| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * RTC class driver for "CMOS RTC":  PCs, ACPI, etc | 
|  | 3 | * | 
|  | 4 | * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) | 
|  | 5 | * Copyright (C) 2006 David Brownell (convert to new framework) | 
|  | 6 | * | 
|  | 7 | * This program is free software; you can redistribute it and/or | 
|  | 8 | * modify it under the terms of the GNU General Public License | 
|  | 9 | * as published by the Free Software Foundation; either version | 
|  | 10 | * 2 of the License, or (at your option) any later version. | 
|  | 11 | */ | 
|  | 12 |  | 
|  | 13 | /* | 
|  | 14 | * The original "cmos clock" chip was an MC146818 chip, now obsolete. | 
|  | 15 | * That defined the register interface now provided by all PCs, some | 
|  | 16 | * non-PC systems, and incorporated into ACPI.  Modern PC chipsets | 
|  | 17 | * integrate an MC146818 clone in their southbridge, and boards use | 
|  | 18 | * that instead of discrete clones like the DS12887 or M48T86.  There | 
|  | 19 | * are also clones that connect using the LPC bus. | 
|  | 20 | * | 
|  | 21 | * That register API is also used directly by various other drivers | 
|  | 22 | * (notably for integrated NVRAM), infrastructure (x86 has code to | 
|  | 23 | * bypass the RTC framework, directly reading the RTC during boot | 
|  | 24 | * and updating minutes/seconds for systems using NTP synch) and | 
|  | 25 | * utilities (like userspace 'hwclock', if no /dev node exists). | 
|  | 26 | * | 
|  | 27 | * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with | 
|  | 28 | * interrupts disabled, holding the global rtc_lock, to exclude those | 
|  | 29 | * other drivers and utilities on correctly configured systems. | 
|  | 30 | */ | 
|  | 31 |  | 
|  | 32 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  | 33 |  | 
|  | 34 | #include <linux/kernel.h> | 
|  | 35 | #include <linux/module.h> | 
|  | 36 | #include <linux/init.h> | 
|  | 37 | #include <linux/interrupt.h> | 
|  | 38 | #include <linux/spinlock.h> | 
|  | 39 | #include <linux/platform_device.h> | 
|  | 40 | #include <linux/log2.h> | 
|  | 41 | #include <linux/pm.h> | 
|  | 42 | #include <linux/of.h> | 
|  | 43 | #include <linux/of_platform.h> | 
|  | 44 | #ifdef CONFIG_X86 | 
|  | 45 | #include <asm/i8259.h> | 
|  | 46 | #include <asm/processor.h> | 
|  | 47 | #include <linux/dmi.h> | 
|  | 48 | #endif | 
|  | 49 |  | 
|  | 50 | /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ | 
|  | 51 | #include <linux/mc146818rtc.h> | 
|  | 52 |  | 
|  | 53 | #ifdef CONFIG_ACPI | 
|  | 54 | /* | 
|  | 55 | * Use ACPI SCI to replace HPET interrupt for RTC Alarm event | 
|  | 56 | * | 
|  | 57 | * If cleared, ACPI SCI is only used to wake up the system from suspend | 
|  | 58 | * | 
|  | 59 | * If set, ACPI SCI is used to handle UIE/AIE and system wakeup | 
|  | 60 | */ | 
|  | 61 |  | 
|  | 62 | static bool use_acpi_alarm; | 
|  | 63 | module_param(use_acpi_alarm, bool, 0444); | 
|  | 64 |  | 
|  | 65 | static inline int cmos_use_acpi_alarm(void) | 
|  | 66 | { | 
|  | 67 | return use_acpi_alarm; | 
|  | 68 | } | 
|  | 69 | #else /* !CONFIG_ACPI */ | 
|  | 70 |  | 
|  | 71 | static inline int cmos_use_acpi_alarm(void) | 
|  | 72 | { | 
|  | 73 | return 0; | 
|  | 74 | } | 
|  | 75 | #endif | 
|  | 76 |  | 
|  | 77 | struct cmos_rtc { | 
|  | 78 | struct rtc_device	*rtc; | 
|  | 79 | struct device		*dev; | 
|  | 80 | int			irq; | 
|  | 81 | struct resource		*iomem; | 
|  | 82 | time64_t		alarm_expires; | 
|  | 83 |  | 
|  | 84 | void			(*wake_on)(struct device *); | 
|  | 85 | void			(*wake_off)(struct device *); | 
|  | 86 |  | 
|  | 87 | u8			enabled_wake; | 
|  | 88 | u8			suspend_ctrl; | 
|  | 89 |  | 
|  | 90 | /* newer hardware extends the original register set */ | 
|  | 91 | u8			day_alrm; | 
|  | 92 | u8			mon_alrm; | 
|  | 93 | u8			century; | 
|  | 94 |  | 
|  | 95 | struct rtc_wkalrm	saved_wkalrm; | 
|  | 96 | }; | 
|  | 97 |  | 
|  | 98 | /* both platform and pnp busses use negative numbers for invalid irqs */ | 
|  | 99 | #define is_valid_irq(n)		((n) > 0) | 
|  | 100 |  | 
|  | 101 | static const char driver_name[] = "rtc_cmos"; | 
|  | 102 |  | 
|  | 103 | /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; | 
|  | 104 | * always mask it against the irq enable bits in RTC_CONTROL.  Bit values | 
|  | 105 | * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. | 
|  | 106 | */ | 
|  | 107 | #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF) | 
|  | 108 |  | 
|  | 109 | static inline int is_intr(u8 rtc_intr) | 
|  | 110 | { | 
|  | 111 | if (!(rtc_intr & RTC_IRQF)) | 
|  | 112 | return 0; | 
|  | 113 | return rtc_intr & RTC_IRQMASK; | 
|  | 114 | } | 
|  | 115 |  | 
|  | 116 | /*----------------------------------------------------------------*/ | 
|  | 117 |  | 
|  | 118 | /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because | 
|  | 119 | * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly | 
|  | 120 | * used in a broken "legacy replacement" mode.  The breakage includes | 
|  | 121 | * HPET #1 hijacking the IRQ for this RTC, and being unavailable for | 
|  | 122 | * other (better) use. | 
|  | 123 | * | 
|  | 124 | * When that broken mode is in use, platform glue provides a partial | 
|  | 125 | * emulation of hardware RTC IRQ facilities using HPET #1.  We don't | 
|  | 126 | * want to use HPET for anything except those IRQs though... | 
|  | 127 | */ | 
|  | 128 | #ifdef CONFIG_HPET_EMULATE_RTC | 
|  | 129 | #include <asm/hpet.h> | 
|  | 130 | #else | 
|  | 131 |  | 
|  | 132 | static inline int is_hpet_enabled(void) | 
|  | 133 | { | 
|  | 134 | return 0; | 
|  | 135 | } | 
|  | 136 |  | 
|  | 137 | static inline int hpet_mask_rtc_irq_bit(unsigned long mask) | 
|  | 138 | { | 
|  | 139 | return 0; | 
|  | 140 | } | 
|  | 141 |  | 
|  | 142 | static inline int hpet_set_rtc_irq_bit(unsigned long mask) | 
|  | 143 | { | 
|  | 144 | return 0; | 
|  | 145 | } | 
|  | 146 |  | 
|  | 147 | static inline int | 
|  | 148 | hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) | 
|  | 149 | { | 
|  | 150 | return 0; | 
|  | 151 | } | 
|  | 152 |  | 
|  | 153 | static inline int hpet_set_periodic_freq(unsigned long freq) | 
|  | 154 | { | 
|  | 155 | return 0; | 
|  | 156 | } | 
|  | 157 |  | 
|  | 158 | static inline int hpet_rtc_dropped_irq(void) | 
|  | 159 | { | 
|  | 160 | return 0; | 
|  | 161 | } | 
|  | 162 |  | 
|  | 163 | static inline int hpet_rtc_timer_init(void) | 
|  | 164 | { | 
|  | 165 | return 0; | 
|  | 166 | } | 
|  | 167 |  | 
|  | 168 | extern irq_handler_t hpet_rtc_interrupt; | 
|  | 169 |  | 
|  | 170 | static inline int hpet_register_irq_handler(irq_handler_t handler) | 
|  | 171 | { | 
|  | 172 | return 0; | 
|  | 173 | } | 
|  | 174 |  | 
|  | 175 | static inline int hpet_unregister_irq_handler(irq_handler_t handler) | 
|  | 176 | { | 
|  | 177 | return 0; | 
|  | 178 | } | 
|  | 179 |  | 
|  | 180 | #endif | 
|  | 181 |  | 
|  | 182 | /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */ | 
|  | 183 | static inline int use_hpet_alarm(void) | 
|  | 184 | { | 
|  | 185 | return is_hpet_enabled() && !cmos_use_acpi_alarm(); | 
|  | 186 | } | 
|  | 187 |  | 
|  | 188 | /*----------------------------------------------------------------*/ | 
|  | 189 |  | 
|  | 190 | #ifdef RTC_PORT | 
|  | 191 |  | 
|  | 192 | /* Most newer x86 systems have two register banks, the first used | 
|  | 193 | * for RTC and NVRAM and the second only for NVRAM.  Caller must | 
|  | 194 | * own rtc_lock ... and we won't worry about access during NMI. | 
|  | 195 | */ | 
|  | 196 | #define can_bank2	true | 
|  | 197 |  | 
|  | 198 | static inline unsigned char cmos_read_bank2(unsigned char addr) | 
|  | 199 | { | 
|  | 200 | outb(addr, RTC_PORT(2)); | 
|  | 201 | return inb(RTC_PORT(3)); | 
|  | 202 | } | 
|  | 203 |  | 
|  | 204 | static inline void cmos_write_bank2(unsigned char val, unsigned char addr) | 
|  | 205 | { | 
|  | 206 | outb(addr, RTC_PORT(2)); | 
|  | 207 | outb(val, RTC_PORT(3)); | 
|  | 208 | } | 
|  | 209 |  | 
|  | 210 | #else | 
|  | 211 |  | 
|  | 212 | #define can_bank2	false | 
|  | 213 |  | 
|  | 214 | static inline unsigned char cmos_read_bank2(unsigned char addr) | 
|  | 215 | { | 
|  | 216 | return 0; | 
|  | 217 | } | 
|  | 218 |  | 
|  | 219 | static inline void cmos_write_bank2(unsigned char val, unsigned char addr) | 
|  | 220 | { | 
|  | 221 | } | 
|  | 222 |  | 
|  | 223 | #endif | 
|  | 224 |  | 
|  | 225 | /*----------------------------------------------------------------*/ | 
|  | 226 |  | 
|  | 227 | static int cmos_read_time(struct device *dev, struct rtc_time *t) | 
|  | 228 | { | 
|  | 229 | /* | 
|  | 230 | * If pm_trace abused the RTC for storage, set the timespec to 0, | 
|  | 231 | * which tells the caller that this RTC value is unusable. | 
|  | 232 | */ | 
|  | 233 | if (!pm_trace_rtc_valid()) | 
|  | 234 | return -EIO; | 
|  | 235 |  | 
|  | 236 | /* REVISIT:  if the clock has a "century" register, use | 
|  | 237 | * that instead of the heuristic in mc146818_get_time(). | 
|  | 238 | * That'll make Y3K compatility (year > 2070) easy! | 
|  | 239 | */ | 
|  | 240 | mc146818_get_time(t); | 
|  | 241 | return 0; | 
|  | 242 | } | 
|  | 243 |  | 
|  | 244 | static int cmos_set_time(struct device *dev, struct rtc_time *t) | 
|  | 245 | { | 
|  | 246 | /* REVISIT:  set the "century" register if available | 
|  | 247 | * | 
|  | 248 | * NOTE: this ignores the issue whereby updating the seconds | 
|  | 249 | * takes effect exactly 500ms after we write the register. | 
|  | 250 | * (Also queueing and other delays before we get this far.) | 
|  | 251 | */ | 
|  | 252 | return mc146818_set_time(t); | 
|  | 253 | } | 
|  | 254 |  | 
|  | 255 | static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) | 
|  | 256 | { | 
|  | 257 | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | 258 | unsigned char	rtc_control; | 
|  | 259 |  | 
|  | 260 | /* This not only a rtc_op, but also called directly */ | 
|  | 261 | if (!is_valid_irq(cmos->irq)) | 
|  | 262 | return -EIO; | 
|  | 263 |  | 
|  | 264 | /* Basic alarms only support hour, minute, and seconds fields. | 
|  | 265 | * Some also support day and month, for alarms up to a year in | 
|  | 266 | * the future. | 
|  | 267 | */ | 
|  | 268 |  | 
|  | 269 | spin_lock_irq(&rtc_lock); | 
|  | 270 | t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); | 
|  | 271 | t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); | 
|  | 272 | t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); | 
|  | 273 |  | 
|  | 274 | if (cmos->day_alrm) { | 
|  | 275 | /* ignore upper bits on readback per ACPI spec */ | 
|  | 276 | t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; | 
|  | 277 | if (!t->time.tm_mday) | 
|  | 278 | t->time.tm_mday = -1; | 
|  | 279 |  | 
|  | 280 | if (cmos->mon_alrm) { | 
|  | 281 | t->time.tm_mon = CMOS_READ(cmos->mon_alrm); | 
|  | 282 | if (!t->time.tm_mon) | 
|  | 283 | t->time.tm_mon = -1; | 
|  | 284 | } | 
|  | 285 | } | 
|  | 286 |  | 
|  | 287 | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | 288 | spin_unlock_irq(&rtc_lock); | 
|  | 289 |  | 
|  | 290 | if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { | 
|  | 291 | if (((unsigned)t->time.tm_sec) < 0x60) | 
|  | 292 | t->time.tm_sec = bcd2bin(t->time.tm_sec); | 
|  | 293 | else | 
|  | 294 | t->time.tm_sec = -1; | 
|  | 295 | if (((unsigned)t->time.tm_min) < 0x60) | 
|  | 296 | t->time.tm_min = bcd2bin(t->time.tm_min); | 
|  | 297 | else | 
|  | 298 | t->time.tm_min = -1; | 
|  | 299 | if (((unsigned)t->time.tm_hour) < 0x24) | 
|  | 300 | t->time.tm_hour = bcd2bin(t->time.tm_hour); | 
|  | 301 | else | 
|  | 302 | t->time.tm_hour = -1; | 
|  | 303 |  | 
|  | 304 | if (cmos->day_alrm) { | 
|  | 305 | if (((unsigned)t->time.tm_mday) <= 0x31) | 
|  | 306 | t->time.tm_mday = bcd2bin(t->time.tm_mday); | 
|  | 307 | else | 
|  | 308 | t->time.tm_mday = -1; | 
|  | 309 |  | 
|  | 310 | if (cmos->mon_alrm) { | 
|  | 311 | if (((unsigned)t->time.tm_mon) <= 0x12) | 
|  | 312 | t->time.tm_mon = bcd2bin(t->time.tm_mon)-1; | 
|  | 313 | else | 
|  | 314 | t->time.tm_mon = -1; | 
|  | 315 | } | 
|  | 316 | } | 
|  | 317 | } | 
|  | 318 |  | 
|  | 319 | t->enabled = !!(rtc_control & RTC_AIE); | 
|  | 320 | t->pending = 0; | 
|  | 321 |  | 
|  | 322 | return 0; | 
|  | 323 | } | 
|  | 324 |  | 
|  | 325 | static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) | 
|  | 326 | { | 
|  | 327 | unsigned char	rtc_intr; | 
|  | 328 |  | 
|  | 329 | /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; | 
|  | 330 | * allegedly some older rtcs need that to handle irqs properly | 
|  | 331 | */ | 
|  | 332 | rtc_intr = CMOS_READ(RTC_INTR_FLAGS); | 
|  | 333 |  | 
|  | 334 | if (use_hpet_alarm()) | 
|  | 335 | return; | 
|  | 336 |  | 
|  | 337 | rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; | 
|  | 338 | if (is_intr(rtc_intr)) | 
|  | 339 | rtc_update_irq(cmos->rtc, 1, rtc_intr); | 
|  | 340 | } | 
|  | 341 |  | 
|  | 342 | static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) | 
|  | 343 | { | 
|  | 344 | unsigned char	rtc_control; | 
|  | 345 |  | 
|  | 346 | /* flush any pending IRQ status, notably for update irqs, | 
|  | 347 | * before we enable new IRQs | 
|  | 348 | */ | 
|  | 349 | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | 350 | cmos_checkintr(cmos, rtc_control); | 
|  | 351 |  | 
|  | 352 | rtc_control |= mask; | 
|  | 353 | CMOS_WRITE(rtc_control, RTC_CONTROL); | 
|  | 354 | if (use_hpet_alarm()) | 
|  | 355 | hpet_set_rtc_irq_bit(mask); | 
|  | 356 |  | 
|  | 357 | if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) { | 
|  | 358 | if (cmos->wake_on) | 
|  | 359 | cmos->wake_on(cmos->dev); | 
|  | 360 | } | 
|  | 361 |  | 
|  | 362 | cmos_checkintr(cmos, rtc_control); | 
|  | 363 | } | 
|  | 364 |  | 
|  | 365 | static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) | 
|  | 366 | { | 
|  | 367 | unsigned char	rtc_control; | 
|  | 368 |  | 
|  | 369 | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | 370 | rtc_control &= ~mask; | 
|  | 371 | CMOS_WRITE(rtc_control, RTC_CONTROL); | 
|  | 372 | if (use_hpet_alarm()) | 
|  | 373 | hpet_mask_rtc_irq_bit(mask); | 
|  | 374 |  | 
|  | 375 | if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) { | 
|  | 376 | if (cmos->wake_off) | 
|  | 377 | cmos->wake_off(cmos->dev); | 
|  | 378 | } | 
|  | 379 |  | 
|  | 380 | cmos_checkintr(cmos, rtc_control); | 
|  | 381 | } | 
|  | 382 |  | 
|  | 383 | static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t) | 
|  | 384 | { | 
|  | 385 | struct cmos_rtc *cmos = dev_get_drvdata(dev); | 
|  | 386 | struct rtc_time now; | 
|  | 387 |  | 
|  | 388 | cmos_read_time(dev, &now); | 
|  | 389 |  | 
|  | 390 | if (!cmos->day_alrm) { | 
|  | 391 | time64_t t_max_date; | 
|  | 392 | time64_t t_alrm; | 
|  | 393 |  | 
|  | 394 | t_max_date = rtc_tm_to_time64(&now); | 
|  | 395 | t_max_date += 24 * 60 * 60 - 1; | 
|  | 396 | t_alrm = rtc_tm_to_time64(&t->time); | 
|  | 397 | if (t_alrm > t_max_date) { | 
|  | 398 | dev_err(dev, | 
|  | 399 | "Alarms can be up to one day in the future\n"); | 
|  | 400 | return -EINVAL; | 
|  | 401 | } | 
|  | 402 | } else if (!cmos->mon_alrm) { | 
|  | 403 | struct rtc_time max_date = now; | 
|  | 404 | time64_t t_max_date; | 
|  | 405 | time64_t t_alrm; | 
|  | 406 | int max_mday; | 
|  | 407 |  | 
|  | 408 | if (max_date.tm_mon == 11) { | 
|  | 409 | max_date.tm_mon = 0; | 
|  | 410 | max_date.tm_year += 1; | 
|  | 411 | } else { | 
|  | 412 | max_date.tm_mon += 1; | 
|  | 413 | } | 
|  | 414 | max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); | 
|  | 415 | if (max_date.tm_mday > max_mday) | 
|  | 416 | max_date.tm_mday = max_mday; | 
|  | 417 |  | 
|  | 418 | t_max_date = rtc_tm_to_time64(&max_date); | 
|  | 419 | t_max_date -= 1; | 
|  | 420 | t_alrm = rtc_tm_to_time64(&t->time); | 
|  | 421 | if (t_alrm > t_max_date) { | 
|  | 422 | dev_err(dev, | 
|  | 423 | "Alarms can be up to one month in the future\n"); | 
|  | 424 | return -EINVAL; | 
|  | 425 | } | 
|  | 426 | } else { | 
|  | 427 | struct rtc_time max_date = now; | 
|  | 428 | time64_t t_max_date; | 
|  | 429 | time64_t t_alrm; | 
|  | 430 | int max_mday; | 
|  | 431 |  | 
|  | 432 | max_date.tm_year += 1; | 
|  | 433 | max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year); | 
|  | 434 | if (max_date.tm_mday > max_mday) | 
|  | 435 | max_date.tm_mday = max_mday; | 
|  | 436 |  | 
|  | 437 | t_max_date = rtc_tm_to_time64(&max_date); | 
|  | 438 | t_max_date -= 1; | 
|  | 439 | t_alrm = rtc_tm_to_time64(&t->time); | 
|  | 440 | if (t_alrm > t_max_date) { | 
|  | 441 | dev_err(dev, | 
|  | 442 | "Alarms can be up to one year in the future\n"); | 
|  | 443 | return -EINVAL; | 
|  | 444 | } | 
|  | 445 | } | 
|  | 446 |  | 
|  | 447 | return 0; | 
|  | 448 | } | 
|  | 449 |  | 
|  | 450 | static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) | 
|  | 451 | { | 
|  | 452 | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | 453 | unsigned char mon, mday, hrs, min, sec, rtc_control; | 
|  | 454 | int ret; | 
|  | 455 |  | 
|  | 456 | /* This not only a rtc_op, but also called directly */ | 
|  | 457 | if (!is_valid_irq(cmos->irq)) | 
|  | 458 | return -EIO; | 
|  | 459 |  | 
|  | 460 | ret = cmos_validate_alarm(dev, t); | 
|  | 461 | if (ret < 0) | 
|  | 462 | return ret; | 
|  | 463 |  | 
|  | 464 | mon = t->time.tm_mon + 1; | 
|  | 465 | mday = t->time.tm_mday; | 
|  | 466 | hrs = t->time.tm_hour; | 
|  | 467 | min = t->time.tm_min; | 
|  | 468 | sec = t->time.tm_sec; | 
|  | 469 |  | 
|  | 470 | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | 471 | if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { | 
|  | 472 | /* Writing 0xff means "don't care" or "match all".  */ | 
|  | 473 | mon = (mon <= 12) ? bin2bcd(mon) : 0xff; | 
|  | 474 | mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff; | 
|  | 475 | hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff; | 
|  | 476 | min = (min < 60) ? bin2bcd(min) : 0xff; | 
|  | 477 | sec = (sec < 60) ? bin2bcd(sec) : 0xff; | 
|  | 478 | } | 
|  | 479 |  | 
|  | 480 | spin_lock_irq(&rtc_lock); | 
|  | 481 |  | 
|  | 482 | /* next rtc irq must not be from previous alarm setting */ | 
|  | 483 | cmos_irq_disable(cmos, RTC_AIE); | 
|  | 484 |  | 
|  | 485 | /* update alarm */ | 
|  | 486 | CMOS_WRITE(hrs, RTC_HOURS_ALARM); | 
|  | 487 | CMOS_WRITE(min, RTC_MINUTES_ALARM); | 
|  | 488 | CMOS_WRITE(sec, RTC_SECONDS_ALARM); | 
|  | 489 |  | 
|  | 490 | /* the system may support an "enhanced" alarm */ | 
|  | 491 | if (cmos->day_alrm) { | 
|  | 492 | CMOS_WRITE(mday, cmos->day_alrm); | 
|  | 493 | if (cmos->mon_alrm) | 
|  | 494 | CMOS_WRITE(mon, cmos->mon_alrm); | 
|  | 495 | } | 
|  | 496 |  | 
|  | 497 | if (use_hpet_alarm()) { | 
|  | 498 | /* | 
|  | 499 | * FIXME the HPET alarm glue currently ignores day_alrm | 
|  | 500 | * and mon_alrm ... | 
|  | 501 | */ | 
|  | 502 | hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, | 
|  | 503 | t->time.tm_sec); | 
|  | 504 | } | 
|  | 505 |  | 
|  | 506 | if (t->enabled) | 
|  | 507 | cmos_irq_enable(cmos, RTC_AIE); | 
|  | 508 |  | 
|  | 509 | spin_unlock_irq(&rtc_lock); | 
|  | 510 |  | 
|  | 511 | cmos->alarm_expires = rtc_tm_to_time64(&t->time); | 
|  | 512 |  | 
|  | 513 | return 0; | 
|  | 514 | } | 
|  | 515 |  | 
|  | 516 | static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled) | 
|  | 517 | { | 
|  | 518 | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | 519 | unsigned long	flags; | 
|  | 520 |  | 
|  | 521 | spin_lock_irqsave(&rtc_lock, flags); | 
|  | 522 |  | 
|  | 523 | if (enabled) | 
|  | 524 | cmos_irq_enable(cmos, RTC_AIE); | 
|  | 525 | else | 
|  | 526 | cmos_irq_disable(cmos, RTC_AIE); | 
|  | 527 |  | 
|  | 528 | spin_unlock_irqrestore(&rtc_lock, flags); | 
|  | 529 | return 0; | 
|  | 530 | } | 
|  | 531 |  | 
|  | 532 | #if IS_ENABLED(CONFIG_RTC_INTF_PROC) | 
|  | 533 |  | 
|  | 534 | static int cmos_procfs(struct device *dev, struct seq_file *seq) | 
|  | 535 | { | 
|  | 536 | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | 537 | unsigned char	rtc_control, valid; | 
|  | 538 |  | 
|  | 539 | spin_lock_irq(&rtc_lock); | 
|  | 540 | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | 541 | valid = CMOS_READ(RTC_VALID); | 
|  | 542 | spin_unlock_irq(&rtc_lock); | 
|  | 543 |  | 
|  | 544 | /* NOTE:  at least ICH6 reports battery status using a different | 
|  | 545 | * (non-RTC) bit; and SQWE is ignored on many current systems. | 
|  | 546 | */ | 
|  | 547 | seq_printf(seq, | 
|  | 548 | "periodic_IRQ\t: %s\n" | 
|  | 549 | "update_IRQ\t: %s\n" | 
|  | 550 | "HPET_emulated\t: %s\n" | 
|  | 551 | // "square_wave\t: %s\n" | 
|  | 552 | "BCD\t\t: %s\n" | 
|  | 553 | "DST_enable\t: %s\n" | 
|  | 554 | "periodic_freq\t: %d\n" | 
|  | 555 | "batt_status\t: %s\n", | 
|  | 556 | (rtc_control & RTC_PIE) ? "yes" : "no", | 
|  | 557 | (rtc_control & RTC_UIE) ? "yes" : "no", | 
|  | 558 | use_hpet_alarm() ? "yes" : "no", | 
|  | 559 | // (rtc_control & RTC_SQWE) ? "yes" : "no", | 
|  | 560 | (rtc_control & RTC_DM_BINARY) ? "no" : "yes", | 
|  | 561 | (rtc_control & RTC_DST_EN) ? "yes" : "no", | 
|  | 562 | cmos->rtc->irq_freq, | 
|  | 563 | (valid & RTC_VRT) ? "okay" : "dead"); | 
|  | 564 |  | 
|  | 565 | return 0; | 
|  | 566 | } | 
|  | 567 |  | 
|  | 568 | #else | 
|  | 569 | #define	cmos_procfs	NULL | 
|  | 570 | #endif | 
|  | 571 |  | 
|  | 572 | static const struct rtc_class_ops cmos_rtc_ops = { | 
|  | 573 | .read_time		= cmos_read_time, | 
|  | 574 | .set_time		= cmos_set_time, | 
|  | 575 | .read_alarm		= cmos_read_alarm, | 
|  | 576 | .set_alarm		= cmos_set_alarm, | 
|  | 577 | .proc			= cmos_procfs, | 
|  | 578 | .alarm_irq_enable	= cmos_alarm_irq_enable, | 
|  | 579 | }; | 
|  | 580 |  | 
|  | 581 | static const struct rtc_class_ops cmos_rtc_ops_no_alarm = { | 
|  | 582 | .read_time		= cmos_read_time, | 
|  | 583 | .set_time		= cmos_set_time, | 
|  | 584 | .proc			= cmos_procfs, | 
|  | 585 | }; | 
|  | 586 |  | 
|  | 587 | /*----------------------------------------------------------------*/ | 
|  | 588 |  | 
|  | 589 | /* | 
|  | 590 | * All these chips have at least 64 bytes of address space, shared by | 
|  | 591 | * RTC registers and NVRAM.  Most of those bytes of NVRAM are used | 
|  | 592 | * by boot firmware.  Modern chips have 128 or 256 bytes. | 
|  | 593 | */ | 
|  | 594 |  | 
|  | 595 | #define NVRAM_OFFSET	(RTC_REG_D + 1) | 
|  | 596 |  | 
|  | 597 | static int cmos_nvram_read(void *priv, unsigned int off, void *val, | 
|  | 598 | size_t count) | 
|  | 599 | { | 
|  | 600 | unsigned char *buf = val; | 
|  | 601 | int	retval; | 
|  | 602 |  | 
|  | 603 | off += NVRAM_OFFSET; | 
|  | 604 | spin_lock_irq(&rtc_lock); | 
|  | 605 | for (retval = 0; count; count--, off++, retval++) { | 
|  | 606 | if (off < 128) | 
|  | 607 | *buf++ = CMOS_READ(off); | 
|  | 608 | else if (can_bank2) | 
|  | 609 | *buf++ = cmos_read_bank2(off); | 
|  | 610 | else | 
|  | 611 | break; | 
|  | 612 | } | 
|  | 613 | spin_unlock_irq(&rtc_lock); | 
|  | 614 |  | 
|  | 615 | return retval; | 
|  | 616 | } | 
|  | 617 |  | 
|  | 618 | static int cmos_nvram_write(void *priv, unsigned int off, void *val, | 
|  | 619 | size_t count) | 
|  | 620 | { | 
|  | 621 | struct cmos_rtc	*cmos = priv; | 
|  | 622 | unsigned char	*buf = val; | 
|  | 623 | int		retval; | 
|  | 624 |  | 
|  | 625 | /* NOTE:  on at least PCs and Ataris, the boot firmware uses a | 
|  | 626 | * checksum on part of the NVRAM data.  That's currently ignored | 
|  | 627 | * here.  If userspace is smart enough to know what fields of | 
|  | 628 | * NVRAM to update, updating checksums is also part of its job. | 
|  | 629 | */ | 
|  | 630 | off += NVRAM_OFFSET; | 
|  | 631 | spin_lock_irq(&rtc_lock); | 
|  | 632 | for (retval = 0; count; count--, off++, retval++) { | 
|  | 633 | /* don't trash RTC registers */ | 
|  | 634 | if (off == cmos->day_alrm | 
|  | 635 | || off == cmos->mon_alrm | 
|  | 636 | || off == cmos->century) | 
|  | 637 | buf++; | 
|  | 638 | else if (off < 128) | 
|  | 639 | CMOS_WRITE(*buf++, off); | 
|  | 640 | else if (can_bank2) | 
|  | 641 | cmos_write_bank2(*buf++, off); | 
|  | 642 | else | 
|  | 643 | break; | 
|  | 644 | } | 
|  | 645 | spin_unlock_irq(&rtc_lock); | 
|  | 646 |  | 
|  | 647 | return retval; | 
|  | 648 | } | 
|  | 649 |  | 
|  | 650 | /*----------------------------------------------------------------*/ | 
|  | 651 |  | 
|  | 652 | static struct cmos_rtc	cmos_rtc; | 
|  | 653 |  | 
|  | 654 | static irqreturn_t cmos_interrupt(int irq, void *p) | 
|  | 655 | { | 
|  | 656 | u8		irqstat; | 
|  | 657 | u8		rtc_control; | 
|  | 658 |  | 
|  | 659 | spin_lock(&rtc_lock); | 
|  | 660 |  | 
|  | 661 | /* When the HPET interrupt handler calls us, the interrupt | 
|  | 662 | * status is passed as arg1 instead of the irq number.  But | 
|  | 663 | * always clear irq status, even when HPET is in the way. | 
|  | 664 | * | 
|  | 665 | * Note that HPET and RTC are almost certainly out of phase, | 
|  | 666 | * giving different IRQ status ... | 
|  | 667 | */ | 
|  | 668 | irqstat = CMOS_READ(RTC_INTR_FLAGS); | 
|  | 669 | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | 670 | if (use_hpet_alarm()) | 
|  | 671 | irqstat = (unsigned long)irq & 0xF0; | 
|  | 672 |  | 
|  | 673 | /* If we were suspended, RTC_CONTROL may not be accurate since the | 
|  | 674 | * bios may have cleared it. | 
|  | 675 | */ | 
|  | 676 | if (!cmos_rtc.suspend_ctrl) | 
|  | 677 | irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; | 
|  | 678 | else | 
|  | 679 | irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF; | 
|  | 680 |  | 
|  | 681 | /* All Linux RTC alarms should be treated as if they were oneshot. | 
|  | 682 | * Similar code may be needed in system wakeup paths, in case the | 
|  | 683 | * alarm woke the system. | 
|  | 684 | */ | 
|  | 685 | if (irqstat & RTC_AIE) { | 
|  | 686 | cmos_rtc.suspend_ctrl &= ~RTC_AIE; | 
|  | 687 | rtc_control &= ~RTC_AIE; | 
|  | 688 | CMOS_WRITE(rtc_control, RTC_CONTROL); | 
|  | 689 | if (use_hpet_alarm()) | 
|  | 690 | hpet_mask_rtc_irq_bit(RTC_AIE); | 
|  | 691 | CMOS_READ(RTC_INTR_FLAGS); | 
|  | 692 | } | 
|  | 693 | spin_unlock(&rtc_lock); | 
|  | 694 |  | 
|  | 695 | if (is_intr(irqstat)) { | 
|  | 696 | rtc_update_irq(p, 1, irqstat); | 
|  | 697 | return IRQ_HANDLED; | 
|  | 698 | } else | 
|  | 699 | return IRQ_NONE; | 
|  | 700 | } | 
|  | 701 |  | 
|  | 702 | #ifdef	CONFIG_PNP | 
|  | 703 | #define	INITSECTION | 
|  | 704 |  | 
|  | 705 | #else | 
|  | 706 | #define	INITSECTION	__init | 
|  | 707 | #endif | 
|  | 708 |  | 
|  | 709 | static int INITSECTION | 
|  | 710 | cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) | 
|  | 711 | { | 
|  | 712 | struct cmos_rtc_board_info	*info = dev_get_platdata(dev); | 
|  | 713 | int				retval = 0; | 
|  | 714 | unsigned char			rtc_control; | 
|  | 715 | unsigned			address_space; | 
|  | 716 | u32				flags = 0; | 
|  | 717 | struct nvmem_config nvmem_cfg = { | 
|  | 718 | .name = "cmos_nvram", | 
|  | 719 | .word_size = 1, | 
|  | 720 | .stride = 1, | 
|  | 721 | .reg_read = cmos_nvram_read, | 
|  | 722 | .reg_write = cmos_nvram_write, | 
|  | 723 | .priv = &cmos_rtc, | 
|  | 724 | }; | 
|  | 725 |  | 
|  | 726 | /* there can be only one ... */ | 
|  | 727 | if (cmos_rtc.dev) | 
|  | 728 | return -EBUSY; | 
|  | 729 |  | 
|  | 730 | if (!ports) | 
|  | 731 | return -ENODEV; | 
|  | 732 |  | 
|  | 733 | /* Claim I/O ports ASAP, minimizing conflict with legacy driver. | 
|  | 734 | * | 
|  | 735 | * REVISIT non-x86 systems may instead use memory space resources | 
|  | 736 | * (needing ioremap etc), not i/o space resources like this ... | 
|  | 737 | */ | 
|  | 738 | if (RTC_IOMAPPED) | 
|  | 739 | ports = request_region(ports->start, resource_size(ports), | 
|  | 740 | driver_name); | 
|  | 741 | else | 
|  | 742 | ports = request_mem_region(ports->start, resource_size(ports), | 
|  | 743 | driver_name); | 
|  | 744 | if (!ports) { | 
|  | 745 | dev_dbg(dev, "i/o registers already in use\n"); | 
|  | 746 | return -EBUSY; | 
|  | 747 | } | 
|  | 748 |  | 
|  | 749 | cmos_rtc.irq = rtc_irq; | 
|  | 750 | cmos_rtc.iomem = ports; | 
|  | 751 |  | 
|  | 752 | /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM | 
|  | 753 | * driver did, but don't reject unknown configs.   Old hardware | 
|  | 754 | * won't address 128 bytes.  Newer chips have multiple banks, | 
|  | 755 | * though they may not be listed in one I/O resource. | 
|  | 756 | */ | 
|  | 757 | #if	defined(CONFIG_ATARI) | 
|  | 758 | address_space = 64; | 
|  | 759 | #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \ | 
|  | 760 | || defined(__sparc__) || defined(__mips__) \ | 
|  | 761 | || defined(__powerpc__) | 
|  | 762 | address_space = 128; | 
|  | 763 | #else | 
|  | 764 | #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. | 
|  | 765 | address_space = 128; | 
|  | 766 | #endif | 
|  | 767 | if (can_bank2 && ports->end > (ports->start + 1)) | 
|  | 768 | address_space = 256; | 
|  | 769 |  | 
|  | 770 | /* For ACPI systems extension info comes from the FADT.  On others, | 
|  | 771 | * board specific setup provides it as appropriate.  Systems where | 
|  | 772 | * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and | 
|  | 773 | * some almost-clones) can provide hooks to make that behave. | 
|  | 774 | * | 
|  | 775 | * Note that ACPI doesn't preclude putting these registers into | 
|  | 776 | * "extended" areas of the chip, including some that we won't yet | 
|  | 777 | * expect CMOS_READ and friends to handle. | 
|  | 778 | */ | 
|  | 779 | if (info) { | 
|  | 780 | if (info->flags) | 
|  | 781 | flags = info->flags; | 
|  | 782 | if (info->address_space) | 
|  | 783 | address_space = info->address_space; | 
|  | 784 |  | 
|  | 785 | if (info->rtc_day_alarm && info->rtc_day_alarm < 128) | 
|  | 786 | cmos_rtc.day_alrm = info->rtc_day_alarm; | 
|  | 787 | if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) | 
|  | 788 | cmos_rtc.mon_alrm = info->rtc_mon_alarm; | 
|  | 789 | if (info->rtc_century && info->rtc_century < 128) | 
|  | 790 | cmos_rtc.century = info->rtc_century; | 
|  | 791 |  | 
|  | 792 | if (info->wake_on && info->wake_off) { | 
|  | 793 | cmos_rtc.wake_on = info->wake_on; | 
|  | 794 | cmos_rtc.wake_off = info->wake_off; | 
|  | 795 | } | 
|  | 796 | } | 
|  | 797 |  | 
|  | 798 | cmos_rtc.dev = dev; | 
|  | 799 | dev_set_drvdata(dev, &cmos_rtc); | 
|  | 800 |  | 
|  | 801 | cmos_rtc.rtc = devm_rtc_allocate_device(dev); | 
|  | 802 | if (IS_ERR(cmos_rtc.rtc)) { | 
|  | 803 | retval = PTR_ERR(cmos_rtc.rtc); | 
|  | 804 | goto cleanup0; | 
|  | 805 | } | 
|  | 806 |  | 
|  | 807 | rename_region(ports, dev_name(&cmos_rtc.rtc->dev)); | 
|  | 808 |  | 
|  | 809 | spin_lock_irq(&rtc_lock); | 
|  | 810 |  | 
|  | 811 | if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) { | 
|  | 812 | /* force periodic irq to CMOS reset default of 1024Hz; | 
|  | 813 | * | 
|  | 814 | * REVISIT it's been reported that at least one x86_64 ALI | 
|  | 815 | * mobo doesn't use 32KHz here ... for portability we might | 
|  | 816 | * need to do something about other clock frequencies. | 
|  | 817 | */ | 
|  | 818 | cmos_rtc.rtc->irq_freq = 1024; | 
|  | 819 | if (use_hpet_alarm()) | 
|  | 820 | hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); | 
|  | 821 | CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); | 
|  | 822 | } | 
|  | 823 |  | 
|  | 824 | /* disable irqs */ | 
|  | 825 | if (is_valid_irq(rtc_irq)) | 
|  | 826 | cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); | 
|  | 827 |  | 
|  | 828 | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | 829 |  | 
|  | 830 | spin_unlock_irq(&rtc_lock); | 
|  | 831 |  | 
|  | 832 | if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) { | 
|  | 833 | dev_warn(dev, "only 24-hr supported\n"); | 
|  | 834 | retval = -ENXIO; | 
|  | 835 | goto cleanup1; | 
|  | 836 | } | 
|  | 837 |  | 
|  | 838 | if (use_hpet_alarm()) | 
|  | 839 | hpet_rtc_timer_init(); | 
|  | 840 |  | 
|  | 841 | if (is_valid_irq(rtc_irq)) { | 
|  | 842 | irq_handler_t rtc_cmos_int_handler; | 
|  | 843 |  | 
|  | 844 | if (use_hpet_alarm()) { | 
|  | 845 | rtc_cmos_int_handler = hpet_rtc_interrupt; | 
|  | 846 | retval = hpet_register_irq_handler(cmos_interrupt); | 
|  | 847 | if (retval) { | 
|  | 848 | hpet_mask_rtc_irq_bit(RTC_IRQMASK); | 
|  | 849 | dev_warn(dev, "hpet_register_irq_handler " | 
|  | 850 | " failed in rtc_init()."); | 
|  | 851 | goto cleanup1; | 
|  | 852 | } | 
|  | 853 | } else | 
|  | 854 | rtc_cmos_int_handler = cmos_interrupt; | 
|  | 855 |  | 
|  | 856 | retval = request_irq(rtc_irq, rtc_cmos_int_handler, | 
|  | 857 | IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev), | 
|  | 858 | cmos_rtc.rtc); | 
|  | 859 | if (retval < 0) { | 
|  | 860 | dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); | 
|  | 861 | goto cleanup1; | 
|  | 862 | } | 
|  | 863 |  | 
|  | 864 | cmos_rtc.rtc->ops = &cmos_rtc_ops; | 
|  | 865 | } else { | 
|  | 866 | cmos_rtc.rtc->ops = &cmos_rtc_ops_no_alarm; | 
|  | 867 | } | 
|  | 868 |  | 
|  | 869 | cmos_rtc.rtc->nvram_old_abi = true; | 
|  | 870 | retval = rtc_register_device(cmos_rtc.rtc); | 
|  | 871 | if (retval) | 
|  | 872 | goto cleanup2; | 
|  | 873 |  | 
|  | 874 | /* export at least the first block of NVRAM */ | 
|  | 875 | nvmem_cfg.size = address_space - NVRAM_OFFSET; | 
|  | 876 | if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg)) | 
|  | 877 | dev_err(dev, "nvmem registration failed\n"); | 
|  | 878 |  | 
|  | 879 | dev_info(dev, "%s%s, %d bytes nvram%s\n", | 
|  | 880 | !is_valid_irq(rtc_irq) ? "no alarms" : | 
|  | 881 | cmos_rtc.mon_alrm ? "alarms up to one year" : | 
|  | 882 | cmos_rtc.day_alrm ? "alarms up to one month" : | 
|  | 883 | "alarms up to one day", | 
|  | 884 | cmos_rtc.century ? ", y3k" : "", | 
|  | 885 | nvmem_cfg.size, | 
|  | 886 | use_hpet_alarm() ? ", hpet irqs" : ""); | 
|  | 887 |  | 
|  | 888 | return 0; | 
|  | 889 |  | 
|  | 890 | cleanup2: | 
|  | 891 | if (is_valid_irq(rtc_irq)) | 
|  | 892 | free_irq(rtc_irq, cmos_rtc.rtc); | 
|  | 893 | cleanup1: | 
|  | 894 | cmos_rtc.dev = NULL; | 
|  | 895 | cleanup0: | 
|  | 896 | if (RTC_IOMAPPED) | 
|  | 897 | release_region(ports->start, resource_size(ports)); | 
|  | 898 | else | 
|  | 899 | release_mem_region(ports->start, resource_size(ports)); | 
|  | 900 | return retval; | 
|  | 901 | } | 
|  | 902 |  | 
|  | 903 | static void cmos_do_shutdown(int rtc_irq) | 
|  | 904 | { | 
|  | 905 | spin_lock_irq(&rtc_lock); | 
|  | 906 | if (is_valid_irq(rtc_irq)) | 
|  | 907 | cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); | 
|  | 908 | spin_unlock_irq(&rtc_lock); | 
|  | 909 | } | 
|  | 910 |  | 
|  | 911 | static void cmos_do_remove(struct device *dev) | 
|  | 912 | { | 
|  | 913 | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | 914 | struct resource *ports; | 
|  | 915 |  | 
|  | 916 | cmos_do_shutdown(cmos->irq); | 
|  | 917 |  | 
|  | 918 | if (is_valid_irq(cmos->irq)) { | 
|  | 919 | free_irq(cmos->irq, cmos->rtc); | 
|  | 920 | if (use_hpet_alarm()) | 
|  | 921 | hpet_unregister_irq_handler(cmos_interrupt); | 
|  | 922 | } | 
|  | 923 |  | 
|  | 924 | cmos->rtc = NULL; | 
|  | 925 |  | 
|  | 926 | ports = cmos->iomem; | 
|  | 927 | if (RTC_IOMAPPED) | 
|  | 928 | release_region(ports->start, resource_size(ports)); | 
|  | 929 | else | 
|  | 930 | release_mem_region(ports->start, resource_size(ports)); | 
|  | 931 | cmos->iomem = NULL; | 
|  | 932 |  | 
|  | 933 | cmos->dev = NULL; | 
|  | 934 | } | 
|  | 935 |  | 
|  | 936 | static int cmos_aie_poweroff(struct device *dev) | 
|  | 937 | { | 
|  | 938 | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | 939 | struct rtc_time now; | 
|  | 940 | time64_t t_now; | 
|  | 941 | int retval = 0; | 
|  | 942 | unsigned char rtc_control; | 
|  | 943 |  | 
|  | 944 | if (!cmos->alarm_expires) | 
|  | 945 | return -EINVAL; | 
|  | 946 |  | 
|  | 947 | spin_lock_irq(&rtc_lock); | 
|  | 948 | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | 949 | spin_unlock_irq(&rtc_lock); | 
|  | 950 |  | 
|  | 951 | /* We only care about the situation where AIE is disabled. */ | 
|  | 952 | if (rtc_control & RTC_AIE) | 
|  | 953 | return -EBUSY; | 
|  | 954 |  | 
|  | 955 | cmos_read_time(dev, &now); | 
|  | 956 | t_now = rtc_tm_to_time64(&now); | 
|  | 957 |  | 
|  | 958 | /* | 
|  | 959 | * When enabling "RTC wake-up" in BIOS setup, the machine reboots | 
|  | 960 | * automatically right after shutdown on some buggy boxes. | 
|  | 961 | * This automatic rebooting issue won't happen when the alarm | 
|  | 962 | * time is larger than now+1 seconds. | 
|  | 963 | * | 
|  | 964 | * If the alarm time is equal to now+1 seconds, the issue can be | 
|  | 965 | * prevented by cancelling the alarm. | 
|  | 966 | */ | 
|  | 967 | if (cmos->alarm_expires == t_now + 1) { | 
|  | 968 | struct rtc_wkalrm alarm; | 
|  | 969 |  | 
|  | 970 | /* Cancel the AIE timer by configuring the past time. */ | 
|  | 971 | rtc_time64_to_tm(t_now - 1, &alarm.time); | 
|  | 972 | alarm.enabled = 0; | 
|  | 973 | retval = cmos_set_alarm(dev, &alarm); | 
|  | 974 | } else if (cmos->alarm_expires > t_now + 1) { | 
|  | 975 | retval = -EBUSY; | 
|  | 976 | } | 
|  | 977 |  | 
|  | 978 | return retval; | 
|  | 979 | } | 
|  | 980 |  | 
|  | 981 | static int cmos_suspend(struct device *dev) | 
|  | 982 | { | 
|  | 983 | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | 984 | unsigned char	tmp; | 
|  | 985 |  | 
|  | 986 | /* only the alarm might be a wakeup event source */ | 
|  | 987 | spin_lock_irq(&rtc_lock); | 
|  | 988 | cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); | 
|  | 989 | if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { | 
|  | 990 | unsigned char	mask; | 
|  | 991 |  | 
|  | 992 | if (device_may_wakeup(dev)) | 
|  | 993 | mask = RTC_IRQMASK & ~RTC_AIE; | 
|  | 994 | else | 
|  | 995 | mask = RTC_IRQMASK; | 
|  | 996 | tmp &= ~mask; | 
|  | 997 | CMOS_WRITE(tmp, RTC_CONTROL); | 
|  | 998 | if (use_hpet_alarm()) | 
|  | 999 | hpet_mask_rtc_irq_bit(mask); | 
|  | 1000 | cmos_checkintr(cmos, tmp); | 
|  | 1001 | } | 
|  | 1002 | spin_unlock_irq(&rtc_lock); | 
|  | 1003 |  | 
|  | 1004 | if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) { | 
|  | 1005 | cmos->enabled_wake = 1; | 
|  | 1006 | if (cmos->wake_on) | 
|  | 1007 | cmos->wake_on(dev); | 
|  | 1008 | else | 
|  | 1009 | enable_irq_wake(cmos->irq); | 
|  | 1010 | } | 
|  | 1011 |  | 
|  | 1012 | cmos_read_alarm(dev, &cmos->saved_wkalrm); | 
|  | 1013 |  | 
|  | 1014 | dev_dbg(dev, "suspend%s, ctrl %02x\n", | 
|  | 1015 | (tmp & RTC_AIE) ? ", alarm may wake" : "", | 
|  | 1016 | tmp); | 
|  | 1017 |  | 
|  | 1018 | return 0; | 
|  | 1019 | } | 
|  | 1020 |  | 
|  | 1021 | /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even | 
|  | 1022 | * after a detour through G3 "mechanical off", although the ACPI spec | 
|  | 1023 | * says wakeup should only work from G1/S4 "hibernate".  To most users, | 
|  | 1024 | * distinctions between S4 and S5 are pointless.  So when the hardware | 
|  | 1025 | * allows, don't draw that distinction. | 
|  | 1026 | */ | 
|  | 1027 | static inline int cmos_poweroff(struct device *dev) | 
|  | 1028 | { | 
|  | 1029 | if (!IS_ENABLED(CONFIG_PM)) | 
|  | 1030 | return -ENOSYS; | 
|  | 1031 |  | 
|  | 1032 | return cmos_suspend(dev); | 
|  | 1033 | } | 
|  | 1034 |  | 
|  | 1035 | static void cmos_check_wkalrm(struct device *dev) | 
|  | 1036 | { | 
|  | 1037 | struct cmos_rtc *cmos = dev_get_drvdata(dev); | 
|  | 1038 | struct rtc_wkalrm current_alarm; | 
|  | 1039 | time64_t t_now; | 
|  | 1040 | time64_t t_current_expires; | 
|  | 1041 | time64_t t_saved_expires; | 
|  | 1042 | struct rtc_time now; | 
|  | 1043 |  | 
|  | 1044 | /* Check if we have RTC Alarm armed */ | 
|  | 1045 | if (!(cmos->suspend_ctrl & RTC_AIE)) | 
|  | 1046 | return; | 
|  | 1047 |  | 
|  | 1048 | cmos_read_time(dev, &now); | 
|  | 1049 | t_now = rtc_tm_to_time64(&now); | 
|  | 1050 |  | 
|  | 1051 | /* | 
|  | 1052 | * ACPI RTC wake event is cleared after resume from STR, | 
|  | 1053 | * ACK the rtc irq here | 
|  | 1054 | */ | 
|  | 1055 | if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) { | 
|  | 1056 | cmos_interrupt(0, (void *)cmos->rtc); | 
|  | 1057 | return; | 
|  | 1058 | } | 
|  | 1059 |  | 
|  | 1060 | cmos_read_alarm(dev, ¤t_alarm); | 
|  | 1061 | t_current_expires = rtc_tm_to_time64(¤t_alarm.time); | 
|  | 1062 | t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time); | 
|  | 1063 | if (t_current_expires != t_saved_expires || | 
|  | 1064 | cmos->saved_wkalrm.enabled != current_alarm.enabled) { | 
|  | 1065 | cmos_set_alarm(dev, &cmos->saved_wkalrm); | 
|  | 1066 | } | 
|  | 1067 | } | 
|  | 1068 |  | 
|  | 1069 | static void cmos_check_acpi_rtc_status(struct device *dev, | 
|  | 1070 | unsigned char *rtc_control); | 
|  | 1071 |  | 
|  | 1072 | static int __maybe_unused cmos_resume(struct device *dev) | 
|  | 1073 | { | 
|  | 1074 | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | 1075 | unsigned char tmp; | 
|  | 1076 |  | 
|  | 1077 | if (cmos->enabled_wake && !cmos_use_acpi_alarm()) { | 
|  | 1078 | if (cmos->wake_off) | 
|  | 1079 | cmos->wake_off(dev); | 
|  | 1080 | else | 
|  | 1081 | disable_irq_wake(cmos->irq); | 
|  | 1082 | cmos->enabled_wake = 0; | 
|  | 1083 | } | 
|  | 1084 |  | 
|  | 1085 | /* The BIOS might have changed the alarm, restore it */ | 
|  | 1086 | cmos_check_wkalrm(dev); | 
|  | 1087 |  | 
|  | 1088 | spin_lock_irq(&rtc_lock); | 
|  | 1089 | tmp = cmos->suspend_ctrl; | 
|  | 1090 | cmos->suspend_ctrl = 0; | 
|  | 1091 | /* re-enable any irqs previously active */ | 
|  | 1092 | if (tmp & RTC_IRQMASK) { | 
|  | 1093 | unsigned char	mask; | 
|  | 1094 |  | 
|  | 1095 | if (device_may_wakeup(dev) && use_hpet_alarm()) | 
|  | 1096 | hpet_rtc_timer_init(); | 
|  | 1097 |  | 
|  | 1098 | do { | 
|  | 1099 | CMOS_WRITE(tmp, RTC_CONTROL); | 
|  | 1100 | if (use_hpet_alarm()) | 
|  | 1101 | hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); | 
|  | 1102 |  | 
|  | 1103 | mask = CMOS_READ(RTC_INTR_FLAGS); | 
|  | 1104 | mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; | 
|  | 1105 | if (!use_hpet_alarm() || !is_intr(mask)) | 
|  | 1106 | break; | 
|  | 1107 |  | 
|  | 1108 | /* force one-shot behavior if HPET blocked | 
|  | 1109 | * the wake alarm's irq | 
|  | 1110 | */ | 
|  | 1111 | rtc_update_irq(cmos->rtc, 1, mask); | 
|  | 1112 | tmp &= ~RTC_AIE; | 
|  | 1113 | hpet_mask_rtc_irq_bit(RTC_AIE); | 
|  | 1114 | } while (mask & RTC_AIE); | 
|  | 1115 |  | 
|  | 1116 | if (tmp & RTC_AIE) | 
|  | 1117 | cmos_check_acpi_rtc_status(dev, &tmp); | 
|  | 1118 | } | 
|  | 1119 | spin_unlock_irq(&rtc_lock); | 
|  | 1120 |  | 
|  | 1121 | dev_dbg(dev, "resume, ctrl %02x\n", tmp); | 
|  | 1122 |  | 
|  | 1123 | return 0; | 
|  | 1124 | } | 
|  | 1125 |  | 
|  | 1126 | static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume); | 
|  | 1127 |  | 
|  | 1128 | /*----------------------------------------------------------------*/ | 
|  | 1129 |  | 
|  | 1130 | /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. | 
|  | 1131 | * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs | 
|  | 1132 | * probably list them in similar PNPBIOS tables; so PNP is more common. | 
|  | 1133 | * | 
|  | 1134 | * We don't use legacy "poke at the hardware" probing.  Ancient PCs that | 
|  | 1135 | * predate even PNPBIOS should set up platform_bus devices. | 
|  | 1136 | */ | 
|  | 1137 |  | 
|  | 1138 | #ifdef	CONFIG_ACPI | 
|  | 1139 |  | 
|  | 1140 | #include <linux/acpi.h> | 
|  | 1141 |  | 
|  | 1142 | static u32 rtc_handler(void *context) | 
|  | 1143 | { | 
|  | 1144 | struct device *dev = context; | 
|  | 1145 | struct cmos_rtc *cmos = dev_get_drvdata(dev); | 
|  | 1146 | unsigned char rtc_control = 0; | 
|  | 1147 | unsigned char rtc_intr; | 
|  | 1148 | unsigned long flags; | 
|  | 1149 |  | 
|  | 1150 |  | 
|  | 1151 | /* | 
|  | 1152 | * Always update rtc irq when ACPI is used as RTC Alarm. | 
|  | 1153 | * Or else, ACPI SCI is enabled during suspend/resume only, | 
|  | 1154 | * update rtc irq in that case. | 
|  | 1155 | */ | 
|  | 1156 | if (cmos_use_acpi_alarm()) | 
|  | 1157 | cmos_interrupt(0, (void *)cmos->rtc); | 
|  | 1158 | else { | 
|  | 1159 | /* Fix me: can we use cmos_interrupt() here as well? */ | 
|  | 1160 | spin_lock_irqsave(&rtc_lock, flags); | 
|  | 1161 | if (cmos_rtc.suspend_ctrl) | 
|  | 1162 | rtc_control = CMOS_READ(RTC_CONTROL); | 
|  | 1163 | if (rtc_control & RTC_AIE) { | 
|  | 1164 | cmos_rtc.suspend_ctrl &= ~RTC_AIE; | 
|  | 1165 | CMOS_WRITE(rtc_control, RTC_CONTROL); | 
|  | 1166 | rtc_intr = CMOS_READ(RTC_INTR_FLAGS); | 
|  | 1167 | rtc_update_irq(cmos->rtc, 1, rtc_intr); | 
|  | 1168 | } | 
|  | 1169 | spin_unlock_irqrestore(&rtc_lock, flags); | 
|  | 1170 | } | 
|  | 1171 |  | 
|  | 1172 | pm_wakeup_hard_event(dev); | 
|  | 1173 | acpi_clear_event(ACPI_EVENT_RTC); | 
|  | 1174 | acpi_disable_event(ACPI_EVENT_RTC, 0); | 
|  | 1175 | return ACPI_INTERRUPT_HANDLED; | 
|  | 1176 | } | 
|  | 1177 |  | 
|  | 1178 | static inline void rtc_wake_setup(struct device *dev) | 
|  | 1179 | { | 
|  | 1180 | acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev); | 
|  | 1181 | /* | 
|  | 1182 | * After the RTC handler is installed, the Fixed_RTC event should | 
|  | 1183 | * be disabled. Only when the RTC alarm is set will it be enabled. | 
|  | 1184 | */ | 
|  | 1185 | acpi_clear_event(ACPI_EVENT_RTC); | 
|  | 1186 | acpi_disable_event(ACPI_EVENT_RTC, 0); | 
|  | 1187 | } | 
|  | 1188 |  | 
|  | 1189 | static void rtc_wake_on(struct device *dev) | 
|  | 1190 | { | 
|  | 1191 | acpi_clear_event(ACPI_EVENT_RTC); | 
|  | 1192 | acpi_enable_event(ACPI_EVENT_RTC, 0); | 
|  | 1193 | } | 
|  | 1194 |  | 
|  | 1195 | static void rtc_wake_off(struct device *dev) | 
|  | 1196 | { | 
|  | 1197 | acpi_disable_event(ACPI_EVENT_RTC, 0); | 
|  | 1198 | } | 
|  | 1199 |  | 
|  | 1200 | #ifdef CONFIG_X86 | 
|  | 1201 | /* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */ | 
|  | 1202 | static void use_acpi_alarm_quirks(void) | 
|  | 1203 | { | 
|  | 1204 | int year; | 
|  | 1205 |  | 
|  | 1206 | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) | 
|  | 1207 | return; | 
|  | 1208 |  | 
|  | 1209 | if (!(acpi_gbl_FADT.flags & ACPI_FADT_LOW_POWER_S0)) | 
|  | 1210 | return; | 
|  | 1211 |  | 
|  | 1212 | if (!is_hpet_enabled()) | 
|  | 1213 | return; | 
|  | 1214 |  | 
|  | 1215 | if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) && year >= 2015) | 
|  | 1216 | use_acpi_alarm = true; | 
|  | 1217 | } | 
|  | 1218 | #else | 
|  | 1219 | static inline void use_acpi_alarm_quirks(void) { } | 
|  | 1220 | #endif | 
|  | 1221 |  | 
|  | 1222 | /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find | 
|  | 1223 | * its device node and pass extra config data.  This helps its driver use | 
|  | 1224 | * capabilities that the now-obsolete mc146818 didn't have, and informs it | 
|  | 1225 | * that this board's RTC is wakeup-capable (per ACPI spec). | 
|  | 1226 | */ | 
|  | 1227 | static struct cmos_rtc_board_info acpi_rtc_info; | 
|  | 1228 |  | 
|  | 1229 | static void cmos_wake_setup(struct device *dev) | 
|  | 1230 | { | 
|  | 1231 | if (acpi_disabled) | 
|  | 1232 | return; | 
|  | 1233 |  | 
|  | 1234 | use_acpi_alarm_quirks(); | 
|  | 1235 |  | 
|  | 1236 | rtc_wake_setup(dev); | 
|  | 1237 | acpi_rtc_info.wake_on = rtc_wake_on; | 
|  | 1238 | acpi_rtc_info.wake_off = rtc_wake_off; | 
|  | 1239 |  | 
|  | 1240 | /* workaround bug in some ACPI tables */ | 
|  | 1241 | if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) { | 
|  | 1242 | dev_dbg(dev, "bogus FADT month_alarm (%d)\n", | 
|  | 1243 | acpi_gbl_FADT.month_alarm); | 
|  | 1244 | acpi_gbl_FADT.month_alarm = 0; | 
|  | 1245 | } | 
|  | 1246 |  | 
|  | 1247 | acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm; | 
|  | 1248 | acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm; | 
|  | 1249 | acpi_rtc_info.rtc_century = acpi_gbl_FADT.century; | 
|  | 1250 |  | 
|  | 1251 | /* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */ | 
|  | 1252 | if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE) | 
|  | 1253 | dev_info(dev, "RTC can wake from S4\n"); | 
|  | 1254 |  | 
|  | 1255 | dev->platform_data = &acpi_rtc_info; | 
|  | 1256 |  | 
|  | 1257 | /* RTC always wakes from S1/S2/S3, and often S4/STD */ | 
|  | 1258 | device_init_wakeup(dev, 1); | 
|  | 1259 | } | 
|  | 1260 |  | 
|  | 1261 | static void cmos_check_acpi_rtc_status(struct device *dev, | 
|  | 1262 | unsigned char *rtc_control) | 
|  | 1263 | { | 
|  | 1264 | struct cmos_rtc *cmos = dev_get_drvdata(dev); | 
|  | 1265 | acpi_event_status rtc_status; | 
|  | 1266 | acpi_status status; | 
|  | 1267 |  | 
|  | 1268 | if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC) | 
|  | 1269 | return; | 
|  | 1270 |  | 
|  | 1271 | status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status); | 
|  | 1272 | if (ACPI_FAILURE(status)) { | 
|  | 1273 | dev_err(dev, "Could not get RTC status\n"); | 
|  | 1274 | } else if (rtc_status & ACPI_EVENT_FLAG_SET) { | 
|  | 1275 | unsigned char mask; | 
|  | 1276 | *rtc_control &= ~RTC_AIE; | 
|  | 1277 | CMOS_WRITE(*rtc_control, RTC_CONTROL); | 
|  | 1278 | mask = CMOS_READ(RTC_INTR_FLAGS); | 
|  | 1279 | rtc_update_irq(cmos->rtc, 1, mask); | 
|  | 1280 | } | 
|  | 1281 | } | 
|  | 1282 |  | 
|  | 1283 | #else | 
|  | 1284 |  | 
|  | 1285 | static void cmos_wake_setup(struct device *dev) | 
|  | 1286 | { | 
|  | 1287 | } | 
|  | 1288 |  | 
|  | 1289 | static void cmos_check_acpi_rtc_status(struct device *dev, | 
|  | 1290 | unsigned char *rtc_control) | 
|  | 1291 | { | 
|  | 1292 | } | 
|  | 1293 |  | 
|  | 1294 | #endif | 
|  | 1295 |  | 
|  | 1296 | #ifdef	CONFIG_PNP | 
|  | 1297 |  | 
|  | 1298 | #include <linux/pnp.h> | 
|  | 1299 |  | 
|  | 1300 | static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) | 
|  | 1301 | { | 
|  | 1302 | cmos_wake_setup(&pnp->dev); | 
|  | 1303 |  | 
|  | 1304 | if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) { | 
|  | 1305 | unsigned int irq = 0; | 
|  | 1306 | #ifdef CONFIG_X86 | 
|  | 1307 | /* Some machines contain a PNP entry for the RTC, but | 
|  | 1308 | * don't define the IRQ. It should always be safe to | 
|  | 1309 | * hardcode it on systems with a legacy PIC. | 
|  | 1310 | */ | 
|  | 1311 | if (nr_legacy_irqs()) | 
|  | 1312 | irq = 8; | 
|  | 1313 | #endif | 
|  | 1314 | return cmos_do_probe(&pnp->dev, | 
|  | 1315 | pnp_get_resource(pnp, IORESOURCE_IO, 0), irq); | 
|  | 1316 | } else { | 
|  | 1317 | return cmos_do_probe(&pnp->dev, | 
|  | 1318 | pnp_get_resource(pnp, IORESOURCE_IO, 0), | 
|  | 1319 | pnp_irq(pnp, 0)); | 
|  | 1320 | } | 
|  | 1321 | } | 
|  | 1322 |  | 
|  | 1323 | static void cmos_pnp_remove(struct pnp_dev *pnp) | 
|  | 1324 | { | 
|  | 1325 | cmos_do_remove(&pnp->dev); | 
|  | 1326 | } | 
|  | 1327 |  | 
|  | 1328 | static void cmos_pnp_shutdown(struct pnp_dev *pnp) | 
|  | 1329 | { | 
|  | 1330 | struct device *dev = &pnp->dev; | 
|  | 1331 | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | 1332 |  | 
|  | 1333 | if (system_state == SYSTEM_POWER_OFF) { | 
|  | 1334 | int retval = cmos_poweroff(dev); | 
|  | 1335 |  | 
|  | 1336 | if (cmos_aie_poweroff(dev) < 0 && !retval) | 
|  | 1337 | return; | 
|  | 1338 | } | 
|  | 1339 |  | 
|  | 1340 | cmos_do_shutdown(cmos->irq); | 
|  | 1341 | } | 
|  | 1342 |  | 
|  | 1343 | static const struct pnp_device_id rtc_ids[] = { | 
|  | 1344 | { .id = "PNP0b00", }, | 
|  | 1345 | { .id = "PNP0b01", }, | 
|  | 1346 | { .id = "PNP0b02", }, | 
|  | 1347 | { }, | 
|  | 1348 | }; | 
|  | 1349 | MODULE_DEVICE_TABLE(pnp, rtc_ids); | 
|  | 1350 |  | 
|  | 1351 | static struct pnp_driver cmos_pnp_driver = { | 
|  | 1352 | .name		= (char *) driver_name, | 
|  | 1353 | .id_table	= rtc_ids, | 
|  | 1354 | .probe		= cmos_pnp_probe, | 
|  | 1355 | .remove		= cmos_pnp_remove, | 
|  | 1356 | .shutdown	= cmos_pnp_shutdown, | 
|  | 1357 |  | 
|  | 1358 | /* flag ensures resume() gets called, and stops syslog spam */ | 
|  | 1359 | .flags		= PNP_DRIVER_RES_DO_NOT_CHANGE, | 
|  | 1360 | .driver		= { | 
|  | 1361 | .pm = &cmos_pm_ops, | 
|  | 1362 | }, | 
|  | 1363 | }; | 
|  | 1364 |  | 
|  | 1365 | #endif	/* CONFIG_PNP */ | 
|  | 1366 |  | 
|  | 1367 | #ifdef CONFIG_OF | 
|  | 1368 | static const struct of_device_id of_cmos_match[] = { | 
|  | 1369 | { | 
|  | 1370 | .compatible = "motorola,mc146818", | 
|  | 1371 | }, | 
|  | 1372 | { }, | 
|  | 1373 | }; | 
|  | 1374 | MODULE_DEVICE_TABLE(of, of_cmos_match); | 
|  | 1375 |  | 
|  | 1376 | static __init void cmos_of_init(struct platform_device *pdev) | 
|  | 1377 | { | 
|  | 1378 | struct device_node *node = pdev->dev.of_node; | 
|  | 1379 | const __be32 *val; | 
|  | 1380 |  | 
|  | 1381 | if (!node) | 
|  | 1382 | return; | 
|  | 1383 |  | 
|  | 1384 | val = of_get_property(node, "ctrl-reg", NULL); | 
|  | 1385 | if (val) | 
|  | 1386 | CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL); | 
|  | 1387 |  | 
|  | 1388 | val = of_get_property(node, "freq-reg", NULL); | 
|  | 1389 | if (val) | 
|  | 1390 | CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT); | 
|  | 1391 | } | 
|  | 1392 | #else | 
|  | 1393 | static inline void cmos_of_init(struct platform_device *pdev) {} | 
|  | 1394 | #endif | 
|  | 1395 | /*----------------------------------------------------------------*/ | 
|  | 1396 |  | 
|  | 1397 | /* Platform setup should have set up an RTC device, when PNP is | 
|  | 1398 | * unavailable ... this could happen even on (older) PCs. | 
|  | 1399 | */ | 
|  | 1400 |  | 
|  | 1401 | static int __init cmos_platform_probe(struct platform_device *pdev) | 
|  | 1402 | { | 
|  | 1403 | struct resource *resource; | 
|  | 1404 | int irq; | 
|  | 1405 |  | 
|  | 1406 | cmos_of_init(pdev); | 
|  | 1407 | cmos_wake_setup(&pdev->dev); | 
|  | 1408 |  | 
|  | 1409 | if (RTC_IOMAPPED) | 
|  | 1410 | resource = platform_get_resource(pdev, IORESOURCE_IO, 0); | 
|  | 1411 | else | 
|  | 1412 | resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | 1413 | irq = platform_get_irq(pdev, 0); | 
|  | 1414 | if (irq < 0) | 
|  | 1415 | irq = -1; | 
|  | 1416 |  | 
|  | 1417 | return cmos_do_probe(&pdev->dev, resource, irq); | 
|  | 1418 | } | 
|  | 1419 |  | 
|  | 1420 | static int cmos_platform_remove(struct platform_device *pdev) | 
|  | 1421 | { | 
|  | 1422 | cmos_do_remove(&pdev->dev); | 
|  | 1423 | return 0; | 
|  | 1424 | } | 
|  | 1425 |  | 
|  | 1426 | static void cmos_platform_shutdown(struct platform_device *pdev) | 
|  | 1427 | { | 
|  | 1428 | struct device *dev = &pdev->dev; | 
|  | 1429 | struct cmos_rtc	*cmos = dev_get_drvdata(dev); | 
|  | 1430 |  | 
|  | 1431 | if (system_state == SYSTEM_POWER_OFF) { | 
|  | 1432 | int retval = cmos_poweroff(dev); | 
|  | 1433 |  | 
|  | 1434 | if (cmos_aie_poweroff(dev) < 0 && !retval) | 
|  | 1435 | return; | 
|  | 1436 | } | 
|  | 1437 |  | 
|  | 1438 | cmos_do_shutdown(cmos->irq); | 
|  | 1439 | } | 
|  | 1440 |  | 
|  | 1441 | /* work with hotplug and coldplug */ | 
|  | 1442 | MODULE_ALIAS("platform:rtc_cmos"); | 
|  | 1443 |  | 
|  | 1444 | static struct platform_driver cmos_platform_driver = { | 
|  | 1445 | .remove		= cmos_platform_remove, | 
|  | 1446 | .shutdown	= cmos_platform_shutdown, | 
|  | 1447 | .driver = { | 
|  | 1448 | .name		= driver_name, | 
|  | 1449 | .pm		= &cmos_pm_ops, | 
|  | 1450 | .of_match_table = of_match_ptr(of_cmos_match), | 
|  | 1451 | } | 
|  | 1452 | }; | 
|  | 1453 |  | 
|  | 1454 | #ifdef CONFIG_PNP | 
|  | 1455 | static bool pnp_driver_registered; | 
|  | 1456 | #endif | 
|  | 1457 | static bool platform_driver_registered; | 
|  | 1458 |  | 
|  | 1459 | static int __init cmos_init(void) | 
|  | 1460 | { | 
|  | 1461 | int retval = 0; | 
|  | 1462 |  | 
|  | 1463 | #ifdef	CONFIG_PNP | 
|  | 1464 | retval = pnp_register_driver(&cmos_pnp_driver); | 
|  | 1465 | if (retval == 0) | 
|  | 1466 | pnp_driver_registered = true; | 
|  | 1467 | #endif | 
|  | 1468 |  | 
|  | 1469 | if (!cmos_rtc.dev) { | 
|  | 1470 | retval = platform_driver_probe(&cmos_platform_driver, | 
|  | 1471 | cmos_platform_probe); | 
|  | 1472 | if (retval == 0) | 
|  | 1473 | platform_driver_registered = true; | 
|  | 1474 | } | 
|  | 1475 |  | 
|  | 1476 | if (retval == 0) | 
|  | 1477 | return 0; | 
|  | 1478 |  | 
|  | 1479 | #ifdef	CONFIG_PNP | 
|  | 1480 | if (pnp_driver_registered) | 
|  | 1481 | pnp_unregister_driver(&cmos_pnp_driver); | 
|  | 1482 | #endif | 
|  | 1483 | return retval; | 
|  | 1484 | } | 
|  | 1485 | module_init(cmos_init); | 
|  | 1486 |  | 
|  | 1487 | static void __exit cmos_exit(void) | 
|  | 1488 | { | 
|  | 1489 | #ifdef	CONFIG_PNP | 
|  | 1490 | if (pnp_driver_registered) | 
|  | 1491 | pnp_unregister_driver(&cmos_pnp_driver); | 
|  | 1492 | #endif | 
|  | 1493 | if (platform_driver_registered) | 
|  | 1494 | platform_driver_unregister(&cmos_platform_driver); | 
|  | 1495 | } | 
|  | 1496 | module_exit(cmos_exit); | 
|  | 1497 |  | 
|  | 1498 |  | 
|  | 1499 | MODULE_AUTHOR("David Brownell"); | 
|  | 1500 | MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); | 
|  | 1501 | MODULE_LICENSE("GPL"); |