blob: afdf55ad85cb872c728ea693ae5985690e013b2a [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20#include <linux/module.h>
21#include <linux/time.h>
22#include <linux/errno.h>
23#include <linux/stat.h>
24#include <linux/fcntl.h>
25#include <linux/string.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/mm.h>
29#include <linux/sunrpc/clnt.h>
30#include <linux/nfs_fs.h>
31#include <linux/nfs_mount.h>
32#include <linux/pagemap.h>
33#include <linux/pagevec.h>
34#include <linux/namei.h>
35#include <linux/mount.h>
36#include <linux/swap.h>
37#include <linux/sched.h>
38#include <linux/kmemleak.h>
39#include <linux/xattr.h>
40
41#include "delegation.h"
42#include "iostat.h"
43#include "internal.h"
44#include "fscache.h"
45
46#include "nfstrace.h"
47
48/* #define NFS_DEBUG_VERBOSE 1 */
49
50static int nfs_opendir(struct inode *, struct file *);
51static int nfs_closedir(struct inode *, struct file *);
52static int nfs_readdir(struct file *, struct dir_context *);
53static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55static void nfs_readdir_clear_array(struct page*);
56
57const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
64};
65
66const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
68};
69
70static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71{
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
85 }
86 return ERR_PTR(-ENOMEM);
87}
88
89static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90{
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
96}
97
98/*
99 * Open file
100 */
101static int
102nfs_opendir(struct inode *inode, struct file *filp)
103{
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
107
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
119 }
120 filp->private_data = ctx;
121out:
122 put_rpccred(cred);
123 return res;
124}
125
126static int
127nfs_closedir(struct inode *inode, struct file *filp)
128{
129 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130 return 0;
131}
132
133struct nfs_cache_array_entry {
134 u64 cookie;
135 u64 ino;
136 struct qstr string;
137 unsigned char d_type;
138};
139
140struct nfs_cache_array {
141 int size;
142 int eof_index;
143 u64 last_cookie;
144 struct nfs_cache_array_entry array[0];
145};
146
147typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, bool);
148typedef struct {
149 struct file *file;
150 struct page *page;
151 struct dir_context *ctx;
152 unsigned long page_index;
153 u64 *dir_cookie;
154 u64 last_cookie;
155 loff_t current_index;
156 decode_dirent_t decode;
157
158 unsigned long timestamp;
159 unsigned long gencount;
160 unsigned int cache_entry_index;
161 bool plus;
162 bool eof;
163} nfs_readdir_descriptor_t;
164
165/*
166 * we are freeing strings created by nfs_add_to_readdir_array()
167 */
168static
169void nfs_readdir_clear_array(struct page *page)
170{
171 struct nfs_cache_array *array;
172 int i;
173
174 array = kmap_atomic(page);
175 for (i = 0; i < array->size; i++)
176 kfree(array->array[i].string.name);
177 kunmap_atomic(array);
178}
179
180/*
181 * the caller is responsible for freeing qstr.name
182 * when called by nfs_readdir_add_to_array, the strings will be freed in
183 * nfs_clear_readdir_array()
184 */
185static
186int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
187{
188 string->len = len;
189 string->name = kmemdup(name, len, GFP_KERNEL);
190 if (string->name == NULL)
191 return -ENOMEM;
192 /*
193 * Avoid a kmemleak false positive. The pointer to the name is stored
194 * in a page cache page which kmemleak does not scan.
195 */
196 kmemleak_not_leak(string->name);
197 string->hash = full_name_hash(NULL, name, len);
198 return 0;
199}
200
201static
202int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
203{
204 struct nfs_cache_array *array = kmap(page);
205 struct nfs_cache_array_entry *cache_entry;
206 int ret;
207
208 cache_entry = &array->array[array->size];
209
210 /* Check that this entry lies within the page bounds */
211 ret = -ENOSPC;
212 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
213 goto out;
214
215 cache_entry->cookie = entry->prev_cookie;
216 cache_entry->ino = entry->ino;
217 cache_entry->d_type = entry->d_type;
218 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
219 if (ret)
220 goto out;
221 array->last_cookie = entry->cookie;
222 array->size++;
223 if (entry->eof != 0)
224 array->eof_index = array->size;
225out:
226 kunmap(page);
227 return ret;
228}
229
230static
231int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
232{
233 loff_t diff = desc->ctx->pos - desc->current_index;
234 unsigned int index;
235
236 if (diff < 0)
237 goto out_eof;
238 if (diff >= array->size) {
239 if (array->eof_index >= 0)
240 goto out_eof;
241 return -EAGAIN;
242 }
243
244 index = (unsigned int)diff;
245 *desc->dir_cookie = array->array[index].cookie;
246 desc->cache_entry_index = index;
247 return 0;
248out_eof:
249 desc->eof = true;
250 return -EBADCOOKIE;
251}
252
253static bool
254nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
255{
256 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
257 return false;
258 smp_rmb();
259 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
260}
261
262static
263int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
264{
265 int i;
266 loff_t new_pos;
267 int status = -EAGAIN;
268
269 for (i = 0; i < array->size; i++) {
270 if (array->array[i].cookie == *desc->dir_cookie) {
271 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
272 struct nfs_open_dir_context *ctx = desc->file->private_data;
273
274 new_pos = desc->current_index + i;
275 if (ctx->attr_gencount != nfsi->attr_gencount ||
276 !nfs_readdir_inode_mapping_valid(nfsi)) {
277 ctx->duped = 0;
278 ctx->attr_gencount = nfsi->attr_gencount;
279 } else if (new_pos < desc->ctx->pos) {
280 if (ctx->duped > 0
281 && ctx->dup_cookie == *desc->dir_cookie) {
282 if (printk_ratelimit()) {
283 pr_notice("NFS: directory %pD2 contains a readdir loop."
284 "Please contact your server vendor. "
285 "The file: %.*s has duplicate cookie %llu\n",
286 desc->file, array->array[i].string.len,
287 array->array[i].string.name, *desc->dir_cookie);
288 }
289 status = -ELOOP;
290 goto out;
291 }
292 ctx->dup_cookie = *desc->dir_cookie;
293 ctx->duped = -1;
294 }
295 desc->ctx->pos = new_pos;
296 desc->cache_entry_index = i;
297 return 0;
298 }
299 }
300 if (array->eof_index >= 0) {
301 status = -EBADCOOKIE;
302 if (*desc->dir_cookie == array->last_cookie)
303 desc->eof = true;
304 }
305out:
306 return status;
307}
308
309static
310int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
311{
312 struct nfs_cache_array *array;
313 int status;
314
315 array = kmap(desc->page);
316
317 if (*desc->dir_cookie == 0)
318 status = nfs_readdir_search_for_pos(array, desc);
319 else
320 status = nfs_readdir_search_for_cookie(array, desc);
321
322 if (status == -EAGAIN) {
323 desc->last_cookie = array->last_cookie;
324 desc->current_index += array->size;
325 desc->page_index++;
326 }
327 kunmap(desc->page);
328 return status;
329}
330
331/* Fill a page with xdr information before transferring to the cache page */
332static
333int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
334 struct nfs_entry *entry, struct file *file, struct inode *inode)
335{
336 struct nfs_open_dir_context *ctx = file->private_data;
337 struct rpc_cred *cred = ctx->cred;
338 unsigned long timestamp, gencount;
339 int error;
340
341 again:
342 timestamp = jiffies;
343 gencount = nfs_inc_attr_generation_counter();
344 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
345 NFS_SERVER(inode)->dtsize, desc->plus);
346 if (error < 0) {
347 /* We requested READDIRPLUS, but the server doesn't grok it */
348 if (error == -ENOTSUPP && desc->plus) {
349 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
350 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
351 desc->plus = false;
352 goto again;
353 }
354 goto error;
355 }
356 desc->timestamp = timestamp;
357 desc->gencount = gencount;
358error:
359 return error;
360}
361
362static int xdr_decode(nfs_readdir_descriptor_t *desc,
363 struct nfs_entry *entry, struct xdr_stream *xdr)
364{
365 int error;
366
367 error = desc->decode(xdr, entry, desc->plus);
368 if (error)
369 return error;
370 entry->fattr->time_start = desc->timestamp;
371 entry->fattr->gencount = desc->gencount;
372 return 0;
373}
374
375/* Match file and dirent using either filehandle or fileid
376 * Note: caller is responsible for checking the fsid
377 */
378static
379int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
380{
381 struct inode *inode;
382 struct nfs_inode *nfsi;
383
384 if (d_really_is_negative(dentry))
385 return 0;
386
387 inode = d_inode(dentry);
388 if (is_bad_inode(inode) || NFS_STALE(inode))
389 return 0;
390
391 nfsi = NFS_I(inode);
392 if (entry->fattr->fileid != nfsi->fileid)
393 return 0;
394 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
395 return 0;
396 return 1;
397}
398
399static
400bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
401{
402 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
403 return false;
404 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
405 return true;
406 if (ctx->pos == 0)
407 return true;
408 return false;
409}
410
411/*
412 * This function is called by the lookup and getattr code to request the
413 * use of readdirplus to accelerate any future lookups in the same
414 * directory.
415 */
416void nfs_advise_use_readdirplus(struct inode *dir)
417{
418 struct nfs_inode *nfsi = NFS_I(dir);
419
420 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
421 !list_empty(&nfsi->open_files))
422 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
423}
424
425/*
426 * This function is mainly for use by nfs_getattr().
427 *
428 * If this is an 'ls -l', we want to force use of readdirplus.
429 * Do this by checking if there is an active file descriptor
430 * and calling nfs_advise_use_readdirplus, then forcing a
431 * cache flush.
432 */
433void nfs_force_use_readdirplus(struct inode *dir)
434{
435 struct nfs_inode *nfsi = NFS_I(dir);
436
437 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
438 !list_empty(&nfsi->open_files)) {
439 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
440 invalidate_mapping_pages(dir->i_mapping, 0, -1);
441 }
442}
443
444static
445void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
446{
447 struct qstr filename = QSTR_INIT(entry->name, entry->len);
448 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
449 struct dentry *dentry;
450 struct dentry *alias;
451 struct inode *dir = d_inode(parent);
452 struct inode *inode;
453 int status;
454
455 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
456 return;
457 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
458 return;
459 if (filename.len == 0)
460 return;
461 /* Validate that the name doesn't contain any illegal '\0' */
462 if (strnlen(filename.name, filename.len) != filename.len)
463 return;
464 /* ...or '/' */
465 if (strnchr(filename.name, filename.len, '/'))
466 return;
467 if (filename.name[0] == '.') {
468 if (filename.len == 1)
469 return;
470 if (filename.len == 2 && filename.name[1] == '.')
471 return;
472 }
473 filename.hash = full_name_hash(parent, filename.name, filename.len);
474
475 dentry = d_lookup(parent, &filename);
476again:
477 if (!dentry) {
478 dentry = d_alloc_parallel(parent, &filename, &wq);
479 if (IS_ERR(dentry))
480 return;
481 }
482 if (!d_in_lookup(dentry)) {
483 /* Is there a mountpoint here? If so, just exit */
484 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
485 &entry->fattr->fsid))
486 goto out;
487 if (nfs_same_file(dentry, entry)) {
488 if (!entry->fh->size)
489 goto out;
490 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
491 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
492 if (!status)
493 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
494 goto out;
495 } else {
496 d_invalidate(dentry);
497 dput(dentry);
498 dentry = NULL;
499 goto again;
500 }
501 }
502 if (!entry->fh->size) {
503 d_lookup_done(dentry);
504 goto out;
505 }
506
507 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
508 alias = d_splice_alias(inode, dentry);
509 d_lookup_done(dentry);
510 if (alias) {
511 if (IS_ERR(alias))
512 goto out;
513 dput(dentry);
514 dentry = alias;
515 }
516 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
517out:
518 dput(dentry);
519}
520
521/* Perform conversion from xdr to cache array */
522static
523int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
524 struct page **xdr_pages, struct page *page, unsigned int buflen)
525{
526 struct xdr_stream stream;
527 struct xdr_buf buf;
528 struct page *scratch;
529 struct nfs_cache_array *array;
530 unsigned int count = 0;
531 int status;
532
533 scratch = alloc_page(GFP_KERNEL);
534 if (scratch == NULL)
535 return -ENOMEM;
536
537 if (buflen == 0)
538 goto out_nopages;
539
540 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
541 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
542
543 do {
544 status = xdr_decode(desc, entry, &stream);
545 if (status != 0) {
546 if (status == -EAGAIN)
547 status = 0;
548 break;
549 }
550
551 count++;
552
553 if (desc->plus)
554 nfs_prime_dcache(file_dentry(desc->file), entry);
555
556 status = nfs_readdir_add_to_array(entry, page);
557 if (status != 0)
558 break;
559 } while (!entry->eof);
560
561out_nopages:
562 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
563 array = kmap(page);
564 array->eof_index = array->size;
565 status = 0;
566 kunmap(page);
567 }
568
569 put_page(scratch);
570 return status;
571}
572
573static
574void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
575{
576 unsigned int i;
577 for (i = 0; i < npages; i++)
578 put_page(pages[i]);
579}
580
581/*
582 * nfs_readdir_large_page will allocate pages that must be freed with a call
583 * to nfs_readdir_free_pagearray
584 */
585static
586int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
587{
588 unsigned int i;
589
590 for (i = 0; i < npages; i++) {
591 struct page *page = alloc_page(GFP_KERNEL);
592 if (page == NULL)
593 goto out_freepages;
594 pages[i] = page;
595 }
596 return 0;
597
598out_freepages:
599 nfs_readdir_free_pages(pages, i);
600 return -ENOMEM;
601}
602
603static
604int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
605{
606 struct page *pages[NFS_MAX_READDIR_PAGES];
607 struct nfs_entry entry;
608 struct file *file = desc->file;
609 struct nfs_cache_array *array;
610 int status = -ENOMEM;
611 unsigned int array_size = ARRAY_SIZE(pages);
612
613 entry.prev_cookie = 0;
614 entry.cookie = desc->last_cookie;
615 entry.eof = 0;
616 entry.fh = nfs_alloc_fhandle();
617 entry.fattr = nfs_alloc_fattr();
618 entry.server = NFS_SERVER(inode);
619 if (entry.fh == NULL || entry.fattr == NULL)
620 goto out;
621
622 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
623 if (IS_ERR(entry.label)) {
624 status = PTR_ERR(entry.label);
625 goto out;
626 }
627
628 array = kmap(page);
629 memset(array, 0, sizeof(struct nfs_cache_array));
630 array->eof_index = -1;
631
632 status = nfs_readdir_alloc_pages(pages, array_size);
633 if (status < 0)
634 goto out_release_array;
635 do {
636 unsigned int pglen;
637 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
638
639 if (status < 0)
640 break;
641 pglen = status;
642 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
643 if (status < 0) {
644 if (status == -ENOSPC)
645 status = 0;
646 break;
647 }
648 } while (array->eof_index < 0);
649
650 nfs_readdir_free_pages(pages, array_size);
651out_release_array:
652 kunmap(page);
653 nfs4_label_free(entry.label);
654out:
655 nfs_free_fattr(entry.fattr);
656 nfs_free_fhandle(entry.fh);
657 return status;
658}
659
660/*
661 * Now we cache directories properly, by converting xdr information
662 * to an array that can be used for lookups later. This results in
663 * fewer cache pages, since we can store more information on each page.
664 * We only need to convert from xdr once so future lookups are much simpler
665 */
666static
667int nfs_readdir_filler(void *data, struct page* page)
668{
669 nfs_readdir_descriptor_t *desc = data;
670 struct inode *inode = file_inode(desc->file);
671 int ret;
672
673 ret = nfs_readdir_xdr_to_array(desc, page, inode);
674 if (ret < 0)
675 goto error;
676 SetPageUptodate(page);
677
678 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
679 /* Should never happen */
680 nfs_zap_mapping(inode, inode->i_mapping);
681 }
682 unlock_page(page);
683 return 0;
684 error:
685 unlock_page(page);
686 return ret;
687}
688
689static
690void cache_page_release(nfs_readdir_descriptor_t *desc)
691{
692 if (!desc->page->mapping)
693 nfs_readdir_clear_array(desc->page);
694 put_page(desc->page);
695 desc->page = NULL;
696}
697
698static
699struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
700{
701 return read_cache_page(desc->file->f_mapping, desc->page_index,
702 nfs_readdir_filler, desc);
703}
704
705/*
706 * Returns 0 if desc->dir_cookie was found on page desc->page_index
707 */
708static
709int find_cache_page(nfs_readdir_descriptor_t *desc)
710{
711 int res;
712
713 desc->page = get_cache_page(desc);
714 if (IS_ERR(desc->page))
715 return PTR_ERR(desc->page);
716
717 res = nfs_readdir_search_array(desc);
718 if (res != 0)
719 cache_page_release(desc);
720 return res;
721}
722
723/* Search for desc->dir_cookie from the beginning of the page cache */
724static inline
725int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
726{
727 int res;
728
729 if (desc->page_index == 0) {
730 desc->current_index = 0;
731 desc->last_cookie = 0;
732 }
733 do {
734 res = find_cache_page(desc);
735 } while (res == -EAGAIN);
736 return res;
737}
738
739/*
740 * Once we've found the start of the dirent within a page: fill 'er up...
741 */
742static
743int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
744{
745 struct file *file = desc->file;
746 int i = 0;
747 int res = 0;
748 struct nfs_cache_array *array = NULL;
749 struct nfs_open_dir_context *ctx = file->private_data;
750
751 array = kmap(desc->page);
752 for (i = desc->cache_entry_index; i < array->size; i++) {
753 struct nfs_cache_array_entry *ent;
754
755 ent = &array->array[i];
756 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
757 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
758 desc->eof = true;
759 break;
760 }
761 desc->ctx->pos++;
762 if (i < (array->size-1))
763 *desc->dir_cookie = array->array[i+1].cookie;
764 else
765 *desc->dir_cookie = array->last_cookie;
766 if (ctx->duped != 0)
767 ctx->duped = 1;
768 }
769 if (array->eof_index >= 0)
770 desc->eof = true;
771
772 kunmap(desc->page);
773 cache_page_release(desc);
774 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
775 (unsigned long long)*desc->dir_cookie, res);
776 return res;
777}
778
779/*
780 * If we cannot find a cookie in our cache, we suspect that this is
781 * because it points to a deleted file, so we ask the server to return
782 * whatever it thinks is the next entry. We then feed this to filldir.
783 * If all goes well, we should then be able to find our way round the
784 * cache on the next call to readdir_search_pagecache();
785 *
786 * NOTE: we cannot add the anonymous page to the pagecache because
787 * the data it contains might not be page aligned. Besides,
788 * we should already have a complete representation of the
789 * directory in the page cache by the time we get here.
790 */
791static inline
792int uncached_readdir(nfs_readdir_descriptor_t *desc)
793{
794 struct page *page = NULL;
795 int status;
796 struct inode *inode = file_inode(desc->file);
797 struct nfs_open_dir_context *ctx = desc->file->private_data;
798
799 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
800 (unsigned long long)*desc->dir_cookie);
801
802 page = alloc_page(GFP_HIGHUSER);
803 if (!page) {
804 status = -ENOMEM;
805 goto out;
806 }
807
808 desc->page_index = 0;
809 desc->last_cookie = *desc->dir_cookie;
810 desc->page = page;
811 ctx->duped = 0;
812
813 status = nfs_readdir_xdr_to_array(desc, page, inode);
814 if (status < 0)
815 goto out_release;
816
817 status = nfs_do_filldir(desc);
818
819 out:
820 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
821 __func__, status);
822 return status;
823 out_release:
824 cache_page_release(desc);
825 goto out;
826}
827
828/* The file offset position represents the dirent entry number. A
829 last cookie cache takes care of the common case of reading the
830 whole directory.
831 */
832static int nfs_readdir(struct file *file, struct dir_context *ctx)
833{
834 struct dentry *dentry = file_dentry(file);
835 struct inode *inode = d_inode(dentry);
836 nfs_readdir_descriptor_t my_desc,
837 *desc = &my_desc;
838 struct nfs_open_dir_context *dir_ctx = file->private_data;
839 int res = 0;
840
841 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
842 file, (long long)ctx->pos);
843 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
844
845 /*
846 * ctx->pos points to the dirent entry number.
847 * *desc->dir_cookie has the cookie for the next entry. We have
848 * to either find the entry with the appropriate number or
849 * revalidate the cookie.
850 */
851 memset(desc, 0, sizeof(*desc));
852
853 desc->file = file;
854 desc->ctx = ctx;
855 desc->dir_cookie = &dir_ctx->dir_cookie;
856 desc->decode = NFS_PROTO(inode)->decode_dirent;
857 desc->plus = nfs_use_readdirplus(inode, ctx);
858
859 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
860 res = nfs_revalidate_mapping(inode, file->f_mapping);
861 if (res < 0)
862 goto out;
863
864 do {
865 res = readdir_search_pagecache(desc);
866
867 if (res == -EBADCOOKIE) {
868 res = 0;
869 /* This means either end of directory */
870 if (*desc->dir_cookie && !desc->eof) {
871 /* Or that the server has 'lost' a cookie */
872 res = uncached_readdir(desc);
873 if (res == 0)
874 continue;
875 }
876 break;
877 }
878 if (res == -ETOOSMALL && desc->plus) {
879 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
880 nfs_zap_caches(inode);
881 desc->page_index = 0;
882 desc->plus = false;
883 desc->eof = false;
884 continue;
885 }
886 if (res < 0)
887 break;
888
889 res = nfs_do_filldir(desc);
890 if (res < 0)
891 break;
892 } while (!desc->eof);
893out:
894 if (res > 0)
895 res = 0;
896 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
897 return res;
898}
899
900static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
901{
902 struct inode *inode = file_inode(filp);
903 struct nfs_open_dir_context *dir_ctx = filp->private_data;
904
905 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
906 filp, offset, whence);
907
908 switch (whence) {
909 default:
910 return -EINVAL;
911 case SEEK_SET:
912 if (offset < 0)
913 return -EINVAL;
914 inode_lock(inode);
915 break;
916 case SEEK_CUR:
917 if (offset == 0)
918 return filp->f_pos;
919 inode_lock(inode);
920 offset += filp->f_pos;
921 if (offset < 0) {
922 inode_unlock(inode);
923 return -EINVAL;
924 }
925 }
926 if (offset != filp->f_pos) {
927 filp->f_pos = offset;
928 dir_ctx->dir_cookie = 0;
929 dir_ctx->duped = 0;
930 }
931 inode_unlock(inode);
932 return offset;
933}
934
935/*
936 * All directory operations under NFS are synchronous, so fsync()
937 * is a dummy operation.
938 */
939static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
940 int datasync)
941{
942 struct inode *inode = file_inode(filp);
943
944 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
945
946 inode_lock(inode);
947 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
948 inode_unlock(inode);
949 return 0;
950}
951
952/**
953 * nfs_force_lookup_revalidate - Mark the directory as having changed
954 * @dir - pointer to directory inode
955 *
956 * This forces the revalidation code in nfs_lookup_revalidate() to do a
957 * full lookup on all child dentries of 'dir' whenever a change occurs
958 * on the server that might have invalidated our dcache.
959 *
960 * The caller should be holding dir->i_lock
961 */
962void nfs_force_lookup_revalidate(struct inode *dir)
963{
964 NFS_I(dir)->cache_change_attribute++;
965}
966EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
967
968/*
969 * A check for whether or not the parent directory has changed.
970 * In the case it has, we assume that the dentries are untrustworthy
971 * and may need to be looked up again.
972 * If rcu_walk prevents us from performing a full check, return 0.
973 */
974static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
975 int rcu_walk)
976{
977 if (IS_ROOT(dentry))
978 return 1;
979 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
980 return 0;
981 if (!nfs_verify_change_attribute(dir, dentry->d_time))
982 return 0;
983 /* Revalidate nfsi->cache_change_attribute before we declare a match */
984 if (nfs_mapping_need_revalidate_inode(dir)) {
985 if (rcu_walk)
986 return 0;
987 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
988 return 0;
989 }
990 if (!nfs_verify_change_attribute(dir, dentry->d_time))
991 return 0;
992 return 1;
993}
994
995/*
996 * Use intent information to check whether or not we're going to do
997 * an O_EXCL create using this path component.
998 */
999static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1000{
1001 if (NFS_PROTO(dir)->version == 2)
1002 return 0;
1003 return flags & LOOKUP_EXCL;
1004}
1005
1006/*
1007 * Inode and filehandle revalidation for lookups.
1008 *
1009 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1010 * or if the intent information indicates that we're about to open this
1011 * particular file and the "nocto" mount flag is not set.
1012 *
1013 */
1014static
1015int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1016{
1017 struct nfs_server *server = NFS_SERVER(inode);
1018 int ret;
1019
1020 if (IS_AUTOMOUNT(inode))
1021 return 0;
1022
1023 if (flags & LOOKUP_OPEN) {
1024 switch (inode->i_mode & S_IFMT) {
1025 case S_IFREG:
1026 /* A NFSv4 OPEN will revalidate later */
1027 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1028 goto out;
1029 /* Fallthrough */
1030 case S_IFDIR:
1031 if (server->flags & NFS_MOUNT_NOCTO)
1032 break;
1033 /* NFS close-to-open cache consistency validation */
1034 goto out_force;
1035 }
1036 }
1037
1038 /* VFS wants an on-the-wire revalidation */
1039 if (flags & LOOKUP_REVAL)
1040 goto out_force;
1041out:
1042 return (inode->i_nlink == 0) ? -ESTALE : 0;
1043out_force:
1044 if (flags & LOOKUP_RCU)
1045 return -ECHILD;
1046 ret = __nfs_revalidate_inode(server, inode);
1047 if (ret != 0)
1048 return ret;
1049 goto out;
1050}
1051
1052/*
1053 * We judge how long we want to trust negative
1054 * dentries by looking at the parent inode mtime.
1055 *
1056 * If parent mtime has changed, we revalidate, else we wait for a
1057 * period corresponding to the parent's attribute cache timeout value.
1058 *
1059 * If LOOKUP_RCU prevents us from performing a full check, return 1
1060 * suggesting a reval is needed.
1061 *
1062 * Note that when creating a new file, or looking up a rename target,
1063 * then it shouldn't be necessary to revalidate a negative dentry.
1064 */
1065static inline
1066int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1067 unsigned int flags)
1068{
1069 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1070 return 0;
1071 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1072 return 1;
1073 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1074}
1075
1076static int
1077nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1078 struct inode *inode, int error)
1079{
1080 switch (error) {
1081 case 1:
1082 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1083 __func__, dentry);
1084 return 1;
1085 case 0:
1086 nfs_mark_for_revalidate(dir);
1087 if (inode && S_ISDIR(inode->i_mode)) {
1088 /* Purge readdir caches. */
1089 nfs_zap_caches(inode);
1090 /*
1091 * We can't d_drop the root of a disconnected tree:
1092 * its d_hash is on the s_anon list and d_drop() would hide
1093 * it from shrink_dcache_for_unmount(), leading to busy
1094 * inodes on unmount and further oopses.
1095 */
1096 if (IS_ROOT(dentry))
1097 return 1;
1098 }
1099 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1100 __func__, dentry);
1101 return 0;
1102 }
1103 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1104 __func__, dentry, error);
1105 return error;
1106}
1107
1108static int
1109nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1110 unsigned int flags)
1111{
1112 int ret = 1;
1113 if (nfs_neg_need_reval(dir, dentry, flags)) {
1114 if (flags & LOOKUP_RCU)
1115 return -ECHILD;
1116 ret = 0;
1117 }
1118 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1119}
1120
1121static int
1122nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1123 struct inode *inode)
1124{
1125 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1126 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1127}
1128
1129static int
1130nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1131 struct inode *inode)
1132{
1133 struct nfs_fh *fhandle;
1134 struct nfs_fattr *fattr;
1135 struct nfs4_label *label;
1136 int ret;
1137
1138 ret = -ENOMEM;
1139 fhandle = nfs_alloc_fhandle();
1140 fattr = nfs_alloc_fattr();
1141 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1142 if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1143 goto out;
1144
1145 ret = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1146 if (ret < 0) {
1147 if (ret == -ESTALE || ret == -ENOENT)
1148 ret = 0;
1149 goto out;
1150 }
1151 ret = 0;
1152 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1153 goto out;
1154 if (nfs_refresh_inode(inode, fattr) < 0)
1155 goto out;
1156
1157 nfs_setsecurity(inode, fattr, label);
1158 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1159
1160 /* set a readdirplus hint that we had a cache miss */
1161 nfs_force_use_readdirplus(dir);
1162 ret = 1;
1163out:
1164 nfs_free_fattr(fattr);
1165 nfs_free_fhandle(fhandle);
1166 nfs4_label_free(label);
1167 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1168}
1169
1170/*
1171 * This is called every time the dcache has a lookup hit,
1172 * and we should check whether we can really trust that
1173 * lookup.
1174 *
1175 * NOTE! The hit can be a negative hit too, don't assume
1176 * we have an inode!
1177 *
1178 * If the parent directory is seen to have changed, we throw out the
1179 * cached dentry and do a new lookup.
1180 */
1181static int
1182nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1183 unsigned int flags)
1184{
1185 struct inode *inode;
1186 int error;
1187
1188 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1189 inode = d_inode(dentry);
1190
1191 if (!inode)
1192 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1193
1194 if (is_bad_inode(inode)) {
1195 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1196 __func__, dentry);
1197 goto out_bad;
1198 }
1199
1200 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1201 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1202
1203 /* Force a full look up iff the parent directory has changed */
1204 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1205 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1206 error = nfs_lookup_verify_inode(inode, flags);
1207 if (error) {
1208 if (error == -ESTALE)
1209 nfs_zap_caches(dir);
1210 goto out_bad;
1211 }
1212 nfs_advise_use_readdirplus(dir);
1213 goto out_valid;
1214 }
1215
1216 if (flags & LOOKUP_RCU)
1217 return -ECHILD;
1218
1219 if (NFS_STALE(inode))
1220 goto out_bad;
1221
1222 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1223 error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1224 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1225 return error;
1226out_valid:
1227 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1228out_bad:
1229 if (flags & LOOKUP_RCU)
1230 return -ECHILD;
1231 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1232}
1233
1234static int
1235__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1236 int (*reval)(struct inode *, struct dentry *, unsigned int))
1237{
1238 struct dentry *parent;
1239 struct inode *dir;
1240 int ret;
1241
1242 if (flags & LOOKUP_RCU) {
1243 parent = READ_ONCE(dentry->d_parent);
1244 dir = d_inode_rcu(parent);
1245 if (!dir)
1246 return -ECHILD;
1247 ret = reval(dir, dentry, flags);
1248 if (parent != READ_ONCE(dentry->d_parent))
1249 return -ECHILD;
1250 } else {
1251 parent = dget_parent(dentry);
1252 ret = reval(d_inode(parent), dentry, flags);
1253 dput(parent);
1254 }
1255 return ret;
1256}
1257
1258static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1259{
1260 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1261}
1262
1263/*
1264 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1265 * when we don't really care about the dentry name. This is called when a
1266 * pathwalk ends on a dentry that was not found via a normal lookup in the
1267 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1268 *
1269 * In this situation, we just want to verify that the inode itself is OK
1270 * since the dentry might have changed on the server.
1271 */
1272static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1273{
1274 struct inode *inode = d_inode(dentry);
1275 int error = 0;
1276
1277 /*
1278 * I believe we can only get a negative dentry here in the case of a
1279 * procfs-style symlink. Just assume it's correct for now, but we may
1280 * eventually need to do something more here.
1281 */
1282 if (!inode) {
1283 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1284 __func__, dentry);
1285 return 1;
1286 }
1287
1288 if (is_bad_inode(inode)) {
1289 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1290 __func__, dentry);
1291 return 0;
1292 }
1293
1294 error = nfs_lookup_verify_inode(inode, flags);
1295 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1296 __func__, inode->i_ino, error ? "invalid" : "valid");
1297 return !error;
1298}
1299
1300/*
1301 * This is called from dput() when d_count is going to 0.
1302 */
1303static int nfs_dentry_delete(const struct dentry *dentry)
1304{
1305 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1306 dentry, dentry->d_flags);
1307
1308 /* Unhash any dentry with a stale inode */
1309 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1310 return 1;
1311
1312 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1313 /* Unhash it, so that ->d_iput() would be called */
1314 return 1;
1315 }
1316 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1317 /* Unhash it, so that ancestors of killed async unlink
1318 * files will be cleaned up during umount */
1319 return 1;
1320 }
1321 return 0;
1322
1323}
1324
1325/* Ensure that we revalidate inode->i_nlink */
1326static void nfs_drop_nlink(struct inode *inode)
1327{
1328 spin_lock(&inode->i_lock);
1329 /* drop the inode if we're reasonably sure this is the last link */
1330 if (inode->i_nlink > 0)
1331 drop_nlink(inode);
1332 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1333 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1334 | NFS_INO_INVALID_CTIME
1335 | NFS_INO_INVALID_OTHER
1336 | NFS_INO_REVAL_FORCED;
1337 spin_unlock(&inode->i_lock);
1338}
1339
1340/*
1341 * Called when the dentry loses inode.
1342 * We use it to clean up silly-renamed files.
1343 */
1344static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1345{
1346 if (S_ISDIR(inode->i_mode))
1347 /* drop any readdir cache as it could easily be old */
1348 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1349
1350 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1351 nfs_complete_unlink(dentry, inode);
1352 nfs_drop_nlink(inode);
1353 }
1354 iput(inode);
1355}
1356
1357static void nfs_d_release(struct dentry *dentry)
1358{
1359 /* free cached devname value, if it survived that far */
1360 if (unlikely(dentry->d_fsdata)) {
1361 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1362 WARN_ON(1);
1363 else
1364 kfree(dentry->d_fsdata);
1365 }
1366}
1367
1368const struct dentry_operations nfs_dentry_operations = {
1369 .d_revalidate = nfs_lookup_revalidate,
1370 .d_weak_revalidate = nfs_weak_revalidate,
1371 .d_delete = nfs_dentry_delete,
1372 .d_iput = nfs_dentry_iput,
1373 .d_automount = nfs_d_automount,
1374 .d_release = nfs_d_release,
1375};
1376EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1377
1378struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1379{
1380 struct dentry *res;
1381 struct inode *inode = NULL;
1382 struct nfs_fh *fhandle = NULL;
1383 struct nfs_fattr *fattr = NULL;
1384 struct nfs4_label *label = NULL;
1385 int error;
1386
1387 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1388 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1389
1390 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1391 return ERR_PTR(-ENAMETOOLONG);
1392
1393 /*
1394 * If we're doing an exclusive create, optimize away the lookup
1395 * but don't hash the dentry.
1396 */
1397 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1398 return NULL;
1399
1400 res = ERR_PTR(-ENOMEM);
1401 fhandle = nfs_alloc_fhandle();
1402 fattr = nfs_alloc_fattr();
1403 if (fhandle == NULL || fattr == NULL)
1404 goto out;
1405
1406 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1407 if (IS_ERR(label))
1408 goto out;
1409
1410 trace_nfs_lookup_enter(dir, dentry, flags);
1411 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1412 if (error == -ENOENT)
1413 goto no_entry;
1414 if (error < 0) {
1415 res = ERR_PTR(error);
1416 goto out_label;
1417 }
1418 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1419 res = ERR_CAST(inode);
1420 if (IS_ERR(res))
1421 goto out_label;
1422
1423 /* Notify readdir to use READDIRPLUS */
1424 nfs_force_use_readdirplus(dir);
1425
1426no_entry:
1427 res = d_splice_alias(inode, dentry);
1428 if (res != NULL) {
1429 if (IS_ERR(res))
1430 goto out_label;
1431 dentry = res;
1432 }
1433 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1434out_label:
1435 trace_nfs_lookup_exit(dir, dentry, flags, error);
1436 nfs4_label_free(label);
1437out:
1438 nfs_free_fattr(fattr);
1439 nfs_free_fhandle(fhandle);
1440 return res;
1441}
1442EXPORT_SYMBOL_GPL(nfs_lookup);
1443
1444#if IS_ENABLED(CONFIG_NFS_V4)
1445static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1446
1447const struct dentry_operations nfs4_dentry_operations = {
1448 .d_revalidate = nfs4_lookup_revalidate,
1449 .d_weak_revalidate = nfs_weak_revalidate,
1450 .d_delete = nfs_dentry_delete,
1451 .d_iput = nfs_dentry_iput,
1452 .d_automount = nfs_d_automount,
1453 .d_release = nfs_d_release,
1454};
1455EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1456
1457static fmode_t flags_to_mode(int flags)
1458{
1459 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1460 if ((flags & O_ACCMODE) != O_WRONLY)
1461 res |= FMODE_READ;
1462 if ((flags & O_ACCMODE) != O_RDONLY)
1463 res |= FMODE_WRITE;
1464 return res;
1465}
1466
1467static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1468{
1469 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1470}
1471
1472static int do_open(struct inode *inode, struct file *filp)
1473{
1474 nfs_fscache_open_file(inode, filp);
1475 return 0;
1476}
1477
1478static int nfs_finish_open(struct nfs_open_context *ctx,
1479 struct dentry *dentry,
1480 struct file *file, unsigned open_flags)
1481{
1482 int err;
1483
1484 err = finish_open(file, dentry, do_open);
1485 if (err)
1486 goto out;
1487 if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1488 nfs_file_set_open_context(file, ctx);
1489 else
1490 err = -EOPENSTALE;
1491out:
1492 return err;
1493}
1494
1495int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1496 struct file *file, unsigned open_flags,
1497 umode_t mode)
1498{
1499 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1500 struct nfs_open_context *ctx;
1501 struct dentry *res;
1502 struct iattr attr = { .ia_valid = ATTR_OPEN };
1503 struct inode *inode;
1504 unsigned int lookup_flags = 0;
1505 bool switched = false;
1506 int created = 0;
1507 int err;
1508
1509 /* Expect a negative dentry */
1510 BUG_ON(d_inode(dentry));
1511
1512 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1513 dir->i_sb->s_id, dir->i_ino, dentry);
1514
1515 err = nfs_check_flags(open_flags);
1516 if (err)
1517 return err;
1518
1519 /* NFS only supports OPEN on regular files */
1520 if ((open_flags & O_DIRECTORY)) {
1521 if (!d_in_lookup(dentry)) {
1522 /*
1523 * Hashed negative dentry with O_DIRECTORY: dentry was
1524 * revalidated and is fine, no need to perform lookup
1525 * again
1526 */
1527 return -ENOENT;
1528 }
1529 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1530 goto no_open;
1531 }
1532
1533 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1534 return -ENAMETOOLONG;
1535
1536 if (open_flags & O_CREAT) {
1537 struct nfs_server *server = NFS_SERVER(dir);
1538
1539 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1540 mode &= ~current_umask();
1541
1542 attr.ia_valid |= ATTR_MODE;
1543 attr.ia_mode = mode;
1544 }
1545 if (open_flags & O_TRUNC) {
1546 attr.ia_valid |= ATTR_SIZE;
1547 attr.ia_size = 0;
1548 }
1549
1550 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1551 d_drop(dentry);
1552 switched = true;
1553 dentry = d_alloc_parallel(dentry->d_parent,
1554 &dentry->d_name, &wq);
1555 if (IS_ERR(dentry))
1556 return PTR_ERR(dentry);
1557 if (unlikely(!d_in_lookup(dentry)))
1558 return finish_no_open(file, dentry);
1559 }
1560
1561 ctx = create_nfs_open_context(dentry, open_flags, file);
1562 err = PTR_ERR(ctx);
1563 if (IS_ERR(ctx))
1564 goto out;
1565
1566 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1567 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1568 if (created)
1569 file->f_mode |= FMODE_CREATED;
1570 if (IS_ERR(inode)) {
1571 err = PTR_ERR(inode);
1572 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1573 put_nfs_open_context(ctx);
1574 d_drop(dentry);
1575 switch (err) {
1576 case -ENOENT:
1577 d_splice_alias(NULL, dentry);
1578 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1579 break;
1580 case -EISDIR:
1581 case -ENOTDIR:
1582 goto no_open;
1583 case -ELOOP:
1584 if (!(open_flags & O_NOFOLLOW))
1585 goto no_open;
1586 break;
1587 /* case -EINVAL: */
1588 default:
1589 break;
1590 }
1591 goto out;
1592 }
1593
1594 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1595 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1596 put_nfs_open_context(ctx);
1597out:
1598 if (unlikely(switched)) {
1599 d_lookup_done(dentry);
1600 dput(dentry);
1601 }
1602 return err;
1603
1604no_open:
1605 res = nfs_lookup(dir, dentry, lookup_flags);
1606 if (switched) {
1607 d_lookup_done(dentry);
1608 if (!res)
1609 res = dentry;
1610 else
1611 dput(dentry);
1612 }
1613 if (IS_ERR(res))
1614 return PTR_ERR(res);
1615 return finish_no_open(file, res);
1616}
1617EXPORT_SYMBOL_GPL(nfs_atomic_open);
1618
1619static int
1620nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1621 unsigned int flags)
1622{
1623 struct inode *inode;
1624
1625 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1626 goto full_reval;
1627 if (d_mountpoint(dentry))
1628 goto full_reval;
1629
1630 inode = d_inode(dentry);
1631
1632 /* We can't create new files in nfs_open_revalidate(), so we
1633 * optimize away revalidation of negative dentries.
1634 */
1635 if (inode == NULL)
1636 goto full_reval;
1637
1638 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1639 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1640
1641 /* NFS only supports OPEN on regular files */
1642 if (!S_ISREG(inode->i_mode))
1643 goto full_reval;
1644
1645 /* We cannot do exclusive creation on a positive dentry */
1646 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1647 goto reval_dentry;
1648
1649 /* Check if the directory changed */
1650 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1651 goto reval_dentry;
1652
1653 /* Let f_op->open() actually open (and revalidate) the file */
1654 return 1;
1655reval_dentry:
1656 if (flags & LOOKUP_RCU)
1657 return -ECHILD;
1658 return nfs_lookup_revalidate_dentry(dir, dentry, inode);;
1659
1660full_reval:
1661 return nfs_do_lookup_revalidate(dir, dentry, flags);
1662}
1663
1664static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1665{
1666 return __nfs_lookup_revalidate(dentry, flags,
1667 nfs4_do_lookup_revalidate);
1668}
1669
1670#endif /* CONFIG_NFSV4 */
1671
1672/*
1673 * Code common to create, mkdir, and mknod.
1674 */
1675int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1676 struct nfs_fattr *fattr,
1677 struct nfs4_label *label)
1678{
1679 struct dentry *parent = dget_parent(dentry);
1680 struct inode *dir = d_inode(parent);
1681 struct inode *inode;
1682 struct dentry *d;
1683 int error = -EACCES;
1684
1685 d_drop(dentry);
1686
1687 /* We may have been initialized further down */
1688 if (d_really_is_positive(dentry))
1689 goto out;
1690 if (fhandle->size == 0) {
1691 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1692 if (error)
1693 goto out_error;
1694 }
1695 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1696 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1697 struct nfs_server *server = NFS_SB(dentry->d_sb);
1698 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1699 fattr, NULL, NULL);
1700 if (error < 0)
1701 goto out_error;
1702 }
1703 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1704 d = d_splice_alias(inode, dentry);
1705 if (IS_ERR(d)) {
1706 error = PTR_ERR(d);
1707 goto out_error;
1708 }
1709 dput(d);
1710out:
1711 dput(parent);
1712 return 0;
1713out_error:
1714 nfs_mark_for_revalidate(dir);
1715 dput(parent);
1716 return error;
1717}
1718EXPORT_SYMBOL_GPL(nfs_instantiate);
1719
1720/*
1721 * Following a failed create operation, we drop the dentry rather
1722 * than retain a negative dentry. This avoids a problem in the event
1723 * that the operation succeeded on the server, but an error in the
1724 * reply path made it appear to have failed.
1725 */
1726int nfs_create(struct inode *dir, struct dentry *dentry,
1727 umode_t mode, bool excl)
1728{
1729 struct iattr attr;
1730 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1731 int error;
1732
1733 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1734 dir->i_sb->s_id, dir->i_ino, dentry);
1735
1736 attr.ia_mode = mode;
1737 attr.ia_valid = ATTR_MODE;
1738
1739 trace_nfs_create_enter(dir, dentry, open_flags);
1740 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1741 trace_nfs_create_exit(dir, dentry, open_flags, error);
1742 if (error != 0)
1743 goto out_err;
1744 return 0;
1745out_err:
1746 d_drop(dentry);
1747 return error;
1748}
1749EXPORT_SYMBOL_GPL(nfs_create);
1750
1751/*
1752 * See comments for nfs_proc_create regarding failed operations.
1753 */
1754int
1755nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1756{
1757 struct iattr attr;
1758 int status;
1759
1760 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1761 dir->i_sb->s_id, dir->i_ino, dentry);
1762
1763 attr.ia_mode = mode;
1764 attr.ia_valid = ATTR_MODE;
1765
1766 trace_nfs_mknod_enter(dir, dentry);
1767 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1768 trace_nfs_mknod_exit(dir, dentry, status);
1769 if (status != 0)
1770 goto out_err;
1771 return 0;
1772out_err:
1773 d_drop(dentry);
1774 return status;
1775}
1776EXPORT_SYMBOL_GPL(nfs_mknod);
1777
1778/*
1779 * See comments for nfs_proc_create regarding failed operations.
1780 */
1781int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1782{
1783 struct iattr attr;
1784 int error;
1785
1786 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1787 dir->i_sb->s_id, dir->i_ino, dentry);
1788
1789 attr.ia_valid = ATTR_MODE;
1790 attr.ia_mode = mode | S_IFDIR;
1791
1792 trace_nfs_mkdir_enter(dir, dentry);
1793 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1794 trace_nfs_mkdir_exit(dir, dentry, error);
1795 if (error != 0)
1796 goto out_err;
1797 return 0;
1798out_err:
1799 d_drop(dentry);
1800 return error;
1801}
1802EXPORT_SYMBOL_GPL(nfs_mkdir);
1803
1804static void nfs_dentry_handle_enoent(struct dentry *dentry)
1805{
1806 if (simple_positive(dentry))
1807 d_delete(dentry);
1808}
1809
1810int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1811{
1812 int error;
1813
1814 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1815 dir->i_sb->s_id, dir->i_ino, dentry);
1816
1817 trace_nfs_rmdir_enter(dir, dentry);
1818 if (d_really_is_positive(dentry)) {
1819 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1820 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1821 /* Ensure the VFS deletes this inode */
1822 switch (error) {
1823 case 0:
1824 clear_nlink(d_inode(dentry));
1825 break;
1826 case -ENOENT:
1827 nfs_dentry_handle_enoent(dentry);
1828 }
1829 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1830 } else
1831 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1832 trace_nfs_rmdir_exit(dir, dentry, error);
1833
1834 return error;
1835}
1836EXPORT_SYMBOL_GPL(nfs_rmdir);
1837
1838/*
1839 * Remove a file after making sure there are no pending writes,
1840 * and after checking that the file has only one user.
1841 *
1842 * We invalidate the attribute cache and free the inode prior to the operation
1843 * to avoid possible races if the server reuses the inode.
1844 */
1845static int nfs_safe_remove(struct dentry *dentry)
1846{
1847 struct inode *dir = d_inode(dentry->d_parent);
1848 struct inode *inode = d_inode(dentry);
1849 int error = -EBUSY;
1850
1851 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1852
1853 /* If the dentry was sillyrenamed, we simply call d_delete() */
1854 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1855 error = 0;
1856 goto out;
1857 }
1858
1859 trace_nfs_remove_enter(dir, dentry);
1860 if (inode != NULL) {
1861 error = NFS_PROTO(dir)->remove(dir, dentry);
1862 if (error == 0)
1863 nfs_drop_nlink(inode);
1864 } else
1865 error = NFS_PROTO(dir)->remove(dir, dentry);
1866 if (error == -ENOENT)
1867 nfs_dentry_handle_enoent(dentry);
1868 trace_nfs_remove_exit(dir, dentry, error);
1869out:
1870 return error;
1871}
1872
1873/* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1874 * belongs to an active ".nfs..." file and we return -EBUSY.
1875 *
1876 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1877 */
1878int nfs_unlink(struct inode *dir, struct dentry *dentry)
1879{
1880 int error;
1881 int need_rehash = 0;
1882
1883 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1884 dir->i_ino, dentry);
1885
1886 trace_nfs_unlink_enter(dir, dentry);
1887 spin_lock(&dentry->d_lock);
1888 if (d_count(dentry) > 1) {
1889 spin_unlock(&dentry->d_lock);
1890 /* Start asynchronous writeout of the inode */
1891 write_inode_now(d_inode(dentry), 0);
1892 error = nfs_sillyrename(dir, dentry);
1893 goto out;
1894 }
1895 if (!d_unhashed(dentry)) {
1896 __d_drop(dentry);
1897 need_rehash = 1;
1898 }
1899 spin_unlock(&dentry->d_lock);
1900 error = nfs_safe_remove(dentry);
1901 if (!error || error == -ENOENT) {
1902 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1903 } else if (need_rehash)
1904 d_rehash(dentry);
1905out:
1906 trace_nfs_unlink_exit(dir, dentry, error);
1907 return error;
1908}
1909EXPORT_SYMBOL_GPL(nfs_unlink);
1910
1911/*
1912 * To create a symbolic link, most file systems instantiate a new inode,
1913 * add a page to it containing the path, then write it out to the disk
1914 * using prepare_write/commit_write.
1915 *
1916 * Unfortunately the NFS client can't create the in-core inode first
1917 * because it needs a file handle to create an in-core inode (see
1918 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1919 * symlink request has completed on the server.
1920 *
1921 * So instead we allocate a raw page, copy the symname into it, then do
1922 * the SYMLINK request with the page as the buffer. If it succeeds, we
1923 * now have a new file handle and can instantiate an in-core NFS inode
1924 * and move the raw page into its mapping.
1925 */
1926int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1927{
1928 struct page *page;
1929 char *kaddr;
1930 struct iattr attr;
1931 unsigned int pathlen = strlen(symname);
1932 int error;
1933
1934 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1935 dir->i_ino, dentry, symname);
1936
1937 if (pathlen > PAGE_SIZE)
1938 return -ENAMETOOLONG;
1939
1940 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1941 attr.ia_valid = ATTR_MODE;
1942
1943 page = alloc_page(GFP_USER);
1944 if (!page)
1945 return -ENOMEM;
1946
1947 kaddr = page_address(page);
1948 memcpy(kaddr, symname, pathlen);
1949 if (pathlen < PAGE_SIZE)
1950 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1951
1952 trace_nfs_symlink_enter(dir, dentry);
1953 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1954 trace_nfs_symlink_exit(dir, dentry, error);
1955 if (error != 0) {
1956 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1957 dir->i_sb->s_id, dir->i_ino,
1958 dentry, symname, error);
1959 d_drop(dentry);
1960 __free_page(page);
1961 return error;
1962 }
1963
1964 /*
1965 * No big deal if we can't add this page to the page cache here.
1966 * READLINK will get the missing page from the server if needed.
1967 */
1968 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1969 GFP_KERNEL)) {
1970 SetPageUptodate(page);
1971 unlock_page(page);
1972 /*
1973 * add_to_page_cache_lru() grabs an extra page refcount.
1974 * Drop it here to avoid leaking this page later.
1975 */
1976 put_page(page);
1977 } else
1978 __free_page(page);
1979
1980 return 0;
1981}
1982EXPORT_SYMBOL_GPL(nfs_symlink);
1983
1984int
1985nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1986{
1987 struct inode *inode = d_inode(old_dentry);
1988 int error;
1989
1990 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1991 old_dentry, dentry);
1992
1993 trace_nfs_link_enter(inode, dir, dentry);
1994 d_drop(dentry);
1995 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1996 if (error == 0) {
1997 ihold(inode);
1998 d_add(dentry, inode);
1999 }
2000 trace_nfs_link_exit(inode, dir, dentry, error);
2001 return error;
2002}
2003EXPORT_SYMBOL_GPL(nfs_link);
2004
2005/*
2006 * RENAME
2007 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2008 * different file handle for the same inode after a rename (e.g. when
2009 * moving to a different directory). A fail-safe method to do so would
2010 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2011 * rename the old file using the sillyrename stuff. This way, the original
2012 * file in old_dir will go away when the last process iput()s the inode.
2013 *
2014 * FIXED.
2015 *
2016 * It actually works quite well. One needs to have the possibility for
2017 * at least one ".nfs..." file in each directory the file ever gets
2018 * moved or linked to which happens automagically with the new
2019 * implementation that only depends on the dcache stuff instead of
2020 * using the inode layer
2021 *
2022 * Unfortunately, things are a little more complicated than indicated
2023 * above. For a cross-directory move, we want to make sure we can get
2024 * rid of the old inode after the operation. This means there must be
2025 * no pending writes (if it's a file), and the use count must be 1.
2026 * If these conditions are met, we can drop the dentries before doing
2027 * the rename.
2028 */
2029int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2030 struct inode *new_dir, struct dentry *new_dentry,
2031 unsigned int flags)
2032{
2033 struct inode *old_inode = d_inode(old_dentry);
2034 struct inode *new_inode = d_inode(new_dentry);
2035 struct dentry *dentry = NULL, *rehash = NULL;
2036 struct rpc_task *task;
2037 int error = -EBUSY;
2038
2039 if (flags)
2040 return -EINVAL;
2041
2042 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2043 old_dentry, new_dentry,
2044 d_count(new_dentry));
2045
2046 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2047 /*
2048 * For non-directories, check whether the target is busy and if so,
2049 * make a copy of the dentry and then do a silly-rename. If the
2050 * silly-rename succeeds, the copied dentry is hashed and becomes
2051 * the new target.
2052 */
2053 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2054 /*
2055 * To prevent any new references to the target during the
2056 * rename, we unhash the dentry in advance.
2057 */
2058 if (!d_unhashed(new_dentry)) {
2059 d_drop(new_dentry);
2060 rehash = new_dentry;
2061 }
2062
2063 if (d_count(new_dentry) > 2) {
2064 int err;
2065
2066 /* copy the target dentry's name */
2067 dentry = d_alloc(new_dentry->d_parent,
2068 &new_dentry->d_name);
2069 if (!dentry)
2070 goto out;
2071
2072 /* silly-rename the existing target ... */
2073 err = nfs_sillyrename(new_dir, new_dentry);
2074 if (err)
2075 goto out;
2076
2077 new_dentry = dentry;
2078 rehash = NULL;
2079 new_inode = NULL;
2080 }
2081 }
2082
2083 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2084 if (IS_ERR(task)) {
2085 error = PTR_ERR(task);
2086 goto out;
2087 }
2088
2089 error = rpc_wait_for_completion_task(task);
2090 if (error != 0) {
2091 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2092 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2093 smp_wmb();
2094 } else
2095 error = task->tk_status;
2096 rpc_put_task(task);
2097 /* Ensure the inode attributes are revalidated */
2098 if (error == 0) {
2099 spin_lock(&old_inode->i_lock);
2100 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2101 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2102 | NFS_INO_INVALID_CTIME
2103 | NFS_INO_REVAL_FORCED;
2104 spin_unlock(&old_inode->i_lock);
2105 }
2106out:
2107 if (rehash)
2108 d_rehash(rehash);
2109 trace_nfs_rename_exit(old_dir, old_dentry,
2110 new_dir, new_dentry, error);
2111 if (!error) {
2112 if (new_inode != NULL)
2113 nfs_drop_nlink(new_inode);
2114 /*
2115 * The d_move() should be here instead of in an async RPC completion
2116 * handler because we need the proper locks to move the dentry. If
2117 * we're interrupted by a signal, the async RPC completion handler
2118 * should mark the directories for revalidation.
2119 */
2120 d_move(old_dentry, new_dentry);
2121 nfs_set_verifier(old_dentry,
2122 nfs_save_change_attribute(new_dir));
2123 } else if (error == -ENOENT)
2124 nfs_dentry_handle_enoent(old_dentry);
2125
2126 /* new dentry created? */
2127 if (dentry)
2128 dput(dentry);
2129 return error;
2130}
2131EXPORT_SYMBOL_GPL(nfs_rename);
2132
2133static DEFINE_SPINLOCK(nfs_access_lru_lock);
2134static LIST_HEAD(nfs_access_lru_list);
2135static atomic_long_t nfs_access_nr_entries;
2136
2137static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2138module_param(nfs_access_max_cachesize, ulong, 0644);
2139MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2140
2141static void nfs_access_free_entry(struct nfs_access_entry *entry)
2142{
2143 put_rpccred(entry->cred);
2144 kfree_rcu(entry, rcu_head);
2145 smp_mb__before_atomic();
2146 atomic_long_dec(&nfs_access_nr_entries);
2147 smp_mb__after_atomic();
2148}
2149
2150static void nfs_access_free_list(struct list_head *head)
2151{
2152 struct nfs_access_entry *cache;
2153
2154 while (!list_empty(head)) {
2155 cache = list_entry(head->next, struct nfs_access_entry, lru);
2156 list_del(&cache->lru);
2157 nfs_access_free_entry(cache);
2158 }
2159}
2160
2161static unsigned long
2162nfs_do_access_cache_scan(unsigned int nr_to_scan)
2163{
2164 LIST_HEAD(head);
2165 struct nfs_inode *nfsi, *next;
2166 struct nfs_access_entry *cache;
2167 long freed = 0;
2168
2169 spin_lock(&nfs_access_lru_lock);
2170 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2171 struct inode *inode;
2172
2173 if (nr_to_scan-- == 0)
2174 break;
2175 inode = &nfsi->vfs_inode;
2176 spin_lock(&inode->i_lock);
2177 if (list_empty(&nfsi->access_cache_entry_lru))
2178 goto remove_lru_entry;
2179 cache = list_entry(nfsi->access_cache_entry_lru.next,
2180 struct nfs_access_entry, lru);
2181 list_move(&cache->lru, &head);
2182 rb_erase(&cache->rb_node, &nfsi->access_cache);
2183 freed++;
2184 if (!list_empty(&nfsi->access_cache_entry_lru))
2185 list_move_tail(&nfsi->access_cache_inode_lru,
2186 &nfs_access_lru_list);
2187 else {
2188remove_lru_entry:
2189 list_del_init(&nfsi->access_cache_inode_lru);
2190 smp_mb__before_atomic();
2191 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2192 smp_mb__after_atomic();
2193 }
2194 spin_unlock(&inode->i_lock);
2195 }
2196 spin_unlock(&nfs_access_lru_lock);
2197 nfs_access_free_list(&head);
2198 return freed;
2199}
2200
2201unsigned long
2202nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2203{
2204 int nr_to_scan = sc->nr_to_scan;
2205 gfp_t gfp_mask = sc->gfp_mask;
2206
2207 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2208 return SHRINK_STOP;
2209 return nfs_do_access_cache_scan(nr_to_scan);
2210}
2211
2212
2213unsigned long
2214nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2215{
2216 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2217}
2218
2219static void
2220nfs_access_cache_enforce_limit(void)
2221{
2222 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2223 unsigned long diff;
2224 unsigned int nr_to_scan;
2225
2226 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2227 return;
2228 nr_to_scan = 100;
2229 diff = nr_entries - nfs_access_max_cachesize;
2230 if (diff < nr_to_scan)
2231 nr_to_scan = diff;
2232 nfs_do_access_cache_scan(nr_to_scan);
2233}
2234
2235static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2236{
2237 struct rb_root *root_node = &nfsi->access_cache;
2238 struct rb_node *n;
2239 struct nfs_access_entry *entry;
2240
2241 /* Unhook entries from the cache */
2242 while ((n = rb_first(root_node)) != NULL) {
2243 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2244 rb_erase(n, root_node);
2245 list_move(&entry->lru, head);
2246 }
2247 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2248}
2249
2250void nfs_access_zap_cache(struct inode *inode)
2251{
2252 LIST_HEAD(head);
2253
2254 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2255 return;
2256 /* Remove from global LRU init */
2257 spin_lock(&nfs_access_lru_lock);
2258 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2259 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2260
2261 spin_lock(&inode->i_lock);
2262 __nfs_access_zap_cache(NFS_I(inode), &head);
2263 spin_unlock(&inode->i_lock);
2264 spin_unlock(&nfs_access_lru_lock);
2265 nfs_access_free_list(&head);
2266}
2267EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2268
2269static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2270{
2271 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2272 struct nfs_access_entry *entry;
2273
2274 while (n != NULL) {
2275 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2276
2277 if (cred < entry->cred)
2278 n = n->rb_left;
2279 else if (cred > entry->cred)
2280 n = n->rb_right;
2281 else
2282 return entry;
2283 }
2284 return NULL;
2285}
2286
2287static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2288{
2289 struct nfs_inode *nfsi = NFS_I(inode);
2290 struct nfs_access_entry *cache;
2291 bool retry = true;
2292 int err;
2293
2294 spin_lock(&inode->i_lock);
2295 for(;;) {
2296 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2297 goto out_zap;
2298 cache = nfs_access_search_rbtree(inode, cred);
2299 err = -ENOENT;
2300 if (cache == NULL)
2301 goto out;
2302 /* Found an entry, is our attribute cache valid? */
2303 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2304 break;
2305 err = -ECHILD;
2306 if (!may_block)
2307 goto out;
2308 if (!retry)
2309 goto out_zap;
2310 spin_unlock(&inode->i_lock);
2311 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2312 if (err)
2313 return err;
2314 spin_lock(&inode->i_lock);
2315 retry = false;
2316 }
2317 res->cred = cache->cred;
2318 res->mask = cache->mask;
2319 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2320 err = 0;
2321out:
2322 spin_unlock(&inode->i_lock);
2323 return err;
2324out_zap:
2325 spin_unlock(&inode->i_lock);
2326 nfs_access_zap_cache(inode);
2327 return -ENOENT;
2328}
2329
2330static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2331{
2332 /* Only check the most recently returned cache entry,
2333 * but do it without locking.
2334 */
2335 struct nfs_inode *nfsi = NFS_I(inode);
2336 struct nfs_access_entry *cache;
2337 int err = -ECHILD;
2338 struct list_head *lh;
2339
2340 rcu_read_lock();
2341 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2342 goto out;
2343 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2344 cache = list_entry(lh, struct nfs_access_entry, lru);
2345 if (lh == &nfsi->access_cache_entry_lru ||
2346 cred != cache->cred)
2347 cache = NULL;
2348 if (cache == NULL)
2349 goto out;
2350 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2351 goto out;
2352 res->cred = cache->cred;
2353 res->mask = cache->mask;
2354 err = 0;
2355out:
2356 rcu_read_unlock();
2357 return err;
2358}
2359
2360static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2361{
2362 struct nfs_inode *nfsi = NFS_I(inode);
2363 struct rb_root *root_node = &nfsi->access_cache;
2364 struct rb_node **p = &root_node->rb_node;
2365 struct rb_node *parent = NULL;
2366 struct nfs_access_entry *entry;
2367
2368 spin_lock(&inode->i_lock);
2369 while (*p != NULL) {
2370 parent = *p;
2371 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2372
2373 if (set->cred < entry->cred)
2374 p = &parent->rb_left;
2375 else if (set->cred > entry->cred)
2376 p = &parent->rb_right;
2377 else
2378 goto found;
2379 }
2380 rb_link_node(&set->rb_node, parent, p);
2381 rb_insert_color(&set->rb_node, root_node);
2382 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2383 spin_unlock(&inode->i_lock);
2384 return;
2385found:
2386 rb_replace_node(parent, &set->rb_node, root_node);
2387 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2388 list_del(&entry->lru);
2389 spin_unlock(&inode->i_lock);
2390 nfs_access_free_entry(entry);
2391}
2392
2393void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2394{
2395 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2396 if (cache == NULL)
2397 return;
2398 RB_CLEAR_NODE(&cache->rb_node);
2399 cache->cred = get_rpccred(set->cred);
2400 cache->mask = set->mask;
2401
2402 /* The above field assignments must be visible
2403 * before this item appears on the lru. We cannot easily
2404 * use rcu_assign_pointer, so just force the memory barrier.
2405 */
2406 smp_wmb();
2407 nfs_access_add_rbtree(inode, cache);
2408
2409 /* Update accounting */
2410 smp_mb__before_atomic();
2411 atomic_long_inc(&nfs_access_nr_entries);
2412 smp_mb__after_atomic();
2413
2414 /* Add inode to global LRU list */
2415 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2416 spin_lock(&nfs_access_lru_lock);
2417 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2418 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2419 &nfs_access_lru_list);
2420 spin_unlock(&nfs_access_lru_lock);
2421 }
2422 nfs_access_cache_enforce_limit();
2423}
2424EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2425
2426#define NFS_MAY_READ (NFS_ACCESS_READ)
2427#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2428 NFS_ACCESS_EXTEND | \
2429 NFS_ACCESS_DELETE)
2430#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2431 NFS_ACCESS_EXTEND)
2432#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2433#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2434#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2435static int
2436nfs_access_calc_mask(u32 access_result, umode_t umode)
2437{
2438 int mask = 0;
2439
2440 if (access_result & NFS_MAY_READ)
2441 mask |= MAY_READ;
2442 if (S_ISDIR(umode)) {
2443 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2444 mask |= MAY_WRITE;
2445 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2446 mask |= MAY_EXEC;
2447 } else if (S_ISREG(umode)) {
2448 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2449 mask |= MAY_WRITE;
2450 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2451 mask |= MAY_EXEC;
2452 } else if (access_result & NFS_MAY_WRITE)
2453 mask |= MAY_WRITE;
2454 return mask;
2455}
2456
2457void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2458{
2459 entry->mask = access_result;
2460}
2461EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2462
2463static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2464{
2465 struct nfs_access_entry cache;
2466 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2467 int cache_mask;
2468 int status;
2469
2470 trace_nfs_access_enter(inode);
2471
2472 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2473 if (status != 0)
2474 status = nfs_access_get_cached(inode, cred, &cache, may_block);
2475 if (status == 0)
2476 goto out_cached;
2477
2478 status = -ECHILD;
2479 if (!may_block)
2480 goto out;
2481
2482 /*
2483 * Determine which access bits we want to ask for...
2484 */
2485 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2486 if (S_ISDIR(inode->i_mode))
2487 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2488 else
2489 cache.mask |= NFS_ACCESS_EXECUTE;
2490 cache.cred = cred;
2491 status = NFS_PROTO(inode)->access(inode, &cache);
2492 if (status != 0) {
2493 if (status == -ESTALE) {
2494 nfs_zap_caches(inode);
2495 if (!S_ISDIR(inode->i_mode))
2496 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2497 }
2498 goto out;
2499 }
2500 nfs_access_add_cache(inode, &cache);
2501out_cached:
2502 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2503 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2504 status = -EACCES;
2505out:
2506 trace_nfs_access_exit(inode, status);
2507 return status;
2508}
2509
2510static int nfs_open_permission_mask(int openflags)
2511{
2512 int mask = 0;
2513
2514 if (openflags & __FMODE_EXEC) {
2515 /* ONLY check exec rights */
2516 mask = MAY_EXEC;
2517 } else {
2518 if ((openflags & O_ACCMODE) != O_WRONLY)
2519 mask |= MAY_READ;
2520 if ((openflags & O_ACCMODE) != O_RDONLY)
2521 mask |= MAY_WRITE;
2522 }
2523
2524 return mask;
2525}
2526
2527int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2528{
2529 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2530}
2531EXPORT_SYMBOL_GPL(nfs_may_open);
2532
2533static int nfs_execute_ok(struct inode *inode, int mask)
2534{
2535 struct nfs_server *server = NFS_SERVER(inode);
2536 int ret = 0;
2537
2538 if (S_ISDIR(inode->i_mode))
2539 return 0;
2540 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2541 if (mask & MAY_NOT_BLOCK)
2542 return -ECHILD;
2543 ret = __nfs_revalidate_inode(server, inode);
2544 }
2545 if (ret == 0 && !execute_ok(inode))
2546 ret = -EACCES;
2547 return ret;
2548}
2549
2550int nfs_permission(struct inode *inode, int mask)
2551{
2552 struct rpc_cred *cred;
2553 int res = 0;
2554
2555 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2556
2557 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2558 goto out;
2559 /* Is this sys_access() ? */
2560 if (mask & (MAY_ACCESS | MAY_CHDIR))
2561 goto force_lookup;
2562
2563 switch (inode->i_mode & S_IFMT) {
2564 case S_IFLNK:
2565 goto out;
2566 case S_IFREG:
2567 if ((mask & MAY_OPEN) &&
2568 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2569 return 0;
2570 break;
2571 case S_IFDIR:
2572 /*
2573 * Optimize away all write operations, since the server
2574 * will check permissions when we perform the op.
2575 */
2576 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2577 goto out;
2578 }
2579
2580force_lookup:
2581 if (!NFS_PROTO(inode)->access)
2582 goto out_notsup;
2583
2584 /* Always try fast lookups first */
2585 rcu_read_lock();
2586 cred = rpc_lookup_cred_nonblock();
2587 if (!IS_ERR(cred))
2588 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2589 else
2590 res = PTR_ERR(cred);
2591 rcu_read_unlock();
2592 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2593 /* Fast lookup failed, try the slow way */
2594 cred = rpc_lookup_cred();
2595 if (!IS_ERR(cred)) {
2596 res = nfs_do_access(inode, cred, mask);
2597 put_rpccred(cred);
2598 } else
2599 res = PTR_ERR(cred);
2600 }
2601out:
2602 if (!res && (mask & MAY_EXEC))
2603 res = nfs_execute_ok(inode, mask);
2604
2605 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2606 inode->i_sb->s_id, inode->i_ino, mask, res);
2607 return res;
2608out_notsup:
2609 if (mask & MAY_NOT_BLOCK)
2610 return -ECHILD;
2611
2612 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2613 if (res == 0)
2614 res = generic_permission(inode, mask);
2615 goto out;
2616}
2617EXPORT_SYMBOL_GPL(nfs_permission);
2618
2619/*
2620 * Local variables:
2621 * version-control: t
2622 * kept-new-versions: 5
2623 * End:
2624 */