((u32)TLS_HEADER_SIZE - 1);
575 is_req_pending = resync_req;
576
577 if (unlikely(is_req_pending) && req_seq == seq &&
578 atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0)) {
579 seq += TLS_HEADER_SIZE - 1;
580 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
581 }
582}
583
584static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
585{
586 struct strp_msg *rxm = strp_msg(skb);
587 int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
588 struct sk_buff *skb_iter, *unused;
589 struct scatterlist sg[1];
590 char *orig_buf, *buf;
591
592 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
593 TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
594 if (!orig_buf)
595 return -ENOMEM;
596 buf = orig_buf;
597
598 nsg = skb_cow_data(skb, 0, &unused);
599 if (unlikely(nsg < 0)) {
600 err = nsg;
601 goto free_buf;
602 }
603
604 sg_init_table(sg, 1);
605 sg_set_buf(&sg[0], buf,
606 rxm->full_len + TLS_HEADER_SIZE +
607 TLS_CIPHER_AES_GCM_128_IV_SIZE);
608 skb_copy_bits(skb, offset, buf,
609 TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
610
611 /* We are interested only in the decrypted data not the auth */
612 err = decrypt_skb(sk, skb, sg);
613 if (err != -EBADMSG)
614 goto free_buf;
615 else
616 err = 0;
617
618 data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
619
620 if (skb_pagelen(skb) > offset) {
621 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
622
623 if (skb->decrypted)
624 skb_store_bits(skb, offset, buf, copy);
625
626 offset += copy;
627 buf += copy;
628 }
629
630 pos = skb_pagelen(skb);
631 skb_walk_frags(skb, skb_iter) {
632 int frag_pos;
633
634 /* Practically all frags must belong to msg if reencrypt
635 * is needed with current strparser and coalescing logic,
636 * but strparser may "get optimized", so let's be safe.
637 */
638 if (pos + skb_iter->len <= offset)
639 goto done_with_frag;
640 if (pos >= data_len + rxm->offset)
641 break;
642
643 frag_pos = offset - pos;
644 copy = min_t(int, skb_iter->len - frag_pos,
645 data_len + rxm->offset - offset);
646
647 if (skb_iter->decrypted)
648 skb_store_bits(skb_iter, frag_pos, buf, copy);
649
650 offset += copy;
651 buf += copy;
652done_with_frag:
653 pos += skb_iter->len;
654 }
655
656free_buf:
657 kfree(orig_buf);
658 return err;
659}
660
661int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
662{
663 struct tls_context *tls_ctx = tls_get_ctx(sk);
664 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
665 int is_decrypted = skb->decrypted;
666 int is_encrypted = !is_decrypted;
667 struct sk_buff *skb_iter;
668
669 /* Skip if it is already decrypted */
670 if (ctx->sw.decrypted)
671 return 0;
672
673 /* Check if all the data is decrypted already */
674 skb_walk_frags(skb, skb_iter) {
675 is_decrypted &= skb_iter->decrypted;
676 is_encrypted &= !skb_iter->decrypted;
677 }
678
679 ctx->sw.decrypted |= is_decrypted;
680
681 /* Return immedeatly if the record is either entirely plaintext or
682 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
683 * record.
684 */
685 return (is_encrypted || is_decrypted) ? 0 :
686 tls_device_reencrypt(sk, skb);
687}
688
689int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
690{
691 u16 nonce_size, tag_size, iv_size, rec_seq_size;
692 struct tls_record_info *start_marker_record;
693 struct tls_offload_context_tx *offload_ctx;
694 struct tls_crypto_info *crypto_info;
695 struct net_device *netdev;
696 char *iv, *rec_seq;
697 struct sk_buff *skb;
698 int rc = -EINVAL;
699 __be64 rcd_sn;
700
701 if (!ctx)
702 goto out;
703
704 if (ctx->priv_ctx_tx) {
705 rc = -EEXIST;
706 goto out;
707 }
708
709 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
710 if (!start_marker_record) {
711 rc = -ENOMEM;
712 goto out;
713 }
714
715 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
716 if (!offload_ctx) {
717 rc = -ENOMEM;
718 goto free_marker_record;
719 }
720
721 crypto_info = &ctx->crypto_send.info;
722 switch (crypto_info->cipher_type) {
723 case TLS_CIPHER_AES_GCM_128:
724 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
725 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
726 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
727 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
728 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
729 rec_seq =
730 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
731 break;
732 default:
733 rc = -EINVAL;
734 goto free_offload_ctx;
735 }
736
737 ctx->tx.prepend_size = TLS_HEADER_SIZE + nonce_size;
738 ctx->tx.tag_size = tag_size;
739 ctx->tx.overhead_size = ctx->tx.prepend_size + ctx->tx.tag_size;
740 ctx->tx.iv_size = iv_size;
741 ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
742 GFP_KERNEL);
743 if (!ctx->tx.iv) {
744 rc = -ENOMEM;
745 goto free_offload_ctx;
746 }
747
748 memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
749
750 ctx->tx.rec_seq_size = rec_seq_size;
751 ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
752 if (!ctx->tx.rec_seq) {
753 rc = -ENOMEM;
754 goto free_iv;
755 }
756
757 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
758 if (rc)
759 goto free_rec_seq;
760
761 /* start at rec_seq - 1 to account for the start marker record */
762 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
763 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
764
765 start_marker_record->end_seq = tcp_sk(sk)->write_seq;
766 start_marker_record->len = 0;
767 start_marker_record->num_frags = 0;
768
769 INIT_LIST_HEAD(&offload_ctx->records_list);
770 list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
771 spin_lock_init(&offload_ctx->lock);
772 sg_init_table(offload_ctx->sg_tx_data,
773 ARRAY_SIZE(offload_ctx->sg_tx_data));
774
775 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
776 ctx->push_pending_record = tls_device_push_pending_record;
777
778 /* TLS offload is greatly simplified if we don't send
779 * SKBs where only part of the payload needs to be encrypted.
780 * So mark the last skb in the write queue as end of record.
781 */
782 skb = tcp_write_queue_tail(sk);
783 if (skb)
784 TCP_SKB_CB(skb)->eor = 1;
785
786 /* We support starting offload on multiple sockets
787 * concurrently, so we only need a read lock here.
788 * This lock must precede get_netdev_for_sock to prevent races between
789 * NETDEV_DOWN and setsockopt.
790 */
791 down_read(&device_offload_lock);
792 netdev = get_netdev_for_sock(sk);
793 if (!netdev) {
794 pr_err_ratelimited("%s: netdev not found\n", __func__);
795 rc = -EINVAL;
796 goto release_lock;
797 }
798
799 if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
800 rc = -ENOTSUPP;
801 goto release_netdev;
802 }
803
804 /* Avoid offloading if the device is down
805 * We don't want to offload new flows after
806 * the NETDEV_DOWN event
807 */
808 if (!(netdev->flags & IFF_UP)) {
809 rc = -EINVAL;
810 goto release_netdev;
811 }
812
813 ctx->priv_ctx_tx = offload_ctx;
814 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
815 &ctx->crypto_send.info,
816 tcp_sk(sk)->write_seq);
817 if (rc)
818 goto release_netdev;
819
820 tls_device_attach(ctx, sk, netdev);
821
822 /* following this assignment tls_is_sk_tx_device_offloaded
823 * will return true and the context might be accessed
824 * by the netdev's xmit function.
825 */
826 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
827 dev_put(netdev);
828 up_read(&device_offload_lock);
829 goto out;
830
831release_netdev:
832 dev_put(netdev);
833release_lock:
834 up_read(&device_offload_lock);
835 clean_acked_data_disable(inet_csk(sk));
836 crypto_free_aead(offload_ctx->aead_send);
837free_rec_seq:
838 kfree(ctx->tx.rec_seq);
839free_iv:
840 kfree(ctx->tx.iv);
841free_offload_ctx:
842 kfree(offload_ctx);
843 ctx->priv_ctx_tx = NULL;
844free_marker_record:
845 kfree(start_marker_record);
846out:
847 return rc;
848}
849
850int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
851{
852 struct tls_offload_context_rx *context;
853 struct net_device *netdev;
854 int rc = 0;
855
856 /* We support starting offload on multiple sockets
857 * concurrently, so we only need a read lock here.
858 * This lock must precede get_netdev_for_sock to prevent races between
859 * NETDEV_DOWN and setsockopt.
860 */
861 down_read(&device_offload_lock);
862 netdev = get_netdev_for_sock(sk);
863 if (!netdev) {
864 pr_err_ratelimited("%s: netdev not found\n", __func__);
865 rc = -EINVAL;
866 goto release_lock;
867 }
868
869 if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
870 pr_err_ratelimited("%s: netdev %s with no TLS offload\n",
871 __func__, netdev->name);
872 rc = -ENOTSUPP;
873 goto release_netdev;
874 }
875
876 /* Avoid offloading if the device is down
877 * We don't want to offload new flows after
878 * the NETDEV_DOWN event
879 */
880 if (!(netdev->flags & IFF_UP)) {
881 rc = -EINVAL;
882 goto release_netdev;
883 }
884
885 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
886 if (!context) {
887 rc = -ENOMEM;
888 goto release_netdev;
889 }
890
891 ctx->priv_ctx_rx = context;
892 rc = tls_set_sw_offload(sk, ctx, 0);
893 if (rc)
894 goto release_ctx;
895
896 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
897 &ctx->crypto_recv.info,
898 tcp_sk(sk)->copied_seq);
899 if (rc) {
900 pr_err_ratelimited("%s: The netdev has refused to offload this socket\n",
901 __func__);
902 goto free_sw_resources;
903 }
904
905 tls_device_attach(ctx, sk, netdev);
906 goto release_netdev;
907
908free_sw_resources:
909 up_read(&device_offload_lock);
910 tls_sw_free_resources_rx(sk);
911 down_read(&device_offload_lock);
912release_ctx:
913 ctx->priv_ctx_rx = NULL;
914release_netdev:
915 dev_put(netdev);
916release_lock:
917 up_read(&device_offload_lock);
918 return rc;
919}
920
921void tls_device_offload_cleanup_rx(struct sock *sk)
922{
923 struct tls_context *tls_ctx = tls_get_ctx(sk);
924 struct net_device *netdev;
925
926 down_read(&device_offload_lock);
927 netdev = tls_ctx->netdev;
928 if (!netdev)
929 goto out;
930
931 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
932 TLS_OFFLOAD_CTX_DIR_RX);
933
934 if (tls_ctx->tx_conf != TLS_HW) {
935 dev_put(netdev);
936 tls_ctx->netdev = NULL;
937 }
938out:
939 up_read(&device_offload_lock);
940 tls_sw_release_resources_rx(sk);
941}
942
943static int tls_device_down(struct net_device *netdev)
944{
945 struct tls_context *ctx, *tmp;
946 unsigned long flags;
947 LIST_HEAD(list);
948
949 /* Request a write lock to block new offload attempts */
950 down_write(&device_offload_lock);
951
952 spin_lock_irqsave(&tls_device_lock, flags);
953 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
954 if (ctx->netdev != netdev ||
955 !refcount_inc_not_zero(&ctx->refcount))
956 continue;
957
958 list_move(&ctx->list, &list);
959 }
960 spin_unlock_irqrestore(&tls_device_lock, flags);
961
962 list_for_each_entry_safe(ctx, tmp, &list, list) {
963 if (ctx->tx_conf == TLS_HW)
964 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
965 TLS_OFFLOAD_CTX_DIR_TX);
966 if (ctx->rx_conf == TLS_HW)
967 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
968 TLS_OFFLOAD_CTX_DIR_RX);
969 WRITE_ONCE(ctx->netdev, NULL);
970 smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
971 while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
972 usleep_range(10, 200);
973 dev_put(netdev);
974 list_del_init(&ctx->list);
975
976 if (refcount_dec_and_test(&ctx->refcount))
977 tls_device_free_ctx(ctx);
978 }
979
980 up_write(&device_offload_lock);
981
982 flush_work(&tls_device_gc_work);
983
984 return NOTIFY_DONE;
985}
986
987static int tls_dev_event(struct notifier_block *this, unsigned long event,
988 void *ptr)
989{
990 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
991
992 if (!dev->tlsdev_ops &&
993 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
994 return NOTIFY_DONE;
995
996 switch (event) {
997 case NETDEV_REGISTER:
998 case NETDEV_FEAT_CHANGE:
999 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1000 !dev->tlsdev_ops->tls_dev_resync_rx)
1001 return NOTIFY_BAD;
1002
1003 if (dev->tlsdev_ops &&
1004 dev->tlsdev_ops->tls_dev_add &&
1005 dev->tlsdev_ops->tls_dev_del)
1006 return NOTIFY_DONE;
1007 else
1008 return NOTIFY_BAD;
1009 case NETDEV_DOWN:
1010 return tls_device_down(dev);
1011 }
1012 return NOTIFY_DONE;
1013}
1014
1015static struct notifier_block tls_dev_notifier = {
1016 .notifier_call = tls_dev_event,
1017};
1018
1019void __init tls_device_init(void)
1020{
1021 register_netdevice_notifier(&tls_dev_notifier);
1022}
1023
1024void __exit tls_device_cleanup(void)
1025{
1026 unregister_netdevice_notifier(&tls_dev_notifier);
1027 flush_work(&tls_device_gc_work);
1028}