| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2012 - Virtual Open Systems and Columbia University |
| 3 | * Author: Christoffer Dall <c.dall@virtualopensystems.com> |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License, version 2, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, write to the Free Software |
| 16 | * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. |
| 17 | */ |
| 18 | |
| 19 | #include <linux/bug.h> |
| 20 | #include <linux/cpu_pm.h> |
| 21 | #include <linux/errno.h> |
| 22 | #include <linux/err.h> |
| 23 | #include <linux/kvm_host.h> |
| 24 | #include <linux/list.h> |
| 25 | #include <linux/module.h> |
| 26 | #include <linux/vmalloc.h> |
| 27 | #include <linux/fs.h> |
| 28 | #include <linux/mman.h> |
| 29 | #include <linux/sched.h> |
| 30 | #include <linux/kvm.h> |
| 31 | #include <linux/kvm_irqfd.h> |
| 32 | #include <linux/irqbypass.h> |
| 33 | #include <linux/sched/stat.h> |
| 34 | #include <trace/events/kvm.h> |
| 35 | #include <kvm/arm_pmu.h> |
| 36 | #include <kvm/arm_psci.h> |
| 37 | |
| 38 | #define CREATE_TRACE_POINTS |
| 39 | #include "trace.h" |
| 40 | |
| 41 | #include <linux/uaccess.h> |
| 42 | #include <asm/ptrace.h> |
| 43 | #include <asm/mman.h> |
| 44 | #include <asm/tlbflush.h> |
| 45 | #include <asm/cacheflush.h> |
| 46 | #include <asm/cpufeature.h> |
| 47 | #include <asm/virt.h> |
| 48 | #include <asm/kvm_arm.h> |
| 49 | #include <asm/kvm_asm.h> |
| 50 | #include <asm/kvm_mmu.h> |
| 51 | #include <asm/kvm_emulate.h> |
| 52 | #include <asm/kvm_coproc.h> |
| 53 | #include <asm/sections.h> |
| 54 | |
| 55 | #ifdef REQUIRES_VIRT |
| 56 | __asm__(".arch_extension virt"); |
| 57 | #endif |
| 58 | |
| 59 | DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state); |
| 60 | static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page); |
| 61 | |
| 62 | /* Per-CPU variable containing the currently running vcpu. */ |
| 63 | static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu); |
| 64 | |
| 65 | /* The VMID used in the VTTBR */ |
| 66 | static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1); |
| 67 | static u32 kvm_next_vmid; |
| 68 | static unsigned int kvm_vmid_bits __read_mostly; |
| 69 | static DEFINE_SPINLOCK(kvm_vmid_lock); |
| 70 | |
| 71 | static bool vgic_present; |
| 72 | |
| 73 | static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled); |
| 74 | |
| 75 | static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu) |
| 76 | { |
| 77 | __this_cpu_write(kvm_arm_running_vcpu, vcpu); |
| 78 | } |
| 79 | |
| 80 | DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use); |
| 81 | |
| 82 | /** |
| 83 | * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU. |
| 84 | * Must be called from non-preemptible context |
| 85 | */ |
| 86 | struct kvm_vcpu *kvm_arm_get_running_vcpu(void) |
| 87 | { |
| 88 | return __this_cpu_read(kvm_arm_running_vcpu); |
| 89 | } |
| 90 | |
| 91 | /** |
| 92 | * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus. |
| 93 | */ |
| 94 | struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void) |
| 95 | { |
| 96 | return &kvm_arm_running_vcpu; |
| 97 | } |
| 98 | |
| 99 | int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) |
| 100 | { |
| 101 | return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; |
| 102 | } |
| 103 | |
| 104 | int kvm_arch_hardware_setup(void) |
| 105 | { |
| 106 | return 0; |
| 107 | } |
| 108 | |
| 109 | void kvm_arch_check_processor_compat(void *rtn) |
| 110 | { |
| 111 | *(int *)rtn = 0; |
| 112 | } |
| 113 | |
| 114 | |
| 115 | /** |
| 116 | * kvm_arch_init_vm - initializes a VM data structure |
| 117 | * @kvm: pointer to the KVM struct |
| 118 | */ |
| 119 | int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) |
| 120 | { |
| 121 | int ret, cpu; |
| 122 | |
| 123 | if (type) |
| 124 | return -EINVAL; |
| 125 | |
| 126 | kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran)); |
| 127 | if (!kvm->arch.last_vcpu_ran) |
| 128 | return -ENOMEM; |
| 129 | |
| 130 | for_each_possible_cpu(cpu) |
| 131 | *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1; |
| 132 | |
| 133 | ret = kvm_alloc_stage2_pgd(kvm); |
| 134 | if (ret) |
| 135 | goto out_fail_alloc; |
| 136 | |
| 137 | ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP); |
| 138 | if (ret) |
| 139 | goto out_free_stage2_pgd; |
| 140 | |
| 141 | kvm_vgic_early_init(kvm); |
| 142 | |
| 143 | /* Mark the initial VMID generation invalid */ |
| 144 | kvm->arch.vmid_gen = 0; |
| 145 | |
| 146 | /* The maximum number of VCPUs is limited by the host's GIC model */ |
| 147 | kvm->arch.max_vcpus = vgic_present ? |
| 148 | kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS; |
| 149 | |
| 150 | return ret; |
| 151 | out_free_stage2_pgd: |
| 152 | kvm_free_stage2_pgd(kvm); |
| 153 | out_fail_alloc: |
| 154 | free_percpu(kvm->arch.last_vcpu_ran); |
| 155 | kvm->arch.last_vcpu_ran = NULL; |
| 156 | return ret; |
| 157 | } |
| 158 | |
| 159 | bool kvm_arch_has_vcpu_debugfs(void) |
| 160 | { |
| 161 | return false; |
| 162 | } |
| 163 | |
| 164 | int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu) |
| 165 | { |
| 166 | return 0; |
| 167 | } |
| 168 | |
| 169 | vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) |
| 170 | { |
| 171 | return VM_FAULT_SIGBUS; |
| 172 | } |
| 173 | |
| 174 | |
| 175 | /** |
| 176 | * kvm_arch_destroy_vm - destroy the VM data structure |
| 177 | * @kvm: pointer to the KVM struct |
| 178 | */ |
| 179 | void kvm_arch_destroy_vm(struct kvm *kvm) |
| 180 | { |
| 181 | int i; |
| 182 | |
| 183 | kvm_vgic_destroy(kvm); |
| 184 | |
| 185 | free_percpu(kvm->arch.last_vcpu_ran); |
| 186 | kvm->arch.last_vcpu_ran = NULL; |
| 187 | |
| 188 | for (i = 0; i < KVM_MAX_VCPUS; ++i) { |
| 189 | if (kvm->vcpus[i]) { |
| 190 | kvm_arch_vcpu_free(kvm->vcpus[i]); |
| 191 | kvm->vcpus[i] = NULL; |
| 192 | } |
| 193 | } |
| 194 | atomic_set(&kvm->online_vcpus, 0); |
| 195 | } |
| 196 | |
| 197 | int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) |
| 198 | { |
| 199 | int r; |
| 200 | switch (ext) { |
| 201 | case KVM_CAP_IRQCHIP: |
| 202 | r = vgic_present; |
| 203 | break; |
| 204 | case KVM_CAP_IOEVENTFD: |
| 205 | case KVM_CAP_DEVICE_CTRL: |
| 206 | case KVM_CAP_USER_MEMORY: |
| 207 | case KVM_CAP_SYNC_MMU: |
| 208 | case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: |
| 209 | case KVM_CAP_ONE_REG: |
| 210 | case KVM_CAP_ARM_PSCI: |
| 211 | case KVM_CAP_ARM_PSCI_0_2: |
| 212 | case KVM_CAP_READONLY_MEM: |
| 213 | case KVM_CAP_MP_STATE: |
| 214 | case KVM_CAP_IMMEDIATE_EXIT: |
| 215 | r = 1; |
| 216 | break; |
| 217 | case KVM_CAP_ARM_SET_DEVICE_ADDR: |
| 218 | r = 1; |
| 219 | break; |
| 220 | case KVM_CAP_NR_VCPUS: |
| 221 | r = num_online_cpus(); |
| 222 | break; |
| 223 | case KVM_CAP_MAX_VCPUS: |
| 224 | r = KVM_MAX_VCPUS; |
| 225 | break; |
| 226 | case KVM_CAP_MAX_VCPU_ID: |
| 227 | r = KVM_MAX_VCPU_ID; |
| 228 | break; |
| 229 | case KVM_CAP_NR_MEMSLOTS: |
| 230 | r = KVM_USER_MEM_SLOTS; |
| 231 | break; |
| 232 | case KVM_CAP_MSI_DEVID: |
| 233 | if (!kvm) |
| 234 | r = -EINVAL; |
| 235 | else |
| 236 | r = kvm->arch.vgic.msis_require_devid; |
| 237 | break; |
| 238 | case KVM_CAP_ARM_USER_IRQ: |
| 239 | /* |
| 240 | * 1: EL1_VTIMER, EL1_PTIMER, and PMU. |
| 241 | * (bump this number if adding more devices) |
| 242 | */ |
| 243 | r = 1; |
| 244 | break; |
| 245 | default: |
| 246 | r = kvm_arch_dev_ioctl_check_extension(kvm, ext); |
| 247 | break; |
| 248 | } |
| 249 | return r; |
| 250 | } |
| 251 | |
| 252 | long kvm_arch_dev_ioctl(struct file *filp, |
| 253 | unsigned int ioctl, unsigned long arg) |
| 254 | { |
| 255 | return -EINVAL; |
| 256 | } |
| 257 | |
| 258 | struct kvm *kvm_arch_alloc_vm(void) |
| 259 | { |
| 260 | if (!has_vhe()) |
| 261 | return kzalloc(sizeof(struct kvm), GFP_KERNEL); |
| 262 | |
| 263 | return vzalloc(sizeof(struct kvm)); |
| 264 | } |
| 265 | |
| 266 | void kvm_arch_free_vm(struct kvm *kvm) |
| 267 | { |
| 268 | if (!has_vhe()) |
| 269 | kfree(kvm); |
| 270 | else |
| 271 | vfree(kvm); |
| 272 | } |
| 273 | |
| 274 | struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) |
| 275 | { |
| 276 | int err; |
| 277 | struct kvm_vcpu *vcpu; |
| 278 | |
| 279 | if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) { |
| 280 | err = -EBUSY; |
| 281 | goto out; |
| 282 | } |
| 283 | |
| 284 | if (id >= kvm->arch.max_vcpus) { |
| 285 | err = -EINVAL; |
| 286 | goto out; |
| 287 | } |
| 288 | |
| 289 | vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); |
| 290 | if (!vcpu) { |
| 291 | err = -ENOMEM; |
| 292 | goto out; |
| 293 | } |
| 294 | |
| 295 | err = kvm_vcpu_init(vcpu, kvm, id); |
| 296 | if (err) |
| 297 | goto free_vcpu; |
| 298 | |
| 299 | err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP); |
| 300 | if (err) |
| 301 | goto vcpu_uninit; |
| 302 | |
| 303 | return vcpu; |
| 304 | vcpu_uninit: |
| 305 | kvm_vcpu_uninit(vcpu); |
| 306 | free_vcpu: |
| 307 | kmem_cache_free(kvm_vcpu_cache, vcpu); |
| 308 | out: |
| 309 | return ERR_PTR(err); |
| 310 | } |
| 311 | |
| 312 | void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) |
| 313 | { |
| 314 | } |
| 315 | |
| 316 | void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) |
| 317 | { |
| 318 | if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm))) |
| 319 | static_branch_dec(&userspace_irqchip_in_use); |
| 320 | |
| 321 | kvm_mmu_free_memory_caches(vcpu); |
| 322 | kvm_timer_vcpu_terminate(vcpu); |
| 323 | kvm_pmu_vcpu_destroy(vcpu); |
| 324 | kvm_vcpu_uninit(vcpu); |
| 325 | kmem_cache_free(kvm_vcpu_cache, vcpu); |
| 326 | } |
| 327 | |
| 328 | void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
| 329 | { |
| 330 | kvm_arch_vcpu_free(vcpu); |
| 331 | } |
| 332 | |
| 333 | int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu) |
| 334 | { |
| 335 | return kvm_timer_is_pending(vcpu); |
| 336 | } |
| 337 | |
| 338 | void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) |
| 339 | { |
| 340 | kvm_timer_schedule(vcpu); |
| 341 | /* |
| 342 | * If we're about to block (most likely because we've just hit a |
| 343 | * WFI), we need to sync back the state of the GIC CPU interface |
| 344 | * so that we have the lastest PMR and group enables. This ensures |
| 345 | * that kvm_arch_vcpu_runnable has up-to-date data to decide |
| 346 | * whether we have pending interrupts. |
| 347 | */ |
| 348 | preempt_disable(); |
| 349 | kvm_vgic_vmcr_sync(vcpu); |
| 350 | preempt_enable(); |
| 351 | |
| 352 | kvm_vgic_v4_enable_doorbell(vcpu); |
| 353 | } |
| 354 | |
| 355 | void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) |
| 356 | { |
| 357 | kvm_timer_unschedule(vcpu); |
| 358 | kvm_vgic_v4_disable_doorbell(vcpu); |
| 359 | } |
| 360 | |
| 361 | int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) |
| 362 | { |
| 363 | /* Force users to call KVM_ARM_VCPU_INIT */ |
| 364 | vcpu->arch.target = -1; |
| 365 | bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); |
| 366 | |
| 367 | /* Set up the timer */ |
| 368 | kvm_timer_vcpu_init(vcpu); |
| 369 | |
| 370 | kvm_arm_reset_debug_ptr(vcpu); |
| 371 | |
| 372 | return kvm_vgic_vcpu_init(vcpu); |
| 373 | } |
| 374 | |
| 375 | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| 376 | { |
| 377 | int *last_ran; |
| 378 | |
| 379 | last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran); |
| 380 | |
| 381 | /* |
| 382 | * We might get preempted before the vCPU actually runs, but |
| 383 | * over-invalidation doesn't affect correctness. |
| 384 | */ |
| 385 | if (*last_ran != vcpu->vcpu_id) { |
| 386 | kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu); |
| 387 | *last_ran = vcpu->vcpu_id; |
| 388 | } |
| 389 | |
| 390 | vcpu->cpu = cpu; |
| 391 | vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state); |
| 392 | |
| 393 | kvm_arm_set_running_vcpu(vcpu); |
| 394 | kvm_vgic_load(vcpu); |
| 395 | kvm_timer_vcpu_load(vcpu); |
| 396 | kvm_vcpu_load_sysregs(vcpu); |
| 397 | kvm_arch_vcpu_load_fp(vcpu); |
| 398 | |
| 399 | if (single_task_running()) |
| 400 | vcpu_clear_wfe_traps(vcpu); |
| 401 | else |
| 402 | vcpu_set_wfe_traps(vcpu); |
| 403 | } |
| 404 | |
| 405 | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
| 406 | { |
| 407 | kvm_arch_vcpu_put_fp(vcpu); |
| 408 | kvm_vcpu_put_sysregs(vcpu); |
| 409 | kvm_timer_vcpu_put(vcpu); |
| 410 | kvm_vgic_put(vcpu); |
| 411 | |
| 412 | vcpu->cpu = -1; |
| 413 | |
| 414 | kvm_arm_set_running_vcpu(NULL); |
| 415 | } |
| 416 | |
| 417 | static void vcpu_power_off(struct kvm_vcpu *vcpu) |
| 418 | { |
| 419 | vcpu->arch.power_off = true; |
| 420 | kvm_make_request(KVM_REQ_SLEEP, vcpu); |
| 421 | kvm_vcpu_kick(vcpu); |
| 422 | } |
| 423 | |
| 424 | int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
| 425 | struct kvm_mp_state *mp_state) |
| 426 | { |
| 427 | if (vcpu->arch.power_off) |
| 428 | mp_state->mp_state = KVM_MP_STATE_STOPPED; |
| 429 | else |
| 430 | mp_state->mp_state = KVM_MP_STATE_RUNNABLE; |
| 431 | |
| 432 | return 0; |
| 433 | } |
| 434 | |
| 435 | int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, |
| 436 | struct kvm_mp_state *mp_state) |
| 437 | { |
| 438 | int ret = 0; |
| 439 | |
| 440 | switch (mp_state->mp_state) { |
| 441 | case KVM_MP_STATE_RUNNABLE: |
| 442 | vcpu->arch.power_off = false; |
| 443 | break; |
| 444 | case KVM_MP_STATE_STOPPED: |
| 445 | vcpu_power_off(vcpu); |
| 446 | break; |
| 447 | default: |
| 448 | ret = -EINVAL; |
| 449 | } |
| 450 | |
| 451 | return ret; |
| 452 | } |
| 453 | |
| 454 | /** |
| 455 | * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled |
| 456 | * @v: The VCPU pointer |
| 457 | * |
| 458 | * If the guest CPU is not waiting for interrupts or an interrupt line is |
| 459 | * asserted, the CPU is by definition runnable. |
| 460 | */ |
| 461 | int kvm_arch_vcpu_runnable(struct kvm_vcpu *v) |
| 462 | { |
| 463 | bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF); |
| 464 | return ((irq_lines || kvm_vgic_vcpu_pending_irq(v)) |
| 465 | && !v->arch.power_off && !v->arch.pause); |
| 466 | } |
| 467 | |
| 468 | bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) |
| 469 | { |
| 470 | return vcpu_mode_priv(vcpu); |
| 471 | } |
| 472 | |
| 473 | /* Just ensure a guest exit from a particular CPU */ |
| 474 | static void exit_vm_noop(void *info) |
| 475 | { |
| 476 | } |
| 477 | |
| 478 | void force_vm_exit(const cpumask_t *mask) |
| 479 | { |
| 480 | preempt_disable(); |
| 481 | smp_call_function_many(mask, exit_vm_noop, NULL, true); |
| 482 | preempt_enable(); |
| 483 | } |
| 484 | |
| 485 | /** |
| 486 | * need_new_vmid_gen - check that the VMID is still valid |
| 487 | * @kvm: The VM's VMID to check |
| 488 | * |
| 489 | * return true if there is a new generation of VMIDs being used |
| 490 | * |
| 491 | * The hardware supports only 256 values with the value zero reserved for the |
| 492 | * host, so we check if an assigned value belongs to a previous generation, |
| 493 | * which which requires us to assign a new value. If we're the first to use a |
| 494 | * VMID for the new generation, we must flush necessary caches and TLBs on all |
| 495 | * CPUs. |
| 496 | */ |
| 497 | static bool need_new_vmid_gen(struct kvm *kvm) |
| 498 | { |
| 499 | u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen); |
| 500 | smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */ |
| 501 | return unlikely(READ_ONCE(kvm->arch.vmid_gen) != current_vmid_gen); |
| 502 | } |
| 503 | |
| 504 | /** |
| 505 | * update_vttbr - Update the VTTBR with a valid VMID before the guest runs |
| 506 | * @kvm The guest that we are about to run |
| 507 | * |
| 508 | * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the |
| 509 | * VM has a valid VMID, otherwise assigns a new one and flushes corresponding |
| 510 | * caches and TLBs. |
| 511 | */ |
| 512 | static void update_vttbr(struct kvm *kvm) |
| 513 | { |
| 514 | phys_addr_t pgd_phys; |
| 515 | u64 vmid; |
| 516 | |
| 517 | if (!need_new_vmid_gen(kvm)) |
| 518 | return; |
| 519 | |
| 520 | spin_lock(&kvm_vmid_lock); |
| 521 | |
| 522 | /* |
| 523 | * We need to re-check the vmid_gen here to ensure that if another vcpu |
| 524 | * already allocated a valid vmid for this vm, then this vcpu should |
| 525 | * use the same vmid. |
| 526 | */ |
| 527 | if (!need_new_vmid_gen(kvm)) { |
| 528 | spin_unlock(&kvm_vmid_lock); |
| 529 | return; |
| 530 | } |
| 531 | |
| 532 | /* First user of a new VMID generation? */ |
| 533 | if (unlikely(kvm_next_vmid == 0)) { |
| 534 | atomic64_inc(&kvm_vmid_gen); |
| 535 | kvm_next_vmid = 1; |
| 536 | |
| 537 | /* |
| 538 | * On SMP we know no other CPUs can use this CPU's or each |
| 539 | * other's VMID after force_vm_exit returns since the |
| 540 | * kvm_vmid_lock blocks them from reentry to the guest. |
| 541 | */ |
| 542 | force_vm_exit(cpu_all_mask); |
| 543 | /* |
| 544 | * Now broadcast TLB + ICACHE invalidation over the inner |
| 545 | * shareable domain to make sure all data structures are |
| 546 | * clean. |
| 547 | */ |
| 548 | kvm_call_hyp(__kvm_flush_vm_context); |
| 549 | } |
| 550 | |
| 551 | kvm->arch.vmid = kvm_next_vmid; |
| 552 | kvm_next_vmid++; |
| 553 | kvm_next_vmid &= (1 << kvm_vmid_bits) - 1; |
| 554 | |
| 555 | /* update vttbr to be used with the new vmid */ |
| 556 | pgd_phys = virt_to_phys(kvm->arch.pgd); |
| 557 | BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK); |
| 558 | vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits); |
| 559 | kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid; |
| 560 | |
| 561 | smp_wmb(); |
| 562 | WRITE_ONCE(kvm->arch.vmid_gen, atomic64_read(&kvm_vmid_gen)); |
| 563 | |
| 564 | spin_unlock(&kvm_vmid_lock); |
| 565 | } |
| 566 | |
| 567 | static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu) |
| 568 | { |
| 569 | struct kvm *kvm = vcpu->kvm; |
| 570 | int ret = 0; |
| 571 | |
| 572 | if (likely(vcpu->arch.has_run_once)) |
| 573 | return 0; |
| 574 | |
| 575 | vcpu->arch.has_run_once = true; |
| 576 | |
| 577 | if (likely(irqchip_in_kernel(kvm))) { |
| 578 | /* |
| 579 | * Map the VGIC hardware resources before running a vcpu the |
| 580 | * first time on this VM. |
| 581 | */ |
| 582 | if (unlikely(!vgic_ready(kvm))) { |
| 583 | ret = kvm_vgic_map_resources(kvm); |
| 584 | if (ret) |
| 585 | return ret; |
| 586 | } |
| 587 | } else { |
| 588 | /* |
| 589 | * Tell the rest of the code that there are userspace irqchip |
| 590 | * VMs in the wild. |
| 591 | */ |
| 592 | static_branch_inc(&userspace_irqchip_in_use); |
| 593 | } |
| 594 | |
| 595 | ret = kvm_timer_enable(vcpu); |
| 596 | if (ret) |
| 597 | return ret; |
| 598 | |
| 599 | ret = kvm_arm_pmu_v3_enable(vcpu); |
| 600 | |
| 601 | return ret; |
| 602 | } |
| 603 | |
| 604 | bool kvm_arch_intc_initialized(struct kvm *kvm) |
| 605 | { |
| 606 | return vgic_initialized(kvm); |
| 607 | } |
| 608 | |
| 609 | void kvm_arm_halt_guest(struct kvm *kvm) |
| 610 | { |
| 611 | int i; |
| 612 | struct kvm_vcpu *vcpu; |
| 613 | |
| 614 | kvm_for_each_vcpu(i, vcpu, kvm) |
| 615 | vcpu->arch.pause = true; |
| 616 | kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP); |
| 617 | } |
| 618 | |
| 619 | void kvm_arm_resume_guest(struct kvm *kvm) |
| 620 | { |
| 621 | int i; |
| 622 | struct kvm_vcpu *vcpu; |
| 623 | |
| 624 | kvm_for_each_vcpu(i, vcpu, kvm) { |
| 625 | vcpu->arch.pause = false; |
| 626 | swake_up_one(kvm_arch_vcpu_wq(vcpu)); |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | static void vcpu_req_sleep(struct kvm_vcpu *vcpu) |
| 631 | { |
| 632 | struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu); |
| 633 | |
| 634 | swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) && |
| 635 | (!vcpu->arch.pause))); |
| 636 | |
| 637 | if (vcpu->arch.power_off || vcpu->arch.pause) { |
| 638 | /* Awaken to handle a signal, request we sleep again later. */ |
| 639 | kvm_make_request(KVM_REQ_SLEEP, vcpu); |
| 640 | } |
| 641 | |
| 642 | /* |
| 643 | * Make sure we will observe a potential reset request if we've |
| 644 | * observed a change to the power state. Pairs with the smp_wmb() in |
| 645 | * kvm_psci_vcpu_on(). |
| 646 | */ |
| 647 | smp_rmb(); |
| 648 | } |
| 649 | |
| 650 | static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu) |
| 651 | { |
| 652 | return vcpu->arch.target >= 0; |
| 653 | } |
| 654 | |
| 655 | static void check_vcpu_requests(struct kvm_vcpu *vcpu) |
| 656 | { |
| 657 | if (kvm_request_pending(vcpu)) { |
| 658 | if (kvm_check_request(KVM_REQ_SLEEP, vcpu)) |
| 659 | vcpu_req_sleep(vcpu); |
| 660 | |
| 661 | if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu)) |
| 662 | kvm_reset_vcpu(vcpu); |
| 663 | |
| 664 | /* |
| 665 | * Clear IRQ_PENDING requests that were made to guarantee |
| 666 | * that a VCPU sees new virtual interrupts. |
| 667 | */ |
| 668 | kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu); |
| 669 | } |
| 670 | } |
| 671 | |
| 672 | /** |
| 673 | * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code |
| 674 | * @vcpu: The VCPU pointer |
| 675 | * @run: The kvm_run structure pointer used for userspace state exchange |
| 676 | * |
| 677 | * This function is called through the VCPU_RUN ioctl called from user space. It |
| 678 | * will execute VM code in a loop until the time slice for the process is used |
| 679 | * or some emulation is needed from user space in which case the function will |
| 680 | * return with return value 0 and with the kvm_run structure filled in with the |
| 681 | * required data for the requested emulation. |
| 682 | */ |
| 683 | int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| 684 | { |
| 685 | int ret; |
| 686 | |
| 687 | if (unlikely(!kvm_vcpu_initialized(vcpu))) |
| 688 | return -ENOEXEC; |
| 689 | |
| 690 | ret = kvm_vcpu_first_run_init(vcpu); |
| 691 | if (ret) |
| 692 | return ret; |
| 693 | |
| 694 | if (run->exit_reason == KVM_EXIT_MMIO) { |
| 695 | ret = kvm_handle_mmio_return(vcpu, vcpu->run); |
| 696 | if (ret) |
| 697 | return ret; |
| 698 | if (kvm_arm_handle_step_debug(vcpu, vcpu->run)) |
| 699 | return 0; |
| 700 | } |
| 701 | |
| 702 | if (run->immediate_exit) |
| 703 | return -EINTR; |
| 704 | |
| 705 | vcpu_load(vcpu); |
| 706 | |
| 707 | kvm_sigset_activate(vcpu); |
| 708 | |
| 709 | ret = 1; |
| 710 | run->exit_reason = KVM_EXIT_UNKNOWN; |
| 711 | while (ret > 0) { |
| 712 | /* |
| 713 | * Check conditions before entering the guest |
| 714 | */ |
| 715 | cond_resched(); |
| 716 | |
| 717 | update_vttbr(vcpu->kvm); |
| 718 | |
| 719 | check_vcpu_requests(vcpu); |
| 720 | |
| 721 | /* |
| 722 | * Preparing the interrupts to be injected also |
| 723 | * involves poking the GIC, which must be done in a |
| 724 | * non-preemptible context. |
| 725 | */ |
| 726 | preempt_disable(); |
| 727 | |
| 728 | kvm_pmu_flush_hwstate(vcpu); |
| 729 | |
| 730 | local_irq_disable(); |
| 731 | |
| 732 | kvm_vgic_flush_hwstate(vcpu); |
| 733 | |
| 734 | /* |
| 735 | * Exit if we have a signal pending so that we can deliver the |
| 736 | * signal to user space. |
| 737 | */ |
| 738 | if (signal_pending(current)) { |
| 739 | ret = -EINTR; |
| 740 | run->exit_reason = KVM_EXIT_INTR; |
| 741 | } |
| 742 | |
| 743 | /* |
| 744 | * If we're using a userspace irqchip, then check if we need |
| 745 | * to tell a userspace irqchip about timer or PMU level |
| 746 | * changes and if so, exit to userspace (the actual level |
| 747 | * state gets updated in kvm_timer_update_run and |
| 748 | * kvm_pmu_update_run below). |
| 749 | */ |
| 750 | if (static_branch_unlikely(&userspace_irqchip_in_use)) { |
| 751 | if (kvm_timer_should_notify_user(vcpu) || |
| 752 | kvm_pmu_should_notify_user(vcpu)) { |
| 753 | ret = -EINTR; |
| 754 | run->exit_reason = KVM_EXIT_INTR; |
| 755 | } |
| 756 | } |
| 757 | |
| 758 | /* |
| 759 | * Ensure we set mode to IN_GUEST_MODE after we disable |
| 760 | * interrupts and before the final VCPU requests check. |
| 761 | * See the comment in kvm_vcpu_exiting_guest_mode() and |
| 762 | * Documentation/virtual/kvm/vcpu-requests.rst |
| 763 | */ |
| 764 | smp_store_mb(vcpu->mode, IN_GUEST_MODE); |
| 765 | |
| 766 | if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) || |
| 767 | kvm_request_pending(vcpu)) { |
| 768 | vcpu->mode = OUTSIDE_GUEST_MODE; |
| 769 | isb(); /* Ensure work in x_flush_hwstate is committed */ |
| 770 | kvm_pmu_sync_hwstate(vcpu); |
| 771 | if (static_branch_unlikely(&userspace_irqchip_in_use)) |
| 772 | kvm_timer_sync_hwstate(vcpu); |
| 773 | kvm_vgic_sync_hwstate(vcpu); |
| 774 | local_irq_enable(); |
| 775 | preempt_enable(); |
| 776 | continue; |
| 777 | } |
| 778 | |
| 779 | kvm_arm_setup_debug(vcpu); |
| 780 | |
| 781 | /************************************************************** |
| 782 | * Enter the guest |
| 783 | */ |
| 784 | trace_kvm_entry(*vcpu_pc(vcpu)); |
| 785 | guest_enter_irqoff(); |
| 786 | |
| 787 | if (has_vhe()) { |
| 788 | kvm_arm_vhe_guest_enter(); |
| 789 | ret = kvm_vcpu_run_vhe(vcpu); |
| 790 | kvm_arm_vhe_guest_exit(); |
| 791 | } else { |
| 792 | ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu); |
| 793 | } |
| 794 | |
| 795 | vcpu->mode = OUTSIDE_GUEST_MODE; |
| 796 | vcpu->stat.exits++; |
| 797 | /* |
| 798 | * Back from guest |
| 799 | *************************************************************/ |
| 800 | |
| 801 | kvm_arm_clear_debug(vcpu); |
| 802 | |
| 803 | /* |
| 804 | * We must sync the PMU state before the vgic state so |
| 805 | * that the vgic can properly sample the updated state of the |
| 806 | * interrupt line. |
| 807 | */ |
| 808 | kvm_pmu_sync_hwstate(vcpu); |
| 809 | |
| 810 | /* |
| 811 | * Sync the vgic state before syncing the timer state because |
| 812 | * the timer code needs to know if the virtual timer |
| 813 | * interrupts are active. |
| 814 | */ |
| 815 | kvm_vgic_sync_hwstate(vcpu); |
| 816 | |
| 817 | /* |
| 818 | * Sync the timer hardware state before enabling interrupts as |
| 819 | * we don't want vtimer interrupts to race with syncing the |
| 820 | * timer virtual interrupt state. |
| 821 | */ |
| 822 | if (static_branch_unlikely(&userspace_irqchip_in_use)) |
| 823 | kvm_timer_sync_hwstate(vcpu); |
| 824 | |
| 825 | kvm_arch_vcpu_ctxsync_fp(vcpu); |
| 826 | |
| 827 | /* |
| 828 | * We may have taken a host interrupt in HYP mode (ie |
| 829 | * while executing the guest). This interrupt is still |
| 830 | * pending, as we haven't serviced it yet! |
| 831 | * |
| 832 | * We're now back in SVC mode, with interrupts |
| 833 | * disabled. Enabling the interrupts now will have |
| 834 | * the effect of taking the interrupt again, in SVC |
| 835 | * mode this time. |
| 836 | */ |
| 837 | local_irq_enable(); |
| 838 | |
| 839 | /* |
| 840 | * We do local_irq_enable() before calling guest_exit() so |
| 841 | * that if a timer interrupt hits while running the guest we |
| 842 | * account that tick as being spent in the guest. We enable |
| 843 | * preemption after calling guest_exit() so that if we get |
| 844 | * preempted we make sure ticks after that is not counted as |
| 845 | * guest time. |
| 846 | */ |
| 847 | guest_exit(); |
| 848 | trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu)); |
| 849 | |
| 850 | /* Exit types that need handling before we can be preempted */ |
| 851 | handle_exit_early(vcpu, run, ret); |
| 852 | |
| 853 | preempt_enable(); |
| 854 | |
| 855 | ret = handle_exit(vcpu, run, ret); |
| 856 | } |
| 857 | |
| 858 | /* Tell userspace about in-kernel device output levels */ |
| 859 | if (unlikely(!irqchip_in_kernel(vcpu->kvm))) { |
| 860 | kvm_timer_update_run(vcpu); |
| 861 | kvm_pmu_update_run(vcpu); |
| 862 | } |
| 863 | |
| 864 | kvm_sigset_deactivate(vcpu); |
| 865 | |
| 866 | vcpu_put(vcpu); |
| 867 | return ret; |
| 868 | } |
| 869 | |
| 870 | static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level) |
| 871 | { |
| 872 | int bit_index; |
| 873 | bool set; |
| 874 | unsigned long *hcr; |
| 875 | |
| 876 | if (number == KVM_ARM_IRQ_CPU_IRQ) |
| 877 | bit_index = __ffs(HCR_VI); |
| 878 | else /* KVM_ARM_IRQ_CPU_FIQ */ |
| 879 | bit_index = __ffs(HCR_VF); |
| 880 | |
| 881 | hcr = vcpu_hcr(vcpu); |
| 882 | if (level) |
| 883 | set = test_and_set_bit(bit_index, hcr); |
| 884 | else |
| 885 | set = test_and_clear_bit(bit_index, hcr); |
| 886 | |
| 887 | /* |
| 888 | * If we didn't change anything, no need to wake up or kick other CPUs |
| 889 | */ |
| 890 | if (set == level) |
| 891 | return 0; |
| 892 | |
| 893 | /* |
| 894 | * The vcpu irq_lines field was updated, wake up sleeping VCPUs and |
| 895 | * trigger a world-switch round on the running physical CPU to set the |
| 896 | * virtual IRQ/FIQ fields in the HCR appropriately. |
| 897 | */ |
| 898 | kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); |
| 899 | kvm_vcpu_kick(vcpu); |
| 900 | |
| 901 | return 0; |
| 902 | } |
| 903 | |
| 904 | int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, |
| 905 | bool line_status) |
| 906 | { |
| 907 | u32 irq = irq_level->irq; |
| 908 | unsigned int irq_type, vcpu_idx, irq_num; |
| 909 | int nrcpus = atomic_read(&kvm->online_vcpus); |
| 910 | struct kvm_vcpu *vcpu = NULL; |
| 911 | bool level = irq_level->level; |
| 912 | |
| 913 | irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK; |
| 914 | vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK; |
| 915 | irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK; |
| 916 | |
| 917 | trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level); |
| 918 | |
| 919 | switch (irq_type) { |
| 920 | case KVM_ARM_IRQ_TYPE_CPU: |
| 921 | if (irqchip_in_kernel(kvm)) |
| 922 | return -ENXIO; |
| 923 | |
| 924 | if (vcpu_idx >= nrcpus) |
| 925 | return -EINVAL; |
| 926 | |
| 927 | vcpu = kvm_get_vcpu(kvm, vcpu_idx); |
| 928 | if (!vcpu) |
| 929 | return -EINVAL; |
| 930 | |
| 931 | if (irq_num > KVM_ARM_IRQ_CPU_FIQ) |
| 932 | return -EINVAL; |
| 933 | |
| 934 | return vcpu_interrupt_line(vcpu, irq_num, level); |
| 935 | case KVM_ARM_IRQ_TYPE_PPI: |
| 936 | if (!irqchip_in_kernel(kvm)) |
| 937 | return -ENXIO; |
| 938 | |
| 939 | if (vcpu_idx >= nrcpus) |
| 940 | return -EINVAL; |
| 941 | |
| 942 | vcpu = kvm_get_vcpu(kvm, vcpu_idx); |
| 943 | if (!vcpu) |
| 944 | return -EINVAL; |
| 945 | |
| 946 | if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS) |
| 947 | return -EINVAL; |
| 948 | |
| 949 | return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL); |
| 950 | case KVM_ARM_IRQ_TYPE_SPI: |
| 951 | if (!irqchip_in_kernel(kvm)) |
| 952 | return -ENXIO; |
| 953 | |
| 954 | if (irq_num < VGIC_NR_PRIVATE_IRQS) |
| 955 | return -EINVAL; |
| 956 | |
| 957 | return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL); |
| 958 | } |
| 959 | |
| 960 | return -EINVAL; |
| 961 | } |
| 962 | |
| 963 | static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu, |
| 964 | const struct kvm_vcpu_init *init) |
| 965 | { |
| 966 | unsigned int i, ret; |
| 967 | int phys_target = kvm_target_cpu(); |
| 968 | |
| 969 | if (init->target != phys_target) |
| 970 | return -EINVAL; |
| 971 | |
| 972 | /* |
| 973 | * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must |
| 974 | * use the same target. |
| 975 | */ |
| 976 | if (vcpu->arch.target != -1 && vcpu->arch.target != init->target) |
| 977 | return -EINVAL; |
| 978 | |
| 979 | /* -ENOENT for unknown features, -EINVAL for invalid combinations. */ |
| 980 | for (i = 0; i < sizeof(init->features) * 8; i++) { |
| 981 | bool set = (init->features[i / 32] & (1 << (i % 32))); |
| 982 | |
| 983 | if (set && i >= KVM_VCPU_MAX_FEATURES) |
| 984 | return -ENOENT; |
| 985 | |
| 986 | /* |
| 987 | * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must |
| 988 | * use the same feature set. |
| 989 | */ |
| 990 | if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES && |
| 991 | test_bit(i, vcpu->arch.features) != set) |
| 992 | return -EINVAL; |
| 993 | |
| 994 | if (set) |
| 995 | set_bit(i, vcpu->arch.features); |
| 996 | } |
| 997 | |
| 998 | vcpu->arch.target = phys_target; |
| 999 | |
| 1000 | /* Now we know what it is, we can reset it. */ |
| 1001 | ret = kvm_reset_vcpu(vcpu); |
| 1002 | if (ret) { |
| 1003 | vcpu->arch.target = -1; |
| 1004 | bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES); |
| 1005 | } |
| 1006 | |
| 1007 | return ret; |
| 1008 | } |
| 1009 | |
| 1010 | static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu, |
| 1011 | struct kvm_vcpu_init *init) |
| 1012 | { |
| 1013 | int ret; |
| 1014 | |
| 1015 | ret = kvm_vcpu_set_target(vcpu, init); |
| 1016 | if (ret) |
| 1017 | return ret; |
| 1018 | |
| 1019 | /* |
| 1020 | * Ensure a rebooted VM will fault in RAM pages and detect if the |
| 1021 | * guest MMU is turned off and flush the caches as needed. |
| 1022 | */ |
| 1023 | if (vcpu->arch.has_run_once) |
| 1024 | stage2_unmap_vm(vcpu->kvm); |
| 1025 | |
| 1026 | vcpu_reset_hcr(vcpu); |
| 1027 | |
| 1028 | /* |
| 1029 | * Handle the "start in power-off" case. |
| 1030 | */ |
| 1031 | if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) |
| 1032 | vcpu_power_off(vcpu); |
| 1033 | else |
| 1034 | vcpu->arch.power_off = false; |
| 1035 | |
| 1036 | return 0; |
| 1037 | } |
| 1038 | |
| 1039 | static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu, |
| 1040 | struct kvm_device_attr *attr) |
| 1041 | { |
| 1042 | int ret = -ENXIO; |
| 1043 | |
| 1044 | switch (attr->group) { |
| 1045 | default: |
| 1046 | ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr); |
| 1047 | break; |
| 1048 | } |
| 1049 | |
| 1050 | return ret; |
| 1051 | } |
| 1052 | |
| 1053 | static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu, |
| 1054 | struct kvm_device_attr *attr) |
| 1055 | { |
| 1056 | int ret = -ENXIO; |
| 1057 | |
| 1058 | switch (attr->group) { |
| 1059 | default: |
| 1060 | ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr); |
| 1061 | break; |
| 1062 | } |
| 1063 | |
| 1064 | return ret; |
| 1065 | } |
| 1066 | |
| 1067 | static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu, |
| 1068 | struct kvm_device_attr *attr) |
| 1069 | { |
| 1070 | int ret = -ENXIO; |
| 1071 | |
| 1072 | switch (attr->group) { |
| 1073 | default: |
| 1074 | ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr); |
| 1075 | break; |
| 1076 | } |
| 1077 | |
| 1078 | return ret; |
| 1079 | } |
| 1080 | |
| 1081 | static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu, |
| 1082 | struct kvm_vcpu_events *events) |
| 1083 | { |
| 1084 | memset(events, 0, sizeof(*events)); |
| 1085 | |
| 1086 | return __kvm_arm_vcpu_get_events(vcpu, events); |
| 1087 | } |
| 1088 | |
| 1089 | static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu, |
| 1090 | struct kvm_vcpu_events *events) |
| 1091 | { |
| 1092 | int i; |
| 1093 | |
| 1094 | /* check whether the reserved field is zero */ |
| 1095 | for (i = 0; i < ARRAY_SIZE(events->reserved); i++) |
| 1096 | if (events->reserved[i]) |
| 1097 | return -EINVAL; |
| 1098 | |
| 1099 | /* check whether the pad field is zero */ |
| 1100 | for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++) |
| 1101 | if (events->exception.pad[i]) |
| 1102 | return -EINVAL; |
| 1103 | |
| 1104 | return __kvm_arm_vcpu_set_events(vcpu, events); |
| 1105 | } |
| 1106 | |
| 1107 | long kvm_arch_vcpu_ioctl(struct file *filp, |
| 1108 | unsigned int ioctl, unsigned long arg) |
| 1109 | { |
| 1110 | struct kvm_vcpu *vcpu = filp->private_data; |
| 1111 | void __user *argp = (void __user *)arg; |
| 1112 | struct kvm_device_attr attr; |
| 1113 | long r; |
| 1114 | |
| 1115 | switch (ioctl) { |
| 1116 | case KVM_ARM_VCPU_INIT: { |
| 1117 | struct kvm_vcpu_init init; |
| 1118 | |
| 1119 | r = -EFAULT; |
| 1120 | if (copy_from_user(&init, argp, sizeof(init))) |
| 1121 | break; |
| 1122 | |
| 1123 | r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init); |
| 1124 | break; |
| 1125 | } |
| 1126 | case KVM_SET_ONE_REG: |
| 1127 | case KVM_GET_ONE_REG: { |
| 1128 | struct kvm_one_reg reg; |
| 1129 | |
| 1130 | r = -ENOEXEC; |
| 1131 | if (unlikely(!kvm_vcpu_initialized(vcpu))) |
| 1132 | break; |
| 1133 | |
| 1134 | r = -EFAULT; |
| 1135 | if (copy_from_user(®, argp, sizeof(reg))) |
| 1136 | break; |
| 1137 | |
| 1138 | if (ioctl == KVM_SET_ONE_REG) |
| 1139 | r = kvm_arm_set_reg(vcpu, ®); |
| 1140 | else |
| 1141 | r = kvm_arm_get_reg(vcpu, ®); |
| 1142 | break; |
| 1143 | } |
| 1144 | case KVM_GET_REG_LIST: { |
| 1145 | struct kvm_reg_list __user *user_list = argp; |
| 1146 | struct kvm_reg_list reg_list; |
| 1147 | unsigned n; |
| 1148 | |
| 1149 | r = -ENOEXEC; |
| 1150 | if (unlikely(!kvm_vcpu_initialized(vcpu))) |
| 1151 | break; |
| 1152 | |
| 1153 | r = -EFAULT; |
| 1154 | if (copy_from_user(®_list, user_list, sizeof(reg_list))) |
| 1155 | break; |
| 1156 | n = reg_list.n; |
| 1157 | reg_list.n = kvm_arm_num_regs(vcpu); |
| 1158 | if (copy_to_user(user_list, ®_list, sizeof(reg_list))) |
| 1159 | break; |
| 1160 | r = -E2BIG; |
| 1161 | if (n < reg_list.n) |
| 1162 | break; |
| 1163 | r = kvm_arm_copy_reg_indices(vcpu, user_list->reg); |
| 1164 | break; |
| 1165 | } |
| 1166 | case KVM_SET_DEVICE_ATTR: { |
| 1167 | r = -EFAULT; |
| 1168 | if (copy_from_user(&attr, argp, sizeof(attr))) |
| 1169 | break; |
| 1170 | r = kvm_arm_vcpu_set_attr(vcpu, &attr); |
| 1171 | break; |
| 1172 | } |
| 1173 | case KVM_GET_DEVICE_ATTR: { |
| 1174 | r = -EFAULT; |
| 1175 | if (copy_from_user(&attr, argp, sizeof(attr))) |
| 1176 | break; |
| 1177 | r = kvm_arm_vcpu_get_attr(vcpu, &attr); |
| 1178 | break; |
| 1179 | } |
| 1180 | case KVM_HAS_DEVICE_ATTR: { |
| 1181 | r = -EFAULT; |
| 1182 | if (copy_from_user(&attr, argp, sizeof(attr))) |
| 1183 | break; |
| 1184 | r = kvm_arm_vcpu_has_attr(vcpu, &attr); |
| 1185 | break; |
| 1186 | } |
| 1187 | case KVM_GET_VCPU_EVENTS: { |
| 1188 | struct kvm_vcpu_events events; |
| 1189 | |
| 1190 | if (kvm_arm_vcpu_get_events(vcpu, &events)) |
| 1191 | return -EINVAL; |
| 1192 | |
| 1193 | if (copy_to_user(argp, &events, sizeof(events))) |
| 1194 | return -EFAULT; |
| 1195 | |
| 1196 | return 0; |
| 1197 | } |
| 1198 | case KVM_SET_VCPU_EVENTS: { |
| 1199 | struct kvm_vcpu_events events; |
| 1200 | |
| 1201 | if (copy_from_user(&events, argp, sizeof(events))) |
| 1202 | return -EFAULT; |
| 1203 | |
| 1204 | return kvm_arm_vcpu_set_events(vcpu, &events); |
| 1205 | } |
| 1206 | default: |
| 1207 | r = -EINVAL; |
| 1208 | } |
| 1209 | |
| 1210 | return r; |
| 1211 | } |
| 1212 | |
| 1213 | /** |
| 1214 | * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot |
| 1215 | * @kvm: kvm instance |
| 1216 | * @log: slot id and address to which we copy the log |
| 1217 | * |
| 1218 | * Steps 1-4 below provide general overview of dirty page logging. See |
| 1219 | * kvm_get_dirty_log_protect() function description for additional details. |
| 1220 | * |
| 1221 | * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we |
| 1222 | * always flush the TLB (step 4) even if previous step failed and the dirty |
| 1223 | * bitmap may be corrupt. Regardless of previous outcome the KVM logging API |
| 1224 | * does not preclude user space subsequent dirty log read. Flushing TLB ensures |
| 1225 | * writes will be marked dirty for next log read. |
| 1226 | * |
| 1227 | * 1. Take a snapshot of the bit and clear it if needed. |
| 1228 | * 2. Write protect the corresponding page. |
| 1229 | * 3. Copy the snapshot to the userspace. |
| 1230 | * 4. Flush TLB's if needed. |
| 1231 | */ |
| 1232 | int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) |
| 1233 | { |
| 1234 | bool is_dirty = false; |
| 1235 | int r; |
| 1236 | |
| 1237 | mutex_lock(&kvm->slots_lock); |
| 1238 | |
| 1239 | r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); |
| 1240 | |
| 1241 | if (is_dirty) |
| 1242 | kvm_flush_remote_tlbs(kvm); |
| 1243 | |
| 1244 | mutex_unlock(&kvm->slots_lock); |
| 1245 | return r; |
| 1246 | } |
| 1247 | |
| 1248 | static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm, |
| 1249 | struct kvm_arm_device_addr *dev_addr) |
| 1250 | { |
| 1251 | unsigned long dev_id, type; |
| 1252 | |
| 1253 | dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >> |
| 1254 | KVM_ARM_DEVICE_ID_SHIFT; |
| 1255 | type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >> |
| 1256 | KVM_ARM_DEVICE_TYPE_SHIFT; |
| 1257 | |
| 1258 | switch (dev_id) { |
| 1259 | case KVM_ARM_DEVICE_VGIC_V2: |
| 1260 | if (!vgic_present) |
| 1261 | return -ENXIO; |
| 1262 | return kvm_vgic_addr(kvm, type, &dev_addr->addr, true); |
| 1263 | default: |
| 1264 | return -ENODEV; |
| 1265 | } |
| 1266 | } |
| 1267 | |
| 1268 | long kvm_arch_vm_ioctl(struct file *filp, |
| 1269 | unsigned int ioctl, unsigned long arg) |
| 1270 | { |
| 1271 | struct kvm *kvm = filp->private_data; |
| 1272 | void __user *argp = (void __user *)arg; |
| 1273 | |
| 1274 | switch (ioctl) { |
| 1275 | case KVM_CREATE_IRQCHIP: { |
| 1276 | int ret; |
| 1277 | if (!vgic_present) |
| 1278 | return -ENXIO; |
| 1279 | mutex_lock(&kvm->lock); |
| 1280 | ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2); |
| 1281 | mutex_unlock(&kvm->lock); |
| 1282 | return ret; |
| 1283 | } |
| 1284 | case KVM_ARM_SET_DEVICE_ADDR: { |
| 1285 | struct kvm_arm_device_addr dev_addr; |
| 1286 | |
| 1287 | if (copy_from_user(&dev_addr, argp, sizeof(dev_addr))) |
| 1288 | return -EFAULT; |
| 1289 | return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr); |
| 1290 | } |
| 1291 | case KVM_ARM_PREFERRED_TARGET: { |
| 1292 | int err; |
| 1293 | struct kvm_vcpu_init init; |
| 1294 | |
| 1295 | err = kvm_vcpu_preferred_target(&init); |
| 1296 | if (err) |
| 1297 | return err; |
| 1298 | |
| 1299 | if (copy_to_user(argp, &init, sizeof(init))) |
| 1300 | return -EFAULT; |
| 1301 | |
| 1302 | return 0; |
| 1303 | } |
| 1304 | default: |
| 1305 | return -EINVAL; |
| 1306 | } |
| 1307 | } |
| 1308 | |
| 1309 | static void cpu_init_hyp_mode(void *dummy) |
| 1310 | { |
| 1311 | phys_addr_t pgd_ptr; |
| 1312 | unsigned long hyp_stack_ptr; |
| 1313 | unsigned long stack_page; |
| 1314 | unsigned long vector_ptr; |
| 1315 | |
| 1316 | /* Switch from the HYP stub to our own HYP init vector */ |
| 1317 | __hyp_set_vectors(kvm_get_idmap_vector()); |
| 1318 | |
| 1319 | pgd_ptr = kvm_mmu_get_httbr(); |
| 1320 | stack_page = __this_cpu_read(kvm_arm_hyp_stack_page); |
| 1321 | hyp_stack_ptr = stack_page + PAGE_SIZE; |
| 1322 | vector_ptr = (unsigned long)kvm_get_hyp_vector(); |
| 1323 | |
| 1324 | __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr); |
| 1325 | __cpu_init_stage2(); |
| 1326 | } |
| 1327 | |
| 1328 | static void cpu_hyp_reset(void) |
| 1329 | { |
| 1330 | if (!is_kernel_in_hyp_mode()) |
| 1331 | __hyp_reset_vectors(); |
| 1332 | } |
| 1333 | |
| 1334 | static void cpu_hyp_reinit(void) |
| 1335 | { |
| 1336 | cpu_hyp_reset(); |
| 1337 | |
| 1338 | if (is_kernel_in_hyp_mode()) { |
| 1339 | /* |
| 1340 | * __cpu_init_stage2() is safe to call even if the PM |
| 1341 | * event was cancelled before the CPU was reset. |
| 1342 | */ |
| 1343 | __cpu_init_stage2(); |
| 1344 | kvm_timer_init_vhe(); |
| 1345 | } else { |
| 1346 | cpu_init_hyp_mode(NULL); |
| 1347 | } |
| 1348 | |
| 1349 | kvm_arm_init_debug(); |
| 1350 | |
| 1351 | if (vgic_present) |
| 1352 | kvm_vgic_init_cpu_hardware(); |
| 1353 | } |
| 1354 | |
| 1355 | static void _kvm_arch_hardware_enable(void *discard) |
| 1356 | { |
| 1357 | if (!__this_cpu_read(kvm_arm_hardware_enabled)) { |
| 1358 | cpu_hyp_reinit(); |
| 1359 | __this_cpu_write(kvm_arm_hardware_enabled, 1); |
| 1360 | } |
| 1361 | } |
| 1362 | |
| 1363 | int kvm_arch_hardware_enable(void) |
| 1364 | { |
| 1365 | _kvm_arch_hardware_enable(NULL); |
| 1366 | return 0; |
| 1367 | } |
| 1368 | |
| 1369 | static void _kvm_arch_hardware_disable(void *discard) |
| 1370 | { |
| 1371 | if (__this_cpu_read(kvm_arm_hardware_enabled)) { |
| 1372 | cpu_hyp_reset(); |
| 1373 | __this_cpu_write(kvm_arm_hardware_enabled, 0); |
| 1374 | } |
| 1375 | } |
| 1376 | |
| 1377 | void kvm_arch_hardware_disable(void) |
| 1378 | { |
| 1379 | _kvm_arch_hardware_disable(NULL); |
| 1380 | } |
| 1381 | |
| 1382 | #ifdef CONFIG_CPU_PM |
| 1383 | static int hyp_init_cpu_pm_notifier(struct notifier_block *self, |
| 1384 | unsigned long cmd, |
| 1385 | void *v) |
| 1386 | { |
| 1387 | /* |
| 1388 | * kvm_arm_hardware_enabled is left with its old value over |
| 1389 | * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should |
| 1390 | * re-enable hyp. |
| 1391 | */ |
| 1392 | switch (cmd) { |
| 1393 | case CPU_PM_ENTER: |
| 1394 | if (__this_cpu_read(kvm_arm_hardware_enabled)) |
| 1395 | /* |
| 1396 | * don't update kvm_arm_hardware_enabled here |
| 1397 | * so that the hardware will be re-enabled |
| 1398 | * when we resume. See below. |
| 1399 | */ |
| 1400 | cpu_hyp_reset(); |
| 1401 | |
| 1402 | return NOTIFY_OK; |
| 1403 | case CPU_PM_ENTER_FAILED: |
| 1404 | case CPU_PM_EXIT: |
| 1405 | if (__this_cpu_read(kvm_arm_hardware_enabled)) |
| 1406 | /* The hardware was enabled before suspend. */ |
| 1407 | cpu_hyp_reinit(); |
| 1408 | |
| 1409 | return NOTIFY_OK; |
| 1410 | |
| 1411 | default: |
| 1412 | return NOTIFY_DONE; |
| 1413 | } |
| 1414 | } |
| 1415 | |
| 1416 | static struct notifier_block hyp_init_cpu_pm_nb = { |
| 1417 | .notifier_call = hyp_init_cpu_pm_notifier, |
| 1418 | }; |
| 1419 | |
| 1420 | static void __init hyp_cpu_pm_init(void) |
| 1421 | { |
| 1422 | cpu_pm_register_notifier(&hyp_init_cpu_pm_nb); |
| 1423 | } |
| 1424 | static void __init hyp_cpu_pm_exit(void) |
| 1425 | { |
| 1426 | cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb); |
| 1427 | } |
| 1428 | #else |
| 1429 | static inline void hyp_cpu_pm_init(void) |
| 1430 | { |
| 1431 | } |
| 1432 | static inline void hyp_cpu_pm_exit(void) |
| 1433 | { |
| 1434 | } |
| 1435 | #endif |
| 1436 | |
| 1437 | static int init_common_resources(void) |
| 1438 | { |
| 1439 | /* set size of VMID supported by CPU */ |
| 1440 | kvm_vmid_bits = kvm_get_vmid_bits(); |
| 1441 | kvm_info("%d-bit VMID\n", kvm_vmid_bits); |
| 1442 | |
| 1443 | return 0; |
| 1444 | } |
| 1445 | |
| 1446 | static int init_subsystems(void) |
| 1447 | { |
| 1448 | int err = 0; |
| 1449 | |
| 1450 | /* |
| 1451 | * Enable hardware so that subsystem initialisation can access EL2. |
| 1452 | */ |
| 1453 | on_each_cpu(_kvm_arch_hardware_enable, NULL, 1); |
| 1454 | |
| 1455 | /* |
| 1456 | * Register CPU lower-power notifier |
| 1457 | */ |
| 1458 | hyp_cpu_pm_init(); |
| 1459 | |
| 1460 | /* |
| 1461 | * Init HYP view of VGIC |
| 1462 | */ |
| 1463 | err = kvm_vgic_hyp_init(); |
| 1464 | switch (err) { |
| 1465 | case 0: |
| 1466 | vgic_present = true; |
| 1467 | break; |
| 1468 | case -ENODEV: |
| 1469 | case -ENXIO: |
| 1470 | vgic_present = false; |
| 1471 | err = 0; |
| 1472 | break; |
| 1473 | default: |
| 1474 | goto out; |
| 1475 | } |
| 1476 | |
| 1477 | /* |
| 1478 | * Init HYP architected timer support |
| 1479 | */ |
| 1480 | err = kvm_timer_hyp_init(vgic_present); |
| 1481 | if (err) |
| 1482 | goto out; |
| 1483 | |
| 1484 | kvm_perf_init(); |
| 1485 | kvm_coproc_table_init(); |
| 1486 | |
| 1487 | out: |
| 1488 | on_each_cpu(_kvm_arch_hardware_disable, NULL, 1); |
| 1489 | |
| 1490 | return err; |
| 1491 | } |
| 1492 | |
| 1493 | static void teardown_hyp_mode(void) |
| 1494 | { |
| 1495 | int cpu; |
| 1496 | |
| 1497 | free_hyp_pgds(); |
| 1498 | for_each_possible_cpu(cpu) |
| 1499 | free_page(per_cpu(kvm_arm_hyp_stack_page, cpu)); |
| 1500 | hyp_cpu_pm_exit(); |
| 1501 | } |
| 1502 | |
| 1503 | /** |
| 1504 | * Inits Hyp-mode on all online CPUs |
| 1505 | */ |
| 1506 | static int init_hyp_mode(void) |
| 1507 | { |
| 1508 | int cpu; |
| 1509 | int err = 0; |
| 1510 | |
| 1511 | /* |
| 1512 | * Allocate Hyp PGD and setup Hyp identity mapping |
| 1513 | */ |
| 1514 | err = kvm_mmu_init(); |
| 1515 | if (err) |
| 1516 | goto out_err; |
| 1517 | |
| 1518 | /* |
| 1519 | * Allocate stack pages for Hypervisor-mode |
| 1520 | */ |
| 1521 | for_each_possible_cpu(cpu) { |
| 1522 | unsigned long stack_page; |
| 1523 | |
| 1524 | stack_page = __get_free_page(GFP_KERNEL); |
| 1525 | if (!stack_page) { |
| 1526 | err = -ENOMEM; |
| 1527 | goto out_err; |
| 1528 | } |
| 1529 | |
| 1530 | per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page; |
| 1531 | } |
| 1532 | |
| 1533 | /* |
| 1534 | * Map the Hyp-code called directly from the host |
| 1535 | */ |
| 1536 | err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start), |
| 1537 | kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC); |
| 1538 | if (err) { |
| 1539 | kvm_err("Cannot map world-switch code\n"); |
| 1540 | goto out_err; |
| 1541 | } |
| 1542 | |
| 1543 | err = create_hyp_mappings(kvm_ksym_ref(__start_rodata), |
| 1544 | kvm_ksym_ref(__end_rodata), PAGE_HYP_RO); |
| 1545 | if (err) { |
| 1546 | kvm_err("Cannot map rodata section\n"); |
| 1547 | goto out_err; |
| 1548 | } |
| 1549 | |
| 1550 | err = create_hyp_mappings(kvm_ksym_ref(__bss_start), |
| 1551 | kvm_ksym_ref(__bss_stop), PAGE_HYP_RO); |
| 1552 | if (err) { |
| 1553 | kvm_err("Cannot map bss section\n"); |
| 1554 | goto out_err; |
| 1555 | } |
| 1556 | |
| 1557 | err = kvm_map_vectors(); |
| 1558 | if (err) { |
| 1559 | kvm_err("Cannot map vectors\n"); |
| 1560 | goto out_err; |
| 1561 | } |
| 1562 | |
| 1563 | /* |
| 1564 | * Map the Hyp stack pages |
| 1565 | */ |
| 1566 | for_each_possible_cpu(cpu) { |
| 1567 | char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu); |
| 1568 | err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE, |
| 1569 | PAGE_HYP); |
| 1570 | |
| 1571 | if (err) { |
| 1572 | kvm_err("Cannot map hyp stack\n"); |
| 1573 | goto out_err; |
| 1574 | } |
| 1575 | } |
| 1576 | |
| 1577 | for_each_possible_cpu(cpu) { |
| 1578 | kvm_cpu_context_t *cpu_ctxt; |
| 1579 | |
| 1580 | cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu); |
| 1581 | err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP); |
| 1582 | |
| 1583 | if (err) { |
| 1584 | kvm_err("Cannot map host CPU state: %d\n", err); |
| 1585 | goto out_err; |
| 1586 | } |
| 1587 | } |
| 1588 | |
| 1589 | err = hyp_map_aux_data(); |
| 1590 | if (err) |
| 1591 | kvm_err("Cannot map host auxilary data: %d\n", err); |
| 1592 | |
| 1593 | return 0; |
| 1594 | |
| 1595 | out_err: |
| 1596 | teardown_hyp_mode(); |
| 1597 | kvm_err("error initializing Hyp mode: %d\n", err); |
| 1598 | return err; |
| 1599 | } |
| 1600 | |
| 1601 | static void check_kvm_target_cpu(void *ret) |
| 1602 | { |
| 1603 | *(int *)ret = kvm_target_cpu(); |
| 1604 | } |
| 1605 | |
| 1606 | struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr) |
| 1607 | { |
| 1608 | struct kvm_vcpu *vcpu; |
| 1609 | int i; |
| 1610 | |
| 1611 | mpidr &= MPIDR_HWID_BITMASK; |
| 1612 | kvm_for_each_vcpu(i, vcpu, kvm) { |
| 1613 | if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu)) |
| 1614 | return vcpu; |
| 1615 | } |
| 1616 | return NULL; |
| 1617 | } |
| 1618 | |
| 1619 | bool kvm_arch_has_irq_bypass(void) |
| 1620 | { |
| 1621 | return true; |
| 1622 | } |
| 1623 | |
| 1624 | int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, |
| 1625 | struct irq_bypass_producer *prod) |
| 1626 | { |
| 1627 | struct kvm_kernel_irqfd *irqfd = |
| 1628 | container_of(cons, struct kvm_kernel_irqfd, consumer); |
| 1629 | |
| 1630 | return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq, |
| 1631 | &irqfd->irq_entry); |
| 1632 | } |
| 1633 | void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, |
| 1634 | struct irq_bypass_producer *prod) |
| 1635 | { |
| 1636 | struct kvm_kernel_irqfd *irqfd = |
| 1637 | container_of(cons, struct kvm_kernel_irqfd, consumer); |
| 1638 | |
| 1639 | kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq, |
| 1640 | &irqfd->irq_entry); |
| 1641 | } |
| 1642 | |
| 1643 | void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons) |
| 1644 | { |
| 1645 | struct kvm_kernel_irqfd *irqfd = |
| 1646 | container_of(cons, struct kvm_kernel_irqfd, consumer); |
| 1647 | |
| 1648 | kvm_arm_halt_guest(irqfd->kvm); |
| 1649 | } |
| 1650 | |
| 1651 | void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons) |
| 1652 | { |
| 1653 | struct kvm_kernel_irqfd *irqfd = |
| 1654 | container_of(cons, struct kvm_kernel_irqfd, consumer); |
| 1655 | |
| 1656 | kvm_arm_resume_guest(irqfd->kvm); |
| 1657 | } |
| 1658 | |
| 1659 | /** |
| 1660 | * Initialize Hyp-mode and memory mappings on all CPUs. |
| 1661 | */ |
| 1662 | int kvm_arch_init(void *opaque) |
| 1663 | { |
| 1664 | int err; |
| 1665 | int ret, cpu; |
| 1666 | bool in_hyp_mode; |
| 1667 | |
| 1668 | if (!is_hyp_mode_available()) { |
| 1669 | kvm_info("HYP mode not available\n"); |
| 1670 | return -ENODEV; |
| 1671 | } |
| 1672 | |
| 1673 | if (!kvm_arch_check_sve_has_vhe()) { |
| 1674 | kvm_pr_unimpl("SVE system without VHE unsupported. Broken cpu?"); |
| 1675 | return -ENODEV; |
| 1676 | } |
| 1677 | |
| 1678 | for_each_online_cpu(cpu) { |
| 1679 | smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1); |
| 1680 | if (ret < 0) { |
| 1681 | kvm_err("Error, CPU %d not supported!\n", cpu); |
| 1682 | return -ENODEV; |
| 1683 | } |
| 1684 | } |
| 1685 | |
| 1686 | err = init_common_resources(); |
| 1687 | if (err) |
| 1688 | return err; |
| 1689 | |
| 1690 | in_hyp_mode = is_kernel_in_hyp_mode(); |
| 1691 | |
| 1692 | if (!in_hyp_mode) { |
| 1693 | err = init_hyp_mode(); |
| 1694 | if (err) |
| 1695 | goto out_err; |
| 1696 | } |
| 1697 | |
| 1698 | err = init_subsystems(); |
| 1699 | if (err) |
| 1700 | goto out_hyp; |
| 1701 | |
| 1702 | if (in_hyp_mode) |
| 1703 | kvm_info("VHE mode initialized successfully\n"); |
| 1704 | else |
| 1705 | kvm_info("Hyp mode initialized successfully\n"); |
| 1706 | |
| 1707 | return 0; |
| 1708 | |
| 1709 | out_hyp: |
| 1710 | if (!in_hyp_mode) |
| 1711 | teardown_hyp_mode(); |
| 1712 | out_err: |
| 1713 | return err; |
| 1714 | } |
| 1715 | |
| 1716 | /* NOP: Compiling as a module not supported */ |
| 1717 | void kvm_arch_exit(void) |
| 1718 | { |
| 1719 | kvm_perf_teardown(); |
| 1720 | } |
| 1721 | |
| 1722 | static int arm_init(void) |
| 1723 | { |
| 1724 | int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE); |
| 1725 | return rc; |
| 1726 | } |
| 1727 | |
| 1728 | module_init(arm_init); |