blob: 3e246be74795cf4d1fa6d2ec2ce8550ebbb9450c [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52#include <linux/module.h>
53#include <linux/moduleparam.h>
54#include <linux/sched.h>
55#include <linux/fs.h>
56#include <linux/file.h>
57#include <linux/stat.h>
58#include <linux/errno.h>
59#include <linux/major.h>
60#include <linux/wait.h>
61#include <linux/blkdev.h>
62#include <linux/blkpg.h>
63#include <linux/init.h>
64#include <linux/swap.h>
65#include <linux/slab.h>
66#include <linux/compat.h>
67#include <linux/suspend.h>
68#include <linux/freezer.h>
69#include <linux/mutex.h>
70#include <linux/writeback.h>
71#include <linux/completion.h>
72#include <linux/highmem.h>
73#include <linux/kthread.h>
74#include <linux/splice.h>
75#include <linux/sysfs.h>
76#include <linux/miscdevice.h>
77#include <linux/falloc.h>
78#include <linux/uio.h>
79#include <linux/ioprio.h>
80
81#include "loop.h"
82
83#include <linux/uaccess.h>
84
85static DEFINE_IDR(loop_index_idr);
86static DEFINE_MUTEX(loop_ctl_mutex);
87
88static int max_part;
89static int part_shift;
90
91static int transfer_xor(struct loop_device *lo, int cmd,
92 struct page *raw_page, unsigned raw_off,
93 struct page *loop_page, unsigned loop_off,
94 int size, sector_t real_block)
95{
96 char *raw_buf = kmap_atomic(raw_page) + raw_off;
97 char *loop_buf = kmap_atomic(loop_page) + loop_off;
98 char *in, *out, *key;
99 int i, keysize;
100
101 if (cmd == READ) {
102 in = raw_buf;
103 out = loop_buf;
104 } else {
105 in = loop_buf;
106 out = raw_buf;
107 }
108
109 key = lo->lo_encrypt_key;
110 keysize = lo->lo_encrypt_key_size;
111 for (i = 0; i < size; i++)
112 *out++ = *in++ ^ key[(i & 511) % keysize];
113
114 kunmap_atomic(loop_buf);
115 kunmap_atomic(raw_buf);
116 cond_resched();
117 return 0;
118}
119
120static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
121{
122 if (unlikely(info->lo_encrypt_key_size <= 0))
123 return -EINVAL;
124 return 0;
125}
126
127static struct loop_func_table none_funcs = {
128 .number = LO_CRYPT_NONE,
129};
130
131static struct loop_func_table xor_funcs = {
132 .number = LO_CRYPT_XOR,
133 .transfer = transfer_xor,
134 .init = xor_init
135};
136
137/* xfer_funcs[0] is special - its release function is never called */
138static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
139 &none_funcs,
140 &xor_funcs
141};
142
143static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
144{
145 loff_t loopsize;
146
147 /* Compute loopsize in bytes */
148 loopsize = i_size_read(file->f_mapping->host);
149 if (offset > 0)
150 loopsize -= offset;
151 /* offset is beyond i_size, weird but possible */
152 if (loopsize < 0)
153 return 0;
154
155 if (sizelimit > 0 && sizelimit < loopsize)
156 loopsize = sizelimit;
157 /*
158 * Unfortunately, if we want to do I/O on the device,
159 * the number of 512-byte sectors has to fit into a sector_t.
160 */
161 return loopsize >> 9;
162}
163
164static loff_t get_loop_size(struct loop_device *lo, struct file *file)
165{
166 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
167}
168
169static void __loop_update_dio(struct loop_device *lo, bool dio)
170{
171 struct file *file = lo->lo_backing_file;
172 struct address_space *mapping = file->f_mapping;
173 struct inode *inode = mapping->host;
174 unsigned short sb_bsize = 0;
175 unsigned dio_align = 0;
176 bool use_dio;
177
178 if (inode->i_sb->s_bdev) {
179 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
180 dio_align = sb_bsize - 1;
181 }
182
183 /*
184 * We support direct I/O only if lo_offset is aligned with the
185 * logical I/O size of backing device, and the logical block
186 * size of loop is bigger than the backing device's and the loop
187 * needn't transform transfer.
188 *
189 * TODO: the above condition may be loosed in the future, and
190 * direct I/O may be switched runtime at that time because most
191 * of requests in sane applications should be PAGE_SIZE aligned
192 */
193 if (dio) {
194 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
195 !(lo->lo_offset & dio_align) &&
196 mapping->a_ops->direct_IO &&
197 !lo->transfer)
198 use_dio = true;
199 else
200 use_dio = false;
201 } else {
202 use_dio = false;
203 }
204
205 if (lo->use_dio == use_dio)
206 return;
207
208 /* flush dirty pages before changing direct IO */
209 vfs_fsync(file, 0);
210
211 /*
212 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
213 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
214 * will get updated by ioctl(LOOP_GET_STATUS)
215 */
216 blk_mq_freeze_queue(lo->lo_queue);
217 lo->use_dio = use_dio;
218 if (use_dio) {
219 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
220 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
221 } else {
222 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
223 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
224 }
225 blk_mq_unfreeze_queue(lo->lo_queue);
226}
227
228static int
229figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
230{
231 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
232 sector_t x = (sector_t)size;
233 struct block_device *bdev = lo->lo_device;
234
235 if (unlikely((loff_t)x != size))
236 return -EFBIG;
237 if (lo->lo_offset != offset)
238 lo->lo_offset = offset;
239 if (lo->lo_sizelimit != sizelimit)
240 lo->lo_sizelimit = sizelimit;
241 set_capacity(lo->lo_disk, x);
242 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
243 /* let user-space know about the new size */
244 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
245 return 0;
246}
247
248static inline int
249lo_do_transfer(struct loop_device *lo, int cmd,
250 struct page *rpage, unsigned roffs,
251 struct page *lpage, unsigned loffs,
252 int size, sector_t rblock)
253{
254 int ret;
255
256 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
257 if (likely(!ret))
258 return 0;
259
260 printk_ratelimited(KERN_ERR
261 "loop: Transfer error at byte offset %llu, length %i.\n",
262 (unsigned long long)rblock << 9, size);
263 return ret;
264}
265
266static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
267{
268 struct iov_iter i;
269 ssize_t bw;
270
271 iov_iter_bvec(&i, ITER_BVEC | WRITE, bvec, 1, bvec->bv_len);
272
273 file_start_write(file);
274 bw = vfs_iter_write(file, &i, ppos, 0);
275 file_end_write(file);
276
277 if (likely(bw == bvec->bv_len))
278 return 0;
279
280 printk_ratelimited(KERN_ERR
281 "loop: Write error at byte offset %llu, length %i.\n",
282 (unsigned long long)*ppos, bvec->bv_len);
283 if (bw >= 0)
284 bw = -EIO;
285 return bw;
286}
287
288static int lo_write_simple(struct loop_device *lo, struct request *rq,
289 loff_t pos)
290{
291 struct bio_vec bvec;
292 struct req_iterator iter;
293 int ret = 0;
294
295 rq_for_each_segment(bvec, rq, iter) {
296 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
297 if (ret < 0)
298 break;
299 cond_resched();
300 }
301
302 return ret;
303}
304
305/*
306 * This is the slow, transforming version that needs to double buffer the
307 * data as it cannot do the transformations in place without having direct
308 * access to the destination pages of the backing file.
309 */
310static int lo_write_transfer(struct loop_device *lo, struct request *rq,
311 loff_t pos)
312{
313 struct bio_vec bvec, b;
314 struct req_iterator iter;
315 struct page *page;
316 int ret = 0;
317
318 page = alloc_page(GFP_NOIO);
319 if (unlikely(!page))
320 return -ENOMEM;
321
322 rq_for_each_segment(bvec, rq, iter) {
323 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
324 bvec.bv_offset, bvec.bv_len, pos >> 9);
325 if (unlikely(ret))
326 break;
327
328 b.bv_page = page;
329 b.bv_offset = 0;
330 b.bv_len = bvec.bv_len;
331 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
332 if (ret < 0)
333 break;
334 }
335
336 __free_page(page);
337 return ret;
338}
339
340static int lo_read_simple(struct loop_device *lo, struct request *rq,
341 loff_t pos)
342{
343 struct bio_vec bvec;
344 struct req_iterator iter;
345 struct iov_iter i;
346 ssize_t len;
347
348 rq_for_each_segment(bvec, rq, iter) {
349 iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
350 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
351 if (len < 0)
352 return len;
353
354 flush_dcache_page(bvec.bv_page);
355
356 if (len != bvec.bv_len) {
357 struct bio *bio;
358
359 __rq_for_each_bio(bio, rq)
360 zero_fill_bio(bio);
361 break;
362 }
363 cond_resched();
364 }
365
366 return 0;
367}
368
369static int lo_read_transfer(struct loop_device *lo, struct request *rq,
370 loff_t pos)
371{
372 struct bio_vec bvec, b;
373 struct req_iterator iter;
374 struct iov_iter i;
375 struct page *page;
376 ssize_t len;
377 int ret = 0;
378
379 page = alloc_page(GFP_NOIO);
380 if (unlikely(!page))
381 return -ENOMEM;
382
383 rq_for_each_segment(bvec, rq, iter) {
384 loff_t offset = pos;
385
386 b.bv_page = page;
387 b.bv_offset = 0;
388 b.bv_len = bvec.bv_len;
389
390 iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
391 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
392 if (len < 0) {
393 ret = len;
394 goto out_free_page;
395 }
396
397 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
398 bvec.bv_offset, len, offset >> 9);
399 if (ret)
400 goto out_free_page;
401
402 flush_dcache_page(bvec.bv_page);
403
404 if (len != bvec.bv_len) {
405 struct bio *bio;
406
407 __rq_for_each_bio(bio, rq)
408 zero_fill_bio(bio);
409 break;
410 }
411 }
412
413 ret = 0;
414out_free_page:
415 __free_page(page);
416 return ret;
417}
418
419static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
420 int mode)
421{
422 /*
423 * We use fallocate to manipulate the space mappings used by the image
424 * a.k.a. discard/zerorange. However we do not support this if
425 * encryption is enabled, because it may give an attacker useful
426 * information.
427 */
428 struct file *file = lo->lo_backing_file;
429 struct request_queue *q = lo->lo_queue;
430 int ret;
431
432 mode |= FALLOC_FL_KEEP_SIZE;
433
434 if (!blk_queue_discard(q)) {
435 ret = -EOPNOTSUPP;
436 goto out;
437 }
438
439 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
440 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
441 ret = -EIO;
442 out:
443 return ret;
444}
445
446static int lo_req_flush(struct loop_device *lo, struct request *rq)
447{
448 struct file *file = lo->lo_backing_file;
449 int ret = vfs_fsync(file, 0);
450 if (unlikely(ret && ret != -EINVAL))
451 ret = -EIO;
452
453 return ret;
454}
455
456static void lo_complete_rq(struct request *rq)
457{
458 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
459 blk_status_t ret = BLK_STS_OK;
460
461 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
462 req_op(rq) != REQ_OP_READ) {
463 if (cmd->ret < 0)
464 ret = errno_to_blk_status(cmd->ret);
465 goto end_io;
466 }
467
468 /*
469 * Short READ - if we got some data, advance our request and
470 * retry it. If we got no data, end the rest with EIO.
471 */
472 if (cmd->ret) {
473 blk_update_request(rq, BLK_STS_OK, cmd->ret);
474 cmd->ret = 0;
475 blk_mq_requeue_request(rq, true);
476 } else {
477 if (cmd->use_aio) {
478 struct bio *bio = rq->bio;
479
480 while (bio) {
481 zero_fill_bio(bio);
482 bio = bio->bi_next;
483 }
484 }
485 ret = BLK_STS_IOERR;
486end_io:
487 blk_mq_end_request(rq, ret);
488 }
489}
490
491static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
492{
493 struct request *rq = blk_mq_rq_from_pdu(cmd);
494
495 if (!atomic_dec_and_test(&cmd->ref))
496 return;
497 kfree(cmd->bvec);
498 cmd->bvec = NULL;
499 blk_mq_complete_request(rq);
500}
501
502static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
503{
504 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
505
506 if (cmd->css)
507 css_put(cmd->css);
508 cmd->ret = ret;
509 lo_rw_aio_do_completion(cmd);
510}
511
512static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
513 loff_t pos, bool rw)
514{
515 struct iov_iter iter;
516 struct bio_vec *bvec;
517 struct request *rq = blk_mq_rq_from_pdu(cmd);
518 struct bio *bio = rq->bio;
519 struct file *file = lo->lo_backing_file;
520 unsigned int offset;
521 int segments = 0;
522 int ret;
523
524 if (rq->bio != rq->biotail) {
525 struct req_iterator iter;
526 struct bio_vec tmp;
527
528 __rq_for_each_bio(bio, rq)
529 segments += bio_segments(bio);
530 bvec = kmalloc_array(segments, sizeof(struct bio_vec),
531 GFP_NOIO);
532 if (!bvec)
533 return -EIO;
534 cmd->bvec = bvec;
535
536 /*
537 * The bios of the request may be started from the middle of
538 * the 'bvec' because of bio splitting, so we can't directly
539 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
540 * API will take care of all details for us.
541 */
542 rq_for_each_segment(tmp, rq, iter) {
543 *bvec = tmp;
544 bvec++;
545 }
546 bvec = cmd->bvec;
547 offset = 0;
548 } else {
549 /*
550 * Same here, this bio may be started from the middle of the
551 * 'bvec' because of bio splitting, so offset from the bvec
552 * must be passed to iov iterator
553 */
554 offset = bio->bi_iter.bi_bvec_done;
555 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
556 segments = bio_segments(bio);
557 }
558 atomic_set(&cmd->ref, 2);
559
560 iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
561 segments, blk_rq_bytes(rq));
562 iter.iov_offset = offset;
563
564 cmd->iocb.ki_pos = pos;
565 cmd->iocb.ki_filp = file;
566 cmd->iocb.ki_complete = lo_rw_aio_complete;
567 cmd->iocb.ki_flags = IOCB_DIRECT;
568 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
569 if (cmd->css)
570 kthread_associate_blkcg(cmd->css);
571
572 if (rw == WRITE)
573 ret = call_write_iter(file, &cmd->iocb, &iter);
574 else
575 ret = call_read_iter(file, &cmd->iocb, &iter);
576
577 lo_rw_aio_do_completion(cmd);
578 kthread_associate_blkcg(NULL);
579
580 if (ret != -EIOCBQUEUED)
581 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
582 return 0;
583}
584
585static int do_req_filebacked(struct loop_device *lo, struct request *rq)
586{
587 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
588 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
589
590 /*
591 * lo_write_simple and lo_read_simple should have been covered
592 * by io submit style function like lo_rw_aio(), one blocker
593 * is that lo_read_simple() need to call flush_dcache_page after
594 * the page is written from kernel, and it isn't easy to handle
595 * this in io submit style function which submits all segments
596 * of the req at one time. And direct read IO doesn't need to
597 * run flush_dcache_page().
598 */
599 switch (req_op(rq)) {
600 case REQ_OP_FLUSH:
601 return lo_req_flush(lo, rq);
602 case REQ_OP_WRITE_ZEROES:
603 /*
604 * If the caller doesn't want deallocation, call zeroout to
605 * write zeroes the range. Otherwise, punch them out.
606 */
607 return lo_fallocate(lo, rq, pos,
608 (rq->cmd_flags & REQ_NOUNMAP) ?
609 FALLOC_FL_ZERO_RANGE :
610 FALLOC_FL_PUNCH_HOLE);
611 case REQ_OP_DISCARD:
612 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
613 case REQ_OP_WRITE:
614 if (lo->transfer)
615 return lo_write_transfer(lo, rq, pos);
616 else if (cmd->use_aio)
617 return lo_rw_aio(lo, cmd, pos, WRITE);
618 else
619 return lo_write_simple(lo, rq, pos);
620 case REQ_OP_READ:
621 if (lo->transfer)
622 return lo_read_transfer(lo, rq, pos);
623 else if (cmd->use_aio)
624 return lo_rw_aio(lo, cmd, pos, READ);
625 else
626 return lo_read_simple(lo, rq, pos);
627 default:
628 WARN_ON_ONCE(1);
629 return -EIO;
630 break;
631 }
632}
633
634static inline void loop_update_dio(struct loop_device *lo)
635{
636 __loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
637 lo->use_dio);
638}
639
640static void loop_reread_partitions(struct loop_device *lo,
641 struct block_device *bdev)
642{
643 int rc;
644
645 rc = blkdev_reread_part(bdev);
646 if (rc)
647 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
648 __func__, lo->lo_number, lo->lo_file_name, rc);
649}
650
651static inline int is_loop_device(struct file *file)
652{
653 struct inode *i = file->f_mapping->host;
654
655 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
656}
657
658static int loop_validate_file(struct file *file, struct block_device *bdev)
659{
660 struct inode *inode = file->f_mapping->host;
661 struct file *f = file;
662
663 /* Avoid recursion */
664 while (is_loop_device(f)) {
665 struct loop_device *l;
666
667 if (f->f_mapping->host->i_bdev == bdev)
668 return -EBADF;
669
670 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
671 if (l->lo_state != Lo_bound) {
672 return -EINVAL;
673 }
674 f = l->lo_backing_file;
675 }
676 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
677 return -EINVAL;
678 return 0;
679}
680
681/*
682 * loop_change_fd switched the backing store of a loopback device to
683 * a new file. This is useful for operating system installers to free up
684 * the original file and in High Availability environments to switch to
685 * an alternative location for the content in case of server meltdown.
686 * This can only work if the loop device is used read-only, and if the
687 * new backing store is the same size and type as the old backing store.
688 */
689static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
690 unsigned int arg)
691{
692 struct file *file = NULL, *old_file;
693 int error;
694 bool partscan;
695
696 error = mutex_lock_killable(&loop_ctl_mutex);
697 if (error)
698 return error;
699 error = -ENXIO;
700 if (lo->lo_state != Lo_bound)
701 goto out_err;
702
703 /* the loop device has to be read-only */
704 error = -EINVAL;
705 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
706 goto out_err;
707
708 error = -EBADF;
709 file = fget(arg);
710 if (!file)
711 goto out_err;
712
713 error = loop_validate_file(file, bdev);
714 if (error)
715 goto out_err;
716
717 old_file = lo->lo_backing_file;
718
719 error = -EINVAL;
720
721 /* size of the new backing store needs to be the same */
722 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
723 goto out_err;
724
725 /* and ... switch */
726 blk_mq_freeze_queue(lo->lo_queue);
727 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
728 lo->lo_backing_file = file;
729 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
730 mapping_set_gfp_mask(file->f_mapping,
731 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
732 loop_update_dio(lo);
733 blk_mq_unfreeze_queue(lo->lo_queue);
734 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
735 mutex_unlock(&loop_ctl_mutex);
736 /*
737 * We must drop file reference outside of loop_ctl_mutex as dropping
738 * the file ref can take bd_mutex which creates circular locking
739 * dependency.
740 */
741 fput(old_file);
742 if (partscan)
743 loop_reread_partitions(lo, bdev);
744 return 0;
745
746out_err:
747 mutex_unlock(&loop_ctl_mutex);
748 if (file)
749 fput(file);
750 return error;
751}
752
753/* loop sysfs attributes */
754
755static ssize_t loop_attr_show(struct device *dev, char *page,
756 ssize_t (*callback)(struct loop_device *, char *))
757{
758 struct gendisk *disk = dev_to_disk(dev);
759 struct loop_device *lo = disk->private_data;
760
761 return callback(lo, page);
762}
763
764#define LOOP_ATTR_RO(_name) \
765static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
766static ssize_t loop_attr_do_show_##_name(struct device *d, \
767 struct device_attribute *attr, char *b) \
768{ \
769 return loop_attr_show(d, b, loop_attr_##_name##_show); \
770} \
771static struct device_attribute loop_attr_##_name = \
772 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
773
774static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
775{
776 ssize_t ret;
777 char *p = NULL;
778
779 spin_lock_irq(&lo->lo_lock);
780 if (lo->lo_backing_file)
781 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
782 spin_unlock_irq(&lo->lo_lock);
783
784 if (IS_ERR_OR_NULL(p))
785 ret = PTR_ERR(p);
786 else {
787 ret = strlen(p);
788 memmove(buf, p, ret);
789 buf[ret++] = '\n';
790 buf[ret] = 0;
791 }
792
793 return ret;
794}
795
796static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
797{
798 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
799}
800
801static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
802{
803 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
804}
805
806static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
807{
808 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
809
810 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
811}
812
813static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
814{
815 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
816
817 return sprintf(buf, "%s\n", partscan ? "1" : "0");
818}
819
820static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
821{
822 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
823
824 return sprintf(buf, "%s\n", dio ? "1" : "0");
825}
826
827LOOP_ATTR_RO(backing_file);
828LOOP_ATTR_RO(offset);
829LOOP_ATTR_RO(sizelimit);
830LOOP_ATTR_RO(autoclear);
831LOOP_ATTR_RO(partscan);
832LOOP_ATTR_RO(dio);
833
834static struct attribute *loop_attrs[] = {
835 &loop_attr_backing_file.attr,
836 &loop_attr_offset.attr,
837 &loop_attr_sizelimit.attr,
838 &loop_attr_autoclear.attr,
839 &loop_attr_partscan.attr,
840 &loop_attr_dio.attr,
841 NULL,
842};
843
844static struct attribute_group loop_attribute_group = {
845 .name = "loop",
846 .attrs= loop_attrs,
847};
848
849static void loop_sysfs_init(struct loop_device *lo)
850{
851 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
852 &loop_attribute_group);
853}
854
855static void loop_sysfs_exit(struct loop_device *lo)
856{
857 if (lo->sysfs_inited)
858 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
859 &loop_attribute_group);
860}
861
862static void loop_config_discard(struct loop_device *lo)
863{
864 struct file *file = lo->lo_backing_file;
865 struct inode *inode = file->f_mapping->host;
866 struct request_queue *q = lo->lo_queue;
867 struct request_queue *backingq;
868
869 /*
870 * If the backing device is a block device, mirror its zeroing
871 * capability. REQ_OP_DISCARD translates to a zero-out even when backed
872 * by block devices to keep consistent behavior with file-backed loop
873 * devices.
874 */
875 if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
876 backingq = bdev_get_queue(inode->i_bdev);
877 blk_queue_max_discard_sectors(q,
878 backingq->limits.max_write_zeroes_sectors);
879
880 blk_queue_max_write_zeroes_sectors(q,
881 backingq->limits.max_write_zeroes_sectors);
882
883 /*
884 * We use punch hole to reclaim the free space used by the
885 * image a.k.a. discard. However we do not support discard if
886 * encryption is enabled, because it may give an attacker
887 * useful information.
888 */
889 } else if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
890 q->limits.discard_granularity = 0;
891 q->limits.discard_alignment = 0;
892 blk_queue_max_discard_sectors(q, 0);
893 blk_queue_max_write_zeroes_sectors(q, 0);
894
895 } else {
896 q->limits.discard_granularity = inode->i_sb->s_blocksize;
897 q->limits.discard_alignment = 0;
898
899 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
900 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
901 }
902
903 if (q->limits.max_write_zeroes_sectors)
904 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
905 else
906 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
907}
908
909static void loop_unprepare_queue(struct loop_device *lo)
910{
911 kthread_flush_worker(&lo->worker);
912 kthread_stop(lo->worker_task);
913}
914
915static int loop_kthread_worker_fn(void *worker_ptr)
916{
917 current->flags |= PF_LESS_THROTTLE | PF_MEMALLOC_NOIO;
918 return kthread_worker_fn(worker_ptr);
919}
920
921static int loop_prepare_queue(struct loop_device *lo)
922{
923 kthread_init_worker(&lo->worker);
924 lo->worker_task = kthread_run(loop_kthread_worker_fn,
925 &lo->worker, "loop%d", lo->lo_number);
926 if (IS_ERR(lo->worker_task))
927 return -ENOMEM;
928 set_user_nice(lo->worker_task, MIN_NICE);
929 return 0;
930}
931
932static int loop_set_fd(struct loop_device *lo, fmode_t mode,
933 struct block_device *bdev, unsigned int arg)
934{
935 struct file *file;
936 struct inode *inode;
937 struct address_space *mapping;
938 int lo_flags = 0;
939 int error;
940 loff_t size;
941 bool partscan;
942
943 /* This is safe, since we have a reference from open(). */
944 __module_get(THIS_MODULE);
945
946 error = -EBADF;
947 file = fget(arg);
948 if (!file)
949 goto out;
950
951 error = mutex_lock_killable(&loop_ctl_mutex);
952 if (error)
953 goto out_putf;
954
955 error = -EBUSY;
956 if (lo->lo_state != Lo_unbound)
957 goto out_unlock;
958
959 error = loop_validate_file(file, bdev);
960 if (error)
961 goto out_unlock;
962
963 mapping = file->f_mapping;
964 inode = mapping->host;
965
966 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
967 !file->f_op->write_iter)
968 lo_flags |= LO_FLAGS_READ_ONLY;
969
970 error = -EFBIG;
971 size = get_loop_size(lo, file);
972 if ((loff_t)(sector_t)size != size)
973 goto out_unlock;
974 error = loop_prepare_queue(lo);
975 if (error)
976 goto out_unlock;
977
978 error = 0;
979
980 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
981
982 lo->use_dio = false;
983 lo->lo_device = bdev;
984 lo->lo_flags = lo_flags;
985 lo->lo_backing_file = file;
986 lo->transfer = NULL;
987 lo->ioctl = NULL;
988 lo->lo_sizelimit = 0;
989 lo->old_gfp_mask = mapping_gfp_mask(mapping);
990 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
991
992 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
993 blk_queue_write_cache(lo->lo_queue, true, false);
994
995 loop_update_dio(lo);
996 set_capacity(lo->lo_disk, size);
997 bd_set_size(bdev, size << 9);
998 loop_sysfs_init(lo);
999 /* let user-space know about the new size */
1000 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1001
1002 set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
1003 block_size(inode->i_bdev) : PAGE_SIZE);
1004
1005 lo->lo_state = Lo_bound;
1006 if (part_shift)
1007 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1008 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1009
1010 /* Grab the block_device to prevent its destruction after we
1011 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1012 */
1013 bdgrab(bdev);
1014 mutex_unlock(&loop_ctl_mutex);
1015 if (partscan)
1016 loop_reread_partitions(lo, bdev);
1017 return 0;
1018
1019out_unlock:
1020 mutex_unlock(&loop_ctl_mutex);
1021out_putf:
1022 fput(file);
1023out:
1024 /* This is safe: open() is still holding a reference. */
1025 module_put(THIS_MODULE);
1026 return error;
1027}
1028
1029static int
1030loop_release_xfer(struct loop_device *lo)
1031{
1032 int err = 0;
1033 struct loop_func_table *xfer = lo->lo_encryption;
1034
1035 if (xfer) {
1036 if (xfer->release)
1037 err = xfer->release(lo);
1038 lo->transfer = NULL;
1039 lo->lo_encryption = NULL;
1040 module_put(xfer->owner);
1041 }
1042 return err;
1043}
1044
1045static int
1046loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1047 const struct loop_info64 *i)
1048{
1049 int err = 0;
1050
1051 if (xfer) {
1052 struct module *owner = xfer->owner;
1053
1054 if (!try_module_get(owner))
1055 return -EINVAL;
1056 if (xfer->init)
1057 err = xfer->init(lo, i);
1058 if (err)
1059 module_put(owner);
1060 else
1061 lo->lo_encryption = xfer;
1062 }
1063 return err;
1064}
1065
1066static int __loop_clr_fd(struct loop_device *lo, bool release)
1067{
1068 struct file *filp = NULL;
1069 gfp_t gfp = lo->old_gfp_mask;
1070 struct block_device *bdev = lo->lo_device;
1071 int err = 0;
1072 bool partscan = false;
1073 int lo_number;
1074
1075 mutex_lock(&loop_ctl_mutex);
1076 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1077 err = -ENXIO;
1078 goto out_unlock;
1079 }
1080
1081 filp = lo->lo_backing_file;
1082 if (filp == NULL) {
1083 err = -EINVAL;
1084 goto out_unlock;
1085 }
1086
1087 /* freeze request queue during the transition */
1088 blk_mq_freeze_queue(lo->lo_queue);
1089
1090 spin_lock_irq(&lo->lo_lock);
1091 lo->lo_backing_file = NULL;
1092 spin_unlock_irq(&lo->lo_lock);
1093
1094 loop_release_xfer(lo);
1095 lo->transfer = NULL;
1096 lo->ioctl = NULL;
1097 lo->lo_device = NULL;
1098 lo->lo_encryption = NULL;
1099 lo->lo_offset = 0;
1100 lo->lo_sizelimit = 0;
1101 lo->lo_encrypt_key_size = 0;
1102 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1103 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1104 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1105 blk_queue_logical_block_size(lo->lo_queue, 512);
1106 blk_queue_physical_block_size(lo->lo_queue, 512);
1107 blk_queue_io_min(lo->lo_queue, 512);
1108 if (bdev) {
1109 bdput(bdev);
1110 invalidate_bdev(bdev);
1111 bdev->bd_inode->i_mapping->wb_err = 0;
1112 }
1113 set_capacity(lo->lo_disk, 0);
1114 loop_sysfs_exit(lo);
1115 if (bdev) {
1116 bd_set_size(bdev, 0);
1117 /* let user-space know about this change */
1118 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1119 }
1120 mapping_set_gfp_mask(filp->f_mapping, gfp);
1121 /* This is safe: open() is still holding a reference. */
1122 module_put(THIS_MODULE);
1123 blk_mq_unfreeze_queue(lo->lo_queue);
1124
1125 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1126 lo_number = lo->lo_number;
1127 loop_unprepare_queue(lo);
1128out_unlock:
1129 mutex_unlock(&loop_ctl_mutex);
1130 if (partscan) {
1131 /*
1132 * bd_mutex has been held already in release path, so don't
1133 * acquire it if this function is called in such case.
1134 *
1135 * If the reread partition isn't from release path, lo_refcnt
1136 * must be at least one and it can only become zero when the
1137 * current holder is released.
1138 */
1139 if (release)
1140 err = __blkdev_reread_part(bdev);
1141 else
1142 err = blkdev_reread_part(bdev);
1143 if (err)
1144 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1145 __func__, lo_number, err);
1146 /* Device is gone, no point in returning error */
1147 err = 0;
1148 }
1149
1150 /*
1151 * lo->lo_state is set to Lo_unbound here after above partscan has
1152 * finished.
1153 *
1154 * There cannot be anybody else entering __loop_clr_fd() as
1155 * lo->lo_backing_file is already cleared and Lo_rundown state
1156 * protects us from all the other places trying to change the 'lo'
1157 * device.
1158 */
1159 mutex_lock(&loop_ctl_mutex);
1160 lo->lo_flags = 0;
1161 if (!part_shift)
1162 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1163 lo->lo_state = Lo_unbound;
1164 mutex_unlock(&loop_ctl_mutex);
1165
1166 /*
1167 * Need not hold loop_ctl_mutex to fput backing file.
1168 * Calling fput holding loop_ctl_mutex triggers a circular
1169 * lock dependency possibility warning as fput can take
1170 * bd_mutex which is usually taken before loop_ctl_mutex.
1171 */
1172 if (filp)
1173 fput(filp);
1174 return err;
1175}
1176
1177static int loop_clr_fd(struct loop_device *lo)
1178{
1179 int err;
1180
1181 err = mutex_lock_killable(&loop_ctl_mutex);
1182 if (err)
1183 return err;
1184 if (lo->lo_state != Lo_bound) {
1185 mutex_unlock(&loop_ctl_mutex);
1186 return -ENXIO;
1187 }
1188 /*
1189 * If we've explicitly asked to tear down the loop device,
1190 * and it has an elevated reference count, set it for auto-teardown when
1191 * the last reference goes away. This stops $!~#$@ udev from
1192 * preventing teardown because it decided that it needs to run blkid on
1193 * the loopback device whenever they appear. xfstests is notorious for
1194 * failing tests because blkid via udev races with a losetup
1195 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1196 * command to fail with EBUSY.
1197 */
1198 if (atomic_read(&lo->lo_refcnt) > 1) {
1199 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1200 mutex_unlock(&loop_ctl_mutex);
1201 return 0;
1202 }
1203 lo->lo_state = Lo_rundown;
1204 mutex_unlock(&loop_ctl_mutex);
1205
1206 return __loop_clr_fd(lo, false);
1207}
1208
1209static int
1210loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1211{
1212 int err;
1213 struct loop_func_table *xfer;
1214 kuid_t uid = current_uid();
1215 struct block_device *bdev;
1216 bool partscan = false;
1217
1218 err = mutex_lock_killable(&loop_ctl_mutex);
1219 if (err)
1220 return err;
1221 if (lo->lo_encrypt_key_size &&
1222 !uid_eq(lo->lo_key_owner, uid) &&
1223 !capable(CAP_SYS_ADMIN)) {
1224 err = -EPERM;
1225 goto out_unlock;
1226 }
1227 if (lo->lo_state != Lo_bound) {
1228 err = -ENXIO;
1229 goto out_unlock;
1230 }
1231 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) {
1232 err = -EINVAL;
1233 goto out_unlock;
1234 }
1235
1236 if (lo->lo_offset != info->lo_offset ||
1237 lo->lo_sizelimit != info->lo_sizelimit) {
1238 sync_blockdev(lo->lo_device);
1239 kill_bdev(lo->lo_device);
1240 }
1241
1242 /* I/O need to be drained during transfer transition */
1243 blk_mq_freeze_queue(lo->lo_queue);
1244
1245 err = loop_release_xfer(lo);
1246 if (err)
1247 goto out_unfreeze;
1248
1249 if (info->lo_encrypt_type) {
1250 unsigned int type = info->lo_encrypt_type;
1251
1252 if (type >= MAX_LO_CRYPT) {
1253 err = -EINVAL;
1254 goto out_unfreeze;
1255 }
1256 xfer = xfer_funcs[type];
1257 if (xfer == NULL) {
1258 err = -EINVAL;
1259 goto out_unfreeze;
1260 }
1261 } else
1262 xfer = NULL;
1263
1264 err = loop_init_xfer(lo, xfer, info);
1265 if (err)
1266 goto out_unfreeze;
1267
1268 if (lo->lo_offset != info->lo_offset ||
1269 lo->lo_sizelimit != info->lo_sizelimit) {
1270 /* kill_bdev should have truncated all the pages */
1271 if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1272 err = -EAGAIN;
1273 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1274 __func__, lo->lo_number, lo->lo_file_name,
1275 lo->lo_device->bd_inode->i_mapping->nrpages);
1276 goto out_unfreeze;
1277 }
1278 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1279 err = -EFBIG;
1280 goto out_unfreeze;
1281 }
1282 }
1283
1284 loop_config_discard(lo);
1285
1286 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1287 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1288 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1289 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1290
1291 if (!xfer)
1292 xfer = &none_funcs;
1293 lo->transfer = xfer->transfer;
1294 lo->ioctl = xfer->ioctl;
1295
1296 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1297 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1298 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1299
1300 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1301 lo->lo_init[0] = info->lo_init[0];
1302 lo->lo_init[1] = info->lo_init[1];
1303 if (info->lo_encrypt_key_size) {
1304 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1305 info->lo_encrypt_key_size);
1306 lo->lo_key_owner = uid;
1307 }
1308
1309 /* update dio if lo_offset or transfer is changed */
1310 __loop_update_dio(lo, lo->use_dio);
1311
1312out_unfreeze:
1313 blk_mq_unfreeze_queue(lo->lo_queue);
1314
1315 if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1316 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1317 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1318 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1319 bdev = lo->lo_device;
1320 partscan = true;
1321 }
1322out_unlock:
1323 mutex_unlock(&loop_ctl_mutex);
1324 if (partscan)
1325 loop_reread_partitions(lo, bdev);
1326
1327 return err;
1328}
1329
1330static int
1331loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1332{
1333 struct path path;
1334 struct kstat stat;
1335 int ret;
1336
1337 ret = mutex_lock_killable(&loop_ctl_mutex);
1338 if (ret)
1339 return ret;
1340 if (lo->lo_state != Lo_bound) {
1341 mutex_unlock(&loop_ctl_mutex);
1342 return -ENXIO;
1343 }
1344
1345 memset(info, 0, sizeof(*info));
1346 info->lo_number = lo->lo_number;
1347 info->lo_offset = lo->lo_offset;
1348 info->lo_sizelimit = lo->lo_sizelimit;
1349 info->lo_flags = lo->lo_flags;
1350 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1351 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1352 info->lo_encrypt_type =
1353 lo->lo_encryption ? lo->lo_encryption->number : 0;
1354 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1355 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1356 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1357 lo->lo_encrypt_key_size);
1358 }
1359
1360 /* Drop loop_ctl_mutex while we call into the filesystem. */
1361 path = lo->lo_backing_file->f_path;
1362 path_get(&path);
1363 mutex_unlock(&loop_ctl_mutex);
1364 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1365 if (!ret) {
1366 info->lo_device = huge_encode_dev(stat.dev);
1367 info->lo_inode = stat.ino;
1368 info->lo_rdevice = huge_encode_dev(stat.rdev);
1369 }
1370 path_put(&path);
1371 return ret;
1372}
1373
1374static void
1375loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1376{
1377 memset(info64, 0, sizeof(*info64));
1378 info64->lo_number = info->lo_number;
1379 info64->lo_device = info->lo_device;
1380 info64->lo_inode = info->lo_inode;
1381 info64->lo_rdevice = info->lo_rdevice;
1382 info64->lo_offset = info->lo_offset;
1383 info64->lo_sizelimit = 0;
1384 info64->lo_encrypt_type = info->lo_encrypt_type;
1385 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1386 info64->lo_flags = info->lo_flags;
1387 info64->lo_init[0] = info->lo_init[0];
1388 info64->lo_init[1] = info->lo_init[1];
1389 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1390 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1391 else
1392 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1393 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1394}
1395
1396static int
1397loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1398{
1399 memset(info, 0, sizeof(*info));
1400 info->lo_number = info64->lo_number;
1401 info->lo_device = info64->lo_device;
1402 info->lo_inode = info64->lo_inode;
1403 info->lo_rdevice = info64->lo_rdevice;
1404 info->lo_offset = info64->lo_offset;
1405 info->lo_encrypt_type = info64->lo_encrypt_type;
1406 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1407 info->lo_flags = info64->lo_flags;
1408 info->lo_init[0] = info64->lo_init[0];
1409 info->lo_init[1] = info64->lo_init[1];
1410 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1411 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1412 else
1413 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1414 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1415
1416 /* error in case values were truncated */
1417 if (info->lo_device != info64->lo_device ||
1418 info->lo_rdevice != info64->lo_rdevice ||
1419 info->lo_inode != info64->lo_inode ||
1420 info->lo_offset != info64->lo_offset)
1421 return -EOVERFLOW;
1422
1423 return 0;
1424}
1425
1426static int
1427loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1428{
1429 struct loop_info info;
1430 struct loop_info64 info64;
1431
1432 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1433 return -EFAULT;
1434 loop_info64_from_old(&info, &info64);
1435 return loop_set_status(lo, &info64);
1436}
1437
1438static int
1439loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1440{
1441 struct loop_info64 info64;
1442
1443 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1444 return -EFAULT;
1445 return loop_set_status(lo, &info64);
1446}
1447
1448static int
1449loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1450 struct loop_info info;
1451 struct loop_info64 info64;
1452 int err;
1453
1454 if (!arg)
1455 return -EINVAL;
1456 err = loop_get_status(lo, &info64);
1457 if (!err)
1458 err = loop_info64_to_old(&info64, &info);
1459 if (!err && copy_to_user(arg, &info, sizeof(info)))
1460 err = -EFAULT;
1461
1462 return err;
1463}
1464
1465static int
1466loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1467 struct loop_info64 info64;
1468 int err;
1469
1470 if (!arg)
1471 return -EINVAL;
1472 err = loop_get_status(lo, &info64);
1473 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1474 err = -EFAULT;
1475
1476 return err;
1477}
1478
1479static int loop_set_capacity(struct loop_device *lo)
1480{
1481 if (unlikely(lo->lo_state != Lo_bound))
1482 return -ENXIO;
1483
1484 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1485}
1486
1487static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1488{
1489 int error = -ENXIO;
1490 if (lo->lo_state != Lo_bound)
1491 goto out;
1492
1493 __loop_update_dio(lo, !!arg);
1494 if (lo->use_dio == !!arg)
1495 return 0;
1496 error = -EINVAL;
1497 out:
1498 return error;
1499}
1500
1501static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1502{
1503 int err = 0;
1504
1505 if (lo->lo_state != Lo_bound)
1506 return -ENXIO;
1507
1508 if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1509 return -EINVAL;
1510
1511 if (lo->lo_queue->limits.logical_block_size != arg) {
1512 sync_blockdev(lo->lo_device);
1513 kill_bdev(lo->lo_device);
1514 }
1515
1516 blk_mq_freeze_queue(lo->lo_queue);
1517
1518 /* kill_bdev should have truncated all the pages */
1519 if (lo->lo_queue->limits.logical_block_size != arg &&
1520 lo->lo_device->bd_inode->i_mapping->nrpages) {
1521 err = -EAGAIN;
1522 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1523 __func__, lo->lo_number, lo->lo_file_name,
1524 lo->lo_device->bd_inode->i_mapping->nrpages);
1525 goto out_unfreeze;
1526 }
1527
1528 blk_queue_logical_block_size(lo->lo_queue, arg);
1529 blk_queue_physical_block_size(lo->lo_queue, arg);
1530 blk_queue_io_min(lo->lo_queue, arg);
1531 loop_update_dio(lo);
1532out_unfreeze:
1533 blk_mq_unfreeze_queue(lo->lo_queue);
1534
1535 return err;
1536}
1537
1538static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1539 unsigned long arg)
1540{
1541 int err;
1542
1543 err = mutex_lock_killable(&loop_ctl_mutex);
1544 if (err)
1545 return err;
1546 switch (cmd) {
1547 case LOOP_SET_CAPACITY:
1548 err = loop_set_capacity(lo);
1549 break;
1550 case LOOP_SET_DIRECT_IO:
1551 err = loop_set_dio(lo, arg);
1552 break;
1553 case LOOP_SET_BLOCK_SIZE:
1554 err = loop_set_block_size(lo, arg);
1555 break;
1556 default:
1557 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1558 }
1559 mutex_unlock(&loop_ctl_mutex);
1560 return err;
1561}
1562
1563static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1564 unsigned int cmd, unsigned long arg)
1565{
1566 struct loop_device *lo = bdev->bd_disk->private_data;
1567 int err;
1568
1569 switch (cmd) {
1570 case LOOP_SET_FD:
1571 return loop_set_fd(lo, mode, bdev, arg);
1572 case LOOP_CHANGE_FD:
1573 return loop_change_fd(lo, bdev, arg);
1574 case LOOP_CLR_FD:
1575 return loop_clr_fd(lo);
1576 case LOOP_SET_STATUS:
1577 err = -EPERM;
1578 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1579 err = loop_set_status_old(lo,
1580 (struct loop_info __user *)arg);
1581 }
1582 break;
1583 case LOOP_GET_STATUS:
1584 return loop_get_status_old(lo, (struct loop_info __user *) arg);
1585 case LOOP_SET_STATUS64:
1586 err = -EPERM;
1587 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1588 err = loop_set_status64(lo,
1589 (struct loop_info64 __user *) arg);
1590 }
1591 break;
1592 case LOOP_GET_STATUS64:
1593 return loop_get_status64(lo, (struct loop_info64 __user *) arg);
1594 case LOOP_SET_CAPACITY:
1595 case LOOP_SET_DIRECT_IO:
1596 case LOOP_SET_BLOCK_SIZE:
1597 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1598 return -EPERM;
1599 /* Fall through */
1600 default:
1601 err = lo_simple_ioctl(lo, cmd, arg);
1602 break;
1603 }
1604
1605 return err;
1606}
1607
1608#ifdef CONFIG_COMPAT
1609struct compat_loop_info {
1610 compat_int_t lo_number; /* ioctl r/o */
1611 compat_dev_t lo_device; /* ioctl r/o */
1612 compat_ulong_t lo_inode; /* ioctl r/o */
1613 compat_dev_t lo_rdevice; /* ioctl r/o */
1614 compat_int_t lo_offset;
1615 compat_int_t lo_encrypt_type;
1616 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1617 compat_int_t lo_flags; /* ioctl r/o */
1618 char lo_name[LO_NAME_SIZE];
1619 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1620 compat_ulong_t lo_init[2];
1621 char reserved[4];
1622};
1623
1624/*
1625 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1626 * - noinlined to reduce stack space usage in main part of driver
1627 */
1628static noinline int
1629loop_info64_from_compat(const struct compat_loop_info __user *arg,
1630 struct loop_info64 *info64)
1631{
1632 struct compat_loop_info info;
1633
1634 if (copy_from_user(&info, arg, sizeof(info)))
1635 return -EFAULT;
1636
1637 memset(info64, 0, sizeof(*info64));
1638 info64->lo_number = info.lo_number;
1639 info64->lo_device = info.lo_device;
1640 info64->lo_inode = info.lo_inode;
1641 info64->lo_rdevice = info.lo_rdevice;
1642 info64->lo_offset = info.lo_offset;
1643 info64->lo_sizelimit = 0;
1644 info64->lo_encrypt_type = info.lo_encrypt_type;
1645 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1646 info64->lo_flags = info.lo_flags;
1647 info64->lo_init[0] = info.lo_init[0];
1648 info64->lo_init[1] = info.lo_init[1];
1649 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1650 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1651 else
1652 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1653 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1654 return 0;
1655}
1656
1657/*
1658 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1659 * - noinlined to reduce stack space usage in main part of driver
1660 */
1661static noinline int
1662loop_info64_to_compat(const struct loop_info64 *info64,
1663 struct compat_loop_info __user *arg)
1664{
1665 struct compat_loop_info info;
1666
1667 memset(&info, 0, sizeof(info));
1668 info.lo_number = info64->lo_number;
1669 info.lo_device = info64->lo_device;
1670 info.lo_inode = info64->lo_inode;
1671 info.lo_rdevice = info64->lo_rdevice;
1672 info.lo_offset = info64->lo_offset;
1673 info.lo_encrypt_type = info64->lo_encrypt_type;
1674 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1675 info.lo_flags = info64->lo_flags;
1676 info.lo_init[0] = info64->lo_init[0];
1677 info.lo_init[1] = info64->lo_init[1];
1678 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1679 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1680 else
1681 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1682 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1683
1684 /* error in case values were truncated */
1685 if (info.lo_device != info64->lo_device ||
1686 info.lo_rdevice != info64->lo_rdevice ||
1687 info.lo_inode != info64->lo_inode ||
1688 info.lo_offset != info64->lo_offset ||
1689 info.lo_init[0] != info64->lo_init[0] ||
1690 info.lo_init[1] != info64->lo_init[1])
1691 return -EOVERFLOW;
1692
1693 if (copy_to_user(arg, &info, sizeof(info)))
1694 return -EFAULT;
1695 return 0;
1696}
1697
1698static int
1699loop_set_status_compat(struct loop_device *lo,
1700 const struct compat_loop_info __user *arg)
1701{
1702 struct loop_info64 info64;
1703 int ret;
1704
1705 ret = loop_info64_from_compat(arg, &info64);
1706 if (ret < 0)
1707 return ret;
1708 return loop_set_status(lo, &info64);
1709}
1710
1711static int
1712loop_get_status_compat(struct loop_device *lo,
1713 struct compat_loop_info __user *arg)
1714{
1715 struct loop_info64 info64;
1716 int err;
1717
1718 if (!arg)
1719 return -EINVAL;
1720 err = loop_get_status(lo, &info64);
1721 if (!err)
1722 err = loop_info64_to_compat(&info64, arg);
1723 return err;
1724}
1725
1726static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1727 unsigned int cmd, unsigned long arg)
1728{
1729 struct loop_device *lo = bdev->bd_disk->private_data;
1730 int err;
1731
1732 switch(cmd) {
1733 case LOOP_SET_STATUS:
1734 err = loop_set_status_compat(lo,
1735 (const struct compat_loop_info __user *)arg);
1736 break;
1737 case LOOP_GET_STATUS:
1738 err = loop_get_status_compat(lo,
1739 (struct compat_loop_info __user *)arg);
1740 break;
1741 case LOOP_SET_CAPACITY:
1742 case LOOP_CLR_FD:
1743 case LOOP_GET_STATUS64:
1744 case LOOP_SET_STATUS64:
1745 arg = (unsigned long) compat_ptr(arg);
1746 /* fall through */
1747 case LOOP_SET_FD:
1748 case LOOP_CHANGE_FD:
1749 case LOOP_SET_BLOCK_SIZE:
1750 case LOOP_SET_DIRECT_IO:
1751 err = lo_ioctl(bdev, mode, cmd, arg);
1752 break;
1753 default:
1754 err = -ENOIOCTLCMD;
1755 break;
1756 }
1757 return err;
1758}
1759#endif
1760
1761static int lo_open(struct block_device *bdev, fmode_t mode)
1762{
1763 struct loop_device *lo;
1764 int err;
1765
1766 err = mutex_lock_killable(&loop_ctl_mutex);
1767 if (err)
1768 return err;
1769 lo = bdev->bd_disk->private_data;
1770 if (!lo) {
1771 err = -ENXIO;
1772 goto out;
1773 }
1774
1775 atomic_inc(&lo->lo_refcnt);
1776out:
1777 mutex_unlock(&loop_ctl_mutex);
1778 return err;
1779}
1780
1781static void lo_release(struct gendisk *disk, fmode_t mode)
1782{
1783 struct loop_device *lo;
1784
1785 mutex_lock(&loop_ctl_mutex);
1786 lo = disk->private_data;
1787 if (atomic_dec_return(&lo->lo_refcnt))
1788 goto out_unlock;
1789
1790 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1791 if (lo->lo_state != Lo_bound)
1792 goto out_unlock;
1793 lo->lo_state = Lo_rundown;
1794 mutex_unlock(&loop_ctl_mutex);
1795 /*
1796 * In autoclear mode, stop the loop thread
1797 * and remove configuration after last close.
1798 */
1799 __loop_clr_fd(lo, true);
1800 return;
1801 } else if (lo->lo_state == Lo_bound) {
1802 /*
1803 * Otherwise keep thread (if running) and config,
1804 * but flush possible ongoing bios in thread.
1805 */
1806 blk_mq_freeze_queue(lo->lo_queue);
1807 blk_mq_unfreeze_queue(lo->lo_queue);
1808 }
1809
1810out_unlock:
1811 mutex_unlock(&loop_ctl_mutex);
1812}
1813
1814static const struct block_device_operations lo_fops = {
1815 .owner = THIS_MODULE,
1816 .open = lo_open,
1817 .release = lo_release,
1818 .ioctl = lo_ioctl,
1819#ifdef CONFIG_COMPAT
1820 .compat_ioctl = lo_compat_ioctl,
1821#endif
1822};
1823
1824/*
1825 * And now the modules code and kernel interface.
1826 */
1827static int max_loop;
1828module_param(max_loop, int, 0444);
1829MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1830module_param(max_part, int, 0444);
1831MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1832MODULE_LICENSE("GPL");
1833MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1834
1835int loop_register_transfer(struct loop_func_table *funcs)
1836{
1837 unsigned int n = funcs->number;
1838
1839 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1840 return -EINVAL;
1841 xfer_funcs[n] = funcs;
1842 return 0;
1843}
1844
1845static int unregister_transfer_cb(int id, void *ptr, void *data)
1846{
1847 struct loop_device *lo = ptr;
1848 struct loop_func_table *xfer = data;
1849
1850 mutex_lock(&loop_ctl_mutex);
1851 if (lo->lo_encryption == xfer)
1852 loop_release_xfer(lo);
1853 mutex_unlock(&loop_ctl_mutex);
1854 return 0;
1855}
1856
1857int loop_unregister_transfer(int number)
1858{
1859 unsigned int n = number;
1860 struct loop_func_table *xfer;
1861
1862 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1863 return -EINVAL;
1864
1865 xfer_funcs[n] = NULL;
1866 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1867 return 0;
1868}
1869
1870EXPORT_SYMBOL(loop_register_transfer);
1871EXPORT_SYMBOL(loop_unregister_transfer);
1872
1873static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1874 const struct blk_mq_queue_data *bd)
1875{
1876 struct request *rq = bd->rq;
1877 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1878 struct loop_device *lo = rq->q->queuedata;
1879
1880 blk_mq_start_request(rq);
1881
1882 if (lo->lo_state != Lo_bound)
1883 return BLK_STS_IOERR;
1884
1885 switch (req_op(rq)) {
1886 case REQ_OP_FLUSH:
1887 case REQ_OP_DISCARD:
1888 case REQ_OP_WRITE_ZEROES:
1889 cmd->use_aio = false;
1890 break;
1891 default:
1892 cmd->use_aio = lo->use_dio;
1893 break;
1894 }
1895
1896 /* always use the first bio's css */
1897#ifdef CONFIG_BLK_CGROUP
1898 if (cmd->use_aio && rq->bio && rq->bio->bi_css) {
1899 cmd->css = rq->bio->bi_css;
1900 css_get(cmd->css);
1901 } else
1902#endif
1903 cmd->css = NULL;
1904 kthread_queue_work(&lo->worker, &cmd->work);
1905
1906 return BLK_STS_OK;
1907}
1908
1909static void loop_handle_cmd(struct loop_cmd *cmd)
1910{
1911 struct request *rq = blk_mq_rq_from_pdu(cmd);
1912 const bool write = op_is_write(req_op(rq));
1913 struct loop_device *lo = rq->q->queuedata;
1914 int ret = 0;
1915
1916 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1917 ret = -EIO;
1918 goto failed;
1919 }
1920
1921 ret = do_req_filebacked(lo, rq);
1922 failed:
1923 /* complete non-aio request */
1924 if (!cmd->use_aio || ret) {
1925 if (ret == -EOPNOTSUPP)
1926 cmd->ret = ret;
1927 else
1928 cmd->ret = ret ? -EIO : 0;
1929 blk_mq_complete_request(rq);
1930 }
1931}
1932
1933static void loop_queue_work(struct kthread_work *work)
1934{
1935 struct loop_cmd *cmd =
1936 container_of(work, struct loop_cmd, work);
1937
1938 loop_handle_cmd(cmd);
1939}
1940
1941static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1942 unsigned int hctx_idx, unsigned int numa_node)
1943{
1944 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1945
1946 kthread_init_work(&cmd->work, loop_queue_work);
1947 return 0;
1948}
1949
1950static const struct blk_mq_ops loop_mq_ops = {
1951 .queue_rq = loop_queue_rq,
1952 .init_request = loop_init_request,
1953 .complete = lo_complete_rq,
1954};
1955
1956static int loop_add(struct loop_device **l, int i)
1957{
1958 struct loop_device *lo;
1959 struct gendisk *disk;
1960 int err;
1961
1962 err = -ENOMEM;
1963 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1964 if (!lo)
1965 goto out;
1966
1967 lo->lo_state = Lo_unbound;
1968
1969 /* allocate id, if @id >= 0, we're requesting that specific id */
1970 if (i >= 0) {
1971 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1972 if (err == -ENOSPC)
1973 err = -EEXIST;
1974 } else {
1975 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1976 }
1977 if (err < 0)
1978 goto out_free_dev;
1979 i = err;
1980
1981 err = -ENOMEM;
1982 lo->tag_set.ops = &loop_mq_ops;
1983 lo->tag_set.nr_hw_queues = 1;
1984 lo->tag_set.queue_depth = 128;
1985 lo->tag_set.numa_node = NUMA_NO_NODE;
1986 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1987 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1988 lo->tag_set.driver_data = lo;
1989
1990 err = blk_mq_alloc_tag_set(&lo->tag_set);
1991 if (err)
1992 goto out_free_idr;
1993
1994 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1995 if (IS_ERR_OR_NULL(lo->lo_queue)) {
1996 err = PTR_ERR(lo->lo_queue);
1997 goto out_cleanup_tags;
1998 }
1999 lo->lo_queue->queuedata = lo;
2000
2001 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2002
2003 /*
2004 * By default, we do buffer IO, so it doesn't make sense to enable
2005 * merge because the I/O submitted to backing file is handled page by
2006 * page. For directio mode, merge does help to dispatch bigger request
2007 * to underlayer disk. We will enable merge once directio is enabled.
2008 */
2009 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2010
2011 err = -ENOMEM;
2012 disk = lo->lo_disk = alloc_disk(1 << part_shift);
2013 if (!disk)
2014 goto out_free_queue;
2015
2016 /*
2017 * Disable partition scanning by default. The in-kernel partition
2018 * scanning can be requested individually per-device during its
2019 * setup. Userspace can always add and remove partitions from all
2020 * devices. The needed partition minors are allocated from the
2021 * extended minor space, the main loop device numbers will continue
2022 * to match the loop minors, regardless of the number of partitions
2023 * used.
2024 *
2025 * If max_part is given, partition scanning is globally enabled for
2026 * all loop devices. The minors for the main loop devices will be
2027 * multiples of max_part.
2028 *
2029 * Note: Global-for-all-devices, set-only-at-init, read-only module
2030 * parameteters like 'max_loop' and 'max_part' make things needlessly
2031 * complicated, are too static, inflexible and may surprise
2032 * userspace tools. Parameters like this in general should be avoided.
2033 */
2034 if (!part_shift)
2035 disk->flags |= GENHD_FL_NO_PART_SCAN;
2036 disk->flags |= GENHD_FL_EXT_DEVT;
2037 atomic_set(&lo->lo_refcnt, 0);
2038 lo->lo_number = i;
2039 spin_lock_init(&lo->lo_lock);
2040 disk->major = LOOP_MAJOR;
2041 disk->first_minor = i << part_shift;
2042 disk->fops = &lo_fops;
2043 disk->private_data = lo;
2044 disk->queue = lo->lo_queue;
2045 sprintf(disk->disk_name, "loop%d", i);
2046 add_disk(disk);
2047 *l = lo;
2048 return lo->lo_number;
2049
2050out_free_queue:
2051 blk_cleanup_queue(lo->lo_queue);
2052out_cleanup_tags:
2053 blk_mq_free_tag_set(&lo->tag_set);
2054out_free_idr:
2055 idr_remove(&loop_index_idr, i);
2056out_free_dev:
2057 kfree(lo);
2058out:
2059 return err;
2060}
2061
2062static void loop_remove(struct loop_device *lo)
2063{
2064 del_gendisk(lo->lo_disk);
2065 blk_cleanup_queue(lo->lo_queue);
2066 blk_mq_free_tag_set(&lo->tag_set);
2067 put_disk(lo->lo_disk);
2068 kfree(lo);
2069}
2070
2071static int find_free_cb(int id, void *ptr, void *data)
2072{
2073 struct loop_device *lo = ptr;
2074 struct loop_device **l = data;
2075
2076 if (lo->lo_state == Lo_unbound) {
2077 *l = lo;
2078 return 1;
2079 }
2080 return 0;
2081}
2082
2083static int loop_lookup(struct loop_device **l, int i)
2084{
2085 struct loop_device *lo;
2086 int ret = -ENODEV;
2087
2088 if (i < 0) {
2089 int err;
2090
2091 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2092 if (err == 1) {
2093 *l = lo;
2094 ret = lo->lo_number;
2095 }
2096 goto out;
2097 }
2098
2099 /* lookup and return a specific i */
2100 lo = idr_find(&loop_index_idr, i);
2101 if (lo) {
2102 *l = lo;
2103 ret = lo->lo_number;
2104 }
2105out:
2106 return ret;
2107}
2108
2109static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2110{
2111 struct loop_device *lo;
2112 struct kobject *kobj;
2113 int err;
2114
2115 mutex_lock(&loop_ctl_mutex);
2116 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2117 if (err < 0)
2118 err = loop_add(&lo, MINOR(dev) >> part_shift);
2119 if (err < 0)
2120 kobj = NULL;
2121 else
2122 kobj = get_disk_and_module(lo->lo_disk);
2123 mutex_unlock(&loop_ctl_mutex);
2124
2125 *part = 0;
2126 return kobj;
2127}
2128
2129static long loop_control_ioctl(struct file *file, unsigned int cmd,
2130 unsigned long parm)
2131{
2132 struct loop_device *lo;
2133 int ret;
2134
2135 ret = mutex_lock_killable(&loop_ctl_mutex);
2136 if (ret)
2137 return ret;
2138
2139 ret = -ENOSYS;
2140 switch (cmd) {
2141 case LOOP_CTL_ADD:
2142 ret = loop_lookup(&lo, parm);
2143 if (ret >= 0) {
2144 ret = -EEXIST;
2145 break;
2146 }
2147 ret = loop_add(&lo, parm);
2148 break;
2149 case LOOP_CTL_REMOVE:
2150 ret = loop_lookup(&lo, parm);
2151 if (ret < 0)
2152 break;
2153 if (lo->lo_state != Lo_unbound) {
2154 ret = -EBUSY;
2155 break;
2156 }
2157 if (atomic_read(&lo->lo_refcnt) > 0) {
2158 ret = -EBUSY;
2159 break;
2160 }
2161 lo->lo_disk->private_data = NULL;
2162 idr_remove(&loop_index_idr, lo->lo_number);
2163 loop_remove(lo);
2164 break;
2165 case LOOP_CTL_GET_FREE:
2166 ret = loop_lookup(&lo, -1);
2167 if (ret >= 0)
2168 break;
2169 ret = loop_add(&lo, -1);
2170 }
2171 mutex_unlock(&loop_ctl_mutex);
2172
2173 return ret;
2174}
2175
2176static const struct file_operations loop_ctl_fops = {
2177 .open = nonseekable_open,
2178 .unlocked_ioctl = loop_control_ioctl,
2179 .compat_ioctl = loop_control_ioctl,
2180 .owner = THIS_MODULE,
2181 .llseek = noop_llseek,
2182};
2183
2184static struct miscdevice loop_misc = {
2185 .minor = LOOP_CTRL_MINOR,
2186 .name = "loop-control",
2187 .fops = &loop_ctl_fops,
2188};
2189
2190MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2191MODULE_ALIAS("devname:loop-control");
2192
2193static int __init loop_init(void)
2194{
2195 int i, nr;
2196 unsigned long range;
2197 struct loop_device *lo;
2198 int err;
2199
2200 part_shift = 0;
2201 if (max_part > 0) {
2202 part_shift = fls(max_part);
2203
2204 /*
2205 * Adjust max_part according to part_shift as it is exported
2206 * to user space so that user can decide correct minor number
2207 * if [s]he want to create more devices.
2208 *
2209 * Note that -1 is required because partition 0 is reserved
2210 * for the whole disk.
2211 */
2212 max_part = (1UL << part_shift) - 1;
2213 }
2214
2215 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2216 err = -EINVAL;
2217 goto err_out;
2218 }
2219
2220 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2221 err = -EINVAL;
2222 goto err_out;
2223 }
2224
2225 /*
2226 * If max_loop is specified, create that many devices upfront.
2227 * This also becomes a hard limit. If max_loop is not specified,
2228 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2229 * init time. Loop devices can be requested on-demand with the
2230 * /dev/loop-control interface, or be instantiated by accessing
2231 * a 'dead' device node.
2232 */
2233 if (max_loop) {
2234 nr = max_loop;
2235 range = max_loop << part_shift;
2236 } else {
2237 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2238 range = 1UL << MINORBITS;
2239 }
2240
2241 err = misc_register(&loop_misc);
2242 if (err < 0)
2243 goto err_out;
2244
2245
2246 if (register_blkdev(LOOP_MAJOR, "loop")) {
2247 err = -EIO;
2248 goto misc_out;
2249 }
2250
2251 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2252 THIS_MODULE, loop_probe, NULL, NULL);
2253
2254 /* pre-create number of devices given by config or max_loop */
2255 mutex_lock(&loop_ctl_mutex);
2256 for (i = 0; i < nr; i++)
2257 loop_add(&lo, i);
2258 mutex_unlock(&loop_ctl_mutex);
2259
2260 printk(KERN_INFO "loop: module loaded\n");
2261 return 0;
2262
2263misc_out:
2264 misc_deregister(&loop_misc);
2265err_out:
2266 return err;
2267}
2268
2269static int loop_exit_cb(int id, void *ptr, void *data)
2270{
2271 struct loop_device *lo = ptr;
2272
2273 loop_remove(lo);
2274 return 0;
2275}
2276
2277static void __exit loop_exit(void)
2278{
2279 unsigned long range;
2280
2281 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2282
2283 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2284 idr_destroy(&loop_index_idr);
2285
2286 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2287 unregister_blkdev(LOOP_MAJOR, "loop");
2288
2289 misc_deregister(&loop_misc);
2290}
2291
2292module_init(loop_init);
2293module_exit(loop_exit);
2294
2295#ifndef MODULE
2296static int __init max_loop_setup(char *str)
2297{
2298 max_loop = simple_strtol(str, NULL, 0);
2299 return 1;
2300}
2301
2302__setup("max_loop=", max_loop_setup);
2303#endif