blob: c94c4ac1ae78b80b04cc6884910b5905ff61d51b [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12#include <linux/slab.h>
13#include <linux/spinlock.h>
14#include <linux/completion.h>
15#include <linux/buffer_head.h>
16#include <linux/fs.h>
17#include <linux/gfs2_ondisk.h>
18#include <linux/prefetch.h>
19#include <linux/blkdev.h>
20#include <linux/rbtree.h>
21#include <linux/random.h>
22
23#include "gfs2.h"
24#include "incore.h"
25#include "glock.h"
26#include "glops.h"
27#include "lops.h"
28#include "meta_io.h"
29#include "quota.h"
30#include "rgrp.h"
31#include "super.h"
32#include "trans.h"
33#include "util.h"
34#include "log.h"
35#include "inode.h"
36#include "trace_gfs2.h"
37#include "dir.h"
38
39#define BFITNOENT ((u32)~0)
40#define NO_BLOCK ((u64)~0)
41
42#if BITS_PER_LONG == 32
43#define LBITMASK (0x55555555UL)
44#define LBITSKIP55 (0x55555555UL)
45#define LBITSKIP00 (0x00000000UL)
46#else
47#define LBITMASK (0x5555555555555555UL)
48#define LBITSKIP55 (0x5555555555555555UL)
49#define LBITSKIP00 (0x0000000000000000UL)
50#endif
51
52/*
53 * These routines are used by the resource group routines (rgrp.c)
54 * to keep track of block allocation. Each block is represented by two
55 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
56 *
57 * 0 = Free
58 * 1 = Used (not metadata)
59 * 2 = Unlinked (still in use) inode
60 * 3 = Used (metadata)
61 */
62
63struct gfs2_extent {
64 struct gfs2_rbm rbm;
65 u32 len;
66};
67
68static const char valid_change[16] = {
69 /* current */
70 /* n */ 0, 1, 1, 1,
71 /* e */ 1, 0, 0, 0,
72 /* w */ 0, 0, 0, 1,
73 1, 0, 0, 0
74};
75
76static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
77 const struct gfs2_inode *ip, bool nowrap);
78
79
80/**
81 * gfs2_setbit - Set a bit in the bitmaps
82 * @rbm: The position of the bit to set
83 * @do_clone: Also set the clone bitmap, if it exists
84 * @new_state: the new state of the block
85 *
86 */
87
88static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
89 unsigned char new_state)
90{
91 unsigned char *byte1, *byte2, *end, cur_state;
92 struct gfs2_bitmap *bi = rbm_bi(rbm);
93 unsigned int buflen = bi->bi_len;
94 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
95
96 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
97 end = bi->bi_bh->b_data + bi->bi_offset + buflen;
98
99 BUG_ON(byte1 >= end);
100
101 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
102
103 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
104 pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
105 rbm->offset, cur_state, new_state);
106 pr_warn("rgrp=0x%llx bi_start=0x%x\n",
107 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
108 pr_warn("bi_offset=0x%x bi_len=0x%x\n",
109 bi->bi_offset, bi->bi_len);
110 dump_stack();
111 gfs2_consist_rgrpd(rbm->rgd);
112 return;
113 }
114 *byte1 ^= (cur_state ^ new_state) << bit;
115
116 if (do_clone && bi->bi_clone) {
117 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
118 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
119 *byte2 ^= (cur_state ^ new_state) << bit;
120 }
121}
122
123/**
124 * gfs2_testbit - test a bit in the bitmaps
125 * @rbm: The bit to test
126 * @use_clone: If true, test the clone bitmap, not the official bitmap.
127 *
128 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
129 * not the "real" bitmaps, to avoid allocating recently freed blocks.
130 *
131 * Returns: The two bit block state of the requested bit
132 */
133
134static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
135{
136 struct gfs2_bitmap *bi = rbm_bi(rbm);
137 const u8 *buffer;
138 const u8 *byte;
139 unsigned int bit;
140
141 if (use_clone && bi->bi_clone)
142 buffer = bi->bi_clone;
143 else
144 buffer = bi->bi_bh->b_data;
145 buffer += bi->bi_offset;
146 byte = buffer + (rbm->offset / GFS2_NBBY);
147 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
148
149 return (*byte >> bit) & GFS2_BIT_MASK;
150}
151
152/**
153 * gfs2_bit_search
154 * @ptr: Pointer to bitmap data
155 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
156 * @state: The state we are searching for
157 *
158 * We xor the bitmap data with a patter which is the bitwise opposite
159 * of what we are looking for, this gives rise to a pattern of ones
160 * wherever there is a match. Since we have two bits per entry, we
161 * take this pattern, shift it down by one place and then and it with
162 * the original. All the even bit positions (0,2,4, etc) then represent
163 * successful matches, so we mask with 0x55555..... to remove the unwanted
164 * odd bit positions.
165 *
166 * This allows searching of a whole u64 at once (32 blocks) with a
167 * single test (on 64 bit arches).
168 */
169
170static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
171{
172 u64 tmp;
173 static const u64 search[] = {
174 [0] = 0xffffffffffffffffULL,
175 [1] = 0xaaaaaaaaaaaaaaaaULL,
176 [2] = 0x5555555555555555ULL,
177 [3] = 0x0000000000000000ULL,
178 };
179 tmp = le64_to_cpu(*ptr) ^ search[state];
180 tmp &= (tmp >> 1);
181 tmp &= mask;
182 return tmp;
183}
184
185/**
186 * rs_cmp - multi-block reservation range compare
187 * @blk: absolute file system block number of the new reservation
188 * @len: number of blocks in the new reservation
189 * @rs: existing reservation to compare against
190 *
191 * returns: 1 if the block range is beyond the reach of the reservation
192 * -1 if the block range is before the start of the reservation
193 * 0 if the block range overlaps with the reservation
194 */
195static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
196{
197 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
198
199 if (blk >= startblk + rs->rs_free)
200 return 1;
201 if (blk + len - 1 < startblk)
202 return -1;
203 return 0;
204}
205
206/**
207 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
208 * a block in a given allocation state.
209 * @buf: the buffer that holds the bitmaps
210 * @len: the length (in bytes) of the buffer
211 * @goal: start search at this block's bit-pair (within @buffer)
212 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
213 *
214 * Scope of @goal and returned block number is only within this bitmap buffer,
215 * not entire rgrp or filesystem. @buffer will be offset from the actual
216 * beginning of a bitmap block buffer, skipping any header structures, but
217 * headers are always a multiple of 64 bits long so that the buffer is
218 * always aligned to a 64 bit boundary.
219 *
220 * The size of the buffer is in bytes, but is it assumed that it is
221 * always ok to read a complete multiple of 64 bits at the end
222 * of the block in case the end is no aligned to a natural boundary.
223 *
224 * Return: the block number (bitmap buffer scope) that was found
225 */
226
227static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
228 u32 goal, u8 state)
229{
230 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
231 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
232 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
233 u64 tmp;
234 u64 mask = 0x5555555555555555ULL;
235 u32 bit;
236
237 /* Mask off bits we don't care about at the start of the search */
238 mask <<= spoint;
239 tmp = gfs2_bit_search(ptr, mask, state);
240 ptr++;
241 while(tmp == 0 && ptr < end) {
242 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
243 ptr++;
244 }
245 /* Mask off any bits which are more than len bytes from the start */
246 if (ptr == end && (len & (sizeof(u64) - 1)))
247 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
248 /* Didn't find anything, so return */
249 if (tmp == 0)
250 return BFITNOENT;
251 ptr--;
252 bit = __ffs64(tmp);
253 bit /= 2; /* two bits per entry in the bitmap */
254 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
255}
256
257/**
258 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
259 * @rbm: The rbm with rgd already set correctly
260 * @block: The block number (filesystem relative)
261 *
262 * This sets the bi and offset members of an rbm based on a
263 * resource group and a filesystem relative block number. The
264 * resource group must be set in the rbm on entry, the bi and
265 * offset members will be set by this function.
266 *
267 * Returns: 0 on success, or an error code
268 */
269
270static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
271{
272 u64 rblock = block - rbm->rgd->rd_data0;
273
274 if (WARN_ON_ONCE(rblock > UINT_MAX))
275 return -EINVAL;
276 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
277 return -E2BIG;
278
279 rbm->bii = 0;
280 rbm->offset = (u32)(rblock);
281 /* Check if the block is within the first block */
282 if (rbm->offset < rbm_bi(rbm)->bi_blocks)
283 return 0;
284
285 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
286 rbm->offset += (sizeof(struct gfs2_rgrp) -
287 sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
288 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
289 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
290 return 0;
291}
292
293/**
294 * gfs2_rbm_incr - increment an rbm structure
295 * @rbm: The rbm with rgd already set correctly
296 *
297 * This function takes an existing rbm structure and increments it to the next
298 * viable block offset.
299 *
300 * Returns: If incrementing the offset would cause the rbm to go past the
301 * end of the rgrp, true is returned, otherwise false.
302 *
303 */
304
305static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
306{
307 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
308 rbm->offset++;
309 return false;
310 }
311 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
312 return true;
313
314 rbm->offset = 0;
315 rbm->bii++;
316 return false;
317}
318
319/**
320 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
321 * @rbm: Position to search (value/result)
322 * @n_unaligned: Number of unaligned blocks to check
323 * @len: Decremented for each block found (terminate on zero)
324 *
325 * Returns: true if a non-free block is encountered
326 */
327
328static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
329{
330 u32 n;
331 u8 res;
332
333 for (n = 0; n < n_unaligned; n++) {
334 res = gfs2_testbit(rbm, true);
335 if (res != GFS2_BLKST_FREE)
336 return true;
337 (*len)--;
338 if (*len == 0)
339 return true;
340 if (gfs2_rbm_incr(rbm))
341 return true;
342 }
343
344 return false;
345}
346
347/**
348 * gfs2_free_extlen - Return extent length of free blocks
349 * @rrbm: Starting position
350 * @len: Max length to check
351 *
352 * Starting at the block specified by the rbm, see how many free blocks
353 * there are, not reading more than len blocks ahead. This can be done
354 * using memchr_inv when the blocks are byte aligned, but has to be done
355 * on a block by block basis in case of unaligned blocks. Also this
356 * function can cope with bitmap boundaries (although it must stop on
357 * a resource group boundary)
358 *
359 * Returns: Number of free blocks in the extent
360 */
361
362static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
363{
364 struct gfs2_rbm rbm = *rrbm;
365 u32 n_unaligned = rbm.offset & 3;
366 u32 size = len;
367 u32 bytes;
368 u32 chunk_size;
369 u8 *ptr, *start, *end;
370 u64 block;
371 struct gfs2_bitmap *bi;
372
373 if (n_unaligned &&
374 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
375 goto out;
376
377 n_unaligned = len & 3;
378 /* Start is now byte aligned */
379 while (len > 3) {
380 bi = rbm_bi(&rbm);
381 start = bi->bi_bh->b_data;
382 if (bi->bi_clone)
383 start = bi->bi_clone;
384 start += bi->bi_offset;
385 end = start + bi->bi_len;
386 BUG_ON(rbm.offset & 3);
387 start += (rbm.offset / GFS2_NBBY);
388 bytes = min_t(u32, len / GFS2_NBBY, (end - start));
389 ptr = memchr_inv(start, 0, bytes);
390 chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
391 chunk_size *= GFS2_NBBY;
392 BUG_ON(len < chunk_size);
393 len -= chunk_size;
394 block = gfs2_rbm_to_block(&rbm);
395 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
396 n_unaligned = 0;
397 break;
398 }
399 if (ptr) {
400 n_unaligned = 3;
401 break;
402 }
403 n_unaligned = len & 3;
404 }
405
406 /* Deal with any bits left over at the end */
407 if (n_unaligned)
408 gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
409out:
410 return size - len;
411}
412
413/**
414 * gfs2_bitcount - count the number of bits in a certain state
415 * @rgd: the resource group descriptor
416 * @buffer: the buffer that holds the bitmaps
417 * @buflen: the length (in bytes) of the buffer
418 * @state: the state of the block we're looking for
419 *
420 * Returns: The number of bits
421 */
422
423static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
424 unsigned int buflen, u8 state)
425{
426 const u8 *byte = buffer;
427 const u8 *end = buffer + buflen;
428 const u8 state1 = state << 2;
429 const u8 state2 = state << 4;
430 const u8 state3 = state << 6;
431 u32 count = 0;
432
433 for (; byte < end; byte++) {
434 if (((*byte) & 0x03) == state)
435 count++;
436 if (((*byte) & 0x0C) == state1)
437 count++;
438 if (((*byte) & 0x30) == state2)
439 count++;
440 if (((*byte) & 0xC0) == state3)
441 count++;
442 }
443
444 return count;
445}
446
447/**
448 * gfs2_rgrp_verify - Verify that a resource group is consistent
449 * @rgd: the rgrp
450 *
451 */
452
453void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
454{
455 struct gfs2_sbd *sdp = rgd->rd_sbd;
456 struct gfs2_bitmap *bi = NULL;
457 u32 length = rgd->rd_length;
458 u32 count[4], tmp;
459 int buf, x;
460
461 memset(count, 0, 4 * sizeof(u32));
462
463 /* Count # blocks in each of 4 possible allocation states */
464 for (buf = 0; buf < length; buf++) {
465 bi = rgd->rd_bits + buf;
466 for (x = 0; x < 4; x++)
467 count[x] += gfs2_bitcount(rgd,
468 bi->bi_bh->b_data +
469 bi->bi_offset,
470 bi->bi_len, x);
471 }
472
473 if (count[0] != rgd->rd_free) {
474 if (gfs2_consist_rgrpd(rgd))
475 fs_err(sdp, "free data mismatch: %u != %u\n",
476 count[0], rgd->rd_free);
477 return;
478 }
479
480 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
481 if (count[1] != tmp) {
482 if (gfs2_consist_rgrpd(rgd))
483 fs_err(sdp, "used data mismatch: %u != %u\n",
484 count[1], tmp);
485 return;
486 }
487
488 if (count[2] + count[3] != rgd->rd_dinodes) {
489 if (gfs2_consist_rgrpd(rgd))
490 fs_err(sdp, "used metadata mismatch: %u != %u\n",
491 count[2] + count[3], rgd->rd_dinodes);
492 return;
493 }
494}
495
496/**
497 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
498 * @sdp: The GFS2 superblock
499 * @blk: The data block number
500 * @exact: True if this needs to be an exact match
501 *
502 * The @exact argument should be set to true by most callers. The exception
503 * is when we need to match blocks which are not represented by the rgrp
504 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
505 * there for alignment purposes. Another way of looking at it is that @exact
506 * matches only valid data/metadata blocks, but with @exact false, it will
507 * match any block within the extent of the rgrp.
508 *
509 * Returns: The resource group, or NULL if not found
510 */
511
512struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
513{
514 struct rb_node *n, *next;
515 struct gfs2_rgrpd *cur;
516
517 spin_lock(&sdp->sd_rindex_spin);
518 n = sdp->sd_rindex_tree.rb_node;
519 while (n) {
520 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
521 next = NULL;
522 if (blk < cur->rd_addr)
523 next = n->rb_left;
524 else if (blk >= cur->rd_data0 + cur->rd_data)
525 next = n->rb_right;
526 if (next == NULL) {
527 spin_unlock(&sdp->sd_rindex_spin);
528 if (exact) {
529 if (blk < cur->rd_addr)
530 return NULL;
531 if (blk >= cur->rd_data0 + cur->rd_data)
532 return NULL;
533 }
534 return cur;
535 }
536 n = next;
537 }
538 spin_unlock(&sdp->sd_rindex_spin);
539
540 return NULL;
541}
542
543/**
544 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
545 * @sdp: The GFS2 superblock
546 *
547 * Returns: The first rgrp in the filesystem
548 */
549
550struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
551{
552 const struct rb_node *n;
553 struct gfs2_rgrpd *rgd;
554
555 spin_lock(&sdp->sd_rindex_spin);
556 n = rb_first(&sdp->sd_rindex_tree);
557 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
558 spin_unlock(&sdp->sd_rindex_spin);
559
560 return rgd;
561}
562
563/**
564 * gfs2_rgrpd_get_next - get the next RG
565 * @rgd: the resource group descriptor
566 *
567 * Returns: The next rgrp
568 */
569
570struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
571{
572 struct gfs2_sbd *sdp = rgd->rd_sbd;
573 const struct rb_node *n;
574
575 spin_lock(&sdp->sd_rindex_spin);
576 n = rb_next(&rgd->rd_node);
577 if (n == NULL)
578 n = rb_first(&sdp->sd_rindex_tree);
579
580 if (unlikely(&rgd->rd_node == n)) {
581 spin_unlock(&sdp->sd_rindex_spin);
582 return NULL;
583 }
584 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
585 spin_unlock(&sdp->sd_rindex_spin);
586 return rgd;
587}
588
589void check_and_update_goal(struct gfs2_inode *ip)
590{
591 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
592 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
593 ip->i_goal = ip->i_no_addr;
594}
595
596void gfs2_free_clones(struct gfs2_rgrpd *rgd)
597{
598 int x;
599
600 for (x = 0; x < rgd->rd_length; x++) {
601 struct gfs2_bitmap *bi = rgd->rd_bits + x;
602 kfree(bi->bi_clone);
603 bi->bi_clone = NULL;
604 }
605}
606
607/**
608 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
609 * plus a quota allocations data structure, if necessary
610 * @ip: the inode for this reservation
611 */
612int gfs2_rsqa_alloc(struct gfs2_inode *ip)
613{
614 return gfs2_qa_alloc(ip);
615}
616
617static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
618{
619 struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
620
621 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n",
622 (unsigned long long)ip->i_no_addr,
623 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
624 rs->rs_rbm.offset, rs->rs_free);
625}
626
627/**
628 * __rs_deltree - remove a multi-block reservation from the rgd tree
629 * @rs: The reservation to remove
630 *
631 */
632static void __rs_deltree(struct gfs2_blkreserv *rs)
633{
634 struct gfs2_rgrpd *rgd;
635
636 if (!gfs2_rs_active(rs))
637 return;
638
639 rgd = rs->rs_rbm.rgd;
640 trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
641 rb_erase(&rs->rs_node, &rgd->rd_rstree);
642 RB_CLEAR_NODE(&rs->rs_node);
643
644 if (rs->rs_free) {
645 u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) +
646 rs->rs_free - 1;
647 struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, };
648 struct gfs2_bitmap *start, *last;
649
650 /* return reserved blocks to the rgrp */
651 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
652 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
653 /* The rgrp extent failure point is likely not to increase;
654 it will only do so if the freed blocks are somehow
655 contiguous with a span of free blocks that follows. Still,
656 it will force the number to be recalculated later. */
657 rgd->rd_extfail_pt += rs->rs_free;
658 rs->rs_free = 0;
659 if (gfs2_rbm_from_block(&last_rbm, last_block))
660 return;
661 start = rbm_bi(&rs->rs_rbm);
662 last = rbm_bi(&last_rbm);
663 do
664 clear_bit(GBF_FULL, &start->bi_flags);
665 while (start++ != last);
666 }
667}
668
669/**
670 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
671 * @rs: The reservation to remove
672 *
673 */
674void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
675{
676 struct gfs2_rgrpd *rgd;
677
678 rgd = rs->rs_rbm.rgd;
679 if (rgd) {
680 spin_lock(&rgd->rd_rsspin);
681 __rs_deltree(rs);
682 BUG_ON(rs->rs_free);
683 spin_unlock(&rgd->rd_rsspin);
684 }
685}
686
687/**
688 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
689 * @ip: The inode for this reservation
690 * @wcount: The inode's write count, or NULL
691 *
692 */
693void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
694{
695 down_write(&ip->i_rw_mutex);
696 if ((wcount == NULL) || (atomic_read(wcount) <= 1))
697 gfs2_rs_deltree(&ip->i_res);
698 up_write(&ip->i_rw_mutex);
699 gfs2_qa_delete(ip, wcount);
700}
701
702/**
703 * return_all_reservations - return all reserved blocks back to the rgrp.
704 * @rgd: the rgrp that needs its space back
705 *
706 * We previously reserved a bunch of blocks for allocation. Now we need to
707 * give them back. This leave the reservation structures in tact, but removes
708 * all of their corresponding "no-fly zones".
709 */
710static void return_all_reservations(struct gfs2_rgrpd *rgd)
711{
712 struct rb_node *n;
713 struct gfs2_blkreserv *rs;
714
715 spin_lock(&rgd->rd_rsspin);
716 while ((n = rb_first(&rgd->rd_rstree))) {
717 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
718 __rs_deltree(rs);
719 }
720 spin_unlock(&rgd->rd_rsspin);
721}
722
723void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
724{
725 struct rb_node *n;
726 struct gfs2_rgrpd *rgd;
727 struct gfs2_glock *gl;
728
729 while ((n = rb_first(&sdp->sd_rindex_tree))) {
730 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
731 gl = rgd->rd_gl;
732
733 rb_erase(n, &sdp->sd_rindex_tree);
734
735 if (gl) {
736 glock_clear_object(gl, rgd);
737 gfs2_rgrp_brelse(rgd);
738 gfs2_glock_put(gl);
739 }
740
741 gfs2_free_clones(rgd);
742 kfree(rgd->rd_bits);
743 rgd->rd_bits = NULL;
744 return_all_reservations(rgd);
745 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
746 }
747}
748
749static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
750{
751 pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
752 pr_info("ri_length = %u\n", rgd->rd_length);
753 pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
754 pr_info("ri_data = %u\n", rgd->rd_data);
755 pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
756}
757
758/**
759 * gfs2_compute_bitstructs - Compute the bitmap sizes
760 * @rgd: The resource group descriptor
761 *
762 * Calculates bitmap descriptors, one for each block that contains bitmap data
763 *
764 * Returns: errno
765 */
766
767static int compute_bitstructs(struct gfs2_rgrpd *rgd)
768{
769 struct gfs2_sbd *sdp = rgd->rd_sbd;
770 struct gfs2_bitmap *bi;
771 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
772 u32 bytes_left, bytes;
773 int x;
774
775 if (!length)
776 return -EINVAL;
777
778 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
779 if (!rgd->rd_bits)
780 return -ENOMEM;
781
782 bytes_left = rgd->rd_bitbytes;
783
784 for (x = 0; x < length; x++) {
785 bi = rgd->rd_bits + x;
786
787 bi->bi_flags = 0;
788 /* small rgrp; bitmap stored completely in header block */
789 if (length == 1) {
790 bytes = bytes_left;
791 bi->bi_offset = sizeof(struct gfs2_rgrp);
792 bi->bi_start = 0;
793 bi->bi_len = bytes;
794 bi->bi_blocks = bytes * GFS2_NBBY;
795 /* header block */
796 } else if (x == 0) {
797 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
798 bi->bi_offset = sizeof(struct gfs2_rgrp);
799 bi->bi_start = 0;
800 bi->bi_len = bytes;
801 bi->bi_blocks = bytes * GFS2_NBBY;
802 /* last block */
803 } else if (x + 1 == length) {
804 bytes = bytes_left;
805 bi->bi_offset = sizeof(struct gfs2_meta_header);
806 bi->bi_start = rgd->rd_bitbytes - bytes_left;
807 bi->bi_len = bytes;
808 bi->bi_blocks = bytes * GFS2_NBBY;
809 /* other blocks */
810 } else {
811 bytes = sdp->sd_sb.sb_bsize -
812 sizeof(struct gfs2_meta_header);
813 bi->bi_offset = sizeof(struct gfs2_meta_header);
814 bi->bi_start = rgd->rd_bitbytes - bytes_left;
815 bi->bi_len = bytes;
816 bi->bi_blocks = bytes * GFS2_NBBY;
817 }
818
819 bytes_left -= bytes;
820 }
821
822 if (bytes_left) {
823 gfs2_consist_rgrpd(rgd);
824 return -EIO;
825 }
826 bi = rgd->rd_bits + (length - 1);
827 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
828 if (gfs2_consist_rgrpd(rgd)) {
829 gfs2_rindex_print(rgd);
830 fs_err(sdp, "start=%u len=%u offset=%u\n",
831 bi->bi_start, bi->bi_len, bi->bi_offset);
832 }
833 return -EIO;
834 }
835
836 return 0;
837}
838
839/**
840 * gfs2_ri_total - Total up the file system space, according to the rindex.
841 * @sdp: the filesystem
842 *
843 */
844u64 gfs2_ri_total(struct gfs2_sbd *sdp)
845{
846 u64 total_data = 0;
847 struct inode *inode = sdp->sd_rindex;
848 struct gfs2_inode *ip = GFS2_I(inode);
849 char buf[sizeof(struct gfs2_rindex)];
850 int error, rgrps;
851
852 for (rgrps = 0;; rgrps++) {
853 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
854
855 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
856 break;
857 error = gfs2_internal_read(ip, buf, &pos,
858 sizeof(struct gfs2_rindex));
859 if (error != sizeof(struct gfs2_rindex))
860 break;
861 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
862 }
863 return total_data;
864}
865
866static int rgd_insert(struct gfs2_rgrpd *rgd)
867{
868 struct gfs2_sbd *sdp = rgd->rd_sbd;
869 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
870
871 /* Figure out where to put new node */
872 while (*newn) {
873 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
874 rd_node);
875
876 parent = *newn;
877 if (rgd->rd_addr < cur->rd_addr)
878 newn = &((*newn)->rb_left);
879 else if (rgd->rd_addr > cur->rd_addr)
880 newn = &((*newn)->rb_right);
881 else
882 return -EEXIST;
883 }
884
885 rb_link_node(&rgd->rd_node, parent, newn);
886 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
887 sdp->sd_rgrps++;
888 return 0;
889}
890
891/**
892 * read_rindex_entry - Pull in a new resource index entry from the disk
893 * @ip: Pointer to the rindex inode
894 *
895 * Returns: 0 on success, > 0 on EOF, error code otherwise
896 */
897
898static int read_rindex_entry(struct gfs2_inode *ip)
899{
900 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
901 const unsigned bsize = sdp->sd_sb.sb_bsize;
902 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
903 struct gfs2_rindex buf;
904 int error;
905 struct gfs2_rgrpd *rgd;
906
907 if (pos >= i_size_read(&ip->i_inode))
908 return 1;
909
910 error = gfs2_internal_read(ip, (char *)&buf, &pos,
911 sizeof(struct gfs2_rindex));
912
913 if (error != sizeof(struct gfs2_rindex))
914 return (error == 0) ? 1 : error;
915
916 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
917 error = -ENOMEM;
918 if (!rgd)
919 return error;
920
921 rgd->rd_sbd = sdp;
922 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
923 rgd->rd_length = be32_to_cpu(buf.ri_length);
924 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
925 rgd->rd_data = be32_to_cpu(buf.ri_data);
926 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
927 spin_lock_init(&rgd->rd_rsspin);
928
929 error = compute_bitstructs(rgd);
930 if (error)
931 goto fail;
932
933 error = gfs2_glock_get(sdp, rgd->rd_addr,
934 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
935 if (error)
936 goto fail;
937
938 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
939 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
940 if (rgd->rd_data > sdp->sd_max_rg_data)
941 sdp->sd_max_rg_data = rgd->rd_data;
942 spin_lock(&sdp->sd_rindex_spin);
943 error = rgd_insert(rgd);
944 spin_unlock(&sdp->sd_rindex_spin);
945 if (!error) {
946 glock_set_object(rgd->rd_gl, rgd);
947 rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
948 rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
949 rgd->rd_length) * bsize) - 1;
950 return 0;
951 }
952
953 error = 0; /* someone else read in the rgrp; free it and ignore it */
954 gfs2_glock_put(rgd->rd_gl);
955
956fail:
957 kfree(rgd->rd_bits);
958 rgd->rd_bits = NULL;
959 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
960 return error;
961}
962
963/**
964 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
965 * @sdp: the GFS2 superblock
966 *
967 * The purpose of this function is to select a subset of the resource groups
968 * and mark them as PREFERRED. We do it in such a way that each node prefers
969 * to use a unique set of rgrps to minimize glock contention.
970 */
971static void set_rgrp_preferences(struct gfs2_sbd *sdp)
972{
973 struct gfs2_rgrpd *rgd, *first;
974 int i;
975
976 /* Skip an initial number of rgrps, based on this node's journal ID.
977 That should start each node out on its own set. */
978 rgd = gfs2_rgrpd_get_first(sdp);
979 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
980 rgd = gfs2_rgrpd_get_next(rgd);
981 first = rgd;
982
983 do {
984 rgd->rd_flags |= GFS2_RDF_PREFERRED;
985 for (i = 0; i < sdp->sd_journals; i++) {
986 rgd = gfs2_rgrpd_get_next(rgd);
987 if (!rgd || rgd == first)
988 break;
989 }
990 } while (rgd && rgd != first);
991}
992
993/**
994 * gfs2_ri_update - Pull in a new resource index from the disk
995 * @ip: pointer to the rindex inode
996 *
997 * Returns: 0 on successful update, error code otherwise
998 */
999
1000static int gfs2_ri_update(struct gfs2_inode *ip)
1001{
1002 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1003 int error;
1004
1005 do {
1006 error = read_rindex_entry(ip);
1007 } while (error == 0);
1008
1009 if (error < 0)
1010 return error;
1011
1012 set_rgrp_preferences(sdp);
1013
1014 sdp->sd_rindex_uptodate = 1;
1015 return 0;
1016}
1017
1018/**
1019 * gfs2_rindex_update - Update the rindex if required
1020 * @sdp: The GFS2 superblock
1021 *
1022 * We grab a lock on the rindex inode to make sure that it doesn't
1023 * change whilst we are performing an operation. We keep this lock
1024 * for quite long periods of time compared to other locks. This
1025 * doesn't matter, since it is shared and it is very, very rarely
1026 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1027 *
1028 * This makes sure that we're using the latest copy of the resource index
1029 * special file, which might have been updated if someone expanded the
1030 * filesystem (via gfs2_grow utility), which adds new resource groups.
1031 *
1032 * Returns: 0 on succeess, error code otherwise
1033 */
1034
1035int gfs2_rindex_update(struct gfs2_sbd *sdp)
1036{
1037 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1038 struct gfs2_glock *gl = ip->i_gl;
1039 struct gfs2_holder ri_gh;
1040 int error = 0;
1041 int unlock_required = 0;
1042
1043 /* Read new copy from disk if we don't have the latest */
1044 if (!sdp->sd_rindex_uptodate) {
1045 if (!gfs2_glock_is_locked_by_me(gl)) {
1046 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1047 if (error)
1048 return error;
1049 unlock_required = 1;
1050 }
1051 if (!sdp->sd_rindex_uptodate)
1052 error = gfs2_ri_update(ip);
1053 if (unlock_required)
1054 gfs2_glock_dq_uninit(&ri_gh);
1055 }
1056
1057 return error;
1058}
1059
1060static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1061{
1062 const struct gfs2_rgrp *str = buf;
1063 u32 rg_flags;
1064
1065 rg_flags = be32_to_cpu(str->rg_flags);
1066 rg_flags &= ~GFS2_RDF_MASK;
1067 rgd->rd_flags &= GFS2_RDF_MASK;
1068 rgd->rd_flags |= rg_flags;
1069 rgd->rd_free = be32_to_cpu(str->rg_free);
1070 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1071 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1072 /* rd_data0, rd_data and rd_bitbytes already set from rindex */
1073}
1074
1075static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1076{
1077 const struct gfs2_rgrp *str = buf;
1078
1079 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1080 rgl->rl_flags = str->rg_flags;
1081 rgl->rl_free = str->rg_free;
1082 rgl->rl_dinodes = str->rg_dinodes;
1083 rgl->rl_igeneration = str->rg_igeneration;
1084 rgl->__pad = 0UL;
1085}
1086
1087static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1088{
1089 struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1090 struct gfs2_rgrp *str = buf;
1091 u32 crc;
1092
1093 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1094 str->rg_free = cpu_to_be32(rgd->rd_free);
1095 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1096 if (next == NULL)
1097 str->rg_skip = 0;
1098 else if (next->rd_addr > rgd->rd_addr)
1099 str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1100 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1101 str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1102 str->rg_data = cpu_to_be32(rgd->rd_data);
1103 str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1104 str->rg_crc = 0;
1105 crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1106 str->rg_crc = cpu_to_be32(crc);
1107
1108 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1109 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
1110}
1111
1112static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1113{
1114 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1115 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1116
1117 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1118 rgl->rl_dinodes != str->rg_dinodes ||
1119 rgl->rl_igeneration != str->rg_igeneration)
1120 return 0;
1121 return 1;
1122}
1123
1124static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1125{
1126 struct gfs2_bitmap *bi;
1127 const u32 length = rgd->rd_length;
1128 const u8 *buffer = NULL;
1129 u32 i, goal, count = 0;
1130
1131 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1132 goal = 0;
1133 buffer = bi->bi_bh->b_data + bi->bi_offset;
1134 WARN_ON(!buffer_uptodate(bi->bi_bh));
1135 while (goal < bi->bi_len * GFS2_NBBY) {
1136 goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1137 GFS2_BLKST_UNLINKED);
1138 if (goal == BFITNOENT)
1139 break;
1140 count++;
1141 goal++;
1142 }
1143 }
1144
1145 return count;
1146}
1147
1148
1149/**
1150 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1151 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1152 *
1153 * Read in all of a Resource Group's header and bitmap blocks.
1154 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1155 *
1156 * Returns: errno
1157 */
1158
1159static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1160{
1161 struct gfs2_sbd *sdp = rgd->rd_sbd;
1162 struct gfs2_glock *gl = rgd->rd_gl;
1163 unsigned int length = rgd->rd_length;
1164 struct gfs2_bitmap *bi;
1165 unsigned int x, y;
1166 int error;
1167
1168 if (rgd->rd_bits[0].bi_bh != NULL)
1169 return 0;
1170
1171 for (x = 0; x < length; x++) {
1172 bi = rgd->rd_bits + x;
1173 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1174 if (error)
1175 goto fail;
1176 }
1177
1178 for (y = length; y--;) {
1179 bi = rgd->rd_bits + y;
1180 error = gfs2_meta_wait(sdp, bi->bi_bh);
1181 if (error)
1182 goto fail;
1183 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1184 GFS2_METATYPE_RG)) {
1185 error = -EIO;
1186 goto fail;
1187 }
1188 }
1189
1190 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1191 for (x = 0; x < length; x++)
1192 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1193 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1194 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1195 rgd->rd_free_clone = rgd->rd_free;
1196 /* max out the rgrp allocation failure point */
1197 rgd->rd_extfail_pt = rgd->rd_free;
1198 }
1199 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1200 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1201 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1202 rgd->rd_bits[0].bi_bh->b_data);
1203 }
1204 else if (sdp->sd_args.ar_rgrplvb) {
1205 if (!gfs2_rgrp_lvb_valid(rgd)){
1206 gfs2_consist_rgrpd(rgd);
1207 error = -EIO;
1208 goto fail;
1209 }
1210 if (rgd->rd_rgl->rl_unlinked == 0)
1211 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1212 }
1213 return 0;
1214
1215fail:
1216 while (x--) {
1217 bi = rgd->rd_bits + x;
1218 brelse(bi->bi_bh);
1219 bi->bi_bh = NULL;
1220 gfs2_assert_warn(sdp, !bi->bi_clone);
1221 }
1222
1223 return error;
1224}
1225
1226static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1227{
1228 u32 rl_flags;
1229
1230 if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1231 return 0;
1232
1233 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1234 return gfs2_rgrp_bh_get(rgd);
1235
1236 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1237 rl_flags &= ~GFS2_RDF_MASK;
1238 rgd->rd_flags &= GFS2_RDF_MASK;
1239 rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1240 if (rgd->rd_rgl->rl_unlinked == 0)
1241 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1242 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1243 rgd->rd_free_clone = rgd->rd_free;
1244 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1245 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1246 return 0;
1247}
1248
1249int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1250{
1251 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1252 struct gfs2_sbd *sdp = rgd->rd_sbd;
1253
1254 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1255 return 0;
1256 return gfs2_rgrp_bh_get(rgd);
1257}
1258
1259/**
1260 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1261 * @rgd: The resource group
1262 *
1263 */
1264
1265void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1266{
1267 int x, length = rgd->rd_length;
1268
1269 for (x = 0; x < length; x++) {
1270 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1271 if (bi->bi_bh) {
1272 brelse(bi->bi_bh);
1273 bi->bi_bh = NULL;
1274 }
1275 }
1276
1277}
1278
1279/**
1280 * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1281 * @gh: The glock holder for the resource group
1282 *
1283 */
1284
1285void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1286{
1287 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1288 int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1289 test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1290
1291 if (rgd && demote_requested)
1292 gfs2_rgrp_brelse(rgd);
1293}
1294
1295int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1296 struct buffer_head *bh,
1297 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1298{
1299 struct super_block *sb = sdp->sd_vfs;
1300 u64 blk;
1301 sector_t start = 0;
1302 sector_t nr_blks = 0;
1303 int rv;
1304 unsigned int x;
1305 u32 trimmed = 0;
1306 u8 diff;
1307
1308 for (x = 0; x < bi->bi_len; x++) {
1309 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1310 clone += bi->bi_offset;
1311 clone += x;
1312 if (bh) {
1313 const u8 *orig = bh->b_data + bi->bi_offset + x;
1314 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1315 } else {
1316 diff = ~(*clone | (*clone >> 1));
1317 }
1318 diff &= 0x55;
1319 if (diff == 0)
1320 continue;
1321 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1322 while(diff) {
1323 if (diff & 1) {
1324 if (nr_blks == 0)
1325 goto start_new_extent;
1326 if ((start + nr_blks) != blk) {
1327 if (nr_blks >= minlen) {
1328 rv = sb_issue_discard(sb,
1329 start, nr_blks,
1330 GFP_NOFS, 0);
1331 if (rv)
1332 goto fail;
1333 trimmed += nr_blks;
1334 }
1335 nr_blks = 0;
1336start_new_extent:
1337 start = blk;
1338 }
1339 nr_blks++;
1340 }
1341 diff >>= 2;
1342 blk++;
1343 }
1344 }
1345 if (nr_blks >= minlen) {
1346 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1347 if (rv)
1348 goto fail;
1349 trimmed += nr_blks;
1350 }
1351 if (ptrimmed)
1352 *ptrimmed = trimmed;
1353 return 0;
1354
1355fail:
1356 if (sdp->sd_args.ar_discard)
1357 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1358 sdp->sd_args.ar_discard = 0;
1359 return -EIO;
1360}
1361
1362/**
1363 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1364 * @filp: Any file on the filesystem
1365 * @argp: Pointer to the arguments (also used to pass result)
1366 *
1367 * Returns: 0 on success, otherwise error code
1368 */
1369
1370int gfs2_fitrim(struct file *filp, void __user *argp)
1371{
1372 struct inode *inode = file_inode(filp);
1373 struct gfs2_sbd *sdp = GFS2_SB(inode);
1374 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1375 struct buffer_head *bh;
1376 struct gfs2_rgrpd *rgd;
1377 struct gfs2_rgrpd *rgd_end;
1378 struct gfs2_holder gh;
1379 struct fstrim_range r;
1380 int ret = 0;
1381 u64 amt;
1382 u64 trimmed = 0;
1383 u64 start, end, minlen;
1384 unsigned int x;
1385 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1386
1387 if (!capable(CAP_SYS_ADMIN))
1388 return -EPERM;
1389
1390 if (!blk_queue_discard(q))
1391 return -EOPNOTSUPP;
1392
1393 if (copy_from_user(&r, argp, sizeof(r)))
1394 return -EFAULT;
1395
1396 ret = gfs2_rindex_update(sdp);
1397 if (ret)
1398 return ret;
1399
1400 start = r.start >> bs_shift;
1401 end = start + (r.len >> bs_shift);
1402 minlen = max_t(u64, r.minlen,
1403 q->limits.discard_granularity) >> bs_shift;
1404
1405 if (end <= start || minlen > sdp->sd_max_rg_data)
1406 return -EINVAL;
1407
1408 rgd = gfs2_blk2rgrpd(sdp, start, 0);
1409 rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1410
1411 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1412 && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1413 return -EINVAL; /* start is beyond the end of the fs */
1414
1415 while (1) {
1416
1417 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1418 if (ret)
1419 goto out;
1420
1421 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1422 /* Trim each bitmap in the rgrp */
1423 for (x = 0; x < rgd->rd_length; x++) {
1424 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1425 ret = gfs2_rgrp_send_discards(sdp,
1426 rgd->rd_data0, NULL, bi, minlen,
1427 &amt);
1428 if (ret) {
1429 gfs2_glock_dq_uninit(&gh);
1430 goto out;
1431 }
1432 trimmed += amt;
1433 }
1434
1435 /* Mark rgrp as having been trimmed */
1436 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1437 if (ret == 0) {
1438 bh = rgd->rd_bits[0].bi_bh;
1439 rgd->rd_flags |= GFS2_RGF_TRIMMED;
1440 gfs2_trans_add_meta(rgd->rd_gl, bh);
1441 gfs2_rgrp_out(rgd, bh->b_data);
1442 gfs2_trans_end(sdp);
1443 }
1444 }
1445 gfs2_glock_dq_uninit(&gh);
1446
1447 if (rgd == rgd_end)
1448 break;
1449
1450 rgd = gfs2_rgrpd_get_next(rgd);
1451 }
1452
1453out:
1454 r.len = trimmed << bs_shift;
1455 if (copy_to_user(argp, &r, sizeof(r)))
1456 return -EFAULT;
1457
1458 return ret;
1459}
1460
1461/**
1462 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1463 * @ip: the inode structure
1464 *
1465 */
1466static void rs_insert(struct gfs2_inode *ip)
1467{
1468 struct rb_node **newn, *parent = NULL;
1469 int rc;
1470 struct gfs2_blkreserv *rs = &ip->i_res;
1471 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1472 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1473
1474 BUG_ON(gfs2_rs_active(rs));
1475
1476 spin_lock(&rgd->rd_rsspin);
1477 newn = &rgd->rd_rstree.rb_node;
1478 while (*newn) {
1479 struct gfs2_blkreserv *cur =
1480 rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1481
1482 parent = *newn;
1483 rc = rs_cmp(fsblock, rs->rs_free, cur);
1484 if (rc > 0)
1485 newn = &((*newn)->rb_right);
1486 else if (rc < 0)
1487 newn = &((*newn)->rb_left);
1488 else {
1489 spin_unlock(&rgd->rd_rsspin);
1490 WARN_ON(1);
1491 return;
1492 }
1493 }
1494
1495 rb_link_node(&rs->rs_node, parent, newn);
1496 rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1497
1498 /* Do our rgrp accounting for the reservation */
1499 rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1500 spin_unlock(&rgd->rd_rsspin);
1501 trace_gfs2_rs(rs, TRACE_RS_INSERT);
1502}
1503
1504/**
1505 * rgd_free - return the number of free blocks we can allocate.
1506 * @rgd: the resource group
1507 *
1508 * This function returns the number of free blocks for an rgrp.
1509 * That's the clone-free blocks (blocks that are free, not including those
1510 * still being used for unlinked files that haven't been deleted.)
1511 *
1512 * It also subtracts any blocks reserved by someone else, but does not
1513 * include free blocks that are still part of our current reservation,
1514 * because obviously we can (and will) allocate them.
1515 */
1516static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
1517{
1518 u32 tot_reserved, tot_free;
1519
1520 if (WARN_ON_ONCE(rgd->rd_reserved < rs->rs_free))
1521 return 0;
1522 tot_reserved = rgd->rd_reserved - rs->rs_free;
1523
1524 if (rgd->rd_free_clone < tot_reserved)
1525 tot_reserved = 0;
1526
1527 tot_free = rgd->rd_free_clone - tot_reserved;
1528
1529 return tot_free;
1530}
1531
1532/**
1533 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1534 * @rgd: the resource group descriptor
1535 * @ip: pointer to the inode for which we're reserving blocks
1536 * @ap: the allocation parameters
1537 *
1538 */
1539
1540static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1541 const struct gfs2_alloc_parms *ap)
1542{
1543 struct gfs2_rbm rbm = { .rgd = rgd, };
1544 u64 goal;
1545 struct gfs2_blkreserv *rs = &ip->i_res;
1546 u32 extlen;
1547 u32 free_blocks = rgd_free(rgd, rs);
1548 int ret;
1549 struct inode *inode = &ip->i_inode;
1550
1551 if (S_ISDIR(inode->i_mode))
1552 extlen = 1;
1553 else {
1554 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1555 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1556 }
1557 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1558 return;
1559
1560 /* Find bitmap block that contains bits for goal block */
1561 if (rgrp_contains_block(rgd, ip->i_goal))
1562 goal = ip->i_goal;
1563 else
1564 goal = rgd->rd_last_alloc + rgd->rd_data0;
1565
1566 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1567 return;
1568
1569 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1570 if (ret == 0) {
1571 rs->rs_rbm = rbm;
1572 rs->rs_free = extlen;
1573 rs_insert(ip);
1574 } else {
1575 if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1576 rgd->rd_last_alloc = 0;
1577 }
1578}
1579
1580/**
1581 * gfs2_next_unreserved_block - Return next block that is not reserved
1582 * @rgd: The resource group
1583 * @block: The starting block
1584 * @length: The required length
1585 * @ip: Ignore any reservations for this inode
1586 *
1587 * If the block does not appear in any reservation, then return the
1588 * block number unchanged. If it does appear in the reservation, then
1589 * keep looking through the tree of reservations in order to find the
1590 * first block number which is not reserved.
1591 */
1592
1593static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1594 u32 length,
1595 const struct gfs2_inode *ip)
1596{
1597 struct gfs2_blkreserv *rs;
1598 struct rb_node *n;
1599 int rc;
1600
1601 spin_lock(&rgd->rd_rsspin);
1602 n = rgd->rd_rstree.rb_node;
1603 while (n) {
1604 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1605 rc = rs_cmp(block, length, rs);
1606 if (rc < 0)
1607 n = n->rb_left;
1608 else if (rc > 0)
1609 n = n->rb_right;
1610 else
1611 break;
1612 }
1613
1614 if (n) {
1615 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1616 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1617 n = n->rb_right;
1618 if (n == NULL)
1619 break;
1620 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1621 }
1622 }
1623
1624 spin_unlock(&rgd->rd_rsspin);
1625 return block;
1626}
1627
1628/**
1629 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1630 * @rbm: The current position in the resource group
1631 * @ip: The inode for which we are searching for blocks
1632 * @minext: The minimum extent length
1633 * @maxext: A pointer to the maximum extent structure
1634 *
1635 * This checks the current position in the rgrp to see whether there is
1636 * a reservation covering this block. If not then this function is a
1637 * no-op. If there is, then the position is moved to the end of the
1638 * contiguous reservation(s) so that we are pointing at the first
1639 * non-reserved block.
1640 *
1641 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1642 */
1643
1644static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1645 const struct gfs2_inode *ip,
1646 u32 minext,
1647 struct gfs2_extent *maxext)
1648{
1649 u64 block = gfs2_rbm_to_block(rbm);
1650 u32 extlen = 1;
1651 u64 nblock;
1652 int ret;
1653
1654 /*
1655 * If we have a minimum extent length, then skip over any extent
1656 * which is less than the min extent length in size.
1657 */
1658 if (minext) {
1659 extlen = gfs2_free_extlen(rbm, minext);
1660 if (extlen <= maxext->len)
1661 goto fail;
1662 }
1663
1664 /*
1665 * Check the extent which has been found against the reservations
1666 * and skip if parts of it are already reserved
1667 */
1668 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1669 if (nblock == block) {
1670 if (!minext || extlen >= minext)
1671 return 0;
1672
1673 if (extlen > maxext->len) {
1674 maxext->len = extlen;
1675 maxext->rbm = *rbm;
1676 }
1677fail:
1678 nblock = block + extlen;
1679 }
1680 ret = gfs2_rbm_from_block(rbm, nblock);
1681 if (ret < 0)
1682 return ret;
1683 return 1;
1684}
1685
1686/**
1687 * gfs2_rbm_find - Look for blocks of a particular state
1688 * @rbm: Value/result starting position and final position
1689 * @state: The state which we want to find
1690 * @minext: Pointer to the requested extent length (NULL for a single block)
1691 * This is updated to be the actual reservation size.
1692 * @ip: If set, check for reservations
1693 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1694 * around until we've reached the starting point.
1695 *
1696 * Side effects:
1697 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1698 * has no free blocks in it.
1699 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1700 * has come up short on a free block search.
1701 *
1702 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1703 */
1704
1705static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1706 const struct gfs2_inode *ip, bool nowrap)
1707{
1708 struct buffer_head *bh;
1709 int initial_bii;
1710 u32 initial_offset;
1711 int first_bii = rbm->bii;
1712 u32 first_offset = rbm->offset;
1713 u32 offset;
1714 u8 *buffer;
1715 int n = 0;
1716 int iters = rbm->rgd->rd_length;
1717 int ret;
1718 struct gfs2_bitmap *bi;
1719 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1720
1721 /* If we are not starting at the beginning of a bitmap, then we
1722 * need to add one to the bitmap count to ensure that we search
1723 * the starting bitmap twice.
1724 */
1725 if (rbm->offset != 0)
1726 iters++;
1727
1728 while(1) {
1729 bi = rbm_bi(rbm);
1730 if ((ip == NULL || !gfs2_rs_active(&ip->i_res)) &&
1731 test_bit(GBF_FULL, &bi->bi_flags) &&
1732 (state == GFS2_BLKST_FREE))
1733 goto next_bitmap;
1734
1735 bh = bi->bi_bh;
1736 buffer = bh->b_data + bi->bi_offset;
1737 WARN_ON(!buffer_uptodate(bh));
1738 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1739 buffer = bi->bi_clone + bi->bi_offset;
1740 initial_offset = rbm->offset;
1741 offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1742 if (offset == BFITNOENT)
1743 goto bitmap_full;
1744 rbm->offset = offset;
1745 if (ip == NULL)
1746 return 0;
1747
1748 initial_bii = rbm->bii;
1749 ret = gfs2_reservation_check_and_update(rbm, ip,
1750 minext ? *minext : 0,
1751 &maxext);
1752 if (ret == 0)
1753 return 0;
1754 if (ret > 0) {
1755 n += (rbm->bii - initial_bii);
1756 goto next_iter;
1757 }
1758 if (ret == -E2BIG) {
1759 rbm->bii = 0;
1760 rbm->offset = 0;
1761 n += (rbm->bii - initial_bii);
1762 goto res_covered_end_of_rgrp;
1763 }
1764 return ret;
1765
1766bitmap_full: /* Mark bitmap as full and fall through */
1767 if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1768 set_bit(GBF_FULL, &bi->bi_flags);
1769
1770next_bitmap: /* Find next bitmap in the rgrp */
1771 rbm->offset = 0;
1772 rbm->bii++;
1773 if (rbm->bii == rbm->rgd->rd_length)
1774 rbm->bii = 0;
1775res_covered_end_of_rgrp:
1776 if ((rbm->bii == 0) && nowrap)
1777 break;
1778 n++;
1779next_iter:
1780 if (n >= iters)
1781 break;
1782 }
1783
1784 if (minext == NULL || state != GFS2_BLKST_FREE)
1785 return -ENOSPC;
1786
1787 /* If the extent was too small, and it's smaller than the smallest
1788 to have failed before, remember for future reference that it's
1789 useless to search this rgrp again for this amount or more. */
1790 if ((first_offset == 0) && (first_bii == 0) &&
1791 (*minext < rbm->rgd->rd_extfail_pt))
1792 rbm->rgd->rd_extfail_pt = *minext;
1793
1794 /* If the maximum extent we found is big enough to fulfill the
1795 minimum requirements, use it anyway. */
1796 if (maxext.len) {
1797 *rbm = maxext.rbm;
1798 *minext = maxext.len;
1799 return 0;
1800 }
1801
1802 return -ENOSPC;
1803}
1804
1805/**
1806 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1807 * @rgd: The rgrp
1808 * @last_unlinked: block address of the last dinode we unlinked
1809 * @skip: block address we should explicitly not unlink
1810 *
1811 * Returns: 0 if no error
1812 * The inode, if one has been found, in inode.
1813 */
1814
1815static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1816{
1817 u64 block;
1818 struct gfs2_sbd *sdp = rgd->rd_sbd;
1819 struct gfs2_glock *gl;
1820 struct gfs2_inode *ip;
1821 int error;
1822 int found = 0;
1823 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1824
1825 while (1) {
1826 down_write(&sdp->sd_log_flush_lock);
1827 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1828 true);
1829 up_write(&sdp->sd_log_flush_lock);
1830 if (error == -ENOSPC)
1831 break;
1832 if (WARN_ON_ONCE(error))
1833 break;
1834
1835 block = gfs2_rbm_to_block(&rbm);
1836 if (gfs2_rbm_from_block(&rbm, block + 1))
1837 break;
1838 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1839 continue;
1840 if (block == skip)
1841 continue;
1842 *last_unlinked = block;
1843
1844 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1845 if (error)
1846 continue;
1847
1848 /* If the inode is already in cache, we can ignore it here
1849 * because the existing inode disposal code will deal with
1850 * it when all refs have gone away. Accessing gl_object like
1851 * this is not safe in general. Here it is ok because we do
1852 * not dereference the pointer, and we only need an approx
1853 * answer to whether it is NULL or not.
1854 */
1855 ip = gl->gl_object;
1856
1857 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1858 gfs2_glock_put(gl);
1859 else
1860 found++;
1861
1862 /* Limit reclaim to sensible number of tasks */
1863 if (found > NR_CPUS)
1864 return;
1865 }
1866
1867 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1868 return;
1869}
1870
1871/**
1872 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1873 * @rgd: The rgrp in question
1874 * @loops: An indication of how picky we can be (0=very, 1=less so)
1875 *
1876 * This function uses the recently added glock statistics in order to
1877 * figure out whether a parciular resource group is suffering from
1878 * contention from multiple nodes. This is done purely on the basis
1879 * of timings, since this is the only data we have to work with and
1880 * our aim here is to reject a resource group which is highly contended
1881 * but (very important) not to do this too often in order to ensure that
1882 * we do not land up introducing fragmentation by changing resource
1883 * groups when not actually required.
1884 *
1885 * The calculation is fairly simple, we want to know whether the SRTTB
1886 * (i.e. smoothed round trip time for blocking operations) to acquire
1887 * the lock for this rgrp's glock is significantly greater than the
1888 * time taken for resource groups on average. We introduce a margin in
1889 * the form of the variable @var which is computed as the sum of the two
1890 * respective variences, and multiplied by a factor depending on @loops
1891 * and whether we have a lot of data to base the decision on. This is
1892 * then tested against the square difference of the means in order to
1893 * decide whether the result is statistically significant or not.
1894 *
1895 * Returns: A boolean verdict on the congestion status
1896 */
1897
1898static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1899{
1900 const struct gfs2_glock *gl = rgd->rd_gl;
1901 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1902 struct gfs2_lkstats *st;
1903 u64 r_dcount, l_dcount;
1904 u64 l_srttb, a_srttb = 0;
1905 s64 srttb_diff;
1906 u64 sqr_diff;
1907 u64 var;
1908 int cpu, nonzero = 0;
1909
1910 preempt_disable();
1911 for_each_present_cpu(cpu) {
1912 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1913 if (st->stats[GFS2_LKS_SRTTB]) {
1914 a_srttb += st->stats[GFS2_LKS_SRTTB];
1915 nonzero++;
1916 }
1917 }
1918 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1919 if (nonzero)
1920 do_div(a_srttb, nonzero);
1921 r_dcount = st->stats[GFS2_LKS_DCOUNT];
1922 var = st->stats[GFS2_LKS_SRTTVARB] +
1923 gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1924 preempt_enable();
1925
1926 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1927 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1928
1929 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1930 return false;
1931
1932 srttb_diff = a_srttb - l_srttb;
1933 sqr_diff = srttb_diff * srttb_diff;
1934
1935 var *= 2;
1936 if (l_dcount < 8 || r_dcount < 8)
1937 var *= 2;
1938 if (loops == 1)
1939 var *= 2;
1940
1941 return ((srttb_diff < 0) && (sqr_diff > var));
1942}
1943
1944/**
1945 * gfs2_rgrp_used_recently
1946 * @rs: The block reservation with the rgrp to test
1947 * @msecs: The time limit in milliseconds
1948 *
1949 * Returns: True if the rgrp glock has been used within the time limit
1950 */
1951static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1952 u64 msecs)
1953{
1954 u64 tdiff;
1955
1956 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1957 rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1958
1959 return tdiff > (msecs * 1000 * 1000);
1960}
1961
1962static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1963{
1964 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1965 u32 skip;
1966
1967 get_random_bytes(&skip, sizeof(skip));
1968 return skip % sdp->sd_rgrps;
1969}
1970
1971static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1972{
1973 struct gfs2_rgrpd *rgd = *pos;
1974 struct gfs2_sbd *sdp = rgd->rd_sbd;
1975
1976 rgd = gfs2_rgrpd_get_next(rgd);
1977 if (rgd == NULL)
1978 rgd = gfs2_rgrpd_get_first(sdp);
1979 *pos = rgd;
1980 if (rgd != begin) /* If we didn't wrap */
1981 return true;
1982 return false;
1983}
1984
1985/**
1986 * fast_to_acquire - determine if a resource group will be fast to acquire
1987 *
1988 * If this is one of our preferred rgrps, it should be quicker to acquire,
1989 * because we tried to set ourselves up as dlm lock master.
1990 */
1991static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1992{
1993 struct gfs2_glock *gl = rgd->rd_gl;
1994
1995 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1996 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1997 !test_bit(GLF_DEMOTE, &gl->gl_flags))
1998 return 1;
1999 if (rgd->rd_flags & GFS2_RDF_PREFERRED)
2000 return 1;
2001 return 0;
2002}
2003
2004/**
2005 * gfs2_inplace_reserve - Reserve space in the filesystem
2006 * @ip: the inode to reserve space for
2007 * @ap: the allocation parameters
2008 *
2009 * We try our best to find an rgrp that has at least ap->target blocks
2010 * available. After a couple of passes (loops == 2), the prospects of finding
2011 * such an rgrp diminish. At this stage, we return the first rgrp that has
2012 * atleast ap->min_target blocks available. Either way, we set ap->allowed to
2013 * the number of blocks available in the chosen rgrp.
2014 *
2015 * Returns: 0 on success,
2016 * -ENOMEM if a suitable rgrp can't be found
2017 * errno otherwise
2018 */
2019
2020int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
2021{
2022 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2023 struct gfs2_rgrpd *begin = NULL;
2024 struct gfs2_blkreserv *rs = &ip->i_res;
2025 int error = 0, rg_locked, flags = 0;
2026 u64 last_unlinked = NO_BLOCK;
2027 int loops = 0;
2028 u32 free_blocks, skip = 0;
2029
2030 if (sdp->sd_args.ar_rgrplvb)
2031 flags |= GL_SKIP;
2032 if (gfs2_assert_warn(sdp, ap->target))
2033 return -EINVAL;
2034 if (gfs2_rs_active(rs)) {
2035 begin = rs->rs_rbm.rgd;
2036 } else if (rs->rs_rbm.rgd &&
2037 rgrp_contains_block(rs->rs_rbm.rgd, ip->i_goal)) {
2038 begin = rs->rs_rbm.rgd;
2039 } else {
2040 check_and_update_goal(ip);
2041 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2042 }
2043 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2044 skip = gfs2_orlov_skip(ip);
2045 if (rs->rs_rbm.rgd == NULL)
2046 return -EBADSLT;
2047
2048 while (loops < 3) {
2049 rg_locked = 1;
2050
2051 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
2052 rg_locked = 0;
2053 if (skip && skip--)
2054 goto next_rgrp;
2055 if (!gfs2_rs_active(rs)) {
2056 if (loops == 0 &&
2057 !fast_to_acquire(rs->rs_rbm.rgd))
2058 goto next_rgrp;
2059 if ((loops < 2) &&
2060 gfs2_rgrp_used_recently(rs, 1000) &&
2061 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2062 goto next_rgrp;
2063 }
2064 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2065 LM_ST_EXCLUSIVE, flags,
2066 &rs->rs_rgd_gh);
2067 if (unlikely(error))
2068 return error;
2069 if (!gfs2_rs_active(rs) && (loops < 2) &&
2070 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2071 goto skip_rgrp;
2072 if (sdp->sd_args.ar_rgrplvb) {
2073 error = update_rgrp_lvb(rs->rs_rbm.rgd);
2074 if (unlikely(error)) {
2075 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2076 return error;
2077 }
2078 }
2079 }
2080
2081 /* Skip unuseable resource groups */
2082 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2083 GFS2_RDF_ERROR)) ||
2084 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2085 goto skip_rgrp;
2086
2087 if (sdp->sd_args.ar_rgrplvb)
2088 gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2089
2090 /* Get a reservation if we don't already have one */
2091 if (!gfs2_rs_active(rs))
2092 rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2093
2094 /* Skip rgrps when we can't get a reservation on first pass */
2095 if (!gfs2_rs_active(rs) && (loops < 1))
2096 goto check_rgrp;
2097
2098 /* If rgrp has enough free space, use it */
2099 free_blocks = rgd_free(rs->rs_rbm.rgd, rs);
2100 if (free_blocks >= ap->target ||
2101 (loops == 2 && ap->min_target &&
2102 free_blocks >= ap->min_target)) {
2103 ap->allowed = free_blocks;
2104 return 0;
2105 }
2106check_rgrp:
2107 /* Check for unlinked inodes which can be reclaimed */
2108 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2109 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2110 ip->i_no_addr);
2111skip_rgrp:
2112 /* Drop reservation, if we couldn't use reserved rgrp */
2113 if (gfs2_rs_active(rs))
2114 gfs2_rs_deltree(rs);
2115
2116 /* Unlock rgrp if required */
2117 if (!rg_locked)
2118 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2119next_rgrp:
2120 /* Find the next rgrp, and continue looking */
2121 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2122 continue;
2123 if (skip)
2124 continue;
2125
2126 /* If we've scanned all the rgrps, but found no free blocks
2127 * then this checks for some less likely conditions before
2128 * trying again.
2129 */
2130 loops++;
2131 /* Check that fs hasn't grown if writing to rindex */
2132 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2133 error = gfs2_ri_update(ip);
2134 if (error)
2135 return error;
2136 }
2137 /* Flushing the log may release space */
2138 if (loops == 2)
2139 gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2140 GFS2_LFC_INPLACE_RESERVE);
2141 }
2142
2143 return -ENOSPC;
2144}
2145
2146/**
2147 * gfs2_inplace_release - release an inplace reservation
2148 * @ip: the inode the reservation was taken out on
2149 *
2150 * Release a reservation made by gfs2_inplace_reserve().
2151 */
2152
2153void gfs2_inplace_release(struct gfs2_inode *ip)
2154{
2155 struct gfs2_blkreserv *rs = &ip->i_res;
2156
2157 if (gfs2_holder_initialized(&rs->rs_rgd_gh))
2158 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2159}
2160
2161/**
2162 * gfs2_alloc_extent - allocate an extent from a given bitmap
2163 * @rbm: the resource group information
2164 * @dinode: TRUE if the first block we allocate is for a dinode
2165 * @n: The extent length (value/result)
2166 *
2167 * Add the bitmap buffer to the transaction.
2168 * Set the found bits to @new_state to change block's allocation state.
2169 */
2170static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2171 unsigned int *n)
2172{
2173 struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2174 const unsigned int elen = *n;
2175 u64 block;
2176 int ret;
2177
2178 *n = 1;
2179 block = gfs2_rbm_to_block(rbm);
2180 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2181 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2182 block++;
2183 while (*n < elen) {
2184 ret = gfs2_rbm_from_block(&pos, block);
2185 if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
2186 break;
2187 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2188 gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2189 (*n)++;
2190 block++;
2191 }
2192}
2193
2194/**
2195 * rgblk_free - Change alloc state of given block(s)
2196 * @sdp: the filesystem
2197 * @bstart: the start of a run of blocks to free
2198 * @blen: the length of the block run (all must lie within ONE RG!)
2199 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2200 *
2201 * Returns: Resource group containing the block(s)
2202 */
2203
2204static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2205 u32 blen, unsigned char new_state)
2206{
2207 struct gfs2_rbm rbm;
2208 struct gfs2_bitmap *bi, *bi_prev = NULL;
2209
2210 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2211 if (!rbm.rgd) {
2212 if (gfs2_consist(sdp))
2213 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2214 return NULL;
2215 }
2216
2217 gfs2_rbm_from_block(&rbm, bstart);
2218 while (blen--) {
2219 bi = rbm_bi(&rbm);
2220 if (bi != bi_prev) {
2221 if (!bi->bi_clone) {
2222 bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2223 GFP_NOFS | __GFP_NOFAIL);
2224 memcpy(bi->bi_clone + bi->bi_offset,
2225 bi->bi_bh->b_data + bi->bi_offset,
2226 bi->bi_len);
2227 }
2228 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2229 bi_prev = bi;
2230 }
2231 gfs2_setbit(&rbm, false, new_state);
2232 gfs2_rbm_incr(&rbm);
2233 }
2234
2235 return rbm.rgd;
2236}
2237
2238/**
2239 * gfs2_rgrp_dump - print out an rgrp
2240 * @seq: The iterator
2241 * @gl: The glock in question
2242 *
2243 */
2244
2245void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2246{
2247 struct gfs2_rgrpd *rgd = gl->gl_object;
2248 struct gfs2_blkreserv *trs;
2249 const struct rb_node *n;
2250
2251 if (rgd == NULL)
2252 return;
2253 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2254 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2255 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2256 rgd->rd_reserved, rgd->rd_extfail_pt);
2257 spin_lock(&rgd->rd_rsspin);
2258 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2259 trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2260 dump_rs(seq, trs);
2261 }
2262 spin_unlock(&rgd->rd_rsspin);
2263}
2264
2265static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2266{
2267 struct gfs2_sbd *sdp = rgd->rd_sbd;
2268 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2269 (unsigned long long)rgd->rd_addr);
2270 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2271 gfs2_rgrp_dump(NULL, rgd->rd_gl);
2272 rgd->rd_flags |= GFS2_RDF_ERROR;
2273}
2274
2275/**
2276 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2277 * @ip: The inode we have just allocated blocks for
2278 * @rbm: The start of the allocated blocks
2279 * @len: The extent length
2280 *
2281 * Adjusts a reservation after an allocation has taken place. If the
2282 * reservation does not match the allocation, or if it is now empty
2283 * then it is removed.
2284 */
2285
2286static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2287 const struct gfs2_rbm *rbm, unsigned len)
2288{
2289 struct gfs2_blkreserv *rs = &ip->i_res;
2290 struct gfs2_rgrpd *rgd = rbm->rgd;
2291 unsigned rlen;
2292 u64 block;
2293 int ret;
2294
2295 spin_lock(&rgd->rd_rsspin);
2296 if (gfs2_rs_active(rs)) {
2297 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2298 block = gfs2_rbm_to_block(rbm);
2299 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2300 rlen = min(rs->rs_free, len);
2301 rs->rs_free -= rlen;
2302 rgd->rd_reserved -= rlen;
2303 trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2304 if (rs->rs_free && !ret)
2305 goto out;
2306 /* We used up our block reservation, so we should
2307 reserve more blocks next time. */
2308 atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint);
2309 }
2310 __rs_deltree(rs);
2311 }
2312out:
2313 spin_unlock(&rgd->rd_rsspin);
2314}
2315
2316/**
2317 * gfs2_set_alloc_start - Set starting point for block allocation
2318 * @rbm: The rbm which will be set to the required location
2319 * @ip: The gfs2 inode
2320 * @dinode: Flag to say if allocation includes a new inode
2321 *
2322 * This sets the starting point from the reservation if one is active
2323 * otherwise it falls back to guessing a start point based on the
2324 * inode's goal block or the last allocation point in the rgrp.
2325 */
2326
2327static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2328 const struct gfs2_inode *ip, bool dinode)
2329{
2330 u64 goal;
2331
2332 if (gfs2_rs_active(&ip->i_res)) {
2333 *rbm = ip->i_res.rs_rbm;
2334 return;
2335 }
2336
2337 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2338 goal = ip->i_goal;
2339 else
2340 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2341
2342 gfs2_rbm_from_block(rbm, goal);
2343}
2344
2345/**
2346 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2347 * @ip: the inode to allocate the block for
2348 * @bn: Used to return the starting block number
2349 * @nblocks: requested number of blocks/extent length (value/result)
2350 * @dinode: 1 if we're allocating a dinode block, else 0
2351 * @generation: the generation number of the inode
2352 *
2353 * Returns: 0 or error
2354 */
2355
2356int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2357 bool dinode, u64 *generation)
2358{
2359 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2360 struct buffer_head *dibh;
2361 struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rbm.rgd, };
2362 unsigned int ndata;
2363 u64 block; /* block, within the file system scope */
2364 int error;
2365
2366 gfs2_set_alloc_start(&rbm, ip, dinode);
2367 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
2368
2369 if (error == -ENOSPC) {
2370 gfs2_set_alloc_start(&rbm, ip, dinode);
2371 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
2372 }
2373
2374 /* Since all blocks are reserved in advance, this shouldn't happen */
2375 if (error) {
2376 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2377 (unsigned long long)ip->i_no_addr, error, *nblocks,
2378 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2379 rbm.rgd->rd_extfail_pt);
2380 goto rgrp_error;
2381 }
2382
2383 gfs2_alloc_extent(&rbm, dinode, nblocks);
2384 block = gfs2_rbm_to_block(&rbm);
2385 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2386 if (gfs2_rs_active(&ip->i_res))
2387 gfs2_adjust_reservation(ip, &rbm, *nblocks);
2388 ndata = *nblocks;
2389 if (dinode)
2390 ndata--;
2391
2392 if (!dinode) {
2393 ip->i_goal = block + ndata - 1;
2394 error = gfs2_meta_inode_buffer(ip, &dibh);
2395 if (error == 0) {
2396 struct gfs2_dinode *di =
2397 (struct gfs2_dinode *)dibh->b_data;
2398 gfs2_trans_add_meta(ip->i_gl, dibh);
2399 di->di_goal_meta = di->di_goal_data =
2400 cpu_to_be64(ip->i_goal);
2401 brelse(dibh);
2402 }
2403 }
2404 if (rbm.rgd->rd_free < *nblocks) {
2405 pr_warn("nblocks=%u\n", *nblocks);
2406 goto rgrp_error;
2407 }
2408
2409 rbm.rgd->rd_free -= *nblocks;
2410 if (dinode) {
2411 rbm.rgd->rd_dinodes++;
2412 *generation = rbm.rgd->rd_igeneration++;
2413 if (*generation == 0)
2414 *generation = rbm.rgd->rd_igeneration++;
2415 }
2416
2417 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2418 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2419
2420 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2421 if (dinode)
2422 gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2423
2424 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2425
2426 rbm.rgd->rd_free_clone -= *nblocks;
2427 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2428 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2429 *bn = block;
2430 return 0;
2431
2432rgrp_error:
2433 gfs2_rgrp_error(rbm.rgd);
2434 return -EIO;
2435}
2436
2437/**
2438 * __gfs2_free_blocks - free a contiguous run of block(s)
2439 * @ip: the inode these blocks are being freed from
2440 * @bstart: first block of a run of contiguous blocks
2441 * @blen: the length of the block run
2442 * @meta: 1 if the blocks represent metadata
2443 *
2444 */
2445
2446void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2447{
2448 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2449 struct gfs2_rgrpd *rgd;
2450
2451 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2452 if (!rgd)
2453 return;
2454 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2455 rgd->rd_free += blen;
2456 rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2457 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2458 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2459
2460 /* Directories keep their data in the metadata address space */
2461 if (meta || ip->i_depth)
2462 gfs2_meta_wipe(ip, bstart, blen);
2463}
2464
2465/**
2466 * gfs2_free_meta - free a contiguous run of data block(s)
2467 * @ip: the inode these blocks are being freed from
2468 * @bstart: first block of a run of contiguous blocks
2469 * @blen: the length of the block run
2470 *
2471 */
2472
2473void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2474{
2475 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2476
2477 __gfs2_free_blocks(ip, bstart, blen, 1);
2478 gfs2_statfs_change(sdp, 0, +blen, 0);
2479 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2480}
2481
2482void gfs2_unlink_di(struct inode *inode)
2483{
2484 struct gfs2_inode *ip = GFS2_I(inode);
2485 struct gfs2_sbd *sdp = GFS2_SB(inode);
2486 struct gfs2_rgrpd *rgd;
2487 u64 blkno = ip->i_no_addr;
2488
2489 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2490 if (!rgd)
2491 return;
2492 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2493 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2494 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2495 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
2496}
2497
2498void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2499{
2500 struct gfs2_sbd *sdp = rgd->rd_sbd;
2501 struct gfs2_rgrpd *tmp_rgd;
2502
2503 tmp_rgd = rgblk_free(sdp, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2504 if (!tmp_rgd)
2505 return;
2506 gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2507
2508 if (!rgd->rd_dinodes)
2509 gfs2_consist_rgrpd(rgd);
2510 rgd->rd_dinodes--;
2511 rgd->rd_free++;
2512
2513 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2514 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2515 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
2516
2517 gfs2_statfs_change(sdp, 0, +1, -1);
2518 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2519 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2520 gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2521}
2522
2523/**
2524 * gfs2_check_blk_type - Check the type of a block
2525 * @sdp: The superblock
2526 * @no_addr: The block number to check
2527 * @type: The block type we are looking for
2528 *
2529 * Returns: 0 if the block type matches the expected type
2530 * -ESTALE if it doesn't match
2531 * or -ve errno if something went wrong while checking
2532 */
2533
2534int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2535{
2536 struct gfs2_rgrpd *rgd;
2537 struct gfs2_holder rgd_gh;
2538 struct gfs2_rbm rbm;
2539 int error = -EINVAL;
2540
2541 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2542 if (!rgd)
2543 goto fail;
2544
2545 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2546 if (error)
2547 goto fail;
2548
2549 rbm.rgd = rgd;
2550 error = gfs2_rbm_from_block(&rbm, no_addr);
2551 WARN_ON_ONCE(error != 0);
2552
2553 if (gfs2_testbit(&rbm, false) != type)
2554 error = -ESTALE;
2555
2556 gfs2_glock_dq_uninit(&rgd_gh);
2557fail:
2558 return error;
2559}
2560
2561/**
2562 * gfs2_rlist_add - add a RG to a list of RGs
2563 * @ip: the inode
2564 * @rlist: the list of resource groups
2565 * @block: the block
2566 *
2567 * Figure out what RG a block belongs to and add that RG to the list
2568 *
2569 * FIXME: Don't use NOFAIL
2570 *
2571 */
2572
2573void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2574 u64 block)
2575{
2576 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2577 struct gfs2_rgrpd *rgd;
2578 struct gfs2_rgrpd **tmp;
2579 unsigned int new_space;
2580 unsigned int x;
2581
2582 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2583 return;
2584
2585 /*
2586 * The resource group last accessed is kept in the last position.
2587 */
2588
2589 if (rlist->rl_rgrps) {
2590 rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
2591 if (rgrp_contains_block(rgd, block))
2592 return;
2593 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2594 } else {
2595 rgd = ip->i_res.rs_rbm.rgd;
2596 if (!rgd || !rgrp_contains_block(rgd, block))
2597 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2598 }
2599
2600 if (!rgd) {
2601 fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
2602 (unsigned long long)block);
2603 return;
2604 }
2605
2606 for (x = 0; x < rlist->rl_rgrps; x++) {
2607 if (rlist->rl_rgd[x] == rgd) {
2608 swap(rlist->rl_rgd[x],
2609 rlist->rl_rgd[rlist->rl_rgrps - 1]);
2610 return;
2611 }
2612 }
2613
2614 if (rlist->rl_rgrps == rlist->rl_space) {
2615 new_space = rlist->rl_space + 10;
2616
2617 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2618 GFP_NOFS | __GFP_NOFAIL);
2619
2620 if (rlist->rl_rgd) {
2621 memcpy(tmp, rlist->rl_rgd,
2622 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2623 kfree(rlist->rl_rgd);
2624 }
2625
2626 rlist->rl_space = new_space;
2627 rlist->rl_rgd = tmp;
2628 }
2629
2630 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2631}
2632
2633/**
2634 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2635 * and initialize an array of glock holders for them
2636 * @rlist: the list of resource groups
2637 * @state: the lock state to acquire the RG lock in
2638 *
2639 * FIXME: Don't use NOFAIL
2640 *
2641 */
2642
2643void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2644{
2645 unsigned int x;
2646
2647 rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2648 sizeof(struct gfs2_holder),
2649 GFP_NOFS | __GFP_NOFAIL);
2650 for (x = 0; x < rlist->rl_rgrps; x++)
2651 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2652 state, 0,
2653 &rlist->rl_ghs[x]);
2654}
2655
2656/**
2657 * gfs2_rlist_free - free a resource group list
2658 * @rlist: the list of resource groups
2659 *
2660 */
2661
2662void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2663{
2664 unsigned int x;
2665
2666 kfree(rlist->rl_rgd);
2667
2668 if (rlist->rl_ghs) {
2669 for (x = 0; x < rlist->rl_rgrps; x++)
2670 gfs2_holder_uninit(&rlist->rl_ghs[x]);
2671 kfree(rlist->rl_ghs);
2672 rlist->rl_ghs = NULL;
2673 }
2674}
2675