| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
 | 2 |  *  linux/mm/swapfile.c | 
 | 3 |  * | 
 | 4 |  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 | 5 |  *  Swap reorganised 29.12.95, Stephen Tweedie | 
 | 6 |  */ | 
 | 7 |  | 
 | 8 | #include <linux/mm.h> | 
 | 9 | #include <linux/sched/mm.h> | 
 | 10 | #include <linux/sched/task.h> | 
 | 11 | #include <linux/hugetlb.h> | 
 | 12 | #include <linux/mman.h> | 
 | 13 | #include <linux/slab.h> | 
 | 14 | #include <linux/kernel_stat.h> | 
 | 15 | #include <linux/swap.h> | 
 | 16 | #include <linux/vmalloc.h> | 
 | 17 | #include <linux/pagemap.h> | 
 | 18 | #include <linux/namei.h> | 
 | 19 | #include <linux/shmem_fs.h> | 
 | 20 | #include <linux/blkdev.h> | 
 | 21 | #include <linux/random.h> | 
 | 22 | #include <linux/writeback.h> | 
 | 23 | #include <linux/proc_fs.h> | 
 | 24 | #include <linux/seq_file.h> | 
 | 25 | #include <linux/init.h> | 
 | 26 | #include <linux/ksm.h> | 
 | 27 | #include <linux/rmap.h> | 
 | 28 | #include <linux/security.h> | 
 | 29 | #include <linux/backing-dev.h> | 
 | 30 | #include <linux/mutex.h> | 
 | 31 | #include <linux/capability.h> | 
 | 32 | #include <linux/syscalls.h> | 
 | 33 | #include <linux/memcontrol.h> | 
 | 34 | #include <linux/poll.h> | 
 | 35 | #include <linux/oom.h> | 
 | 36 | #include <linux/frontswap.h> | 
 | 37 | #include <linux/swapfile.h> | 
 | 38 | #include <linux/export.h> | 
 | 39 | #include <linux/swap_slots.h> | 
 | 40 | #include <linux/sort.h> | 
 | 41 |  | 
 | 42 | #include <asm/pgtable.h> | 
 | 43 | #include <asm/tlbflush.h> | 
 | 44 | #include <linux/swapops.h> | 
 | 45 | #include <linux/swap_cgroup.h> | 
 | 46 |  | 
 | 47 | static bool swap_count_continued(struct swap_info_struct *, pgoff_t, | 
 | 48 | 				 unsigned char); | 
 | 49 | static void free_swap_count_continuations(struct swap_info_struct *); | 
 | 50 | static sector_t map_swap_entry(swp_entry_t, struct block_device**); | 
 | 51 |  | 
 | 52 | DEFINE_SPINLOCK(swap_lock); | 
 | 53 | static unsigned int nr_swapfiles; | 
 | 54 | atomic_long_t nr_swap_pages; | 
 | 55 | /* | 
 | 56 |  * Some modules use swappable objects and may try to swap them out under | 
 | 57 |  * memory pressure (via the shrinker). Before doing so, they may wish to | 
 | 58 |  * check to see if any swap space is available. | 
 | 59 |  */ | 
 | 60 | EXPORT_SYMBOL_GPL(nr_swap_pages); | 
 | 61 | /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ | 
 | 62 | long total_swap_pages; | 
 | 63 | static int least_priority = -1; | 
 | 64 |  | 
 | 65 | static const char Bad_file[] = "Bad swap file entry "; | 
 | 66 | static const char Unused_file[] = "Unused swap file entry "; | 
 | 67 | static const char Bad_offset[] = "Bad swap offset entry "; | 
 | 68 | static const char Unused_offset[] = "Unused swap offset entry "; | 
 | 69 |  | 
 | 70 | /* | 
 | 71 |  * all active swap_info_structs | 
 | 72 |  * protected with swap_lock, and ordered by priority. | 
 | 73 |  */ | 
 | 74 | PLIST_HEAD(swap_active_head); | 
 | 75 |  | 
 | 76 | /* | 
 | 77 |  * all available (active, not full) swap_info_structs | 
 | 78 |  * protected with swap_avail_lock, ordered by priority. | 
 | 79 |  * This is used by get_swap_page() instead of swap_active_head | 
 | 80 |  * because swap_active_head includes all swap_info_structs, | 
 | 81 |  * but get_swap_page() doesn't need to look at full ones. | 
 | 82 |  * This uses its own lock instead of swap_lock because when a | 
 | 83 |  * swap_info_struct changes between not-full/full, it needs to | 
 | 84 |  * add/remove itself to/from this list, but the swap_info_struct->lock | 
 | 85 |  * is held and the locking order requires swap_lock to be taken | 
 | 86 |  * before any swap_info_struct->lock. | 
 | 87 |  */ | 
 | 88 | static struct plist_head *swap_avail_heads; | 
 | 89 | static DEFINE_SPINLOCK(swap_avail_lock); | 
 | 90 |  | 
 | 91 | struct swap_info_struct *swap_info[MAX_SWAPFILES]; | 
 | 92 |  | 
 | 93 | static DEFINE_MUTEX(swapon_mutex); | 
 | 94 |  | 
 | 95 | static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); | 
 | 96 | /* Activity counter to indicate that a swapon or swapoff has occurred */ | 
 | 97 | static atomic_t proc_poll_event = ATOMIC_INIT(0); | 
 | 98 |  | 
 | 99 | atomic_t nr_rotate_swap = ATOMIC_INIT(0); | 
 | 100 |  | 
 | 101 | static struct swap_info_struct *swap_type_to_swap_info(int type) | 
 | 102 | { | 
 | 103 | 	if (type >= READ_ONCE(nr_swapfiles)) | 
 | 104 | 		return NULL; | 
 | 105 |  | 
 | 106 | 	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */ | 
 | 107 | 	return READ_ONCE(swap_info[type]); | 
 | 108 | } | 
 | 109 |  | 
 | 110 | static inline unsigned char swap_count(unsigned char ent) | 
 | 111 | { | 
 | 112 | 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */ | 
 | 113 | } | 
 | 114 |  | 
 | 115 | /* returns 1 if swap entry is freed */ | 
 | 116 | static int | 
 | 117 | __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) | 
 | 118 | { | 
 | 119 | 	swp_entry_t entry = swp_entry(si->type, offset); | 
 | 120 | 	struct page *page; | 
 | 121 | 	int ret = 0; | 
 | 122 |  | 
 | 123 | 	page = find_get_page(swap_address_space(entry), swp_offset(entry)); | 
 | 124 | 	if (!page) | 
 | 125 | 		return 0; | 
 | 126 | 	/* | 
 | 127 | 	 * This function is called from scan_swap_map() and it's called | 
 | 128 | 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. | 
 | 129 | 	 * We have to use trylock for avoiding deadlock. This is a special | 
 | 130 | 	 * case and you should use try_to_free_swap() with explicit lock_page() | 
 | 131 | 	 * in usual operations. | 
 | 132 | 	 */ | 
 | 133 | 	if (trylock_page(page)) { | 
 | 134 | 		ret = try_to_free_swap(page); | 
 | 135 | 		unlock_page(page); | 
 | 136 | 	} | 
 | 137 | 	put_page(page); | 
 | 138 | 	return ret; | 
 | 139 | } | 
 | 140 |  | 
 | 141 | /* | 
 | 142 |  * swapon tell device that all the old swap contents can be discarded, | 
 | 143 |  * to allow the swap device to optimize its wear-levelling. | 
 | 144 |  */ | 
 | 145 | static int discard_swap(struct swap_info_struct *si) | 
 | 146 | { | 
 | 147 | 	struct swap_extent *se; | 
 | 148 | 	sector_t start_block; | 
 | 149 | 	sector_t nr_blocks; | 
 | 150 | 	int err = 0; | 
 | 151 |  | 
 | 152 | 	/* Do not discard the swap header page! */ | 
 | 153 | 	se = &si->first_swap_extent; | 
 | 154 | 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); | 
 | 155 | 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); | 
 | 156 | 	if (nr_blocks) { | 
 | 157 | 		err = blkdev_issue_discard(si->bdev, start_block, | 
 | 158 | 				nr_blocks, GFP_KERNEL, 0); | 
 | 159 | 		if (err) | 
 | 160 | 			return err; | 
 | 161 | 		cond_resched(); | 
 | 162 | 	} | 
 | 163 |  | 
 | 164 | 	list_for_each_entry(se, &si->first_swap_extent.list, list) { | 
 | 165 | 		start_block = se->start_block << (PAGE_SHIFT - 9); | 
 | 166 | 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); | 
 | 167 |  | 
 | 168 | 		err = blkdev_issue_discard(si->bdev, start_block, | 
 | 169 | 				nr_blocks, GFP_KERNEL, 0); | 
 | 170 | 		if (err) | 
 | 171 | 			break; | 
 | 172 |  | 
 | 173 | 		cond_resched(); | 
 | 174 | 	} | 
 | 175 | 	return err;		/* That will often be -EOPNOTSUPP */ | 
 | 176 | } | 
 | 177 |  | 
 | 178 | /* | 
 | 179 |  * swap allocation tell device that a cluster of swap can now be discarded, | 
 | 180 |  * to allow the swap device to optimize its wear-levelling. | 
 | 181 |  */ | 
 | 182 | static void discard_swap_cluster(struct swap_info_struct *si, | 
 | 183 | 				 pgoff_t start_page, pgoff_t nr_pages) | 
 | 184 | { | 
 | 185 | 	struct swap_extent *se = si->curr_swap_extent; | 
 | 186 | 	int found_extent = 0; | 
 | 187 |  | 
 | 188 | 	while (nr_pages) { | 
 | 189 | 		if (se->start_page <= start_page && | 
 | 190 | 		    start_page < se->start_page + se->nr_pages) { | 
 | 191 | 			pgoff_t offset = start_page - se->start_page; | 
 | 192 | 			sector_t start_block = se->start_block + offset; | 
 | 193 | 			sector_t nr_blocks = se->nr_pages - offset; | 
 | 194 |  | 
 | 195 | 			if (nr_blocks > nr_pages) | 
 | 196 | 				nr_blocks = nr_pages; | 
 | 197 | 			start_page += nr_blocks; | 
 | 198 | 			nr_pages -= nr_blocks; | 
 | 199 |  | 
 | 200 | 			if (!found_extent++) | 
 | 201 | 				si->curr_swap_extent = se; | 
 | 202 |  | 
 | 203 | 			start_block <<= PAGE_SHIFT - 9; | 
 | 204 | 			nr_blocks <<= PAGE_SHIFT - 9; | 
 | 205 | 			if (blkdev_issue_discard(si->bdev, start_block, | 
 | 206 | 				    nr_blocks, GFP_NOIO, 0)) | 
 | 207 | 				break; | 
 | 208 | 		} | 
 | 209 |  | 
 | 210 | 		se = list_next_entry(se, list); | 
 | 211 | 	} | 
 | 212 | } | 
 | 213 |  | 
 | 214 | #ifdef CONFIG_THP_SWAP | 
 | 215 | #define SWAPFILE_CLUSTER	HPAGE_PMD_NR | 
 | 216 |  | 
 | 217 | #define swap_entry_size(size)	(size) | 
 | 218 | #else | 
 | 219 | #define SWAPFILE_CLUSTER	256 | 
 | 220 |  | 
 | 221 | /* | 
 | 222 |  * Define swap_entry_size() as constant to let compiler to optimize | 
 | 223 |  * out some code if !CONFIG_THP_SWAP | 
 | 224 |  */ | 
 | 225 | #define swap_entry_size(size)	1 | 
 | 226 | #endif | 
 | 227 | #define LATENCY_LIMIT		256 | 
 | 228 |  | 
 | 229 | static inline void cluster_set_flag(struct swap_cluster_info *info, | 
 | 230 | 	unsigned int flag) | 
 | 231 | { | 
 | 232 | 	info->flags = flag; | 
 | 233 | } | 
 | 234 |  | 
 | 235 | static inline unsigned int cluster_count(struct swap_cluster_info *info) | 
 | 236 | { | 
 | 237 | 	return info->data; | 
 | 238 | } | 
 | 239 |  | 
 | 240 | static inline void cluster_set_count(struct swap_cluster_info *info, | 
 | 241 | 				     unsigned int c) | 
 | 242 | { | 
 | 243 | 	info->data = c; | 
 | 244 | } | 
 | 245 |  | 
 | 246 | static inline void cluster_set_count_flag(struct swap_cluster_info *info, | 
 | 247 | 					 unsigned int c, unsigned int f) | 
 | 248 | { | 
 | 249 | 	info->flags = f; | 
 | 250 | 	info->data = c; | 
 | 251 | } | 
 | 252 |  | 
 | 253 | static inline unsigned int cluster_next(struct swap_cluster_info *info) | 
 | 254 | { | 
 | 255 | 	return info->data; | 
 | 256 | } | 
 | 257 |  | 
 | 258 | static inline void cluster_set_next(struct swap_cluster_info *info, | 
 | 259 | 				    unsigned int n) | 
 | 260 | { | 
 | 261 | 	info->data = n; | 
 | 262 | } | 
 | 263 |  | 
 | 264 | static inline void cluster_set_next_flag(struct swap_cluster_info *info, | 
 | 265 | 					 unsigned int n, unsigned int f) | 
 | 266 | { | 
 | 267 | 	info->flags = f; | 
 | 268 | 	info->data = n; | 
 | 269 | } | 
 | 270 |  | 
 | 271 | static inline bool cluster_is_free(struct swap_cluster_info *info) | 
 | 272 | { | 
 | 273 | 	return info->flags & CLUSTER_FLAG_FREE; | 
 | 274 | } | 
 | 275 |  | 
 | 276 | static inline bool cluster_is_null(struct swap_cluster_info *info) | 
 | 277 | { | 
 | 278 | 	return info->flags & CLUSTER_FLAG_NEXT_NULL; | 
 | 279 | } | 
 | 280 |  | 
 | 281 | static inline void cluster_set_null(struct swap_cluster_info *info) | 
 | 282 | { | 
 | 283 | 	info->flags = CLUSTER_FLAG_NEXT_NULL; | 
 | 284 | 	info->data = 0; | 
 | 285 | } | 
 | 286 |  | 
 | 287 | static inline bool cluster_is_huge(struct swap_cluster_info *info) | 
 | 288 | { | 
 | 289 | 	if (IS_ENABLED(CONFIG_THP_SWAP)) | 
 | 290 | 		return info->flags & CLUSTER_FLAG_HUGE; | 
 | 291 | 	return false; | 
 | 292 | } | 
 | 293 |  | 
 | 294 | static inline void cluster_clear_huge(struct swap_cluster_info *info) | 
 | 295 | { | 
 | 296 | 	info->flags &= ~CLUSTER_FLAG_HUGE; | 
 | 297 | } | 
 | 298 |  | 
 | 299 | static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, | 
 | 300 | 						     unsigned long offset) | 
 | 301 | { | 
 | 302 | 	struct swap_cluster_info *ci; | 
 | 303 |  | 
 | 304 | 	ci = si->cluster_info; | 
 | 305 | 	if (ci) { | 
 | 306 | 		ci += offset / SWAPFILE_CLUSTER; | 
 | 307 | 		spin_lock(&ci->lock); | 
 | 308 | 	} | 
 | 309 | 	return ci; | 
 | 310 | } | 
 | 311 |  | 
 | 312 | static inline void unlock_cluster(struct swap_cluster_info *ci) | 
 | 313 | { | 
 | 314 | 	if (ci) | 
 | 315 | 		spin_unlock(&ci->lock); | 
 | 316 | } | 
 | 317 |  | 
 | 318 | /* | 
 | 319 |  * Determine the locking method in use for this device.  Return | 
 | 320 |  * swap_cluster_info if SSD-style cluster-based locking is in place. | 
 | 321 |  */ | 
 | 322 | static inline struct swap_cluster_info *lock_cluster_or_swap_info( | 
 | 323 | 		struct swap_info_struct *si, unsigned long offset) | 
 | 324 | { | 
 | 325 | 	struct swap_cluster_info *ci; | 
 | 326 |  | 
 | 327 | 	/* Try to use fine-grained SSD-style locking if available: */ | 
 | 328 | 	ci = lock_cluster(si, offset); | 
 | 329 | 	/* Otherwise, fall back to traditional, coarse locking: */ | 
 | 330 | 	if (!ci) | 
 | 331 | 		spin_lock(&si->lock); | 
 | 332 |  | 
 | 333 | 	return ci; | 
 | 334 | } | 
 | 335 |  | 
 | 336 | static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, | 
 | 337 | 					       struct swap_cluster_info *ci) | 
 | 338 | { | 
 | 339 | 	if (ci) | 
 | 340 | 		unlock_cluster(ci); | 
 | 341 | 	else | 
 | 342 | 		spin_unlock(&si->lock); | 
 | 343 | } | 
 | 344 |  | 
 | 345 | static inline bool cluster_list_empty(struct swap_cluster_list *list) | 
 | 346 | { | 
 | 347 | 	return cluster_is_null(&list->head); | 
 | 348 | } | 
 | 349 |  | 
 | 350 | static inline unsigned int cluster_list_first(struct swap_cluster_list *list) | 
 | 351 | { | 
 | 352 | 	return cluster_next(&list->head); | 
 | 353 | } | 
 | 354 |  | 
 | 355 | static void cluster_list_init(struct swap_cluster_list *list) | 
 | 356 | { | 
 | 357 | 	cluster_set_null(&list->head); | 
 | 358 | 	cluster_set_null(&list->tail); | 
 | 359 | } | 
 | 360 |  | 
 | 361 | static void cluster_list_add_tail(struct swap_cluster_list *list, | 
 | 362 | 				  struct swap_cluster_info *ci, | 
 | 363 | 				  unsigned int idx) | 
 | 364 | { | 
 | 365 | 	if (cluster_list_empty(list)) { | 
 | 366 | 		cluster_set_next_flag(&list->head, idx, 0); | 
 | 367 | 		cluster_set_next_flag(&list->tail, idx, 0); | 
 | 368 | 	} else { | 
 | 369 | 		struct swap_cluster_info *ci_tail; | 
 | 370 | 		unsigned int tail = cluster_next(&list->tail); | 
 | 371 |  | 
 | 372 | 		/* | 
 | 373 | 		 * Nested cluster lock, but both cluster locks are | 
 | 374 | 		 * only acquired when we held swap_info_struct->lock | 
 | 375 | 		 */ | 
 | 376 | 		ci_tail = ci + tail; | 
 | 377 | 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); | 
 | 378 | 		cluster_set_next(ci_tail, idx); | 
 | 379 | 		spin_unlock(&ci_tail->lock); | 
 | 380 | 		cluster_set_next_flag(&list->tail, idx, 0); | 
 | 381 | 	} | 
 | 382 | } | 
 | 383 |  | 
 | 384 | static unsigned int cluster_list_del_first(struct swap_cluster_list *list, | 
 | 385 | 					   struct swap_cluster_info *ci) | 
 | 386 | { | 
 | 387 | 	unsigned int idx; | 
 | 388 |  | 
 | 389 | 	idx = cluster_next(&list->head); | 
 | 390 | 	if (cluster_next(&list->tail) == idx) { | 
 | 391 | 		cluster_set_null(&list->head); | 
 | 392 | 		cluster_set_null(&list->tail); | 
 | 393 | 	} else | 
 | 394 | 		cluster_set_next_flag(&list->head, | 
 | 395 | 				      cluster_next(&ci[idx]), 0); | 
 | 396 |  | 
 | 397 | 	return idx; | 
 | 398 | } | 
 | 399 |  | 
 | 400 | /* Add a cluster to discard list and schedule it to do discard */ | 
 | 401 | static void swap_cluster_schedule_discard(struct swap_info_struct *si, | 
 | 402 | 		unsigned int idx) | 
 | 403 | { | 
 | 404 | 	/* | 
 | 405 | 	 * If scan_swap_map() can't find a free cluster, it will check | 
 | 406 | 	 * si->swap_map directly. To make sure the discarding cluster isn't | 
 | 407 | 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It | 
 | 408 | 	 * will be cleared after discard | 
 | 409 | 	 */ | 
 | 410 | 	memset(si->swap_map + idx * SWAPFILE_CLUSTER, | 
 | 411 | 			SWAP_MAP_BAD, SWAPFILE_CLUSTER); | 
 | 412 |  | 
 | 413 | 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); | 
 | 414 |  | 
 | 415 | 	schedule_work(&si->discard_work); | 
 | 416 | } | 
 | 417 |  | 
 | 418 | static void __free_cluster(struct swap_info_struct *si, unsigned long idx) | 
 | 419 | { | 
 | 420 | 	struct swap_cluster_info *ci = si->cluster_info; | 
 | 421 |  | 
 | 422 | 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); | 
 | 423 | 	cluster_list_add_tail(&si->free_clusters, ci, idx); | 
 | 424 | } | 
 | 425 |  | 
 | 426 | /* | 
 | 427 |  * Doing discard actually. After a cluster discard is finished, the cluster | 
 | 428 |  * will be added to free cluster list. caller should hold si->lock. | 
 | 429 | */ | 
 | 430 | static void swap_do_scheduled_discard(struct swap_info_struct *si) | 
 | 431 | { | 
 | 432 | 	struct swap_cluster_info *info, *ci; | 
 | 433 | 	unsigned int idx; | 
 | 434 |  | 
 | 435 | 	info = si->cluster_info; | 
 | 436 |  | 
 | 437 | 	while (!cluster_list_empty(&si->discard_clusters)) { | 
 | 438 | 		idx = cluster_list_del_first(&si->discard_clusters, info); | 
 | 439 | 		spin_unlock(&si->lock); | 
 | 440 |  | 
 | 441 | 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, | 
 | 442 | 				SWAPFILE_CLUSTER); | 
 | 443 |  | 
 | 444 | 		spin_lock(&si->lock); | 
 | 445 | 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); | 
 | 446 | 		__free_cluster(si, idx); | 
 | 447 | 		memset(si->swap_map + idx * SWAPFILE_CLUSTER, | 
 | 448 | 				0, SWAPFILE_CLUSTER); | 
 | 449 | 		unlock_cluster(ci); | 
 | 450 | 	} | 
 | 451 | } | 
 | 452 |  | 
 | 453 | static void swap_discard_work(struct work_struct *work) | 
 | 454 | { | 
 | 455 | 	struct swap_info_struct *si; | 
 | 456 |  | 
 | 457 | 	si = container_of(work, struct swap_info_struct, discard_work); | 
 | 458 |  | 
 | 459 | 	spin_lock(&si->lock); | 
 | 460 | 	swap_do_scheduled_discard(si); | 
 | 461 | 	spin_unlock(&si->lock); | 
 | 462 | } | 
 | 463 |  | 
 | 464 | static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) | 
 | 465 | { | 
 | 466 | 	struct swap_cluster_info *ci = si->cluster_info; | 
 | 467 |  | 
 | 468 | 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); | 
 | 469 | 	cluster_list_del_first(&si->free_clusters, ci); | 
 | 470 | 	cluster_set_count_flag(ci + idx, 0, 0); | 
 | 471 | } | 
 | 472 |  | 
 | 473 | static void free_cluster(struct swap_info_struct *si, unsigned long idx) | 
 | 474 | { | 
 | 475 | 	struct swap_cluster_info *ci = si->cluster_info + idx; | 
 | 476 |  | 
 | 477 | 	VM_BUG_ON(cluster_count(ci) != 0); | 
 | 478 | 	/* | 
 | 479 | 	 * If the swap is discardable, prepare discard the cluster | 
 | 480 | 	 * instead of free it immediately. The cluster will be freed | 
 | 481 | 	 * after discard. | 
 | 482 | 	 */ | 
 | 483 | 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == | 
 | 484 | 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) { | 
 | 485 | 		swap_cluster_schedule_discard(si, idx); | 
 | 486 | 		return; | 
 | 487 | 	} | 
 | 488 |  | 
 | 489 | 	__free_cluster(si, idx); | 
 | 490 | } | 
 | 491 |  | 
 | 492 | /* | 
 | 493 |  * The cluster corresponding to page_nr will be used. The cluster will be | 
 | 494 |  * removed from free cluster list and its usage counter will be increased. | 
 | 495 |  */ | 
 | 496 | static void inc_cluster_info_page(struct swap_info_struct *p, | 
 | 497 | 	struct swap_cluster_info *cluster_info, unsigned long page_nr) | 
 | 498 | { | 
 | 499 | 	unsigned long idx = page_nr / SWAPFILE_CLUSTER; | 
 | 500 |  | 
 | 501 | 	if (!cluster_info) | 
 | 502 | 		return; | 
 | 503 | 	if (cluster_is_free(&cluster_info[idx])) | 
 | 504 | 		alloc_cluster(p, idx); | 
 | 505 |  | 
 | 506 | 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); | 
 | 507 | 	cluster_set_count(&cluster_info[idx], | 
 | 508 | 		cluster_count(&cluster_info[idx]) + 1); | 
 | 509 | } | 
 | 510 |  | 
 | 511 | /* | 
 | 512 |  * The cluster corresponding to page_nr decreases one usage. If the usage | 
 | 513 |  * counter becomes 0, which means no page in the cluster is in using, we can | 
 | 514 |  * optionally discard the cluster and add it to free cluster list. | 
 | 515 |  */ | 
 | 516 | static void dec_cluster_info_page(struct swap_info_struct *p, | 
 | 517 | 	struct swap_cluster_info *cluster_info, unsigned long page_nr) | 
 | 518 | { | 
 | 519 | 	unsigned long idx = page_nr / SWAPFILE_CLUSTER; | 
 | 520 |  | 
 | 521 | 	if (!cluster_info) | 
 | 522 | 		return; | 
 | 523 |  | 
 | 524 | 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); | 
 | 525 | 	cluster_set_count(&cluster_info[idx], | 
 | 526 | 		cluster_count(&cluster_info[idx]) - 1); | 
 | 527 |  | 
 | 528 | 	if (cluster_count(&cluster_info[idx]) == 0) | 
 | 529 | 		free_cluster(p, idx); | 
 | 530 | } | 
 | 531 |  | 
 | 532 | /* | 
 | 533 |  * It's possible scan_swap_map() uses a free cluster in the middle of free | 
 | 534 |  * cluster list. Avoiding such abuse to avoid list corruption. | 
 | 535 |  */ | 
 | 536 | static bool | 
 | 537 | scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, | 
 | 538 | 	unsigned long offset) | 
 | 539 | { | 
 | 540 | 	struct percpu_cluster *percpu_cluster; | 
 | 541 | 	bool conflict; | 
 | 542 |  | 
 | 543 | 	offset /= SWAPFILE_CLUSTER; | 
 | 544 | 	conflict = !cluster_list_empty(&si->free_clusters) && | 
 | 545 | 		offset != cluster_list_first(&si->free_clusters) && | 
 | 546 | 		cluster_is_free(&si->cluster_info[offset]); | 
 | 547 |  | 
 | 548 | 	if (!conflict) | 
 | 549 | 		return false; | 
 | 550 |  | 
 | 551 | 	percpu_cluster = this_cpu_ptr(si->percpu_cluster); | 
 | 552 | 	cluster_set_null(&percpu_cluster->index); | 
 | 553 | 	return true; | 
 | 554 | } | 
 | 555 |  | 
 | 556 | /* | 
 | 557 |  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This | 
 | 558 |  * might involve allocating a new cluster for current CPU too. | 
 | 559 |  */ | 
 | 560 | static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, | 
 | 561 | 	unsigned long *offset, unsigned long *scan_base) | 
 | 562 | { | 
 | 563 | 	struct percpu_cluster *cluster; | 
 | 564 | 	struct swap_cluster_info *ci; | 
 | 565 | 	bool found_free; | 
 | 566 | 	unsigned long tmp, max; | 
 | 567 |  | 
 | 568 | new_cluster: | 
 | 569 | 	cluster = this_cpu_ptr(si->percpu_cluster); | 
 | 570 | 	if (cluster_is_null(&cluster->index)) { | 
 | 571 | 		if (!cluster_list_empty(&si->free_clusters)) { | 
 | 572 | 			cluster->index = si->free_clusters.head; | 
 | 573 | 			cluster->next = cluster_next(&cluster->index) * | 
 | 574 | 					SWAPFILE_CLUSTER; | 
 | 575 | 		} else if (!cluster_list_empty(&si->discard_clusters)) { | 
 | 576 | 			/* | 
 | 577 | 			 * we don't have free cluster but have some clusters in | 
 | 578 | 			 * discarding, do discard now and reclaim them | 
 | 579 | 			 */ | 
 | 580 | 			swap_do_scheduled_discard(si); | 
 | 581 | 			*scan_base = *offset = si->cluster_next; | 
 | 582 | 			goto new_cluster; | 
 | 583 | 		} else | 
 | 584 | 			return false; | 
 | 585 | 	} | 
 | 586 |  | 
 | 587 | 	found_free = false; | 
 | 588 |  | 
 | 589 | 	/* | 
 | 590 | 	 * Other CPUs can use our cluster if they can't find a free cluster, | 
 | 591 | 	 * check if there is still free entry in the cluster | 
 | 592 | 	 */ | 
 | 593 | 	tmp = cluster->next; | 
 | 594 | 	max = min_t(unsigned long, si->max, | 
 | 595 | 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); | 
 | 596 | 	if (tmp >= max) { | 
 | 597 | 		cluster_set_null(&cluster->index); | 
 | 598 | 		goto new_cluster; | 
 | 599 | 	} | 
 | 600 | 	ci = lock_cluster(si, tmp); | 
 | 601 | 	while (tmp < max) { | 
 | 602 | 		if (!si->swap_map[tmp]) { | 
 | 603 | 			found_free = true; | 
 | 604 | 			break; | 
 | 605 | 		} | 
 | 606 | 		tmp++; | 
 | 607 | 	} | 
 | 608 | 	unlock_cluster(ci); | 
 | 609 | 	if (!found_free) { | 
 | 610 | 		cluster_set_null(&cluster->index); | 
 | 611 | 		goto new_cluster; | 
 | 612 | 	} | 
 | 613 | 	cluster->next = tmp + 1; | 
 | 614 | 	*offset = tmp; | 
 | 615 | 	*scan_base = tmp; | 
 | 616 | 	return found_free; | 
 | 617 | } | 
 | 618 |  | 
 | 619 | static void __del_from_avail_list(struct swap_info_struct *p) | 
 | 620 | { | 
 | 621 | 	int nid; | 
 | 622 |  | 
 | 623 | 	for_each_node(nid) | 
 | 624 | 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); | 
 | 625 | } | 
 | 626 |  | 
 | 627 | static void del_from_avail_list(struct swap_info_struct *p) | 
 | 628 | { | 
 | 629 | 	spin_lock(&swap_avail_lock); | 
 | 630 | 	__del_from_avail_list(p); | 
 | 631 | 	spin_unlock(&swap_avail_lock); | 
 | 632 | } | 
 | 633 |  | 
 | 634 | static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, | 
 | 635 | 			     unsigned int nr_entries) | 
 | 636 | { | 
 | 637 | 	unsigned int end = offset + nr_entries - 1; | 
 | 638 |  | 
 | 639 | 	if (offset == si->lowest_bit) | 
 | 640 | 		si->lowest_bit += nr_entries; | 
 | 641 | 	if (end == si->highest_bit) | 
 | 642 | 		si->highest_bit -= nr_entries; | 
 | 643 | 	si->inuse_pages += nr_entries; | 
 | 644 | 	if (si->inuse_pages == si->pages) { | 
 | 645 | 		si->lowest_bit = si->max; | 
 | 646 | 		si->highest_bit = 0; | 
 | 647 | 		del_from_avail_list(si); | 
 | 648 | 	} | 
 | 649 | } | 
 | 650 |  | 
 | 651 | static void add_to_avail_list(struct swap_info_struct *p) | 
 | 652 | { | 
 | 653 | 	int nid; | 
 | 654 |  | 
 | 655 | 	spin_lock(&swap_avail_lock); | 
 | 656 | 	for_each_node(nid) { | 
 | 657 | 		WARN_ON(!plist_node_empty(&p->avail_lists[nid])); | 
 | 658 | 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); | 
 | 659 | 	} | 
 | 660 | 	spin_unlock(&swap_avail_lock); | 
 | 661 | } | 
 | 662 |  | 
 | 663 | static void swap_range_free(struct swap_info_struct *si, unsigned long offset, | 
 | 664 | 			    unsigned int nr_entries) | 
 | 665 | { | 
 | 666 | 	unsigned long end = offset + nr_entries - 1; | 
 | 667 | 	void (*swap_slot_free_notify)(struct block_device *, unsigned long); | 
 | 668 |  | 
 | 669 | 	if (offset < si->lowest_bit) | 
 | 670 | 		si->lowest_bit = offset; | 
 | 671 | 	if (end > si->highest_bit) { | 
 | 672 | 		bool was_full = !si->highest_bit; | 
 | 673 |  | 
 | 674 | 		si->highest_bit = end; | 
 | 675 | 		if (was_full && (si->flags & SWP_WRITEOK)) | 
 | 676 | 			add_to_avail_list(si); | 
 | 677 | 	} | 
 | 678 | 	atomic_long_add(nr_entries, &nr_swap_pages); | 
 | 679 | 	si->inuse_pages -= nr_entries; | 
 | 680 | 	if (si->flags & SWP_BLKDEV) | 
 | 681 | 		swap_slot_free_notify = | 
 | 682 | 			si->bdev->bd_disk->fops->swap_slot_free_notify; | 
 | 683 | 	else | 
 | 684 | 		swap_slot_free_notify = NULL; | 
 | 685 | 	while (offset <= end) { | 
 | 686 | 		frontswap_invalidate_page(si->type, offset); | 
 | 687 | 		if (swap_slot_free_notify) | 
 | 688 | 			swap_slot_free_notify(si->bdev, offset); | 
 | 689 | 		offset++; | 
 | 690 | 	} | 
 | 691 | } | 
 | 692 |  | 
 | 693 | static int scan_swap_map_slots(struct swap_info_struct *si, | 
 | 694 | 			       unsigned char usage, int nr, | 
 | 695 | 			       swp_entry_t slots[]) | 
 | 696 | { | 
 | 697 | 	struct swap_cluster_info *ci; | 
 | 698 | 	unsigned long offset; | 
 | 699 | 	unsigned long scan_base; | 
 | 700 | 	unsigned long last_in_cluster = 0; | 
 | 701 | 	int latency_ration = LATENCY_LIMIT; | 
 | 702 | 	int n_ret = 0; | 
 | 703 |  | 
 | 704 | 	if (nr > SWAP_BATCH) | 
 | 705 | 		nr = SWAP_BATCH; | 
 | 706 |  | 
 | 707 | 	/* | 
 | 708 | 	 * We try to cluster swap pages by allocating them sequentially | 
 | 709 | 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this | 
 | 710 | 	 * way, however, we resort to first-free allocation, starting | 
 | 711 | 	 * a new cluster.  This prevents us from scattering swap pages | 
 | 712 | 	 * all over the entire swap partition, so that we reduce | 
 | 713 | 	 * overall disk seek times between swap pages.  -- sct | 
 | 714 | 	 * But we do now try to find an empty cluster.  -Andrea | 
 | 715 | 	 * And we let swap pages go all over an SSD partition.  Hugh | 
 | 716 | 	 */ | 
 | 717 |  | 
 | 718 | 	si->flags += SWP_SCANNING; | 
 | 719 | 	scan_base = offset = si->cluster_next; | 
 | 720 |  | 
 | 721 | 	/* SSD algorithm */ | 
 | 722 | 	if (si->cluster_info) { | 
 | 723 | 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) | 
 | 724 | 			goto checks; | 
 | 725 | 		else | 
 | 726 | 			goto scan; | 
 | 727 | 	} | 
 | 728 |  | 
 | 729 | 	if (unlikely(!si->cluster_nr--)) { | 
 | 730 | 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { | 
 | 731 | 			si->cluster_nr = SWAPFILE_CLUSTER - 1; | 
 | 732 | 			goto checks; | 
 | 733 | 		} | 
 | 734 |  | 
 | 735 | 		spin_unlock(&si->lock); | 
 | 736 |  | 
 | 737 | 		/* | 
 | 738 | 		 * If seek is expensive, start searching for new cluster from | 
 | 739 | 		 * start of partition, to minimize the span of allocated swap. | 
 | 740 | 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info | 
 | 741 | 		 * case, just handled by scan_swap_map_try_ssd_cluster() above. | 
 | 742 | 		 */ | 
 | 743 | 		scan_base = offset = si->lowest_bit; | 
 | 744 | 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1; | 
 | 745 |  | 
 | 746 | 		/* Locate the first empty (unaligned) cluster */ | 
 | 747 | 		for (; last_in_cluster <= si->highest_bit; offset++) { | 
 | 748 | 			if (si->swap_map[offset]) | 
 | 749 | 				last_in_cluster = offset + SWAPFILE_CLUSTER; | 
 | 750 | 			else if (offset == last_in_cluster) { | 
 | 751 | 				spin_lock(&si->lock); | 
 | 752 | 				offset -= SWAPFILE_CLUSTER - 1; | 
 | 753 | 				si->cluster_next = offset; | 
 | 754 | 				si->cluster_nr = SWAPFILE_CLUSTER - 1; | 
 | 755 | 				goto checks; | 
 | 756 | 			} | 
 | 757 | 			if (unlikely(--latency_ration < 0)) { | 
 | 758 | 				cond_resched(); | 
 | 759 | 				latency_ration = LATENCY_LIMIT; | 
 | 760 | 			} | 
 | 761 | 		} | 
 | 762 |  | 
 | 763 | 		offset = scan_base; | 
 | 764 | 		spin_lock(&si->lock); | 
 | 765 | 		si->cluster_nr = SWAPFILE_CLUSTER - 1; | 
 | 766 | 	} | 
 | 767 |  | 
 | 768 | checks: | 
 | 769 | 	if (si->cluster_info) { | 
 | 770 | 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) { | 
 | 771 | 		/* take a break if we already got some slots */ | 
 | 772 | 			if (n_ret) | 
 | 773 | 				goto done; | 
 | 774 | 			if (!scan_swap_map_try_ssd_cluster(si, &offset, | 
 | 775 | 							&scan_base)) | 
 | 776 | 				goto scan; | 
 | 777 | 		} | 
 | 778 | 	} | 
 | 779 | 	if (!(si->flags & SWP_WRITEOK)) | 
 | 780 | 		goto no_page; | 
 | 781 | 	if (!si->highest_bit) | 
 | 782 | 		goto no_page; | 
 | 783 | 	if (offset > si->highest_bit) | 
 | 784 | 		scan_base = offset = si->lowest_bit; | 
 | 785 |  | 
 | 786 | 	ci = lock_cluster(si, offset); | 
 | 787 | 	/* reuse swap entry of cache-only swap if not busy. */ | 
 | 788 | 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { | 
 | 789 | 		int swap_was_freed; | 
 | 790 | 		unlock_cluster(ci); | 
 | 791 | 		spin_unlock(&si->lock); | 
 | 792 | 		swap_was_freed = __try_to_reclaim_swap(si, offset); | 
 | 793 | 		spin_lock(&si->lock); | 
 | 794 | 		/* entry was freed successfully, try to use this again */ | 
 | 795 | 		if (swap_was_freed) | 
 | 796 | 			goto checks; | 
 | 797 | 		goto scan; /* check next one */ | 
 | 798 | 	} | 
 | 799 |  | 
 | 800 | 	if (si->swap_map[offset]) { | 
 | 801 | 		unlock_cluster(ci); | 
 | 802 | 		if (!n_ret) | 
 | 803 | 			goto scan; | 
 | 804 | 		else | 
 | 805 | 			goto done; | 
 | 806 | 	} | 
 | 807 | 	si->swap_map[offset] = usage; | 
 | 808 | 	inc_cluster_info_page(si, si->cluster_info, offset); | 
 | 809 | 	unlock_cluster(ci); | 
 | 810 |  | 
 | 811 | 	swap_range_alloc(si, offset, 1); | 
 | 812 | 	si->cluster_next = offset + 1; | 
 | 813 | 	slots[n_ret++] = swp_entry(si->type, offset); | 
 | 814 |  | 
 | 815 | 	/* got enough slots or reach max slots? */ | 
 | 816 | 	if ((n_ret == nr) || (offset >= si->highest_bit)) | 
 | 817 | 		goto done; | 
 | 818 |  | 
 | 819 | 	/* search for next available slot */ | 
 | 820 |  | 
 | 821 | 	/* time to take a break? */ | 
 | 822 | 	if (unlikely(--latency_ration < 0)) { | 
 | 823 | 		if (n_ret) | 
 | 824 | 			goto done; | 
 | 825 | 		spin_unlock(&si->lock); | 
 | 826 | 		cond_resched(); | 
 | 827 | 		spin_lock(&si->lock); | 
 | 828 | 		latency_ration = LATENCY_LIMIT; | 
 | 829 | 	} | 
 | 830 |  | 
 | 831 | 	/* try to get more slots in cluster */ | 
 | 832 | 	if (si->cluster_info) { | 
 | 833 | 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) | 
 | 834 | 			goto checks; | 
 | 835 | 		else | 
 | 836 | 			goto done; | 
 | 837 | 	} | 
 | 838 | 	/* non-ssd case */ | 
 | 839 | 	++offset; | 
 | 840 |  | 
 | 841 | 	/* non-ssd case, still more slots in cluster? */ | 
 | 842 | 	if (si->cluster_nr && !si->swap_map[offset]) { | 
 | 843 | 		--si->cluster_nr; | 
 | 844 | 		goto checks; | 
 | 845 | 	} | 
 | 846 |  | 
 | 847 | done: | 
 | 848 | 	si->flags -= SWP_SCANNING; | 
 | 849 | 	return n_ret; | 
 | 850 |  | 
 | 851 | scan: | 
 | 852 | 	spin_unlock(&si->lock); | 
 | 853 | 	while (++offset <= si->highest_bit) { | 
 | 854 | 		if (!si->swap_map[offset]) { | 
 | 855 | 			spin_lock(&si->lock); | 
 | 856 | 			goto checks; | 
 | 857 | 		} | 
 | 858 | 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { | 
 | 859 | 			spin_lock(&si->lock); | 
 | 860 | 			goto checks; | 
 | 861 | 		} | 
 | 862 | 		if (unlikely(--latency_ration < 0)) { | 
 | 863 | 			cond_resched(); | 
 | 864 | 			latency_ration = LATENCY_LIMIT; | 
 | 865 | 		} | 
 | 866 | 	} | 
 | 867 | 	offset = si->lowest_bit; | 
 | 868 | 	while (offset < scan_base) { | 
 | 869 | 		if (!si->swap_map[offset]) { | 
 | 870 | 			spin_lock(&si->lock); | 
 | 871 | 			goto checks; | 
 | 872 | 		} | 
 | 873 | 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { | 
 | 874 | 			spin_lock(&si->lock); | 
 | 875 | 			goto checks; | 
 | 876 | 		} | 
 | 877 | 		if (unlikely(--latency_ration < 0)) { | 
 | 878 | 			cond_resched(); | 
 | 879 | 			latency_ration = LATENCY_LIMIT; | 
 | 880 | 		} | 
 | 881 | 		offset++; | 
 | 882 | 	} | 
 | 883 | 	spin_lock(&si->lock); | 
 | 884 |  | 
 | 885 | no_page: | 
 | 886 | 	si->flags -= SWP_SCANNING; | 
 | 887 | 	return n_ret; | 
 | 888 | } | 
 | 889 |  | 
 | 890 | static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) | 
 | 891 | { | 
 | 892 | 	unsigned long idx; | 
 | 893 | 	struct swap_cluster_info *ci; | 
 | 894 | 	unsigned long offset, i; | 
 | 895 | 	unsigned char *map; | 
 | 896 |  | 
 | 897 | 	/* | 
 | 898 | 	 * Should not even be attempting cluster allocations when huge | 
 | 899 | 	 * page swap is disabled.  Warn and fail the allocation. | 
 | 900 | 	 */ | 
 | 901 | 	if (!IS_ENABLED(CONFIG_THP_SWAP)) { | 
 | 902 | 		VM_WARN_ON_ONCE(1); | 
 | 903 | 		return 0; | 
 | 904 | 	} | 
 | 905 |  | 
 | 906 | 	if (cluster_list_empty(&si->free_clusters)) | 
 | 907 | 		return 0; | 
 | 908 |  | 
 | 909 | 	idx = cluster_list_first(&si->free_clusters); | 
 | 910 | 	offset = idx * SWAPFILE_CLUSTER; | 
 | 911 | 	ci = lock_cluster(si, offset); | 
 | 912 | 	alloc_cluster(si, idx); | 
 | 913 | 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); | 
 | 914 |  | 
 | 915 | 	map = si->swap_map + offset; | 
 | 916 | 	for (i = 0; i < SWAPFILE_CLUSTER; i++) | 
 | 917 | 		map[i] = SWAP_HAS_CACHE; | 
 | 918 | 	unlock_cluster(ci); | 
 | 919 | 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER); | 
 | 920 | 	*slot = swp_entry(si->type, offset); | 
 | 921 |  | 
 | 922 | 	return 1; | 
 | 923 | } | 
 | 924 |  | 
 | 925 | static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) | 
 | 926 | { | 
 | 927 | 	unsigned long offset = idx * SWAPFILE_CLUSTER; | 
 | 928 | 	struct swap_cluster_info *ci; | 
 | 929 |  | 
 | 930 | 	ci = lock_cluster(si, offset); | 
 | 931 | 	cluster_set_count_flag(ci, 0, 0); | 
 | 932 | 	free_cluster(si, idx); | 
 | 933 | 	unlock_cluster(ci); | 
 | 934 | 	swap_range_free(si, offset, SWAPFILE_CLUSTER); | 
 | 935 | } | 
 | 936 |  | 
 | 937 | static unsigned long scan_swap_map(struct swap_info_struct *si, | 
 | 938 | 				   unsigned char usage) | 
 | 939 | { | 
 | 940 | 	swp_entry_t entry; | 
 | 941 | 	int n_ret; | 
 | 942 |  | 
 | 943 | 	n_ret = scan_swap_map_slots(si, usage, 1, &entry); | 
 | 944 |  | 
 | 945 | 	if (n_ret) | 
 | 946 | 		return swp_offset(entry); | 
 | 947 | 	else | 
 | 948 | 		return 0; | 
 | 949 |  | 
 | 950 | } | 
 | 951 |  | 
 | 952 | int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) | 
 | 953 | { | 
 | 954 | 	unsigned long size = swap_entry_size(entry_size); | 
 | 955 | 	struct swap_info_struct *si, *next; | 
 | 956 | 	long avail_pgs; | 
 | 957 | 	int n_ret = 0; | 
 | 958 | 	int node; | 
 | 959 |  | 
 | 960 | 	/* Only single cluster request supported */ | 
 | 961 | 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); | 
 | 962 |  | 
 | 963 | 	avail_pgs = atomic_long_read(&nr_swap_pages) / size; | 
 | 964 | 	if (avail_pgs <= 0) | 
 | 965 | 		goto noswap; | 
 | 966 |  | 
 | 967 | 	if (n_goal > SWAP_BATCH) | 
 | 968 | 		n_goal = SWAP_BATCH; | 
 | 969 |  | 
 | 970 | 	if (n_goal > avail_pgs) | 
 | 971 | 		n_goal = avail_pgs; | 
 | 972 |  | 
 | 973 | 	atomic_long_sub(n_goal * size, &nr_swap_pages); | 
 | 974 |  | 
 | 975 | 	spin_lock(&swap_avail_lock); | 
 | 976 |  | 
 | 977 | start_over: | 
 | 978 | 	node = numa_node_id(); | 
 | 979 | 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { | 
 | 980 | 		/* requeue si to after same-priority siblings */ | 
 | 981 | 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); | 
 | 982 | 		spin_unlock(&swap_avail_lock); | 
 | 983 | 		spin_lock(&si->lock); | 
 | 984 | 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { | 
 | 985 | 			spin_lock(&swap_avail_lock); | 
 | 986 | 			if (plist_node_empty(&si->avail_lists[node])) { | 
 | 987 | 				spin_unlock(&si->lock); | 
 | 988 | 				goto nextsi; | 
 | 989 | 			} | 
 | 990 | 			WARN(!si->highest_bit, | 
 | 991 | 			     "swap_info %d in list but !highest_bit\n", | 
 | 992 | 			     si->type); | 
 | 993 | 			WARN(!(si->flags & SWP_WRITEOK), | 
 | 994 | 			     "swap_info %d in list but !SWP_WRITEOK\n", | 
 | 995 | 			     si->type); | 
 | 996 | 			__del_from_avail_list(si); | 
 | 997 | 			spin_unlock(&si->lock); | 
 | 998 | 			goto nextsi; | 
 | 999 | 		} | 
 | 1000 | 		if (size == SWAPFILE_CLUSTER) { | 
 | 1001 | 			if (!(si->flags & SWP_FILE)) | 
 | 1002 | 				n_ret = swap_alloc_cluster(si, swp_entries); | 
 | 1003 | 		} else | 
 | 1004 | 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, | 
 | 1005 | 						    n_goal, swp_entries); | 
 | 1006 | 		spin_unlock(&si->lock); | 
 | 1007 | 		if (n_ret || size == SWAPFILE_CLUSTER) | 
 | 1008 | 			goto check_out; | 
 | 1009 | 		pr_debug("scan_swap_map of si %d failed to find offset\n", | 
 | 1010 | 			si->type); | 
 | 1011 |  | 
 | 1012 | 		spin_lock(&swap_avail_lock); | 
 | 1013 | nextsi: | 
 | 1014 | 		/* | 
 | 1015 | 		 * if we got here, it's likely that si was almost full before, | 
 | 1016 | 		 * and since scan_swap_map() can drop the si->lock, multiple | 
 | 1017 | 		 * callers probably all tried to get a page from the same si | 
 | 1018 | 		 * and it filled up before we could get one; or, the si filled | 
 | 1019 | 		 * up between us dropping swap_avail_lock and taking si->lock. | 
 | 1020 | 		 * Since we dropped the swap_avail_lock, the swap_avail_head | 
 | 1021 | 		 * list may have been modified; so if next is still in the | 
 | 1022 | 		 * swap_avail_head list then try it, otherwise start over | 
 | 1023 | 		 * if we have not gotten any slots. | 
 | 1024 | 		 */ | 
 | 1025 | 		if (plist_node_empty(&next->avail_lists[node])) | 
 | 1026 | 			goto start_over; | 
 | 1027 | 	} | 
 | 1028 |  | 
 | 1029 | 	spin_unlock(&swap_avail_lock); | 
 | 1030 |  | 
 | 1031 | check_out: | 
 | 1032 | 	if (n_ret < n_goal) | 
 | 1033 | 		atomic_long_add((long)(n_goal - n_ret) * size, | 
 | 1034 | 				&nr_swap_pages); | 
 | 1035 | noswap: | 
 | 1036 | 	return n_ret; | 
 | 1037 | } | 
 | 1038 |  | 
 | 1039 | /* The only caller of this function is now suspend routine */ | 
 | 1040 | swp_entry_t get_swap_page_of_type(int type) | 
 | 1041 | { | 
 | 1042 | 	struct swap_info_struct *si = swap_type_to_swap_info(type); | 
 | 1043 | 	pgoff_t offset; | 
 | 1044 |  | 
 | 1045 | 	if (!si) | 
 | 1046 | 		goto fail; | 
 | 1047 |  | 
 | 1048 | 	spin_lock(&si->lock); | 
 | 1049 | 	if (si->flags & SWP_WRITEOK) { | 
 | 1050 | 		atomic_long_dec(&nr_swap_pages); | 
 | 1051 | 		/* This is called for allocating swap entry, not cache */ | 
 | 1052 | 		offset = scan_swap_map(si, 1); | 
 | 1053 | 		if (offset) { | 
 | 1054 | 			spin_unlock(&si->lock); | 
 | 1055 | 			return swp_entry(type, offset); | 
 | 1056 | 		} | 
 | 1057 | 		atomic_long_inc(&nr_swap_pages); | 
 | 1058 | 	} | 
 | 1059 | 	spin_unlock(&si->lock); | 
 | 1060 | fail: | 
 | 1061 | 	return (swp_entry_t) {0}; | 
 | 1062 | } | 
 | 1063 |  | 
 | 1064 | static struct swap_info_struct *__swap_info_get(swp_entry_t entry) | 
 | 1065 | { | 
 | 1066 | 	struct swap_info_struct *p; | 
 | 1067 | 	unsigned long offset, type; | 
 | 1068 |  | 
 | 1069 | 	if (!entry.val) | 
 | 1070 | 		goto out; | 
 | 1071 | 	type = swp_type(entry); | 
 | 1072 | 	p = swap_type_to_swap_info(type); | 
 | 1073 | 	if (!p) | 
 | 1074 | 		goto bad_nofile; | 
 | 1075 | 	if (!(p->flags & SWP_USED)) | 
 | 1076 | 		goto bad_device; | 
 | 1077 | 	offset = swp_offset(entry); | 
 | 1078 | 	if (offset >= p->max) | 
 | 1079 | 		goto bad_offset; | 
 | 1080 | 	return p; | 
 | 1081 |  | 
 | 1082 | bad_offset: | 
 | 1083 | 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val); | 
 | 1084 | 	goto out; | 
 | 1085 | bad_device: | 
 | 1086 | 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val); | 
 | 1087 | 	goto out; | 
 | 1088 | bad_nofile: | 
 | 1089 | 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val); | 
 | 1090 | out: | 
 | 1091 | 	return NULL; | 
 | 1092 | } | 
 | 1093 |  | 
 | 1094 | static struct swap_info_struct *_swap_info_get(swp_entry_t entry) | 
 | 1095 | { | 
 | 1096 | 	struct swap_info_struct *p; | 
 | 1097 |  | 
 | 1098 | 	p = __swap_info_get(entry); | 
 | 1099 | 	if (!p) | 
 | 1100 | 		goto out; | 
 | 1101 | 	if (!p->swap_map[swp_offset(entry)]) | 
 | 1102 | 		goto bad_free; | 
 | 1103 | 	return p; | 
 | 1104 |  | 
 | 1105 | bad_free: | 
 | 1106 | 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val); | 
 | 1107 | 	goto out; | 
 | 1108 | out: | 
 | 1109 | 	return NULL; | 
 | 1110 | } | 
 | 1111 |  | 
 | 1112 | static struct swap_info_struct *swap_info_get(swp_entry_t entry) | 
 | 1113 | { | 
 | 1114 | 	struct swap_info_struct *p; | 
 | 1115 |  | 
 | 1116 | 	p = _swap_info_get(entry); | 
 | 1117 | 	if (p) | 
 | 1118 | 		spin_lock(&p->lock); | 
 | 1119 | 	return p; | 
 | 1120 | } | 
 | 1121 |  | 
 | 1122 | static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, | 
 | 1123 | 					struct swap_info_struct *q) | 
 | 1124 | { | 
 | 1125 | 	struct swap_info_struct *p; | 
 | 1126 |  | 
 | 1127 | 	p = _swap_info_get(entry); | 
 | 1128 |  | 
 | 1129 | 	if (p != q) { | 
 | 1130 | 		if (q != NULL) | 
 | 1131 | 			spin_unlock(&q->lock); | 
 | 1132 | 		if (p != NULL) | 
 | 1133 | 			spin_lock(&p->lock); | 
 | 1134 | 	} | 
 | 1135 | 	return p; | 
 | 1136 | } | 
 | 1137 |  | 
 | 1138 | static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, | 
 | 1139 | 					      unsigned long offset, | 
 | 1140 | 					      unsigned char usage) | 
 | 1141 | { | 
 | 1142 | 	unsigned char count; | 
 | 1143 | 	unsigned char has_cache; | 
 | 1144 |  | 
 | 1145 | 	count = p->swap_map[offset]; | 
 | 1146 |  | 
 | 1147 | 	has_cache = count & SWAP_HAS_CACHE; | 
 | 1148 | 	count &= ~SWAP_HAS_CACHE; | 
 | 1149 |  | 
 | 1150 | 	if (usage == SWAP_HAS_CACHE) { | 
 | 1151 | 		VM_BUG_ON(!has_cache); | 
 | 1152 | 		has_cache = 0; | 
 | 1153 | 	} else if (count == SWAP_MAP_SHMEM) { | 
 | 1154 | 		/* | 
 | 1155 | 		 * Or we could insist on shmem.c using a special | 
 | 1156 | 		 * swap_shmem_free() and free_shmem_swap_and_cache()... | 
 | 1157 | 		 */ | 
 | 1158 | 		count = 0; | 
 | 1159 | 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { | 
 | 1160 | 		if (count == COUNT_CONTINUED) { | 
 | 1161 | 			if (swap_count_continued(p, offset, count)) | 
 | 1162 | 				count = SWAP_MAP_MAX | COUNT_CONTINUED; | 
 | 1163 | 			else | 
 | 1164 | 				count = SWAP_MAP_MAX; | 
 | 1165 | 		} else | 
 | 1166 | 			count--; | 
 | 1167 | 	} | 
 | 1168 |  | 
 | 1169 | 	usage = count | has_cache; | 
 | 1170 | 	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE; | 
 | 1171 |  | 
 | 1172 | 	return usage; | 
 | 1173 | } | 
 | 1174 |  | 
 | 1175 | static unsigned char __swap_entry_free(struct swap_info_struct *p, | 
 | 1176 | 				       swp_entry_t entry, unsigned char usage) | 
 | 1177 | { | 
 | 1178 | 	struct swap_cluster_info *ci; | 
 | 1179 | 	unsigned long offset = swp_offset(entry); | 
 | 1180 |  | 
 | 1181 | 	ci = lock_cluster_or_swap_info(p, offset); | 
 | 1182 | 	usage = __swap_entry_free_locked(p, offset, usage); | 
 | 1183 | 	unlock_cluster_or_swap_info(p, ci); | 
 | 1184 |  | 
 | 1185 | 	return usage; | 
 | 1186 | } | 
 | 1187 |  | 
 | 1188 | static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) | 
 | 1189 | { | 
 | 1190 | 	struct swap_cluster_info *ci; | 
 | 1191 | 	unsigned long offset = swp_offset(entry); | 
 | 1192 | 	unsigned char count; | 
 | 1193 |  | 
 | 1194 | 	ci = lock_cluster(p, offset); | 
 | 1195 | 	count = p->swap_map[offset]; | 
 | 1196 | 	VM_BUG_ON(count != SWAP_HAS_CACHE); | 
 | 1197 | 	p->swap_map[offset] = 0; | 
 | 1198 | 	dec_cluster_info_page(p, p->cluster_info, offset); | 
 | 1199 | 	unlock_cluster(ci); | 
 | 1200 |  | 
 | 1201 | 	mem_cgroup_uncharge_swap(entry, 1); | 
 | 1202 | 	swap_range_free(p, offset, 1); | 
 | 1203 | } | 
 | 1204 |  | 
 | 1205 | /* | 
 | 1206 |  * Caller has made sure that the swap device corresponding to entry | 
 | 1207 |  * is still around or has not been recycled. | 
 | 1208 |  */ | 
 | 1209 | void swap_free(swp_entry_t entry) | 
 | 1210 | { | 
 | 1211 | 	struct swap_info_struct *p; | 
 | 1212 |  | 
 | 1213 | 	p = _swap_info_get(entry); | 
 | 1214 | 	if (p) { | 
 | 1215 | 		if (!__swap_entry_free(p, entry, 1)) | 
 | 1216 | 			free_swap_slot(entry); | 
 | 1217 | 	} | 
 | 1218 | } | 
 | 1219 |  | 
 | 1220 | /* | 
 | 1221 |  * Called after dropping swapcache to decrease refcnt to swap entries. | 
 | 1222 |  */ | 
 | 1223 | void put_swap_page(struct page *page, swp_entry_t entry) | 
 | 1224 | { | 
 | 1225 | 	unsigned long offset = swp_offset(entry); | 
 | 1226 | 	unsigned long idx = offset / SWAPFILE_CLUSTER; | 
 | 1227 | 	struct swap_cluster_info *ci; | 
 | 1228 | 	struct swap_info_struct *si; | 
 | 1229 | 	unsigned char *map; | 
 | 1230 | 	unsigned int i, free_entries = 0; | 
 | 1231 | 	unsigned char val; | 
 | 1232 | 	int size = swap_entry_size(hpage_nr_pages(page)); | 
 | 1233 |  | 
 | 1234 | 	si = _swap_info_get(entry); | 
 | 1235 | 	if (!si) | 
 | 1236 | 		return; | 
 | 1237 |  | 
 | 1238 | 	ci = lock_cluster_or_swap_info(si, offset); | 
 | 1239 | 	if (size == SWAPFILE_CLUSTER) { | 
 | 1240 | 		VM_BUG_ON(!cluster_is_huge(ci)); | 
 | 1241 | 		map = si->swap_map + offset; | 
 | 1242 | 		for (i = 0; i < SWAPFILE_CLUSTER; i++) { | 
 | 1243 | 			val = map[i]; | 
 | 1244 | 			VM_BUG_ON(!(val & SWAP_HAS_CACHE)); | 
 | 1245 | 			if (val == SWAP_HAS_CACHE) | 
 | 1246 | 				free_entries++; | 
 | 1247 | 		} | 
 | 1248 | 		cluster_clear_huge(ci); | 
 | 1249 | 		if (free_entries == SWAPFILE_CLUSTER) { | 
 | 1250 | 			unlock_cluster_or_swap_info(si, ci); | 
 | 1251 | 			spin_lock(&si->lock); | 
 | 1252 | 			ci = lock_cluster(si, offset); | 
 | 1253 | 			memset(map, 0, SWAPFILE_CLUSTER); | 
 | 1254 | 			unlock_cluster(ci); | 
 | 1255 | 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); | 
 | 1256 | 			swap_free_cluster(si, idx); | 
 | 1257 | 			spin_unlock(&si->lock); | 
 | 1258 | 			return; | 
 | 1259 | 		} | 
 | 1260 | 	} | 
 | 1261 | 	for (i = 0; i < size; i++, entry.val++) { | 
 | 1262 | 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { | 
 | 1263 | 			unlock_cluster_or_swap_info(si, ci); | 
 | 1264 | 			free_swap_slot(entry); | 
 | 1265 | 			if (i == size - 1) | 
 | 1266 | 				return; | 
 | 1267 | 			lock_cluster_or_swap_info(si, offset); | 
 | 1268 | 		} | 
 | 1269 | 	} | 
 | 1270 | 	unlock_cluster_or_swap_info(si, ci); | 
 | 1271 | } | 
 | 1272 |  | 
 | 1273 | #ifdef CONFIG_THP_SWAP | 
 | 1274 | int split_swap_cluster(swp_entry_t entry) | 
 | 1275 | { | 
 | 1276 | 	struct swap_info_struct *si; | 
 | 1277 | 	struct swap_cluster_info *ci; | 
 | 1278 | 	unsigned long offset = swp_offset(entry); | 
 | 1279 |  | 
 | 1280 | 	si = _swap_info_get(entry); | 
 | 1281 | 	if (!si) | 
 | 1282 | 		return -EBUSY; | 
 | 1283 | 	ci = lock_cluster(si, offset); | 
 | 1284 | 	cluster_clear_huge(ci); | 
 | 1285 | 	unlock_cluster(ci); | 
 | 1286 | 	return 0; | 
 | 1287 | } | 
 | 1288 | #endif | 
 | 1289 |  | 
 | 1290 | static int swp_entry_cmp(const void *ent1, const void *ent2) | 
 | 1291 | { | 
 | 1292 | 	const swp_entry_t *e1 = ent1, *e2 = ent2; | 
 | 1293 |  | 
 | 1294 | 	return (int)swp_type(*e1) - (int)swp_type(*e2); | 
 | 1295 | } | 
 | 1296 |  | 
 | 1297 | void swapcache_free_entries(swp_entry_t *entries, int n) | 
 | 1298 | { | 
 | 1299 | 	struct swap_info_struct *p, *prev; | 
 | 1300 | 	int i; | 
 | 1301 |  | 
 | 1302 | 	if (n <= 0) | 
 | 1303 | 		return; | 
 | 1304 |  | 
 | 1305 | 	prev = NULL; | 
 | 1306 | 	p = NULL; | 
 | 1307 |  | 
 | 1308 | 	/* | 
 | 1309 | 	 * Sort swap entries by swap device, so each lock is only taken once. | 
 | 1310 | 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is | 
 | 1311 | 	 * so low that it isn't necessary to optimize further. | 
 | 1312 | 	 */ | 
 | 1313 | 	if (nr_swapfiles > 1) | 
 | 1314 | 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); | 
 | 1315 | 	for (i = 0; i < n; ++i) { | 
 | 1316 | 		p = swap_info_get_cont(entries[i], prev); | 
 | 1317 | 		if (p) | 
 | 1318 | 			swap_entry_free(p, entries[i]); | 
 | 1319 | 		prev = p; | 
 | 1320 | 	} | 
 | 1321 | 	if (p) | 
 | 1322 | 		spin_unlock(&p->lock); | 
 | 1323 | } | 
 | 1324 |  | 
 | 1325 | /* | 
 | 1326 |  * How many references to page are currently swapped out? | 
 | 1327 |  * This does not give an exact answer when swap count is continued, | 
 | 1328 |  * but does include the high COUNT_CONTINUED flag to allow for that. | 
 | 1329 |  */ | 
 | 1330 | int page_swapcount(struct page *page) | 
 | 1331 | { | 
 | 1332 | 	int count = 0; | 
 | 1333 | 	struct swap_info_struct *p; | 
 | 1334 | 	struct swap_cluster_info *ci; | 
 | 1335 | 	swp_entry_t entry; | 
 | 1336 | 	unsigned long offset; | 
 | 1337 |  | 
 | 1338 | 	entry.val = page_private(page); | 
 | 1339 | 	p = _swap_info_get(entry); | 
 | 1340 | 	if (p) { | 
 | 1341 | 		offset = swp_offset(entry); | 
 | 1342 | 		ci = lock_cluster_or_swap_info(p, offset); | 
 | 1343 | 		count = swap_count(p->swap_map[offset]); | 
 | 1344 | 		unlock_cluster_or_swap_info(p, ci); | 
 | 1345 | 	} | 
 | 1346 | 	return count; | 
 | 1347 | } | 
 | 1348 |  | 
 | 1349 | int __swap_count(struct swap_info_struct *si, swp_entry_t entry) | 
 | 1350 | { | 
 | 1351 | 	pgoff_t offset = swp_offset(entry); | 
 | 1352 |  | 
 | 1353 | 	return swap_count(si->swap_map[offset]); | 
 | 1354 | } | 
 | 1355 |  | 
 | 1356 | static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) | 
 | 1357 | { | 
 | 1358 | 	int count = 0; | 
 | 1359 | 	pgoff_t offset = swp_offset(entry); | 
 | 1360 | 	struct swap_cluster_info *ci; | 
 | 1361 |  | 
 | 1362 | 	ci = lock_cluster_or_swap_info(si, offset); | 
 | 1363 | 	count = swap_count(si->swap_map[offset]); | 
 | 1364 | 	unlock_cluster_or_swap_info(si, ci); | 
 | 1365 | 	return count; | 
 | 1366 | } | 
 | 1367 |  | 
 | 1368 | /* | 
 | 1369 |  * How many references to @entry are currently swapped out? | 
 | 1370 |  * This does not give an exact answer when swap count is continued, | 
 | 1371 |  * but does include the high COUNT_CONTINUED flag to allow for that. | 
 | 1372 |  */ | 
 | 1373 | int __swp_swapcount(swp_entry_t entry) | 
 | 1374 | { | 
 | 1375 | 	int count = 0; | 
 | 1376 | 	struct swap_info_struct *si; | 
 | 1377 |  | 
 | 1378 | 	si = __swap_info_get(entry); | 
 | 1379 | 	if (si) | 
 | 1380 | 		count = swap_swapcount(si, entry); | 
 | 1381 | 	return count; | 
 | 1382 | } | 
 | 1383 |  | 
 | 1384 | /* | 
 | 1385 |  * How many references to @entry are currently swapped out? | 
 | 1386 |  * This considers COUNT_CONTINUED so it returns exact answer. | 
 | 1387 |  */ | 
 | 1388 | int swp_swapcount(swp_entry_t entry) | 
 | 1389 | { | 
 | 1390 | 	int count, tmp_count, n; | 
 | 1391 | 	struct swap_info_struct *p; | 
 | 1392 | 	struct swap_cluster_info *ci; | 
 | 1393 | 	struct page *page; | 
 | 1394 | 	pgoff_t offset; | 
 | 1395 | 	unsigned char *map; | 
 | 1396 |  | 
 | 1397 | 	p = _swap_info_get(entry); | 
 | 1398 | 	if (!p) | 
 | 1399 | 		return 0; | 
 | 1400 |  | 
 | 1401 | 	offset = swp_offset(entry); | 
 | 1402 |  | 
 | 1403 | 	ci = lock_cluster_or_swap_info(p, offset); | 
 | 1404 |  | 
 | 1405 | 	count = swap_count(p->swap_map[offset]); | 
 | 1406 | 	if (!(count & COUNT_CONTINUED)) | 
 | 1407 | 		goto out; | 
 | 1408 |  | 
 | 1409 | 	count &= ~COUNT_CONTINUED; | 
 | 1410 | 	n = SWAP_MAP_MAX + 1; | 
 | 1411 |  | 
 | 1412 | 	page = vmalloc_to_page(p->swap_map + offset); | 
 | 1413 | 	offset &= ~PAGE_MASK; | 
 | 1414 | 	VM_BUG_ON(page_private(page) != SWP_CONTINUED); | 
 | 1415 |  | 
 | 1416 | 	do { | 
 | 1417 | 		page = list_next_entry(page, lru); | 
 | 1418 | 		map = kmap_atomic(page); | 
 | 1419 | 		tmp_count = map[offset]; | 
 | 1420 | 		kunmap_atomic(map); | 
 | 1421 |  | 
 | 1422 | 		count += (tmp_count & ~COUNT_CONTINUED) * n; | 
 | 1423 | 		n *= (SWAP_CONT_MAX + 1); | 
 | 1424 | 	} while (tmp_count & COUNT_CONTINUED); | 
 | 1425 | out: | 
 | 1426 | 	unlock_cluster_or_swap_info(p, ci); | 
 | 1427 | 	return count; | 
 | 1428 | } | 
 | 1429 |  | 
 | 1430 | static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, | 
 | 1431 | 					 swp_entry_t entry) | 
 | 1432 | { | 
 | 1433 | 	struct swap_cluster_info *ci; | 
 | 1434 | 	unsigned char *map = si->swap_map; | 
 | 1435 | 	unsigned long roffset = swp_offset(entry); | 
 | 1436 | 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); | 
 | 1437 | 	int i; | 
 | 1438 | 	bool ret = false; | 
 | 1439 |  | 
 | 1440 | 	ci = lock_cluster_or_swap_info(si, offset); | 
 | 1441 | 	if (!ci || !cluster_is_huge(ci)) { | 
 | 1442 | 		if (swap_count(map[roffset])) | 
 | 1443 | 			ret = true; | 
 | 1444 | 		goto unlock_out; | 
 | 1445 | 	} | 
 | 1446 | 	for (i = 0; i < SWAPFILE_CLUSTER; i++) { | 
 | 1447 | 		if (swap_count(map[offset + i])) { | 
 | 1448 | 			ret = true; | 
 | 1449 | 			break; | 
 | 1450 | 		} | 
 | 1451 | 	} | 
 | 1452 | unlock_out: | 
 | 1453 | 	unlock_cluster_or_swap_info(si, ci); | 
 | 1454 | 	return ret; | 
 | 1455 | } | 
 | 1456 |  | 
 | 1457 | static bool page_swapped(struct page *page) | 
 | 1458 | { | 
 | 1459 | 	swp_entry_t entry; | 
 | 1460 | 	struct swap_info_struct *si; | 
 | 1461 |  | 
 | 1462 | 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) | 
 | 1463 | 		return page_swapcount(page) != 0; | 
 | 1464 |  | 
 | 1465 | 	page = compound_head(page); | 
 | 1466 | 	entry.val = page_private(page); | 
 | 1467 | 	si = _swap_info_get(entry); | 
 | 1468 | 	if (si) | 
 | 1469 | 		return swap_page_trans_huge_swapped(si, entry); | 
 | 1470 | 	return false; | 
 | 1471 | } | 
 | 1472 |  | 
 | 1473 | static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, | 
 | 1474 | 					 int *total_swapcount) | 
 | 1475 | { | 
 | 1476 | 	int i, map_swapcount, _total_mapcount, _total_swapcount; | 
 | 1477 | 	unsigned long offset = 0; | 
 | 1478 | 	struct swap_info_struct *si; | 
 | 1479 | 	struct swap_cluster_info *ci = NULL; | 
 | 1480 | 	unsigned char *map = NULL; | 
 | 1481 | 	int mapcount, swapcount = 0; | 
 | 1482 |  | 
 | 1483 | 	/* hugetlbfs shouldn't call it */ | 
 | 1484 | 	VM_BUG_ON_PAGE(PageHuge(page), page); | 
 | 1485 |  | 
 | 1486 | 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) { | 
 | 1487 | 		mapcount = page_trans_huge_mapcount(page, total_mapcount); | 
 | 1488 | 		if (PageSwapCache(page)) | 
 | 1489 | 			swapcount = page_swapcount(page); | 
 | 1490 | 		if (total_swapcount) | 
 | 1491 | 			*total_swapcount = swapcount; | 
 | 1492 | 		return mapcount + swapcount; | 
 | 1493 | 	} | 
 | 1494 |  | 
 | 1495 | 	page = compound_head(page); | 
 | 1496 |  | 
 | 1497 | 	_total_mapcount = _total_swapcount = map_swapcount = 0; | 
 | 1498 | 	if (PageSwapCache(page)) { | 
 | 1499 | 		swp_entry_t entry; | 
 | 1500 |  | 
 | 1501 | 		entry.val = page_private(page); | 
 | 1502 | 		si = _swap_info_get(entry); | 
 | 1503 | 		if (si) { | 
 | 1504 | 			map = si->swap_map; | 
 | 1505 | 			offset = swp_offset(entry); | 
 | 1506 | 		} | 
 | 1507 | 	} | 
 | 1508 | 	if (map) | 
 | 1509 | 		ci = lock_cluster(si, offset); | 
 | 1510 | 	for (i = 0; i < HPAGE_PMD_NR; i++) { | 
 | 1511 | 		mapcount = atomic_read(&page[i]._mapcount) + 1; | 
 | 1512 | 		_total_mapcount += mapcount; | 
 | 1513 | 		if (map) { | 
 | 1514 | 			swapcount = swap_count(map[offset + i]); | 
 | 1515 | 			_total_swapcount += swapcount; | 
 | 1516 | 		} | 
 | 1517 | 		map_swapcount = max(map_swapcount, mapcount + swapcount); | 
 | 1518 | 	} | 
 | 1519 | 	unlock_cluster(ci); | 
 | 1520 | 	if (PageDoubleMap(page)) { | 
 | 1521 | 		map_swapcount -= 1; | 
 | 1522 | 		_total_mapcount -= HPAGE_PMD_NR; | 
 | 1523 | 	} | 
 | 1524 | 	mapcount = compound_mapcount(page); | 
 | 1525 | 	map_swapcount += mapcount; | 
 | 1526 | 	_total_mapcount += mapcount; | 
 | 1527 | 	if (total_mapcount) | 
 | 1528 | 		*total_mapcount = _total_mapcount; | 
 | 1529 | 	if (total_swapcount) | 
 | 1530 | 		*total_swapcount = _total_swapcount; | 
 | 1531 |  | 
 | 1532 | 	return map_swapcount; | 
 | 1533 | } | 
 | 1534 |  | 
 | 1535 | /* | 
 | 1536 |  * We can write to an anon page without COW if there are no other references | 
 | 1537 |  * to it.  And as a side-effect, free up its swap: because the old content | 
 | 1538 |  * on disk will never be read, and seeking back there to write new content | 
 | 1539 |  * later would only waste time away from clustering. | 
 | 1540 |  * | 
 | 1541 |  * NOTE: total_map_swapcount should not be relied upon by the caller if | 
 | 1542 |  * reuse_swap_page() returns false, but it may be always overwritten | 
 | 1543 |  * (see the other implementation for CONFIG_SWAP=n). | 
 | 1544 |  */ | 
 | 1545 | bool reuse_swap_page(struct page *page, int *total_map_swapcount) | 
 | 1546 | { | 
 | 1547 | 	int count, total_mapcount, total_swapcount; | 
 | 1548 |  | 
 | 1549 | 	VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 | 1550 | 	if (unlikely(PageKsm(page))) | 
 | 1551 | 		return false; | 
 | 1552 | 	count = page_trans_huge_map_swapcount(page, &total_mapcount, | 
 | 1553 | 					      &total_swapcount); | 
 | 1554 | 	if (total_map_swapcount) | 
 | 1555 | 		*total_map_swapcount = total_mapcount + total_swapcount; | 
 | 1556 | 	if (count == 1 && PageSwapCache(page) && | 
 | 1557 | 	    (likely(!PageTransCompound(page)) || | 
 | 1558 | 	     /* The remaining swap count will be freed soon */ | 
 | 1559 | 	     total_swapcount == page_swapcount(page))) { | 
 | 1560 | 		if (!PageWriteback(page)) { | 
 | 1561 | 			page = compound_head(page); | 
 | 1562 | 			delete_from_swap_cache(page); | 
 | 1563 | 			SetPageDirty(page); | 
 | 1564 | 		} else { | 
 | 1565 | 			swp_entry_t entry; | 
 | 1566 | 			struct swap_info_struct *p; | 
 | 1567 |  | 
 | 1568 | 			entry.val = page_private(page); | 
 | 1569 | 			p = swap_info_get(entry); | 
 | 1570 | 			if (p->flags & SWP_STABLE_WRITES) { | 
 | 1571 | 				spin_unlock(&p->lock); | 
 | 1572 | 				return false; | 
 | 1573 | 			} | 
 | 1574 | 			spin_unlock(&p->lock); | 
 | 1575 | 		} | 
 | 1576 | 	} | 
 | 1577 |  | 
 | 1578 | 	return count <= 1; | 
 | 1579 | } | 
 | 1580 |  | 
 | 1581 | /* | 
 | 1582 |  * If swap is getting full, or if there are no more mappings of this page, | 
 | 1583 |  * then try_to_free_swap is called to free its swap space. | 
 | 1584 |  */ | 
 | 1585 | int try_to_free_swap(struct page *page) | 
 | 1586 | { | 
 | 1587 | 	VM_BUG_ON_PAGE(!PageLocked(page), page); | 
 | 1588 |  | 
 | 1589 | 	if (!PageSwapCache(page)) | 
 | 1590 | 		return 0; | 
 | 1591 | 	if (PageWriteback(page)) | 
 | 1592 | 		return 0; | 
 | 1593 | 	if (page_swapped(page)) | 
 | 1594 | 		return 0; | 
 | 1595 |  | 
 | 1596 | 	/* | 
 | 1597 | 	 * Once hibernation has begun to create its image of memory, | 
 | 1598 | 	 * there's a danger that one of the calls to try_to_free_swap() | 
 | 1599 | 	 * - most probably a call from __try_to_reclaim_swap() while | 
 | 1600 | 	 * hibernation is allocating its own swap pages for the image, | 
 | 1601 | 	 * but conceivably even a call from memory reclaim - will free | 
 | 1602 | 	 * the swap from a page which has already been recorded in the | 
 | 1603 | 	 * image as a clean swapcache page, and then reuse its swap for | 
 | 1604 | 	 * another page of the image.  On waking from hibernation, the | 
 | 1605 | 	 * original page might be freed under memory pressure, then | 
 | 1606 | 	 * later read back in from swap, now with the wrong data. | 
 | 1607 | 	 * | 
 | 1608 | 	 * Hibernation suspends storage while it is writing the image | 
 | 1609 | 	 * to disk so check that here. | 
 | 1610 | 	 */ | 
 | 1611 | 	if (pm_suspended_storage()) | 
 | 1612 | 		return 0; | 
 | 1613 |  | 
 | 1614 | 	page = compound_head(page); | 
 | 1615 | 	delete_from_swap_cache(page); | 
 | 1616 | 	SetPageDirty(page); | 
 | 1617 | 	return 1; | 
 | 1618 | } | 
 | 1619 |  | 
 | 1620 | /* | 
 | 1621 |  * Free the swap entry like above, but also try to | 
 | 1622 |  * free the page cache entry if it is the last user. | 
 | 1623 |  */ | 
 | 1624 | int free_swap_and_cache(swp_entry_t entry) | 
 | 1625 | { | 
 | 1626 | 	struct swap_info_struct *p; | 
 | 1627 | 	struct page *page = NULL; | 
 | 1628 | 	unsigned char count; | 
 | 1629 |  | 
 | 1630 | 	if (non_swap_entry(entry)) | 
 | 1631 | 		return 1; | 
 | 1632 |  | 
 | 1633 | 	p = _swap_info_get(entry); | 
 | 1634 | 	if (p) { | 
 | 1635 | 		count = __swap_entry_free(p, entry, 1); | 
 | 1636 | 		if (count == SWAP_HAS_CACHE && | 
 | 1637 | 		    !swap_page_trans_huge_swapped(p, entry)) { | 
 | 1638 | 			page = find_get_page(swap_address_space(entry), | 
 | 1639 | 					     swp_offset(entry)); | 
 | 1640 | 			if (page && !trylock_page(page)) { | 
 | 1641 | 				put_page(page); | 
 | 1642 | 				page = NULL; | 
 | 1643 | 			} | 
 | 1644 | 		} else if (!count) | 
 | 1645 | 			free_swap_slot(entry); | 
 | 1646 | 	} | 
 | 1647 | 	if (page) { | 
 | 1648 | 		/* | 
 | 1649 | 		 * Not mapped elsewhere, or swap space full? Free it! | 
 | 1650 | 		 * Also recheck PageSwapCache now page is locked (above). | 
 | 1651 | 		 */ | 
 | 1652 | 		if (PageSwapCache(page) && !PageWriteback(page) && | 
 | 1653 | 		    (!page_mapped(page) || mem_cgroup_swap_full(page)) && | 
 | 1654 | 		    !swap_page_trans_huge_swapped(p, entry)) { | 
 | 1655 | 			page = compound_head(page); | 
 | 1656 | 			delete_from_swap_cache(page); | 
 | 1657 | 			SetPageDirty(page); | 
 | 1658 | 		} | 
 | 1659 | 		unlock_page(page); | 
 | 1660 | 		put_page(page); | 
 | 1661 | 	} | 
 | 1662 | 	return p != NULL; | 
 | 1663 | } | 
 | 1664 |  | 
 | 1665 | #ifdef CONFIG_HIBERNATION | 
 | 1666 | /* | 
 | 1667 |  * Find the swap type that corresponds to given device (if any). | 
 | 1668 |  * | 
 | 1669 |  * @offset - number of the PAGE_SIZE-sized block of the device, starting | 
 | 1670 |  * from 0, in which the swap header is expected to be located. | 
 | 1671 |  * | 
 | 1672 |  * This is needed for the suspend to disk (aka swsusp). | 
 | 1673 |  */ | 
 | 1674 | int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) | 
 | 1675 | { | 
 | 1676 | 	struct block_device *bdev = NULL; | 
 | 1677 | 	int type; | 
 | 1678 |  | 
 | 1679 | 	if (device) | 
 | 1680 | 		bdev = bdget(device); | 
 | 1681 |  | 
 | 1682 | 	spin_lock(&swap_lock); | 
 | 1683 | 	for (type = 0; type < nr_swapfiles; type++) { | 
 | 1684 | 		struct swap_info_struct *sis = swap_info[type]; | 
 | 1685 |  | 
 | 1686 | 		if (!(sis->flags & SWP_WRITEOK)) | 
 | 1687 | 			continue; | 
 | 1688 |  | 
 | 1689 | 		if (!bdev) { | 
 | 1690 | 			if (bdev_p) | 
 | 1691 | 				*bdev_p = bdgrab(sis->bdev); | 
 | 1692 |  | 
 | 1693 | 			spin_unlock(&swap_lock); | 
 | 1694 | 			return type; | 
 | 1695 | 		} | 
 | 1696 | 		if (bdev == sis->bdev) { | 
 | 1697 | 			struct swap_extent *se = &sis->first_swap_extent; | 
 | 1698 |  | 
 | 1699 | 			if (se->start_block == offset) { | 
 | 1700 | 				if (bdev_p) | 
 | 1701 | 					*bdev_p = bdgrab(sis->bdev); | 
 | 1702 |  | 
 | 1703 | 				spin_unlock(&swap_lock); | 
 | 1704 | 				bdput(bdev); | 
 | 1705 | 				return type; | 
 | 1706 | 			} | 
 | 1707 | 		} | 
 | 1708 | 	} | 
 | 1709 | 	spin_unlock(&swap_lock); | 
 | 1710 | 	if (bdev) | 
 | 1711 | 		bdput(bdev); | 
 | 1712 |  | 
 | 1713 | 	return -ENODEV; | 
 | 1714 | } | 
 | 1715 |  | 
 | 1716 | /* | 
 | 1717 |  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev | 
 | 1718 |  * corresponding to given index in swap_info (swap type). | 
 | 1719 |  */ | 
 | 1720 | sector_t swapdev_block(int type, pgoff_t offset) | 
 | 1721 | { | 
 | 1722 | 	struct block_device *bdev; | 
 | 1723 | 	struct swap_info_struct *si = swap_type_to_swap_info(type); | 
 | 1724 |  | 
 | 1725 | 	if (!si || !(si->flags & SWP_WRITEOK)) | 
 | 1726 | 		return 0; | 
 | 1727 | 	return map_swap_entry(swp_entry(type, offset), &bdev); | 
 | 1728 | } | 
 | 1729 |  | 
 | 1730 | /* | 
 | 1731 |  * Return either the total number of swap pages of given type, or the number | 
 | 1732 |  * of free pages of that type (depending on @free) | 
 | 1733 |  * | 
 | 1734 |  * This is needed for software suspend | 
 | 1735 |  */ | 
 | 1736 | unsigned int count_swap_pages(int type, int free) | 
 | 1737 | { | 
 | 1738 | 	unsigned int n = 0; | 
 | 1739 |  | 
 | 1740 | 	spin_lock(&swap_lock); | 
 | 1741 | 	if ((unsigned int)type < nr_swapfiles) { | 
 | 1742 | 		struct swap_info_struct *sis = swap_info[type]; | 
 | 1743 |  | 
 | 1744 | 		spin_lock(&sis->lock); | 
 | 1745 | 		if (sis->flags & SWP_WRITEOK) { | 
 | 1746 | 			n = sis->pages; | 
 | 1747 | 			if (free) | 
 | 1748 | 				n -= sis->inuse_pages; | 
 | 1749 | 		} | 
 | 1750 | 		spin_unlock(&sis->lock); | 
 | 1751 | 	} | 
 | 1752 | 	spin_unlock(&swap_lock); | 
 | 1753 | 	return n; | 
 | 1754 | } | 
 | 1755 | #endif /* CONFIG_HIBERNATION */ | 
 | 1756 |  | 
 | 1757 | static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) | 
 | 1758 | { | 
 | 1759 | 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); | 
 | 1760 | } | 
 | 1761 |  | 
 | 1762 | /* | 
 | 1763 |  * No need to decide whether this PTE shares the swap entry with others, | 
 | 1764 |  * just let do_wp_page work it out if a write is requested later - to | 
 | 1765 |  * force COW, vm_page_prot omits write permission from any private vma. | 
 | 1766 |  */ | 
 | 1767 | static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, | 
 | 1768 | 		unsigned long addr, swp_entry_t entry, struct page *page) | 
 | 1769 | { | 
 | 1770 | 	struct page *swapcache; | 
 | 1771 | 	struct mem_cgroup *memcg; | 
 | 1772 | 	spinlock_t *ptl; | 
 | 1773 | 	pte_t *pte; | 
 | 1774 | 	int ret = 1; | 
 | 1775 |  | 
 | 1776 | 	swapcache = page; | 
 | 1777 | 	page = ksm_might_need_to_copy(page, vma, addr); | 
 | 1778 | 	if (unlikely(!page)) | 
 | 1779 | 		return -ENOMEM; | 
 | 1780 |  | 
 | 1781 | 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, | 
 | 1782 | 				&memcg, false)) { | 
 | 1783 | 		ret = -ENOMEM; | 
 | 1784 | 		goto out_nolock; | 
 | 1785 | 	} | 
 | 1786 |  | 
 | 1787 | 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
 | 1788 | 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { | 
 | 1789 | 		mem_cgroup_cancel_charge(page, memcg, false); | 
 | 1790 | 		ret = 0; | 
 | 1791 | 		goto out; | 
 | 1792 | 	} | 
 | 1793 |  | 
 | 1794 | 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS); | 
 | 1795 | 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES); | 
 | 1796 | 	get_page(page); | 
 | 1797 | 	set_pte_at(vma->vm_mm, addr, pte, | 
 | 1798 | 		   pte_mkold(mk_pte(page, vma->vm_page_prot))); | 
 | 1799 | 	if (page == swapcache) { | 
 | 1800 | 		page_add_anon_rmap(page, vma, addr, false); | 
 | 1801 | 		mem_cgroup_commit_charge(page, memcg, true, false); | 
 | 1802 | 	} else { /* ksm created a completely new copy */ | 
 | 1803 | 		page_add_new_anon_rmap(page, vma, addr, false); | 
 | 1804 | 		mem_cgroup_commit_charge(page, memcg, false, false); | 
 | 1805 | 		lru_cache_add_active_or_unevictable(page, vma); | 
 | 1806 | 	} | 
 | 1807 | 	swap_free(entry); | 
 | 1808 | 	/* | 
 | 1809 | 	 * Move the page to the active list so it is not | 
 | 1810 | 	 * immediately swapped out again after swapon. | 
 | 1811 | 	 */ | 
 | 1812 | 	activate_page(page); | 
 | 1813 | out: | 
 | 1814 | 	pte_unmap_unlock(pte, ptl); | 
 | 1815 | out_nolock: | 
 | 1816 | 	if (page != swapcache) { | 
 | 1817 | 		unlock_page(page); | 
 | 1818 | 		put_page(page); | 
 | 1819 | 	} | 
 | 1820 | 	return ret; | 
 | 1821 | } | 
 | 1822 |  | 
 | 1823 | static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, | 
 | 1824 | 				unsigned long addr, unsigned long end, | 
 | 1825 | 				swp_entry_t entry, struct page *page) | 
 | 1826 | { | 
 | 1827 | 	pte_t swp_pte = swp_entry_to_pte(entry); | 
 | 1828 | 	pte_t *pte; | 
 | 1829 | 	int ret = 0; | 
 | 1830 |  | 
 | 1831 | 	/* | 
 | 1832 | 	 * We don't actually need pte lock while scanning for swp_pte: since | 
 | 1833 | 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the | 
 | 1834 | 	 * page table while we're scanning; though it could get zapped, and on | 
 | 1835 | 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse | 
 | 1836 | 	 * of unmatched parts which look like swp_pte, so unuse_pte must | 
 | 1837 | 	 * recheck under pte lock.  Scanning without pte lock lets it be | 
 | 1838 | 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. | 
 | 1839 | 	 */ | 
 | 1840 | 	pte = pte_offset_map(pmd, addr); | 
 | 1841 | 	do { | 
 | 1842 | 		/* | 
 | 1843 | 		 * swapoff spends a _lot_ of time in this loop! | 
 | 1844 | 		 * Test inline before going to call unuse_pte. | 
 | 1845 | 		 */ | 
 | 1846 | 		if (unlikely(pte_same_as_swp(*pte, swp_pte))) { | 
 | 1847 | 			pte_unmap(pte); | 
 | 1848 | 			ret = unuse_pte(vma, pmd, addr, entry, page); | 
 | 1849 | 			if (ret) | 
 | 1850 | 				goto out; | 
 | 1851 | 			pte = pte_offset_map(pmd, addr); | 
 | 1852 | 		} | 
 | 1853 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | 1854 | 	pte_unmap(pte - 1); | 
 | 1855 | out: | 
 | 1856 | 	return ret; | 
 | 1857 | } | 
 | 1858 |  | 
 | 1859 | static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, | 
 | 1860 | 				unsigned long addr, unsigned long end, | 
 | 1861 | 				swp_entry_t entry, struct page *page) | 
 | 1862 | { | 
 | 1863 | 	pmd_t *pmd; | 
 | 1864 | 	unsigned long next; | 
 | 1865 | 	int ret; | 
 | 1866 |  | 
 | 1867 | 	pmd = pmd_offset(pud, addr); | 
 | 1868 | 	do { | 
 | 1869 | 		cond_resched(); | 
 | 1870 | 		next = pmd_addr_end(addr, end); | 
 | 1871 | 		if (pmd_none_or_trans_huge_or_clear_bad(pmd)) | 
 | 1872 | 			continue; | 
 | 1873 | 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page); | 
 | 1874 | 		if (ret) | 
 | 1875 | 			return ret; | 
 | 1876 | 	} while (pmd++, addr = next, addr != end); | 
 | 1877 | 	return 0; | 
 | 1878 | } | 
 | 1879 |  | 
 | 1880 | static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, | 
 | 1881 | 				unsigned long addr, unsigned long end, | 
 | 1882 | 				swp_entry_t entry, struct page *page) | 
 | 1883 | { | 
 | 1884 | 	pud_t *pud; | 
 | 1885 | 	unsigned long next; | 
 | 1886 | 	int ret; | 
 | 1887 |  | 
 | 1888 | 	pud = pud_offset(p4d, addr); | 
 | 1889 | 	do { | 
 | 1890 | 		next = pud_addr_end(addr, end); | 
 | 1891 | 		if (pud_none_or_clear_bad(pud)) | 
 | 1892 | 			continue; | 
 | 1893 | 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page); | 
 | 1894 | 		if (ret) | 
 | 1895 | 			return ret; | 
 | 1896 | 	} while (pud++, addr = next, addr != end); | 
 | 1897 | 	return 0; | 
 | 1898 | } | 
 | 1899 |  | 
 | 1900 | static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, | 
 | 1901 | 				unsigned long addr, unsigned long end, | 
 | 1902 | 				swp_entry_t entry, struct page *page) | 
 | 1903 | { | 
 | 1904 | 	p4d_t *p4d; | 
 | 1905 | 	unsigned long next; | 
 | 1906 | 	int ret; | 
 | 1907 |  | 
 | 1908 | 	p4d = p4d_offset(pgd, addr); | 
 | 1909 | 	do { | 
 | 1910 | 		next = p4d_addr_end(addr, end); | 
 | 1911 | 		if (p4d_none_or_clear_bad(p4d)) | 
 | 1912 | 			continue; | 
 | 1913 | 		ret = unuse_pud_range(vma, p4d, addr, next, entry, page); | 
 | 1914 | 		if (ret) | 
 | 1915 | 			return ret; | 
 | 1916 | 	} while (p4d++, addr = next, addr != end); | 
 | 1917 | 	return 0; | 
 | 1918 | } | 
 | 1919 |  | 
 | 1920 | static int unuse_vma(struct vm_area_struct *vma, | 
 | 1921 | 				swp_entry_t entry, struct page *page) | 
 | 1922 | { | 
 | 1923 | 	pgd_t *pgd; | 
 | 1924 | 	unsigned long addr, end, next; | 
 | 1925 | 	int ret; | 
 | 1926 |  | 
 | 1927 | 	if (page_anon_vma(page)) { | 
 | 1928 | 		addr = page_address_in_vma(page, vma); | 
 | 1929 | 		if (addr == -EFAULT) | 
 | 1930 | 			return 0; | 
 | 1931 | 		else | 
 | 1932 | 			end = addr + PAGE_SIZE; | 
 | 1933 | 	} else { | 
 | 1934 | 		addr = vma->vm_start; | 
 | 1935 | 		end = vma->vm_end; | 
 | 1936 | 	} | 
 | 1937 |  | 
 | 1938 | 	pgd = pgd_offset(vma->vm_mm, addr); | 
 | 1939 | 	do { | 
 | 1940 | 		next = pgd_addr_end(addr, end); | 
 | 1941 | 		if (pgd_none_or_clear_bad(pgd)) | 
 | 1942 | 			continue; | 
 | 1943 | 		ret = unuse_p4d_range(vma, pgd, addr, next, entry, page); | 
 | 1944 | 		if (ret) | 
 | 1945 | 			return ret; | 
 | 1946 | 	} while (pgd++, addr = next, addr != end); | 
 | 1947 | 	return 0; | 
 | 1948 | } | 
 | 1949 |  | 
 | 1950 | static int unuse_mm(struct mm_struct *mm, | 
 | 1951 | 				swp_entry_t entry, struct page *page) | 
 | 1952 | { | 
 | 1953 | 	struct vm_area_struct *vma; | 
 | 1954 | 	int ret = 0; | 
 | 1955 |  | 
 | 1956 | 	if (!down_read_trylock(&mm->mmap_sem)) { | 
 | 1957 | 		/* | 
 | 1958 | 		 * Activate page so shrink_inactive_list is unlikely to unmap | 
 | 1959 | 		 * its ptes while lock is dropped, so swapoff can make progress. | 
 | 1960 | 		 */ | 
 | 1961 | 		activate_page(page); | 
 | 1962 | 		unlock_page(page); | 
 | 1963 | 		down_read(&mm->mmap_sem); | 
 | 1964 | 		lock_page(page); | 
 | 1965 | 	} | 
 | 1966 | 	for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
 | 1967 | 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) | 
 | 1968 | 			break; | 
 | 1969 | 		cond_resched(); | 
 | 1970 | 	} | 
 | 1971 | 	up_read(&mm->mmap_sem); | 
 | 1972 | 	return (ret < 0)? ret: 0; | 
 | 1973 | } | 
 | 1974 |  | 
 | 1975 | /* | 
 | 1976 |  * Scan swap_map (or frontswap_map if frontswap parameter is true) | 
 | 1977 |  * from current position to next entry still in use. | 
 | 1978 |  * Recycle to start on reaching the end, returning 0 when empty. | 
 | 1979 |  */ | 
 | 1980 | static unsigned int find_next_to_unuse(struct swap_info_struct *si, | 
 | 1981 | 					unsigned int prev, bool frontswap) | 
 | 1982 | { | 
 | 1983 | 	unsigned int max = si->max; | 
 | 1984 | 	unsigned int i = prev; | 
 | 1985 | 	unsigned char count; | 
 | 1986 |  | 
 | 1987 | 	/* | 
 | 1988 | 	 * No need for swap_lock here: we're just looking | 
 | 1989 | 	 * for whether an entry is in use, not modifying it; false | 
 | 1990 | 	 * hits are okay, and sys_swapoff() has already prevented new | 
 | 1991 | 	 * allocations from this area (while holding swap_lock). | 
 | 1992 | 	 */ | 
 | 1993 | 	for (;;) { | 
 | 1994 | 		if (++i >= max) { | 
 | 1995 | 			if (!prev) { | 
 | 1996 | 				i = 0; | 
 | 1997 | 				break; | 
 | 1998 | 			} | 
 | 1999 | 			/* | 
 | 2000 | 			 * No entries in use at top of swap_map, | 
 | 2001 | 			 * loop back to start and recheck there. | 
 | 2002 | 			 */ | 
 | 2003 | 			max = prev + 1; | 
 | 2004 | 			prev = 0; | 
 | 2005 | 			i = 1; | 
 | 2006 | 		} | 
 | 2007 | 		count = READ_ONCE(si->swap_map[i]); | 
 | 2008 | 		if (count && swap_count(count) != SWAP_MAP_BAD) | 
 | 2009 | 			if (!frontswap || frontswap_test(si, i)) | 
 | 2010 | 				break; | 
 | 2011 | 		if ((i % LATENCY_LIMIT) == 0) | 
 | 2012 | 			cond_resched(); | 
 | 2013 | 	} | 
 | 2014 | 	return i; | 
 | 2015 | } | 
 | 2016 |  | 
 | 2017 | /* | 
 | 2018 |  * We completely avoid races by reading each swap page in advance, | 
 | 2019 |  * and then search for the process using it.  All the necessary | 
 | 2020 |  * page table adjustments can then be made atomically. | 
 | 2021 |  * | 
 | 2022 |  * if the boolean frontswap is true, only unuse pages_to_unuse pages; | 
 | 2023 |  * pages_to_unuse==0 means all pages; ignored if frontswap is false | 
 | 2024 |  */ | 
 | 2025 | int try_to_unuse(unsigned int type, bool frontswap, | 
 | 2026 | 		 unsigned long pages_to_unuse) | 
 | 2027 | { | 
 | 2028 | 	struct swap_info_struct *si = swap_info[type]; | 
 | 2029 | 	struct mm_struct *start_mm; | 
 | 2030 | 	volatile unsigned char *swap_map; /* swap_map is accessed without | 
 | 2031 | 					   * locking. Mark it as volatile | 
 | 2032 | 					   * to prevent compiler doing | 
 | 2033 | 					   * something odd. | 
 | 2034 | 					   */ | 
 | 2035 | 	unsigned char swcount; | 
 | 2036 | 	struct page *page; | 
 | 2037 | 	swp_entry_t entry; | 
 | 2038 | 	unsigned int i = 0; | 
 | 2039 | 	int retval = 0; | 
 | 2040 |  | 
 | 2041 | 	/* | 
 | 2042 | 	 * When searching mms for an entry, a good strategy is to | 
 | 2043 | 	 * start at the first mm we freed the previous entry from | 
 | 2044 | 	 * (though actually we don't notice whether we or coincidence | 
 | 2045 | 	 * freed the entry).  Initialize this start_mm with a hold. | 
 | 2046 | 	 * | 
 | 2047 | 	 * A simpler strategy would be to start at the last mm we | 
 | 2048 | 	 * freed the previous entry from; but that would take less | 
 | 2049 | 	 * advantage of mmlist ordering, which clusters forked mms | 
 | 2050 | 	 * together, child after parent.  If we race with dup_mmap(), we | 
 | 2051 | 	 * prefer to resolve parent before child, lest we miss entries | 
 | 2052 | 	 * duplicated after we scanned child: using last mm would invert | 
 | 2053 | 	 * that. | 
 | 2054 | 	 */ | 
 | 2055 | 	start_mm = &init_mm; | 
 | 2056 | 	mmget(&init_mm); | 
 | 2057 |  | 
 | 2058 | 	/* | 
 | 2059 | 	 * Keep on scanning until all entries have gone.  Usually, | 
 | 2060 | 	 * one pass through swap_map is enough, but not necessarily: | 
 | 2061 | 	 * there are races when an instance of an entry might be missed. | 
 | 2062 | 	 */ | 
 | 2063 | 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { | 
 | 2064 | 		if (signal_pending(current)) { | 
 | 2065 | 			retval = -EINTR; | 
 | 2066 | 			break; | 
 | 2067 | 		} | 
 | 2068 |  | 
 | 2069 | 		/* | 
 | 2070 | 		 * Get a page for the entry, using the existing swap | 
 | 2071 | 		 * cache page if there is one.  Otherwise, get a clean | 
 | 2072 | 		 * page and read the swap into it. | 
 | 2073 | 		 */ | 
 | 2074 | 		swap_map = &si->swap_map[i]; | 
 | 2075 | 		entry = swp_entry(type, i); | 
 | 2076 | 		page = read_swap_cache_async(entry, | 
 | 2077 | 					GFP_HIGHUSER_MOVABLE, NULL, 0, false); | 
 | 2078 | 		if (!page) { | 
 | 2079 | 			/* | 
 | 2080 | 			 * Either swap_duplicate() failed because entry | 
 | 2081 | 			 * has been freed independently, and will not be | 
 | 2082 | 			 * reused since sys_swapoff() already disabled | 
 | 2083 | 			 * allocation from here, or alloc_page() failed. | 
 | 2084 | 			 */ | 
 | 2085 | 			swcount = *swap_map; | 
 | 2086 | 			/* | 
 | 2087 | 			 * We don't hold lock here, so the swap entry could be | 
 | 2088 | 			 * SWAP_MAP_BAD (when the cluster is discarding). | 
 | 2089 | 			 * Instead of fail out, We can just skip the swap | 
 | 2090 | 			 * entry because swapoff will wait for discarding | 
 | 2091 | 			 * finish anyway. | 
 | 2092 | 			 */ | 
 | 2093 | 			if (!swcount || swcount == SWAP_MAP_BAD) | 
 | 2094 | 				continue; | 
 | 2095 | 			retval = -ENOMEM; | 
 | 2096 | 			break; | 
 | 2097 | 		} | 
 | 2098 |  | 
 | 2099 | 		/* | 
 | 2100 | 		 * Don't hold on to start_mm if it looks like exiting. | 
 | 2101 | 		 */ | 
 | 2102 | 		if (atomic_read(&start_mm->mm_users) == 1) { | 
 | 2103 | 			mmput(start_mm); | 
 | 2104 | 			start_mm = &init_mm; | 
 | 2105 | 			mmget(&init_mm); | 
 | 2106 | 		} | 
 | 2107 |  | 
 | 2108 | 		/* | 
 | 2109 | 		 * Wait for and lock page.  When do_swap_page races with | 
 | 2110 | 		 * try_to_unuse, do_swap_page can handle the fault much | 
 | 2111 | 		 * faster than try_to_unuse can locate the entry.  This | 
 | 2112 | 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse | 
 | 2113 | 		 * defer to do_swap_page in such a case - in some tests, | 
 | 2114 | 		 * do_swap_page and try_to_unuse repeatedly compete. | 
 | 2115 | 		 */ | 
 | 2116 | 		wait_on_page_locked(page); | 
 | 2117 | 		wait_on_page_writeback(page); | 
 | 2118 | 		lock_page(page); | 
 | 2119 | 		wait_on_page_writeback(page); | 
 | 2120 |  | 
 | 2121 | 		/* | 
 | 2122 | 		 * Remove all references to entry. | 
 | 2123 | 		 */ | 
 | 2124 | 		swcount = *swap_map; | 
 | 2125 | 		if (swap_count(swcount) == SWAP_MAP_SHMEM) { | 
 | 2126 | 			retval = shmem_unuse(entry, page); | 
 | 2127 | 			/* page has already been unlocked and released */ | 
 | 2128 | 			if (retval < 0) | 
 | 2129 | 				break; | 
 | 2130 | 			continue; | 
 | 2131 | 		} | 
 | 2132 | 		if (swap_count(swcount) && start_mm != &init_mm) | 
 | 2133 | 			retval = unuse_mm(start_mm, entry, page); | 
 | 2134 |  | 
 | 2135 | 		if (swap_count(*swap_map)) { | 
 | 2136 | 			int set_start_mm = (*swap_map >= swcount); | 
 | 2137 | 			struct list_head *p = &start_mm->mmlist; | 
 | 2138 | 			struct mm_struct *new_start_mm = start_mm; | 
 | 2139 | 			struct mm_struct *prev_mm = start_mm; | 
 | 2140 | 			struct mm_struct *mm; | 
 | 2141 |  | 
 | 2142 | 			mmget(new_start_mm); | 
 | 2143 | 			mmget(prev_mm); | 
 | 2144 | 			spin_lock(&mmlist_lock); | 
 | 2145 | 			while (swap_count(*swap_map) && !retval && | 
 | 2146 | 					(p = p->next) != &start_mm->mmlist) { | 
 | 2147 | 				mm = list_entry(p, struct mm_struct, mmlist); | 
 | 2148 | 				if (!mmget_not_zero(mm)) | 
 | 2149 | 					continue; | 
 | 2150 | 				spin_unlock(&mmlist_lock); | 
 | 2151 | 				mmput(prev_mm); | 
 | 2152 | 				prev_mm = mm; | 
 | 2153 |  | 
 | 2154 | 				cond_resched(); | 
 | 2155 |  | 
 | 2156 | 				swcount = *swap_map; | 
 | 2157 | 				if (!swap_count(swcount)) /* any usage ? */ | 
 | 2158 | 					; | 
 | 2159 | 				else if (mm == &init_mm) | 
 | 2160 | 					set_start_mm = 1; | 
 | 2161 | 				else | 
 | 2162 | 					retval = unuse_mm(mm, entry, page); | 
 | 2163 |  | 
 | 2164 | 				if (set_start_mm && *swap_map < swcount) { | 
 | 2165 | 					mmput(new_start_mm); | 
 | 2166 | 					mmget(mm); | 
 | 2167 | 					new_start_mm = mm; | 
 | 2168 | 					set_start_mm = 0; | 
 | 2169 | 				} | 
 | 2170 | 				spin_lock(&mmlist_lock); | 
 | 2171 | 			} | 
 | 2172 | 			spin_unlock(&mmlist_lock); | 
 | 2173 | 			mmput(prev_mm); | 
 | 2174 | 			mmput(start_mm); | 
 | 2175 | 			start_mm = new_start_mm; | 
 | 2176 | 		} | 
 | 2177 | 		if (retval) { | 
 | 2178 | 			unlock_page(page); | 
 | 2179 | 			put_page(page); | 
 | 2180 | 			break; | 
 | 2181 | 		} | 
 | 2182 |  | 
 | 2183 | 		/* | 
 | 2184 | 		 * If a reference remains (rare), we would like to leave | 
 | 2185 | 		 * the page in the swap cache; but try_to_unmap could | 
 | 2186 | 		 * then re-duplicate the entry once we drop page lock, | 
 | 2187 | 		 * so we might loop indefinitely; also, that page could | 
 | 2188 | 		 * not be swapped out to other storage meanwhile.  So: | 
 | 2189 | 		 * delete from cache even if there's another reference, | 
 | 2190 | 		 * after ensuring that the data has been saved to disk - | 
 | 2191 | 		 * since if the reference remains (rarer), it will be | 
 | 2192 | 		 * read from disk into another page.  Splitting into two | 
 | 2193 | 		 * pages would be incorrect if swap supported "shared | 
 | 2194 | 		 * private" pages, but they are handled by tmpfs files. | 
 | 2195 | 		 * | 
 | 2196 | 		 * Given how unuse_vma() targets one particular offset | 
 | 2197 | 		 * in an anon_vma, once the anon_vma has been determined, | 
 | 2198 | 		 * this splitting happens to be just what is needed to | 
 | 2199 | 		 * handle where KSM pages have been swapped out: re-reading | 
 | 2200 | 		 * is unnecessarily slow, but we can fix that later on. | 
 | 2201 | 		 */ | 
 | 2202 | 		if (swap_count(*swap_map) && | 
 | 2203 | 		     PageDirty(page) && PageSwapCache(page)) { | 
 | 2204 | 			struct writeback_control wbc = { | 
 | 2205 | 				.sync_mode = WB_SYNC_NONE, | 
 | 2206 | 			}; | 
 | 2207 |  | 
 | 2208 | 			swap_writepage(compound_head(page), &wbc); | 
 | 2209 | 			lock_page(page); | 
 | 2210 | 			wait_on_page_writeback(page); | 
 | 2211 | 		} | 
 | 2212 |  | 
 | 2213 | 		/* | 
 | 2214 | 		 * It is conceivable that a racing task removed this page from | 
 | 2215 | 		 * swap cache just before we acquired the page lock at the top, | 
 | 2216 | 		 * or while we dropped it in unuse_mm().  The page might even | 
 | 2217 | 		 * be back in swap cache on another swap area: that we must not | 
 | 2218 | 		 * delete, since it may not have been written out to swap yet. | 
 | 2219 | 		 */ | 
 | 2220 | 		if (PageSwapCache(page) && | 
 | 2221 | 		    likely(page_private(page) == entry.val) && | 
 | 2222 | 		    (!PageTransCompound(page) || | 
 | 2223 | 		     !swap_page_trans_huge_swapped(si, entry))) | 
 | 2224 | 			delete_from_swap_cache(compound_head(page)); | 
 | 2225 |  | 
 | 2226 | 		/* | 
 | 2227 | 		 * So we could skip searching mms once swap count went | 
 | 2228 | 		 * to 1, we did not mark any present ptes as dirty: must | 
 | 2229 | 		 * mark page dirty so shrink_page_list will preserve it. | 
 | 2230 | 		 */ | 
 | 2231 | 		SetPageDirty(page); | 
 | 2232 | 		unlock_page(page); | 
 | 2233 | 		put_page(page); | 
 | 2234 |  | 
 | 2235 | 		/* | 
 | 2236 | 		 * Make sure that we aren't completely killing | 
 | 2237 | 		 * interactive performance. | 
 | 2238 | 		 */ | 
 | 2239 | 		cond_resched(); | 
 | 2240 | 		if (frontswap && pages_to_unuse > 0) { | 
 | 2241 | 			if (!--pages_to_unuse) | 
 | 2242 | 				break; | 
 | 2243 | 		} | 
 | 2244 | 	} | 
 | 2245 |  | 
 | 2246 | 	mmput(start_mm); | 
 | 2247 | 	return retval; | 
 | 2248 | } | 
 | 2249 |  | 
 | 2250 | /* | 
 | 2251 |  * After a successful try_to_unuse, if no swap is now in use, we know | 
 | 2252 |  * we can empty the mmlist.  swap_lock must be held on entry and exit. | 
 | 2253 |  * Note that mmlist_lock nests inside swap_lock, and an mm must be | 
 | 2254 |  * added to the mmlist just after page_duplicate - before would be racy. | 
 | 2255 |  */ | 
 | 2256 | static void drain_mmlist(void) | 
 | 2257 | { | 
 | 2258 | 	struct list_head *p, *next; | 
 | 2259 | 	unsigned int type; | 
 | 2260 |  | 
 | 2261 | 	for (type = 0; type < nr_swapfiles; type++) | 
 | 2262 | 		if (swap_info[type]->inuse_pages) | 
 | 2263 | 			return; | 
 | 2264 | 	spin_lock(&mmlist_lock); | 
 | 2265 | 	list_for_each_safe(p, next, &init_mm.mmlist) | 
 | 2266 | 		list_del_init(p); | 
 | 2267 | 	spin_unlock(&mmlist_lock); | 
 | 2268 | } | 
 | 2269 |  | 
 | 2270 | /* | 
 | 2271 |  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which | 
 | 2272 |  * corresponds to page offset for the specified swap entry. | 
 | 2273 |  * Note that the type of this function is sector_t, but it returns page offset | 
 | 2274 |  * into the bdev, not sector offset. | 
 | 2275 |  */ | 
 | 2276 | static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) | 
 | 2277 | { | 
 | 2278 | 	struct swap_info_struct *sis; | 
 | 2279 | 	struct swap_extent *start_se; | 
 | 2280 | 	struct swap_extent *se; | 
 | 2281 | 	pgoff_t offset; | 
 | 2282 |  | 
 | 2283 | 	sis = swp_swap_info(entry); | 
 | 2284 | 	*bdev = sis->bdev; | 
 | 2285 |  | 
 | 2286 | 	offset = swp_offset(entry); | 
 | 2287 | 	start_se = sis->curr_swap_extent; | 
 | 2288 | 	se = start_se; | 
 | 2289 |  | 
 | 2290 | 	for ( ; ; ) { | 
 | 2291 | 		if (se->start_page <= offset && | 
 | 2292 | 				offset < (se->start_page + se->nr_pages)) { | 
 | 2293 | 			return se->start_block + (offset - se->start_page); | 
 | 2294 | 		} | 
 | 2295 | 		se = list_next_entry(se, list); | 
 | 2296 | 		sis->curr_swap_extent = se; | 
 | 2297 | 		BUG_ON(se == start_se);		/* It *must* be present */ | 
 | 2298 | 	} | 
 | 2299 | } | 
 | 2300 |  | 
 | 2301 | /* | 
 | 2302 |  * Returns the page offset into bdev for the specified page's swap entry. | 
 | 2303 |  */ | 
 | 2304 | sector_t map_swap_page(struct page *page, struct block_device **bdev) | 
 | 2305 | { | 
 | 2306 | 	swp_entry_t entry; | 
 | 2307 | 	entry.val = page_private(page); | 
 | 2308 | 	return map_swap_entry(entry, bdev); | 
 | 2309 | } | 
 | 2310 |  | 
 | 2311 | /* | 
 | 2312 |  * Free all of a swapdev's extent information | 
 | 2313 |  */ | 
 | 2314 | static void destroy_swap_extents(struct swap_info_struct *sis) | 
 | 2315 | { | 
 | 2316 | 	while (!list_empty(&sis->first_swap_extent.list)) { | 
 | 2317 | 		struct swap_extent *se; | 
 | 2318 |  | 
 | 2319 | 		se = list_first_entry(&sis->first_swap_extent.list, | 
 | 2320 | 				struct swap_extent, list); | 
 | 2321 | 		list_del(&se->list); | 
 | 2322 | 		kfree(se); | 
 | 2323 | 	} | 
 | 2324 |  | 
 | 2325 | 	if (sis->flags & SWP_FILE) { | 
 | 2326 | 		struct file *swap_file = sis->swap_file; | 
 | 2327 | 		struct address_space *mapping = swap_file->f_mapping; | 
 | 2328 |  | 
 | 2329 | 		sis->flags &= ~SWP_FILE; | 
 | 2330 | 		mapping->a_ops->swap_deactivate(swap_file); | 
 | 2331 | 	} | 
 | 2332 | } | 
 | 2333 |  | 
 | 2334 | /* | 
 | 2335 |  * Add a block range (and the corresponding page range) into this swapdev's | 
 | 2336 |  * extent list.  The extent list is kept sorted in page order. | 
 | 2337 |  * | 
 | 2338 |  * This function rather assumes that it is called in ascending page order. | 
 | 2339 |  */ | 
 | 2340 | int | 
 | 2341 | add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, | 
 | 2342 | 		unsigned long nr_pages, sector_t start_block) | 
 | 2343 | { | 
 | 2344 | 	struct swap_extent *se; | 
 | 2345 | 	struct swap_extent *new_se; | 
 | 2346 | 	struct list_head *lh; | 
 | 2347 |  | 
 | 2348 | 	if (start_page == 0) { | 
 | 2349 | 		se = &sis->first_swap_extent; | 
 | 2350 | 		sis->curr_swap_extent = se; | 
 | 2351 | 		se->start_page = 0; | 
 | 2352 | 		se->nr_pages = nr_pages; | 
 | 2353 | 		se->start_block = start_block; | 
 | 2354 | 		return 1; | 
 | 2355 | 	} else { | 
 | 2356 | 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */ | 
 | 2357 | 		se = list_entry(lh, struct swap_extent, list); | 
 | 2358 | 		BUG_ON(se->start_page + se->nr_pages != start_page); | 
 | 2359 | 		if (se->start_block + se->nr_pages == start_block) { | 
 | 2360 | 			/* Merge it */ | 
 | 2361 | 			se->nr_pages += nr_pages; | 
 | 2362 | 			return 0; | 
 | 2363 | 		} | 
 | 2364 | 	} | 
 | 2365 |  | 
 | 2366 | 	/* | 
 | 2367 | 	 * No merge.  Insert a new extent, preserving ordering. | 
 | 2368 | 	 */ | 
 | 2369 | 	new_se = kmalloc(sizeof(*se), GFP_KERNEL); | 
 | 2370 | 	if (new_se == NULL) | 
 | 2371 | 		return -ENOMEM; | 
 | 2372 | 	new_se->start_page = start_page; | 
 | 2373 | 	new_se->nr_pages = nr_pages; | 
 | 2374 | 	new_se->start_block = start_block; | 
 | 2375 |  | 
 | 2376 | 	list_add_tail(&new_se->list, &sis->first_swap_extent.list); | 
 | 2377 | 	return 1; | 
 | 2378 | } | 
 | 2379 |  | 
 | 2380 | /* | 
 | 2381 |  * A `swap extent' is a simple thing which maps a contiguous range of pages | 
 | 2382 |  * onto a contiguous range of disk blocks.  An ordered list of swap extents | 
 | 2383 |  * is built at swapon time and is then used at swap_writepage/swap_readpage | 
 | 2384 |  * time for locating where on disk a page belongs. | 
 | 2385 |  * | 
 | 2386 |  * If the swapfile is an S_ISBLK block device, a single extent is installed. | 
 | 2387 |  * This is done so that the main operating code can treat S_ISBLK and S_ISREG | 
 | 2388 |  * swap files identically. | 
 | 2389 |  * | 
 | 2390 |  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap | 
 | 2391 |  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK | 
 | 2392 |  * swapfiles are handled *identically* after swapon time. | 
 | 2393 |  * | 
 | 2394 |  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks | 
 | 2395 |  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If | 
 | 2396 |  * some stray blocks are found which do not fall within the PAGE_SIZE alignment | 
 | 2397 |  * requirements, they are simply tossed out - we will never use those blocks | 
 | 2398 |  * for swapping. | 
 | 2399 |  * | 
 | 2400 |  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This | 
 | 2401 |  * prevents users from writing to the swap device, which will corrupt memory. | 
 | 2402 |  * | 
 | 2403 |  * The amount of disk space which a single swap extent represents varies. | 
 | 2404 |  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of | 
 | 2405 |  * extents in the list.  To avoid much list walking, we cache the previous | 
 | 2406 |  * search location in `curr_swap_extent', and start new searches from there. | 
 | 2407 |  * This is extremely effective.  The average number of iterations in | 
 | 2408 |  * map_swap_page() has been measured at about 0.3 per page.  - akpm. | 
 | 2409 |  */ | 
 | 2410 | static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) | 
 | 2411 | { | 
 | 2412 | 	struct file *swap_file = sis->swap_file; | 
 | 2413 | 	struct address_space *mapping = swap_file->f_mapping; | 
 | 2414 | 	struct inode *inode = mapping->host; | 
 | 2415 | 	int ret; | 
 | 2416 |  | 
 | 2417 | 	if (S_ISBLK(inode->i_mode)) { | 
 | 2418 | 		ret = add_swap_extent(sis, 0, sis->max, 0); | 
 | 2419 | 		*span = sis->pages; | 
 | 2420 | 		return ret; | 
 | 2421 | 	} | 
 | 2422 |  | 
 | 2423 | 	if (mapping->a_ops->swap_activate) { | 
 | 2424 | 		ret = mapping->a_ops->swap_activate(sis, swap_file, span); | 
 | 2425 | 		if (!ret) { | 
 | 2426 | 			sis->flags |= SWP_FILE; | 
 | 2427 | 			ret = add_swap_extent(sis, 0, sis->max, 0); | 
 | 2428 | 			*span = sis->pages; | 
 | 2429 | 		} | 
 | 2430 | 		return ret; | 
 | 2431 | 	} | 
 | 2432 |  | 
 | 2433 | 	return generic_swapfile_activate(sis, swap_file, span); | 
 | 2434 | } | 
 | 2435 |  | 
 | 2436 | static int swap_node(struct swap_info_struct *p) | 
 | 2437 | { | 
 | 2438 | 	struct block_device *bdev; | 
 | 2439 |  | 
 | 2440 | 	if (p->bdev) | 
 | 2441 | 		bdev = p->bdev; | 
 | 2442 | 	else | 
 | 2443 | 		bdev = p->swap_file->f_inode->i_sb->s_bdev; | 
 | 2444 |  | 
 | 2445 | 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; | 
 | 2446 | } | 
 | 2447 |  | 
 | 2448 | static void _enable_swap_info(struct swap_info_struct *p, int prio, | 
 | 2449 | 				unsigned char *swap_map, | 
 | 2450 | 				struct swap_cluster_info *cluster_info) | 
 | 2451 | { | 
 | 2452 | 	int i; | 
 | 2453 |  | 
 | 2454 | 	if (prio >= 0) | 
 | 2455 | 		p->prio = prio; | 
 | 2456 | 	else | 
 | 2457 | 		p->prio = --least_priority; | 
 | 2458 | 	/* | 
 | 2459 | 	 * the plist prio is negated because plist ordering is | 
 | 2460 | 	 * low-to-high, while swap ordering is high-to-low | 
 | 2461 | 	 */ | 
 | 2462 | 	p->list.prio = -p->prio; | 
 | 2463 | 	for_each_node(i) { | 
 | 2464 | 		if (p->prio >= 0) | 
 | 2465 | 			p->avail_lists[i].prio = -p->prio; | 
 | 2466 | 		else { | 
 | 2467 | 			if (swap_node(p) == i) | 
 | 2468 | 				p->avail_lists[i].prio = 1; | 
 | 2469 | 			else | 
 | 2470 | 				p->avail_lists[i].prio = -p->prio; | 
 | 2471 | 		} | 
 | 2472 | 	} | 
 | 2473 | 	p->swap_map = swap_map; | 
 | 2474 | 	p->cluster_info = cluster_info; | 
 | 2475 | 	p->flags |= SWP_WRITEOK; | 
 | 2476 | 	atomic_long_add(p->pages, &nr_swap_pages); | 
 | 2477 | 	total_swap_pages += p->pages; | 
 | 2478 |  | 
 | 2479 | 	assert_spin_locked(&swap_lock); | 
 | 2480 | 	/* | 
 | 2481 | 	 * both lists are plists, and thus priority ordered. | 
 | 2482 | 	 * swap_active_head needs to be priority ordered for swapoff(), | 
 | 2483 | 	 * which on removal of any swap_info_struct with an auto-assigned | 
 | 2484 | 	 * (i.e. negative) priority increments the auto-assigned priority | 
 | 2485 | 	 * of any lower-priority swap_info_structs. | 
 | 2486 | 	 * swap_avail_head needs to be priority ordered for get_swap_page(), | 
 | 2487 | 	 * which allocates swap pages from the highest available priority | 
 | 2488 | 	 * swap_info_struct. | 
 | 2489 | 	 */ | 
 | 2490 | 	plist_add(&p->list, &swap_active_head); | 
 | 2491 | 	add_to_avail_list(p); | 
 | 2492 | } | 
 | 2493 |  | 
 | 2494 | static void enable_swap_info(struct swap_info_struct *p, int prio, | 
 | 2495 | 				unsigned char *swap_map, | 
 | 2496 | 				struct swap_cluster_info *cluster_info, | 
 | 2497 | 				unsigned long *frontswap_map) | 
 | 2498 | { | 
 | 2499 | 	frontswap_init(p->type, frontswap_map); | 
 | 2500 | 	spin_lock(&swap_lock); | 
 | 2501 | 	spin_lock(&p->lock); | 
 | 2502 | 	 _enable_swap_info(p, prio, swap_map, cluster_info); | 
 | 2503 | 	spin_unlock(&p->lock); | 
 | 2504 | 	spin_unlock(&swap_lock); | 
 | 2505 | } | 
 | 2506 |  | 
 | 2507 | static void reinsert_swap_info(struct swap_info_struct *p) | 
 | 2508 | { | 
 | 2509 | 	spin_lock(&swap_lock); | 
 | 2510 | 	spin_lock(&p->lock); | 
 | 2511 | 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); | 
 | 2512 | 	spin_unlock(&p->lock); | 
 | 2513 | 	spin_unlock(&swap_lock); | 
 | 2514 | } | 
 | 2515 |  | 
 | 2516 | bool has_usable_swap(void) | 
 | 2517 | { | 
 | 2518 | 	bool ret = true; | 
 | 2519 |  | 
 | 2520 | 	spin_lock(&swap_lock); | 
 | 2521 | 	if (plist_head_empty(&swap_active_head)) | 
 | 2522 | 		ret = false; | 
 | 2523 | 	spin_unlock(&swap_lock); | 
 | 2524 | 	return ret; | 
 | 2525 | } | 
 | 2526 |  | 
 | 2527 | SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) | 
 | 2528 | { | 
 | 2529 | 	struct swap_info_struct *p = NULL; | 
 | 2530 | 	unsigned char *swap_map; | 
 | 2531 | 	struct swap_cluster_info *cluster_info; | 
 | 2532 | 	unsigned long *frontswap_map; | 
 | 2533 | 	struct file *swap_file, *victim; | 
 | 2534 | 	struct address_space *mapping; | 
 | 2535 | 	struct inode *inode; | 
 | 2536 | 	struct filename *pathname; | 
 | 2537 | 	int err, found = 0; | 
 | 2538 | 	unsigned int old_block_size; | 
 | 2539 |  | 
 | 2540 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 2541 | 		return -EPERM; | 
 | 2542 |  | 
 | 2543 | 	BUG_ON(!current->mm); | 
 | 2544 |  | 
 | 2545 | 	pathname = getname(specialfile); | 
 | 2546 | 	if (IS_ERR(pathname)) | 
 | 2547 | 		return PTR_ERR(pathname); | 
 | 2548 |  | 
 | 2549 | 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); | 
 | 2550 | 	err = PTR_ERR(victim); | 
 | 2551 | 	if (IS_ERR(victim)) | 
 | 2552 | 		goto out; | 
 | 2553 |  | 
 | 2554 | 	mapping = victim->f_mapping; | 
 | 2555 | 	spin_lock(&swap_lock); | 
 | 2556 | 	plist_for_each_entry(p, &swap_active_head, list) { | 
 | 2557 | 		if (p->flags & SWP_WRITEOK) { | 
 | 2558 | 			if (p->swap_file->f_mapping == mapping) { | 
 | 2559 | 				found = 1; | 
 | 2560 | 				break; | 
 | 2561 | 			} | 
 | 2562 | 		} | 
 | 2563 | 	} | 
 | 2564 | 	if (!found) { | 
 | 2565 | 		err = -EINVAL; | 
 | 2566 | 		spin_unlock(&swap_lock); | 
 | 2567 | 		goto out_dput; | 
 | 2568 | 	} | 
 | 2569 | 	if (!security_vm_enough_memory_mm(current->mm, p->pages)) | 
 | 2570 | 		vm_unacct_memory(p->pages); | 
 | 2571 | 	else { | 
 | 2572 | 		err = -ENOMEM; | 
 | 2573 | 		spin_unlock(&swap_lock); | 
 | 2574 | 		goto out_dput; | 
 | 2575 | 	} | 
 | 2576 | 	del_from_avail_list(p); | 
 | 2577 | 	spin_lock(&p->lock); | 
 | 2578 | 	if (p->prio < 0) { | 
 | 2579 | 		struct swap_info_struct *si = p; | 
 | 2580 | 		int nid; | 
 | 2581 |  | 
 | 2582 | 		plist_for_each_entry_continue(si, &swap_active_head, list) { | 
 | 2583 | 			si->prio++; | 
 | 2584 | 			si->list.prio--; | 
 | 2585 | 			for_each_node(nid) { | 
 | 2586 | 				if (si->avail_lists[nid].prio != 1) | 
 | 2587 | 					si->avail_lists[nid].prio--; | 
 | 2588 | 			} | 
 | 2589 | 		} | 
 | 2590 | 		least_priority++; | 
 | 2591 | 	} | 
 | 2592 | 	plist_del(&p->list, &swap_active_head); | 
 | 2593 | 	atomic_long_sub(p->pages, &nr_swap_pages); | 
 | 2594 | 	total_swap_pages -= p->pages; | 
 | 2595 | 	p->flags &= ~SWP_WRITEOK; | 
 | 2596 | 	spin_unlock(&p->lock); | 
 | 2597 | 	spin_unlock(&swap_lock); | 
 | 2598 |  | 
 | 2599 | 	disable_swap_slots_cache_lock(); | 
 | 2600 |  | 
 | 2601 | 	set_current_oom_origin(); | 
 | 2602 | 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ | 
 | 2603 | 	clear_current_oom_origin(); | 
 | 2604 |  | 
 | 2605 | 	if (err) { | 
 | 2606 | 		/* re-insert swap space back into swap_list */ | 
 | 2607 | 		reinsert_swap_info(p); | 
 | 2608 | 		reenable_swap_slots_cache_unlock(); | 
 | 2609 | 		goto out_dput; | 
 | 2610 | 	} | 
 | 2611 |  | 
 | 2612 | 	reenable_swap_slots_cache_unlock(); | 
 | 2613 |  | 
 | 2614 | 	flush_work(&p->discard_work); | 
 | 2615 |  | 
 | 2616 | 	destroy_swap_extents(p); | 
 | 2617 | 	if (p->flags & SWP_CONTINUED) | 
 | 2618 | 		free_swap_count_continuations(p); | 
 | 2619 |  | 
 | 2620 | 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) | 
 | 2621 | 		atomic_dec(&nr_rotate_swap); | 
 | 2622 |  | 
 | 2623 | 	mutex_lock(&swapon_mutex); | 
 | 2624 | 	spin_lock(&swap_lock); | 
 | 2625 | 	spin_lock(&p->lock); | 
 | 2626 | 	drain_mmlist(); | 
 | 2627 |  | 
 | 2628 | 	/* wait for anyone still in scan_swap_map */ | 
 | 2629 | 	p->highest_bit = 0;		/* cuts scans short */ | 
 | 2630 | 	while (p->flags >= SWP_SCANNING) { | 
 | 2631 | 		spin_unlock(&p->lock); | 
 | 2632 | 		spin_unlock(&swap_lock); | 
 | 2633 | 		schedule_timeout_uninterruptible(1); | 
 | 2634 | 		spin_lock(&swap_lock); | 
 | 2635 | 		spin_lock(&p->lock); | 
 | 2636 | 	} | 
 | 2637 |  | 
 | 2638 | 	swap_file = p->swap_file; | 
 | 2639 | 	old_block_size = p->old_block_size; | 
 | 2640 | 	p->swap_file = NULL; | 
 | 2641 | 	p->max = 0; | 
 | 2642 | 	swap_map = p->swap_map; | 
 | 2643 | 	p->swap_map = NULL; | 
 | 2644 | 	cluster_info = p->cluster_info; | 
 | 2645 | 	p->cluster_info = NULL; | 
 | 2646 | 	frontswap_map = frontswap_map_get(p); | 
 | 2647 | 	spin_unlock(&p->lock); | 
 | 2648 | 	spin_unlock(&swap_lock); | 
 | 2649 | 	frontswap_invalidate_area(p->type); | 
 | 2650 | 	frontswap_map_set(p, NULL); | 
 | 2651 | 	mutex_unlock(&swapon_mutex); | 
 | 2652 | 	free_percpu(p->percpu_cluster); | 
 | 2653 | 	p->percpu_cluster = NULL; | 
 | 2654 | 	vfree(swap_map); | 
 | 2655 | 	kvfree(cluster_info); | 
 | 2656 | 	kvfree(frontswap_map); | 
 | 2657 | 	/* Destroy swap account information */ | 
 | 2658 | 	swap_cgroup_swapoff(p->type); | 
 | 2659 | 	exit_swap_address_space(p->type); | 
 | 2660 |  | 
 | 2661 | 	inode = mapping->host; | 
 | 2662 | 	if (S_ISBLK(inode->i_mode)) { | 
 | 2663 | 		struct block_device *bdev = I_BDEV(inode); | 
 | 2664 |  | 
 | 2665 | 		set_blocksize(bdev, old_block_size); | 
 | 2666 | 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); | 
 | 2667 | 	} | 
 | 2668 |  | 
 | 2669 | 	inode_lock(inode); | 
 | 2670 | 	inode->i_flags &= ~S_SWAPFILE; | 
 | 2671 | 	inode_unlock(inode); | 
 | 2672 | 	filp_close(swap_file, NULL); | 
 | 2673 |  | 
 | 2674 | 	/* | 
 | 2675 | 	 * Clear the SWP_USED flag after all resources are freed so that swapon | 
 | 2676 | 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to | 
 | 2677 | 	 * not hold p->lock after we cleared its SWP_WRITEOK. | 
 | 2678 | 	 */ | 
 | 2679 | 	spin_lock(&swap_lock); | 
 | 2680 | 	p->flags = 0; | 
 | 2681 | 	spin_unlock(&swap_lock); | 
 | 2682 |  | 
 | 2683 | 	err = 0; | 
 | 2684 | 	atomic_inc(&proc_poll_event); | 
 | 2685 | 	wake_up_interruptible(&proc_poll_wait); | 
 | 2686 |  | 
 | 2687 | out_dput: | 
 | 2688 | 	filp_close(victim, NULL); | 
 | 2689 | out: | 
 | 2690 | 	putname(pathname); | 
 | 2691 | 	return err; | 
 | 2692 | } | 
 | 2693 |  | 
 | 2694 | #ifdef CONFIG_PROC_FS | 
 | 2695 | static __poll_t swaps_poll(struct file *file, poll_table *wait) | 
 | 2696 | { | 
 | 2697 | 	struct seq_file *seq = file->private_data; | 
 | 2698 |  | 
 | 2699 | 	poll_wait(file, &proc_poll_wait, wait); | 
 | 2700 |  | 
 | 2701 | 	if (seq->poll_event != atomic_read(&proc_poll_event)) { | 
 | 2702 | 		seq->poll_event = atomic_read(&proc_poll_event); | 
 | 2703 | 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; | 
 | 2704 | 	} | 
 | 2705 |  | 
 | 2706 | 	return EPOLLIN | EPOLLRDNORM; | 
 | 2707 | } | 
 | 2708 |  | 
 | 2709 | /* iterator */ | 
 | 2710 | static void *swap_start(struct seq_file *swap, loff_t *pos) | 
 | 2711 | { | 
 | 2712 | 	struct swap_info_struct *si; | 
 | 2713 | 	int type; | 
 | 2714 | 	loff_t l = *pos; | 
 | 2715 |  | 
 | 2716 | 	mutex_lock(&swapon_mutex); | 
 | 2717 |  | 
 | 2718 | 	if (!l) | 
 | 2719 | 		return SEQ_START_TOKEN; | 
 | 2720 |  | 
 | 2721 | 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) { | 
 | 2722 | 		if (!(si->flags & SWP_USED) || !si->swap_map) | 
 | 2723 | 			continue; | 
 | 2724 | 		if (!--l) | 
 | 2725 | 			return si; | 
 | 2726 | 	} | 
 | 2727 |  | 
 | 2728 | 	return NULL; | 
 | 2729 | } | 
 | 2730 |  | 
 | 2731 | static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) | 
 | 2732 | { | 
 | 2733 | 	struct swap_info_struct *si = v; | 
 | 2734 | 	int type; | 
 | 2735 |  | 
 | 2736 | 	if (v == SEQ_START_TOKEN) | 
 | 2737 | 		type = 0; | 
 | 2738 | 	else | 
 | 2739 | 		type = si->type + 1; | 
 | 2740 |  | 
 | 2741 | 	for (; (si = swap_type_to_swap_info(type)); type++) { | 
 | 2742 | 		if (!(si->flags & SWP_USED) || !si->swap_map) | 
 | 2743 | 			continue; | 
 | 2744 | 		++*pos; | 
 | 2745 | 		return si; | 
 | 2746 | 	} | 
 | 2747 |  | 
 | 2748 | 	return NULL; | 
 | 2749 | } | 
 | 2750 |  | 
 | 2751 | static void swap_stop(struct seq_file *swap, void *v) | 
 | 2752 | { | 
 | 2753 | 	mutex_unlock(&swapon_mutex); | 
 | 2754 | } | 
 | 2755 |  | 
 | 2756 | static int swap_show(struct seq_file *swap, void *v) | 
 | 2757 | { | 
 | 2758 | 	struct swap_info_struct *si = v; | 
 | 2759 | 	struct file *file; | 
 | 2760 | 	int len; | 
 | 2761 |  | 
 | 2762 | 	if (si == SEQ_START_TOKEN) { | 
 | 2763 | 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); | 
 | 2764 | 		return 0; | 
 | 2765 | 	} | 
 | 2766 |  | 
 | 2767 | 	file = si->swap_file; | 
 | 2768 | 	len = seq_file_path(swap, file, " \t\n\\"); | 
 | 2769 | 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", | 
 | 2770 | 			len < 40 ? 40 - len : 1, " ", | 
 | 2771 | 			S_ISBLK(file_inode(file)->i_mode) ? | 
 | 2772 | 				"partition" : "file\t", | 
 | 2773 | 			si->pages << (PAGE_SHIFT - 10), | 
 | 2774 | 			si->inuse_pages << (PAGE_SHIFT - 10), | 
 | 2775 | 			si->prio); | 
 | 2776 | 	return 0; | 
 | 2777 | } | 
 | 2778 |  | 
 | 2779 | static const struct seq_operations swaps_op = { | 
 | 2780 | 	.start =	swap_start, | 
 | 2781 | 	.next =		swap_next, | 
 | 2782 | 	.stop =		swap_stop, | 
 | 2783 | 	.show =		swap_show | 
 | 2784 | }; | 
 | 2785 |  | 
 | 2786 | static int swaps_open(struct inode *inode, struct file *file) | 
 | 2787 | { | 
 | 2788 | 	struct seq_file *seq; | 
 | 2789 | 	int ret; | 
 | 2790 |  | 
 | 2791 | 	ret = seq_open(file, &swaps_op); | 
 | 2792 | 	if (ret) | 
 | 2793 | 		return ret; | 
 | 2794 |  | 
 | 2795 | 	seq = file->private_data; | 
 | 2796 | 	seq->poll_event = atomic_read(&proc_poll_event); | 
 | 2797 | 	return 0; | 
 | 2798 | } | 
 | 2799 |  | 
 | 2800 | static const struct file_operations proc_swaps_operations = { | 
 | 2801 | 	.open		= swaps_open, | 
 | 2802 | 	.read		= seq_read, | 
 | 2803 | 	.llseek		= seq_lseek, | 
 | 2804 | 	.release	= seq_release, | 
 | 2805 | 	.poll		= swaps_poll, | 
 | 2806 | }; | 
 | 2807 |  | 
 | 2808 | static int __init procswaps_init(void) | 
 | 2809 | { | 
 | 2810 | 	proc_create("swaps", 0, NULL, &proc_swaps_operations); | 
 | 2811 | 	return 0; | 
 | 2812 | } | 
 | 2813 | __initcall(procswaps_init); | 
 | 2814 | #endif /* CONFIG_PROC_FS */ | 
 | 2815 |  | 
 | 2816 | #ifdef MAX_SWAPFILES_CHECK | 
 | 2817 | static int __init max_swapfiles_check(void) | 
 | 2818 | { | 
 | 2819 | 	MAX_SWAPFILES_CHECK(); | 
 | 2820 | 	return 0; | 
 | 2821 | } | 
 | 2822 | late_initcall(max_swapfiles_check); | 
 | 2823 | #endif | 
 | 2824 |  | 
 | 2825 | static struct swap_info_struct *alloc_swap_info(void) | 
 | 2826 | { | 
 | 2827 | 	struct swap_info_struct *p; | 
 | 2828 | 	unsigned int type; | 
 | 2829 | 	int i; | 
 | 2830 | 	int size = sizeof(*p) + nr_node_ids * sizeof(struct plist_node); | 
 | 2831 |  | 
 | 2832 | 	p = kvzalloc(size, GFP_KERNEL); | 
 | 2833 | 	if (!p) | 
 | 2834 | 		return ERR_PTR(-ENOMEM); | 
 | 2835 |  | 
 | 2836 | 	spin_lock(&swap_lock); | 
 | 2837 | 	for (type = 0; type < nr_swapfiles; type++) { | 
 | 2838 | 		if (!(swap_info[type]->flags & SWP_USED)) | 
 | 2839 | 			break; | 
 | 2840 | 	} | 
 | 2841 | 	if (type >= MAX_SWAPFILES) { | 
 | 2842 | 		spin_unlock(&swap_lock); | 
 | 2843 | 		kvfree(p); | 
 | 2844 | 		return ERR_PTR(-EPERM); | 
 | 2845 | 	} | 
 | 2846 | 	if (type >= nr_swapfiles) { | 
 | 2847 | 		p->type = type; | 
 | 2848 | 		WRITE_ONCE(swap_info[type], p); | 
 | 2849 | 		/* | 
 | 2850 | 		 * Write swap_info[type] before nr_swapfiles, in case a | 
 | 2851 | 		 * racing procfs swap_start() or swap_next() is reading them. | 
 | 2852 | 		 * (We never shrink nr_swapfiles, we never free this entry.) | 
 | 2853 | 		 */ | 
 | 2854 | 		smp_wmb(); | 
 | 2855 | 		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1); | 
 | 2856 | 	} else { | 
 | 2857 | 		kvfree(p); | 
 | 2858 | 		p = swap_info[type]; | 
 | 2859 | 		/* | 
 | 2860 | 		 * Do not memset this entry: a racing procfs swap_next() | 
 | 2861 | 		 * would be relying on p->type to remain valid. | 
 | 2862 | 		 */ | 
 | 2863 | 	} | 
 | 2864 | 	INIT_LIST_HEAD(&p->first_swap_extent.list); | 
 | 2865 | 	plist_node_init(&p->list, 0); | 
 | 2866 | 	for_each_node(i) | 
 | 2867 | 		plist_node_init(&p->avail_lists[i], 0); | 
 | 2868 | 	p->flags = SWP_USED; | 
 | 2869 | 	spin_unlock(&swap_lock); | 
 | 2870 | 	spin_lock_init(&p->lock); | 
 | 2871 | 	spin_lock_init(&p->cont_lock); | 
 | 2872 |  | 
 | 2873 | 	return p; | 
 | 2874 | } | 
 | 2875 |  | 
 | 2876 | static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) | 
 | 2877 | { | 
 | 2878 | 	int error; | 
 | 2879 |  | 
 | 2880 | 	if (S_ISBLK(inode->i_mode)) { | 
 | 2881 | 		p->bdev = bdgrab(I_BDEV(inode)); | 
 | 2882 | 		error = blkdev_get(p->bdev, | 
 | 2883 | 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); | 
 | 2884 | 		if (error < 0) { | 
 | 2885 | 			p->bdev = NULL; | 
 | 2886 | 			return error; | 
 | 2887 | 		} | 
 | 2888 | 		p->old_block_size = block_size(p->bdev); | 
 | 2889 | 		error = set_blocksize(p->bdev, PAGE_SIZE); | 
 | 2890 | 		if (error < 0) | 
 | 2891 | 			return error; | 
 | 2892 | 		p->flags |= SWP_BLKDEV; | 
 | 2893 | 	} else if (S_ISREG(inode->i_mode)) { | 
 | 2894 | 		p->bdev = inode->i_sb->s_bdev; | 
 | 2895 | 	} | 
 | 2896 |  | 
 | 2897 | 	inode_lock(inode); | 
 | 2898 | 	if (IS_SWAPFILE(inode)) | 
 | 2899 | 		return -EBUSY; | 
 | 2900 |  | 
 | 2901 | 	return 0; | 
 | 2902 | } | 
 | 2903 |  | 
 | 2904 |  | 
 | 2905 | /* | 
 | 2906 |  * Find out how many pages are allowed for a single swap device. There | 
 | 2907 |  * are two limiting factors: | 
 | 2908 |  * 1) the number of bits for the swap offset in the swp_entry_t type, and | 
 | 2909 |  * 2) the number of bits in the swap pte, as defined by the different | 
 | 2910 |  * architectures. | 
 | 2911 |  * | 
 | 2912 |  * In order to find the largest possible bit mask, a swap entry with | 
 | 2913 |  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, | 
 | 2914 |  * decoded to a swp_entry_t again, and finally the swap offset is | 
 | 2915 |  * extracted. | 
 | 2916 |  * | 
 | 2917 |  * This will mask all the bits from the initial ~0UL mask that can't | 
 | 2918 |  * be encoded in either the swp_entry_t or the architecture definition | 
 | 2919 |  * of a swap pte. | 
 | 2920 |  */ | 
 | 2921 | unsigned long generic_max_swapfile_size(void) | 
 | 2922 | { | 
 | 2923 | 	return swp_offset(pte_to_swp_entry( | 
 | 2924 | 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; | 
 | 2925 | } | 
 | 2926 |  | 
 | 2927 | /* Can be overridden by an architecture for additional checks. */ | 
 | 2928 | __weak unsigned long max_swapfile_size(void) | 
 | 2929 | { | 
 | 2930 | 	return generic_max_swapfile_size(); | 
 | 2931 | } | 
 | 2932 |  | 
 | 2933 | static unsigned long read_swap_header(struct swap_info_struct *p, | 
 | 2934 | 					union swap_header *swap_header, | 
 | 2935 | 					struct inode *inode) | 
 | 2936 | { | 
 | 2937 | 	int i; | 
 | 2938 | 	unsigned long maxpages; | 
 | 2939 | 	unsigned long swapfilepages; | 
 | 2940 | 	unsigned long last_page; | 
 | 2941 |  | 
 | 2942 | 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { | 
 | 2943 | 		pr_err("Unable to find swap-space signature\n"); | 
 | 2944 | 		return 0; | 
 | 2945 | 	} | 
 | 2946 |  | 
 | 2947 | 	/* swap partition endianess hack... */ | 
 | 2948 | 	if (swab32(swap_header->info.version) == 1) { | 
 | 2949 | 		swab32s(&swap_header->info.version); | 
 | 2950 | 		swab32s(&swap_header->info.last_page); | 
 | 2951 | 		swab32s(&swap_header->info.nr_badpages); | 
 | 2952 | 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) | 
 | 2953 | 			return 0; | 
 | 2954 | 		for (i = 0; i < swap_header->info.nr_badpages; i++) | 
 | 2955 | 			swab32s(&swap_header->info.badpages[i]); | 
 | 2956 | 	} | 
 | 2957 | 	/* Check the swap header's sub-version */ | 
 | 2958 | 	if (swap_header->info.version != 1) { | 
 | 2959 | 		pr_warn("Unable to handle swap header version %d\n", | 
 | 2960 | 			swap_header->info.version); | 
 | 2961 | 		return 0; | 
 | 2962 | 	} | 
 | 2963 |  | 
 | 2964 | 	p->lowest_bit  = 1; | 
 | 2965 | 	p->cluster_next = 1; | 
 | 2966 | 	p->cluster_nr = 0; | 
 | 2967 |  | 
 | 2968 | 	maxpages = max_swapfile_size(); | 
 | 2969 | 	last_page = swap_header->info.last_page; | 
 | 2970 | 	if (!last_page) { | 
 | 2971 | 		pr_warn("Empty swap-file\n"); | 
 | 2972 | 		return 0; | 
 | 2973 | 	} | 
 | 2974 | 	if (last_page > maxpages) { | 
 | 2975 | 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", | 
 | 2976 | 			maxpages << (PAGE_SHIFT - 10), | 
 | 2977 | 			last_page << (PAGE_SHIFT - 10)); | 
 | 2978 | 	} | 
 | 2979 | 	if (maxpages > last_page) { | 
 | 2980 | 		maxpages = last_page + 1; | 
 | 2981 | 		/* p->max is an unsigned int: don't overflow it */ | 
 | 2982 | 		if ((unsigned int)maxpages == 0) | 
 | 2983 | 			maxpages = UINT_MAX; | 
 | 2984 | 	} | 
 | 2985 | 	p->highest_bit = maxpages - 1; | 
 | 2986 |  | 
 | 2987 | 	if (!maxpages) | 
 | 2988 | 		return 0; | 
 | 2989 | 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT; | 
 | 2990 | 	if (swapfilepages && maxpages > swapfilepages) { | 
 | 2991 | 		pr_warn("Swap area shorter than signature indicates\n"); | 
 | 2992 | 		return 0; | 
 | 2993 | 	} | 
 | 2994 | 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) | 
 | 2995 | 		return 0; | 
 | 2996 | 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) | 
 | 2997 | 		return 0; | 
 | 2998 |  | 
 | 2999 | 	return maxpages; | 
 | 3000 | } | 
 | 3001 |  | 
 | 3002 | #define SWAP_CLUSTER_INFO_COLS						\ | 
 | 3003 | 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) | 
 | 3004 | #define SWAP_CLUSTER_SPACE_COLS						\ | 
 | 3005 | 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) | 
 | 3006 | #define SWAP_CLUSTER_COLS						\ | 
 | 3007 | 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) | 
 | 3008 |  | 
 | 3009 | static int setup_swap_map_and_extents(struct swap_info_struct *p, | 
 | 3010 | 					union swap_header *swap_header, | 
 | 3011 | 					unsigned char *swap_map, | 
 | 3012 | 					struct swap_cluster_info *cluster_info, | 
 | 3013 | 					unsigned long maxpages, | 
 | 3014 | 					sector_t *span) | 
 | 3015 | { | 
 | 3016 | 	unsigned int j, k; | 
 | 3017 | 	unsigned int nr_good_pages; | 
 | 3018 | 	int nr_extents; | 
 | 3019 | 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); | 
 | 3020 | 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; | 
 | 3021 | 	unsigned long i, idx; | 
 | 3022 |  | 
 | 3023 | 	nr_good_pages = maxpages - 1;	/* omit header page */ | 
 | 3024 |  | 
 | 3025 | 	cluster_list_init(&p->free_clusters); | 
 | 3026 | 	cluster_list_init(&p->discard_clusters); | 
 | 3027 |  | 
 | 3028 | 	for (i = 0; i < swap_header->info.nr_badpages; i++) { | 
 | 3029 | 		unsigned int page_nr = swap_header->info.badpages[i]; | 
 | 3030 | 		if (page_nr == 0 || page_nr > swap_header->info.last_page) | 
 | 3031 | 			return -EINVAL; | 
 | 3032 | 		if (page_nr < maxpages) { | 
 | 3033 | 			swap_map[page_nr] = SWAP_MAP_BAD; | 
 | 3034 | 			nr_good_pages--; | 
 | 3035 | 			/* | 
 | 3036 | 			 * Haven't marked the cluster free yet, no list | 
 | 3037 | 			 * operation involved | 
 | 3038 | 			 */ | 
 | 3039 | 			inc_cluster_info_page(p, cluster_info, page_nr); | 
 | 3040 | 		} | 
 | 3041 | 	} | 
 | 3042 |  | 
 | 3043 | 	/* Haven't marked the cluster free yet, no list operation involved */ | 
 | 3044 | 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) | 
 | 3045 | 		inc_cluster_info_page(p, cluster_info, i); | 
 | 3046 |  | 
 | 3047 | 	if (nr_good_pages) { | 
 | 3048 | 		swap_map[0] = SWAP_MAP_BAD; | 
 | 3049 | 		/* | 
 | 3050 | 		 * Not mark the cluster free yet, no list | 
 | 3051 | 		 * operation involved | 
 | 3052 | 		 */ | 
 | 3053 | 		inc_cluster_info_page(p, cluster_info, 0); | 
 | 3054 | 		p->max = maxpages; | 
 | 3055 | 		p->pages = nr_good_pages; | 
 | 3056 | 		nr_extents = setup_swap_extents(p, span); | 
 | 3057 | 		if (nr_extents < 0) | 
 | 3058 | 			return nr_extents; | 
 | 3059 | 		nr_good_pages = p->pages; | 
 | 3060 | 	} | 
 | 3061 | 	if (!nr_good_pages) { | 
 | 3062 | 		pr_warn("Empty swap-file\n"); | 
 | 3063 | 		return -EINVAL; | 
 | 3064 | 	} | 
 | 3065 |  | 
 | 3066 | 	if (!cluster_info) | 
 | 3067 | 		return nr_extents; | 
 | 3068 |  | 
 | 3069 |  | 
 | 3070 | 	/* | 
 | 3071 | 	 * Reduce false cache line sharing between cluster_info and | 
 | 3072 | 	 * sharing same address space. | 
 | 3073 | 	 */ | 
 | 3074 | 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) { | 
 | 3075 | 		j = (k + col) % SWAP_CLUSTER_COLS; | 
 | 3076 | 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { | 
 | 3077 | 			idx = i * SWAP_CLUSTER_COLS + j; | 
 | 3078 | 			if (idx >= nr_clusters) | 
 | 3079 | 				continue; | 
 | 3080 | 			if (cluster_count(&cluster_info[idx])) | 
 | 3081 | 				continue; | 
 | 3082 | 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); | 
 | 3083 | 			cluster_list_add_tail(&p->free_clusters, cluster_info, | 
 | 3084 | 					      idx); | 
 | 3085 | 		} | 
 | 3086 | 	} | 
 | 3087 | 	return nr_extents; | 
 | 3088 | } | 
 | 3089 |  | 
 | 3090 | /* | 
 | 3091 |  * Helper to sys_swapon determining if a given swap | 
 | 3092 |  * backing device queue supports DISCARD operations. | 
 | 3093 |  */ | 
 | 3094 | static bool swap_discardable(struct swap_info_struct *si) | 
 | 3095 | { | 
 | 3096 | 	struct request_queue *q = bdev_get_queue(si->bdev); | 
 | 3097 |  | 
 | 3098 | 	if (!q || !blk_queue_discard(q)) | 
 | 3099 | 		return false; | 
 | 3100 |  | 
 | 3101 | 	return true; | 
 | 3102 | } | 
 | 3103 |  | 
 | 3104 | SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) | 
 | 3105 | { | 
 | 3106 | 	struct swap_info_struct *p; | 
 | 3107 | 	struct filename *name; | 
 | 3108 | 	struct file *swap_file = NULL; | 
 | 3109 | 	struct address_space *mapping; | 
 | 3110 | 	int prio; | 
 | 3111 | 	int error; | 
 | 3112 | 	union swap_header *swap_header; | 
 | 3113 | 	int nr_extents; | 
 | 3114 | 	sector_t span; | 
 | 3115 | 	unsigned long maxpages; | 
 | 3116 | 	unsigned char *swap_map = NULL; | 
 | 3117 | 	struct swap_cluster_info *cluster_info = NULL; | 
 | 3118 | 	unsigned long *frontswap_map = NULL; | 
 | 3119 | 	struct page *page = NULL; | 
 | 3120 | 	struct inode *inode = NULL; | 
 | 3121 | 	bool inced_nr_rotate_swap = false; | 
 | 3122 |  | 
 | 3123 | 	if (swap_flags & ~SWAP_FLAGS_VALID) | 
 | 3124 | 		return -EINVAL; | 
 | 3125 |  | 
 | 3126 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 3127 | 		return -EPERM; | 
 | 3128 |  | 
 | 3129 | 	if (!swap_avail_heads) | 
 | 3130 | 		return -ENOMEM; | 
 | 3131 |  | 
 | 3132 | 	p = alloc_swap_info(); | 
 | 3133 | 	if (IS_ERR(p)) | 
 | 3134 | 		return PTR_ERR(p); | 
 | 3135 |  | 
 | 3136 | 	INIT_WORK(&p->discard_work, swap_discard_work); | 
 | 3137 |  | 
 | 3138 | 	name = getname(specialfile); | 
 | 3139 | 	if (IS_ERR(name)) { | 
 | 3140 | 		error = PTR_ERR(name); | 
 | 3141 | 		name = NULL; | 
 | 3142 | 		goto bad_swap; | 
 | 3143 | 	} | 
 | 3144 | 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); | 
 | 3145 | 	if (IS_ERR(swap_file)) { | 
 | 3146 | 		error = PTR_ERR(swap_file); | 
 | 3147 | 		swap_file = NULL; | 
 | 3148 | 		goto bad_swap; | 
 | 3149 | 	} | 
 | 3150 |  | 
 | 3151 | 	p->swap_file = swap_file; | 
 | 3152 | 	mapping = swap_file->f_mapping; | 
 | 3153 | 	inode = mapping->host; | 
 | 3154 |  | 
 | 3155 | 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */ | 
 | 3156 | 	error = claim_swapfile(p, inode); | 
 | 3157 | 	if (unlikely(error)) | 
 | 3158 | 		goto bad_swap; | 
 | 3159 |  | 
 | 3160 | 	/* | 
 | 3161 | 	 * Read the swap header. | 
 | 3162 | 	 */ | 
 | 3163 | 	if (!mapping->a_ops->readpage) { | 
 | 3164 | 		error = -EINVAL; | 
 | 3165 | 		goto bad_swap; | 
 | 3166 | 	} | 
 | 3167 | 	page = read_mapping_page(mapping, 0, swap_file); | 
 | 3168 | 	if (IS_ERR(page)) { | 
 | 3169 | 		error = PTR_ERR(page); | 
 | 3170 | 		goto bad_swap; | 
 | 3171 | 	} | 
 | 3172 | 	swap_header = kmap(page); | 
 | 3173 |  | 
 | 3174 | 	maxpages = read_swap_header(p, swap_header, inode); | 
 | 3175 | 	if (unlikely(!maxpages)) { | 
 | 3176 | 		error = -EINVAL; | 
 | 3177 | 		goto bad_swap; | 
 | 3178 | 	} | 
 | 3179 |  | 
 | 3180 | 	/* OK, set up the swap map and apply the bad block list */ | 
 | 3181 | 	swap_map = vzalloc(maxpages); | 
 | 3182 | 	if (!swap_map) { | 
 | 3183 | 		error = -ENOMEM; | 
 | 3184 | 		goto bad_swap; | 
 | 3185 | 	} | 
 | 3186 |  | 
 | 3187 | 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode))) | 
 | 3188 | 		p->flags |= SWP_STABLE_WRITES; | 
 | 3189 |  | 
 | 3190 | 	if (bdi_cap_synchronous_io(inode_to_bdi(inode))) | 
 | 3191 | 		p->flags |= SWP_SYNCHRONOUS_IO; | 
 | 3192 |  | 
 | 3193 | 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { | 
 | 3194 | 		int cpu; | 
 | 3195 | 		unsigned long ci, nr_cluster; | 
 | 3196 |  | 
 | 3197 | 		p->flags |= SWP_SOLIDSTATE; | 
 | 3198 | 		/* | 
 | 3199 | 		 * select a random position to start with to help wear leveling | 
 | 3200 | 		 * SSD | 
 | 3201 | 		 */ | 
 | 3202 | 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit); | 
 | 3203 | 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); | 
 | 3204 |  | 
 | 3205 | 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), | 
 | 3206 | 					GFP_KERNEL); | 
 | 3207 | 		if (!cluster_info) { | 
 | 3208 | 			error = -ENOMEM; | 
 | 3209 | 			goto bad_swap; | 
 | 3210 | 		} | 
 | 3211 |  | 
 | 3212 | 		for (ci = 0; ci < nr_cluster; ci++) | 
 | 3213 | 			spin_lock_init(&((cluster_info + ci)->lock)); | 
 | 3214 |  | 
 | 3215 | 		p->percpu_cluster = alloc_percpu(struct percpu_cluster); | 
 | 3216 | 		if (!p->percpu_cluster) { | 
 | 3217 | 			error = -ENOMEM; | 
 | 3218 | 			goto bad_swap; | 
 | 3219 | 		} | 
 | 3220 | 		for_each_possible_cpu(cpu) { | 
 | 3221 | 			struct percpu_cluster *cluster; | 
 | 3222 | 			cluster = per_cpu_ptr(p->percpu_cluster, cpu); | 
 | 3223 | 			cluster_set_null(&cluster->index); | 
 | 3224 | 		} | 
 | 3225 | 	} else { | 
 | 3226 | 		atomic_inc(&nr_rotate_swap); | 
 | 3227 | 		inced_nr_rotate_swap = true; | 
 | 3228 | 	} | 
 | 3229 |  | 
 | 3230 | 	error = swap_cgroup_swapon(p->type, maxpages); | 
 | 3231 | 	if (error) | 
 | 3232 | 		goto bad_swap; | 
 | 3233 |  | 
 | 3234 | 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, | 
 | 3235 | 		cluster_info, maxpages, &span); | 
 | 3236 | 	if (unlikely(nr_extents < 0)) { | 
 | 3237 | 		error = nr_extents; | 
 | 3238 | 		goto bad_swap; | 
 | 3239 | 	} | 
 | 3240 | 	/* frontswap enabled? set up bit-per-page map for frontswap */ | 
 | 3241 | 	if (IS_ENABLED(CONFIG_FRONTSWAP)) | 
 | 3242 | 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), | 
 | 3243 | 					 sizeof(long), | 
 | 3244 | 					 GFP_KERNEL); | 
 | 3245 |  | 
 | 3246 | 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { | 
 | 3247 | 		/* | 
 | 3248 | 		 * When discard is enabled for swap with no particular | 
 | 3249 | 		 * policy flagged, we set all swap discard flags here in | 
 | 3250 | 		 * order to sustain backward compatibility with older | 
 | 3251 | 		 * swapon(8) releases. | 
 | 3252 | 		 */ | 
 | 3253 | 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | | 
 | 3254 | 			     SWP_PAGE_DISCARD); | 
 | 3255 |  | 
 | 3256 | 		/* | 
 | 3257 | 		 * By flagging sys_swapon, a sysadmin can tell us to | 
 | 3258 | 		 * either do single-time area discards only, or to just | 
 | 3259 | 		 * perform discards for released swap page-clusters. | 
 | 3260 | 		 * Now it's time to adjust the p->flags accordingly. | 
 | 3261 | 		 */ | 
 | 3262 | 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE) | 
 | 3263 | 			p->flags &= ~SWP_PAGE_DISCARD; | 
 | 3264 | 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) | 
 | 3265 | 			p->flags &= ~SWP_AREA_DISCARD; | 
 | 3266 |  | 
 | 3267 | 		/* issue a swapon-time discard if it's still required */ | 
 | 3268 | 		if (p->flags & SWP_AREA_DISCARD) { | 
 | 3269 | 			int err = discard_swap(p); | 
 | 3270 | 			if (unlikely(err)) | 
 | 3271 | 				pr_err("swapon: discard_swap(%p): %d\n", | 
 | 3272 | 					p, err); | 
 | 3273 | 		} | 
 | 3274 | 	} | 
 | 3275 |  | 
 | 3276 | 	error = init_swap_address_space(p->type, maxpages); | 
 | 3277 | 	if (error) | 
 | 3278 | 		goto bad_swap; | 
 | 3279 |  | 
 | 3280 | 	/* | 
 | 3281 | 	 * Flush any pending IO and dirty mappings before we start using this | 
 | 3282 | 	 * swap device. | 
 | 3283 | 	 */ | 
 | 3284 | 	inode->i_flags |= S_SWAPFILE; | 
 | 3285 | 	error = inode_drain_writes(inode); | 
 | 3286 | 	if (error) { | 
 | 3287 | 		inode->i_flags &= ~S_SWAPFILE; | 
 | 3288 | 		goto bad_swap; | 
 | 3289 | 	} | 
 | 3290 |  | 
 | 3291 | 	mutex_lock(&swapon_mutex); | 
 | 3292 | 	prio = -1; | 
 | 3293 | 	if (swap_flags & SWAP_FLAG_PREFER) | 
 | 3294 | 		prio = | 
 | 3295 | 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; | 
 | 3296 | 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); | 
 | 3297 |  | 
 | 3298 | 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", | 
 | 3299 | 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio, | 
 | 3300 | 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), | 
 | 3301 | 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "", | 
 | 3302 | 		(p->flags & SWP_DISCARDABLE) ? "D" : "", | 
 | 3303 | 		(p->flags & SWP_AREA_DISCARD) ? "s" : "", | 
 | 3304 | 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "", | 
 | 3305 | 		(frontswap_map) ? "FS" : ""); | 
 | 3306 |  | 
 | 3307 | 	mutex_unlock(&swapon_mutex); | 
 | 3308 | 	atomic_inc(&proc_poll_event); | 
 | 3309 | 	wake_up_interruptible(&proc_poll_wait); | 
 | 3310 |  | 
 | 3311 | 	error = 0; | 
 | 3312 | 	goto out; | 
 | 3313 | bad_swap: | 
 | 3314 | 	free_percpu(p->percpu_cluster); | 
 | 3315 | 	p->percpu_cluster = NULL; | 
 | 3316 | 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) { | 
 | 3317 | 		set_blocksize(p->bdev, p->old_block_size); | 
 | 3318 | 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); | 
 | 3319 | 	} | 
 | 3320 | 	destroy_swap_extents(p); | 
 | 3321 | 	swap_cgroup_swapoff(p->type); | 
 | 3322 | 	spin_lock(&swap_lock); | 
 | 3323 | 	p->swap_file = NULL; | 
 | 3324 | 	p->flags = 0; | 
 | 3325 | 	spin_unlock(&swap_lock); | 
 | 3326 | 	vfree(swap_map); | 
 | 3327 | 	kvfree(cluster_info); | 
 | 3328 | 	kvfree(frontswap_map); | 
 | 3329 | 	if (inced_nr_rotate_swap) | 
 | 3330 | 		atomic_dec(&nr_rotate_swap); | 
 | 3331 | 	if (swap_file) { | 
 | 3332 | 		if (inode) { | 
 | 3333 | 			inode_unlock(inode); | 
 | 3334 | 			inode = NULL; | 
 | 3335 | 		} | 
 | 3336 | 		filp_close(swap_file, NULL); | 
 | 3337 | 	} | 
 | 3338 | out: | 
 | 3339 | 	if (page && !IS_ERR(page)) { | 
 | 3340 | 		kunmap(page); | 
 | 3341 | 		put_page(page); | 
 | 3342 | 	} | 
 | 3343 | 	if (name) | 
 | 3344 | 		putname(name); | 
 | 3345 | 	if (inode) | 
 | 3346 | 		inode_unlock(inode); | 
 | 3347 | 	if (!error) | 
 | 3348 | 		enable_swap_slots_cache(); | 
 | 3349 | 	return error; | 
 | 3350 | } | 
 | 3351 |  | 
 | 3352 | void si_swapinfo(struct sysinfo *val) | 
 | 3353 | { | 
 | 3354 | 	unsigned int type; | 
 | 3355 | 	unsigned long nr_to_be_unused = 0; | 
 | 3356 |  | 
 | 3357 | 	spin_lock(&swap_lock); | 
 | 3358 | 	for (type = 0; type < nr_swapfiles; type++) { | 
 | 3359 | 		struct swap_info_struct *si = swap_info[type]; | 
 | 3360 |  | 
 | 3361 | 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) | 
 | 3362 | 			nr_to_be_unused += si->inuse_pages; | 
 | 3363 | 	} | 
 | 3364 | 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; | 
 | 3365 | 	val->totalswap = total_swap_pages + nr_to_be_unused; | 
 | 3366 | 	spin_unlock(&swap_lock); | 
 | 3367 | } | 
 | 3368 |  | 
 | 3369 | /* | 
 | 3370 |  * Verify that a swap entry is valid and increment its swap map count. | 
 | 3371 |  * | 
 | 3372 |  * Returns error code in following case. | 
 | 3373 |  * - success -> 0 | 
 | 3374 |  * - swp_entry is invalid -> EINVAL | 
 | 3375 |  * - swp_entry is migration entry -> EINVAL | 
 | 3376 |  * - swap-cache reference is requested but there is already one. -> EEXIST | 
 | 3377 |  * - swap-cache reference is requested but the entry is not used. -> ENOENT | 
 | 3378 |  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM | 
 | 3379 |  */ | 
 | 3380 | static int __swap_duplicate(swp_entry_t entry, unsigned char usage) | 
 | 3381 | { | 
 | 3382 | 	struct swap_info_struct *p; | 
 | 3383 | 	struct swap_cluster_info *ci; | 
 | 3384 | 	unsigned long offset; | 
 | 3385 | 	unsigned char count; | 
 | 3386 | 	unsigned char has_cache; | 
 | 3387 | 	int err = -EINVAL; | 
 | 3388 |  | 
 | 3389 | 	if (non_swap_entry(entry)) | 
 | 3390 | 		goto out; | 
 | 3391 |  | 
 | 3392 | 	p = swp_swap_info(entry); | 
 | 3393 | 	if (!p) | 
 | 3394 | 		goto bad_file; | 
 | 3395 |  | 
 | 3396 | 	offset = swp_offset(entry); | 
 | 3397 | 	if (unlikely(offset >= p->max)) | 
 | 3398 | 		goto out; | 
 | 3399 |  | 
 | 3400 | 	ci = lock_cluster_or_swap_info(p, offset); | 
 | 3401 |  | 
 | 3402 | 	count = p->swap_map[offset]; | 
 | 3403 |  | 
 | 3404 | 	/* | 
 | 3405 | 	 * swapin_readahead() doesn't check if a swap entry is valid, so the | 
 | 3406 | 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held. | 
 | 3407 | 	 */ | 
 | 3408 | 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { | 
 | 3409 | 		err = -ENOENT; | 
 | 3410 | 		goto unlock_out; | 
 | 3411 | 	} | 
 | 3412 |  | 
 | 3413 | 	has_cache = count & SWAP_HAS_CACHE; | 
 | 3414 | 	count &= ~SWAP_HAS_CACHE; | 
 | 3415 | 	err = 0; | 
 | 3416 |  | 
 | 3417 | 	if (usage == SWAP_HAS_CACHE) { | 
 | 3418 |  | 
 | 3419 | 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */ | 
 | 3420 | 		if (!has_cache && count) | 
 | 3421 | 			has_cache = SWAP_HAS_CACHE; | 
 | 3422 | 		else if (has_cache)		/* someone else added cache */ | 
 | 3423 | 			err = -EEXIST; | 
 | 3424 | 		else				/* no users remaining */ | 
 | 3425 | 			err = -ENOENT; | 
 | 3426 |  | 
 | 3427 | 	} else if (count || has_cache) { | 
 | 3428 |  | 
 | 3429 | 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) | 
 | 3430 | 			count += usage; | 
 | 3431 | 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) | 
 | 3432 | 			err = -EINVAL; | 
 | 3433 | 		else if (swap_count_continued(p, offset, count)) | 
 | 3434 | 			count = COUNT_CONTINUED; | 
 | 3435 | 		else | 
 | 3436 | 			err = -ENOMEM; | 
 | 3437 | 	} else | 
 | 3438 | 		err = -ENOENT;			/* unused swap entry */ | 
 | 3439 |  | 
 | 3440 | 	p->swap_map[offset] = count | has_cache; | 
 | 3441 |  | 
 | 3442 | unlock_out: | 
 | 3443 | 	unlock_cluster_or_swap_info(p, ci); | 
 | 3444 | out: | 
 | 3445 | 	return err; | 
 | 3446 |  | 
 | 3447 | bad_file: | 
 | 3448 | 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); | 
 | 3449 | 	goto out; | 
 | 3450 | } | 
 | 3451 |  | 
 | 3452 | /* | 
 | 3453 |  * Help swapoff by noting that swap entry belongs to shmem/tmpfs | 
 | 3454 |  * (in which case its reference count is never incremented). | 
 | 3455 |  */ | 
 | 3456 | void swap_shmem_alloc(swp_entry_t entry) | 
 | 3457 | { | 
 | 3458 | 	__swap_duplicate(entry, SWAP_MAP_SHMEM); | 
 | 3459 | } | 
 | 3460 |  | 
 | 3461 | /* | 
 | 3462 |  * Increase reference count of swap entry by 1. | 
 | 3463 |  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required | 
 | 3464 |  * but could not be atomically allocated.  Returns 0, just as if it succeeded, | 
 | 3465 |  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which | 
 | 3466 |  * might occur if a page table entry has got corrupted. | 
 | 3467 |  */ | 
 | 3468 | int swap_duplicate(swp_entry_t entry) | 
 | 3469 | { | 
 | 3470 | 	int err = 0; | 
 | 3471 |  | 
 | 3472 | 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM) | 
 | 3473 | 		err = add_swap_count_continuation(entry, GFP_ATOMIC); | 
 | 3474 | 	return err; | 
 | 3475 | } | 
 | 3476 |  | 
 | 3477 | /* | 
 | 3478 |  * @entry: swap entry for which we allocate swap cache. | 
 | 3479 |  * | 
 | 3480 |  * Called when allocating swap cache for existing swap entry, | 
 | 3481 |  * This can return error codes. Returns 0 at success. | 
 | 3482 |  * -EBUSY means there is a swap cache. | 
 | 3483 |  * Note: return code is different from swap_duplicate(). | 
 | 3484 |  */ | 
 | 3485 | int swapcache_prepare(swp_entry_t entry) | 
 | 3486 | { | 
 | 3487 | 	return __swap_duplicate(entry, SWAP_HAS_CACHE); | 
 | 3488 | } | 
 | 3489 |  | 
 | 3490 | struct swap_info_struct *swp_swap_info(swp_entry_t entry) | 
 | 3491 | { | 
 | 3492 | 	return swap_type_to_swap_info(swp_type(entry)); | 
 | 3493 | } | 
 | 3494 |  | 
 | 3495 | struct swap_info_struct *page_swap_info(struct page *page) | 
 | 3496 | { | 
 | 3497 | 	swp_entry_t entry = { .val = page_private(page) }; | 
 | 3498 | 	return swp_swap_info(entry); | 
 | 3499 | } | 
 | 3500 |  | 
 | 3501 | /* | 
 | 3502 |  * out-of-line __page_file_ methods to avoid include hell. | 
 | 3503 |  */ | 
 | 3504 | struct address_space *__page_file_mapping(struct page *page) | 
 | 3505 | { | 
 | 3506 | 	return page_swap_info(page)->swap_file->f_mapping; | 
 | 3507 | } | 
 | 3508 | EXPORT_SYMBOL_GPL(__page_file_mapping); | 
 | 3509 |  | 
 | 3510 | pgoff_t __page_file_index(struct page *page) | 
 | 3511 | { | 
 | 3512 | 	swp_entry_t swap = { .val = page_private(page) }; | 
 | 3513 | 	return swp_offset(swap); | 
 | 3514 | } | 
 | 3515 | EXPORT_SYMBOL_GPL(__page_file_index); | 
 | 3516 |  | 
 | 3517 | /* | 
 | 3518 |  * add_swap_count_continuation - called when a swap count is duplicated | 
 | 3519 |  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's | 
 | 3520 |  * page of the original vmalloc'ed swap_map, to hold the continuation count | 
 | 3521 |  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called | 
 | 3522 |  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. | 
 | 3523 |  * | 
 | 3524 |  * These continuation pages are seldom referenced: the common paths all work | 
 | 3525 |  * on the original swap_map, only referring to a continuation page when the | 
 | 3526 |  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. | 
 | 3527 |  * | 
 | 3528 |  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding | 
 | 3529 |  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) | 
 | 3530 |  * can be called after dropping locks. | 
 | 3531 |  */ | 
 | 3532 | int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) | 
 | 3533 | { | 
 | 3534 | 	struct swap_info_struct *si; | 
 | 3535 | 	struct swap_cluster_info *ci; | 
 | 3536 | 	struct page *head; | 
 | 3537 | 	struct page *page; | 
 | 3538 | 	struct page *list_page; | 
 | 3539 | 	pgoff_t offset; | 
 | 3540 | 	unsigned char count; | 
 | 3541 |  | 
 | 3542 | 	/* | 
 | 3543 | 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better | 
 | 3544 | 	 * for latency not to zero a page while GFP_ATOMIC and holding locks. | 
 | 3545 | 	 */ | 
 | 3546 | 	page = alloc_page(gfp_mask | __GFP_HIGHMEM); | 
 | 3547 |  | 
 | 3548 | 	si = swap_info_get(entry); | 
 | 3549 | 	if (!si) { | 
 | 3550 | 		/* | 
 | 3551 | 		 * An acceptable race has occurred since the failing | 
 | 3552 | 		 * __swap_duplicate(): the swap entry has been freed, | 
 | 3553 | 		 * perhaps even the whole swap_map cleared for swapoff. | 
 | 3554 | 		 */ | 
 | 3555 | 		goto outer; | 
 | 3556 | 	} | 
 | 3557 |  | 
 | 3558 | 	offset = swp_offset(entry); | 
 | 3559 |  | 
 | 3560 | 	ci = lock_cluster(si, offset); | 
 | 3561 |  | 
 | 3562 | 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE; | 
 | 3563 |  | 
 | 3564 | 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { | 
 | 3565 | 		/* | 
 | 3566 | 		 * The higher the swap count, the more likely it is that tasks | 
 | 3567 | 		 * will race to add swap count continuation: we need to avoid | 
 | 3568 | 		 * over-provisioning. | 
 | 3569 | 		 */ | 
 | 3570 | 		goto out; | 
 | 3571 | 	} | 
 | 3572 |  | 
 | 3573 | 	if (!page) { | 
 | 3574 | 		unlock_cluster(ci); | 
 | 3575 | 		spin_unlock(&si->lock); | 
 | 3576 | 		return -ENOMEM; | 
 | 3577 | 	} | 
 | 3578 |  | 
 | 3579 | 	/* | 
 | 3580 | 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map, | 
 | 3581 | 	 * no architecture is using highmem pages for kernel page tables: so it | 
 | 3582 | 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. | 
 | 3583 | 	 */ | 
 | 3584 | 	head = vmalloc_to_page(si->swap_map + offset); | 
 | 3585 | 	offset &= ~PAGE_MASK; | 
 | 3586 |  | 
 | 3587 | 	spin_lock(&si->cont_lock); | 
 | 3588 | 	/* | 
 | 3589 | 	 * Page allocation does not initialize the page's lru field, | 
 | 3590 | 	 * but it does always reset its private field. | 
 | 3591 | 	 */ | 
 | 3592 | 	if (!page_private(head)) { | 
 | 3593 | 		BUG_ON(count & COUNT_CONTINUED); | 
 | 3594 | 		INIT_LIST_HEAD(&head->lru); | 
 | 3595 | 		set_page_private(head, SWP_CONTINUED); | 
 | 3596 | 		si->flags |= SWP_CONTINUED; | 
 | 3597 | 	} | 
 | 3598 |  | 
 | 3599 | 	list_for_each_entry(list_page, &head->lru, lru) { | 
 | 3600 | 		unsigned char *map; | 
 | 3601 |  | 
 | 3602 | 		/* | 
 | 3603 | 		 * If the previous map said no continuation, but we've found | 
 | 3604 | 		 * a continuation page, free our allocation and use this one. | 
 | 3605 | 		 */ | 
 | 3606 | 		if (!(count & COUNT_CONTINUED)) | 
 | 3607 | 			goto out_unlock_cont; | 
 | 3608 |  | 
 | 3609 | 		map = kmap_atomic(list_page) + offset; | 
 | 3610 | 		count = *map; | 
 | 3611 | 		kunmap_atomic(map); | 
 | 3612 |  | 
 | 3613 | 		/* | 
 | 3614 | 		 * If this continuation count now has some space in it, | 
 | 3615 | 		 * free our allocation and use this one. | 
 | 3616 | 		 */ | 
 | 3617 | 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) | 
 | 3618 | 			goto out_unlock_cont; | 
 | 3619 | 	} | 
 | 3620 |  | 
 | 3621 | 	list_add_tail(&page->lru, &head->lru); | 
 | 3622 | 	page = NULL;			/* now it's attached, don't free it */ | 
 | 3623 | out_unlock_cont: | 
 | 3624 | 	spin_unlock(&si->cont_lock); | 
 | 3625 | out: | 
 | 3626 | 	unlock_cluster(ci); | 
 | 3627 | 	spin_unlock(&si->lock); | 
 | 3628 | outer: | 
 | 3629 | 	if (page) | 
 | 3630 | 		__free_page(page); | 
 | 3631 | 	return 0; | 
 | 3632 | } | 
 | 3633 |  | 
 | 3634 | /* | 
 | 3635 |  * swap_count_continued - when the original swap_map count is incremented | 
 | 3636 |  * from SWAP_MAP_MAX, check if there is already a continuation page to carry | 
 | 3637 |  * into, carry if so, or else fail until a new continuation page is allocated; | 
 | 3638 |  * when the original swap_map count is decremented from 0 with continuation, | 
 | 3639 |  * borrow from the continuation and report whether it still holds more. | 
 | 3640 |  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster | 
 | 3641 |  * lock. | 
 | 3642 |  */ | 
 | 3643 | static bool swap_count_continued(struct swap_info_struct *si, | 
 | 3644 | 				 pgoff_t offset, unsigned char count) | 
 | 3645 | { | 
 | 3646 | 	struct page *head; | 
 | 3647 | 	struct page *page; | 
 | 3648 | 	unsigned char *map; | 
 | 3649 | 	bool ret; | 
 | 3650 |  | 
 | 3651 | 	head = vmalloc_to_page(si->swap_map + offset); | 
 | 3652 | 	if (page_private(head) != SWP_CONTINUED) { | 
 | 3653 | 		BUG_ON(count & COUNT_CONTINUED); | 
 | 3654 | 		return false;		/* need to add count continuation */ | 
 | 3655 | 	} | 
 | 3656 |  | 
 | 3657 | 	spin_lock(&si->cont_lock); | 
 | 3658 | 	offset &= ~PAGE_MASK; | 
 | 3659 | 	page = list_entry(head->lru.next, struct page, lru); | 
 | 3660 | 	map = kmap_atomic(page) + offset; | 
 | 3661 |  | 
 | 3662 | 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */ | 
 | 3663 | 		goto init_map;		/* jump over SWAP_CONT_MAX checks */ | 
 | 3664 |  | 
 | 3665 | 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ | 
 | 3666 | 		/* | 
 | 3667 | 		 * Think of how you add 1 to 999 | 
 | 3668 | 		 */ | 
 | 3669 | 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { | 
 | 3670 | 			kunmap_atomic(map); | 
 | 3671 | 			page = list_entry(page->lru.next, struct page, lru); | 
 | 3672 | 			BUG_ON(page == head); | 
 | 3673 | 			map = kmap_atomic(page) + offset; | 
 | 3674 | 		} | 
 | 3675 | 		if (*map == SWAP_CONT_MAX) { | 
 | 3676 | 			kunmap_atomic(map); | 
 | 3677 | 			page = list_entry(page->lru.next, struct page, lru); | 
 | 3678 | 			if (page == head) { | 
 | 3679 | 				ret = false;	/* add count continuation */ | 
 | 3680 | 				goto out; | 
 | 3681 | 			} | 
 | 3682 | 			map = kmap_atomic(page) + offset; | 
 | 3683 | init_map:		*map = 0;		/* we didn't zero the page */ | 
 | 3684 | 		} | 
 | 3685 | 		*map += 1; | 
 | 3686 | 		kunmap_atomic(map); | 
 | 3687 | 		page = list_entry(page->lru.prev, struct page, lru); | 
 | 3688 | 		while (page != head) { | 
 | 3689 | 			map = kmap_atomic(page) + offset; | 
 | 3690 | 			*map = COUNT_CONTINUED; | 
 | 3691 | 			kunmap_atomic(map); | 
 | 3692 | 			page = list_entry(page->lru.prev, struct page, lru); | 
 | 3693 | 		} | 
 | 3694 | 		ret = true;			/* incremented */ | 
 | 3695 |  | 
 | 3696 | 	} else {				/* decrementing */ | 
 | 3697 | 		/* | 
 | 3698 | 		 * Think of how you subtract 1 from 1000 | 
 | 3699 | 		 */ | 
 | 3700 | 		BUG_ON(count != COUNT_CONTINUED); | 
 | 3701 | 		while (*map == COUNT_CONTINUED) { | 
 | 3702 | 			kunmap_atomic(map); | 
 | 3703 | 			page = list_entry(page->lru.next, struct page, lru); | 
 | 3704 | 			BUG_ON(page == head); | 
 | 3705 | 			map = kmap_atomic(page) + offset; | 
 | 3706 | 		} | 
 | 3707 | 		BUG_ON(*map == 0); | 
 | 3708 | 		*map -= 1; | 
 | 3709 | 		if (*map == 0) | 
 | 3710 | 			count = 0; | 
 | 3711 | 		kunmap_atomic(map); | 
 | 3712 | 		page = list_entry(page->lru.prev, struct page, lru); | 
 | 3713 | 		while (page != head) { | 
 | 3714 | 			map = kmap_atomic(page) + offset; | 
 | 3715 | 			*map = SWAP_CONT_MAX | count; | 
 | 3716 | 			count = COUNT_CONTINUED; | 
 | 3717 | 			kunmap_atomic(map); | 
 | 3718 | 			page = list_entry(page->lru.prev, struct page, lru); | 
 | 3719 | 		} | 
 | 3720 | 		ret = count == COUNT_CONTINUED; | 
 | 3721 | 	} | 
 | 3722 | out: | 
 | 3723 | 	spin_unlock(&si->cont_lock); | 
 | 3724 | 	return ret; | 
 | 3725 | } | 
 | 3726 |  | 
 | 3727 | /* | 
 | 3728 |  * free_swap_count_continuations - swapoff free all the continuation pages | 
 | 3729 |  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. | 
 | 3730 |  */ | 
 | 3731 | static void free_swap_count_continuations(struct swap_info_struct *si) | 
 | 3732 | { | 
 | 3733 | 	pgoff_t offset; | 
 | 3734 |  | 
 | 3735 | 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) { | 
 | 3736 | 		struct page *head; | 
 | 3737 | 		head = vmalloc_to_page(si->swap_map + offset); | 
 | 3738 | 		if (page_private(head)) { | 
 | 3739 | 			struct page *page, *next; | 
 | 3740 |  | 
 | 3741 | 			list_for_each_entry_safe(page, next, &head->lru, lru) { | 
 | 3742 | 				list_del(&page->lru); | 
 | 3743 | 				__free_page(page); | 
 | 3744 | 			} | 
 | 3745 | 		} | 
 | 3746 | 	} | 
 | 3747 | } | 
 | 3748 |  | 
 | 3749 | #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) | 
 | 3750 | void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node, | 
 | 3751 | 				  gfp_t gfp_mask) | 
 | 3752 | { | 
 | 3753 | 	struct swap_info_struct *si, *next; | 
 | 3754 | 	if (!(gfp_mask & __GFP_IO) || !memcg) | 
 | 3755 | 		return; | 
 | 3756 |  | 
 | 3757 | 	if (!blk_cgroup_congested()) | 
 | 3758 | 		return; | 
 | 3759 |  | 
 | 3760 | 	/* | 
 | 3761 | 	 * We've already scheduled a throttle, avoid taking the global swap | 
 | 3762 | 	 * lock. | 
 | 3763 | 	 */ | 
 | 3764 | 	if (current->throttle_queue) | 
 | 3765 | 		return; | 
 | 3766 |  | 
 | 3767 | 	spin_lock(&swap_avail_lock); | 
 | 3768 | 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], | 
 | 3769 | 				  avail_lists[node]) { | 
 | 3770 | 		if (si->bdev) { | 
 | 3771 | 			blkcg_schedule_throttle(bdev_get_queue(si->bdev), | 
 | 3772 | 						true); | 
 | 3773 | 			break; | 
 | 3774 | 		} | 
 | 3775 | 	} | 
 | 3776 | 	spin_unlock(&swap_avail_lock); | 
 | 3777 | } | 
 | 3778 | #endif | 
 | 3779 |  | 
 | 3780 | static int __init swapfile_init(void) | 
 | 3781 | { | 
 | 3782 | 	int nid; | 
 | 3783 |  | 
 | 3784 | 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), | 
 | 3785 | 					 GFP_KERNEL); | 
 | 3786 | 	if (!swap_avail_heads) { | 
 | 3787 | 		pr_emerg("Not enough memory for swap heads, swap is disabled\n"); | 
 | 3788 | 		return -ENOMEM; | 
 | 3789 | 	} | 
 | 3790 |  | 
 | 3791 | 	for_each_node(nid) | 
 | 3792 | 		plist_head_init(&swap_avail_heads[nid]); | 
 | 3793 |  | 
 | 3794 | 	return 0; | 
 | 3795 | } | 
 | 3796 | subsys_initcall(swapfile_init); |