blob: 1cc20edf476238c5d7af5cc44611360a98d946ed [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21/*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37#define pr_fmt(fmt) "TCP: " fmt
38
39#include <net/tcp.h>
40
41#include <linux/compiler.h>
42#include <linux/gfp.h>
43#include <linux/module.h>
44#include <linux/static_key.h>
45
46#include <trace/events/tcp.h>
47
48static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
49 int push_one, gfp_t gfp);
50
51/* Account for new data that has been sent to the network. */
52static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
53{
54 struct inet_connection_sock *icsk = inet_csk(sk);
55 struct tcp_sock *tp = tcp_sk(sk);
56 unsigned int prior_packets = tp->packets_out;
57
58 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
59
60 __skb_unlink(skb, &sk->sk_write_queue);
61 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
62
63 if (tp->highest_sack == NULL)
64 tp->highest_sack = skb;
65
66 tp->packets_out += tcp_skb_pcount(skb);
67 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
68 tcp_rearm_rto(sk);
69
70 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
71 tcp_skb_pcount(skb));
72}
73
74/* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
75 * window scaling factor due to loss of precision.
76 * If window has been shrunk, what should we make? It is not clear at all.
77 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
78 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
79 * invalid. OK, let's make this for now:
80 */
81static inline __u32 tcp_acceptable_seq(const struct sock *sk)
82{
83 const struct tcp_sock *tp = tcp_sk(sk);
84
85 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
86 (tp->rx_opt.wscale_ok &&
87 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
88 return tp->snd_nxt;
89 else
90 return tcp_wnd_end(tp);
91}
92
93/* Calculate mss to advertise in SYN segment.
94 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
95 *
96 * 1. It is independent of path mtu.
97 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
98 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
99 * attached devices, because some buggy hosts are confused by
100 * large MSS.
101 * 4. We do not make 3, we advertise MSS, calculated from first
102 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
103 * This may be overridden via information stored in routing table.
104 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
105 * probably even Jumbo".
106 */
107static __u16 tcp_advertise_mss(struct sock *sk)
108{
109 struct tcp_sock *tp = tcp_sk(sk);
110 const struct dst_entry *dst = __sk_dst_get(sk);
111 int mss = tp->advmss;
112
113 if (dst) {
114 unsigned int metric = dst_metric_advmss(dst);
115
116 if (metric < mss) {
117 mss = metric;
118 tp->advmss = mss;
119 }
120 }
121
122 return (__u16)mss;
123}
124
125/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
126 * This is the first part of cwnd validation mechanism.
127 */
128void tcp_cwnd_restart(struct sock *sk, s32 delta)
129{
130 struct tcp_sock *tp = tcp_sk(sk);
131 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
132 u32 cwnd = tp->snd_cwnd;
133
134 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
135
136 tp->snd_ssthresh = tcp_current_ssthresh(sk);
137 restart_cwnd = min(restart_cwnd, cwnd);
138
139 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
140 cwnd >>= 1;
141 tp->snd_cwnd = max(cwnd, restart_cwnd);
142 tp->snd_cwnd_stamp = tcp_jiffies32;
143 tp->snd_cwnd_used = 0;
144}
145
146/* Congestion state accounting after a packet has been sent. */
147static void tcp_event_data_sent(struct tcp_sock *tp,
148 struct sock *sk)
149{
150 struct inet_connection_sock *icsk = inet_csk(sk);
151 const u32 now = tcp_jiffies32;
152
153 if (tcp_packets_in_flight(tp) == 0)
154 tcp_ca_event(sk, CA_EVENT_TX_START);
155
156 tp->lsndtime = now;
157
158 /* If it is a reply for ato after last received
159 * packet, enter pingpong mode.
160 */
161 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
162 icsk->icsk_ack.pingpong = 1;
163}
164
165/* Account for an ACK we sent. */
166static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
167 u32 rcv_nxt)
168{
169 struct tcp_sock *tp = tcp_sk(sk);
170
171 if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
172 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
173 tp->compressed_ack - TCP_FASTRETRANS_THRESH);
174 tp->compressed_ack = TCP_FASTRETRANS_THRESH;
175 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
176 __sock_put(sk);
177 }
178
179 if (unlikely(rcv_nxt != tp->rcv_nxt))
180 return; /* Special ACK sent by DCTCP to reflect ECN */
181 tcp_dec_quickack_mode(sk, pkts);
182 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
183}
184
185/* Determine a window scaling and initial window to offer.
186 * Based on the assumption that the given amount of space
187 * will be offered. Store the results in the tp structure.
188 * NOTE: for smooth operation initial space offering should
189 * be a multiple of mss if possible. We assume here that mss >= 1.
190 * This MUST be enforced by all callers.
191 */
192void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
193 __u32 *rcv_wnd, __u32 *window_clamp,
194 int wscale_ok, __u8 *rcv_wscale,
195 __u32 init_rcv_wnd)
196{
197 unsigned int space = (__space < 0 ? 0 : __space);
198
199 /* If no clamp set the clamp to the max possible scaled window */
200 if (*window_clamp == 0)
201 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
202 space = min(*window_clamp, space);
203
204 /* Quantize space offering to a multiple of mss if possible. */
205 if (space > mss)
206 space = rounddown(space, mss);
207
208 /* NOTE: offering an initial window larger than 32767
209 * will break some buggy TCP stacks. If the admin tells us
210 * it is likely we could be speaking with such a buggy stack
211 * we will truncate our initial window offering to 32K-1
212 * unless the remote has sent us a window scaling option,
213 * which we interpret as a sign the remote TCP is not
214 * misinterpreting the window field as a signed quantity.
215 */
216 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
217 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
218 else
219 (*rcv_wnd) = min_t(u32, space, U16_MAX);
220
221 if (init_rcv_wnd)
222 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
223
224 (*rcv_wscale) = 0;
225 if (wscale_ok) {
226 /* Set window scaling on max possible window */
227 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
228 space = max_t(u32, space, sysctl_rmem_max);
229 space = min_t(u32, space, *window_clamp);
230 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
231 space >>= 1;
232 (*rcv_wscale)++;
233 }
234 }
235 /* Set the clamp no higher than max representable value */
236 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
237}
238EXPORT_SYMBOL(tcp_select_initial_window);
239
240/* Chose a new window to advertise, update state in tcp_sock for the
241 * socket, and return result with RFC1323 scaling applied. The return
242 * value can be stuffed directly into th->window for an outgoing
243 * frame.
244 */
245static u16 tcp_select_window(struct sock *sk)
246{
247 struct tcp_sock *tp = tcp_sk(sk);
248 u32 old_win = tp->rcv_wnd;
249 u32 cur_win = tcp_receive_window(tp);
250 u32 new_win = __tcp_select_window(sk);
251
252 /* Never shrink the offered window */
253 if (new_win < cur_win) {
254 /* Danger Will Robinson!
255 * Don't update rcv_wup/rcv_wnd here or else
256 * we will not be able to advertise a zero
257 * window in time. --DaveM
258 *
259 * Relax Will Robinson.
260 */
261 if (new_win == 0)
262 NET_INC_STATS(sock_net(sk),
263 LINUX_MIB_TCPWANTZEROWINDOWADV);
264 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
265 }
266 tp->rcv_wnd = new_win;
267 tp->rcv_wup = tp->rcv_nxt;
268
269 /* Make sure we do not exceed the maximum possible
270 * scaled window.
271 */
272 if (!tp->rx_opt.rcv_wscale &&
273 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
274 new_win = min(new_win, MAX_TCP_WINDOW);
275 else
276 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
277
278 /* RFC1323 scaling applied */
279 new_win >>= tp->rx_opt.rcv_wscale;
280
281 /* If we advertise zero window, disable fast path. */
282 if (new_win == 0) {
283 tp->pred_flags = 0;
284 if (old_win)
285 NET_INC_STATS(sock_net(sk),
286 LINUX_MIB_TCPTOZEROWINDOWADV);
287 } else if (old_win == 0) {
288 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
289 }
290
291 return new_win;
292}
293
294/* Packet ECN state for a SYN-ACK */
295static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
296{
297 const struct tcp_sock *tp = tcp_sk(sk);
298
299 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
300 if (!(tp->ecn_flags & TCP_ECN_OK))
301 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
302 else if (tcp_ca_needs_ecn(sk) ||
303 tcp_bpf_ca_needs_ecn(sk))
304 INET_ECN_xmit(sk);
305}
306
307/* Packet ECN state for a SYN. */
308static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
309{
310 struct tcp_sock *tp = tcp_sk(sk);
311 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
312 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
313 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
314
315 if (!use_ecn) {
316 const struct dst_entry *dst = __sk_dst_get(sk);
317
318 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
319 use_ecn = true;
320 }
321
322 tp->ecn_flags = 0;
323
324 if (use_ecn) {
325 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
326 tp->ecn_flags = TCP_ECN_OK;
327 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
328 INET_ECN_xmit(sk);
329 }
330}
331
332static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
333{
334 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
335 /* tp->ecn_flags are cleared at a later point in time when
336 * SYN ACK is ultimatively being received.
337 */
338 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
339}
340
341static void
342tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
343{
344 if (inet_rsk(req)->ecn_ok)
345 th->ece = 1;
346}
347
348/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
349 * be sent.
350 */
351static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
352 struct tcphdr *th, int tcp_header_len)
353{
354 struct tcp_sock *tp = tcp_sk(sk);
355
356 if (tp->ecn_flags & TCP_ECN_OK) {
357 /* Not-retransmitted data segment: set ECT and inject CWR. */
358 if (skb->len != tcp_header_len &&
359 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
360 INET_ECN_xmit(sk);
361 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
362 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
363 th->cwr = 1;
364 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
365 }
366 } else if (!tcp_ca_needs_ecn(sk)) {
367 /* ACK or retransmitted segment: clear ECT|CE */
368 INET_ECN_dontxmit(sk);
369 }
370 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
371 th->ece = 1;
372 }
373}
374
375/* Constructs common control bits of non-data skb. If SYN/FIN is present,
376 * auto increment end seqno.
377 */
378static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
379{
380 skb->ip_summed = CHECKSUM_PARTIAL;
381
382 TCP_SKB_CB(skb)->tcp_flags = flags;
383 TCP_SKB_CB(skb)->sacked = 0;
384
385 tcp_skb_pcount_set(skb, 1);
386
387 TCP_SKB_CB(skb)->seq = seq;
388 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
389 seq++;
390 TCP_SKB_CB(skb)->end_seq = seq;
391}
392
393static inline bool tcp_urg_mode(const struct tcp_sock *tp)
394{
395 return tp->snd_una != tp->snd_up;
396}
397
398#define OPTION_SACK_ADVERTISE (1 << 0)
399#define OPTION_TS (1 << 1)
400#define OPTION_MD5 (1 << 2)
401#define OPTION_WSCALE (1 << 3)
402#define OPTION_FAST_OPEN_COOKIE (1 << 8)
403#define OPTION_SMC (1 << 9)
404
405static void smc_options_write(__be32 *ptr, u16 *options)
406{
407#if IS_ENABLED(CONFIG_SMC)
408 if (static_branch_unlikely(&tcp_have_smc)) {
409 if (unlikely(OPTION_SMC & *options)) {
410 *ptr++ = htonl((TCPOPT_NOP << 24) |
411 (TCPOPT_NOP << 16) |
412 (TCPOPT_EXP << 8) |
413 (TCPOLEN_EXP_SMC_BASE));
414 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
415 }
416 }
417#endif
418}
419
420struct tcp_out_options {
421 u16 options; /* bit field of OPTION_* */
422 u16 mss; /* 0 to disable */
423 u8 ws; /* window scale, 0 to disable */
424 u8 num_sack_blocks; /* number of SACK blocks to include */
425 u8 hash_size; /* bytes in hash_location */
426 __u8 *hash_location; /* temporary pointer, overloaded */
427 __u32 tsval, tsecr; /* need to include OPTION_TS */
428 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
429};
430
431/* Write previously computed TCP options to the packet.
432 *
433 * Beware: Something in the Internet is very sensitive to the ordering of
434 * TCP options, we learned this through the hard way, so be careful here.
435 * Luckily we can at least blame others for their non-compliance but from
436 * inter-operability perspective it seems that we're somewhat stuck with
437 * the ordering which we have been using if we want to keep working with
438 * those broken things (not that it currently hurts anybody as there isn't
439 * particular reason why the ordering would need to be changed).
440 *
441 * At least SACK_PERM as the first option is known to lead to a disaster
442 * (but it may well be that other scenarios fail similarly).
443 */
444static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
445 struct tcp_out_options *opts)
446{
447 u16 options = opts->options; /* mungable copy */
448
449 if (unlikely(OPTION_MD5 & options)) {
450 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
451 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
452 /* overload cookie hash location */
453 opts->hash_location = (__u8 *)ptr;
454 ptr += 4;
455 }
456
457 if (unlikely(opts->mss)) {
458 *ptr++ = htonl((TCPOPT_MSS << 24) |
459 (TCPOLEN_MSS << 16) |
460 opts->mss);
461 }
462
463 if (likely(OPTION_TS & options)) {
464 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
465 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
466 (TCPOLEN_SACK_PERM << 16) |
467 (TCPOPT_TIMESTAMP << 8) |
468 TCPOLEN_TIMESTAMP);
469 options &= ~OPTION_SACK_ADVERTISE;
470 } else {
471 *ptr++ = htonl((TCPOPT_NOP << 24) |
472 (TCPOPT_NOP << 16) |
473 (TCPOPT_TIMESTAMP << 8) |
474 TCPOLEN_TIMESTAMP);
475 }
476 *ptr++ = htonl(opts->tsval);
477 *ptr++ = htonl(opts->tsecr);
478 }
479
480 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
481 *ptr++ = htonl((TCPOPT_NOP << 24) |
482 (TCPOPT_NOP << 16) |
483 (TCPOPT_SACK_PERM << 8) |
484 TCPOLEN_SACK_PERM);
485 }
486
487 if (unlikely(OPTION_WSCALE & options)) {
488 *ptr++ = htonl((TCPOPT_NOP << 24) |
489 (TCPOPT_WINDOW << 16) |
490 (TCPOLEN_WINDOW << 8) |
491 opts->ws);
492 }
493
494 if (unlikely(opts->num_sack_blocks)) {
495 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
496 tp->duplicate_sack : tp->selective_acks;
497 int this_sack;
498
499 *ptr++ = htonl((TCPOPT_NOP << 24) |
500 (TCPOPT_NOP << 16) |
501 (TCPOPT_SACK << 8) |
502 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
503 TCPOLEN_SACK_PERBLOCK)));
504
505 for (this_sack = 0; this_sack < opts->num_sack_blocks;
506 ++this_sack) {
507 *ptr++ = htonl(sp[this_sack].start_seq);
508 *ptr++ = htonl(sp[this_sack].end_seq);
509 }
510
511 tp->rx_opt.dsack = 0;
512 }
513
514 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
515 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
516 u8 *p = (u8 *)ptr;
517 u32 len; /* Fast Open option length */
518
519 if (foc->exp) {
520 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
521 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
522 TCPOPT_FASTOPEN_MAGIC);
523 p += TCPOLEN_EXP_FASTOPEN_BASE;
524 } else {
525 len = TCPOLEN_FASTOPEN_BASE + foc->len;
526 *p++ = TCPOPT_FASTOPEN;
527 *p++ = len;
528 }
529
530 memcpy(p, foc->val, foc->len);
531 if ((len & 3) == 2) {
532 p[foc->len] = TCPOPT_NOP;
533 p[foc->len + 1] = TCPOPT_NOP;
534 }
535 ptr += (len + 3) >> 2;
536 }
537
538 smc_options_write(ptr, &options);
539}
540
541static void smc_set_option(const struct tcp_sock *tp,
542 struct tcp_out_options *opts,
543 unsigned int *remaining)
544{
545#if IS_ENABLED(CONFIG_SMC)
546 if (static_branch_unlikely(&tcp_have_smc)) {
547 if (tp->syn_smc) {
548 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
549 opts->options |= OPTION_SMC;
550 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
551 }
552 }
553 }
554#endif
555}
556
557static void smc_set_option_cond(const struct tcp_sock *tp,
558 const struct inet_request_sock *ireq,
559 struct tcp_out_options *opts,
560 unsigned int *remaining)
561{
562#if IS_ENABLED(CONFIG_SMC)
563 if (static_branch_unlikely(&tcp_have_smc)) {
564 if (tp->syn_smc && ireq->smc_ok) {
565 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
566 opts->options |= OPTION_SMC;
567 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
568 }
569 }
570 }
571#endif
572}
573
574/* Compute TCP options for SYN packets. This is not the final
575 * network wire format yet.
576 */
577static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
578 struct tcp_out_options *opts,
579 struct tcp_md5sig_key **md5)
580{
581 struct tcp_sock *tp = tcp_sk(sk);
582 unsigned int remaining = MAX_TCP_OPTION_SPACE;
583 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
584
585 *md5 = NULL;
586#ifdef CONFIG_TCP_MD5SIG
587 if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
588 *md5 = tp->af_specific->md5_lookup(sk, sk);
589 if (*md5) {
590 opts->options |= OPTION_MD5;
591 remaining -= TCPOLEN_MD5SIG_ALIGNED;
592 }
593 }
594#endif
595
596 /* We always get an MSS option. The option bytes which will be seen in
597 * normal data packets should timestamps be used, must be in the MSS
598 * advertised. But we subtract them from tp->mss_cache so that
599 * calculations in tcp_sendmsg are simpler etc. So account for this
600 * fact here if necessary. If we don't do this correctly, as a
601 * receiver we won't recognize data packets as being full sized when we
602 * should, and thus we won't abide by the delayed ACK rules correctly.
603 * SACKs don't matter, we never delay an ACK when we have any of those
604 * going out. */
605 opts->mss = tcp_advertise_mss(sk);
606 remaining -= TCPOLEN_MSS_ALIGNED;
607
608 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
609 opts->options |= OPTION_TS;
610 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
611 opts->tsecr = tp->rx_opt.ts_recent;
612 remaining -= TCPOLEN_TSTAMP_ALIGNED;
613 }
614 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
615 opts->ws = tp->rx_opt.rcv_wscale;
616 opts->options |= OPTION_WSCALE;
617 remaining -= TCPOLEN_WSCALE_ALIGNED;
618 }
619 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
620 opts->options |= OPTION_SACK_ADVERTISE;
621 if (unlikely(!(OPTION_TS & opts->options)))
622 remaining -= TCPOLEN_SACKPERM_ALIGNED;
623 }
624
625 if (fastopen && fastopen->cookie.len >= 0) {
626 u32 need = fastopen->cookie.len;
627
628 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
629 TCPOLEN_FASTOPEN_BASE;
630 need = (need + 3) & ~3U; /* Align to 32 bits */
631 if (remaining >= need) {
632 opts->options |= OPTION_FAST_OPEN_COOKIE;
633 opts->fastopen_cookie = &fastopen->cookie;
634 remaining -= need;
635 tp->syn_fastopen = 1;
636 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
637 }
638 }
639
640 smc_set_option(tp, opts, &remaining);
641
642 return MAX_TCP_OPTION_SPACE - remaining;
643}
644
645/* Set up TCP options for SYN-ACKs. */
646static unsigned int tcp_synack_options(const struct sock *sk,
647 struct request_sock *req,
648 unsigned int mss, struct sk_buff *skb,
649 struct tcp_out_options *opts,
650 const struct tcp_md5sig_key *md5,
651 struct tcp_fastopen_cookie *foc)
652{
653 struct inet_request_sock *ireq = inet_rsk(req);
654 unsigned int remaining = MAX_TCP_OPTION_SPACE;
655
656#ifdef CONFIG_TCP_MD5SIG
657 if (md5) {
658 opts->options |= OPTION_MD5;
659 remaining -= TCPOLEN_MD5SIG_ALIGNED;
660
661 /* We can't fit any SACK blocks in a packet with MD5 + TS
662 * options. There was discussion about disabling SACK
663 * rather than TS in order to fit in better with old,
664 * buggy kernels, but that was deemed to be unnecessary.
665 */
666 ireq->tstamp_ok &= !ireq->sack_ok;
667 }
668#endif
669
670 /* We always send an MSS option. */
671 opts->mss = mss;
672 remaining -= TCPOLEN_MSS_ALIGNED;
673
674 if (likely(ireq->wscale_ok)) {
675 opts->ws = ireq->rcv_wscale;
676 opts->options |= OPTION_WSCALE;
677 remaining -= TCPOLEN_WSCALE_ALIGNED;
678 }
679 if (likely(ireq->tstamp_ok)) {
680 opts->options |= OPTION_TS;
681 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
682 opts->tsecr = req->ts_recent;
683 remaining -= TCPOLEN_TSTAMP_ALIGNED;
684 }
685 if (likely(ireq->sack_ok)) {
686 opts->options |= OPTION_SACK_ADVERTISE;
687 if (unlikely(!ireq->tstamp_ok))
688 remaining -= TCPOLEN_SACKPERM_ALIGNED;
689 }
690 if (foc != NULL && foc->len >= 0) {
691 u32 need = foc->len;
692
693 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
694 TCPOLEN_FASTOPEN_BASE;
695 need = (need + 3) & ~3U; /* Align to 32 bits */
696 if (remaining >= need) {
697 opts->options |= OPTION_FAST_OPEN_COOKIE;
698 opts->fastopen_cookie = foc;
699 remaining -= need;
700 }
701 }
702
703 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
704
705 return MAX_TCP_OPTION_SPACE - remaining;
706}
707
708/* Compute TCP options for ESTABLISHED sockets. This is not the
709 * final wire format yet.
710 */
711static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
712 struct tcp_out_options *opts,
713 struct tcp_md5sig_key **md5)
714{
715 struct tcp_sock *tp = tcp_sk(sk);
716 unsigned int size = 0;
717 unsigned int eff_sacks;
718
719 opts->options = 0;
720
721 *md5 = NULL;
722#ifdef CONFIG_TCP_MD5SIG
723 if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
724 *md5 = tp->af_specific->md5_lookup(sk, sk);
725 if (*md5) {
726 opts->options |= OPTION_MD5;
727 size += TCPOLEN_MD5SIG_ALIGNED;
728 }
729 }
730#endif
731
732 if (likely(tp->rx_opt.tstamp_ok)) {
733 opts->options |= OPTION_TS;
734 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
735 opts->tsecr = tp->rx_opt.ts_recent;
736 size += TCPOLEN_TSTAMP_ALIGNED;
737 }
738
739 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
740 if (unlikely(eff_sacks)) {
741 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
742 opts->num_sack_blocks =
743 min_t(unsigned int, eff_sacks,
744 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
745 TCPOLEN_SACK_PERBLOCK);
746 if (likely(opts->num_sack_blocks))
747 size += TCPOLEN_SACK_BASE_ALIGNED +
748 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
749 }
750
751 return size;
752}
753
754
755/* TCP SMALL QUEUES (TSQ)
756 *
757 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
758 * to reduce RTT and bufferbloat.
759 * We do this using a special skb destructor (tcp_wfree).
760 *
761 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
762 * needs to be reallocated in a driver.
763 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
764 *
765 * Since transmit from skb destructor is forbidden, we use a tasklet
766 * to process all sockets that eventually need to send more skbs.
767 * We use one tasklet per cpu, with its own queue of sockets.
768 */
769struct tsq_tasklet {
770 struct tasklet_struct tasklet;
771 struct list_head head; /* queue of tcp sockets */
772};
773static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
774
775static void tcp_tsq_write(struct sock *sk)
776{
777 if ((1 << sk->sk_state) &
778 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
779 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
780 struct tcp_sock *tp = tcp_sk(sk);
781
782 if (tp->lost_out > tp->retrans_out &&
783 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
784 tcp_mstamp_refresh(tp);
785 tcp_xmit_retransmit_queue(sk);
786 }
787
788 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
789 0, GFP_ATOMIC);
790 }
791}
792
793static void tcp_tsq_handler(struct sock *sk)
794{
795 bh_lock_sock(sk);
796 if (!sock_owned_by_user(sk))
797 tcp_tsq_write(sk);
798 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
799 sock_hold(sk);
800 bh_unlock_sock(sk);
801}
802/*
803 * One tasklet per cpu tries to send more skbs.
804 * We run in tasklet context but need to disable irqs when
805 * transferring tsq->head because tcp_wfree() might
806 * interrupt us (non NAPI drivers)
807 */
808static void tcp_tasklet_func(unsigned long data)
809{
810 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
811 LIST_HEAD(list);
812 unsigned long flags;
813 struct list_head *q, *n;
814 struct tcp_sock *tp;
815 struct sock *sk;
816
817 local_irq_save(flags);
818 list_splice_init(&tsq->head, &list);
819 local_irq_restore(flags);
820
821 list_for_each_safe(q, n, &list) {
822 tp = list_entry(q, struct tcp_sock, tsq_node);
823 list_del(&tp->tsq_node);
824
825 sk = (struct sock *)tp;
826 smp_mb__before_atomic();
827 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
828
829 tcp_tsq_handler(sk);
830 sk_free(sk);
831 }
832}
833
834#define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
835 TCPF_WRITE_TIMER_DEFERRED | \
836 TCPF_DELACK_TIMER_DEFERRED | \
837 TCPF_MTU_REDUCED_DEFERRED)
838/**
839 * tcp_release_cb - tcp release_sock() callback
840 * @sk: socket
841 *
842 * called from release_sock() to perform protocol dependent
843 * actions before socket release.
844 */
845void tcp_release_cb(struct sock *sk)
846{
847 unsigned long flags, nflags;
848
849 /* perform an atomic operation only if at least one flag is set */
850 do {
851 flags = sk->sk_tsq_flags;
852 if (!(flags & TCP_DEFERRED_ALL))
853 return;
854 nflags = flags & ~TCP_DEFERRED_ALL;
855 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
856
857 if (flags & TCPF_TSQ_DEFERRED) {
858 tcp_tsq_write(sk);
859 __sock_put(sk);
860 }
861 /* Here begins the tricky part :
862 * We are called from release_sock() with :
863 * 1) BH disabled
864 * 2) sk_lock.slock spinlock held
865 * 3) socket owned by us (sk->sk_lock.owned == 1)
866 *
867 * But following code is meant to be called from BH handlers,
868 * so we should keep BH disabled, but early release socket ownership
869 */
870 sock_release_ownership(sk);
871
872 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
873 tcp_write_timer_handler(sk);
874 __sock_put(sk);
875 }
876 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
877 tcp_delack_timer_handler(sk);
878 __sock_put(sk);
879 }
880 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
881 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
882 __sock_put(sk);
883 }
884}
885EXPORT_SYMBOL(tcp_release_cb);
886
887void __init tcp_tasklet_init(void)
888{
889 int i;
890
891 for_each_possible_cpu(i) {
892 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
893
894 INIT_LIST_HEAD(&tsq->head);
895 tasklet_init(&tsq->tasklet,
896 tcp_tasklet_func,
897 (unsigned long)tsq);
898 }
899}
900
901/*
902 * Write buffer destructor automatically called from kfree_skb.
903 * We can't xmit new skbs from this context, as we might already
904 * hold qdisc lock.
905 */
906void tcp_wfree(struct sk_buff *skb)
907{
908 struct sock *sk = skb->sk;
909 struct tcp_sock *tp = tcp_sk(sk);
910 unsigned long flags, nval, oval;
911
912 /* Keep one reference on sk_wmem_alloc.
913 * Will be released by sk_free() from here or tcp_tasklet_func()
914 */
915 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
916
917 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
918 * Wait until our queues (qdisc + devices) are drained.
919 * This gives :
920 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
921 * - chance for incoming ACK (processed by another cpu maybe)
922 * to migrate this flow (skb->ooo_okay will be eventually set)
923 */
924 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
925 goto out;
926
927 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
928 struct tsq_tasklet *tsq;
929 bool empty;
930
931 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
932 goto out;
933
934 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
935 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
936 if (nval != oval)
937 continue;
938
939 /* queue this socket to tasklet queue */
940 local_irq_save(flags);
941 tsq = this_cpu_ptr(&tsq_tasklet);
942 empty = list_empty(&tsq->head);
943 list_add(&tp->tsq_node, &tsq->head);
944 if (empty)
945 tasklet_schedule(&tsq->tasklet);
946 local_irq_restore(flags);
947 return;
948 }
949out:
950 sk_free(sk);
951}
952
953/* Note: Called under soft irq.
954 * We can call TCP stack right away, unless socket is owned by user.
955 */
956enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
957{
958 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
959 struct sock *sk = (struct sock *)tp;
960
961 tcp_tsq_handler(sk);
962 sock_put(sk);
963
964 return HRTIMER_NORESTART;
965}
966
967static void tcp_internal_pacing(struct sock *sk, const struct sk_buff *skb)
968{
969 u64 len_ns;
970 u32 rate;
971
972 if (!tcp_needs_internal_pacing(sk))
973 return;
974 rate = sk->sk_pacing_rate;
975 if (!rate || rate == ~0U)
976 return;
977
978 len_ns = (u64)skb->len * NSEC_PER_SEC;
979 do_div(len_ns, rate);
980 hrtimer_start(&tcp_sk(sk)->pacing_timer,
981 ktime_add_ns(ktime_get(), len_ns),
982 HRTIMER_MODE_ABS_PINNED_SOFT);
983 sock_hold(sk);
984}
985
986static void tcp_update_skb_after_send(struct tcp_sock *tp, struct sk_buff *skb)
987{
988 skb->skb_mstamp = tp->tcp_mstamp;
989 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
990}
991
992/* This routine actually transmits TCP packets queued in by
993 * tcp_do_sendmsg(). This is used by both the initial
994 * transmission and possible later retransmissions.
995 * All SKB's seen here are completely headerless. It is our
996 * job to build the TCP header, and pass the packet down to
997 * IP so it can do the same plus pass the packet off to the
998 * device.
999 *
1000 * We are working here with either a clone of the original
1001 * SKB, or a fresh unique copy made by the retransmit engine.
1002 */
1003static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1004 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1005{
1006 const struct inet_connection_sock *icsk = inet_csk(sk);
1007 struct inet_sock *inet;
1008 struct tcp_sock *tp;
1009 struct tcp_skb_cb *tcb;
1010 struct tcp_out_options opts;
1011 unsigned int tcp_options_size, tcp_header_size;
1012 struct sk_buff *oskb = NULL;
1013 struct tcp_md5sig_key *md5;
1014 struct tcphdr *th;
1015 int err;
1016
1017 BUG_ON(!skb || !tcp_skb_pcount(skb));
1018 tp = tcp_sk(sk);
1019
1020 if (clone_it) {
1021 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1022 - tp->snd_una;
1023 oskb = skb;
1024
1025 tcp_skb_tsorted_save(oskb) {
1026 if (unlikely(skb_cloned(oskb)))
1027 skb = pskb_copy(oskb, gfp_mask);
1028 else
1029 skb = skb_clone(oskb, gfp_mask);
1030 } tcp_skb_tsorted_restore(oskb);
1031
1032 if (unlikely(!skb))
1033 return -ENOBUFS;
1034 }
1035 skb->skb_mstamp = tp->tcp_mstamp;
1036
1037 inet = inet_sk(sk);
1038 tcb = TCP_SKB_CB(skb);
1039 memset(&opts, 0, sizeof(opts));
1040
1041 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1042 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1043 else
1044 tcp_options_size = tcp_established_options(sk, skb, &opts,
1045 &md5);
1046 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1047
1048 /* if no packet is in qdisc/device queue, then allow XPS to select
1049 * another queue. We can be called from tcp_tsq_handler()
1050 * which holds one reference to sk.
1051 *
1052 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1053 * One way to get this would be to set skb->truesize = 2 on them.
1054 */
1055 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1056
1057 /* If we had to use memory reserve to allocate this skb,
1058 * this might cause drops if packet is looped back :
1059 * Other socket might not have SOCK_MEMALLOC.
1060 * Packets not looped back do not care about pfmemalloc.
1061 */
1062 skb->pfmemalloc = 0;
1063
1064 skb_push(skb, tcp_header_size);
1065 skb_reset_transport_header(skb);
1066
1067 skb_orphan(skb);
1068 skb->sk = sk;
1069 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1070 skb_set_hash_from_sk(skb, sk);
1071 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1072
1073 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1074
1075 /* Build TCP header and checksum it. */
1076 th = (struct tcphdr *)skb->data;
1077 th->source = inet->inet_sport;
1078 th->dest = inet->inet_dport;
1079 th->seq = htonl(tcb->seq);
1080 th->ack_seq = htonl(rcv_nxt);
1081 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1082 tcb->tcp_flags);
1083
1084 th->check = 0;
1085 th->urg_ptr = 0;
1086
1087 /* The urg_mode check is necessary during a below snd_una win probe */
1088 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1089 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1090 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1091 th->urg = 1;
1092 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1093 th->urg_ptr = htons(0xFFFF);
1094 th->urg = 1;
1095 }
1096 }
1097
1098 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1099 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1100 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1101 th->window = htons(tcp_select_window(sk));
1102 tcp_ecn_send(sk, skb, th, tcp_header_size);
1103 } else {
1104 /* RFC1323: The window in SYN & SYN/ACK segments
1105 * is never scaled.
1106 */
1107 th->window = htons(min(tp->rcv_wnd, 65535U));
1108 }
1109#ifdef CONFIG_TCP_MD5SIG
1110 /* Calculate the MD5 hash, as we have all we need now */
1111 if (md5) {
1112 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1113 tp->af_specific->calc_md5_hash(opts.hash_location,
1114 md5, sk, skb);
1115 }
1116#endif
1117
1118 icsk->icsk_af_ops->send_check(sk, skb);
1119
1120 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1121 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1122
1123 if (skb->len != tcp_header_size) {
1124 tcp_event_data_sent(tp, sk);
1125 tp->data_segs_out += tcp_skb_pcount(skb);
1126 tp->bytes_sent += skb->len - tcp_header_size;
1127 tcp_internal_pacing(sk, skb);
1128 }
1129
1130 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1131 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1132 tcp_skb_pcount(skb));
1133
1134 tp->segs_out += tcp_skb_pcount(skb);
1135 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1136 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1137 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1138
1139 /* Our usage of tstamp should remain private */
1140 skb->tstamp = 0;
1141
1142 /* Cleanup our debris for IP stacks */
1143 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1144 sizeof(struct inet6_skb_parm)));
1145
1146 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1147
1148 if (unlikely(err > 0)) {
1149 tcp_enter_cwr(sk);
1150 err = net_xmit_eval(err);
1151 }
1152 if (!err && oskb) {
1153 tcp_update_skb_after_send(tp, oskb);
1154 tcp_rate_skb_sent(sk, oskb);
1155 }
1156 return err;
1157}
1158
1159static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1160 gfp_t gfp_mask)
1161{
1162 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1163 tcp_sk(sk)->rcv_nxt);
1164}
1165
1166/* This routine just queues the buffer for sending.
1167 *
1168 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1169 * otherwise socket can stall.
1170 */
1171static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1172{
1173 struct tcp_sock *tp = tcp_sk(sk);
1174
1175 /* Advance write_seq and place onto the write_queue. */
1176 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1177 __skb_header_release(skb);
1178 tcp_add_write_queue_tail(sk, skb);
1179 sk->sk_wmem_queued += skb->truesize;
1180 sk_mem_charge(sk, skb->truesize);
1181}
1182
1183/* Initialize TSO segments for a packet. */
1184static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1185{
1186 if (skb->len <= mss_now) {
1187 /* Avoid the costly divide in the normal
1188 * non-TSO case.
1189 */
1190 tcp_skb_pcount_set(skb, 1);
1191 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1192 } else {
1193 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1194 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1195 }
1196}
1197
1198/* Pcount in the middle of the write queue got changed, we need to do various
1199 * tweaks to fix counters
1200 */
1201static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1202{
1203 struct tcp_sock *tp = tcp_sk(sk);
1204
1205 tp->packets_out -= decr;
1206
1207 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1208 tp->sacked_out -= decr;
1209 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1210 tp->retrans_out -= decr;
1211 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1212 tp->lost_out -= decr;
1213
1214 /* Reno case is special. Sigh... */
1215 if (tcp_is_reno(tp) && decr > 0)
1216 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1217
1218 if (tp->lost_skb_hint &&
1219 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1220 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1221 tp->lost_cnt_hint -= decr;
1222
1223 tcp_verify_left_out(tp);
1224}
1225
1226static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1227{
1228 return TCP_SKB_CB(skb)->txstamp_ack ||
1229 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1230}
1231
1232static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1233{
1234 struct skb_shared_info *shinfo = skb_shinfo(skb);
1235
1236 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1237 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1238 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1239 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1240
1241 shinfo->tx_flags &= ~tsflags;
1242 shinfo2->tx_flags |= tsflags;
1243 swap(shinfo->tskey, shinfo2->tskey);
1244 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1245 TCP_SKB_CB(skb)->txstamp_ack = 0;
1246 }
1247}
1248
1249static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1250{
1251 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1252 TCP_SKB_CB(skb)->eor = 0;
1253}
1254
1255/* Insert buff after skb on the write or rtx queue of sk. */
1256static void tcp_insert_write_queue_after(struct sk_buff *skb,
1257 struct sk_buff *buff,
1258 struct sock *sk,
1259 enum tcp_queue tcp_queue)
1260{
1261 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1262 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1263 else
1264 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1265}
1266
1267/* Function to create two new TCP segments. Shrinks the given segment
1268 * to the specified size and appends a new segment with the rest of the
1269 * packet to the list. This won't be called frequently, I hope.
1270 * Remember, these are still headerless SKBs at this point.
1271 */
1272int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1273 struct sk_buff *skb, u32 len,
1274 unsigned int mss_now, gfp_t gfp)
1275{
1276 struct tcp_sock *tp = tcp_sk(sk);
1277 struct sk_buff *buff;
1278 int nsize, old_factor;
1279 long limit;
1280 int nlen;
1281 u8 flags;
1282
1283 if (WARN_ON(len > skb->len))
1284 return -EINVAL;
1285
1286 nsize = skb_headlen(skb) - len;
1287 if (nsize < 0)
1288 nsize = 0;
1289
1290 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1291 * We need some allowance to not penalize applications setting small
1292 * SO_SNDBUF values.
1293 * Also allow first and last skb in retransmit queue to be split.
1294 */
1295 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1296 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1297 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1298 skb != tcp_rtx_queue_head(sk) &&
1299 skb != tcp_rtx_queue_tail(sk))) {
1300 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1301 return -ENOMEM;
1302 }
1303
1304 if (skb_unclone(skb, gfp))
1305 return -ENOMEM;
1306
1307 /* Get a new skb... force flag on. */
1308 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1309 if (!buff)
1310 return -ENOMEM; /* We'll just try again later. */
1311
1312 sk->sk_wmem_queued += buff->truesize;
1313 sk_mem_charge(sk, buff->truesize);
1314 nlen = skb->len - len - nsize;
1315 buff->truesize += nlen;
1316 skb->truesize -= nlen;
1317
1318 /* Correct the sequence numbers. */
1319 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1320 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1321 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1322
1323 /* PSH and FIN should only be set in the second packet. */
1324 flags = TCP_SKB_CB(skb)->tcp_flags;
1325 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1326 TCP_SKB_CB(buff)->tcp_flags = flags;
1327 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1328 tcp_skb_fragment_eor(skb, buff);
1329
1330 skb_split(skb, buff, len);
1331
1332 buff->ip_summed = CHECKSUM_PARTIAL;
1333
1334 buff->tstamp = skb->tstamp;
1335 tcp_fragment_tstamp(skb, buff);
1336
1337 old_factor = tcp_skb_pcount(skb);
1338
1339 /* Fix up tso_factor for both original and new SKB. */
1340 tcp_set_skb_tso_segs(skb, mss_now);
1341 tcp_set_skb_tso_segs(buff, mss_now);
1342
1343 /* Update delivered info for the new segment */
1344 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1345
1346 /* If this packet has been sent out already, we must
1347 * adjust the various packet counters.
1348 */
1349 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1350 int diff = old_factor - tcp_skb_pcount(skb) -
1351 tcp_skb_pcount(buff);
1352
1353 if (diff)
1354 tcp_adjust_pcount(sk, skb, diff);
1355 }
1356
1357 /* Link BUFF into the send queue. */
1358 __skb_header_release(buff);
1359 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1360 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1361 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1362
1363 return 0;
1364}
1365
1366/* This is similar to __pskb_pull_tail(). The difference is that pulled
1367 * data is not copied, but immediately discarded.
1368 */
1369static int __pskb_trim_head(struct sk_buff *skb, int len)
1370{
1371 struct skb_shared_info *shinfo;
1372 int i, k, eat;
1373
1374 eat = min_t(int, len, skb_headlen(skb));
1375 if (eat) {
1376 __skb_pull(skb, eat);
1377 len -= eat;
1378 if (!len)
1379 return 0;
1380 }
1381 eat = len;
1382 k = 0;
1383 shinfo = skb_shinfo(skb);
1384 for (i = 0; i < shinfo->nr_frags; i++) {
1385 int size = skb_frag_size(&shinfo->frags[i]);
1386
1387 if (size <= eat) {
1388 skb_frag_unref(skb, i);
1389 eat -= size;
1390 } else {
1391 shinfo->frags[k] = shinfo->frags[i];
1392 if (eat) {
1393 shinfo->frags[k].page_offset += eat;
1394 skb_frag_size_sub(&shinfo->frags[k], eat);
1395 eat = 0;
1396 }
1397 k++;
1398 }
1399 }
1400 shinfo->nr_frags = k;
1401
1402 skb->data_len -= len;
1403 skb->len = skb->data_len;
1404 return len;
1405}
1406
1407/* Remove acked data from a packet in the transmit queue. */
1408int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1409{
1410 u32 delta_truesize;
1411
1412 if (skb_unclone(skb, GFP_ATOMIC))
1413 return -ENOMEM;
1414
1415 delta_truesize = __pskb_trim_head(skb, len);
1416
1417 TCP_SKB_CB(skb)->seq += len;
1418 skb->ip_summed = CHECKSUM_PARTIAL;
1419
1420 if (delta_truesize) {
1421 skb->truesize -= delta_truesize;
1422 sk->sk_wmem_queued -= delta_truesize;
1423 sk_mem_uncharge(sk, delta_truesize);
1424 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1425 }
1426
1427 /* Any change of skb->len requires recalculation of tso factor. */
1428 if (tcp_skb_pcount(skb) > 1)
1429 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1430
1431 return 0;
1432}
1433
1434/* Calculate MSS not accounting any TCP options. */
1435static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1436{
1437 const struct tcp_sock *tp = tcp_sk(sk);
1438 const struct inet_connection_sock *icsk = inet_csk(sk);
1439 int mss_now;
1440
1441 /* Calculate base mss without TCP options:
1442 It is MMS_S - sizeof(tcphdr) of rfc1122
1443 */
1444 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1445
1446 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1447 if (icsk->icsk_af_ops->net_frag_header_len) {
1448 const struct dst_entry *dst = __sk_dst_get(sk);
1449
1450 if (dst && dst_allfrag(dst))
1451 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1452 }
1453
1454 /* Clamp it (mss_clamp does not include tcp options) */
1455 if (mss_now > tp->rx_opt.mss_clamp)
1456 mss_now = tp->rx_opt.mss_clamp;
1457
1458 /* Now subtract optional transport overhead */
1459 mss_now -= icsk->icsk_ext_hdr_len;
1460
1461 /* Then reserve room for full set of TCP options and 8 bytes of data */
1462 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1463 return mss_now;
1464}
1465
1466/* Calculate MSS. Not accounting for SACKs here. */
1467int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1468{
1469 /* Subtract TCP options size, not including SACKs */
1470 return __tcp_mtu_to_mss(sk, pmtu) -
1471 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1472}
1473
1474/* Inverse of above */
1475int tcp_mss_to_mtu(struct sock *sk, int mss)
1476{
1477 const struct tcp_sock *tp = tcp_sk(sk);
1478 const struct inet_connection_sock *icsk = inet_csk(sk);
1479 int mtu;
1480
1481 mtu = mss +
1482 tp->tcp_header_len +
1483 icsk->icsk_ext_hdr_len +
1484 icsk->icsk_af_ops->net_header_len;
1485
1486 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1487 if (icsk->icsk_af_ops->net_frag_header_len) {
1488 const struct dst_entry *dst = __sk_dst_get(sk);
1489
1490 if (dst && dst_allfrag(dst))
1491 mtu += icsk->icsk_af_ops->net_frag_header_len;
1492 }
1493 return mtu;
1494}
1495EXPORT_SYMBOL(tcp_mss_to_mtu);
1496
1497/* MTU probing init per socket */
1498void tcp_mtup_init(struct sock *sk)
1499{
1500 struct tcp_sock *tp = tcp_sk(sk);
1501 struct inet_connection_sock *icsk = inet_csk(sk);
1502 struct net *net = sock_net(sk);
1503
1504 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1505 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1506 icsk->icsk_af_ops->net_header_len;
1507 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1508 icsk->icsk_mtup.probe_size = 0;
1509 if (icsk->icsk_mtup.enabled)
1510 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1511}
1512EXPORT_SYMBOL(tcp_mtup_init);
1513
1514/* This function synchronize snd mss to current pmtu/exthdr set.
1515
1516 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1517 for TCP options, but includes only bare TCP header.
1518
1519 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1520 It is minimum of user_mss and mss received with SYN.
1521 It also does not include TCP options.
1522
1523 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1524
1525 tp->mss_cache is current effective sending mss, including
1526 all tcp options except for SACKs. It is evaluated,
1527 taking into account current pmtu, but never exceeds
1528 tp->rx_opt.mss_clamp.
1529
1530 NOTE1. rfc1122 clearly states that advertised MSS
1531 DOES NOT include either tcp or ip options.
1532
1533 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1534 are READ ONLY outside this function. --ANK (980731)
1535 */
1536unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1537{
1538 struct tcp_sock *tp = tcp_sk(sk);
1539 struct inet_connection_sock *icsk = inet_csk(sk);
1540 int mss_now;
1541
1542 if (icsk->icsk_mtup.search_high > pmtu)
1543 icsk->icsk_mtup.search_high = pmtu;
1544
1545 mss_now = tcp_mtu_to_mss(sk, pmtu);
1546 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1547
1548 /* And store cached results */
1549 icsk->icsk_pmtu_cookie = pmtu;
1550 if (icsk->icsk_mtup.enabled)
1551 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1552 tp->mss_cache = mss_now;
1553
1554 return mss_now;
1555}
1556EXPORT_SYMBOL(tcp_sync_mss);
1557
1558/* Compute the current effective MSS, taking SACKs and IP options,
1559 * and even PMTU discovery events into account.
1560 */
1561unsigned int tcp_current_mss(struct sock *sk)
1562{
1563 const struct tcp_sock *tp = tcp_sk(sk);
1564 const struct dst_entry *dst = __sk_dst_get(sk);
1565 u32 mss_now;
1566 unsigned int header_len;
1567 struct tcp_out_options opts;
1568 struct tcp_md5sig_key *md5;
1569
1570 mss_now = tp->mss_cache;
1571
1572 if (dst) {
1573 u32 mtu = dst_mtu(dst);
1574 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1575 mss_now = tcp_sync_mss(sk, mtu);
1576 }
1577
1578 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1579 sizeof(struct tcphdr);
1580 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1581 * some common options. If this is an odd packet (because we have SACK
1582 * blocks etc) then our calculated header_len will be different, and
1583 * we have to adjust mss_now correspondingly */
1584 if (header_len != tp->tcp_header_len) {
1585 int delta = (int) header_len - tp->tcp_header_len;
1586 mss_now -= delta;
1587 }
1588
1589 return mss_now;
1590}
1591
1592/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1593 * As additional protections, we do not touch cwnd in retransmission phases,
1594 * and if application hit its sndbuf limit recently.
1595 */
1596static void tcp_cwnd_application_limited(struct sock *sk)
1597{
1598 struct tcp_sock *tp = tcp_sk(sk);
1599
1600 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1601 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1602 /* Limited by application or receiver window. */
1603 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1604 u32 win_used = max(tp->snd_cwnd_used, init_win);
1605 if (win_used < tp->snd_cwnd) {
1606 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1607 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1608 }
1609 tp->snd_cwnd_used = 0;
1610 }
1611 tp->snd_cwnd_stamp = tcp_jiffies32;
1612}
1613
1614static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1615{
1616 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1617 struct tcp_sock *tp = tcp_sk(sk);
1618
1619 /* Track the maximum number of outstanding packets in each
1620 * window, and remember whether we were cwnd-limited then.
1621 */
1622 if (!before(tp->snd_una, tp->max_packets_seq) ||
1623 tp->packets_out > tp->max_packets_out) {
1624 tp->max_packets_out = tp->packets_out;
1625 tp->max_packets_seq = tp->snd_nxt;
1626 tp->is_cwnd_limited = is_cwnd_limited;
1627 }
1628
1629 if (tcp_is_cwnd_limited(sk)) {
1630 /* Network is feed fully. */
1631 tp->snd_cwnd_used = 0;
1632 tp->snd_cwnd_stamp = tcp_jiffies32;
1633 } else {
1634 /* Network starves. */
1635 if (tp->packets_out > tp->snd_cwnd_used)
1636 tp->snd_cwnd_used = tp->packets_out;
1637
1638 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1639 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1640 !ca_ops->cong_control)
1641 tcp_cwnd_application_limited(sk);
1642
1643 /* The following conditions together indicate the starvation
1644 * is caused by insufficient sender buffer:
1645 * 1) just sent some data (see tcp_write_xmit)
1646 * 2) not cwnd limited (this else condition)
1647 * 3) no more data to send (tcp_write_queue_empty())
1648 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1649 */
1650 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1651 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1652 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1653 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1654 }
1655}
1656
1657/* Minshall's variant of the Nagle send check. */
1658static bool tcp_minshall_check(const struct tcp_sock *tp)
1659{
1660 return after(tp->snd_sml, tp->snd_una) &&
1661 !after(tp->snd_sml, tp->snd_nxt);
1662}
1663
1664/* Update snd_sml if this skb is under mss
1665 * Note that a TSO packet might end with a sub-mss segment
1666 * The test is really :
1667 * if ((skb->len % mss) != 0)
1668 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1669 * But we can avoid doing the divide again given we already have
1670 * skb_pcount = skb->len / mss_now
1671 */
1672static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1673 const struct sk_buff *skb)
1674{
1675 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1676 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1677}
1678
1679/* Return false, if packet can be sent now without violation Nagle's rules:
1680 * 1. It is full sized. (provided by caller in %partial bool)
1681 * 2. Or it contains FIN. (already checked by caller)
1682 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1683 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1684 * With Minshall's modification: all sent small packets are ACKed.
1685 */
1686static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1687 int nonagle)
1688{
1689 return partial &&
1690 ((nonagle & TCP_NAGLE_CORK) ||
1691 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1692}
1693
1694/* Return how many segs we'd like on a TSO packet,
1695 * to send one TSO packet per ms
1696 */
1697static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1698 int min_tso_segs)
1699{
1700 u32 bytes, segs;
1701
1702 bytes = min(sk->sk_pacing_rate >> sk->sk_pacing_shift,
1703 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1704
1705 /* Goal is to send at least one packet per ms,
1706 * not one big TSO packet every 100 ms.
1707 * This preserves ACK clocking and is consistent
1708 * with tcp_tso_should_defer() heuristic.
1709 */
1710 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1711
1712 return segs;
1713}
1714
1715/* Return the number of segments we want in the skb we are transmitting.
1716 * See if congestion control module wants to decide; otherwise, autosize.
1717 */
1718static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1719{
1720 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1721 u32 min_tso, tso_segs;
1722
1723 min_tso = ca_ops->min_tso_segs ?
1724 ca_ops->min_tso_segs(sk) :
1725 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1726
1727 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1728 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1729}
1730
1731/* Returns the portion of skb which can be sent right away */
1732static unsigned int tcp_mss_split_point(const struct sock *sk,
1733 const struct sk_buff *skb,
1734 unsigned int mss_now,
1735 unsigned int max_segs,
1736 int nonagle)
1737{
1738 const struct tcp_sock *tp = tcp_sk(sk);
1739 u32 partial, needed, window, max_len;
1740
1741 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1742 max_len = mss_now * max_segs;
1743
1744 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1745 return max_len;
1746
1747 needed = min(skb->len, window);
1748
1749 if (max_len <= needed)
1750 return max_len;
1751
1752 partial = needed % mss_now;
1753 /* If last segment is not a full MSS, check if Nagle rules allow us
1754 * to include this last segment in this skb.
1755 * Otherwise, we'll split the skb at last MSS boundary
1756 */
1757 if (tcp_nagle_check(partial != 0, tp, nonagle))
1758 return needed - partial;
1759
1760 return needed;
1761}
1762
1763/* Can at least one segment of SKB be sent right now, according to the
1764 * congestion window rules? If so, return how many segments are allowed.
1765 */
1766static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1767 const struct sk_buff *skb)
1768{
1769 u32 in_flight, cwnd, halfcwnd;
1770
1771 /* Don't be strict about the congestion window for the final FIN. */
1772 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1773 tcp_skb_pcount(skb) == 1)
1774 return 1;
1775
1776 in_flight = tcp_packets_in_flight(tp);
1777 cwnd = tp->snd_cwnd;
1778 if (in_flight >= cwnd)
1779 return 0;
1780
1781 /* For better scheduling, ensure we have at least
1782 * 2 GSO packets in flight.
1783 */
1784 halfcwnd = max(cwnd >> 1, 1U);
1785 return min(halfcwnd, cwnd - in_flight);
1786}
1787
1788/* Initialize TSO state of a skb.
1789 * This must be invoked the first time we consider transmitting
1790 * SKB onto the wire.
1791 */
1792static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1793{
1794 int tso_segs = tcp_skb_pcount(skb);
1795
1796 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1797 tcp_set_skb_tso_segs(skb, mss_now);
1798 tso_segs = tcp_skb_pcount(skb);
1799 }
1800 return tso_segs;
1801}
1802
1803
1804/* Return true if the Nagle test allows this packet to be
1805 * sent now.
1806 */
1807static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1808 unsigned int cur_mss, int nonagle)
1809{
1810 /* Nagle rule does not apply to frames, which sit in the middle of the
1811 * write_queue (they have no chances to get new data).
1812 *
1813 * This is implemented in the callers, where they modify the 'nonagle'
1814 * argument based upon the location of SKB in the send queue.
1815 */
1816 if (nonagle & TCP_NAGLE_PUSH)
1817 return true;
1818
1819 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1820 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1821 return true;
1822
1823 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1824 return true;
1825
1826 return false;
1827}
1828
1829/* Does at least the first segment of SKB fit into the send window? */
1830static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1831 const struct sk_buff *skb,
1832 unsigned int cur_mss)
1833{
1834 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1835
1836 if (skb->len > cur_mss)
1837 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1838
1839 return !after(end_seq, tcp_wnd_end(tp));
1840}
1841
1842/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1843 * which is put after SKB on the list. It is very much like
1844 * tcp_fragment() except that it may make several kinds of assumptions
1845 * in order to speed up the splitting operation. In particular, we
1846 * know that all the data is in scatter-gather pages, and that the
1847 * packet has never been sent out before (and thus is not cloned).
1848 */
1849static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1850 struct sk_buff *skb, unsigned int len,
1851 unsigned int mss_now, gfp_t gfp)
1852{
1853 struct sk_buff *buff;
1854 int nlen = skb->len - len;
1855 u8 flags;
1856
1857 /* All of a TSO frame must be composed of paged data. */
1858 if (skb->len != skb->data_len)
1859 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1860
1861 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1862 if (unlikely(!buff))
1863 return -ENOMEM;
1864
1865 sk->sk_wmem_queued += buff->truesize;
1866 sk_mem_charge(sk, buff->truesize);
1867 buff->truesize += nlen;
1868 skb->truesize -= nlen;
1869
1870 /* Correct the sequence numbers. */
1871 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1872 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1873 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1874
1875 /* PSH and FIN should only be set in the second packet. */
1876 flags = TCP_SKB_CB(skb)->tcp_flags;
1877 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1878 TCP_SKB_CB(buff)->tcp_flags = flags;
1879
1880 /* This packet was never sent out yet, so no SACK bits. */
1881 TCP_SKB_CB(buff)->sacked = 0;
1882
1883 tcp_skb_fragment_eor(skb, buff);
1884
1885 buff->ip_summed = CHECKSUM_PARTIAL;
1886 skb_split(skb, buff, len);
1887 tcp_fragment_tstamp(skb, buff);
1888
1889 /* Fix up tso_factor for both original and new SKB. */
1890 tcp_set_skb_tso_segs(skb, mss_now);
1891 tcp_set_skb_tso_segs(buff, mss_now);
1892
1893 /* Link BUFF into the send queue. */
1894 __skb_header_release(buff);
1895 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1896
1897 return 0;
1898}
1899
1900/* Try to defer sending, if possible, in order to minimize the amount
1901 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1902 *
1903 * This algorithm is from John Heffner.
1904 */
1905static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1906 bool *is_cwnd_limited,
1907 bool *is_rwnd_limited,
1908 u32 max_segs)
1909{
1910 const struct inet_connection_sock *icsk = inet_csk(sk);
1911 u32 age, send_win, cong_win, limit, in_flight;
1912 struct tcp_sock *tp = tcp_sk(sk);
1913 struct sk_buff *head;
1914 int win_divisor;
1915
1916 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1917 goto send_now;
1918
1919 /* Avoid bursty behavior by allowing defer
1920 * only if the last write was recent.
1921 */
1922 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1923 goto send_now;
1924
1925 in_flight = tcp_packets_in_flight(tp);
1926
1927 BUG_ON(tcp_skb_pcount(skb) <= 1);
1928 BUG_ON(tp->snd_cwnd <= in_flight);
1929
1930 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1931
1932 /* From in_flight test above, we know that cwnd > in_flight. */
1933 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1934
1935 limit = min(send_win, cong_win);
1936
1937 /* If a full-sized TSO skb can be sent, do it. */
1938 if (limit >= max_segs * tp->mss_cache)
1939 goto send_now;
1940
1941 /* Middle in queue won't get any more data, full sendable already? */
1942 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1943 goto send_now;
1944
1945 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1946 if (win_divisor) {
1947 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1948
1949 /* If at least some fraction of a window is available,
1950 * just use it.
1951 */
1952 chunk /= win_divisor;
1953 if (limit >= chunk)
1954 goto send_now;
1955 } else {
1956 /* Different approach, try not to defer past a single
1957 * ACK. Receiver should ACK every other full sized
1958 * frame, so if we have space for more than 3 frames
1959 * then send now.
1960 */
1961 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1962 goto send_now;
1963 }
1964
1965 /* TODO : use tsorted_sent_queue ? */
1966 head = tcp_rtx_queue_head(sk);
1967 if (!head)
1968 goto send_now;
1969 age = tcp_stamp_us_delta(tp->tcp_mstamp, head->skb_mstamp);
1970 /* If next ACK is likely to come too late (half srtt), do not defer */
1971 if (age < (tp->srtt_us >> 4))
1972 goto send_now;
1973
1974 /* Ok, it looks like it is advisable to defer.
1975 * Three cases are tracked :
1976 * 1) We are cwnd-limited
1977 * 2) We are rwnd-limited
1978 * 3) We are application limited.
1979 */
1980 if (cong_win < send_win) {
1981 if (cong_win <= skb->len) {
1982 *is_cwnd_limited = true;
1983 return true;
1984 }
1985 } else {
1986 if (send_win <= skb->len) {
1987 *is_rwnd_limited = true;
1988 return true;
1989 }
1990 }
1991
1992 /* If this packet won't get more data, do not wait. */
1993 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1994 goto send_now;
1995
1996 return true;
1997
1998send_now:
1999 return false;
2000}
2001
2002static inline void tcp_mtu_check_reprobe(struct sock *sk)
2003{
2004 struct inet_connection_sock *icsk = inet_csk(sk);
2005 struct tcp_sock *tp = tcp_sk(sk);
2006 struct net *net = sock_net(sk);
2007 u32 interval;
2008 s32 delta;
2009
2010 interval = net->ipv4.sysctl_tcp_probe_interval;
2011 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2012 if (unlikely(delta >= interval * HZ)) {
2013 int mss = tcp_current_mss(sk);
2014
2015 /* Update current search range */
2016 icsk->icsk_mtup.probe_size = 0;
2017 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2018 sizeof(struct tcphdr) +
2019 icsk->icsk_af_ops->net_header_len;
2020 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2021
2022 /* Update probe time stamp */
2023 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2024 }
2025}
2026
2027static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2028{
2029 struct sk_buff *skb, *next;
2030
2031 skb = tcp_send_head(sk);
2032 tcp_for_write_queue_from_safe(skb, next, sk) {
2033 if (len <= skb->len)
2034 break;
2035
2036 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2037 return false;
2038
2039 len -= skb->len;
2040 }
2041
2042 return true;
2043}
2044
2045/* Create a new MTU probe if we are ready.
2046 * MTU probe is regularly attempting to increase the path MTU by
2047 * deliberately sending larger packets. This discovers routing
2048 * changes resulting in larger path MTUs.
2049 *
2050 * Returns 0 if we should wait to probe (no cwnd available),
2051 * 1 if a probe was sent,
2052 * -1 otherwise
2053 */
2054static int tcp_mtu_probe(struct sock *sk)
2055{
2056 struct inet_connection_sock *icsk = inet_csk(sk);
2057 struct tcp_sock *tp = tcp_sk(sk);
2058 struct sk_buff *skb, *nskb, *next;
2059 struct net *net = sock_net(sk);
2060 int probe_size;
2061 int size_needed;
2062 int copy, len;
2063 int mss_now;
2064 int interval;
2065
2066 /* Not currently probing/verifying,
2067 * not in recovery,
2068 * have enough cwnd, and
2069 * not SACKing (the variable headers throw things off)
2070 */
2071 if (likely(!icsk->icsk_mtup.enabled ||
2072 icsk->icsk_mtup.probe_size ||
2073 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2074 tp->snd_cwnd < 11 ||
2075 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2076 return -1;
2077
2078 /* Use binary search for probe_size between tcp_mss_base,
2079 * and current mss_clamp. if (search_high - search_low)
2080 * smaller than a threshold, backoff from probing.
2081 */
2082 mss_now = tcp_current_mss(sk);
2083 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2084 icsk->icsk_mtup.search_low) >> 1);
2085 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2086 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2087 /* When misfortune happens, we are reprobing actively,
2088 * and then reprobe timer has expired. We stick with current
2089 * probing process by not resetting search range to its orignal.
2090 */
2091 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2092 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2093 /* Check whether enough time has elaplased for
2094 * another round of probing.
2095 */
2096 tcp_mtu_check_reprobe(sk);
2097 return -1;
2098 }
2099
2100 /* Have enough data in the send queue to probe? */
2101 if (tp->write_seq - tp->snd_nxt < size_needed)
2102 return -1;
2103
2104 if (tp->snd_wnd < size_needed)
2105 return -1;
2106 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2107 return 0;
2108
2109 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2110 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2111 if (!tcp_packets_in_flight(tp))
2112 return -1;
2113 else
2114 return 0;
2115 }
2116
2117 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2118 return -1;
2119
2120 /* We're allowed to probe. Build it now. */
2121 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2122 if (!nskb)
2123 return -1;
2124 sk->sk_wmem_queued += nskb->truesize;
2125 sk_mem_charge(sk, nskb->truesize);
2126
2127 skb = tcp_send_head(sk);
2128
2129 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2130 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2131 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2132 TCP_SKB_CB(nskb)->sacked = 0;
2133 nskb->csum = 0;
2134 nskb->ip_summed = CHECKSUM_PARTIAL;
2135
2136 tcp_insert_write_queue_before(nskb, skb, sk);
2137 tcp_highest_sack_replace(sk, skb, nskb);
2138
2139 len = 0;
2140 tcp_for_write_queue_from_safe(skb, next, sk) {
2141 copy = min_t(int, skb->len, probe_size - len);
2142 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2143
2144 if (skb->len <= copy) {
2145 /* We've eaten all the data from this skb.
2146 * Throw it away. */
2147 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2148 /* If this is the last SKB we copy and eor is set
2149 * we need to propagate it to the new skb.
2150 */
2151 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2152 tcp_skb_collapse_tstamp(nskb, skb);
2153 tcp_unlink_write_queue(skb, sk);
2154 sk_wmem_free_skb(sk, skb);
2155 } else {
2156 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2157 ~(TCPHDR_FIN|TCPHDR_PSH);
2158 if (!skb_shinfo(skb)->nr_frags) {
2159 skb_pull(skb, copy);
2160 } else {
2161 __pskb_trim_head(skb, copy);
2162 tcp_set_skb_tso_segs(skb, mss_now);
2163 }
2164 TCP_SKB_CB(skb)->seq += copy;
2165 }
2166
2167 len += copy;
2168
2169 if (len >= probe_size)
2170 break;
2171 }
2172 tcp_init_tso_segs(nskb, nskb->len);
2173
2174 /* We're ready to send. If this fails, the probe will
2175 * be resegmented into mss-sized pieces by tcp_write_xmit().
2176 */
2177 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2178 /* Decrement cwnd here because we are sending
2179 * effectively two packets. */
2180 tp->snd_cwnd--;
2181 tcp_event_new_data_sent(sk, nskb);
2182
2183 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2184 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2185 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2186
2187 return 1;
2188 }
2189
2190 return -1;
2191}
2192
2193static bool tcp_pacing_check(const struct sock *sk)
2194{
2195 return tcp_needs_internal_pacing(sk) &&
2196 hrtimer_is_queued(&tcp_sk(sk)->pacing_timer);
2197}
2198
2199/* TCP Small Queues :
2200 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2201 * (These limits are doubled for retransmits)
2202 * This allows for :
2203 * - better RTT estimation and ACK scheduling
2204 * - faster recovery
2205 * - high rates
2206 * Alas, some drivers / subsystems require a fair amount
2207 * of queued bytes to ensure line rate.
2208 * One example is wifi aggregation (802.11 AMPDU)
2209 */
2210static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2211 unsigned int factor)
2212{
2213 unsigned int limit;
2214
2215 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> sk->sk_pacing_shift);
2216 limit = min_t(u32, limit,
2217 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2218 limit <<= factor;
2219
2220 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2221 /* Always send skb if rtx queue is empty.
2222 * No need to wait for TX completion to call us back,
2223 * after softirq/tasklet schedule.
2224 * This helps when TX completions are delayed too much.
2225 */
2226 if (tcp_rtx_queue_empty(sk))
2227 return false;
2228
2229 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2230 /* It is possible TX completion already happened
2231 * before we set TSQ_THROTTLED, so we must
2232 * test again the condition.
2233 */
2234 smp_mb__after_atomic();
2235 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2236 return true;
2237 }
2238 return false;
2239}
2240
2241static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2242{
2243 const u32 now = tcp_jiffies32;
2244 enum tcp_chrono old = tp->chrono_type;
2245
2246 if (old > TCP_CHRONO_UNSPEC)
2247 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2248 tp->chrono_start = now;
2249 tp->chrono_type = new;
2250}
2251
2252void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2253{
2254 struct tcp_sock *tp = tcp_sk(sk);
2255
2256 /* If there are multiple conditions worthy of tracking in a
2257 * chronograph then the highest priority enum takes precedence
2258 * over the other conditions. So that if something "more interesting"
2259 * starts happening, stop the previous chrono and start a new one.
2260 */
2261 if (type > tp->chrono_type)
2262 tcp_chrono_set(tp, type);
2263}
2264
2265void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2266{
2267 struct tcp_sock *tp = tcp_sk(sk);
2268
2269
2270 /* There are multiple conditions worthy of tracking in a
2271 * chronograph, so that the highest priority enum takes
2272 * precedence over the other conditions (see tcp_chrono_start).
2273 * If a condition stops, we only stop chrono tracking if
2274 * it's the "most interesting" or current chrono we are
2275 * tracking and starts busy chrono if we have pending data.
2276 */
2277 if (tcp_rtx_and_write_queues_empty(sk))
2278 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2279 else if (type == tp->chrono_type)
2280 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2281}
2282
2283/* This routine writes packets to the network. It advances the
2284 * send_head. This happens as incoming acks open up the remote
2285 * window for us.
2286 *
2287 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2288 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2289 * account rare use of URG, this is not a big flaw.
2290 *
2291 * Send at most one packet when push_one > 0. Temporarily ignore
2292 * cwnd limit to force at most one packet out when push_one == 2.
2293
2294 * Returns true, if no segments are in flight and we have queued segments,
2295 * but cannot send anything now because of SWS or another problem.
2296 */
2297static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2298 int push_one, gfp_t gfp)
2299{
2300 struct tcp_sock *tp = tcp_sk(sk);
2301 struct sk_buff *skb;
2302 unsigned int tso_segs, sent_pkts;
2303 int cwnd_quota;
2304 int result;
2305 bool is_cwnd_limited = false, is_rwnd_limited = false;
2306 u32 max_segs;
2307
2308 sent_pkts = 0;
2309
2310 tcp_mstamp_refresh(tp);
2311 if (!push_one) {
2312 /* Do MTU probing. */
2313 result = tcp_mtu_probe(sk);
2314 if (!result) {
2315 return false;
2316 } else if (result > 0) {
2317 sent_pkts = 1;
2318 }
2319 }
2320
2321 max_segs = tcp_tso_segs(sk, mss_now);
2322 while ((skb = tcp_send_head(sk))) {
2323 unsigned int limit;
2324
2325 if (tcp_pacing_check(sk))
2326 break;
2327
2328 tso_segs = tcp_init_tso_segs(skb, mss_now);
2329 BUG_ON(!tso_segs);
2330
2331 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2332 /* "skb_mstamp" is used as a start point for the retransmit timer */
2333 tcp_update_skb_after_send(tp, skb);
2334 goto repair; /* Skip network transmission */
2335 }
2336
2337 cwnd_quota = tcp_cwnd_test(tp, skb);
2338 if (!cwnd_quota) {
2339 if (push_one == 2)
2340 /* Force out a loss probe pkt. */
2341 cwnd_quota = 1;
2342 else
2343 break;
2344 }
2345
2346 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2347 is_rwnd_limited = true;
2348 break;
2349 }
2350
2351 if (tso_segs == 1) {
2352 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2353 (tcp_skb_is_last(sk, skb) ?
2354 nonagle : TCP_NAGLE_PUSH))))
2355 break;
2356 } else {
2357 if (!push_one &&
2358 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2359 &is_rwnd_limited, max_segs))
2360 break;
2361 }
2362
2363 limit = mss_now;
2364 if (tso_segs > 1 && !tcp_urg_mode(tp))
2365 limit = tcp_mss_split_point(sk, skb, mss_now,
2366 min_t(unsigned int,
2367 cwnd_quota,
2368 max_segs),
2369 nonagle);
2370
2371 if (skb->len > limit &&
2372 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2373 skb, limit, mss_now, gfp)))
2374 break;
2375
2376 if (tcp_small_queue_check(sk, skb, 0))
2377 break;
2378
2379 /* Argh, we hit an empty skb(), presumably a thread
2380 * is sleeping in sendmsg()/sk_stream_wait_memory().
2381 * We do not want to send a pure-ack packet and have
2382 * a strange looking rtx queue with empty packet(s).
2383 */
2384 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2385 break;
2386
2387 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2388 break;
2389
2390repair:
2391 /* Advance the send_head. This one is sent out.
2392 * This call will increment packets_out.
2393 */
2394 tcp_event_new_data_sent(sk, skb);
2395
2396 tcp_minshall_update(tp, mss_now, skb);
2397 sent_pkts += tcp_skb_pcount(skb);
2398
2399 if (push_one)
2400 break;
2401 }
2402
2403 if (is_rwnd_limited)
2404 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2405 else
2406 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2407
2408 if (likely(sent_pkts)) {
2409 if (tcp_in_cwnd_reduction(sk))
2410 tp->prr_out += sent_pkts;
2411
2412 /* Send one loss probe per tail loss episode. */
2413 if (push_one != 2)
2414 tcp_schedule_loss_probe(sk, false);
2415 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2416 tcp_cwnd_validate(sk, is_cwnd_limited);
2417 return false;
2418 }
2419 return !tp->packets_out && !tcp_write_queue_empty(sk);
2420}
2421
2422bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2423{
2424 struct inet_connection_sock *icsk = inet_csk(sk);
2425 struct tcp_sock *tp = tcp_sk(sk);
2426 u32 timeout, rto_delta_us;
2427 int early_retrans;
2428
2429 /* Don't do any loss probe on a Fast Open connection before 3WHS
2430 * finishes.
2431 */
2432 if (tp->fastopen_rsk)
2433 return false;
2434
2435 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2436 /* Schedule a loss probe in 2*RTT for SACK capable connections
2437 * not in loss recovery, that are either limited by cwnd or application.
2438 */
2439 if ((early_retrans != 3 && early_retrans != 4) ||
2440 !tp->packets_out || !tcp_is_sack(tp) ||
2441 (icsk->icsk_ca_state != TCP_CA_Open &&
2442 icsk->icsk_ca_state != TCP_CA_CWR))
2443 return false;
2444
2445 /* Probe timeout is 2*rtt. Add minimum RTO to account
2446 * for delayed ack when there's one outstanding packet. If no RTT
2447 * sample is available then probe after TCP_TIMEOUT_INIT.
2448 */
2449 if (tp->srtt_us) {
2450 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2451 if (tp->packets_out == 1)
2452 timeout += TCP_RTO_MIN;
2453 else
2454 timeout += TCP_TIMEOUT_MIN;
2455 } else {
2456 timeout = TCP_TIMEOUT_INIT;
2457 }
2458
2459 /* If the RTO formula yields an earlier time, then use that time. */
2460 rto_delta_us = advancing_rto ?
2461 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2462 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2463 if (rto_delta_us > 0)
2464 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2465
2466 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2467 TCP_RTO_MAX);
2468 return true;
2469}
2470
2471/* Thanks to skb fast clones, we can detect if a prior transmit of
2472 * a packet is still in a qdisc or driver queue.
2473 * In this case, there is very little point doing a retransmit !
2474 */
2475static bool skb_still_in_host_queue(const struct sock *sk,
2476 const struct sk_buff *skb)
2477{
2478 if (unlikely(skb_fclone_busy(sk, skb))) {
2479 NET_INC_STATS(sock_net(sk),
2480 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2481 return true;
2482 }
2483 return false;
2484}
2485
2486/* When probe timeout (PTO) fires, try send a new segment if possible, else
2487 * retransmit the last segment.
2488 */
2489void tcp_send_loss_probe(struct sock *sk)
2490{
2491 struct tcp_sock *tp = tcp_sk(sk);
2492 struct sk_buff *skb;
2493 int pcount;
2494 int mss = tcp_current_mss(sk);
2495
2496 skb = tcp_send_head(sk);
2497 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2498 pcount = tp->packets_out;
2499 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2500 if (tp->packets_out > pcount)
2501 goto probe_sent;
2502 goto rearm_timer;
2503 }
2504 skb = skb_rb_last(&sk->tcp_rtx_queue);
2505 if (unlikely(!skb)) {
2506 WARN_ONCE(tp->packets_out,
2507 "invalid inflight: %u state %u cwnd %u mss %d\n",
2508 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2509 inet_csk(sk)->icsk_pending = 0;
2510 return;
2511 }
2512
2513 /* At most one outstanding TLP retransmission. */
2514 if (tp->tlp_high_seq)
2515 goto rearm_timer;
2516
2517 if (skb_still_in_host_queue(sk, skb))
2518 goto rearm_timer;
2519
2520 pcount = tcp_skb_pcount(skb);
2521 if (WARN_ON(!pcount))
2522 goto rearm_timer;
2523
2524 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2525 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2526 (pcount - 1) * mss, mss,
2527 GFP_ATOMIC)))
2528 goto rearm_timer;
2529 skb = skb_rb_next(skb);
2530 }
2531
2532 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2533 goto rearm_timer;
2534
2535 if (__tcp_retransmit_skb(sk, skb, 1))
2536 goto rearm_timer;
2537
2538 /* Record snd_nxt for loss detection. */
2539 tp->tlp_high_seq = tp->snd_nxt;
2540
2541probe_sent:
2542 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2543 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2544 inet_csk(sk)->icsk_pending = 0;
2545rearm_timer:
2546 tcp_rearm_rto(sk);
2547}
2548
2549/* Push out any pending frames which were held back due to
2550 * TCP_CORK or attempt at coalescing tiny packets.
2551 * The socket must be locked by the caller.
2552 */
2553void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2554 int nonagle)
2555{
2556 /* If we are closed, the bytes will have to remain here.
2557 * In time closedown will finish, we empty the write queue and
2558 * all will be happy.
2559 */
2560 if (unlikely(sk->sk_state == TCP_CLOSE))
2561 return;
2562
2563 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2564 sk_gfp_mask(sk, GFP_ATOMIC)))
2565 tcp_check_probe_timer(sk);
2566}
2567
2568/* Send _single_ skb sitting at the send head. This function requires
2569 * true push pending frames to setup probe timer etc.
2570 */
2571void tcp_push_one(struct sock *sk, unsigned int mss_now)
2572{
2573 struct sk_buff *skb = tcp_send_head(sk);
2574
2575 BUG_ON(!skb || skb->len < mss_now);
2576
2577 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2578}
2579
2580/* This function returns the amount that we can raise the
2581 * usable window based on the following constraints
2582 *
2583 * 1. The window can never be shrunk once it is offered (RFC 793)
2584 * 2. We limit memory per socket
2585 *
2586 * RFC 1122:
2587 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2588 * RECV.NEXT + RCV.WIN fixed until:
2589 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2590 *
2591 * i.e. don't raise the right edge of the window until you can raise
2592 * it at least MSS bytes.
2593 *
2594 * Unfortunately, the recommended algorithm breaks header prediction,
2595 * since header prediction assumes th->window stays fixed.
2596 *
2597 * Strictly speaking, keeping th->window fixed violates the receiver
2598 * side SWS prevention criteria. The problem is that under this rule
2599 * a stream of single byte packets will cause the right side of the
2600 * window to always advance by a single byte.
2601 *
2602 * Of course, if the sender implements sender side SWS prevention
2603 * then this will not be a problem.
2604 *
2605 * BSD seems to make the following compromise:
2606 *
2607 * If the free space is less than the 1/4 of the maximum
2608 * space available and the free space is less than 1/2 mss,
2609 * then set the window to 0.
2610 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2611 * Otherwise, just prevent the window from shrinking
2612 * and from being larger than the largest representable value.
2613 *
2614 * This prevents incremental opening of the window in the regime
2615 * where TCP is limited by the speed of the reader side taking
2616 * data out of the TCP receive queue. It does nothing about
2617 * those cases where the window is constrained on the sender side
2618 * because the pipeline is full.
2619 *
2620 * BSD also seems to "accidentally" limit itself to windows that are a
2621 * multiple of MSS, at least until the free space gets quite small.
2622 * This would appear to be a side effect of the mbuf implementation.
2623 * Combining these two algorithms results in the observed behavior
2624 * of having a fixed window size at almost all times.
2625 *
2626 * Below we obtain similar behavior by forcing the offered window to
2627 * a multiple of the mss when it is feasible to do so.
2628 *
2629 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2630 * Regular options like TIMESTAMP are taken into account.
2631 */
2632u32 __tcp_select_window(struct sock *sk)
2633{
2634 struct inet_connection_sock *icsk = inet_csk(sk);
2635 struct tcp_sock *tp = tcp_sk(sk);
2636 /* MSS for the peer's data. Previous versions used mss_clamp
2637 * here. I don't know if the value based on our guesses
2638 * of peer's MSS is better for the performance. It's more correct
2639 * but may be worse for the performance because of rcv_mss
2640 * fluctuations. --SAW 1998/11/1
2641 */
2642 int mss = icsk->icsk_ack.rcv_mss;
2643 int free_space = tcp_space(sk);
2644 int allowed_space = tcp_full_space(sk);
2645 int full_space = min_t(int, tp->window_clamp, allowed_space);
2646 int window;
2647
2648 if (unlikely(mss > full_space)) {
2649 mss = full_space;
2650 if (mss <= 0)
2651 return 0;
2652 }
2653 if (free_space < (full_space >> 1)) {
2654 icsk->icsk_ack.quick = 0;
2655
2656 if (tcp_under_memory_pressure(sk))
2657 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2658 4U * tp->advmss);
2659
2660 /* free_space might become our new window, make sure we don't
2661 * increase it due to wscale.
2662 */
2663 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2664
2665 /* if free space is less than mss estimate, or is below 1/16th
2666 * of the maximum allowed, try to move to zero-window, else
2667 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2668 * new incoming data is dropped due to memory limits.
2669 * With large window, mss test triggers way too late in order
2670 * to announce zero window in time before rmem limit kicks in.
2671 */
2672 if (free_space < (allowed_space >> 4) || free_space < mss)
2673 return 0;
2674 }
2675
2676 if (free_space > tp->rcv_ssthresh)
2677 free_space = tp->rcv_ssthresh;
2678
2679 /* Don't do rounding if we are using window scaling, since the
2680 * scaled window will not line up with the MSS boundary anyway.
2681 */
2682 if (tp->rx_opt.rcv_wscale) {
2683 window = free_space;
2684
2685 /* Advertise enough space so that it won't get scaled away.
2686 * Import case: prevent zero window announcement if
2687 * 1<<rcv_wscale > mss.
2688 */
2689 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2690 } else {
2691 window = tp->rcv_wnd;
2692 /* Get the largest window that is a nice multiple of mss.
2693 * Window clamp already applied above.
2694 * If our current window offering is within 1 mss of the
2695 * free space we just keep it. This prevents the divide
2696 * and multiply from happening most of the time.
2697 * We also don't do any window rounding when the free space
2698 * is too small.
2699 */
2700 if (window <= free_space - mss || window > free_space)
2701 window = rounddown(free_space, mss);
2702 else if (mss == full_space &&
2703 free_space > window + (full_space >> 1))
2704 window = free_space;
2705 }
2706
2707 return window;
2708}
2709
2710void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2711 const struct sk_buff *next_skb)
2712{
2713 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2714 const struct skb_shared_info *next_shinfo =
2715 skb_shinfo(next_skb);
2716 struct skb_shared_info *shinfo = skb_shinfo(skb);
2717
2718 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2719 shinfo->tskey = next_shinfo->tskey;
2720 TCP_SKB_CB(skb)->txstamp_ack |=
2721 TCP_SKB_CB(next_skb)->txstamp_ack;
2722 }
2723}
2724
2725/* Collapses two adjacent SKB's during retransmission. */
2726static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2727{
2728 struct tcp_sock *tp = tcp_sk(sk);
2729 struct sk_buff *next_skb = skb_rb_next(skb);
2730 int next_skb_size;
2731
2732 next_skb_size = next_skb->len;
2733
2734 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2735
2736 if (next_skb_size) {
2737 if (next_skb_size <= skb_availroom(skb))
2738 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2739 next_skb_size);
2740 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
2741 return false;
2742 }
2743 tcp_highest_sack_replace(sk, next_skb, skb);
2744
2745 /* Update sequence range on original skb. */
2746 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2747
2748 /* Merge over control information. This moves PSH/FIN etc. over */
2749 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2750
2751 /* All done, get rid of second SKB and account for it so
2752 * packet counting does not break.
2753 */
2754 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2755 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2756
2757 /* changed transmit queue under us so clear hints */
2758 tcp_clear_retrans_hints_partial(tp);
2759 if (next_skb == tp->retransmit_skb_hint)
2760 tp->retransmit_skb_hint = skb;
2761
2762 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2763
2764 tcp_skb_collapse_tstamp(skb, next_skb);
2765
2766 tcp_rtx_queue_unlink_and_free(next_skb, sk);
2767 return true;
2768}
2769
2770/* Check if coalescing SKBs is legal. */
2771static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2772{
2773 if (tcp_skb_pcount(skb) > 1)
2774 return false;
2775 if (skb_cloned(skb))
2776 return false;
2777 /* Some heuristics for collapsing over SACK'd could be invented */
2778 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2779 return false;
2780
2781 return true;
2782}
2783
2784/* Collapse packets in the retransmit queue to make to create
2785 * less packets on the wire. This is only done on retransmission.
2786 */
2787static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2788 int space)
2789{
2790 struct tcp_sock *tp = tcp_sk(sk);
2791 struct sk_buff *skb = to, *tmp;
2792 bool first = true;
2793
2794 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2795 return;
2796 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2797 return;
2798
2799 skb_rbtree_walk_from_safe(skb, tmp) {
2800 if (!tcp_can_collapse(sk, skb))
2801 break;
2802
2803 if (!tcp_skb_can_collapse_to(to))
2804 break;
2805
2806 space -= skb->len;
2807
2808 if (first) {
2809 first = false;
2810 continue;
2811 }
2812
2813 if (space < 0)
2814 break;
2815
2816 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2817 break;
2818
2819 if (!tcp_collapse_retrans(sk, to))
2820 break;
2821 }
2822}
2823
2824/* This retransmits one SKB. Policy decisions and retransmit queue
2825 * state updates are done by the caller. Returns non-zero if an
2826 * error occurred which prevented the send.
2827 */
2828int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2829{
2830 struct inet_connection_sock *icsk = inet_csk(sk);
2831 struct tcp_sock *tp = tcp_sk(sk);
2832 unsigned int cur_mss;
2833 int diff, len, err;
2834
2835
2836 /* Inconclusive MTU probe */
2837 if (icsk->icsk_mtup.probe_size)
2838 icsk->icsk_mtup.probe_size = 0;
2839
2840 /* Do not sent more than we queued. 1/4 is reserved for possible
2841 * copying overhead: fragmentation, tunneling, mangling etc.
2842 */
2843 if (refcount_read(&sk->sk_wmem_alloc) >
2844 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2845 sk->sk_sndbuf))
2846 return -EAGAIN;
2847
2848 if (skb_still_in_host_queue(sk, skb))
2849 return -EBUSY;
2850
2851 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2852 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2853 WARN_ON_ONCE(1);
2854 return -EINVAL;
2855 }
2856 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2857 return -ENOMEM;
2858 }
2859
2860 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2861 return -EHOSTUNREACH; /* Routing failure or similar. */
2862
2863 cur_mss = tcp_current_mss(sk);
2864
2865 /* If receiver has shrunk his window, and skb is out of
2866 * new window, do not retransmit it. The exception is the
2867 * case, when window is shrunk to zero. In this case
2868 * our retransmit serves as a zero window probe.
2869 */
2870 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2871 TCP_SKB_CB(skb)->seq != tp->snd_una)
2872 return -EAGAIN;
2873
2874 len = cur_mss * segs;
2875 if (skb->len > len) {
2876 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2877 cur_mss, GFP_ATOMIC))
2878 return -ENOMEM; /* We'll try again later. */
2879 } else {
2880 if (skb_unclone(skb, GFP_ATOMIC))
2881 return -ENOMEM;
2882
2883 diff = tcp_skb_pcount(skb);
2884 tcp_set_skb_tso_segs(skb, cur_mss);
2885 diff -= tcp_skb_pcount(skb);
2886 if (diff)
2887 tcp_adjust_pcount(sk, skb, diff);
2888 if (skb->len < cur_mss)
2889 tcp_retrans_try_collapse(sk, skb, cur_mss);
2890 }
2891
2892 /* RFC3168, section 6.1.1.1. ECN fallback */
2893 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2894 tcp_ecn_clear_syn(sk, skb);
2895
2896 /* Update global and local TCP statistics. */
2897 segs = tcp_skb_pcount(skb);
2898 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2899 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2900 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2901 tp->total_retrans += segs;
2902 tp->bytes_retrans += skb->len;
2903
2904 /* make sure skb->data is aligned on arches that require it
2905 * and check if ack-trimming & collapsing extended the headroom
2906 * beyond what csum_start can cover.
2907 */
2908 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2909 skb_headroom(skb) >= 0xFFFF)) {
2910 struct sk_buff *nskb;
2911
2912 tcp_skb_tsorted_save(skb) {
2913 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2914 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2915 -ENOBUFS;
2916 } tcp_skb_tsorted_restore(skb);
2917
2918 if (!err) {
2919 tcp_update_skb_after_send(tp, skb);
2920 tcp_rate_skb_sent(sk, skb);
2921 }
2922 } else {
2923 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2924 }
2925
2926 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2927 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2928 TCP_SKB_CB(skb)->seq, segs, err);
2929
2930 if (likely(!err)) {
2931 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2932 trace_tcp_retransmit_skb(sk, skb);
2933 } else if (err != -EBUSY) {
2934 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
2935 }
2936 return err;
2937}
2938
2939int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2940{
2941 struct tcp_sock *tp = tcp_sk(sk);
2942 int err = __tcp_retransmit_skb(sk, skb, segs);
2943
2944 if (err == 0) {
2945#if FASTRETRANS_DEBUG > 0
2946 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2947 net_dbg_ratelimited("retrans_out leaked\n");
2948 }
2949#endif
2950 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2951 tp->retrans_out += tcp_skb_pcount(skb);
2952
2953 /* Save stamp of the first retransmit. */
2954 if (!tp->retrans_stamp)
2955 tp->retrans_stamp = tcp_skb_timestamp(skb);
2956
2957 }
2958
2959 if (tp->undo_retrans < 0)
2960 tp->undo_retrans = 0;
2961 tp->undo_retrans += tcp_skb_pcount(skb);
2962 return err;
2963}
2964
2965/* This gets called after a retransmit timeout, and the initially
2966 * retransmitted data is acknowledged. It tries to continue
2967 * resending the rest of the retransmit queue, until either
2968 * we've sent it all or the congestion window limit is reached.
2969 */
2970void tcp_xmit_retransmit_queue(struct sock *sk)
2971{
2972 const struct inet_connection_sock *icsk = inet_csk(sk);
2973 struct sk_buff *skb, *rtx_head, *hole = NULL;
2974 struct tcp_sock *tp = tcp_sk(sk);
2975 u32 max_segs;
2976 int mib_idx;
2977
2978 if (!tp->packets_out)
2979 return;
2980
2981 rtx_head = tcp_rtx_queue_head(sk);
2982 skb = tp->retransmit_skb_hint ?: rtx_head;
2983 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2984 skb_rbtree_walk_from(skb) {
2985 __u8 sacked;
2986 int segs;
2987
2988 if (tcp_pacing_check(sk))
2989 break;
2990
2991 /* we could do better than to assign each time */
2992 if (!hole)
2993 tp->retransmit_skb_hint = skb;
2994
2995 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2996 if (segs <= 0)
2997 return;
2998 sacked = TCP_SKB_CB(skb)->sacked;
2999 /* In case tcp_shift_skb_data() have aggregated large skbs,
3000 * we need to make sure not sending too bigs TSO packets
3001 */
3002 segs = min_t(int, segs, max_segs);
3003
3004 if (tp->retrans_out >= tp->lost_out) {
3005 break;
3006 } else if (!(sacked & TCPCB_LOST)) {
3007 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3008 hole = skb;
3009 continue;
3010
3011 } else {
3012 if (icsk->icsk_ca_state != TCP_CA_Loss)
3013 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3014 else
3015 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3016 }
3017
3018 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3019 continue;
3020
3021 if (tcp_small_queue_check(sk, skb, 1))
3022 return;
3023
3024 if (tcp_retransmit_skb(sk, skb, segs))
3025 return;
3026
3027 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3028
3029 if (tcp_in_cwnd_reduction(sk))
3030 tp->prr_out += tcp_skb_pcount(skb);
3031
3032 if (skb == rtx_head &&
3033 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3034 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3035 inet_csk(sk)->icsk_rto,
3036 TCP_RTO_MAX);
3037 }
3038}
3039
3040/* We allow to exceed memory limits for FIN packets to expedite
3041 * connection tear down and (memory) recovery.
3042 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3043 * or even be forced to close flow without any FIN.
3044 * In general, we want to allow one skb per socket to avoid hangs
3045 * with edge trigger epoll()
3046 */
3047void sk_forced_mem_schedule(struct sock *sk, int size)
3048{
3049 int amt;
3050
3051 if (size <= sk->sk_forward_alloc)
3052 return;
3053 amt = sk_mem_pages(size);
3054 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3055 sk_memory_allocated_add(sk, amt);
3056
3057 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3058 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3059}
3060
3061/* Send a FIN. The caller locks the socket for us.
3062 * We should try to send a FIN packet really hard, but eventually give up.
3063 */
3064void tcp_send_fin(struct sock *sk)
3065{
3066 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3067 struct tcp_sock *tp = tcp_sk(sk);
3068
3069 /* Optimization, tack on the FIN if we have one skb in write queue and
3070 * this skb was not yet sent, or we are under memory pressure.
3071 * Note: in the latter case, FIN packet will be sent after a timeout,
3072 * as TCP stack thinks it has already been transmitted.
3073 */
3074 if (!tskb && tcp_under_memory_pressure(sk))
3075 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3076
3077 if (tskb) {
3078coalesce:
3079 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3080 TCP_SKB_CB(tskb)->end_seq++;
3081 tp->write_seq++;
3082 if (tcp_write_queue_empty(sk)) {
3083 /* This means tskb was already sent.
3084 * Pretend we included the FIN on previous transmit.
3085 * We need to set tp->snd_nxt to the value it would have
3086 * if FIN had been sent. This is because retransmit path
3087 * does not change tp->snd_nxt.
3088 */
3089 tp->snd_nxt++;
3090 return;
3091 }
3092 } else {
3093 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3094 if (unlikely(!skb)) {
3095 if (tskb)
3096 goto coalesce;
3097 return;
3098 }
3099 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3100 skb_reserve(skb, MAX_TCP_HEADER);
3101 sk_forced_mem_schedule(sk, skb->truesize);
3102 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3103 tcp_init_nondata_skb(skb, tp->write_seq,
3104 TCPHDR_ACK | TCPHDR_FIN);
3105 tcp_queue_skb(sk, skb);
3106 }
3107 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3108}
3109
3110/* We get here when a process closes a file descriptor (either due to
3111 * an explicit close() or as a byproduct of exit()'ing) and there
3112 * was unread data in the receive queue. This behavior is recommended
3113 * by RFC 2525, section 2.17. -DaveM
3114 */
3115void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3116{
3117 struct sk_buff *skb;
3118
3119 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3120
3121 /* NOTE: No TCP options attached and we never retransmit this. */
3122 skb = alloc_skb(MAX_TCP_HEADER, priority);
3123 if (!skb) {
3124 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3125 return;
3126 }
3127
3128 /* Reserve space for headers and prepare control bits. */
3129 skb_reserve(skb, MAX_TCP_HEADER);
3130 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3131 TCPHDR_ACK | TCPHDR_RST);
3132 tcp_mstamp_refresh(tcp_sk(sk));
3133 /* Send it off. */
3134 if (tcp_transmit_skb(sk, skb, 0, priority))
3135 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3136
3137 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3138 * skb here is different to the troublesome skb, so use NULL
3139 */
3140 trace_tcp_send_reset(sk, NULL);
3141}
3142
3143/* Send a crossed SYN-ACK during socket establishment.
3144 * WARNING: This routine must only be called when we have already sent
3145 * a SYN packet that crossed the incoming SYN that caused this routine
3146 * to get called. If this assumption fails then the initial rcv_wnd
3147 * and rcv_wscale values will not be correct.
3148 */
3149int tcp_send_synack(struct sock *sk)
3150{
3151 struct sk_buff *skb;
3152
3153 skb = tcp_rtx_queue_head(sk);
3154 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3155 pr_err("%s: wrong queue state\n", __func__);
3156 return -EFAULT;
3157 }
3158 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3159 if (skb_cloned(skb)) {
3160 struct sk_buff *nskb;
3161
3162 tcp_skb_tsorted_save(skb) {
3163 nskb = skb_copy(skb, GFP_ATOMIC);
3164 } tcp_skb_tsorted_restore(skb);
3165 if (!nskb)
3166 return -ENOMEM;
3167 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3168 tcp_rtx_queue_unlink_and_free(skb, sk);
3169 __skb_header_release(nskb);
3170 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3171 sk->sk_wmem_queued += nskb->truesize;
3172 sk_mem_charge(sk, nskb->truesize);
3173 skb = nskb;
3174 }
3175
3176 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3177 tcp_ecn_send_synack(sk, skb);
3178 }
3179 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3180}
3181
3182/**
3183 * tcp_make_synack - Prepare a SYN-ACK.
3184 * sk: listener socket
3185 * dst: dst entry attached to the SYNACK
3186 * req: request_sock pointer
3187 *
3188 * Allocate one skb and build a SYNACK packet.
3189 * @dst is consumed : Caller should not use it again.
3190 */
3191struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3192 struct request_sock *req,
3193 struct tcp_fastopen_cookie *foc,
3194 enum tcp_synack_type synack_type)
3195{
3196 struct inet_request_sock *ireq = inet_rsk(req);
3197 const struct tcp_sock *tp = tcp_sk(sk);
3198 struct tcp_md5sig_key *md5 = NULL;
3199 struct tcp_out_options opts;
3200 struct sk_buff *skb;
3201 int tcp_header_size;
3202 struct tcphdr *th;
3203 int mss;
3204
3205 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3206 if (unlikely(!skb)) {
3207 dst_release(dst);
3208 return NULL;
3209 }
3210 /* Reserve space for headers. */
3211 skb_reserve(skb, MAX_TCP_HEADER);
3212
3213 switch (synack_type) {
3214 case TCP_SYNACK_NORMAL:
3215 skb_set_owner_w(skb, req_to_sk(req));
3216 break;
3217 case TCP_SYNACK_COOKIE:
3218 /* Under synflood, we do not attach skb to a socket,
3219 * to avoid false sharing.
3220 */
3221 break;
3222 case TCP_SYNACK_FASTOPEN:
3223 /* sk is a const pointer, because we want to express multiple
3224 * cpu might call us concurrently.
3225 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3226 */
3227 skb_set_owner_w(skb, (struct sock *)sk);
3228 break;
3229 }
3230 skb_dst_set(skb, dst);
3231
3232 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3233
3234 memset(&opts, 0, sizeof(opts));
3235#ifdef CONFIG_SYN_COOKIES
3236 if (unlikely(req->cookie_ts))
3237 skb->skb_mstamp = cookie_init_timestamp(req);
3238 else
3239#endif
3240 skb->skb_mstamp = tcp_clock_us();
3241
3242#ifdef CONFIG_TCP_MD5SIG
3243 rcu_read_lock();
3244 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3245#endif
3246 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3247 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3248 foc) + sizeof(*th);
3249
3250 skb_push(skb, tcp_header_size);
3251 skb_reset_transport_header(skb);
3252
3253 th = (struct tcphdr *)skb->data;
3254 memset(th, 0, sizeof(struct tcphdr));
3255 th->syn = 1;
3256 th->ack = 1;
3257 tcp_ecn_make_synack(req, th);
3258 th->source = htons(ireq->ir_num);
3259 th->dest = ireq->ir_rmt_port;
3260 skb->mark = ireq->ir_mark;
3261 skb->ip_summed = CHECKSUM_PARTIAL;
3262 th->seq = htonl(tcp_rsk(req)->snt_isn);
3263 /* XXX data is queued and acked as is. No buffer/window check */
3264 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3265
3266 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3267 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3268 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3269 th->doff = (tcp_header_size >> 2);
3270 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3271
3272#ifdef CONFIG_TCP_MD5SIG
3273 /* Okay, we have all we need - do the md5 hash if needed */
3274 if (md5)
3275 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3276 md5, req_to_sk(req), skb);
3277 rcu_read_unlock();
3278#endif
3279
3280 /* Do not fool tcpdump (if any), clean our debris */
3281 skb->tstamp = 0;
3282 return skb;
3283}
3284EXPORT_SYMBOL(tcp_make_synack);
3285
3286static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3287{
3288 struct inet_connection_sock *icsk = inet_csk(sk);
3289 const struct tcp_congestion_ops *ca;
3290 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3291
3292 if (ca_key == TCP_CA_UNSPEC)
3293 return;
3294
3295 rcu_read_lock();
3296 ca = tcp_ca_find_key(ca_key);
3297 if (likely(ca && try_module_get(ca->owner))) {
3298 module_put(icsk->icsk_ca_ops->owner);
3299 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3300 icsk->icsk_ca_ops = ca;
3301 }
3302 rcu_read_unlock();
3303}
3304
3305/* Do all connect socket setups that can be done AF independent. */
3306static void tcp_connect_init(struct sock *sk)
3307{
3308 const struct dst_entry *dst = __sk_dst_get(sk);
3309 struct tcp_sock *tp = tcp_sk(sk);
3310 __u8 rcv_wscale;
3311 u32 rcv_wnd;
3312
3313 /* We'll fix this up when we get a response from the other end.
3314 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3315 */
3316 tp->tcp_header_len = sizeof(struct tcphdr);
3317 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3318 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3319
3320#ifdef CONFIG_TCP_MD5SIG
3321 if (tp->af_specific->md5_lookup(sk, sk))
3322 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3323#endif
3324
3325 /* If user gave his TCP_MAXSEG, record it to clamp */
3326 if (tp->rx_opt.user_mss)
3327 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3328 tp->max_window = 0;
3329 tcp_mtup_init(sk);
3330 tcp_sync_mss(sk, dst_mtu(dst));
3331
3332 tcp_ca_dst_init(sk, dst);
3333
3334 if (!tp->window_clamp)
3335 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3336 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3337
3338 tcp_initialize_rcv_mss(sk);
3339
3340 /* limit the window selection if the user enforce a smaller rx buffer */
3341 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3342 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3343 tp->window_clamp = tcp_full_space(sk);
3344
3345 rcv_wnd = tcp_rwnd_init_bpf(sk);
3346 if (rcv_wnd == 0)
3347 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3348
3349 tcp_select_initial_window(sk, tcp_full_space(sk),
3350 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3351 &tp->rcv_wnd,
3352 &tp->window_clamp,
3353 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3354 &rcv_wscale,
3355 rcv_wnd);
3356
3357 tp->rx_opt.rcv_wscale = rcv_wscale;
3358 tp->rcv_ssthresh = tp->rcv_wnd;
3359
3360 sk->sk_err = 0;
3361 sock_reset_flag(sk, SOCK_DONE);
3362 tp->snd_wnd = 0;
3363 tcp_init_wl(tp, 0);
3364 tcp_write_queue_purge(sk);
3365 tp->snd_una = tp->write_seq;
3366 tp->snd_sml = tp->write_seq;
3367 tp->snd_up = tp->write_seq;
3368 tp->snd_nxt = tp->write_seq;
3369
3370 if (likely(!tp->repair))
3371 tp->rcv_nxt = 0;
3372 else
3373 tp->rcv_tstamp = tcp_jiffies32;
3374 tp->rcv_wup = tp->rcv_nxt;
3375 tp->copied_seq = tp->rcv_nxt;
3376
3377 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3378 inet_csk(sk)->icsk_retransmits = 0;
3379 tcp_clear_retrans(tp);
3380}
3381
3382static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3383{
3384 struct tcp_sock *tp = tcp_sk(sk);
3385 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3386
3387 tcb->end_seq += skb->len;
3388 __skb_header_release(skb);
3389 sk->sk_wmem_queued += skb->truesize;
3390 sk_mem_charge(sk, skb->truesize);
3391 tp->write_seq = tcb->end_seq;
3392 tp->packets_out += tcp_skb_pcount(skb);
3393}
3394
3395/* Build and send a SYN with data and (cached) Fast Open cookie. However,
3396 * queue a data-only packet after the regular SYN, such that regular SYNs
3397 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3398 * only the SYN sequence, the data are retransmitted in the first ACK.
3399 * If cookie is not cached or other error occurs, falls back to send a
3400 * regular SYN with Fast Open cookie request option.
3401 */
3402static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3403{
3404 struct tcp_sock *tp = tcp_sk(sk);
3405 struct tcp_fastopen_request *fo = tp->fastopen_req;
3406 int space, err = 0;
3407 struct sk_buff *syn_data;
3408
3409 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3410 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3411 goto fallback;
3412
3413 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3414 * user-MSS. Reserve maximum option space for middleboxes that add
3415 * private TCP options. The cost is reduced data space in SYN :(
3416 */
3417 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3418
3419 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3420 MAX_TCP_OPTION_SPACE;
3421
3422 space = min_t(size_t, space, fo->size);
3423
3424 /* limit to order-0 allocations */
3425 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3426
3427 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3428 if (!syn_data)
3429 goto fallback;
3430 syn_data->ip_summed = CHECKSUM_PARTIAL;
3431 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3432 if (space) {
3433 int copied = copy_from_iter(skb_put(syn_data, space), space,
3434 &fo->data->msg_iter);
3435 if (unlikely(!copied)) {
3436 tcp_skb_tsorted_anchor_cleanup(syn_data);
3437 kfree_skb(syn_data);
3438 goto fallback;
3439 }
3440 if (copied != space) {
3441 skb_trim(syn_data, copied);
3442 space = copied;
3443 }
3444 }
3445 /* No more data pending in inet_wait_for_connect() */
3446 if (space == fo->size)
3447 fo->data = NULL;
3448 fo->copied = space;
3449
3450 tcp_connect_queue_skb(sk, syn_data);
3451 if (syn_data->len)
3452 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3453
3454 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3455
3456 syn->skb_mstamp = syn_data->skb_mstamp;
3457
3458 /* Now full SYN+DATA was cloned and sent (or not),
3459 * remove the SYN from the original skb (syn_data)
3460 * we keep in write queue in case of a retransmit, as we
3461 * also have the SYN packet (with no data) in the same queue.
3462 */
3463 TCP_SKB_CB(syn_data)->seq++;
3464 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3465 if (!err) {
3466 tp->syn_data = (fo->copied > 0);
3467 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3468 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3469 goto done;
3470 }
3471
3472 /* data was not sent, put it in write_queue */
3473 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3474 tp->packets_out -= tcp_skb_pcount(syn_data);
3475
3476fallback:
3477 /* Send a regular SYN with Fast Open cookie request option */
3478 if (fo->cookie.len > 0)
3479 fo->cookie.len = 0;
3480 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3481 if (err)
3482 tp->syn_fastopen = 0;
3483done:
3484 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3485 return err;
3486}
3487
3488/* Build a SYN and send it off. */
3489int tcp_connect(struct sock *sk)
3490{
3491 struct tcp_sock *tp = tcp_sk(sk);
3492 struct sk_buff *buff;
3493 int err;
3494
3495 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3496
3497 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3498 return -EHOSTUNREACH; /* Routing failure or similar. */
3499
3500 tcp_connect_init(sk);
3501
3502 if (unlikely(tp->repair)) {
3503 tcp_finish_connect(sk, NULL);
3504 return 0;
3505 }
3506
3507 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3508 if (unlikely(!buff))
3509 return -ENOBUFS;
3510
3511 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3512 tcp_mstamp_refresh(tp);
3513 tp->retrans_stamp = tcp_time_stamp(tp);
3514 tcp_connect_queue_skb(sk, buff);
3515 tcp_ecn_send_syn(sk, buff);
3516 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3517
3518 /* Send off SYN; include data in Fast Open. */
3519 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3520 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3521 if (err == -ECONNREFUSED)
3522 return err;
3523
3524 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3525 * in order to make this packet get counted in tcpOutSegs.
3526 */
3527 tp->snd_nxt = tp->write_seq;
3528 tp->pushed_seq = tp->write_seq;
3529 buff = tcp_send_head(sk);
3530 if (unlikely(buff)) {
3531 tp->snd_nxt = TCP_SKB_CB(buff)->seq;
3532 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3533 }
3534 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3535
3536 /* Timer for repeating the SYN until an answer. */
3537 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3538 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3539 return 0;
3540}
3541EXPORT_SYMBOL(tcp_connect);
3542
3543/* Send out a delayed ack, the caller does the policy checking
3544 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3545 * for details.
3546 */
3547void tcp_send_delayed_ack(struct sock *sk)
3548{
3549 struct inet_connection_sock *icsk = inet_csk(sk);
3550 int ato = icsk->icsk_ack.ato;
3551 unsigned long timeout;
3552
3553 if (ato > TCP_DELACK_MIN) {
3554 const struct tcp_sock *tp = tcp_sk(sk);
3555 int max_ato = HZ / 2;
3556
3557 if (icsk->icsk_ack.pingpong ||
3558 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3559 max_ato = TCP_DELACK_MAX;
3560
3561 /* Slow path, intersegment interval is "high". */
3562
3563 /* If some rtt estimate is known, use it to bound delayed ack.
3564 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3565 * directly.
3566 */
3567 if (tp->srtt_us) {
3568 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3569 TCP_DELACK_MIN);
3570
3571 if (rtt < max_ato)
3572 max_ato = rtt;
3573 }
3574
3575 ato = min(ato, max_ato);
3576 }
3577
3578 /* Stay within the limit we were given */
3579 timeout = jiffies + ato;
3580
3581 /* Use new timeout only if there wasn't a older one earlier. */
3582 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3583 /* If delack timer was blocked or is about to expire,
3584 * send ACK now.
3585 */
3586 if (icsk->icsk_ack.blocked ||
3587 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3588 tcp_send_ack(sk);
3589 return;
3590 }
3591
3592 if (!time_before(timeout, icsk->icsk_ack.timeout))
3593 timeout = icsk->icsk_ack.timeout;
3594 }
3595 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3596 icsk->icsk_ack.timeout = timeout;
3597 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3598}
3599
3600/* This routine sends an ack and also updates the window. */
3601void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3602{
3603 struct sk_buff *buff;
3604
3605 /* If we have been reset, we may not send again. */
3606 if (sk->sk_state == TCP_CLOSE)
3607 return;
3608
3609 /* We are not putting this on the write queue, so
3610 * tcp_transmit_skb() will set the ownership to this
3611 * sock.
3612 */
3613 buff = alloc_skb(MAX_TCP_HEADER,
3614 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3615 if (unlikely(!buff)) {
3616 inet_csk_schedule_ack(sk);
3617 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3618 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3619 TCP_DELACK_MAX, TCP_RTO_MAX);
3620 return;
3621 }
3622
3623 /* Reserve space for headers and prepare control bits. */
3624 skb_reserve(buff, MAX_TCP_HEADER);
3625 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3626
3627 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3628 * too much.
3629 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3630 */
3631 skb_set_tcp_pure_ack(buff);
3632
3633 /* Send it off, this clears delayed acks for us. */
3634 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3635}
3636EXPORT_SYMBOL_GPL(__tcp_send_ack);
3637
3638void tcp_send_ack(struct sock *sk)
3639{
3640 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3641}
3642
3643/* This routine sends a packet with an out of date sequence
3644 * number. It assumes the other end will try to ack it.
3645 *
3646 * Question: what should we make while urgent mode?
3647 * 4.4BSD forces sending single byte of data. We cannot send
3648 * out of window data, because we have SND.NXT==SND.MAX...
3649 *
3650 * Current solution: to send TWO zero-length segments in urgent mode:
3651 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3652 * out-of-date with SND.UNA-1 to probe window.
3653 */
3654static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3655{
3656 struct tcp_sock *tp = tcp_sk(sk);
3657 struct sk_buff *skb;
3658
3659 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3660 skb = alloc_skb(MAX_TCP_HEADER,
3661 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3662 if (!skb)
3663 return -1;
3664
3665 /* Reserve space for headers and set control bits. */
3666 skb_reserve(skb, MAX_TCP_HEADER);
3667 /* Use a previous sequence. This should cause the other
3668 * end to send an ack. Don't queue or clone SKB, just
3669 * send it.
3670 */
3671 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3672 NET_INC_STATS(sock_net(sk), mib);
3673 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3674}
3675
3676/* Called from setsockopt( ... TCP_REPAIR ) */
3677void tcp_send_window_probe(struct sock *sk)
3678{
3679 if (sk->sk_state == TCP_ESTABLISHED) {
3680 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3681 tcp_mstamp_refresh(tcp_sk(sk));
3682 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3683 }
3684}
3685
3686/* Initiate keepalive or window probe from timer. */
3687int tcp_write_wakeup(struct sock *sk, int mib)
3688{
3689 struct tcp_sock *tp = tcp_sk(sk);
3690 struct sk_buff *skb;
3691
3692 if (sk->sk_state == TCP_CLOSE)
3693 return -1;
3694
3695 skb = tcp_send_head(sk);
3696 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3697 int err;
3698 unsigned int mss = tcp_current_mss(sk);
3699 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3700
3701 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3702 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3703
3704 /* We are probing the opening of a window
3705 * but the window size is != 0
3706 * must have been a result SWS avoidance ( sender )
3707 */
3708 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3709 skb->len > mss) {
3710 seg_size = min(seg_size, mss);
3711 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3712 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3713 skb, seg_size, mss, GFP_ATOMIC))
3714 return -1;
3715 } else if (!tcp_skb_pcount(skb))
3716 tcp_set_skb_tso_segs(skb, mss);
3717
3718 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3719 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3720 if (!err)
3721 tcp_event_new_data_sent(sk, skb);
3722 return err;
3723 } else {
3724 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3725 tcp_xmit_probe_skb(sk, 1, mib);
3726 return tcp_xmit_probe_skb(sk, 0, mib);
3727 }
3728}
3729
3730/* A window probe timeout has occurred. If window is not closed send
3731 * a partial packet else a zero probe.
3732 */
3733void tcp_send_probe0(struct sock *sk)
3734{
3735 struct inet_connection_sock *icsk = inet_csk(sk);
3736 struct tcp_sock *tp = tcp_sk(sk);
3737 struct net *net = sock_net(sk);
3738 unsigned long probe_max;
3739 int err;
3740
3741 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3742
3743 if (tp->packets_out || tcp_write_queue_empty(sk)) {
3744 /* Cancel probe timer, if it is not required. */
3745 icsk->icsk_probes_out = 0;
3746 icsk->icsk_backoff = 0;
3747 return;
3748 }
3749
3750 if (err <= 0) {
3751 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3752 icsk->icsk_backoff++;
3753 icsk->icsk_probes_out++;
3754 probe_max = TCP_RTO_MAX;
3755 } else {
3756 /* If packet was not sent due to local congestion,
3757 * do not backoff and do not remember icsk_probes_out.
3758 * Let local senders to fight for local resources.
3759 *
3760 * Use accumulated backoff yet.
3761 */
3762 if (!icsk->icsk_probes_out)
3763 icsk->icsk_probes_out = 1;
3764 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3765 }
3766 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3767 tcp_probe0_when(sk, probe_max),
3768 TCP_RTO_MAX);
3769}
3770
3771int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3772{
3773 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3774 struct flowi fl;
3775 int res;
3776
3777 tcp_rsk(req)->txhash = net_tx_rndhash();
3778 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3779 if (!res) {
3780 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3781 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3782 if (unlikely(tcp_passive_fastopen(sk)))
3783 tcp_sk(sk)->total_retrans++;
3784 trace_tcp_retransmit_synack(sk, req);
3785 }
3786 return res;
3787}
3788EXPORT_SYMBOL(tcp_rtx_synack);