blob: 17defbf4f332c5267b5cc38e94c25e54a5246d6a [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Ram backed block device driver.
3 *
4 * Copyright (C) 2007 Nick Piggin
5 * Copyright (C) 2007 Novell Inc.
6 *
7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
8 * of their respective owners.
9 */
10
11#include <linux/init.h>
12#include <linux/initrd.h>
13#include <linux/module.h>
14#include <linux/moduleparam.h>
15#include <linux/major.h>
16#include <linux/blkdev.h>
17#include <linux/bio.h>
18#include <linux/highmem.h>
19#include <linux/mutex.h>
20#include <linux/radix-tree.h>
21#include <linux/fs.h>
22#include <linux/slab.h>
23#include <linux/backing-dev.h>
24
25#include <linux/uaccess.h>
26
27#define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
28#define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
29
30/*
31 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
32 * the pages containing the block device's contents. A brd page's ->index is
33 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
34 * with, the kernel's pagecache or buffer cache (which sit above our block
35 * device).
36 */
37struct brd_device {
38 int brd_number;
39
40 struct request_queue *brd_queue;
41 struct gendisk *brd_disk;
42 struct list_head brd_list;
43
44 /*
45 * Backing store of pages and lock to protect it. This is the contents
46 * of the block device.
47 */
48 spinlock_t brd_lock;
49 struct radix_tree_root brd_pages;
50};
51
52/*
53 * Look up and return a brd's page for a given sector.
54 */
55static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
56{
57 pgoff_t idx;
58 struct page *page;
59
60 /*
61 * The page lifetime is protected by the fact that we have opened the
62 * device node -- brd pages will never be deleted under us, so we
63 * don't need any further locking or refcounting.
64 *
65 * This is strictly true for the radix-tree nodes as well (ie. we
66 * don't actually need the rcu_read_lock()), however that is not a
67 * documented feature of the radix-tree API so it is better to be
68 * safe here (we don't have total exclusion from radix tree updates
69 * here, only deletes).
70 */
71 rcu_read_lock();
72 idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
73 page = radix_tree_lookup(&brd->brd_pages, idx);
74 rcu_read_unlock();
75
76 BUG_ON(page && page->index != idx);
77
78 return page;
79}
80
81/*
82 * Look up and return a brd's page for a given sector.
83 * If one does not exist, allocate an empty page, and insert that. Then
84 * return it.
85 */
86static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
87{
88 pgoff_t idx;
89 struct page *page;
90 gfp_t gfp_flags;
91
92 page = brd_lookup_page(brd, sector);
93 if (page)
94 return page;
95
96 /*
97 * Must use NOIO because we don't want to recurse back into the
98 * block or filesystem layers from page reclaim.
99 */
100 gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM;
101 page = alloc_page(gfp_flags);
102 if (!page)
103 return NULL;
104
105 if (radix_tree_preload(GFP_NOIO)) {
106 __free_page(page);
107 return NULL;
108 }
109
110 spin_lock(&brd->brd_lock);
111 idx = sector >> PAGE_SECTORS_SHIFT;
112 page->index = idx;
113 if (radix_tree_insert(&brd->brd_pages, idx, page)) {
114 __free_page(page);
115 page = radix_tree_lookup(&brd->brd_pages, idx);
116 BUG_ON(!page);
117 BUG_ON(page->index != idx);
118 }
119 spin_unlock(&brd->brd_lock);
120
121 radix_tree_preload_end();
122
123 return page;
124}
125
126/*
127 * Free all backing store pages and radix tree. This must only be called when
128 * there are no other users of the device.
129 */
130#define FREE_BATCH 16
131static void brd_free_pages(struct brd_device *brd)
132{
133 unsigned long pos = 0;
134 struct page *pages[FREE_BATCH];
135 int nr_pages;
136
137 do {
138 int i;
139
140 nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
141 (void **)pages, pos, FREE_BATCH);
142
143 for (i = 0; i < nr_pages; i++) {
144 void *ret;
145
146 BUG_ON(pages[i]->index < pos);
147 pos = pages[i]->index;
148 ret = radix_tree_delete(&brd->brd_pages, pos);
149 BUG_ON(!ret || ret != pages[i]);
150 __free_page(pages[i]);
151 }
152
153 pos++;
154
155 /*
156 * This assumes radix_tree_gang_lookup always returns as
157 * many pages as possible. If the radix-tree code changes,
158 * so will this have to.
159 */
160 } while (nr_pages == FREE_BATCH);
161}
162
163/*
164 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
165 */
166static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
167{
168 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
169 size_t copy;
170
171 copy = min_t(size_t, n, PAGE_SIZE - offset);
172 if (!brd_insert_page(brd, sector))
173 return -ENOSPC;
174 if (copy < n) {
175 sector += copy >> SECTOR_SHIFT;
176 if (!brd_insert_page(brd, sector))
177 return -ENOSPC;
178 }
179 return 0;
180}
181
182/*
183 * Copy n bytes from src to the brd starting at sector. Does not sleep.
184 */
185static void copy_to_brd(struct brd_device *brd, const void *src,
186 sector_t sector, size_t n)
187{
188 struct page *page;
189 void *dst;
190 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
191 size_t copy;
192
193 copy = min_t(size_t, n, PAGE_SIZE - offset);
194 page = brd_lookup_page(brd, sector);
195 BUG_ON(!page);
196
197 dst = kmap_atomic(page);
198 memcpy(dst + offset, src, copy);
199 kunmap_atomic(dst);
200
201 if (copy < n) {
202 src += copy;
203 sector += copy >> SECTOR_SHIFT;
204 copy = n - copy;
205 page = brd_lookup_page(brd, sector);
206 BUG_ON(!page);
207
208 dst = kmap_atomic(page);
209 memcpy(dst, src, copy);
210 kunmap_atomic(dst);
211 }
212}
213
214/*
215 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
216 */
217static void copy_from_brd(void *dst, struct brd_device *brd,
218 sector_t sector, size_t n)
219{
220 struct page *page;
221 void *src;
222 unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
223 size_t copy;
224
225 copy = min_t(size_t, n, PAGE_SIZE - offset);
226 page = brd_lookup_page(brd, sector);
227 if (page) {
228 src = kmap_atomic(page);
229 memcpy(dst, src + offset, copy);
230 kunmap_atomic(src);
231 } else
232 memset(dst, 0, copy);
233
234 if (copy < n) {
235 dst += copy;
236 sector += copy >> SECTOR_SHIFT;
237 copy = n - copy;
238 page = brd_lookup_page(brd, sector);
239 if (page) {
240 src = kmap_atomic(page);
241 memcpy(dst, src, copy);
242 kunmap_atomic(src);
243 } else
244 memset(dst, 0, copy);
245 }
246}
247
248/*
249 * Process a single bvec of a bio.
250 */
251static int brd_do_bvec(struct brd_device *brd, struct page *page,
252 unsigned int len, unsigned int off, unsigned int op,
253 sector_t sector)
254{
255 void *mem;
256 int err = 0;
257
258 if (op_is_write(op)) {
259 err = copy_to_brd_setup(brd, sector, len);
260 if (err)
261 goto out;
262 }
263
264 mem = kmap_atomic(page);
265 if (!op_is_write(op)) {
266 copy_from_brd(mem + off, brd, sector, len);
267 flush_dcache_page(page);
268 } else {
269 flush_dcache_page(page);
270 copy_to_brd(brd, mem + off, sector, len);
271 }
272 kunmap_atomic(mem);
273
274out:
275 return err;
276}
277
278static blk_qc_t brd_make_request(struct request_queue *q, struct bio *bio)
279{
280 struct brd_device *brd = bio->bi_disk->private_data;
281 struct bio_vec bvec;
282 sector_t sector;
283 struct bvec_iter iter;
284
285 sector = bio->bi_iter.bi_sector;
286 if (bio_end_sector(bio) > get_capacity(bio->bi_disk))
287 goto io_error;
288
289 bio_for_each_segment(bvec, bio, iter) {
290 unsigned int len = bvec.bv_len;
291 int err;
292
293 err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
294 bio_op(bio), sector);
295 if (err)
296 goto io_error;
297 sector += len >> SECTOR_SHIFT;
298 }
299
300 bio_endio(bio);
301 return BLK_QC_T_NONE;
302io_error:
303 bio_io_error(bio);
304 return BLK_QC_T_NONE;
305}
306
307static int brd_rw_page(struct block_device *bdev, sector_t sector,
308 struct page *page, unsigned int op)
309{
310 struct brd_device *brd = bdev->bd_disk->private_data;
311 int err;
312
313 if (PageTransHuge(page))
314 return -ENOTSUPP;
315 err = brd_do_bvec(brd, page, PAGE_SIZE, 0, op, sector);
316 page_endio(page, op_is_write(op), err);
317 return err;
318}
319
320static const struct block_device_operations brd_fops = {
321 .owner = THIS_MODULE,
322 .rw_page = brd_rw_page,
323};
324
325/*
326 * And now the modules code and kernel interface.
327 */
328static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
329module_param(rd_nr, int, 0444);
330MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
331
332unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
333module_param(rd_size, ulong, 0444);
334MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
335
336static int max_part = 1;
337module_param(max_part, int, 0444);
338MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
339
340MODULE_LICENSE("GPL");
341MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
342MODULE_ALIAS("rd");
343
344#ifndef MODULE
345/* Legacy boot options - nonmodular */
346static int __init ramdisk_size(char *str)
347{
348 rd_size = simple_strtol(str, NULL, 0);
349 return 1;
350}
351__setup("ramdisk_size=", ramdisk_size);
352#endif
353
354/*
355 * The device scheme is derived from loop.c. Keep them in synch where possible
356 * (should share code eventually).
357 */
358static LIST_HEAD(brd_devices);
359static DEFINE_MUTEX(brd_devices_mutex);
360
361static struct brd_device *brd_alloc(int i)
362{
363 struct brd_device *brd;
364 struct gendisk *disk;
365
366 brd = kzalloc(sizeof(*brd), GFP_KERNEL);
367 if (!brd)
368 goto out;
369 brd->brd_number = i;
370 spin_lock_init(&brd->brd_lock);
371 INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
372
373 brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
374 if (!brd->brd_queue)
375 goto out_free_dev;
376
377 blk_queue_make_request(brd->brd_queue, brd_make_request);
378 blk_queue_max_hw_sectors(brd->brd_queue, 1024);
379
380 /* This is so fdisk will align partitions on 4k, because of
381 * direct_access API needing 4k alignment, returning a PFN
382 * (This is only a problem on very small devices <= 4M,
383 * otherwise fdisk will align on 1M. Regardless this call
384 * is harmless)
385 */
386 blk_queue_physical_block_size(brd->brd_queue, PAGE_SIZE);
387 disk = brd->brd_disk = alloc_disk(max_part);
388 if (!disk)
389 goto out_free_queue;
390 disk->major = RAMDISK_MAJOR;
391 disk->first_minor = i * max_part;
392 disk->fops = &brd_fops;
393 disk->private_data = brd;
394 disk->flags = GENHD_FL_EXT_DEVT;
395 sprintf(disk->disk_name, "ram%d", i);
396 set_capacity(disk, rd_size * 2);
397 brd->brd_queue->backing_dev_info->capabilities |= BDI_CAP_SYNCHRONOUS_IO;
398
399 /* Tell the block layer that this is not a rotational device */
400 blk_queue_flag_set(QUEUE_FLAG_NONROT, brd->brd_queue);
401 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, brd->brd_queue);
402
403 return brd;
404
405out_free_queue:
406 blk_cleanup_queue(brd->brd_queue);
407out_free_dev:
408 kfree(brd);
409out:
410 return NULL;
411}
412
413static void brd_free(struct brd_device *brd)
414{
415 put_disk(brd->brd_disk);
416 blk_cleanup_queue(brd->brd_queue);
417 brd_free_pages(brd);
418 kfree(brd);
419}
420
421static struct brd_device *brd_init_one(int i, bool *new)
422{
423 struct brd_device *brd;
424
425 *new = false;
426 list_for_each_entry(brd, &brd_devices, brd_list) {
427 if (brd->brd_number == i)
428 goto out;
429 }
430
431 brd = brd_alloc(i);
432 if (brd) {
433 brd->brd_disk->queue = brd->brd_queue;
434 add_disk(brd->brd_disk);
435 list_add_tail(&brd->brd_list, &brd_devices);
436 }
437 *new = true;
438out:
439 return brd;
440}
441
442static void brd_del_one(struct brd_device *brd)
443{
444 list_del(&brd->brd_list);
445 del_gendisk(brd->brd_disk);
446 brd_free(brd);
447}
448
449static struct kobject *brd_probe(dev_t dev, int *part, void *data)
450{
451 struct brd_device *brd;
452 struct kobject *kobj;
453 bool new;
454
455 mutex_lock(&brd_devices_mutex);
456 brd = brd_init_one(MINOR(dev) / max_part, &new);
457 kobj = brd ? get_disk_and_module(brd->brd_disk) : NULL;
458 mutex_unlock(&brd_devices_mutex);
459
460 if (new)
461 *part = 0;
462
463 return kobj;
464}
465
466static int __init brd_init(void)
467{
468 struct brd_device *brd, *next;
469 int i;
470
471 /*
472 * brd module now has a feature to instantiate underlying device
473 * structure on-demand, provided that there is an access dev node.
474 *
475 * (1) if rd_nr is specified, create that many upfront. else
476 * it defaults to CONFIG_BLK_DEV_RAM_COUNT
477 * (2) User can further extend brd devices by create dev node themselves
478 * and have kernel automatically instantiate actual device
479 * on-demand. Example:
480 * mknod /path/devnod_name b 1 X # 1 is the rd major
481 * fdisk -l /path/devnod_name
482 * If (X / max_part) was not already created it will be created
483 * dynamically.
484 */
485
486 if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
487 return -EIO;
488
489 if (unlikely(!max_part))
490 max_part = 1;
491
492 for (i = 0; i < rd_nr; i++) {
493 brd = brd_alloc(i);
494 if (!brd)
495 goto out_free;
496 list_add_tail(&brd->brd_list, &brd_devices);
497 }
498
499 /* point of no return */
500
501 list_for_each_entry(brd, &brd_devices, brd_list) {
502 /*
503 * associate with queue just before adding disk for
504 * avoiding to mess up failure path
505 */
506 brd->brd_disk->queue = brd->brd_queue;
507 add_disk(brd->brd_disk);
508 }
509
510 blk_register_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS,
511 THIS_MODULE, brd_probe, NULL, NULL);
512
513 pr_info("brd: module loaded\n");
514 return 0;
515
516out_free:
517 list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
518 list_del(&brd->brd_list);
519 brd_free(brd);
520 }
521 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
522
523 pr_info("brd: module NOT loaded !!!\n");
524 return -ENOMEM;
525}
526
527static void __exit brd_exit(void)
528{
529 struct brd_device *brd, *next;
530
531 list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
532 brd_del_one(brd);
533
534 blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), 1UL << MINORBITS);
535 unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
536
537 pr_info("brd: module unloaded\n");
538}
539
540module_init(brd_init);
541module_exit(brd_exit);
542