blob: 2e22d588f0563ccc5492889f4a13cd6f66905f1e [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3 * Copyright (C) 2016-2017 Milan Broz
4 * Copyright (C) 2016-2017 Mikulas Patocka
5 *
6 * This file is released under the GPL.
7 */
8
9#include <linux/compiler.h>
10#include <linux/module.h>
11#include <linux/device-mapper.h>
12#include <linux/dm-io.h>
13#include <linux/vmalloc.h>
14#include <linux/sort.h>
15#include <linux/rbtree.h>
16#include <linux/delay.h>
17#include <linux/random.h>
18#include <crypto/hash.h>
19#include <crypto/skcipher.h>
20#include <linux/async_tx.h>
21#include <linux/dm-bufio.h>
22
23#define DM_MSG_PREFIX "integrity"
24
25#define DEFAULT_INTERLEAVE_SECTORS 32768
26#define DEFAULT_JOURNAL_SIZE_FACTOR 7
27#define DEFAULT_BUFFER_SECTORS 128
28#define DEFAULT_JOURNAL_WATERMARK 50
29#define DEFAULT_SYNC_MSEC 10000
30#define DEFAULT_MAX_JOURNAL_SECTORS 131072
31#define MIN_LOG2_INTERLEAVE_SECTORS 3
32#define MAX_LOG2_INTERLEAVE_SECTORS 31
33#define METADATA_WORKQUEUE_MAX_ACTIVE 16
34#define RECALC_SECTORS 8192
35#define RECALC_WRITE_SUPER 16
36
37/*
38 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
39 * so it should not be enabled in the official kernel
40 */
41//#define DEBUG_PRINT
42//#define INTERNAL_VERIFY
43
44/*
45 * On disk structures
46 */
47
48#define SB_MAGIC "integrt"
49#define SB_VERSION_1 1
50#define SB_VERSION_2 2
51#define SB_SECTORS 8
52#define MAX_SECTORS_PER_BLOCK 8
53
54struct superblock {
55 __u8 magic[8];
56 __u8 version;
57 __u8 log2_interleave_sectors;
58 __u16 integrity_tag_size;
59 __u32 journal_sections;
60 __u64 provided_data_sectors; /* userspace uses this value */
61 __u32 flags;
62 __u8 log2_sectors_per_block;
63 __u8 pad[3];
64 __u64 recalc_sector;
65};
66
67#define SB_FLAG_HAVE_JOURNAL_MAC 0x1
68#define SB_FLAG_RECALCULATING 0x2
69
70#define JOURNAL_ENTRY_ROUNDUP 8
71
72typedef __u64 commit_id_t;
73#define JOURNAL_MAC_PER_SECTOR 8
74
75struct journal_entry {
76 union {
77 struct {
78 __u32 sector_lo;
79 __u32 sector_hi;
80 } s;
81 __u64 sector;
82 } u;
83 commit_id_t last_bytes[0];
84 /* __u8 tag[0]; */
85};
86
87#define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
88
89#if BITS_PER_LONG == 64
90#define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
91#define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
92#elif defined(CONFIG_LBDAF)
93#define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
94#define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
95#else
96#define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32(0)); } while (0)
97#define journal_entry_get_sector(je) le32_to_cpu((je)->u.s.sector_lo)
98#endif
99#define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
100#define journal_entry_set_unused(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
101#define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
102#define journal_entry_set_inprogress(je) do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
103
104#define JOURNAL_BLOCK_SECTORS 8
105#define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
106#define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
107
108struct journal_sector {
109 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
110 __u8 mac[JOURNAL_MAC_PER_SECTOR];
111 commit_id_t commit_id;
112};
113
114#define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
115
116#define METADATA_PADDING_SECTORS 8
117
118#define N_COMMIT_IDS 4
119
120static unsigned char prev_commit_seq(unsigned char seq)
121{
122 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
123}
124
125static unsigned char next_commit_seq(unsigned char seq)
126{
127 return (seq + 1) % N_COMMIT_IDS;
128}
129
130/*
131 * In-memory structures
132 */
133
134struct journal_node {
135 struct rb_node node;
136 sector_t sector;
137};
138
139struct alg_spec {
140 char *alg_string;
141 char *key_string;
142 __u8 *key;
143 unsigned key_size;
144};
145
146struct dm_integrity_c {
147 struct dm_dev *dev;
148 struct dm_dev *meta_dev;
149 unsigned tag_size;
150 __s8 log2_tag_size;
151 sector_t start;
152 mempool_t journal_io_mempool;
153 struct dm_io_client *io;
154 struct dm_bufio_client *bufio;
155 struct workqueue_struct *metadata_wq;
156 struct superblock *sb;
157 unsigned journal_pages;
158 struct page_list *journal;
159 struct page_list *journal_io;
160 struct page_list *journal_xor;
161
162 struct crypto_skcipher *journal_crypt;
163 struct scatterlist **journal_scatterlist;
164 struct scatterlist **journal_io_scatterlist;
165 struct skcipher_request **sk_requests;
166
167 struct crypto_shash *journal_mac;
168
169 struct journal_node *journal_tree;
170 struct rb_root journal_tree_root;
171
172 sector_t provided_data_sectors;
173
174 unsigned short journal_entry_size;
175 unsigned char journal_entries_per_sector;
176 unsigned char journal_section_entries;
177 unsigned short journal_section_sectors;
178 unsigned journal_sections;
179 unsigned journal_entries;
180 sector_t data_device_sectors;
181 sector_t meta_device_sectors;
182 unsigned initial_sectors;
183 unsigned metadata_run;
184 __s8 log2_metadata_run;
185 __u8 log2_buffer_sectors;
186 __u8 sectors_per_block;
187
188 unsigned char mode;
189 int suspending;
190
191 int failed;
192
193 struct crypto_shash *internal_hash;
194
195 /* these variables are locked with endio_wait.lock */
196 struct rb_root in_progress;
197 struct list_head wait_list;
198 wait_queue_head_t endio_wait;
199 struct workqueue_struct *wait_wq;
200
201 unsigned char commit_seq;
202 commit_id_t commit_ids[N_COMMIT_IDS];
203
204 unsigned committed_section;
205 unsigned n_committed_sections;
206
207 unsigned uncommitted_section;
208 unsigned n_uncommitted_sections;
209
210 unsigned free_section;
211 unsigned char free_section_entry;
212 unsigned free_sectors;
213
214 unsigned free_sectors_threshold;
215
216 struct workqueue_struct *commit_wq;
217 struct work_struct commit_work;
218
219 struct workqueue_struct *writer_wq;
220 struct work_struct writer_work;
221
222 struct workqueue_struct *recalc_wq;
223 struct work_struct recalc_work;
224 u8 *recalc_buffer;
225 u8 *recalc_tags;
226
227 struct bio_list flush_bio_list;
228
229 unsigned long autocommit_jiffies;
230 struct timer_list autocommit_timer;
231 unsigned autocommit_msec;
232
233 wait_queue_head_t copy_to_journal_wait;
234
235 struct completion crypto_backoff;
236
237 bool journal_uptodate;
238 bool just_formatted;
239
240 struct alg_spec internal_hash_alg;
241 struct alg_spec journal_crypt_alg;
242 struct alg_spec journal_mac_alg;
243
244 atomic64_t number_of_mismatches;
245};
246
247struct dm_integrity_range {
248 sector_t logical_sector;
249 unsigned n_sectors;
250 bool waiting;
251 union {
252 struct rb_node node;
253 struct {
254 struct task_struct *task;
255 struct list_head wait_entry;
256 };
257 };
258};
259
260struct dm_integrity_io {
261 struct work_struct work;
262
263 struct dm_integrity_c *ic;
264 bool write;
265 bool fua;
266
267 struct dm_integrity_range range;
268
269 sector_t metadata_block;
270 unsigned metadata_offset;
271
272 atomic_t in_flight;
273 blk_status_t bi_status;
274
275 struct completion *completion;
276
277 struct gendisk *orig_bi_disk;
278 u8 orig_bi_partno;
279 bio_end_io_t *orig_bi_end_io;
280 struct bio_integrity_payload *orig_bi_integrity;
281 struct bvec_iter orig_bi_iter;
282};
283
284struct journal_completion {
285 struct dm_integrity_c *ic;
286 atomic_t in_flight;
287 struct completion comp;
288};
289
290struct journal_io {
291 struct dm_integrity_range range;
292 struct journal_completion *comp;
293};
294
295static struct kmem_cache *journal_io_cache;
296
297#define JOURNAL_IO_MEMPOOL 32
298
299#ifdef DEBUG_PRINT
300#define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
301static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
302{
303 va_list args;
304 va_start(args, msg);
305 vprintk(msg, args);
306 va_end(args);
307 if (len)
308 pr_cont(":");
309 while (len) {
310 pr_cont(" %02x", *bytes);
311 bytes++;
312 len--;
313 }
314 pr_cont("\n");
315}
316#define DEBUG_bytes(bytes, len, msg, ...) __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
317#else
318#define DEBUG_print(x, ...) do { } while (0)
319#define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
320#endif
321
322/*
323 * DM Integrity profile, protection is performed layer above (dm-crypt)
324 */
325static const struct blk_integrity_profile dm_integrity_profile = {
326 .name = "DM-DIF-EXT-TAG",
327 .generate_fn = NULL,
328 .verify_fn = NULL,
329};
330
331static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
332static void integrity_bio_wait(struct work_struct *w);
333static void dm_integrity_dtr(struct dm_target *ti);
334
335static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
336{
337 if (err == -EILSEQ)
338 atomic64_inc(&ic->number_of_mismatches);
339 if (!cmpxchg(&ic->failed, 0, err))
340 DMERR("Error on %s: %d", msg, err);
341}
342
343static int dm_integrity_failed(struct dm_integrity_c *ic)
344{
345 return READ_ONCE(ic->failed);
346}
347
348static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
349 unsigned j, unsigned char seq)
350{
351 /*
352 * Xor the number with section and sector, so that if a piece of
353 * journal is written at wrong place, it is detected.
354 */
355 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
356}
357
358static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
359 sector_t *area, sector_t *offset)
360{
361 if (!ic->meta_dev) {
362 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
363 *area = data_sector >> log2_interleave_sectors;
364 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
365 } else {
366 *area = 0;
367 *offset = data_sector;
368 }
369}
370
371#define sector_to_block(ic, n) \
372do { \
373 BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1)); \
374 (n) >>= (ic)->sb->log2_sectors_per_block; \
375} while (0)
376
377static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
378 sector_t offset, unsigned *metadata_offset)
379{
380 __u64 ms;
381 unsigned mo;
382
383 ms = area << ic->sb->log2_interleave_sectors;
384 if (likely(ic->log2_metadata_run >= 0))
385 ms += area << ic->log2_metadata_run;
386 else
387 ms += area * ic->metadata_run;
388 ms >>= ic->log2_buffer_sectors;
389
390 sector_to_block(ic, offset);
391
392 if (likely(ic->log2_tag_size >= 0)) {
393 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
394 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
395 } else {
396 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
397 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
398 }
399 *metadata_offset = mo;
400 return ms;
401}
402
403static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
404{
405 sector_t result;
406
407 if (ic->meta_dev)
408 return offset;
409
410 result = area << ic->sb->log2_interleave_sectors;
411 if (likely(ic->log2_metadata_run >= 0))
412 result += (area + 1) << ic->log2_metadata_run;
413 else
414 result += (area + 1) * ic->metadata_run;
415
416 result += (sector_t)ic->initial_sectors + offset;
417 result += ic->start;
418
419 return result;
420}
421
422static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
423{
424 if (unlikely(*sec_ptr >= ic->journal_sections))
425 *sec_ptr -= ic->journal_sections;
426}
427
428static void sb_set_version(struct dm_integrity_c *ic)
429{
430 if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
431 ic->sb->version = SB_VERSION_2;
432 else
433 ic->sb->version = SB_VERSION_1;
434}
435
436static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
437{
438 struct dm_io_request io_req;
439 struct dm_io_region io_loc;
440
441 io_req.bi_op = op;
442 io_req.bi_op_flags = op_flags;
443 io_req.mem.type = DM_IO_KMEM;
444 io_req.mem.ptr.addr = ic->sb;
445 io_req.notify.fn = NULL;
446 io_req.client = ic->io;
447 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
448 io_loc.sector = ic->start;
449 io_loc.count = SB_SECTORS;
450
451 return dm_io(&io_req, 1, &io_loc, NULL);
452}
453
454static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
455 bool e, const char *function)
456{
457#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
458 unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
459
460 if (unlikely(section >= ic->journal_sections) ||
461 unlikely(offset >= limit)) {
462 printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
463 function, section, offset, ic->journal_sections, limit);
464 BUG();
465 }
466#endif
467}
468
469static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
470 unsigned *pl_index, unsigned *pl_offset)
471{
472 unsigned sector;
473
474 access_journal_check(ic, section, offset, false, "page_list_location");
475
476 sector = section * ic->journal_section_sectors + offset;
477
478 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
479 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
480}
481
482static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
483 unsigned section, unsigned offset, unsigned *n_sectors)
484{
485 unsigned pl_index, pl_offset;
486 char *va;
487
488 page_list_location(ic, section, offset, &pl_index, &pl_offset);
489
490 if (n_sectors)
491 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
492
493 va = lowmem_page_address(pl[pl_index].page);
494
495 return (struct journal_sector *)(va + pl_offset);
496}
497
498static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
499{
500 return access_page_list(ic, ic->journal, section, offset, NULL);
501}
502
503static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
504{
505 unsigned rel_sector, offset;
506 struct journal_sector *js;
507
508 access_journal_check(ic, section, n, true, "access_journal_entry");
509
510 rel_sector = n % JOURNAL_BLOCK_SECTORS;
511 offset = n / JOURNAL_BLOCK_SECTORS;
512
513 js = access_journal(ic, section, rel_sector);
514 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
515}
516
517static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
518{
519 n <<= ic->sb->log2_sectors_per_block;
520
521 n += JOURNAL_BLOCK_SECTORS;
522
523 access_journal_check(ic, section, n, false, "access_journal_data");
524
525 return access_journal(ic, section, n);
526}
527
528static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
529{
530 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
531 int r;
532 unsigned j, size;
533
534 desc->tfm = ic->journal_mac;
535 desc->flags = 0;
536
537 r = crypto_shash_init(desc);
538 if (unlikely(r)) {
539 dm_integrity_io_error(ic, "crypto_shash_init", r);
540 goto err;
541 }
542
543 for (j = 0; j < ic->journal_section_entries; j++) {
544 struct journal_entry *je = access_journal_entry(ic, section, j);
545 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
546 if (unlikely(r)) {
547 dm_integrity_io_error(ic, "crypto_shash_update", r);
548 goto err;
549 }
550 }
551
552 size = crypto_shash_digestsize(ic->journal_mac);
553
554 if (likely(size <= JOURNAL_MAC_SIZE)) {
555 r = crypto_shash_final(desc, result);
556 if (unlikely(r)) {
557 dm_integrity_io_error(ic, "crypto_shash_final", r);
558 goto err;
559 }
560 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
561 } else {
562 __u8 digest[size];
563 r = crypto_shash_final(desc, digest);
564 if (unlikely(r)) {
565 dm_integrity_io_error(ic, "crypto_shash_final", r);
566 goto err;
567 }
568 memcpy(result, digest, JOURNAL_MAC_SIZE);
569 }
570
571 return;
572err:
573 memset(result, 0, JOURNAL_MAC_SIZE);
574}
575
576static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
577{
578 __u8 result[JOURNAL_MAC_SIZE];
579 unsigned j;
580
581 if (!ic->journal_mac)
582 return;
583
584 section_mac(ic, section, result);
585
586 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
587 struct journal_sector *js = access_journal(ic, section, j);
588
589 if (likely(wr))
590 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
591 else {
592 if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
593 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
594 }
595 }
596}
597
598static void complete_journal_op(void *context)
599{
600 struct journal_completion *comp = context;
601 BUG_ON(!atomic_read(&comp->in_flight));
602 if (likely(atomic_dec_and_test(&comp->in_flight)))
603 complete(&comp->comp);
604}
605
606static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
607 unsigned n_sections, struct journal_completion *comp)
608{
609 struct async_submit_ctl submit;
610 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
611 unsigned pl_index, pl_offset, section_index;
612 struct page_list *source_pl, *target_pl;
613
614 if (likely(encrypt)) {
615 source_pl = ic->journal;
616 target_pl = ic->journal_io;
617 } else {
618 source_pl = ic->journal_io;
619 target_pl = ic->journal;
620 }
621
622 page_list_location(ic, section, 0, &pl_index, &pl_offset);
623
624 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
625
626 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
627
628 section_index = pl_index;
629
630 do {
631 size_t this_step;
632 struct page *src_pages[2];
633 struct page *dst_page;
634
635 while (unlikely(pl_index == section_index)) {
636 unsigned dummy;
637 if (likely(encrypt))
638 rw_section_mac(ic, section, true);
639 section++;
640 n_sections--;
641 if (!n_sections)
642 break;
643 page_list_location(ic, section, 0, &section_index, &dummy);
644 }
645
646 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
647 dst_page = target_pl[pl_index].page;
648 src_pages[0] = source_pl[pl_index].page;
649 src_pages[1] = ic->journal_xor[pl_index].page;
650
651 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
652
653 pl_index++;
654 pl_offset = 0;
655 n_bytes -= this_step;
656 } while (n_bytes);
657
658 BUG_ON(n_sections);
659
660 async_tx_issue_pending_all();
661}
662
663static void complete_journal_encrypt(struct crypto_async_request *req, int err)
664{
665 struct journal_completion *comp = req->data;
666 if (unlikely(err)) {
667 if (likely(err == -EINPROGRESS)) {
668 complete(&comp->ic->crypto_backoff);
669 return;
670 }
671 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
672 }
673 complete_journal_op(comp);
674}
675
676static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
677{
678 int r;
679 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
680 complete_journal_encrypt, comp);
681 if (likely(encrypt))
682 r = crypto_skcipher_encrypt(req);
683 else
684 r = crypto_skcipher_decrypt(req);
685 if (likely(!r))
686 return false;
687 if (likely(r == -EINPROGRESS))
688 return true;
689 if (likely(r == -EBUSY)) {
690 wait_for_completion(&comp->ic->crypto_backoff);
691 reinit_completion(&comp->ic->crypto_backoff);
692 return true;
693 }
694 dm_integrity_io_error(comp->ic, "encrypt", r);
695 return false;
696}
697
698static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
699 unsigned n_sections, struct journal_completion *comp)
700{
701 struct scatterlist **source_sg;
702 struct scatterlist **target_sg;
703
704 atomic_add(2, &comp->in_flight);
705
706 if (likely(encrypt)) {
707 source_sg = ic->journal_scatterlist;
708 target_sg = ic->journal_io_scatterlist;
709 } else {
710 source_sg = ic->journal_io_scatterlist;
711 target_sg = ic->journal_scatterlist;
712 }
713
714 do {
715 struct skcipher_request *req;
716 unsigned ivsize;
717 char *iv;
718
719 if (likely(encrypt))
720 rw_section_mac(ic, section, true);
721
722 req = ic->sk_requests[section];
723 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
724 iv = req->iv;
725
726 memcpy(iv, iv + ivsize, ivsize);
727
728 req->src = source_sg[section];
729 req->dst = target_sg[section];
730
731 if (unlikely(do_crypt(encrypt, req, comp)))
732 atomic_inc(&comp->in_flight);
733
734 section++;
735 n_sections--;
736 } while (n_sections);
737
738 atomic_dec(&comp->in_flight);
739 complete_journal_op(comp);
740}
741
742static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
743 unsigned n_sections, struct journal_completion *comp)
744{
745 if (ic->journal_xor)
746 return xor_journal(ic, encrypt, section, n_sections, comp);
747 else
748 return crypt_journal(ic, encrypt, section, n_sections, comp);
749}
750
751static void complete_journal_io(unsigned long error, void *context)
752{
753 struct journal_completion *comp = context;
754 if (unlikely(error != 0))
755 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
756 complete_journal_op(comp);
757}
758
759static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
760 unsigned n_sections, struct journal_completion *comp)
761{
762 struct dm_io_request io_req;
763 struct dm_io_region io_loc;
764 unsigned sector, n_sectors, pl_index, pl_offset;
765 int r;
766
767 if (unlikely(dm_integrity_failed(ic))) {
768 if (comp)
769 complete_journal_io(-1UL, comp);
770 return;
771 }
772
773 sector = section * ic->journal_section_sectors;
774 n_sectors = n_sections * ic->journal_section_sectors;
775
776 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
777 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
778
779 io_req.bi_op = op;
780 io_req.bi_op_flags = op_flags;
781 io_req.mem.type = DM_IO_PAGE_LIST;
782 if (ic->journal_io)
783 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
784 else
785 io_req.mem.ptr.pl = &ic->journal[pl_index];
786 io_req.mem.offset = pl_offset;
787 if (likely(comp != NULL)) {
788 io_req.notify.fn = complete_journal_io;
789 io_req.notify.context = comp;
790 } else {
791 io_req.notify.fn = NULL;
792 }
793 io_req.client = ic->io;
794 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
795 io_loc.sector = ic->start + SB_SECTORS + sector;
796 io_loc.count = n_sectors;
797
798 r = dm_io(&io_req, 1, &io_loc, NULL);
799 if (unlikely(r)) {
800 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
801 if (comp) {
802 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
803 complete_journal_io(-1UL, comp);
804 }
805 }
806}
807
808static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
809{
810 struct journal_completion io_comp;
811 struct journal_completion crypt_comp_1;
812 struct journal_completion crypt_comp_2;
813 unsigned i;
814
815 io_comp.ic = ic;
816 init_completion(&io_comp.comp);
817
818 if (commit_start + commit_sections <= ic->journal_sections) {
819 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
820 if (ic->journal_io) {
821 crypt_comp_1.ic = ic;
822 init_completion(&crypt_comp_1.comp);
823 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
824 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
825 wait_for_completion_io(&crypt_comp_1.comp);
826 } else {
827 for (i = 0; i < commit_sections; i++)
828 rw_section_mac(ic, commit_start + i, true);
829 }
830 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
831 commit_sections, &io_comp);
832 } else {
833 unsigned to_end;
834 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
835 to_end = ic->journal_sections - commit_start;
836 if (ic->journal_io) {
837 crypt_comp_1.ic = ic;
838 init_completion(&crypt_comp_1.comp);
839 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
840 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
841 if (try_wait_for_completion(&crypt_comp_1.comp)) {
842 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
843 reinit_completion(&crypt_comp_1.comp);
844 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
845 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
846 wait_for_completion_io(&crypt_comp_1.comp);
847 } else {
848 crypt_comp_2.ic = ic;
849 init_completion(&crypt_comp_2.comp);
850 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
851 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
852 wait_for_completion_io(&crypt_comp_1.comp);
853 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
854 wait_for_completion_io(&crypt_comp_2.comp);
855 }
856 } else {
857 for (i = 0; i < to_end; i++)
858 rw_section_mac(ic, commit_start + i, true);
859 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
860 for (i = 0; i < commit_sections - to_end; i++)
861 rw_section_mac(ic, i, true);
862 }
863 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
864 }
865
866 wait_for_completion_io(&io_comp.comp);
867}
868
869static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
870 unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
871{
872 struct dm_io_request io_req;
873 struct dm_io_region io_loc;
874 int r;
875 unsigned sector, pl_index, pl_offset;
876
877 BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
878
879 if (unlikely(dm_integrity_failed(ic))) {
880 fn(-1UL, data);
881 return;
882 }
883
884 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
885
886 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
887 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
888
889 io_req.bi_op = REQ_OP_WRITE;
890 io_req.bi_op_flags = 0;
891 io_req.mem.type = DM_IO_PAGE_LIST;
892 io_req.mem.ptr.pl = &ic->journal[pl_index];
893 io_req.mem.offset = pl_offset;
894 io_req.notify.fn = fn;
895 io_req.notify.context = data;
896 io_req.client = ic->io;
897 io_loc.bdev = ic->dev->bdev;
898 io_loc.sector = target;
899 io_loc.count = n_sectors;
900
901 r = dm_io(&io_req, 1, &io_loc, NULL);
902 if (unlikely(r)) {
903 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
904 fn(-1UL, data);
905 }
906}
907
908static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
909{
910 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
911 range1->logical_sector + range1->n_sectors > range2->logical_sector;
912}
913
914static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
915{
916 struct rb_node **n = &ic->in_progress.rb_node;
917 struct rb_node *parent;
918
919 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
920
921 if (likely(check_waiting)) {
922 struct dm_integrity_range *range;
923 list_for_each_entry(range, &ic->wait_list, wait_entry) {
924 if (unlikely(ranges_overlap(range, new_range)))
925 return false;
926 }
927 }
928
929 parent = NULL;
930
931 while (*n) {
932 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
933
934 parent = *n;
935 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
936 n = &range->node.rb_left;
937 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
938 n = &range->node.rb_right;
939 } else {
940 return false;
941 }
942 }
943
944 rb_link_node(&new_range->node, parent, n);
945 rb_insert_color(&new_range->node, &ic->in_progress);
946
947 return true;
948}
949
950static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
951{
952 rb_erase(&range->node, &ic->in_progress);
953 while (unlikely(!list_empty(&ic->wait_list))) {
954 struct dm_integrity_range *last_range =
955 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
956 struct task_struct *last_range_task;
957 last_range_task = last_range->task;
958 list_del(&last_range->wait_entry);
959 if (!add_new_range(ic, last_range, false)) {
960 last_range->task = last_range_task;
961 list_add(&last_range->wait_entry, &ic->wait_list);
962 break;
963 }
964 last_range->waiting = false;
965 wake_up_process(last_range_task);
966 }
967}
968
969static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
970{
971 unsigned long flags;
972
973 spin_lock_irqsave(&ic->endio_wait.lock, flags);
974 remove_range_unlocked(ic, range);
975 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
976}
977
978static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
979{
980 new_range->waiting = true;
981 list_add_tail(&new_range->wait_entry, &ic->wait_list);
982 new_range->task = current;
983 do {
984 __set_current_state(TASK_UNINTERRUPTIBLE);
985 spin_unlock_irq(&ic->endio_wait.lock);
986 io_schedule();
987 spin_lock_irq(&ic->endio_wait.lock);
988 } while (unlikely(new_range->waiting));
989}
990
991static void init_journal_node(struct journal_node *node)
992{
993 RB_CLEAR_NODE(&node->node);
994 node->sector = (sector_t)-1;
995}
996
997static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
998{
999 struct rb_node **link;
1000 struct rb_node *parent;
1001
1002 node->sector = sector;
1003 BUG_ON(!RB_EMPTY_NODE(&node->node));
1004
1005 link = &ic->journal_tree_root.rb_node;
1006 parent = NULL;
1007
1008 while (*link) {
1009 struct journal_node *j;
1010 parent = *link;
1011 j = container_of(parent, struct journal_node, node);
1012 if (sector < j->sector)
1013 link = &j->node.rb_left;
1014 else
1015 link = &j->node.rb_right;
1016 }
1017
1018 rb_link_node(&node->node, parent, link);
1019 rb_insert_color(&node->node, &ic->journal_tree_root);
1020}
1021
1022static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1023{
1024 BUG_ON(RB_EMPTY_NODE(&node->node));
1025 rb_erase(&node->node, &ic->journal_tree_root);
1026 init_journal_node(node);
1027}
1028
1029#define NOT_FOUND (-1U)
1030
1031static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1032{
1033 struct rb_node *n = ic->journal_tree_root.rb_node;
1034 unsigned found = NOT_FOUND;
1035 *next_sector = (sector_t)-1;
1036 while (n) {
1037 struct journal_node *j = container_of(n, struct journal_node, node);
1038 if (sector == j->sector) {
1039 found = j - ic->journal_tree;
1040 }
1041 if (sector < j->sector) {
1042 *next_sector = j->sector;
1043 n = j->node.rb_left;
1044 } else {
1045 n = j->node.rb_right;
1046 }
1047 }
1048
1049 return found;
1050}
1051
1052static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1053{
1054 struct journal_node *node, *next_node;
1055 struct rb_node *next;
1056
1057 if (unlikely(pos >= ic->journal_entries))
1058 return false;
1059 node = &ic->journal_tree[pos];
1060 if (unlikely(RB_EMPTY_NODE(&node->node)))
1061 return false;
1062 if (unlikely(node->sector != sector))
1063 return false;
1064
1065 next = rb_next(&node->node);
1066 if (unlikely(!next))
1067 return true;
1068
1069 next_node = container_of(next, struct journal_node, node);
1070 return next_node->sector != sector;
1071}
1072
1073static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1074{
1075 struct rb_node *next;
1076 struct journal_node *next_node;
1077 unsigned next_section;
1078
1079 BUG_ON(RB_EMPTY_NODE(&node->node));
1080
1081 next = rb_next(&node->node);
1082 if (unlikely(!next))
1083 return false;
1084
1085 next_node = container_of(next, struct journal_node, node);
1086
1087 if (next_node->sector != node->sector)
1088 return false;
1089
1090 next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1091 if (next_section >= ic->committed_section &&
1092 next_section < ic->committed_section + ic->n_committed_sections)
1093 return true;
1094 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1095 return true;
1096
1097 return false;
1098}
1099
1100#define TAG_READ 0
1101#define TAG_WRITE 1
1102#define TAG_CMP 2
1103
1104static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1105 unsigned *metadata_offset, unsigned total_size, int op)
1106{
1107 do {
1108 unsigned char *data, *dp;
1109 struct dm_buffer *b;
1110 unsigned to_copy;
1111 int r;
1112
1113 r = dm_integrity_failed(ic);
1114 if (unlikely(r))
1115 return r;
1116
1117 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1118 if (unlikely(IS_ERR(data)))
1119 return PTR_ERR(data);
1120
1121 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1122 dp = data + *metadata_offset;
1123 if (op == TAG_READ) {
1124 memcpy(tag, dp, to_copy);
1125 } else if (op == TAG_WRITE) {
1126 memcpy(dp, tag, to_copy);
1127 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1128 } else {
1129 /* e.g.: op == TAG_CMP */
1130 if (unlikely(memcmp(dp, tag, to_copy))) {
1131 unsigned i;
1132
1133 for (i = 0; i < to_copy; i++) {
1134 if (dp[i] != tag[i])
1135 break;
1136 total_size--;
1137 }
1138 dm_bufio_release(b);
1139 return total_size;
1140 }
1141 }
1142 dm_bufio_release(b);
1143
1144 tag += to_copy;
1145 *metadata_offset += to_copy;
1146 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1147 (*metadata_block)++;
1148 *metadata_offset = 0;
1149 }
1150 total_size -= to_copy;
1151 } while (unlikely(total_size));
1152
1153 return 0;
1154}
1155
1156static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1157{
1158 int r;
1159 r = dm_bufio_write_dirty_buffers(ic->bufio);
1160 if (unlikely(r))
1161 dm_integrity_io_error(ic, "writing tags", r);
1162}
1163
1164static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1165{
1166 DECLARE_WAITQUEUE(wait, current);
1167 __add_wait_queue(&ic->endio_wait, &wait);
1168 __set_current_state(TASK_UNINTERRUPTIBLE);
1169 spin_unlock_irq(&ic->endio_wait.lock);
1170 io_schedule();
1171 spin_lock_irq(&ic->endio_wait.lock);
1172 __remove_wait_queue(&ic->endio_wait, &wait);
1173}
1174
1175static void autocommit_fn(struct timer_list *t)
1176{
1177 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1178
1179 if (likely(!dm_integrity_failed(ic)))
1180 queue_work(ic->commit_wq, &ic->commit_work);
1181}
1182
1183static void schedule_autocommit(struct dm_integrity_c *ic)
1184{
1185 if (!timer_pending(&ic->autocommit_timer))
1186 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1187}
1188
1189static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1190{
1191 struct bio *bio;
1192 unsigned long flags;
1193
1194 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1195 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1196 bio_list_add(&ic->flush_bio_list, bio);
1197 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1198
1199 queue_work(ic->commit_wq, &ic->commit_work);
1200}
1201
1202static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1203{
1204 int r = dm_integrity_failed(ic);
1205 if (unlikely(r) && !bio->bi_status)
1206 bio->bi_status = errno_to_blk_status(r);
1207 bio_endio(bio);
1208}
1209
1210static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1211{
1212 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1213
1214 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1215 submit_flush_bio(ic, dio);
1216 else
1217 do_endio(ic, bio);
1218}
1219
1220static void dec_in_flight(struct dm_integrity_io *dio)
1221{
1222 if (atomic_dec_and_test(&dio->in_flight)) {
1223 struct dm_integrity_c *ic = dio->ic;
1224 struct bio *bio;
1225
1226 remove_range(ic, &dio->range);
1227
1228 if (unlikely(dio->write))
1229 schedule_autocommit(ic);
1230
1231 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1232
1233 if (unlikely(dio->bi_status) && !bio->bi_status)
1234 bio->bi_status = dio->bi_status;
1235 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1236 dio->range.logical_sector += dio->range.n_sectors;
1237 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1238 INIT_WORK(&dio->work, integrity_bio_wait);
1239 queue_work(ic->wait_wq, &dio->work);
1240 return;
1241 }
1242 do_endio_flush(ic, dio);
1243 }
1244}
1245
1246static void integrity_end_io(struct bio *bio)
1247{
1248 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1249
1250 bio->bi_iter = dio->orig_bi_iter;
1251 bio->bi_disk = dio->orig_bi_disk;
1252 bio->bi_partno = dio->orig_bi_partno;
1253 if (dio->orig_bi_integrity) {
1254 bio->bi_integrity = dio->orig_bi_integrity;
1255 bio->bi_opf |= REQ_INTEGRITY;
1256 }
1257 bio->bi_end_io = dio->orig_bi_end_io;
1258
1259 if (dio->completion)
1260 complete(dio->completion);
1261
1262 dec_in_flight(dio);
1263}
1264
1265static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1266 const char *data, char *result)
1267{
1268 __u64 sector_le = cpu_to_le64(sector);
1269 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1270 int r;
1271 unsigned digest_size;
1272
1273 req->tfm = ic->internal_hash;
1274 req->flags = 0;
1275
1276 r = crypto_shash_init(req);
1277 if (unlikely(r < 0)) {
1278 dm_integrity_io_error(ic, "crypto_shash_init", r);
1279 goto failed;
1280 }
1281
1282 r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1283 if (unlikely(r < 0)) {
1284 dm_integrity_io_error(ic, "crypto_shash_update", r);
1285 goto failed;
1286 }
1287
1288 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1289 if (unlikely(r < 0)) {
1290 dm_integrity_io_error(ic, "crypto_shash_update", r);
1291 goto failed;
1292 }
1293
1294 r = crypto_shash_final(req, result);
1295 if (unlikely(r < 0)) {
1296 dm_integrity_io_error(ic, "crypto_shash_final", r);
1297 goto failed;
1298 }
1299
1300 digest_size = crypto_shash_digestsize(ic->internal_hash);
1301 if (unlikely(digest_size < ic->tag_size))
1302 memset(result + digest_size, 0, ic->tag_size - digest_size);
1303
1304 return;
1305
1306failed:
1307 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1308 get_random_bytes(result, ic->tag_size);
1309}
1310
1311static void integrity_metadata(struct work_struct *w)
1312{
1313 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1314 struct dm_integrity_c *ic = dio->ic;
1315
1316 int r;
1317
1318 if (ic->internal_hash) {
1319 struct bvec_iter iter;
1320 struct bio_vec bv;
1321 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1322 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1323 char *checksums;
1324 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1325 char checksums_onstack[ic->tag_size + extra_space];
1326 unsigned sectors_to_process = dio->range.n_sectors;
1327 sector_t sector = dio->range.logical_sector;
1328
1329 if (unlikely(ic->mode == 'R'))
1330 goto skip_io;
1331
1332 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1333 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1334 if (!checksums)
1335 checksums = checksums_onstack;
1336
1337 __bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1338 unsigned pos;
1339 char *mem, *checksums_ptr;
1340
1341again:
1342 mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1343 pos = 0;
1344 checksums_ptr = checksums;
1345 do {
1346 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1347 checksums_ptr += ic->tag_size;
1348 sectors_to_process -= ic->sectors_per_block;
1349 pos += ic->sectors_per_block << SECTOR_SHIFT;
1350 sector += ic->sectors_per_block;
1351 } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1352 kunmap_atomic(mem);
1353
1354 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1355 checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1356 if (unlikely(r)) {
1357 if (r > 0) {
1358 DMERR_LIMIT("Checksum failed at sector 0x%llx",
1359 (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1360 r = -EILSEQ;
1361 atomic64_inc(&ic->number_of_mismatches);
1362 }
1363 if (likely(checksums != checksums_onstack))
1364 kfree(checksums);
1365 goto error;
1366 }
1367
1368 if (!sectors_to_process)
1369 break;
1370
1371 if (unlikely(pos < bv.bv_len)) {
1372 bv.bv_offset += pos;
1373 bv.bv_len -= pos;
1374 goto again;
1375 }
1376 }
1377
1378 if (likely(checksums != checksums_onstack))
1379 kfree(checksums);
1380 } else {
1381 struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1382
1383 if (bip) {
1384 struct bio_vec biv;
1385 struct bvec_iter iter;
1386 unsigned data_to_process = dio->range.n_sectors;
1387 sector_to_block(ic, data_to_process);
1388 data_to_process *= ic->tag_size;
1389
1390 bip_for_each_vec(biv, bip, iter) {
1391 unsigned char *tag;
1392 unsigned this_len;
1393
1394 BUG_ON(PageHighMem(biv.bv_page));
1395 tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1396 this_len = min(biv.bv_len, data_to_process);
1397 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1398 this_len, !dio->write ? TAG_READ : TAG_WRITE);
1399 if (unlikely(r))
1400 goto error;
1401 data_to_process -= this_len;
1402 if (!data_to_process)
1403 break;
1404 }
1405 }
1406 }
1407skip_io:
1408 dec_in_flight(dio);
1409 return;
1410error:
1411 dio->bi_status = errno_to_blk_status(r);
1412 dec_in_flight(dio);
1413}
1414
1415static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1416{
1417 struct dm_integrity_c *ic = ti->private;
1418 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1419 struct bio_integrity_payload *bip;
1420
1421 sector_t area, offset;
1422
1423 dio->ic = ic;
1424 dio->bi_status = 0;
1425
1426 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1427 submit_flush_bio(ic, dio);
1428 return DM_MAPIO_SUBMITTED;
1429 }
1430
1431 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1432 dio->write = bio_op(bio) == REQ_OP_WRITE;
1433 dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1434 if (unlikely(dio->fua)) {
1435 /*
1436 * Don't pass down the FUA flag because we have to flush
1437 * disk cache anyway.
1438 */
1439 bio->bi_opf &= ~REQ_FUA;
1440 }
1441 if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1442 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1443 (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1444 (unsigned long long)ic->provided_data_sectors);
1445 return DM_MAPIO_KILL;
1446 }
1447 if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1448 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1449 ic->sectors_per_block,
1450 (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1451 return DM_MAPIO_KILL;
1452 }
1453
1454 if (ic->sectors_per_block > 1) {
1455 struct bvec_iter iter;
1456 struct bio_vec bv;
1457 bio_for_each_segment(bv, bio, iter) {
1458 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1459 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1460 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1461 return DM_MAPIO_KILL;
1462 }
1463 }
1464 }
1465
1466 bip = bio_integrity(bio);
1467 if (!ic->internal_hash) {
1468 if (bip) {
1469 unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1470 if (ic->log2_tag_size >= 0)
1471 wanted_tag_size <<= ic->log2_tag_size;
1472 else
1473 wanted_tag_size *= ic->tag_size;
1474 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1475 DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
1476 return DM_MAPIO_KILL;
1477 }
1478 }
1479 } else {
1480 if (unlikely(bip != NULL)) {
1481 DMERR("Unexpected integrity data when using internal hash");
1482 return DM_MAPIO_KILL;
1483 }
1484 }
1485
1486 if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1487 return DM_MAPIO_KILL;
1488
1489 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1490 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1491 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1492
1493 dm_integrity_map_continue(dio, true);
1494 return DM_MAPIO_SUBMITTED;
1495}
1496
1497static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1498 unsigned journal_section, unsigned journal_entry)
1499{
1500 struct dm_integrity_c *ic = dio->ic;
1501 sector_t logical_sector;
1502 unsigned n_sectors;
1503
1504 logical_sector = dio->range.logical_sector;
1505 n_sectors = dio->range.n_sectors;
1506 do {
1507 struct bio_vec bv = bio_iovec(bio);
1508 char *mem;
1509
1510 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1511 bv.bv_len = n_sectors << SECTOR_SHIFT;
1512 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1513 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1514retry_kmap:
1515 mem = kmap_atomic(bv.bv_page);
1516 if (likely(dio->write))
1517 flush_dcache_page(bv.bv_page);
1518
1519 do {
1520 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1521
1522 if (unlikely(!dio->write)) {
1523 struct journal_sector *js;
1524 char *mem_ptr;
1525 unsigned s;
1526
1527 if (unlikely(journal_entry_is_inprogress(je))) {
1528 flush_dcache_page(bv.bv_page);
1529 kunmap_atomic(mem);
1530
1531 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1532 goto retry_kmap;
1533 }
1534 smp_rmb();
1535 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1536 js = access_journal_data(ic, journal_section, journal_entry);
1537 mem_ptr = mem + bv.bv_offset;
1538 s = 0;
1539 do {
1540 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1541 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1542 js++;
1543 mem_ptr += 1 << SECTOR_SHIFT;
1544 } while (++s < ic->sectors_per_block);
1545#ifdef INTERNAL_VERIFY
1546 if (ic->internal_hash) {
1547 char checksums_onstack[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1548
1549 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1550 if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1551 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
1552 (unsigned long long)logical_sector);
1553 }
1554 }
1555#endif
1556 }
1557
1558 if (!ic->internal_hash) {
1559 struct bio_integrity_payload *bip = bio_integrity(bio);
1560 unsigned tag_todo = ic->tag_size;
1561 char *tag_ptr = journal_entry_tag(ic, je);
1562
1563 if (bip) do {
1564 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1565 unsigned tag_now = min(biv.bv_len, tag_todo);
1566 char *tag_addr;
1567 BUG_ON(PageHighMem(biv.bv_page));
1568 tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1569 if (likely(dio->write))
1570 memcpy(tag_ptr, tag_addr, tag_now);
1571 else
1572 memcpy(tag_addr, tag_ptr, tag_now);
1573 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1574 tag_ptr += tag_now;
1575 tag_todo -= tag_now;
1576 } while (unlikely(tag_todo)); else {
1577 if (likely(dio->write))
1578 memset(tag_ptr, 0, tag_todo);
1579 }
1580 }
1581
1582 if (likely(dio->write)) {
1583 struct journal_sector *js;
1584 unsigned s;
1585
1586 js = access_journal_data(ic, journal_section, journal_entry);
1587 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1588
1589 s = 0;
1590 do {
1591 je->last_bytes[s] = js[s].commit_id;
1592 } while (++s < ic->sectors_per_block);
1593
1594 if (ic->internal_hash) {
1595 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1596 if (unlikely(digest_size > ic->tag_size)) {
1597 char checksums_onstack[digest_size];
1598 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1599 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1600 } else
1601 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1602 }
1603
1604 journal_entry_set_sector(je, logical_sector);
1605 }
1606 logical_sector += ic->sectors_per_block;
1607
1608 journal_entry++;
1609 if (unlikely(journal_entry == ic->journal_section_entries)) {
1610 journal_entry = 0;
1611 journal_section++;
1612 wraparound_section(ic, &journal_section);
1613 }
1614
1615 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1616 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1617
1618 if (unlikely(!dio->write))
1619 flush_dcache_page(bv.bv_page);
1620 kunmap_atomic(mem);
1621 } while (n_sectors);
1622
1623 if (likely(dio->write)) {
1624 smp_mb();
1625 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1626 wake_up(&ic->copy_to_journal_wait);
1627 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1628 queue_work(ic->commit_wq, &ic->commit_work);
1629 } else {
1630 schedule_autocommit(ic);
1631 }
1632 } else {
1633 remove_range(ic, &dio->range);
1634 }
1635
1636 if (unlikely(bio->bi_iter.bi_size)) {
1637 sector_t area, offset;
1638
1639 dio->range.logical_sector = logical_sector;
1640 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1641 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1642 return true;
1643 }
1644
1645 return false;
1646}
1647
1648static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1649{
1650 struct dm_integrity_c *ic = dio->ic;
1651 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1652 unsigned journal_section, journal_entry;
1653 unsigned journal_read_pos;
1654 struct completion read_comp;
1655 bool need_sync_io = ic->internal_hash && !dio->write;
1656
1657 if (need_sync_io && from_map) {
1658 INIT_WORK(&dio->work, integrity_bio_wait);
1659 queue_work(ic->metadata_wq, &dio->work);
1660 return;
1661 }
1662
1663lock_retry:
1664 spin_lock_irq(&ic->endio_wait.lock);
1665retry:
1666 if (unlikely(dm_integrity_failed(ic))) {
1667 spin_unlock_irq(&ic->endio_wait.lock);
1668 do_endio(ic, bio);
1669 return;
1670 }
1671 dio->range.n_sectors = bio_sectors(bio);
1672 journal_read_pos = NOT_FOUND;
1673 if (likely(ic->mode == 'J')) {
1674 if (dio->write) {
1675 unsigned next_entry, i, pos;
1676 unsigned ws, we, range_sectors;
1677
1678 dio->range.n_sectors = min(dio->range.n_sectors,
1679 ic->free_sectors << ic->sb->log2_sectors_per_block);
1680 if (unlikely(!dio->range.n_sectors)) {
1681 if (from_map)
1682 goto offload_to_thread;
1683 sleep_on_endio_wait(ic);
1684 goto retry;
1685 }
1686 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1687 ic->free_sectors -= range_sectors;
1688 journal_section = ic->free_section;
1689 journal_entry = ic->free_section_entry;
1690
1691 next_entry = ic->free_section_entry + range_sectors;
1692 ic->free_section_entry = next_entry % ic->journal_section_entries;
1693 ic->free_section += next_entry / ic->journal_section_entries;
1694 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1695 wraparound_section(ic, &ic->free_section);
1696
1697 pos = journal_section * ic->journal_section_entries + journal_entry;
1698 ws = journal_section;
1699 we = journal_entry;
1700 i = 0;
1701 do {
1702 struct journal_entry *je;
1703
1704 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1705 pos++;
1706 if (unlikely(pos >= ic->journal_entries))
1707 pos = 0;
1708
1709 je = access_journal_entry(ic, ws, we);
1710 BUG_ON(!journal_entry_is_unused(je));
1711 journal_entry_set_inprogress(je);
1712 we++;
1713 if (unlikely(we == ic->journal_section_entries)) {
1714 we = 0;
1715 ws++;
1716 wraparound_section(ic, &ws);
1717 }
1718 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1719
1720 spin_unlock_irq(&ic->endio_wait.lock);
1721 goto journal_read_write;
1722 } else {
1723 sector_t next_sector;
1724 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1725 if (likely(journal_read_pos == NOT_FOUND)) {
1726 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1727 dio->range.n_sectors = next_sector - dio->range.logical_sector;
1728 } else {
1729 unsigned i;
1730 unsigned jp = journal_read_pos + 1;
1731 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1732 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1733 break;
1734 }
1735 dio->range.n_sectors = i;
1736 }
1737 }
1738 }
1739 if (unlikely(!add_new_range(ic, &dio->range, true))) {
1740 /*
1741 * We must not sleep in the request routine because it could
1742 * stall bios on current->bio_list.
1743 * So, we offload the bio to a workqueue if we have to sleep.
1744 */
1745 if (from_map) {
1746offload_to_thread:
1747 spin_unlock_irq(&ic->endio_wait.lock);
1748 INIT_WORK(&dio->work, integrity_bio_wait);
1749 queue_work(ic->wait_wq, &dio->work);
1750 return;
1751 }
1752 if (journal_read_pos != NOT_FOUND)
1753 dio->range.n_sectors = ic->sectors_per_block;
1754 wait_and_add_new_range(ic, &dio->range);
1755 /*
1756 * wait_and_add_new_range drops the spinlock, so the journal
1757 * may have been changed arbitrarily. We need to recheck.
1758 * To simplify the code, we restrict I/O size to just one block.
1759 */
1760 if (journal_read_pos != NOT_FOUND) {
1761 sector_t next_sector;
1762 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1763 if (unlikely(new_pos != journal_read_pos)) {
1764 remove_range_unlocked(ic, &dio->range);
1765 goto retry;
1766 }
1767 }
1768 }
1769 spin_unlock_irq(&ic->endio_wait.lock);
1770
1771 if (unlikely(journal_read_pos != NOT_FOUND)) {
1772 journal_section = journal_read_pos / ic->journal_section_entries;
1773 journal_entry = journal_read_pos % ic->journal_section_entries;
1774 goto journal_read_write;
1775 }
1776
1777 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1778
1779 if (need_sync_io) {
1780 init_completion(&read_comp);
1781 dio->completion = &read_comp;
1782 } else
1783 dio->completion = NULL;
1784
1785 dio->orig_bi_iter = bio->bi_iter;
1786
1787 dio->orig_bi_disk = bio->bi_disk;
1788 dio->orig_bi_partno = bio->bi_partno;
1789 bio_set_dev(bio, ic->dev->bdev);
1790
1791 dio->orig_bi_integrity = bio_integrity(bio);
1792 bio->bi_integrity = NULL;
1793 bio->bi_opf &= ~REQ_INTEGRITY;
1794
1795 dio->orig_bi_end_io = bio->bi_end_io;
1796 bio->bi_end_io = integrity_end_io;
1797
1798 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
1799 generic_make_request(bio);
1800
1801 if (need_sync_io) {
1802 wait_for_completion_io(&read_comp);
1803 if (unlikely(ic->recalc_wq != NULL) &&
1804 ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
1805 dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
1806 goto skip_check;
1807 if (likely(!bio->bi_status))
1808 integrity_metadata(&dio->work);
1809 else
1810skip_check:
1811 dec_in_flight(dio);
1812
1813 } else {
1814 INIT_WORK(&dio->work, integrity_metadata);
1815 queue_work(ic->metadata_wq, &dio->work);
1816 }
1817
1818 return;
1819
1820journal_read_write:
1821 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
1822 goto lock_retry;
1823
1824 do_endio_flush(ic, dio);
1825}
1826
1827
1828static void integrity_bio_wait(struct work_struct *w)
1829{
1830 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1831
1832 dm_integrity_map_continue(dio, false);
1833}
1834
1835static void pad_uncommitted(struct dm_integrity_c *ic)
1836{
1837 if (ic->free_section_entry) {
1838 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
1839 ic->free_section_entry = 0;
1840 ic->free_section++;
1841 wraparound_section(ic, &ic->free_section);
1842 ic->n_uncommitted_sections++;
1843 }
1844 WARN_ON(ic->journal_sections * ic->journal_section_entries !=
1845 (ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors);
1846}
1847
1848static void integrity_commit(struct work_struct *w)
1849{
1850 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
1851 unsigned commit_start, commit_sections;
1852 unsigned i, j, n;
1853 struct bio *flushes;
1854
1855 del_timer(&ic->autocommit_timer);
1856
1857 spin_lock_irq(&ic->endio_wait.lock);
1858 flushes = bio_list_get(&ic->flush_bio_list);
1859 if (unlikely(ic->mode != 'J')) {
1860 spin_unlock_irq(&ic->endio_wait.lock);
1861 dm_integrity_flush_buffers(ic);
1862 goto release_flush_bios;
1863 }
1864
1865 pad_uncommitted(ic);
1866 commit_start = ic->uncommitted_section;
1867 commit_sections = ic->n_uncommitted_sections;
1868 spin_unlock_irq(&ic->endio_wait.lock);
1869
1870 if (!commit_sections)
1871 goto release_flush_bios;
1872
1873 i = commit_start;
1874 for (n = 0; n < commit_sections; n++) {
1875 for (j = 0; j < ic->journal_section_entries; j++) {
1876 struct journal_entry *je;
1877 je = access_journal_entry(ic, i, j);
1878 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1879 }
1880 for (j = 0; j < ic->journal_section_sectors; j++) {
1881 struct journal_sector *js;
1882 js = access_journal(ic, i, j);
1883 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
1884 }
1885 i++;
1886 if (unlikely(i >= ic->journal_sections))
1887 ic->commit_seq = next_commit_seq(ic->commit_seq);
1888 wraparound_section(ic, &i);
1889 }
1890 smp_rmb();
1891
1892 write_journal(ic, commit_start, commit_sections);
1893
1894 spin_lock_irq(&ic->endio_wait.lock);
1895 ic->uncommitted_section += commit_sections;
1896 wraparound_section(ic, &ic->uncommitted_section);
1897 ic->n_uncommitted_sections -= commit_sections;
1898 ic->n_committed_sections += commit_sections;
1899 spin_unlock_irq(&ic->endio_wait.lock);
1900
1901 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
1902 queue_work(ic->writer_wq, &ic->writer_work);
1903
1904release_flush_bios:
1905 while (flushes) {
1906 struct bio *next = flushes->bi_next;
1907 flushes->bi_next = NULL;
1908 do_endio(ic, flushes);
1909 flushes = next;
1910 }
1911}
1912
1913static void complete_copy_from_journal(unsigned long error, void *context)
1914{
1915 struct journal_io *io = context;
1916 struct journal_completion *comp = io->comp;
1917 struct dm_integrity_c *ic = comp->ic;
1918 remove_range(ic, &io->range);
1919 mempool_free(io, &ic->journal_io_mempool);
1920 if (unlikely(error != 0))
1921 dm_integrity_io_error(ic, "copying from journal", -EIO);
1922 complete_journal_op(comp);
1923}
1924
1925static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
1926 struct journal_entry *je)
1927{
1928 unsigned s = 0;
1929 do {
1930 js->commit_id = je->last_bytes[s];
1931 js++;
1932 } while (++s < ic->sectors_per_block);
1933}
1934
1935static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
1936 unsigned write_sections, bool from_replay)
1937{
1938 unsigned i, j, n;
1939 struct journal_completion comp;
1940 struct blk_plug plug;
1941
1942 blk_start_plug(&plug);
1943
1944 comp.ic = ic;
1945 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1946 init_completion(&comp.comp);
1947
1948 i = write_start;
1949 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
1950#ifndef INTERNAL_VERIFY
1951 if (unlikely(from_replay))
1952#endif
1953 rw_section_mac(ic, i, false);
1954 for (j = 0; j < ic->journal_section_entries; j++) {
1955 struct journal_entry *je = access_journal_entry(ic, i, j);
1956 sector_t sec, area, offset;
1957 unsigned k, l, next_loop;
1958 sector_t metadata_block;
1959 unsigned metadata_offset;
1960 struct journal_io *io;
1961
1962 if (journal_entry_is_unused(je))
1963 continue;
1964 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
1965 sec = journal_entry_get_sector(je);
1966 if (unlikely(from_replay)) {
1967 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
1968 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
1969 sec &= ~(sector_t)(ic->sectors_per_block - 1);
1970 }
1971 }
1972 get_area_and_offset(ic, sec, &area, &offset);
1973 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
1974 for (k = j + 1; k < ic->journal_section_entries; k++) {
1975 struct journal_entry *je2 = access_journal_entry(ic, i, k);
1976 sector_t sec2, area2, offset2;
1977 if (journal_entry_is_unused(je2))
1978 break;
1979 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
1980 sec2 = journal_entry_get_sector(je2);
1981 get_area_and_offset(ic, sec2, &area2, &offset2);
1982 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
1983 break;
1984 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
1985 }
1986 next_loop = k - 1;
1987
1988 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
1989 io->comp = &comp;
1990 io->range.logical_sector = sec;
1991 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
1992
1993 spin_lock_irq(&ic->endio_wait.lock);
1994 if (unlikely(!add_new_range(ic, &io->range, true)))
1995 wait_and_add_new_range(ic, &io->range);
1996
1997 if (likely(!from_replay)) {
1998 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
1999
2000 /* don't write if there is newer committed sector */
2001 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2002 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2003
2004 journal_entry_set_unused(je2);
2005 remove_journal_node(ic, &section_node[j]);
2006 j++;
2007 sec += ic->sectors_per_block;
2008 offset += ic->sectors_per_block;
2009 }
2010 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2011 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2012
2013 journal_entry_set_unused(je2);
2014 remove_journal_node(ic, &section_node[k - 1]);
2015 k--;
2016 }
2017 if (j == k) {
2018 remove_range_unlocked(ic, &io->range);
2019 spin_unlock_irq(&ic->endio_wait.lock);
2020 mempool_free(io, &ic->journal_io_mempool);
2021 goto skip_io;
2022 }
2023 for (l = j; l < k; l++) {
2024 remove_journal_node(ic, &section_node[l]);
2025 }
2026 }
2027 spin_unlock_irq(&ic->endio_wait.lock);
2028
2029 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2030 for (l = j; l < k; l++) {
2031 int r;
2032 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2033
2034 if (
2035#ifndef INTERNAL_VERIFY
2036 unlikely(from_replay) &&
2037#endif
2038 ic->internal_hash) {
2039 char test_tag[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
2040
2041 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2042 (char *)access_journal_data(ic, i, l), test_tag);
2043 if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
2044 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2045 }
2046
2047 journal_entry_set_unused(je2);
2048 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2049 ic->tag_size, TAG_WRITE);
2050 if (unlikely(r)) {
2051 dm_integrity_io_error(ic, "reading tags", r);
2052 }
2053 }
2054
2055 atomic_inc(&comp.in_flight);
2056 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2057 (k - j) << ic->sb->log2_sectors_per_block,
2058 get_data_sector(ic, area, offset),
2059 complete_copy_from_journal, io);
2060skip_io:
2061 j = next_loop;
2062 }
2063 }
2064
2065 dm_bufio_write_dirty_buffers_async(ic->bufio);
2066
2067 blk_finish_plug(&plug);
2068
2069 complete_journal_op(&comp);
2070 wait_for_completion_io(&comp.comp);
2071
2072 dm_integrity_flush_buffers(ic);
2073}
2074
2075static void integrity_writer(struct work_struct *w)
2076{
2077 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2078 unsigned write_start, write_sections;
2079
2080 unsigned prev_free_sectors;
2081
2082 /* the following test is not needed, but it tests the replay code */
2083 if (READ_ONCE(ic->suspending) && !ic->meta_dev)
2084 return;
2085
2086 spin_lock_irq(&ic->endio_wait.lock);
2087 write_start = ic->committed_section;
2088 write_sections = ic->n_committed_sections;
2089 spin_unlock_irq(&ic->endio_wait.lock);
2090
2091 if (!write_sections)
2092 return;
2093
2094 do_journal_write(ic, write_start, write_sections, false);
2095
2096 spin_lock_irq(&ic->endio_wait.lock);
2097
2098 ic->committed_section += write_sections;
2099 wraparound_section(ic, &ic->committed_section);
2100 ic->n_committed_sections -= write_sections;
2101
2102 prev_free_sectors = ic->free_sectors;
2103 ic->free_sectors += write_sections * ic->journal_section_entries;
2104 if (unlikely(!prev_free_sectors))
2105 wake_up_locked(&ic->endio_wait);
2106
2107 spin_unlock_irq(&ic->endio_wait.lock);
2108}
2109
2110static void recalc_write_super(struct dm_integrity_c *ic)
2111{
2112 int r;
2113
2114 dm_integrity_flush_buffers(ic);
2115 if (dm_integrity_failed(ic))
2116 return;
2117
2118 sb_set_version(ic);
2119 r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2120 if (unlikely(r))
2121 dm_integrity_io_error(ic, "writing superblock", r);
2122}
2123
2124static void integrity_recalc(struct work_struct *w)
2125{
2126 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2127 struct dm_integrity_range range;
2128 struct dm_io_request io_req;
2129 struct dm_io_region io_loc;
2130 sector_t area, offset;
2131 sector_t metadata_block;
2132 unsigned metadata_offset;
2133 __u8 *t;
2134 unsigned i;
2135 int r;
2136 unsigned super_counter = 0;
2137
2138 spin_lock_irq(&ic->endio_wait.lock);
2139
2140next_chunk:
2141
2142 if (unlikely(READ_ONCE(ic->suspending)))
2143 goto unlock_ret;
2144
2145 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2146 if (unlikely(range.logical_sector >= ic->provided_data_sectors))
2147 goto unlock_ret;
2148
2149 get_area_and_offset(ic, range.logical_sector, &area, &offset);
2150 range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2151 if (!ic->meta_dev)
2152 range.n_sectors = min(range.n_sectors, (1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2153
2154 if (unlikely(!add_new_range(ic, &range, true)))
2155 wait_and_add_new_range(ic, &range);
2156
2157 spin_unlock_irq(&ic->endio_wait.lock);
2158
2159 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2160 recalc_write_super(ic);
2161 super_counter = 0;
2162 }
2163
2164 if (unlikely(dm_integrity_failed(ic)))
2165 goto err;
2166
2167 io_req.bi_op = REQ_OP_READ;
2168 io_req.bi_op_flags = 0;
2169 io_req.mem.type = DM_IO_VMA;
2170 io_req.mem.ptr.addr = ic->recalc_buffer;
2171 io_req.notify.fn = NULL;
2172 io_req.client = ic->io;
2173 io_loc.bdev = ic->dev->bdev;
2174 io_loc.sector = get_data_sector(ic, area, offset);
2175 io_loc.count = range.n_sectors;
2176
2177 r = dm_io(&io_req, 1, &io_loc, NULL);
2178 if (unlikely(r)) {
2179 dm_integrity_io_error(ic, "reading data", r);
2180 goto err;
2181 }
2182
2183 t = ic->recalc_tags;
2184 for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) {
2185 integrity_sector_checksum(ic, range.logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2186 t += ic->tag_size;
2187 }
2188
2189 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2190
2191 r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2192 if (unlikely(r)) {
2193 dm_integrity_io_error(ic, "writing tags", r);
2194 goto err;
2195 }
2196
2197 spin_lock_irq(&ic->endio_wait.lock);
2198 remove_range_unlocked(ic, &range);
2199 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2200 goto next_chunk;
2201
2202err:
2203 remove_range(ic, &range);
2204 return;
2205
2206unlock_ret:
2207 spin_unlock_irq(&ic->endio_wait.lock);
2208
2209 recalc_write_super(ic);
2210}
2211
2212static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2213 unsigned n_sections, unsigned char commit_seq)
2214{
2215 unsigned i, j, n;
2216
2217 if (!n_sections)
2218 return;
2219
2220 for (n = 0; n < n_sections; n++) {
2221 i = start_section + n;
2222 wraparound_section(ic, &i);
2223 for (j = 0; j < ic->journal_section_sectors; j++) {
2224 struct journal_sector *js = access_journal(ic, i, j);
2225 memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2226 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2227 }
2228 for (j = 0; j < ic->journal_section_entries; j++) {
2229 struct journal_entry *je = access_journal_entry(ic, i, j);
2230 journal_entry_set_unused(je);
2231 }
2232 }
2233
2234 write_journal(ic, start_section, n_sections);
2235}
2236
2237static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2238{
2239 unsigned char k;
2240 for (k = 0; k < N_COMMIT_IDS; k++) {
2241 if (dm_integrity_commit_id(ic, i, j, k) == id)
2242 return k;
2243 }
2244 dm_integrity_io_error(ic, "journal commit id", -EIO);
2245 return -EIO;
2246}
2247
2248static void replay_journal(struct dm_integrity_c *ic)
2249{
2250 unsigned i, j;
2251 bool used_commit_ids[N_COMMIT_IDS];
2252 unsigned max_commit_id_sections[N_COMMIT_IDS];
2253 unsigned write_start, write_sections;
2254 unsigned continue_section;
2255 bool journal_empty;
2256 unsigned char unused, last_used, want_commit_seq;
2257
2258 if (ic->mode == 'R')
2259 return;
2260
2261 if (ic->journal_uptodate)
2262 return;
2263
2264 last_used = 0;
2265 write_start = 0;
2266
2267 if (!ic->just_formatted) {
2268 DEBUG_print("reading journal\n");
2269 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2270 if (ic->journal_io)
2271 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2272 if (ic->journal_io) {
2273 struct journal_completion crypt_comp;
2274 crypt_comp.ic = ic;
2275 init_completion(&crypt_comp.comp);
2276 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2277 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2278 wait_for_completion(&crypt_comp.comp);
2279 }
2280 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2281 }
2282
2283 if (dm_integrity_failed(ic))
2284 goto clear_journal;
2285
2286 journal_empty = true;
2287 memset(used_commit_ids, 0, sizeof used_commit_ids);
2288 memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2289 for (i = 0; i < ic->journal_sections; i++) {
2290 for (j = 0; j < ic->journal_section_sectors; j++) {
2291 int k;
2292 struct journal_sector *js = access_journal(ic, i, j);
2293 k = find_commit_seq(ic, i, j, js->commit_id);
2294 if (k < 0)
2295 goto clear_journal;
2296 used_commit_ids[k] = true;
2297 max_commit_id_sections[k] = i;
2298 }
2299 if (journal_empty) {
2300 for (j = 0; j < ic->journal_section_entries; j++) {
2301 struct journal_entry *je = access_journal_entry(ic, i, j);
2302 if (!journal_entry_is_unused(je)) {
2303 journal_empty = false;
2304 break;
2305 }
2306 }
2307 }
2308 }
2309
2310 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2311 unused = N_COMMIT_IDS - 1;
2312 while (unused && !used_commit_ids[unused - 1])
2313 unused--;
2314 } else {
2315 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2316 if (!used_commit_ids[unused])
2317 break;
2318 if (unused == N_COMMIT_IDS) {
2319 dm_integrity_io_error(ic, "journal commit ids", -EIO);
2320 goto clear_journal;
2321 }
2322 }
2323 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2324 unused, used_commit_ids[0], used_commit_ids[1],
2325 used_commit_ids[2], used_commit_ids[3]);
2326
2327 last_used = prev_commit_seq(unused);
2328 want_commit_seq = prev_commit_seq(last_used);
2329
2330 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2331 journal_empty = true;
2332
2333 write_start = max_commit_id_sections[last_used] + 1;
2334 if (unlikely(write_start >= ic->journal_sections))
2335 want_commit_seq = next_commit_seq(want_commit_seq);
2336 wraparound_section(ic, &write_start);
2337
2338 i = write_start;
2339 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2340 for (j = 0; j < ic->journal_section_sectors; j++) {
2341 struct journal_sector *js = access_journal(ic, i, j);
2342
2343 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2344 /*
2345 * This could be caused by crash during writing.
2346 * We won't replay the inconsistent part of the
2347 * journal.
2348 */
2349 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2350 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2351 goto brk;
2352 }
2353 }
2354 i++;
2355 if (unlikely(i >= ic->journal_sections))
2356 want_commit_seq = next_commit_seq(want_commit_seq);
2357 wraparound_section(ic, &i);
2358 }
2359brk:
2360
2361 if (!journal_empty) {
2362 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2363 write_sections, write_start, want_commit_seq);
2364 do_journal_write(ic, write_start, write_sections, true);
2365 }
2366
2367 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2368 continue_section = write_start;
2369 ic->commit_seq = want_commit_seq;
2370 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2371 } else {
2372 unsigned s;
2373 unsigned char erase_seq;
2374clear_journal:
2375 DEBUG_print("clearing journal\n");
2376
2377 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2378 s = write_start;
2379 init_journal(ic, s, 1, erase_seq);
2380 s++;
2381 wraparound_section(ic, &s);
2382 if (ic->journal_sections >= 2) {
2383 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2384 s += ic->journal_sections - 2;
2385 wraparound_section(ic, &s);
2386 init_journal(ic, s, 1, erase_seq);
2387 }
2388
2389 continue_section = 0;
2390 ic->commit_seq = next_commit_seq(erase_seq);
2391 }
2392
2393 ic->committed_section = continue_section;
2394 ic->n_committed_sections = 0;
2395
2396 ic->uncommitted_section = continue_section;
2397 ic->n_uncommitted_sections = 0;
2398
2399 ic->free_section = continue_section;
2400 ic->free_section_entry = 0;
2401 ic->free_sectors = ic->journal_entries;
2402
2403 ic->journal_tree_root = RB_ROOT;
2404 for (i = 0; i < ic->journal_entries; i++)
2405 init_journal_node(&ic->journal_tree[i]);
2406}
2407
2408static void dm_integrity_postsuspend(struct dm_target *ti)
2409{
2410 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2411
2412 del_timer_sync(&ic->autocommit_timer);
2413
2414 WRITE_ONCE(ic->suspending, 1);
2415
2416 if (ic->recalc_wq)
2417 drain_workqueue(ic->recalc_wq);
2418
2419 queue_work(ic->commit_wq, &ic->commit_work);
2420 drain_workqueue(ic->commit_wq);
2421
2422 if (ic->mode == 'J') {
2423 if (ic->meta_dev)
2424 queue_work(ic->writer_wq, &ic->writer_work);
2425 drain_workqueue(ic->writer_wq);
2426 dm_integrity_flush_buffers(ic);
2427 }
2428
2429 WRITE_ONCE(ic->suspending, 0);
2430
2431 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2432
2433 ic->journal_uptodate = true;
2434}
2435
2436static void dm_integrity_resume(struct dm_target *ti)
2437{
2438 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2439
2440 replay_journal(ic);
2441
2442 if (ic->recalc_wq && ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2443 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
2444 if (recalc_pos < ic->provided_data_sectors) {
2445 queue_work(ic->recalc_wq, &ic->recalc_work);
2446 } else if (recalc_pos > ic->provided_data_sectors) {
2447 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
2448 recalc_write_super(ic);
2449 }
2450 }
2451}
2452
2453static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2454 unsigned status_flags, char *result, unsigned maxlen)
2455{
2456 struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2457 unsigned arg_count;
2458 size_t sz = 0;
2459
2460 switch (type) {
2461 case STATUSTYPE_INFO:
2462 DMEMIT("%llu %llu",
2463 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
2464 (unsigned long long)ic->provided_data_sectors);
2465 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2466 DMEMIT(" %llu", (unsigned long long)le64_to_cpu(ic->sb->recalc_sector));
2467 else
2468 DMEMIT(" -");
2469 break;
2470
2471 case STATUSTYPE_TABLE: {
2472 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2473 watermark_percentage += ic->journal_entries / 2;
2474 do_div(watermark_percentage, ic->journal_entries);
2475 arg_count = 5;
2476 arg_count += !!ic->meta_dev;
2477 arg_count += ic->sectors_per_block != 1;
2478 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
2479 arg_count += !!ic->internal_hash_alg.alg_string;
2480 arg_count += !!ic->journal_crypt_alg.alg_string;
2481 arg_count += !!ic->journal_mac_alg.alg_string;
2482 DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2483 ic->tag_size, ic->mode, arg_count);
2484 if (ic->meta_dev)
2485 DMEMIT(" meta_device:%s", ic->meta_dev->name);
2486 if (ic->sectors_per_block != 1)
2487 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2488 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
2489 DMEMIT(" recalculate");
2490 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2491 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2492 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2493 DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2494 DMEMIT(" commit_time:%u", ic->autocommit_msec);
2495
2496#define EMIT_ALG(a, n) \
2497 do { \
2498 if (ic->a.alg_string) { \
2499 DMEMIT(" %s:%s", n, ic->a.alg_string); \
2500 if (ic->a.key_string) \
2501 DMEMIT(":%s", ic->a.key_string);\
2502 } \
2503 } while (0)
2504 EMIT_ALG(internal_hash_alg, "internal_hash");
2505 EMIT_ALG(journal_crypt_alg, "journal_crypt");
2506 EMIT_ALG(journal_mac_alg, "journal_mac");
2507 break;
2508 }
2509 }
2510}
2511
2512static int dm_integrity_iterate_devices(struct dm_target *ti,
2513 iterate_devices_callout_fn fn, void *data)
2514{
2515 struct dm_integrity_c *ic = ti->private;
2516
2517 if (!ic->meta_dev)
2518 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
2519 else
2520 return fn(ti, ic->dev, 0, ti->len, data);
2521}
2522
2523static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
2524{
2525 struct dm_integrity_c *ic = ti->private;
2526
2527 if (ic->sectors_per_block > 1) {
2528 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2529 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2530 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
2531 }
2532}
2533
2534static void calculate_journal_section_size(struct dm_integrity_c *ic)
2535{
2536 unsigned sector_space = JOURNAL_SECTOR_DATA;
2537
2538 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
2539 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
2540 JOURNAL_ENTRY_ROUNDUP);
2541
2542 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
2543 sector_space -= JOURNAL_MAC_PER_SECTOR;
2544 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
2545 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
2546 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
2547 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
2548}
2549
2550static int calculate_device_limits(struct dm_integrity_c *ic)
2551{
2552 __u64 initial_sectors;
2553
2554 calculate_journal_section_size(ic);
2555 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
2556 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
2557 return -EINVAL;
2558 ic->initial_sectors = initial_sectors;
2559
2560 if (!ic->meta_dev) {
2561 sector_t last_sector, last_area, last_offset;
2562
2563 ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
2564 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
2565 if (!(ic->metadata_run & (ic->metadata_run - 1)))
2566 ic->log2_metadata_run = __ffs(ic->metadata_run);
2567 else
2568 ic->log2_metadata_run = -1;
2569
2570 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
2571 last_sector = get_data_sector(ic, last_area, last_offset);
2572 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
2573 return -EINVAL;
2574 } else {
2575 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
2576 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
2577 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
2578 meta_size <<= ic->log2_buffer_sectors;
2579 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
2580 ic->initial_sectors + meta_size > ic->meta_device_sectors)
2581 return -EINVAL;
2582 ic->metadata_run = 1;
2583 ic->log2_metadata_run = 0;
2584 }
2585
2586 return 0;
2587}
2588
2589static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
2590{
2591 unsigned journal_sections;
2592 int test_bit;
2593
2594 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
2595 memcpy(ic->sb->magic, SB_MAGIC, 8);
2596 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
2597 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
2598 if (ic->journal_mac_alg.alg_string)
2599 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
2600
2601 calculate_journal_section_size(ic);
2602 journal_sections = journal_sectors / ic->journal_section_sectors;
2603 if (!journal_sections)
2604 journal_sections = 1;
2605
2606 if (!ic->meta_dev) {
2607 ic->sb->journal_sections = cpu_to_le32(journal_sections);
2608 if (!interleave_sectors)
2609 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2610 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
2611 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2612 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2613
2614 ic->provided_data_sectors = 0;
2615 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
2616 __u64 prev_data_sectors = ic->provided_data_sectors;
2617
2618 ic->provided_data_sectors |= (sector_t)1 << test_bit;
2619 if (calculate_device_limits(ic))
2620 ic->provided_data_sectors = prev_data_sectors;
2621 }
2622 if (!ic->provided_data_sectors)
2623 return -EINVAL;
2624 } else {
2625 ic->sb->log2_interleave_sectors = 0;
2626 ic->provided_data_sectors = ic->data_device_sectors;
2627 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
2628
2629try_smaller_buffer:
2630 ic->sb->journal_sections = cpu_to_le32(0);
2631 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
2632 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
2633 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
2634 if (test_journal_sections > journal_sections)
2635 continue;
2636 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
2637 if (calculate_device_limits(ic))
2638 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
2639
2640 }
2641 if (!le32_to_cpu(ic->sb->journal_sections)) {
2642 if (ic->log2_buffer_sectors > 3) {
2643 ic->log2_buffer_sectors--;
2644 goto try_smaller_buffer;
2645 }
2646 return -EINVAL;
2647 }
2648 }
2649
2650 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2651
2652 sb_set_version(ic);
2653
2654 return 0;
2655}
2656
2657static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
2658{
2659 struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
2660 struct blk_integrity bi;
2661
2662 memset(&bi, 0, sizeof(bi));
2663 bi.profile = &dm_integrity_profile;
2664 bi.tuple_size = ic->tag_size;
2665 bi.tag_size = bi.tuple_size;
2666 bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
2667
2668 blk_integrity_register(disk, &bi);
2669 blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
2670}
2671
2672static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
2673{
2674 unsigned i;
2675
2676 if (!pl)
2677 return;
2678 for (i = 0; i < ic->journal_pages; i++)
2679 if (pl[i].page)
2680 __free_page(pl[i].page);
2681 kvfree(pl);
2682}
2683
2684static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
2685{
2686 size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
2687 struct page_list *pl;
2688 unsigned i;
2689
2690 pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
2691 if (!pl)
2692 return NULL;
2693
2694 for (i = 0; i < ic->journal_pages; i++) {
2695 pl[i].page = alloc_page(GFP_KERNEL);
2696 if (!pl[i].page) {
2697 dm_integrity_free_page_list(ic, pl);
2698 return NULL;
2699 }
2700 if (i)
2701 pl[i - 1].next = &pl[i];
2702 }
2703
2704 return pl;
2705}
2706
2707static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
2708{
2709 unsigned i;
2710 for (i = 0; i < ic->journal_sections; i++)
2711 kvfree(sl[i]);
2712 kvfree(sl);
2713}
2714
2715static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
2716{
2717 struct scatterlist **sl;
2718 unsigned i;
2719
2720 sl = kvmalloc_array(ic->journal_sections,
2721 sizeof(struct scatterlist *),
2722 GFP_KERNEL | __GFP_ZERO);
2723 if (!sl)
2724 return NULL;
2725
2726 for (i = 0; i < ic->journal_sections; i++) {
2727 struct scatterlist *s;
2728 unsigned start_index, start_offset;
2729 unsigned end_index, end_offset;
2730 unsigned n_pages;
2731 unsigned idx;
2732
2733 page_list_location(ic, i, 0, &start_index, &start_offset);
2734 page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
2735
2736 n_pages = (end_index - start_index + 1);
2737
2738 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
2739 GFP_KERNEL);
2740 if (!s) {
2741 dm_integrity_free_journal_scatterlist(ic, sl);
2742 return NULL;
2743 }
2744
2745 sg_init_table(s, n_pages);
2746 for (idx = start_index; idx <= end_index; idx++) {
2747 char *va = lowmem_page_address(pl[idx].page);
2748 unsigned start = 0, end = PAGE_SIZE;
2749 if (idx == start_index)
2750 start = start_offset;
2751 if (idx == end_index)
2752 end = end_offset + (1 << SECTOR_SHIFT);
2753 sg_set_buf(&s[idx - start_index], va + start, end - start);
2754 }
2755
2756 sl[i] = s;
2757 }
2758
2759 return sl;
2760}
2761
2762static void free_alg(struct alg_spec *a)
2763{
2764 kzfree(a->alg_string);
2765 kzfree(a->key);
2766 memset(a, 0, sizeof *a);
2767}
2768
2769static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
2770{
2771 char *k;
2772
2773 free_alg(a);
2774
2775 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
2776 if (!a->alg_string)
2777 goto nomem;
2778
2779 k = strchr(a->alg_string, ':');
2780 if (k) {
2781 *k = 0;
2782 a->key_string = k + 1;
2783 if (strlen(a->key_string) & 1)
2784 goto inval;
2785
2786 a->key_size = strlen(a->key_string) / 2;
2787 a->key = kmalloc(a->key_size, GFP_KERNEL);
2788 if (!a->key)
2789 goto nomem;
2790 if (hex2bin(a->key, a->key_string, a->key_size))
2791 goto inval;
2792 }
2793
2794 return 0;
2795inval:
2796 *error = error_inval;
2797 return -EINVAL;
2798nomem:
2799 *error = "Out of memory for an argument";
2800 return -ENOMEM;
2801}
2802
2803static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
2804 char *error_alg, char *error_key)
2805{
2806 int r;
2807
2808 if (a->alg_string) {
2809 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ASYNC);
2810 if (IS_ERR(*hash)) {
2811 *error = error_alg;
2812 r = PTR_ERR(*hash);
2813 *hash = NULL;
2814 return r;
2815 }
2816
2817 if (a->key) {
2818 r = crypto_shash_setkey(*hash, a->key, a->key_size);
2819 if (r) {
2820 *error = error_key;
2821 return r;
2822 }
2823 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
2824 *error = error_key;
2825 return -ENOKEY;
2826 }
2827 }
2828
2829 return 0;
2830}
2831
2832static int create_journal(struct dm_integrity_c *ic, char **error)
2833{
2834 int r = 0;
2835 unsigned i;
2836 __u64 journal_pages, journal_desc_size, journal_tree_size;
2837 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
2838 struct skcipher_request *req = NULL;
2839
2840 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
2841 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
2842 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
2843 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
2844
2845 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
2846 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
2847 journal_desc_size = journal_pages * sizeof(struct page_list);
2848 if (journal_pages >= totalram_pages - totalhigh_pages || journal_desc_size > ULONG_MAX) {
2849 *error = "Journal doesn't fit into memory";
2850 r = -ENOMEM;
2851 goto bad;
2852 }
2853 ic->journal_pages = journal_pages;
2854
2855 ic->journal = dm_integrity_alloc_page_list(ic);
2856 if (!ic->journal) {
2857 *error = "Could not allocate memory for journal";
2858 r = -ENOMEM;
2859 goto bad;
2860 }
2861 if (ic->journal_crypt_alg.alg_string) {
2862 unsigned ivsize, blocksize;
2863 struct journal_completion comp;
2864
2865 comp.ic = ic;
2866 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
2867 if (IS_ERR(ic->journal_crypt)) {
2868 *error = "Invalid journal cipher";
2869 r = PTR_ERR(ic->journal_crypt);
2870 ic->journal_crypt = NULL;
2871 goto bad;
2872 }
2873 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
2874 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
2875
2876 if (ic->journal_crypt_alg.key) {
2877 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
2878 ic->journal_crypt_alg.key_size);
2879 if (r) {
2880 *error = "Error setting encryption key";
2881 goto bad;
2882 }
2883 }
2884 DEBUG_print("cipher %s, block size %u iv size %u\n",
2885 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
2886
2887 ic->journal_io = dm_integrity_alloc_page_list(ic);
2888 if (!ic->journal_io) {
2889 *error = "Could not allocate memory for journal io";
2890 r = -ENOMEM;
2891 goto bad;
2892 }
2893
2894 if (blocksize == 1) {
2895 struct scatterlist *sg;
2896
2897 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2898 if (!req) {
2899 *error = "Could not allocate crypt request";
2900 r = -ENOMEM;
2901 goto bad;
2902 }
2903
2904 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2905 if (!crypt_iv) {
2906 *error = "Could not allocate iv";
2907 r = -ENOMEM;
2908 goto bad;
2909 }
2910
2911 ic->journal_xor = dm_integrity_alloc_page_list(ic);
2912 if (!ic->journal_xor) {
2913 *error = "Could not allocate memory for journal xor";
2914 r = -ENOMEM;
2915 goto bad;
2916 }
2917
2918 sg = kvmalloc_array(ic->journal_pages + 1,
2919 sizeof(struct scatterlist),
2920 GFP_KERNEL);
2921 if (!sg) {
2922 *error = "Unable to allocate sg list";
2923 r = -ENOMEM;
2924 goto bad;
2925 }
2926 sg_init_table(sg, ic->journal_pages + 1);
2927 for (i = 0; i < ic->journal_pages; i++) {
2928 char *va = lowmem_page_address(ic->journal_xor[i].page);
2929 clear_page(va);
2930 sg_set_buf(&sg[i], va, PAGE_SIZE);
2931 }
2932 sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
2933 memset(crypt_iv, 0x00, ivsize);
2934
2935 skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
2936 init_completion(&comp.comp);
2937 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2938 if (do_crypt(true, req, &comp))
2939 wait_for_completion(&comp.comp);
2940 kvfree(sg);
2941 r = dm_integrity_failed(ic);
2942 if (r) {
2943 *error = "Unable to encrypt journal";
2944 goto bad;
2945 }
2946 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
2947
2948 crypto_free_skcipher(ic->journal_crypt);
2949 ic->journal_crypt = NULL;
2950 } else {
2951 unsigned crypt_len = roundup(ivsize, blocksize);
2952
2953 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2954 if (!req) {
2955 *error = "Could not allocate crypt request";
2956 r = -ENOMEM;
2957 goto bad;
2958 }
2959
2960 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2961 if (!crypt_iv) {
2962 *error = "Could not allocate iv";
2963 r = -ENOMEM;
2964 goto bad;
2965 }
2966
2967 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
2968 if (!crypt_data) {
2969 *error = "Unable to allocate crypt data";
2970 r = -ENOMEM;
2971 goto bad;
2972 }
2973
2974 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
2975 if (!ic->journal_scatterlist) {
2976 *error = "Unable to allocate sg list";
2977 r = -ENOMEM;
2978 goto bad;
2979 }
2980 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
2981 if (!ic->journal_io_scatterlist) {
2982 *error = "Unable to allocate sg list";
2983 r = -ENOMEM;
2984 goto bad;
2985 }
2986 ic->sk_requests = kvmalloc_array(ic->journal_sections,
2987 sizeof(struct skcipher_request *),
2988 GFP_KERNEL | __GFP_ZERO);
2989 if (!ic->sk_requests) {
2990 *error = "Unable to allocate sk requests";
2991 r = -ENOMEM;
2992 goto bad;
2993 }
2994 for (i = 0; i < ic->journal_sections; i++) {
2995 struct scatterlist sg;
2996 struct skcipher_request *section_req;
2997 __u32 section_le = cpu_to_le32(i);
2998
2999 memset(crypt_iv, 0x00, ivsize);
3000 memset(crypt_data, 0x00, crypt_len);
3001 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3002
3003 sg_init_one(&sg, crypt_data, crypt_len);
3004 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3005 init_completion(&comp.comp);
3006 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3007 if (do_crypt(true, req, &comp))
3008 wait_for_completion(&comp.comp);
3009
3010 r = dm_integrity_failed(ic);
3011 if (r) {
3012 *error = "Unable to generate iv";
3013 goto bad;
3014 }
3015
3016 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3017 if (!section_req) {
3018 *error = "Unable to allocate crypt request";
3019 r = -ENOMEM;
3020 goto bad;
3021 }
3022 section_req->iv = kmalloc_array(ivsize, 2,
3023 GFP_KERNEL);
3024 if (!section_req->iv) {
3025 skcipher_request_free(section_req);
3026 *error = "Unable to allocate iv";
3027 r = -ENOMEM;
3028 goto bad;
3029 }
3030 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3031 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3032 ic->sk_requests[i] = section_req;
3033 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3034 }
3035 }
3036 }
3037
3038 for (i = 0; i < N_COMMIT_IDS; i++) {
3039 unsigned j;
3040retest_commit_id:
3041 for (j = 0; j < i; j++) {
3042 if (ic->commit_ids[j] == ic->commit_ids[i]) {
3043 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3044 goto retest_commit_id;
3045 }
3046 }
3047 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3048 }
3049
3050 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3051 if (journal_tree_size > ULONG_MAX) {
3052 *error = "Journal doesn't fit into memory";
3053 r = -ENOMEM;
3054 goto bad;
3055 }
3056 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3057 if (!ic->journal_tree) {
3058 *error = "Could not allocate memory for journal tree";
3059 r = -ENOMEM;
3060 }
3061bad:
3062 kfree(crypt_data);
3063 kfree(crypt_iv);
3064 skcipher_request_free(req);
3065
3066 return r;
3067}
3068
3069/*
3070 * Construct a integrity mapping
3071 *
3072 * Arguments:
3073 * device
3074 * offset from the start of the device
3075 * tag size
3076 * D - direct writes, J - journal writes, R - recovery mode
3077 * number of optional arguments
3078 * optional arguments:
3079 * journal_sectors
3080 * interleave_sectors
3081 * buffer_sectors
3082 * journal_watermark
3083 * commit_time
3084 * internal_hash
3085 * journal_crypt
3086 * journal_mac
3087 * block_size
3088 */
3089static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3090{
3091 struct dm_integrity_c *ic;
3092 char dummy;
3093 int r;
3094 unsigned extra_args;
3095 struct dm_arg_set as;
3096 static const struct dm_arg _args[] = {
3097 {0, 9, "Invalid number of feature args"},
3098 };
3099 unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3100 bool recalculate;
3101 bool should_write_sb;
3102 __u64 threshold;
3103 unsigned long long start;
3104
3105#define DIRECT_ARGUMENTS 4
3106
3107 if (argc <= DIRECT_ARGUMENTS) {
3108 ti->error = "Invalid argument count";
3109 return -EINVAL;
3110 }
3111
3112 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3113 if (!ic) {
3114 ti->error = "Cannot allocate integrity context";
3115 return -ENOMEM;
3116 }
3117 ti->private = ic;
3118 ti->per_io_data_size = sizeof(struct dm_integrity_io);
3119
3120 ic->in_progress = RB_ROOT;
3121 INIT_LIST_HEAD(&ic->wait_list);
3122 init_waitqueue_head(&ic->endio_wait);
3123 bio_list_init(&ic->flush_bio_list);
3124 init_waitqueue_head(&ic->copy_to_journal_wait);
3125 init_completion(&ic->crypto_backoff);
3126 atomic64_set(&ic->number_of_mismatches, 0);
3127
3128 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
3129 if (r) {
3130 ti->error = "Device lookup failed";
3131 goto bad;
3132 }
3133
3134 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
3135 ti->error = "Invalid starting offset";
3136 r = -EINVAL;
3137 goto bad;
3138 }
3139 ic->start = start;
3140
3141 if (strcmp(argv[2], "-")) {
3142 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
3143 ti->error = "Invalid tag size";
3144 r = -EINVAL;
3145 goto bad;
3146 }
3147 }
3148
3149 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R"))
3150 ic->mode = argv[3][0];
3151 else {
3152 ti->error = "Invalid mode (expecting J, D, R)";
3153 r = -EINVAL;
3154 goto bad;
3155 }
3156
3157 journal_sectors = 0;
3158 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3159 buffer_sectors = DEFAULT_BUFFER_SECTORS;
3160 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
3161 sync_msec = DEFAULT_SYNC_MSEC;
3162 recalculate = false;
3163 ic->sectors_per_block = 1;
3164
3165 as.argc = argc - DIRECT_ARGUMENTS;
3166 as.argv = argv + DIRECT_ARGUMENTS;
3167 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
3168 if (r)
3169 goto bad;
3170
3171 while (extra_args--) {
3172 const char *opt_string;
3173 unsigned val;
3174 opt_string = dm_shift_arg(&as);
3175 if (!opt_string) {
3176 r = -EINVAL;
3177 ti->error = "Not enough feature arguments";
3178 goto bad;
3179 }
3180 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
3181 journal_sectors = val ? val : 1;
3182 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
3183 interleave_sectors = val;
3184 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
3185 buffer_sectors = val;
3186 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
3187 journal_watermark = val;
3188 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
3189 sync_msec = val;
3190 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
3191 if (ic->meta_dev) {
3192 dm_put_device(ti, ic->meta_dev);
3193 ic->meta_dev = NULL;
3194 }
3195 r = dm_get_device(ti, strchr(opt_string, ':') + 1, dm_table_get_mode(ti->table), &ic->meta_dev);
3196 if (r) {
3197 ti->error = "Device lookup failed";
3198 goto bad;
3199 }
3200 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
3201 if (val < 1 << SECTOR_SHIFT ||
3202 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
3203 (val & (val -1))) {
3204 r = -EINVAL;
3205 ti->error = "Invalid block_size argument";
3206 goto bad;
3207 }
3208 ic->sectors_per_block = val >> SECTOR_SHIFT;
3209 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
3210 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
3211 "Invalid internal_hash argument");
3212 if (r)
3213 goto bad;
3214 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
3215 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
3216 "Invalid journal_crypt argument");
3217 if (r)
3218 goto bad;
3219 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
3220 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
3221 "Invalid journal_mac argument");
3222 if (r)
3223 goto bad;
3224 } else if (!strcmp(opt_string, "recalculate")) {
3225 recalculate = true;
3226 } else {
3227 r = -EINVAL;
3228 ti->error = "Invalid argument";
3229 goto bad;
3230 }
3231 }
3232
3233 ic->data_device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
3234 if (!ic->meta_dev)
3235 ic->meta_device_sectors = ic->data_device_sectors;
3236 else
3237 ic->meta_device_sectors = i_size_read(ic->meta_dev->bdev->bd_inode) >> SECTOR_SHIFT;
3238
3239 if (!journal_sectors) {
3240 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
3241 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
3242 }
3243
3244 if (!buffer_sectors)
3245 buffer_sectors = 1;
3246 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
3247
3248 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
3249 "Invalid internal hash", "Error setting internal hash key");
3250 if (r)
3251 goto bad;
3252
3253 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
3254 "Invalid journal mac", "Error setting journal mac key");
3255 if (r)
3256 goto bad;
3257
3258 if (!ic->tag_size) {
3259 if (!ic->internal_hash) {
3260 ti->error = "Unknown tag size";
3261 r = -EINVAL;
3262 goto bad;
3263 }
3264 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
3265 }
3266 if (ic->tag_size > MAX_TAG_SIZE) {
3267 ti->error = "Too big tag size";
3268 r = -EINVAL;
3269 goto bad;
3270 }
3271 if (!(ic->tag_size & (ic->tag_size - 1)))
3272 ic->log2_tag_size = __ffs(ic->tag_size);
3273 else
3274 ic->log2_tag_size = -1;
3275
3276 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
3277 ic->autocommit_msec = sync_msec;
3278 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
3279
3280 ic->io = dm_io_client_create();
3281 if (IS_ERR(ic->io)) {
3282 r = PTR_ERR(ic->io);
3283 ic->io = NULL;
3284 ti->error = "Cannot allocate dm io";
3285 goto bad;
3286 }
3287
3288 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
3289 if (r) {
3290 ti->error = "Cannot allocate mempool";
3291 goto bad;
3292 }
3293
3294 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
3295 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
3296 if (!ic->metadata_wq) {
3297 ti->error = "Cannot allocate workqueue";
3298 r = -ENOMEM;
3299 goto bad;
3300 }
3301
3302 /*
3303 * If this workqueue were percpu, it would cause bio reordering
3304 * and reduced performance.
3305 */
3306 ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3307 if (!ic->wait_wq) {
3308 ti->error = "Cannot allocate workqueue";
3309 r = -ENOMEM;
3310 goto bad;
3311 }
3312
3313 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
3314 if (!ic->commit_wq) {
3315 ti->error = "Cannot allocate workqueue";
3316 r = -ENOMEM;
3317 goto bad;
3318 }
3319 INIT_WORK(&ic->commit_work, integrity_commit);
3320
3321 if (ic->mode == 'J') {
3322 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
3323 if (!ic->writer_wq) {
3324 ti->error = "Cannot allocate workqueue";
3325 r = -ENOMEM;
3326 goto bad;
3327 }
3328 INIT_WORK(&ic->writer_work, integrity_writer);
3329 }
3330
3331 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
3332 if (!ic->sb) {
3333 r = -ENOMEM;
3334 ti->error = "Cannot allocate superblock area";
3335 goto bad;
3336 }
3337
3338 r = sync_rw_sb(ic, REQ_OP_READ, 0);
3339 if (r) {
3340 ti->error = "Error reading superblock";
3341 goto bad;
3342 }
3343 should_write_sb = false;
3344 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3345 if (ic->mode != 'R') {
3346 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3347 r = -EINVAL;
3348 ti->error = "The device is not initialized";
3349 goto bad;
3350 }
3351 }
3352
3353 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3354 if (r) {
3355 ti->error = "Could not initialize superblock";
3356 goto bad;
3357 }
3358 if (ic->mode != 'R')
3359 should_write_sb = true;
3360 }
3361
3362 if (!ic->sb->version || ic->sb->version > SB_VERSION_2) {
3363 r = -EINVAL;
3364 ti->error = "Unknown version";
3365 goto bad;
3366 }
3367 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3368 r = -EINVAL;
3369 ti->error = "Tag size doesn't match the information in superblock";
3370 goto bad;
3371 }
3372 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3373 r = -EINVAL;
3374 ti->error = "Block size doesn't match the information in superblock";
3375 goto bad;
3376 }
3377 if (!le32_to_cpu(ic->sb->journal_sections)) {
3378 r = -EINVAL;
3379 ti->error = "Corrupted superblock, journal_sections is 0";
3380 goto bad;
3381 }
3382 /* make sure that ti->max_io_len doesn't overflow */
3383 if (!ic->meta_dev) {
3384 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3385 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3386 r = -EINVAL;
3387 ti->error = "Invalid interleave_sectors in the superblock";
3388 goto bad;
3389 }
3390 } else {
3391 if (ic->sb->log2_interleave_sectors) {
3392 r = -EINVAL;
3393 ti->error = "Invalid interleave_sectors in the superblock";
3394 goto bad;
3395 }
3396 }
3397 ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3398 if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3399 /* test for overflow */
3400 r = -EINVAL;
3401 ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3402 goto bad;
3403 }
3404 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3405 r = -EINVAL;
3406 ti->error = "Journal mac mismatch";
3407 goto bad;
3408 }
3409
3410try_smaller_buffer:
3411 r = calculate_device_limits(ic);
3412 if (r) {
3413 if (ic->meta_dev) {
3414 if (ic->log2_buffer_sectors > 3) {
3415 ic->log2_buffer_sectors--;
3416 goto try_smaller_buffer;
3417 }
3418 }
3419 ti->error = "The device is too small";
3420 goto bad;
3421 }
3422 if (!ic->meta_dev)
3423 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
3424
3425 if (ti->len > ic->provided_data_sectors) {
3426 r = -EINVAL;
3427 ti->error = "Not enough provided sectors for requested mapping size";
3428 goto bad;
3429 }
3430
3431
3432 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3433 threshold += 50;
3434 do_div(threshold, 100);
3435 ic->free_sectors_threshold = threshold;
3436
3437 DEBUG_print("initialized:\n");
3438 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3439 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
3440 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3441 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
3442 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
3443 DEBUG_print(" journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3444 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
3445 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3446 DEBUG_print(" data_device_sectors 0x%llx\n", (unsigned long long)ic->data_device_sectors);
3447 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
3448 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
3449 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
3450 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3451 (unsigned long long)ic->provided_data_sectors);
3452 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
3453
3454 if (recalculate && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
3455 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3456 ic->sb->recalc_sector = cpu_to_le64(0);
3457 }
3458
3459 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3460 if (!ic->internal_hash) {
3461 r = -EINVAL;
3462 ti->error = "Recalculate is only valid with internal hash";
3463 goto bad;
3464 }
3465 ic->recalc_wq = alloc_workqueue("dm-intergrity-recalc", WQ_MEM_RECLAIM, 1);
3466 if (!ic->recalc_wq ) {
3467 ti->error = "Cannot allocate workqueue";
3468 r = -ENOMEM;
3469 goto bad;
3470 }
3471 INIT_WORK(&ic->recalc_work, integrity_recalc);
3472 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
3473 if (!ic->recalc_buffer) {
3474 ti->error = "Cannot allocate buffer for recalculating";
3475 r = -ENOMEM;
3476 goto bad;
3477 }
3478 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
3479 ic->tag_size, GFP_KERNEL);
3480 if (!ic->recalc_tags) {
3481 ti->error = "Cannot allocate tags for recalculating";
3482 r = -ENOMEM;
3483 goto bad;
3484 }
3485 }
3486
3487 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
3488 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
3489 if (IS_ERR(ic->bufio)) {
3490 r = PTR_ERR(ic->bufio);
3491 ti->error = "Cannot initialize dm-bufio";
3492 ic->bufio = NULL;
3493 goto bad;
3494 }
3495 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
3496
3497 if (ic->mode != 'R') {
3498 r = create_journal(ic, &ti->error);
3499 if (r)
3500 goto bad;
3501 }
3502
3503 if (should_write_sb) {
3504 int r;
3505
3506 init_journal(ic, 0, ic->journal_sections, 0);
3507 r = dm_integrity_failed(ic);
3508 if (unlikely(r)) {
3509 ti->error = "Error initializing journal";
3510 goto bad;
3511 }
3512 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3513 if (r) {
3514 ti->error = "Error initializing superblock";
3515 goto bad;
3516 }
3517 ic->just_formatted = true;
3518 }
3519
3520 if (!ic->meta_dev) {
3521 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
3522 if (r)
3523 goto bad;
3524 }
3525
3526 if (!ic->internal_hash)
3527 dm_integrity_set(ti, ic);
3528
3529 ti->num_flush_bios = 1;
3530 ti->flush_supported = true;
3531
3532 return 0;
3533bad:
3534 dm_integrity_dtr(ti);
3535 return r;
3536}
3537
3538static void dm_integrity_dtr(struct dm_target *ti)
3539{
3540 struct dm_integrity_c *ic = ti->private;
3541
3542 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3543 BUG_ON(!list_empty(&ic->wait_list));
3544
3545 if (ic->metadata_wq)
3546 destroy_workqueue(ic->metadata_wq);
3547 if (ic->wait_wq)
3548 destroy_workqueue(ic->wait_wq);
3549 if (ic->commit_wq)
3550 destroy_workqueue(ic->commit_wq);
3551 if (ic->writer_wq)
3552 destroy_workqueue(ic->writer_wq);
3553 if (ic->recalc_wq)
3554 destroy_workqueue(ic->recalc_wq);
3555 if (ic->recalc_buffer)
3556 vfree(ic->recalc_buffer);
3557 if (ic->recalc_tags)
3558 kvfree(ic->recalc_tags);
3559 if (ic->bufio)
3560 dm_bufio_client_destroy(ic->bufio);
3561 mempool_exit(&ic->journal_io_mempool);
3562 if (ic->io)
3563 dm_io_client_destroy(ic->io);
3564 if (ic->dev)
3565 dm_put_device(ti, ic->dev);
3566 if (ic->meta_dev)
3567 dm_put_device(ti, ic->meta_dev);
3568 dm_integrity_free_page_list(ic, ic->journal);
3569 dm_integrity_free_page_list(ic, ic->journal_io);
3570 dm_integrity_free_page_list(ic, ic->journal_xor);
3571 if (ic->journal_scatterlist)
3572 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
3573 if (ic->journal_io_scatterlist)
3574 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
3575 if (ic->sk_requests) {
3576 unsigned i;
3577
3578 for (i = 0; i < ic->journal_sections; i++) {
3579 struct skcipher_request *req = ic->sk_requests[i];
3580 if (req) {
3581 kzfree(req->iv);
3582 skcipher_request_free(req);
3583 }
3584 }
3585 kvfree(ic->sk_requests);
3586 }
3587 kvfree(ic->journal_tree);
3588 if (ic->sb)
3589 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
3590
3591 if (ic->internal_hash)
3592 crypto_free_shash(ic->internal_hash);
3593 free_alg(&ic->internal_hash_alg);
3594
3595 if (ic->journal_crypt)
3596 crypto_free_skcipher(ic->journal_crypt);
3597 free_alg(&ic->journal_crypt_alg);
3598
3599 if (ic->journal_mac)
3600 crypto_free_shash(ic->journal_mac);
3601 free_alg(&ic->journal_mac_alg);
3602
3603 kfree(ic);
3604}
3605
3606static struct target_type integrity_target = {
3607 .name = "integrity",
3608 .version = {1, 2, 0},
3609 .module = THIS_MODULE,
3610 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
3611 .ctr = dm_integrity_ctr,
3612 .dtr = dm_integrity_dtr,
3613 .map = dm_integrity_map,
3614 .postsuspend = dm_integrity_postsuspend,
3615 .resume = dm_integrity_resume,
3616 .status = dm_integrity_status,
3617 .iterate_devices = dm_integrity_iterate_devices,
3618 .io_hints = dm_integrity_io_hints,
3619};
3620
3621int __init dm_integrity_init(void)
3622{
3623 int r;
3624
3625 journal_io_cache = kmem_cache_create("integrity_journal_io",
3626 sizeof(struct journal_io), 0, 0, NULL);
3627 if (!journal_io_cache) {
3628 DMERR("can't allocate journal io cache");
3629 return -ENOMEM;
3630 }
3631
3632 r = dm_register_target(&integrity_target);
3633
3634 if (r < 0)
3635 DMERR("register failed %d", r);
3636
3637 return r;
3638}
3639
3640void dm_integrity_exit(void)
3641{
3642 dm_unregister_target(&integrity_target);
3643 kmem_cache_destroy(journal_io_cache);
3644}
3645
3646module_init(dm_integrity_init);
3647module_exit(dm_integrity_exit);
3648
3649MODULE_AUTHOR("Milan Broz");
3650MODULE_AUTHOR("Mikulas Patocka");
3651MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
3652MODULE_LICENSE("GPL");