blob: e2808586c9e61b3337d70d7954f0c1a16ed5733c [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * linux/net/sunrpc/sched.c
3 *
4 * Scheduling for synchronous and asynchronous RPC requests.
5 *
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7 *
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10 */
11
12#include <linux/module.h>
13
14#include <linux/sched.h>
15#include <linux/interrupt.h>
16#include <linux/slab.h>
17#include <linux/mempool.h>
18#include <linux/smp.h>
19#include <linux/spinlock.h>
20#include <linux/mutex.h>
21#include <linux/freezer.h>
22
23#include <linux/sunrpc/clnt.h>
24
25#include "sunrpc.h"
26
27#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
28#define RPCDBG_FACILITY RPCDBG_SCHED
29#endif
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/sunrpc.h>
33
34/*
35 * RPC slabs and memory pools
36 */
37#define RPC_BUFFER_MAXSIZE (2048)
38#define RPC_BUFFER_POOLSIZE (8)
39#define RPC_TASK_POOLSIZE (8)
40static struct kmem_cache *rpc_task_slabp __read_mostly;
41static struct kmem_cache *rpc_buffer_slabp __read_mostly;
42static mempool_t *rpc_task_mempool __read_mostly;
43static mempool_t *rpc_buffer_mempool __read_mostly;
44
45static void rpc_async_schedule(struct work_struct *);
46static void rpc_release_task(struct rpc_task *task);
47static void __rpc_queue_timer_fn(struct timer_list *t);
48
49/*
50 * RPC tasks sit here while waiting for conditions to improve.
51 */
52static struct rpc_wait_queue delay_queue;
53
54/*
55 * rpciod-related stuff
56 */
57struct workqueue_struct *rpciod_workqueue __read_mostly;
58struct workqueue_struct *xprtiod_workqueue __read_mostly;
59
60/*
61 * Disable the timer for a given RPC task. Should be called with
62 * queue->lock and bh_disabled in order to avoid races within
63 * rpc_run_timer().
64 */
65static void
66__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
67{
68 if (task->tk_timeout == 0)
69 return;
70 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
71 task->tk_timeout = 0;
72 list_del(&task->u.tk_wait.timer_list);
73 if (list_empty(&queue->timer_list.list))
74 del_timer(&queue->timer_list.timer);
75}
76
77static void
78rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
79{
80 queue->timer_list.expires = expires;
81 mod_timer(&queue->timer_list.timer, expires);
82}
83
84/*
85 * Set up a timer for the current task.
86 */
87static void
88__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
89{
90 if (!task->tk_timeout)
91 return;
92
93 dprintk("RPC: %5u setting alarm for %u ms\n",
94 task->tk_pid, jiffies_to_msecs(task->tk_timeout));
95
96 task->u.tk_wait.expires = jiffies + task->tk_timeout;
97 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
98 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
99 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
100}
101
102static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
103{
104 if (queue->priority != priority) {
105 queue->priority = priority;
106 queue->nr = 1U << priority;
107 }
108}
109
110static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
111{
112 rpc_set_waitqueue_priority(queue, queue->maxpriority);
113}
114
115/*
116 * Add a request to a queue list
117 */
118static void
119__rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
120{
121 struct rpc_task *t;
122
123 list_for_each_entry(t, q, u.tk_wait.list) {
124 if (t->tk_owner == task->tk_owner) {
125 list_add_tail(&task->u.tk_wait.links,
126 &t->u.tk_wait.links);
127 /* Cache the queue head in task->u.tk_wait.list */
128 task->u.tk_wait.list.next = q;
129 task->u.tk_wait.list.prev = NULL;
130 return;
131 }
132 }
133 INIT_LIST_HEAD(&task->u.tk_wait.links);
134 list_add_tail(&task->u.tk_wait.list, q);
135}
136
137/*
138 * Remove request from a queue list
139 */
140static void
141__rpc_list_dequeue_task(struct rpc_task *task)
142{
143 struct list_head *q;
144 struct rpc_task *t;
145
146 if (task->u.tk_wait.list.prev == NULL) {
147 list_del(&task->u.tk_wait.links);
148 return;
149 }
150 if (!list_empty(&task->u.tk_wait.links)) {
151 t = list_first_entry(&task->u.tk_wait.links,
152 struct rpc_task,
153 u.tk_wait.links);
154 /* Assume __rpc_list_enqueue_task() cached the queue head */
155 q = t->u.tk_wait.list.next;
156 list_add_tail(&t->u.tk_wait.list, q);
157 list_del(&task->u.tk_wait.links);
158 }
159 list_del(&task->u.tk_wait.list);
160}
161
162/*
163 * Add new request to a priority queue.
164 */
165static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
166 struct rpc_task *task,
167 unsigned char queue_priority)
168{
169 if (unlikely(queue_priority > queue->maxpriority))
170 queue_priority = queue->maxpriority;
171 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
172}
173
174/*
175 * Add new request to wait queue.
176 *
177 * Swapper tasks always get inserted at the head of the queue.
178 * This should avoid many nasty memory deadlocks and hopefully
179 * improve overall performance.
180 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
181 */
182static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
183 struct rpc_task *task,
184 unsigned char queue_priority)
185{
186 WARN_ON_ONCE(RPC_IS_QUEUED(task));
187 if (RPC_IS_QUEUED(task))
188 return;
189
190 if (RPC_IS_PRIORITY(queue))
191 __rpc_add_wait_queue_priority(queue, task, queue_priority);
192 else if (RPC_IS_SWAPPER(task))
193 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
194 else
195 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
196 task->tk_waitqueue = queue;
197 queue->qlen++;
198 /* barrier matches the read in rpc_wake_up_task_queue_locked() */
199 smp_wmb();
200 rpc_set_queued(task);
201
202 dprintk("RPC: %5u added to queue %p \"%s\"\n",
203 task->tk_pid, queue, rpc_qname(queue));
204}
205
206/*
207 * Remove request from a priority queue.
208 */
209static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
210{
211 __rpc_list_dequeue_task(task);
212}
213
214/*
215 * Remove request from queue.
216 * Note: must be called with spin lock held.
217 */
218static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
219{
220 __rpc_disable_timer(queue, task);
221 if (RPC_IS_PRIORITY(queue))
222 __rpc_remove_wait_queue_priority(task);
223 else
224 list_del(&task->u.tk_wait.list);
225 queue->qlen--;
226 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
227 task->tk_pid, queue, rpc_qname(queue));
228}
229
230static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
231{
232 int i;
233
234 spin_lock_init(&queue->lock);
235 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
236 INIT_LIST_HEAD(&queue->tasks[i]);
237 queue->maxpriority = nr_queues - 1;
238 rpc_reset_waitqueue_priority(queue);
239 queue->qlen = 0;
240 timer_setup(&queue->timer_list.timer, __rpc_queue_timer_fn, 0);
241 INIT_LIST_HEAD(&queue->timer_list.list);
242 rpc_assign_waitqueue_name(queue, qname);
243}
244
245void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
246{
247 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
248}
249EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
250
251void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
252{
253 __rpc_init_priority_wait_queue(queue, qname, 1);
254}
255EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
256
257void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
258{
259 del_timer_sync(&queue->timer_list.timer);
260}
261EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
262
263static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
264{
265 freezable_schedule_unsafe();
266 if (signal_pending_state(mode, current))
267 return -ERESTARTSYS;
268 return 0;
269}
270
271#if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
272static void rpc_task_set_debuginfo(struct rpc_task *task)
273{
274 static atomic_t rpc_pid;
275
276 task->tk_pid = atomic_inc_return(&rpc_pid);
277}
278#else
279static inline void rpc_task_set_debuginfo(struct rpc_task *task)
280{
281}
282#endif
283
284static void rpc_set_active(struct rpc_task *task)
285{
286 rpc_task_set_debuginfo(task);
287 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
288 trace_rpc_task_begin(task, NULL);
289}
290
291/*
292 * Mark an RPC call as having completed by clearing the 'active' bit
293 * and then waking up all tasks that were sleeping.
294 */
295static int rpc_complete_task(struct rpc_task *task)
296{
297 void *m = &task->tk_runstate;
298 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
299 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
300 unsigned long flags;
301 int ret;
302
303 trace_rpc_task_complete(task, NULL);
304
305 spin_lock_irqsave(&wq->lock, flags);
306 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
307 ret = atomic_dec_and_test(&task->tk_count);
308 if (waitqueue_active(wq))
309 __wake_up_locked_key(wq, TASK_NORMAL, &k);
310 spin_unlock_irqrestore(&wq->lock, flags);
311 return ret;
312}
313
314/*
315 * Allow callers to wait for completion of an RPC call
316 *
317 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
318 * to enforce taking of the wq->lock and hence avoid races with
319 * rpc_complete_task().
320 */
321int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
322{
323 if (action == NULL)
324 action = rpc_wait_bit_killable;
325 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
326 action, TASK_KILLABLE);
327}
328EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
329
330/*
331 * Make an RPC task runnable.
332 *
333 * Note: If the task is ASYNC, and is being made runnable after sitting on an
334 * rpc_wait_queue, this must be called with the queue spinlock held to protect
335 * the wait queue operation.
336 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
337 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
338 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
339 * the RPC_TASK_RUNNING flag.
340 */
341static void rpc_make_runnable(struct workqueue_struct *wq,
342 struct rpc_task *task)
343{
344 bool need_wakeup = !rpc_test_and_set_running(task);
345
346 rpc_clear_queued(task);
347 if (!need_wakeup)
348 return;
349 if (RPC_IS_ASYNC(task)) {
350 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
351 queue_work(wq, &task->u.tk_work);
352 } else
353 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
354}
355
356/*
357 * Prepare for sleeping on a wait queue.
358 * By always appending tasks to the list we ensure FIFO behavior.
359 * NB: An RPC task will only receive interrupt-driven events as long
360 * as it's on a wait queue.
361 */
362static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
363 struct rpc_task *task,
364 rpc_action action,
365 unsigned char queue_priority)
366{
367 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
368 task->tk_pid, rpc_qname(q), jiffies);
369
370 trace_rpc_task_sleep(task, q);
371
372 __rpc_add_wait_queue(q, task, queue_priority);
373
374 WARN_ON_ONCE(task->tk_callback != NULL);
375 task->tk_callback = action;
376 __rpc_add_timer(q, task);
377}
378
379void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
380 rpc_action action)
381{
382 /* We shouldn't ever put an inactive task to sleep */
383 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
384 if (!RPC_IS_ACTIVATED(task)) {
385 task->tk_status = -EIO;
386 rpc_put_task_async(task);
387 return;
388 }
389
390 /*
391 * Protect the queue operations.
392 */
393 spin_lock_bh(&q->lock);
394 __rpc_sleep_on_priority(q, task, action, task->tk_priority);
395 spin_unlock_bh(&q->lock);
396}
397EXPORT_SYMBOL_GPL(rpc_sleep_on);
398
399void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
400 rpc_action action, int priority)
401{
402 /* We shouldn't ever put an inactive task to sleep */
403 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
404 if (!RPC_IS_ACTIVATED(task)) {
405 task->tk_status = -EIO;
406 rpc_put_task_async(task);
407 return;
408 }
409
410 /*
411 * Protect the queue operations.
412 */
413 spin_lock_bh(&q->lock);
414 __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
415 spin_unlock_bh(&q->lock);
416}
417EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
418
419/**
420 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
421 * @wq: workqueue on which to run task
422 * @queue: wait queue
423 * @task: task to be woken up
424 *
425 * Caller must hold queue->lock, and have cleared the task queued flag.
426 */
427static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
428 struct rpc_wait_queue *queue,
429 struct rpc_task *task)
430{
431 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
432 task->tk_pid, jiffies);
433
434 /* Has the task been executed yet? If not, we cannot wake it up! */
435 if (!RPC_IS_ACTIVATED(task)) {
436 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
437 return;
438 }
439
440 trace_rpc_task_wakeup(task, queue);
441
442 __rpc_remove_wait_queue(queue, task);
443
444 rpc_make_runnable(wq, task);
445
446 dprintk("RPC: __rpc_wake_up_task done\n");
447}
448
449/*
450 * Wake up a queued task while the queue lock is being held
451 */
452static void rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
453 struct rpc_wait_queue *queue, struct rpc_task *task)
454{
455 if (RPC_IS_QUEUED(task)) {
456 smp_rmb();
457 if (task->tk_waitqueue == queue)
458 __rpc_do_wake_up_task_on_wq(wq, queue, task);
459 }
460}
461
462/*
463 * Wake up a queued task while the queue lock is being held
464 */
465static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
466{
467 rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
468}
469
470/*
471 * Wake up a task on a specific queue
472 */
473void rpc_wake_up_queued_task_on_wq(struct workqueue_struct *wq,
474 struct rpc_wait_queue *queue,
475 struct rpc_task *task)
476{
477 spin_lock_bh(&queue->lock);
478 rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
479 spin_unlock_bh(&queue->lock);
480}
481
482/*
483 * Wake up a task on a specific queue
484 */
485void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
486{
487 spin_lock_bh(&queue->lock);
488 rpc_wake_up_task_queue_locked(queue, task);
489 spin_unlock_bh(&queue->lock);
490}
491EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
492
493/*
494 * Wake up the next task on a priority queue.
495 */
496static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
497{
498 struct list_head *q;
499 struct rpc_task *task;
500
501 /*
502 * Service a batch of tasks from a single owner.
503 */
504 q = &queue->tasks[queue->priority];
505 if (!list_empty(q) && --queue->nr) {
506 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
507 goto out;
508 }
509
510 /*
511 * Service the next queue.
512 */
513 do {
514 if (q == &queue->tasks[0])
515 q = &queue->tasks[queue->maxpriority];
516 else
517 q = q - 1;
518 if (!list_empty(q)) {
519 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
520 goto new_queue;
521 }
522 } while (q != &queue->tasks[queue->priority]);
523
524 rpc_reset_waitqueue_priority(queue);
525 return NULL;
526
527new_queue:
528 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
529out:
530 return task;
531}
532
533static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
534{
535 if (RPC_IS_PRIORITY(queue))
536 return __rpc_find_next_queued_priority(queue);
537 if (!list_empty(&queue->tasks[0]))
538 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
539 return NULL;
540}
541
542/*
543 * Wake up the first task on the wait queue.
544 */
545struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
546 struct rpc_wait_queue *queue,
547 bool (*func)(struct rpc_task *, void *), void *data)
548{
549 struct rpc_task *task = NULL;
550
551 dprintk("RPC: wake_up_first(%p \"%s\")\n",
552 queue, rpc_qname(queue));
553 spin_lock_bh(&queue->lock);
554 task = __rpc_find_next_queued(queue);
555 if (task != NULL) {
556 if (func(task, data))
557 rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
558 else
559 task = NULL;
560 }
561 spin_unlock_bh(&queue->lock);
562
563 return task;
564}
565
566/*
567 * Wake up the first task on the wait queue.
568 */
569struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
570 bool (*func)(struct rpc_task *, void *), void *data)
571{
572 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
573}
574EXPORT_SYMBOL_GPL(rpc_wake_up_first);
575
576static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
577{
578 return true;
579}
580
581/*
582 * Wake up the next task on the wait queue.
583*/
584struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
585{
586 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
587}
588EXPORT_SYMBOL_GPL(rpc_wake_up_next);
589
590/**
591 * rpc_wake_up - wake up all rpc_tasks
592 * @queue: rpc_wait_queue on which the tasks are sleeping
593 *
594 * Grabs queue->lock
595 */
596void rpc_wake_up(struct rpc_wait_queue *queue)
597{
598 struct list_head *head;
599
600 spin_lock_bh(&queue->lock);
601 head = &queue->tasks[queue->maxpriority];
602 for (;;) {
603 while (!list_empty(head)) {
604 struct rpc_task *task;
605 task = list_first_entry(head,
606 struct rpc_task,
607 u.tk_wait.list);
608 rpc_wake_up_task_queue_locked(queue, task);
609 }
610 if (head == &queue->tasks[0])
611 break;
612 head--;
613 }
614 spin_unlock_bh(&queue->lock);
615}
616EXPORT_SYMBOL_GPL(rpc_wake_up);
617
618/**
619 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
620 * @queue: rpc_wait_queue on which the tasks are sleeping
621 * @status: status value to set
622 *
623 * Grabs queue->lock
624 */
625void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
626{
627 struct list_head *head;
628
629 spin_lock_bh(&queue->lock);
630 head = &queue->tasks[queue->maxpriority];
631 for (;;) {
632 while (!list_empty(head)) {
633 struct rpc_task *task;
634 task = list_first_entry(head,
635 struct rpc_task,
636 u.tk_wait.list);
637 task->tk_status = status;
638 rpc_wake_up_task_queue_locked(queue, task);
639 }
640 if (head == &queue->tasks[0])
641 break;
642 head--;
643 }
644 spin_unlock_bh(&queue->lock);
645}
646EXPORT_SYMBOL_GPL(rpc_wake_up_status);
647
648static void __rpc_queue_timer_fn(struct timer_list *t)
649{
650 struct rpc_wait_queue *queue = from_timer(queue, t, timer_list.timer);
651 struct rpc_task *task, *n;
652 unsigned long expires, now, timeo;
653
654 spin_lock(&queue->lock);
655 expires = now = jiffies;
656 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
657 timeo = task->u.tk_wait.expires;
658 if (time_after_eq(now, timeo)) {
659 dprintk("RPC: %5u timeout\n", task->tk_pid);
660 task->tk_status = -ETIMEDOUT;
661 rpc_wake_up_task_queue_locked(queue, task);
662 continue;
663 }
664 if (expires == now || time_after(expires, timeo))
665 expires = timeo;
666 }
667 if (!list_empty(&queue->timer_list.list))
668 rpc_set_queue_timer(queue, expires);
669 spin_unlock(&queue->lock);
670}
671
672static void __rpc_atrun(struct rpc_task *task)
673{
674 if (task->tk_status == -ETIMEDOUT)
675 task->tk_status = 0;
676}
677
678/*
679 * Run a task at a later time
680 */
681void rpc_delay(struct rpc_task *task, unsigned long delay)
682{
683 task->tk_timeout = delay;
684 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
685}
686EXPORT_SYMBOL_GPL(rpc_delay);
687
688/*
689 * Helper to call task->tk_ops->rpc_call_prepare
690 */
691void rpc_prepare_task(struct rpc_task *task)
692{
693 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
694}
695
696static void
697rpc_init_task_statistics(struct rpc_task *task)
698{
699 /* Initialize retry counters */
700 task->tk_garb_retry = 2;
701 task->tk_cred_retry = 2;
702 task->tk_rebind_retry = 2;
703
704 /* starting timestamp */
705 task->tk_start = ktime_get();
706}
707
708static void
709rpc_reset_task_statistics(struct rpc_task *task)
710{
711 task->tk_timeouts = 0;
712 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
713
714 rpc_init_task_statistics(task);
715}
716
717/*
718 * Helper that calls task->tk_ops->rpc_call_done if it exists
719 */
720void rpc_exit_task(struct rpc_task *task)
721{
722 task->tk_action = NULL;
723 if (task->tk_ops->rpc_call_done != NULL) {
724 task->tk_ops->rpc_call_done(task, task->tk_calldata);
725 if (task->tk_action != NULL) {
726 WARN_ON(RPC_ASSASSINATED(task));
727 /* Always release the RPC slot and buffer memory */
728 xprt_release(task);
729 rpc_reset_task_statistics(task);
730 }
731 }
732}
733
734void rpc_exit(struct rpc_task *task, int status)
735{
736 task->tk_status = status;
737 task->tk_action = rpc_exit_task;
738 if (RPC_IS_QUEUED(task))
739 rpc_wake_up_queued_task(task->tk_waitqueue, task);
740}
741EXPORT_SYMBOL_GPL(rpc_exit);
742
743void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
744{
745 if (ops->rpc_release != NULL)
746 ops->rpc_release(calldata);
747}
748
749/*
750 * This is the RPC `scheduler' (or rather, the finite state machine).
751 */
752static void __rpc_execute(struct rpc_task *task)
753{
754 struct rpc_wait_queue *queue;
755 int task_is_async = RPC_IS_ASYNC(task);
756 int status = 0;
757
758 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
759 task->tk_pid, task->tk_flags);
760
761 WARN_ON_ONCE(RPC_IS_QUEUED(task));
762 if (RPC_IS_QUEUED(task))
763 return;
764
765 for (;;) {
766 void (*do_action)(struct rpc_task *);
767
768 /*
769 * Perform the next FSM step or a pending callback.
770 *
771 * tk_action may be NULL if the task has been killed.
772 * In particular, note that rpc_killall_tasks may
773 * do this at any time, so beware when dereferencing.
774 */
775 do_action = task->tk_action;
776 if (task->tk_callback) {
777 do_action = task->tk_callback;
778 task->tk_callback = NULL;
779 }
780 if (!do_action)
781 break;
782 trace_rpc_task_run_action(task, do_action);
783 do_action(task);
784
785 /*
786 * Lockless check for whether task is sleeping or not.
787 */
788 if (!RPC_IS_QUEUED(task))
789 continue;
790 /*
791 * The queue->lock protects against races with
792 * rpc_make_runnable().
793 *
794 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
795 * rpc_task, rpc_make_runnable() can assign it to a
796 * different workqueue. We therefore cannot assume that the
797 * rpc_task pointer may still be dereferenced.
798 */
799 queue = task->tk_waitqueue;
800 spin_lock_bh(&queue->lock);
801 if (!RPC_IS_QUEUED(task)) {
802 spin_unlock_bh(&queue->lock);
803 continue;
804 }
805 rpc_clear_running(task);
806 spin_unlock_bh(&queue->lock);
807 if (task_is_async)
808 return;
809
810 /* sync task: sleep here */
811 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
812 status = out_of_line_wait_on_bit(&task->tk_runstate,
813 RPC_TASK_QUEUED, rpc_wait_bit_killable,
814 TASK_KILLABLE);
815 if (status == -ERESTARTSYS) {
816 /*
817 * When a sync task receives a signal, it exits with
818 * -ERESTARTSYS. In order to catch any callbacks that
819 * clean up after sleeping on some queue, we don't
820 * break the loop here, but go around once more.
821 */
822 dprintk("RPC: %5u got signal\n", task->tk_pid);
823 task->tk_flags |= RPC_TASK_KILLED;
824 rpc_exit(task, -ERESTARTSYS);
825 }
826 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
827 }
828
829 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
830 task->tk_status);
831 /* Release all resources associated with the task */
832 rpc_release_task(task);
833}
834
835/*
836 * User-visible entry point to the scheduler.
837 *
838 * This may be called recursively if e.g. an async NFS task updates
839 * the attributes and finds that dirty pages must be flushed.
840 * NOTE: Upon exit of this function the task is guaranteed to be
841 * released. In particular note that tk_release() will have
842 * been called, so your task memory may have been freed.
843 */
844void rpc_execute(struct rpc_task *task)
845{
846 bool is_async = RPC_IS_ASYNC(task);
847
848 rpc_set_active(task);
849 rpc_make_runnable(rpciod_workqueue, task);
850 if (!is_async)
851 __rpc_execute(task);
852}
853
854static void rpc_async_schedule(struct work_struct *work)
855{
856 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
857}
858
859/**
860 * rpc_malloc - allocate RPC buffer resources
861 * @task: RPC task
862 *
863 * A single memory region is allocated, which is split between the
864 * RPC call and RPC reply that this task is being used for. When
865 * this RPC is retired, the memory is released by calling rpc_free.
866 *
867 * To prevent rpciod from hanging, this allocator never sleeps,
868 * returning -ENOMEM and suppressing warning if the request cannot
869 * be serviced immediately. The caller can arrange to sleep in a
870 * way that is safe for rpciod.
871 *
872 * Most requests are 'small' (under 2KiB) and can be serviced from a
873 * mempool, ensuring that NFS reads and writes can always proceed,
874 * and that there is good locality of reference for these buffers.
875 *
876 * In order to avoid memory starvation triggering more writebacks of
877 * NFS requests, we avoid using GFP_KERNEL.
878 */
879int rpc_malloc(struct rpc_task *task)
880{
881 struct rpc_rqst *rqst = task->tk_rqstp;
882 size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
883 struct rpc_buffer *buf;
884 gfp_t gfp = GFP_NOIO | __GFP_NOWARN;
885
886 if (RPC_IS_SWAPPER(task))
887 gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
888
889 size += sizeof(struct rpc_buffer);
890 if (size <= RPC_BUFFER_MAXSIZE)
891 buf = mempool_alloc(rpc_buffer_mempool, gfp);
892 else
893 buf = kmalloc(size, gfp);
894
895 if (!buf)
896 return -ENOMEM;
897
898 buf->len = size;
899 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
900 task->tk_pid, size, buf);
901 rqst->rq_buffer = buf->data;
902 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
903 return 0;
904}
905EXPORT_SYMBOL_GPL(rpc_malloc);
906
907/**
908 * rpc_free - free RPC buffer resources allocated via rpc_malloc
909 * @task: RPC task
910 *
911 */
912void rpc_free(struct rpc_task *task)
913{
914 void *buffer = task->tk_rqstp->rq_buffer;
915 size_t size;
916 struct rpc_buffer *buf;
917
918 buf = container_of(buffer, struct rpc_buffer, data);
919 size = buf->len;
920
921 dprintk("RPC: freeing buffer of size %zu at %p\n",
922 size, buf);
923
924 if (size <= RPC_BUFFER_MAXSIZE)
925 mempool_free(buf, rpc_buffer_mempool);
926 else
927 kfree(buf);
928}
929EXPORT_SYMBOL_GPL(rpc_free);
930
931/*
932 * Creation and deletion of RPC task structures
933 */
934static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
935{
936 memset(task, 0, sizeof(*task));
937 atomic_set(&task->tk_count, 1);
938 task->tk_flags = task_setup_data->flags;
939 task->tk_ops = task_setup_data->callback_ops;
940 task->tk_calldata = task_setup_data->callback_data;
941 INIT_LIST_HEAD(&task->tk_task);
942
943 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
944 task->tk_owner = current->tgid;
945
946 /* Initialize workqueue for async tasks */
947 task->tk_workqueue = task_setup_data->workqueue;
948
949 task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
950
951 if (task->tk_ops->rpc_call_prepare != NULL)
952 task->tk_action = rpc_prepare_task;
953
954 rpc_init_task_statistics(task);
955
956 dprintk("RPC: new task initialized, procpid %u\n",
957 task_pid_nr(current));
958}
959
960static struct rpc_task *
961rpc_alloc_task(void)
962{
963 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
964}
965
966/*
967 * Create a new task for the specified client.
968 */
969struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
970{
971 struct rpc_task *task = setup_data->task;
972 unsigned short flags = 0;
973
974 if (task == NULL) {
975 task = rpc_alloc_task();
976 flags = RPC_TASK_DYNAMIC;
977 }
978
979 rpc_init_task(task, setup_data);
980 task->tk_flags |= flags;
981 dprintk("RPC: allocated task %p\n", task);
982 return task;
983}
984
985/*
986 * rpc_free_task - release rpc task and perform cleanups
987 *
988 * Note that we free up the rpc_task _after_ rpc_release_calldata()
989 * in order to work around a workqueue dependency issue.
990 *
991 * Tejun Heo states:
992 * "Workqueue currently considers two work items to be the same if they're
993 * on the same address and won't execute them concurrently - ie. it
994 * makes a work item which is queued again while being executed wait
995 * for the previous execution to complete.
996 *
997 * If a work function frees the work item, and then waits for an event
998 * which should be performed by another work item and *that* work item
999 * recycles the freed work item, it can create a false dependency loop.
1000 * There really is no reliable way to detect this short of verifying
1001 * every memory free."
1002 *
1003 */
1004static void rpc_free_task(struct rpc_task *task)
1005{
1006 unsigned short tk_flags = task->tk_flags;
1007
1008 rpc_release_calldata(task->tk_ops, task->tk_calldata);
1009
1010 if (tk_flags & RPC_TASK_DYNAMIC) {
1011 dprintk("RPC: %5u freeing task\n", task->tk_pid);
1012 mempool_free(task, rpc_task_mempool);
1013 }
1014}
1015
1016static void rpc_async_release(struct work_struct *work)
1017{
1018 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1019}
1020
1021static void rpc_release_resources_task(struct rpc_task *task)
1022{
1023 xprt_release(task);
1024 if (task->tk_msg.rpc_cred) {
1025 put_rpccred(task->tk_msg.rpc_cred);
1026 task->tk_msg.rpc_cred = NULL;
1027 }
1028 rpc_task_release_client(task);
1029}
1030
1031static void rpc_final_put_task(struct rpc_task *task,
1032 struct workqueue_struct *q)
1033{
1034 if (q != NULL) {
1035 INIT_WORK(&task->u.tk_work, rpc_async_release);
1036 queue_work(q, &task->u.tk_work);
1037 } else
1038 rpc_free_task(task);
1039}
1040
1041static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1042{
1043 if (atomic_dec_and_test(&task->tk_count)) {
1044 rpc_release_resources_task(task);
1045 rpc_final_put_task(task, q);
1046 }
1047}
1048
1049void rpc_put_task(struct rpc_task *task)
1050{
1051 rpc_do_put_task(task, NULL);
1052}
1053EXPORT_SYMBOL_GPL(rpc_put_task);
1054
1055void rpc_put_task_async(struct rpc_task *task)
1056{
1057 rpc_do_put_task(task, task->tk_workqueue);
1058}
1059EXPORT_SYMBOL_GPL(rpc_put_task_async);
1060
1061static void rpc_release_task(struct rpc_task *task)
1062{
1063 dprintk("RPC: %5u release task\n", task->tk_pid);
1064
1065 WARN_ON_ONCE(RPC_IS_QUEUED(task));
1066
1067 rpc_release_resources_task(task);
1068
1069 /*
1070 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1071 * so it should be safe to use task->tk_count as a test for whether
1072 * or not any other processes still hold references to our rpc_task.
1073 */
1074 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1075 /* Wake up anyone who may be waiting for task completion */
1076 if (!rpc_complete_task(task))
1077 return;
1078 } else {
1079 if (!atomic_dec_and_test(&task->tk_count))
1080 return;
1081 }
1082 rpc_final_put_task(task, task->tk_workqueue);
1083}
1084
1085int rpciod_up(void)
1086{
1087 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1088}
1089
1090void rpciod_down(void)
1091{
1092 module_put(THIS_MODULE);
1093}
1094
1095/*
1096 * Start up the rpciod workqueue.
1097 */
1098static int rpciod_start(void)
1099{
1100 struct workqueue_struct *wq;
1101
1102 /*
1103 * Create the rpciod thread and wait for it to start.
1104 */
1105 dprintk("RPC: creating workqueue rpciod\n");
1106 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1107 if (!wq)
1108 goto out_failed;
1109 rpciod_workqueue = wq;
1110 /* Note: highpri because network receive is latency sensitive */
1111 wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1112 if (!wq)
1113 goto free_rpciod;
1114 xprtiod_workqueue = wq;
1115 return 1;
1116free_rpciod:
1117 wq = rpciod_workqueue;
1118 rpciod_workqueue = NULL;
1119 destroy_workqueue(wq);
1120out_failed:
1121 return 0;
1122}
1123
1124static void rpciod_stop(void)
1125{
1126 struct workqueue_struct *wq = NULL;
1127
1128 if (rpciod_workqueue == NULL)
1129 return;
1130 dprintk("RPC: destroying workqueue rpciod\n");
1131
1132 wq = rpciod_workqueue;
1133 rpciod_workqueue = NULL;
1134 destroy_workqueue(wq);
1135 wq = xprtiod_workqueue;
1136 xprtiod_workqueue = NULL;
1137 destroy_workqueue(wq);
1138}
1139
1140void
1141rpc_destroy_mempool(void)
1142{
1143 rpciod_stop();
1144 mempool_destroy(rpc_buffer_mempool);
1145 mempool_destroy(rpc_task_mempool);
1146 kmem_cache_destroy(rpc_task_slabp);
1147 kmem_cache_destroy(rpc_buffer_slabp);
1148 rpc_destroy_wait_queue(&delay_queue);
1149}
1150
1151int
1152rpc_init_mempool(void)
1153{
1154 /*
1155 * The following is not strictly a mempool initialisation,
1156 * but there is no harm in doing it here
1157 */
1158 rpc_init_wait_queue(&delay_queue, "delayq");
1159 if (!rpciod_start())
1160 goto err_nomem;
1161
1162 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1163 sizeof(struct rpc_task),
1164 0, SLAB_HWCACHE_ALIGN,
1165 NULL);
1166 if (!rpc_task_slabp)
1167 goto err_nomem;
1168 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1169 RPC_BUFFER_MAXSIZE,
1170 0, SLAB_HWCACHE_ALIGN,
1171 NULL);
1172 if (!rpc_buffer_slabp)
1173 goto err_nomem;
1174 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1175 rpc_task_slabp);
1176 if (!rpc_task_mempool)
1177 goto err_nomem;
1178 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1179 rpc_buffer_slabp);
1180 if (!rpc_buffer_mempool)
1181 goto err_nomem;
1182 return 0;
1183err_nomem:
1184 rpc_destroy_mempool();
1185 return -ENOMEM;
1186}