| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Block multiqueue core code |
| 3 | * |
| 4 | * Copyright (C) 2013-2014 Jens Axboe |
| 5 | * Copyright (C) 2013-2014 Christoph Hellwig |
| 6 | */ |
| 7 | #include <linux/kernel.h> |
| 8 | #include <linux/module.h> |
| 9 | #include <linux/backing-dev.h> |
| 10 | #include <linux/bio.h> |
| 11 | #include <linux/blkdev.h> |
| 12 | #include <linux/kmemleak.h> |
| 13 | #include <linux/mm.h> |
| 14 | #include <linux/init.h> |
| 15 | #include <linux/slab.h> |
| 16 | #include <linux/workqueue.h> |
| 17 | #include <linux/smp.h> |
| 18 | #include <linux/llist.h> |
| 19 | #include <linux/list_sort.h> |
| 20 | #include <linux/cpu.h> |
| 21 | #include <linux/cache.h> |
| 22 | #include <linux/sched/sysctl.h> |
| 23 | #include <linux/sched/topology.h> |
| 24 | #include <linux/sched/signal.h> |
| 25 | #include <linux/delay.h> |
| 26 | #include <linux/crash_dump.h> |
| 27 | #include <linux/prefetch.h> |
| 28 | |
| 29 | #include <trace/events/block.h> |
| 30 | |
| 31 | #include <linux/blk-mq.h> |
| 32 | #include "blk.h" |
| 33 | #include "blk-mq.h" |
| 34 | #include "blk-mq-debugfs.h" |
| 35 | #include "blk-mq-tag.h" |
| 36 | #include "blk-stat.h" |
| 37 | #include "blk-mq-sched.h" |
| 38 | #include "blk-rq-qos.h" |
| 39 | |
| 40 | static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie); |
| 41 | static void blk_mq_poll_stats_start(struct request_queue *q); |
| 42 | static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); |
| 43 | |
| 44 | static int blk_mq_poll_stats_bkt(const struct request *rq) |
| 45 | { |
| 46 | int ddir, bytes, bucket; |
| 47 | |
| 48 | ddir = rq_data_dir(rq); |
| 49 | bytes = blk_rq_bytes(rq); |
| 50 | |
| 51 | bucket = ddir + 2*(ilog2(bytes) - 9); |
| 52 | |
| 53 | if (bucket < 0) |
| 54 | return -1; |
| 55 | else if (bucket >= BLK_MQ_POLL_STATS_BKTS) |
| 56 | return ddir + BLK_MQ_POLL_STATS_BKTS - 2; |
| 57 | |
| 58 | return bucket; |
| 59 | } |
| 60 | |
| 61 | /* |
| 62 | * Check if any of the ctx's have pending work in this hardware queue |
| 63 | */ |
| 64 | static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) |
| 65 | { |
| 66 | return !list_empty_careful(&hctx->dispatch) || |
| 67 | sbitmap_any_bit_set(&hctx->ctx_map) || |
| 68 | blk_mq_sched_has_work(hctx); |
| 69 | } |
| 70 | |
| 71 | /* |
| 72 | * Mark this ctx as having pending work in this hardware queue |
| 73 | */ |
| 74 | static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, |
| 75 | struct blk_mq_ctx *ctx) |
| 76 | { |
| 77 | if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw)) |
| 78 | sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw); |
| 79 | } |
| 80 | |
| 81 | static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, |
| 82 | struct blk_mq_ctx *ctx) |
| 83 | { |
| 84 | sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw); |
| 85 | } |
| 86 | |
| 87 | struct mq_inflight { |
| 88 | struct hd_struct *part; |
| 89 | unsigned int *inflight; |
| 90 | }; |
| 91 | |
| 92 | static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, |
| 93 | struct request *rq, void *priv, |
| 94 | bool reserved) |
| 95 | { |
| 96 | struct mq_inflight *mi = priv; |
| 97 | |
| 98 | /* |
| 99 | * index[0] counts the specific partition that was asked for. index[1] |
| 100 | * counts the ones that are active on the whole device, so increment |
| 101 | * that if mi->part is indeed a partition, and not a whole device. |
| 102 | */ |
| 103 | if (rq->part == mi->part) |
| 104 | mi->inflight[0]++; |
| 105 | if (mi->part->partno) |
| 106 | mi->inflight[1]++; |
| 107 | } |
| 108 | |
| 109 | void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part, |
| 110 | unsigned int inflight[2]) |
| 111 | { |
| 112 | struct mq_inflight mi = { .part = part, .inflight = inflight, }; |
| 113 | |
| 114 | inflight[0] = inflight[1] = 0; |
| 115 | blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); |
| 116 | } |
| 117 | |
| 118 | static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx, |
| 119 | struct request *rq, void *priv, |
| 120 | bool reserved) |
| 121 | { |
| 122 | struct mq_inflight *mi = priv; |
| 123 | |
| 124 | if (rq->part == mi->part) |
| 125 | mi->inflight[rq_data_dir(rq)]++; |
| 126 | } |
| 127 | |
| 128 | void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, |
| 129 | unsigned int inflight[2]) |
| 130 | { |
| 131 | struct mq_inflight mi = { .part = part, .inflight = inflight, }; |
| 132 | |
| 133 | inflight[0] = inflight[1] = 0; |
| 134 | blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi); |
| 135 | } |
| 136 | |
| 137 | void blk_freeze_queue_start(struct request_queue *q) |
| 138 | { |
| 139 | int freeze_depth; |
| 140 | |
| 141 | freeze_depth = atomic_inc_return(&q->mq_freeze_depth); |
| 142 | if (freeze_depth == 1) { |
| 143 | percpu_ref_kill(&q->q_usage_counter); |
| 144 | if (q->mq_ops) |
| 145 | blk_mq_run_hw_queues(q, false); |
| 146 | } |
| 147 | } |
| 148 | EXPORT_SYMBOL_GPL(blk_freeze_queue_start); |
| 149 | |
| 150 | void blk_mq_freeze_queue_wait(struct request_queue *q) |
| 151 | { |
| 152 | wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); |
| 153 | } |
| 154 | EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); |
| 155 | |
| 156 | int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, |
| 157 | unsigned long timeout) |
| 158 | { |
| 159 | return wait_event_timeout(q->mq_freeze_wq, |
| 160 | percpu_ref_is_zero(&q->q_usage_counter), |
| 161 | timeout); |
| 162 | } |
| 163 | EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); |
| 164 | |
| 165 | /* |
| 166 | * Guarantee no request is in use, so we can change any data structure of |
| 167 | * the queue afterward. |
| 168 | */ |
| 169 | void blk_freeze_queue(struct request_queue *q) |
| 170 | { |
| 171 | /* |
| 172 | * In the !blk_mq case we are only calling this to kill the |
| 173 | * q_usage_counter, otherwise this increases the freeze depth |
| 174 | * and waits for it to return to zero. For this reason there is |
| 175 | * no blk_unfreeze_queue(), and blk_freeze_queue() is not |
| 176 | * exported to drivers as the only user for unfreeze is blk_mq. |
| 177 | */ |
| 178 | blk_freeze_queue_start(q); |
| 179 | if (!q->mq_ops) |
| 180 | blk_drain_queue(q); |
| 181 | blk_mq_freeze_queue_wait(q); |
| 182 | } |
| 183 | |
| 184 | void blk_mq_freeze_queue(struct request_queue *q) |
| 185 | { |
| 186 | /* |
| 187 | * ...just an alias to keep freeze and unfreeze actions balanced |
| 188 | * in the blk_mq_* namespace |
| 189 | */ |
| 190 | blk_freeze_queue(q); |
| 191 | } |
| 192 | EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); |
| 193 | |
| 194 | void blk_mq_unfreeze_queue(struct request_queue *q) |
| 195 | { |
| 196 | int freeze_depth; |
| 197 | |
| 198 | freeze_depth = atomic_dec_return(&q->mq_freeze_depth); |
| 199 | WARN_ON_ONCE(freeze_depth < 0); |
| 200 | if (!freeze_depth) { |
| 201 | percpu_ref_reinit(&q->q_usage_counter); |
| 202 | wake_up_all(&q->mq_freeze_wq); |
| 203 | } |
| 204 | } |
| 205 | EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); |
| 206 | |
| 207 | /* |
| 208 | * FIXME: replace the scsi_internal_device_*block_nowait() calls in the |
| 209 | * mpt3sas driver such that this function can be removed. |
| 210 | */ |
| 211 | void blk_mq_quiesce_queue_nowait(struct request_queue *q) |
| 212 | { |
| 213 | blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); |
| 214 | } |
| 215 | EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); |
| 216 | |
| 217 | /** |
| 218 | * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished |
| 219 | * @q: request queue. |
| 220 | * |
| 221 | * Note: this function does not prevent that the struct request end_io() |
| 222 | * callback function is invoked. Once this function is returned, we make |
| 223 | * sure no dispatch can happen until the queue is unquiesced via |
| 224 | * blk_mq_unquiesce_queue(). |
| 225 | */ |
| 226 | void blk_mq_quiesce_queue(struct request_queue *q) |
| 227 | { |
| 228 | struct blk_mq_hw_ctx *hctx; |
| 229 | unsigned int i; |
| 230 | bool rcu = false; |
| 231 | |
| 232 | blk_mq_quiesce_queue_nowait(q); |
| 233 | |
| 234 | queue_for_each_hw_ctx(q, hctx, i) { |
| 235 | if (hctx->flags & BLK_MQ_F_BLOCKING) |
| 236 | synchronize_srcu(hctx->srcu); |
| 237 | else |
| 238 | rcu = true; |
| 239 | } |
| 240 | if (rcu) |
| 241 | synchronize_rcu(); |
| 242 | } |
| 243 | EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); |
| 244 | |
| 245 | /* |
| 246 | * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() |
| 247 | * @q: request queue. |
| 248 | * |
| 249 | * This function recovers queue into the state before quiescing |
| 250 | * which is done by blk_mq_quiesce_queue. |
| 251 | */ |
| 252 | void blk_mq_unquiesce_queue(struct request_queue *q) |
| 253 | { |
| 254 | blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); |
| 255 | |
| 256 | /* dispatch requests which are inserted during quiescing */ |
| 257 | blk_mq_run_hw_queues(q, true); |
| 258 | } |
| 259 | EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); |
| 260 | |
| 261 | void blk_mq_wake_waiters(struct request_queue *q) |
| 262 | { |
| 263 | struct blk_mq_hw_ctx *hctx; |
| 264 | unsigned int i; |
| 265 | |
| 266 | queue_for_each_hw_ctx(q, hctx, i) |
| 267 | if (blk_mq_hw_queue_mapped(hctx)) |
| 268 | blk_mq_tag_wakeup_all(hctx->tags, true); |
| 269 | } |
| 270 | |
| 271 | bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx) |
| 272 | { |
| 273 | return blk_mq_has_free_tags(hctx->tags); |
| 274 | } |
| 275 | EXPORT_SYMBOL(blk_mq_can_queue); |
| 276 | |
| 277 | static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, |
| 278 | unsigned int tag, unsigned int op) |
| 279 | { |
| 280 | struct blk_mq_tags *tags = blk_mq_tags_from_data(data); |
| 281 | struct request *rq = tags->static_rqs[tag]; |
| 282 | req_flags_t rq_flags = 0; |
| 283 | |
| 284 | if (data->flags & BLK_MQ_REQ_INTERNAL) { |
| 285 | rq->tag = -1; |
| 286 | rq->internal_tag = tag; |
| 287 | } else { |
| 288 | if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) { |
| 289 | rq_flags = RQF_MQ_INFLIGHT; |
| 290 | atomic_inc(&data->hctx->nr_active); |
| 291 | } |
| 292 | rq->tag = tag; |
| 293 | rq->internal_tag = -1; |
| 294 | data->hctx->tags->rqs[rq->tag] = rq; |
| 295 | } |
| 296 | |
| 297 | /* csd/requeue_work/fifo_time is initialized before use */ |
| 298 | rq->q = data->q; |
| 299 | rq->mq_ctx = data->ctx; |
| 300 | rq->rq_flags = rq_flags; |
| 301 | rq->cpu = -1; |
| 302 | rq->cmd_flags = op; |
| 303 | if (data->flags & BLK_MQ_REQ_PREEMPT) |
| 304 | rq->rq_flags |= RQF_PREEMPT; |
| 305 | if (blk_queue_io_stat(data->q)) |
| 306 | rq->rq_flags |= RQF_IO_STAT; |
| 307 | INIT_LIST_HEAD(&rq->queuelist); |
| 308 | INIT_HLIST_NODE(&rq->hash); |
| 309 | RB_CLEAR_NODE(&rq->rb_node); |
| 310 | rq->rq_disk = NULL; |
| 311 | rq->part = NULL; |
| 312 | rq->start_time_ns = ktime_get_ns(); |
| 313 | rq->io_start_time_ns = 0; |
| 314 | rq->nr_phys_segments = 0; |
| 315 | #if defined(CONFIG_BLK_DEV_INTEGRITY) |
| 316 | rq->nr_integrity_segments = 0; |
| 317 | #endif |
| 318 | rq->special = NULL; |
| 319 | /* tag was already set */ |
| 320 | rq->extra_len = 0; |
| 321 | rq->__deadline = 0; |
| 322 | |
| 323 | INIT_LIST_HEAD(&rq->timeout_list); |
| 324 | rq->timeout = 0; |
| 325 | |
| 326 | rq->end_io = NULL; |
| 327 | rq->end_io_data = NULL; |
| 328 | rq->next_rq = NULL; |
| 329 | |
| 330 | #ifdef CONFIG_BLK_CGROUP |
| 331 | rq->rl = NULL; |
| 332 | #endif |
| 333 | |
| 334 | data->ctx->rq_dispatched[op_is_sync(op)]++; |
| 335 | refcount_set(&rq->ref, 1); |
| 336 | return rq; |
| 337 | } |
| 338 | |
| 339 | static struct request *blk_mq_get_request(struct request_queue *q, |
| 340 | struct bio *bio, unsigned int op, |
| 341 | struct blk_mq_alloc_data *data) |
| 342 | { |
| 343 | struct elevator_queue *e = q->elevator; |
| 344 | struct request *rq; |
| 345 | unsigned int tag; |
| 346 | bool put_ctx_on_error = false; |
| 347 | |
| 348 | blk_queue_enter_live(q); |
| 349 | data->q = q; |
| 350 | if (likely(!data->ctx)) { |
| 351 | data->ctx = blk_mq_get_ctx(q); |
| 352 | put_ctx_on_error = true; |
| 353 | } |
| 354 | if (likely(!data->hctx)) |
| 355 | data->hctx = blk_mq_map_queue(q, data->ctx->cpu); |
| 356 | if (op & REQ_NOWAIT) |
| 357 | data->flags |= BLK_MQ_REQ_NOWAIT; |
| 358 | |
| 359 | if (e) { |
| 360 | data->flags |= BLK_MQ_REQ_INTERNAL; |
| 361 | |
| 362 | /* |
| 363 | * Flush requests are special and go directly to the |
| 364 | * dispatch list. Don't include reserved tags in the |
| 365 | * limiting, as it isn't useful. |
| 366 | */ |
| 367 | if (!op_is_flush(op) && e->type->ops.mq.limit_depth && |
| 368 | !(data->flags & BLK_MQ_REQ_RESERVED)) |
| 369 | e->type->ops.mq.limit_depth(op, data); |
| 370 | } else { |
| 371 | blk_mq_tag_busy(data->hctx); |
| 372 | } |
| 373 | |
| 374 | tag = blk_mq_get_tag(data); |
| 375 | if (tag == BLK_MQ_TAG_FAIL) { |
| 376 | if (put_ctx_on_error) { |
| 377 | blk_mq_put_ctx(data->ctx); |
| 378 | data->ctx = NULL; |
| 379 | } |
| 380 | blk_queue_exit(q); |
| 381 | return NULL; |
| 382 | } |
| 383 | |
| 384 | rq = blk_mq_rq_ctx_init(data, tag, op); |
| 385 | if (!op_is_flush(op)) { |
| 386 | rq->elv.icq = NULL; |
| 387 | if (e && e->type->ops.mq.prepare_request) { |
| 388 | if (e->type->icq_cache && rq_ioc(bio)) |
| 389 | blk_mq_sched_assign_ioc(rq, bio); |
| 390 | |
| 391 | e->type->ops.mq.prepare_request(rq, bio); |
| 392 | rq->rq_flags |= RQF_ELVPRIV; |
| 393 | } |
| 394 | } |
| 395 | data->hctx->queued++; |
| 396 | return rq; |
| 397 | } |
| 398 | |
| 399 | struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, |
| 400 | blk_mq_req_flags_t flags) |
| 401 | { |
| 402 | struct blk_mq_alloc_data alloc_data = { .flags = flags }; |
| 403 | struct request *rq; |
| 404 | int ret; |
| 405 | |
| 406 | ret = blk_queue_enter(q, flags); |
| 407 | if (ret) |
| 408 | return ERR_PTR(ret); |
| 409 | |
| 410 | rq = blk_mq_get_request(q, NULL, op, &alloc_data); |
| 411 | blk_queue_exit(q); |
| 412 | |
| 413 | if (!rq) |
| 414 | return ERR_PTR(-EWOULDBLOCK); |
| 415 | |
| 416 | blk_mq_put_ctx(alloc_data.ctx); |
| 417 | |
| 418 | rq->__data_len = 0; |
| 419 | rq->__sector = (sector_t) -1; |
| 420 | rq->bio = rq->biotail = NULL; |
| 421 | return rq; |
| 422 | } |
| 423 | EXPORT_SYMBOL(blk_mq_alloc_request); |
| 424 | |
| 425 | struct request *blk_mq_alloc_request_hctx(struct request_queue *q, |
| 426 | unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) |
| 427 | { |
| 428 | struct blk_mq_alloc_data alloc_data = { .flags = flags }; |
| 429 | struct request *rq; |
| 430 | unsigned int cpu; |
| 431 | int ret; |
| 432 | |
| 433 | /* |
| 434 | * If the tag allocator sleeps we could get an allocation for a |
| 435 | * different hardware context. No need to complicate the low level |
| 436 | * allocator for this for the rare use case of a command tied to |
| 437 | * a specific queue. |
| 438 | */ |
| 439 | if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) |
| 440 | return ERR_PTR(-EINVAL); |
| 441 | |
| 442 | if (hctx_idx >= q->nr_hw_queues) |
| 443 | return ERR_PTR(-EIO); |
| 444 | |
| 445 | ret = blk_queue_enter(q, flags); |
| 446 | if (ret) |
| 447 | return ERR_PTR(ret); |
| 448 | |
| 449 | /* |
| 450 | * Check if the hardware context is actually mapped to anything. |
| 451 | * If not tell the caller that it should skip this queue. |
| 452 | */ |
| 453 | alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; |
| 454 | if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { |
| 455 | blk_queue_exit(q); |
| 456 | return ERR_PTR(-EXDEV); |
| 457 | } |
| 458 | cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); |
| 459 | alloc_data.ctx = __blk_mq_get_ctx(q, cpu); |
| 460 | |
| 461 | rq = blk_mq_get_request(q, NULL, op, &alloc_data); |
| 462 | blk_queue_exit(q); |
| 463 | |
| 464 | if (!rq) |
| 465 | return ERR_PTR(-EWOULDBLOCK); |
| 466 | |
| 467 | return rq; |
| 468 | } |
| 469 | EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); |
| 470 | |
| 471 | static void __blk_mq_free_request(struct request *rq) |
| 472 | { |
| 473 | struct request_queue *q = rq->q; |
| 474 | struct blk_mq_ctx *ctx = rq->mq_ctx; |
| 475 | struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); |
| 476 | const int sched_tag = rq->internal_tag; |
| 477 | |
| 478 | if (rq->tag != -1) |
| 479 | blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); |
| 480 | if (sched_tag != -1) |
| 481 | blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); |
| 482 | blk_mq_sched_restart(hctx); |
| 483 | blk_queue_exit(q); |
| 484 | } |
| 485 | |
| 486 | void blk_mq_free_request(struct request *rq) |
| 487 | { |
| 488 | struct request_queue *q = rq->q; |
| 489 | struct elevator_queue *e = q->elevator; |
| 490 | struct blk_mq_ctx *ctx = rq->mq_ctx; |
| 491 | struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu); |
| 492 | |
| 493 | if (rq->rq_flags & RQF_ELVPRIV) { |
| 494 | if (e && e->type->ops.mq.finish_request) |
| 495 | e->type->ops.mq.finish_request(rq); |
| 496 | if (rq->elv.icq) { |
| 497 | put_io_context(rq->elv.icq->ioc); |
| 498 | rq->elv.icq = NULL; |
| 499 | } |
| 500 | } |
| 501 | |
| 502 | ctx->rq_completed[rq_is_sync(rq)]++; |
| 503 | if (rq->rq_flags & RQF_MQ_INFLIGHT) |
| 504 | atomic_dec(&hctx->nr_active); |
| 505 | |
| 506 | if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) |
| 507 | laptop_io_completion(q->backing_dev_info); |
| 508 | |
| 509 | rq_qos_done(q, rq); |
| 510 | |
| 511 | if (blk_rq_rl(rq)) |
| 512 | blk_put_rl(blk_rq_rl(rq)); |
| 513 | |
| 514 | WRITE_ONCE(rq->state, MQ_RQ_IDLE); |
| 515 | if (refcount_dec_and_test(&rq->ref)) |
| 516 | __blk_mq_free_request(rq); |
| 517 | } |
| 518 | EXPORT_SYMBOL_GPL(blk_mq_free_request); |
| 519 | |
| 520 | inline void __blk_mq_end_request(struct request *rq, blk_status_t error) |
| 521 | { |
| 522 | u64 now = ktime_get_ns(); |
| 523 | |
| 524 | if (rq->rq_flags & RQF_STATS) { |
| 525 | blk_mq_poll_stats_start(rq->q); |
| 526 | blk_stat_add(rq, now); |
| 527 | } |
| 528 | |
| 529 | blk_account_io_done(rq, now); |
| 530 | |
| 531 | if (rq->end_io) { |
| 532 | rq_qos_done(rq->q, rq); |
| 533 | rq->end_io(rq, error); |
| 534 | } else { |
| 535 | if (unlikely(blk_bidi_rq(rq))) |
| 536 | blk_mq_free_request(rq->next_rq); |
| 537 | blk_mq_free_request(rq); |
| 538 | } |
| 539 | } |
| 540 | EXPORT_SYMBOL(__blk_mq_end_request); |
| 541 | |
| 542 | void blk_mq_end_request(struct request *rq, blk_status_t error) |
| 543 | { |
| 544 | if (blk_update_request(rq, error, blk_rq_bytes(rq))) |
| 545 | BUG(); |
| 546 | __blk_mq_end_request(rq, error); |
| 547 | } |
| 548 | EXPORT_SYMBOL(blk_mq_end_request); |
| 549 | |
| 550 | static void __blk_mq_complete_request_remote(void *data) |
| 551 | { |
| 552 | struct request *rq = data; |
| 553 | |
| 554 | rq->q->softirq_done_fn(rq); |
| 555 | } |
| 556 | |
| 557 | static void __blk_mq_complete_request(struct request *rq) |
| 558 | { |
| 559 | struct blk_mq_ctx *ctx = rq->mq_ctx; |
| 560 | bool shared = false; |
| 561 | int cpu; |
| 562 | |
| 563 | if (!blk_mq_mark_complete(rq)) |
| 564 | return; |
| 565 | if (rq->internal_tag != -1) |
| 566 | blk_mq_sched_completed_request(rq); |
| 567 | |
| 568 | if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) { |
| 569 | rq->q->softirq_done_fn(rq); |
| 570 | return; |
| 571 | } |
| 572 | |
| 573 | cpu = get_cpu(); |
| 574 | if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags)) |
| 575 | shared = cpus_share_cache(cpu, ctx->cpu); |
| 576 | |
| 577 | if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { |
| 578 | rq->csd.func = __blk_mq_complete_request_remote; |
| 579 | rq->csd.info = rq; |
| 580 | rq->csd.flags = 0; |
| 581 | smp_call_function_single_async(ctx->cpu, &rq->csd); |
| 582 | } else { |
| 583 | rq->q->softirq_done_fn(rq); |
| 584 | } |
| 585 | put_cpu(); |
| 586 | } |
| 587 | |
| 588 | static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) |
| 589 | __releases(hctx->srcu) |
| 590 | { |
| 591 | if (!(hctx->flags & BLK_MQ_F_BLOCKING)) |
| 592 | rcu_read_unlock(); |
| 593 | else |
| 594 | srcu_read_unlock(hctx->srcu, srcu_idx); |
| 595 | } |
| 596 | |
| 597 | static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) |
| 598 | __acquires(hctx->srcu) |
| 599 | { |
| 600 | if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { |
| 601 | /* shut up gcc false positive */ |
| 602 | *srcu_idx = 0; |
| 603 | rcu_read_lock(); |
| 604 | } else |
| 605 | *srcu_idx = srcu_read_lock(hctx->srcu); |
| 606 | } |
| 607 | |
| 608 | /** |
| 609 | * blk_mq_complete_request - end I/O on a request |
| 610 | * @rq: the request being processed |
| 611 | * |
| 612 | * Description: |
| 613 | * Ends all I/O on a request. It does not handle partial completions. |
| 614 | * The actual completion happens out-of-order, through a IPI handler. |
| 615 | **/ |
| 616 | void blk_mq_complete_request(struct request *rq) |
| 617 | { |
| 618 | if (unlikely(blk_should_fake_timeout(rq->q))) |
| 619 | return; |
| 620 | __blk_mq_complete_request(rq); |
| 621 | } |
| 622 | EXPORT_SYMBOL(blk_mq_complete_request); |
| 623 | |
| 624 | int blk_mq_request_started(struct request *rq) |
| 625 | { |
| 626 | return blk_mq_rq_state(rq) != MQ_RQ_IDLE; |
| 627 | } |
| 628 | EXPORT_SYMBOL_GPL(blk_mq_request_started); |
| 629 | |
| 630 | void blk_mq_start_request(struct request *rq) |
| 631 | { |
| 632 | struct request_queue *q = rq->q; |
| 633 | |
| 634 | blk_mq_sched_started_request(rq); |
| 635 | |
| 636 | trace_block_rq_issue(q, rq); |
| 637 | |
| 638 | if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { |
| 639 | rq->io_start_time_ns = ktime_get_ns(); |
| 640 | #ifdef CONFIG_BLK_DEV_THROTTLING_LOW |
| 641 | rq->throtl_size = blk_rq_sectors(rq); |
| 642 | #endif |
| 643 | rq->rq_flags |= RQF_STATS; |
| 644 | rq_qos_issue(q, rq); |
| 645 | } |
| 646 | |
| 647 | WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); |
| 648 | |
| 649 | blk_add_timer(rq); |
| 650 | WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); |
| 651 | |
| 652 | if (q->dma_drain_size && blk_rq_bytes(rq)) { |
| 653 | /* |
| 654 | * Make sure space for the drain appears. We know we can do |
| 655 | * this because max_hw_segments has been adjusted to be one |
| 656 | * fewer than the device can handle. |
| 657 | */ |
| 658 | rq->nr_phys_segments++; |
| 659 | } |
| 660 | } |
| 661 | EXPORT_SYMBOL(blk_mq_start_request); |
| 662 | |
| 663 | static void __blk_mq_requeue_request(struct request *rq) |
| 664 | { |
| 665 | struct request_queue *q = rq->q; |
| 666 | |
| 667 | blk_mq_put_driver_tag(rq); |
| 668 | |
| 669 | trace_block_rq_requeue(q, rq); |
| 670 | rq_qos_requeue(q, rq); |
| 671 | |
| 672 | if (blk_mq_request_started(rq)) { |
| 673 | WRITE_ONCE(rq->state, MQ_RQ_IDLE); |
| 674 | rq->rq_flags &= ~RQF_TIMED_OUT; |
| 675 | if (q->dma_drain_size && blk_rq_bytes(rq)) |
| 676 | rq->nr_phys_segments--; |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) |
| 681 | { |
| 682 | __blk_mq_requeue_request(rq); |
| 683 | |
| 684 | /* this request will be re-inserted to io scheduler queue */ |
| 685 | blk_mq_sched_requeue_request(rq); |
| 686 | |
| 687 | BUG_ON(blk_queued_rq(rq)); |
| 688 | blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); |
| 689 | } |
| 690 | EXPORT_SYMBOL(blk_mq_requeue_request); |
| 691 | |
| 692 | static void blk_mq_requeue_work(struct work_struct *work) |
| 693 | { |
| 694 | struct request_queue *q = |
| 695 | container_of(work, struct request_queue, requeue_work.work); |
| 696 | LIST_HEAD(rq_list); |
| 697 | struct request *rq, *next; |
| 698 | |
| 699 | spin_lock_irq(&q->requeue_lock); |
| 700 | list_splice_init(&q->requeue_list, &rq_list); |
| 701 | spin_unlock_irq(&q->requeue_lock); |
| 702 | |
| 703 | list_for_each_entry_safe(rq, next, &rq_list, queuelist) { |
| 704 | if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) |
| 705 | continue; |
| 706 | |
| 707 | rq->rq_flags &= ~RQF_SOFTBARRIER; |
| 708 | list_del_init(&rq->queuelist); |
| 709 | /* |
| 710 | * If RQF_DONTPREP, rq has contained some driver specific |
| 711 | * data, so insert it to hctx dispatch list to avoid any |
| 712 | * merge. |
| 713 | */ |
| 714 | if (rq->rq_flags & RQF_DONTPREP) |
| 715 | blk_mq_request_bypass_insert(rq, false); |
| 716 | else |
| 717 | blk_mq_sched_insert_request(rq, true, false, false); |
| 718 | } |
| 719 | |
| 720 | while (!list_empty(&rq_list)) { |
| 721 | rq = list_entry(rq_list.next, struct request, queuelist); |
| 722 | list_del_init(&rq->queuelist); |
| 723 | blk_mq_sched_insert_request(rq, false, false, false); |
| 724 | } |
| 725 | |
| 726 | blk_mq_run_hw_queues(q, false); |
| 727 | } |
| 728 | |
| 729 | void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, |
| 730 | bool kick_requeue_list) |
| 731 | { |
| 732 | struct request_queue *q = rq->q; |
| 733 | unsigned long flags; |
| 734 | |
| 735 | /* |
| 736 | * We abuse this flag that is otherwise used by the I/O scheduler to |
| 737 | * request head insertion from the workqueue. |
| 738 | */ |
| 739 | BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); |
| 740 | |
| 741 | spin_lock_irqsave(&q->requeue_lock, flags); |
| 742 | if (at_head) { |
| 743 | rq->rq_flags |= RQF_SOFTBARRIER; |
| 744 | list_add(&rq->queuelist, &q->requeue_list); |
| 745 | } else { |
| 746 | list_add_tail(&rq->queuelist, &q->requeue_list); |
| 747 | } |
| 748 | spin_unlock_irqrestore(&q->requeue_lock, flags); |
| 749 | |
| 750 | if (kick_requeue_list) |
| 751 | blk_mq_kick_requeue_list(q); |
| 752 | } |
| 753 | EXPORT_SYMBOL(blk_mq_add_to_requeue_list); |
| 754 | |
| 755 | void blk_mq_kick_requeue_list(struct request_queue *q) |
| 756 | { |
| 757 | kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); |
| 758 | } |
| 759 | EXPORT_SYMBOL(blk_mq_kick_requeue_list); |
| 760 | |
| 761 | void blk_mq_delay_kick_requeue_list(struct request_queue *q, |
| 762 | unsigned long msecs) |
| 763 | { |
| 764 | kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, |
| 765 | msecs_to_jiffies(msecs)); |
| 766 | } |
| 767 | EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); |
| 768 | |
| 769 | struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) |
| 770 | { |
| 771 | if (tag < tags->nr_tags) { |
| 772 | prefetch(tags->rqs[tag]); |
| 773 | return tags->rqs[tag]; |
| 774 | } |
| 775 | |
| 776 | return NULL; |
| 777 | } |
| 778 | EXPORT_SYMBOL(blk_mq_tag_to_rq); |
| 779 | |
| 780 | static void blk_mq_rq_timed_out(struct request *req, bool reserved) |
| 781 | { |
| 782 | req->rq_flags |= RQF_TIMED_OUT; |
| 783 | if (req->q->mq_ops->timeout) { |
| 784 | enum blk_eh_timer_return ret; |
| 785 | |
| 786 | ret = req->q->mq_ops->timeout(req, reserved); |
| 787 | if (ret == BLK_EH_DONE) |
| 788 | return; |
| 789 | WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); |
| 790 | } |
| 791 | |
| 792 | blk_add_timer(req); |
| 793 | } |
| 794 | |
| 795 | static bool blk_mq_req_expired(struct request *rq, unsigned long *next) |
| 796 | { |
| 797 | unsigned long deadline; |
| 798 | |
| 799 | if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) |
| 800 | return false; |
| 801 | if (rq->rq_flags & RQF_TIMED_OUT) |
| 802 | return false; |
| 803 | |
| 804 | deadline = blk_rq_deadline(rq); |
| 805 | if (time_after_eq(jiffies, deadline)) |
| 806 | return true; |
| 807 | |
| 808 | if (*next == 0) |
| 809 | *next = deadline; |
| 810 | else if (time_after(*next, deadline)) |
| 811 | *next = deadline; |
| 812 | return false; |
| 813 | } |
| 814 | |
| 815 | static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, |
| 816 | struct request *rq, void *priv, bool reserved) |
| 817 | { |
| 818 | unsigned long *next = priv; |
| 819 | |
| 820 | /* |
| 821 | * Just do a quick check if it is expired before locking the request in |
| 822 | * so we're not unnecessarilly synchronizing across CPUs. |
| 823 | */ |
| 824 | if (!blk_mq_req_expired(rq, next)) |
| 825 | return; |
| 826 | |
| 827 | /* |
| 828 | * We have reason to believe the request may be expired. Take a |
| 829 | * reference on the request to lock this request lifetime into its |
| 830 | * currently allocated context to prevent it from being reallocated in |
| 831 | * the event the completion by-passes this timeout handler. |
| 832 | * |
| 833 | * If the reference was already released, then the driver beat the |
| 834 | * timeout handler to posting a natural completion. |
| 835 | */ |
| 836 | if (!refcount_inc_not_zero(&rq->ref)) |
| 837 | return; |
| 838 | |
| 839 | /* |
| 840 | * The request is now locked and cannot be reallocated underneath the |
| 841 | * timeout handler's processing. Re-verify this exact request is truly |
| 842 | * expired; if it is not expired, then the request was completed and |
| 843 | * reallocated as a new request. |
| 844 | */ |
| 845 | if (blk_mq_req_expired(rq, next)) |
| 846 | blk_mq_rq_timed_out(rq, reserved); |
| 847 | |
| 848 | if (is_flush_rq(rq, hctx)) |
| 849 | rq->end_io(rq, 0); |
| 850 | else if (refcount_dec_and_test(&rq->ref)) |
| 851 | __blk_mq_free_request(rq); |
| 852 | } |
| 853 | |
| 854 | static void blk_mq_timeout_work(struct work_struct *work) |
| 855 | { |
| 856 | struct request_queue *q = |
| 857 | container_of(work, struct request_queue, timeout_work); |
| 858 | unsigned long next = 0; |
| 859 | struct blk_mq_hw_ctx *hctx; |
| 860 | int i; |
| 861 | |
| 862 | /* A deadlock might occur if a request is stuck requiring a |
| 863 | * timeout at the same time a queue freeze is waiting |
| 864 | * completion, since the timeout code would not be able to |
| 865 | * acquire the queue reference here. |
| 866 | * |
| 867 | * That's why we don't use blk_queue_enter here; instead, we use |
| 868 | * percpu_ref_tryget directly, because we need to be able to |
| 869 | * obtain a reference even in the short window between the queue |
| 870 | * starting to freeze, by dropping the first reference in |
| 871 | * blk_freeze_queue_start, and the moment the last request is |
| 872 | * consumed, marked by the instant q_usage_counter reaches |
| 873 | * zero. |
| 874 | */ |
| 875 | if (!percpu_ref_tryget(&q->q_usage_counter)) |
| 876 | return; |
| 877 | |
| 878 | blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); |
| 879 | |
| 880 | if (next != 0) { |
| 881 | mod_timer(&q->timeout, next); |
| 882 | } else { |
| 883 | /* |
| 884 | * Request timeouts are handled as a forward rolling timer. If |
| 885 | * we end up here it means that no requests are pending and |
| 886 | * also that no request has been pending for a while. Mark |
| 887 | * each hctx as idle. |
| 888 | */ |
| 889 | queue_for_each_hw_ctx(q, hctx, i) { |
| 890 | /* the hctx may be unmapped, so check it here */ |
| 891 | if (blk_mq_hw_queue_mapped(hctx)) |
| 892 | blk_mq_tag_idle(hctx); |
| 893 | } |
| 894 | } |
| 895 | blk_queue_exit(q); |
| 896 | } |
| 897 | |
| 898 | struct flush_busy_ctx_data { |
| 899 | struct blk_mq_hw_ctx *hctx; |
| 900 | struct list_head *list; |
| 901 | }; |
| 902 | |
| 903 | static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) |
| 904 | { |
| 905 | struct flush_busy_ctx_data *flush_data = data; |
| 906 | struct blk_mq_hw_ctx *hctx = flush_data->hctx; |
| 907 | struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; |
| 908 | |
| 909 | spin_lock(&ctx->lock); |
| 910 | list_splice_tail_init(&ctx->rq_list, flush_data->list); |
| 911 | sbitmap_clear_bit(sb, bitnr); |
| 912 | spin_unlock(&ctx->lock); |
| 913 | return true; |
| 914 | } |
| 915 | |
| 916 | /* |
| 917 | * Process software queues that have been marked busy, splicing them |
| 918 | * to the for-dispatch |
| 919 | */ |
| 920 | void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) |
| 921 | { |
| 922 | struct flush_busy_ctx_data data = { |
| 923 | .hctx = hctx, |
| 924 | .list = list, |
| 925 | }; |
| 926 | |
| 927 | sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); |
| 928 | } |
| 929 | EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); |
| 930 | |
| 931 | struct dispatch_rq_data { |
| 932 | struct blk_mq_hw_ctx *hctx; |
| 933 | struct request *rq; |
| 934 | }; |
| 935 | |
| 936 | static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, |
| 937 | void *data) |
| 938 | { |
| 939 | struct dispatch_rq_data *dispatch_data = data; |
| 940 | struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; |
| 941 | struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; |
| 942 | |
| 943 | spin_lock(&ctx->lock); |
| 944 | if (!list_empty(&ctx->rq_list)) { |
| 945 | dispatch_data->rq = list_entry_rq(ctx->rq_list.next); |
| 946 | list_del_init(&dispatch_data->rq->queuelist); |
| 947 | if (list_empty(&ctx->rq_list)) |
| 948 | sbitmap_clear_bit(sb, bitnr); |
| 949 | } |
| 950 | spin_unlock(&ctx->lock); |
| 951 | |
| 952 | return !dispatch_data->rq; |
| 953 | } |
| 954 | |
| 955 | struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, |
| 956 | struct blk_mq_ctx *start) |
| 957 | { |
| 958 | unsigned off = start ? start->index_hw : 0; |
| 959 | struct dispatch_rq_data data = { |
| 960 | .hctx = hctx, |
| 961 | .rq = NULL, |
| 962 | }; |
| 963 | |
| 964 | __sbitmap_for_each_set(&hctx->ctx_map, off, |
| 965 | dispatch_rq_from_ctx, &data); |
| 966 | |
| 967 | return data.rq; |
| 968 | } |
| 969 | |
| 970 | static inline unsigned int queued_to_index(unsigned int queued) |
| 971 | { |
| 972 | if (!queued) |
| 973 | return 0; |
| 974 | |
| 975 | return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); |
| 976 | } |
| 977 | |
| 978 | bool blk_mq_get_driver_tag(struct request *rq) |
| 979 | { |
| 980 | struct blk_mq_alloc_data data = { |
| 981 | .q = rq->q, |
| 982 | .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), |
| 983 | .flags = BLK_MQ_REQ_NOWAIT, |
| 984 | }; |
| 985 | bool shared; |
| 986 | |
| 987 | if (rq->tag != -1) |
| 988 | goto done; |
| 989 | |
| 990 | if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) |
| 991 | data.flags |= BLK_MQ_REQ_RESERVED; |
| 992 | |
| 993 | shared = blk_mq_tag_busy(data.hctx); |
| 994 | rq->tag = blk_mq_get_tag(&data); |
| 995 | if (rq->tag >= 0) { |
| 996 | if (shared) { |
| 997 | rq->rq_flags |= RQF_MQ_INFLIGHT; |
| 998 | atomic_inc(&data.hctx->nr_active); |
| 999 | } |
| 1000 | data.hctx->tags->rqs[rq->tag] = rq; |
| 1001 | } |
| 1002 | |
| 1003 | done: |
| 1004 | return rq->tag != -1; |
| 1005 | } |
| 1006 | |
| 1007 | static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, |
| 1008 | int flags, void *key) |
| 1009 | { |
| 1010 | struct blk_mq_hw_ctx *hctx; |
| 1011 | |
| 1012 | hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); |
| 1013 | |
| 1014 | spin_lock(&hctx->dispatch_wait_lock); |
| 1015 | list_del_init(&wait->entry); |
| 1016 | spin_unlock(&hctx->dispatch_wait_lock); |
| 1017 | |
| 1018 | blk_mq_run_hw_queue(hctx, true); |
| 1019 | return 1; |
| 1020 | } |
| 1021 | |
| 1022 | /* |
| 1023 | * Mark us waiting for a tag. For shared tags, this involves hooking us into |
| 1024 | * the tag wakeups. For non-shared tags, we can simply mark us needing a |
| 1025 | * restart. For both cases, take care to check the condition again after |
| 1026 | * marking us as waiting. |
| 1027 | */ |
| 1028 | static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, |
| 1029 | struct request *rq) |
| 1030 | { |
| 1031 | struct wait_queue_head *wq; |
| 1032 | wait_queue_entry_t *wait; |
| 1033 | bool ret; |
| 1034 | |
| 1035 | if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { |
| 1036 | if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) |
| 1037 | set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state); |
| 1038 | |
| 1039 | /* |
| 1040 | * It's possible that a tag was freed in the window between the |
| 1041 | * allocation failure and adding the hardware queue to the wait |
| 1042 | * queue. |
| 1043 | * |
| 1044 | * Don't clear RESTART here, someone else could have set it. |
| 1045 | * At most this will cost an extra queue run. |
| 1046 | */ |
| 1047 | return blk_mq_get_driver_tag(rq); |
| 1048 | } |
| 1049 | |
| 1050 | wait = &hctx->dispatch_wait; |
| 1051 | if (!list_empty_careful(&wait->entry)) |
| 1052 | return false; |
| 1053 | |
| 1054 | wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait; |
| 1055 | |
| 1056 | spin_lock_irq(&wq->lock); |
| 1057 | spin_lock(&hctx->dispatch_wait_lock); |
| 1058 | if (!list_empty(&wait->entry)) { |
| 1059 | spin_unlock(&hctx->dispatch_wait_lock); |
| 1060 | spin_unlock_irq(&wq->lock); |
| 1061 | return false; |
| 1062 | } |
| 1063 | |
| 1064 | wait->flags &= ~WQ_FLAG_EXCLUSIVE; |
| 1065 | __add_wait_queue(wq, wait); |
| 1066 | |
| 1067 | /* |
| 1068 | * It's possible that a tag was freed in the window between the |
| 1069 | * allocation failure and adding the hardware queue to the wait |
| 1070 | * queue. |
| 1071 | */ |
| 1072 | ret = blk_mq_get_driver_tag(rq); |
| 1073 | if (!ret) { |
| 1074 | spin_unlock(&hctx->dispatch_wait_lock); |
| 1075 | spin_unlock_irq(&wq->lock); |
| 1076 | return false; |
| 1077 | } |
| 1078 | |
| 1079 | /* |
| 1080 | * We got a tag, remove ourselves from the wait queue to ensure |
| 1081 | * someone else gets the wakeup. |
| 1082 | */ |
| 1083 | list_del_init(&wait->entry); |
| 1084 | spin_unlock(&hctx->dispatch_wait_lock); |
| 1085 | spin_unlock_irq(&wq->lock); |
| 1086 | |
| 1087 | return true; |
| 1088 | } |
| 1089 | |
| 1090 | #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 |
| 1091 | #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 |
| 1092 | /* |
| 1093 | * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): |
| 1094 | * - EWMA is one simple way to compute running average value |
| 1095 | * - weight(7/8 and 1/8) is applied so that it can decrease exponentially |
| 1096 | * - take 4 as factor for avoiding to get too small(0) result, and this |
| 1097 | * factor doesn't matter because EWMA decreases exponentially |
| 1098 | */ |
| 1099 | static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) |
| 1100 | { |
| 1101 | unsigned int ewma; |
| 1102 | |
| 1103 | if (hctx->queue->elevator) |
| 1104 | return; |
| 1105 | |
| 1106 | ewma = hctx->dispatch_busy; |
| 1107 | |
| 1108 | if (!ewma && !busy) |
| 1109 | return; |
| 1110 | |
| 1111 | ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; |
| 1112 | if (busy) |
| 1113 | ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; |
| 1114 | ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; |
| 1115 | |
| 1116 | hctx->dispatch_busy = ewma; |
| 1117 | } |
| 1118 | |
| 1119 | #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ |
| 1120 | |
| 1121 | /* |
| 1122 | * Returns true if we did some work AND can potentially do more. |
| 1123 | */ |
| 1124 | bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, |
| 1125 | bool got_budget) |
| 1126 | { |
| 1127 | struct blk_mq_hw_ctx *hctx; |
| 1128 | struct request *rq, *nxt; |
| 1129 | bool no_tag = false; |
| 1130 | int errors, queued; |
| 1131 | blk_status_t ret = BLK_STS_OK; |
| 1132 | |
| 1133 | if (list_empty(list)) |
| 1134 | return false; |
| 1135 | |
| 1136 | WARN_ON(!list_is_singular(list) && got_budget); |
| 1137 | |
| 1138 | /* |
| 1139 | * Now process all the entries, sending them to the driver. |
| 1140 | */ |
| 1141 | errors = queued = 0; |
| 1142 | do { |
| 1143 | struct blk_mq_queue_data bd; |
| 1144 | |
| 1145 | rq = list_first_entry(list, struct request, queuelist); |
| 1146 | |
| 1147 | hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu); |
| 1148 | if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) |
| 1149 | break; |
| 1150 | |
| 1151 | if (!blk_mq_get_driver_tag(rq)) { |
| 1152 | /* |
| 1153 | * The initial allocation attempt failed, so we need to |
| 1154 | * rerun the hardware queue when a tag is freed. The |
| 1155 | * waitqueue takes care of that. If the queue is run |
| 1156 | * before we add this entry back on the dispatch list, |
| 1157 | * we'll re-run it below. |
| 1158 | */ |
| 1159 | if (!blk_mq_mark_tag_wait(hctx, rq)) { |
| 1160 | blk_mq_put_dispatch_budget(hctx); |
| 1161 | /* |
| 1162 | * For non-shared tags, the RESTART check |
| 1163 | * will suffice. |
| 1164 | */ |
| 1165 | if (hctx->flags & BLK_MQ_F_TAG_SHARED) |
| 1166 | no_tag = true; |
| 1167 | break; |
| 1168 | } |
| 1169 | } |
| 1170 | |
| 1171 | list_del_init(&rq->queuelist); |
| 1172 | |
| 1173 | bd.rq = rq; |
| 1174 | |
| 1175 | /* |
| 1176 | * Flag last if we have no more requests, or if we have more |
| 1177 | * but can't assign a driver tag to it. |
| 1178 | */ |
| 1179 | if (list_empty(list)) |
| 1180 | bd.last = true; |
| 1181 | else { |
| 1182 | nxt = list_first_entry(list, struct request, queuelist); |
| 1183 | bd.last = !blk_mq_get_driver_tag(nxt); |
| 1184 | } |
| 1185 | |
| 1186 | ret = q->mq_ops->queue_rq(hctx, &bd); |
| 1187 | if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { |
| 1188 | /* |
| 1189 | * If an I/O scheduler has been configured and we got a |
| 1190 | * driver tag for the next request already, free it |
| 1191 | * again. |
| 1192 | */ |
| 1193 | if (!list_empty(list)) { |
| 1194 | nxt = list_first_entry(list, struct request, queuelist); |
| 1195 | blk_mq_put_driver_tag(nxt); |
| 1196 | } |
| 1197 | list_add(&rq->queuelist, list); |
| 1198 | __blk_mq_requeue_request(rq); |
| 1199 | break; |
| 1200 | } |
| 1201 | |
| 1202 | if (unlikely(ret != BLK_STS_OK)) { |
| 1203 | errors++; |
| 1204 | blk_mq_end_request(rq, BLK_STS_IOERR); |
| 1205 | continue; |
| 1206 | } |
| 1207 | |
| 1208 | queued++; |
| 1209 | } while (!list_empty(list)); |
| 1210 | |
| 1211 | hctx->dispatched[queued_to_index(queued)]++; |
| 1212 | |
| 1213 | /* |
| 1214 | * Any items that need requeuing? Stuff them into hctx->dispatch, |
| 1215 | * that is where we will continue on next queue run. |
| 1216 | */ |
| 1217 | if (!list_empty(list)) { |
| 1218 | bool needs_restart; |
| 1219 | |
| 1220 | spin_lock(&hctx->lock); |
| 1221 | list_splice_init(list, &hctx->dispatch); |
| 1222 | spin_unlock(&hctx->lock); |
| 1223 | |
| 1224 | /* |
| 1225 | * If SCHED_RESTART was set by the caller of this function and |
| 1226 | * it is no longer set that means that it was cleared by another |
| 1227 | * thread and hence that a queue rerun is needed. |
| 1228 | * |
| 1229 | * If 'no_tag' is set, that means that we failed getting |
| 1230 | * a driver tag with an I/O scheduler attached. If our dispatch |
| 1231 | * waitqueue is no longer active, ensure that we run the queue |
| 1232 | * AFTER adding our entries back to the list. |
| 1233 | * |
| 1234 | * If no I/O scheduler has been configured it is possible that |
| 1235 | * the hardware queue got stopped and restarted before requests |
| 1236 | * were pushed back onto the dispatch list. Rerun the queue to |
| 1237 | * avoid starvation. Notes: |
| 1238 | * - blk_mq_run_hw_queue() checks whether or not a queue has |
| 1239 | * been stopped before rerunning a queue. |
| 1240 | * - Some but not all block drivers stop a queue before |
| 1241 | * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq |
| 1242 | * and dm-rq. |
| 1243 | * |
| 1244 | * If driver returns BLK_STS_RESOURCE and SCHED_RESTART |
| 1245 | * bit is set, run queue after a delay to avoid IO stalls |
| 1246 | * that could otherwise occur if the queue is idle. |
| 1247 | */ |
| 1248 | needs_restart = blk_mq_sched_needs_restart(hctx); |
| 1249 | if (!needs_restart || |
| 1250 | (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) |
| 1251 | blk_mq_run_hw_queue(hctx, true); |
| 1252 | else if (needs_restart && (ret == BLK_STS_RESOURCE)) |
| 1253 | blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); |
| 1254 | |
| 1255 | blk_mq_update_dispatch_busy(hctx, true); |
| 1256 | return false; |
| 1257 | } else |
| 1258 | blk_mq_update_dispatch_busy(hctx, false); |
| 1259 | |
| 1260 | /* |
| 1261 | * If the host/device is unable to accept more work, inform the |
| 1262 | * caller of that. |
| 1263 | */ |
| 1264 | if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) |
| 1265 | return false; |
| 1266 | |
| 1267 | return (queued + errors) != 0; |
| 1268 | } |
| 1269 | |
| 1270 | static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) |
| 1271 | { |
| 1272 | int srcu_idx; |
| 1273 | |
| 1274 | /* |
| 1275 | * We should be running this queue from one of the CPUs that |
| 1276 | * are mapped to it. |
| 1277 | * |
| 1278 | * There are at least two related races now between setting |
| 1279 | * hctx->next_cpu from blk_mq_hctx_next_cpu() and running |
| 1280 | * __blk_mq_run_hw_queue(): |
| 1281 | * |
| 1282 | * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), |
| 1283 | * but later it becomes online, then this warning is harmless |
| 1284 | * at all |
| 1285 | * |
| 1286 | * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), |
| 1287 | * but later it becomes offline, then the warning can't be |
| 1288 | * triggered, and we depend on blk-mq timeout handler to |
| 1289 | * handle dispatched requests to this hctx |
| 1290 | */ |
| 1291 | if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && |
| 1292 | cpu_online(hctx->next_cpu)) { |
| 1293 | printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", |
| 1294 | raw_smp_processor_id(), |
| 1295 | cpumask_empty(hctx->cpumask) ? "inactive": "active"); |
| 1296 | dump_stack(); |
| 1297 | } |
| 1298 | |
| 1299 | /* |
| 1300 | * We can't run the queue inline with ints disabled. Ensure that |
| 1301 | * we catch bad users of this early. |
| 1302 | */ |
| 1303 | WARN_ON_ONCE(in_interrupt()); |
| 1304 | |
| 1305 | might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); |
| 1306 | |
| 1307 | hctx_lock(hctx, &srcu_idx); |
| 1308 | blk_mq_sched_dispatch_requests(hctx); |
| 1309 | hctx_unlock(hctx, srcu_idx); |
| 1310 | } |
| 1311 | |
| 1312 | static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) |
| 1313 | { |
| 1314 | int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); |
| 1315 | |
| 1316 | if (cpu >= nr_cpu_ids) |
| 1317 | cpu = cpumask_first(hctx->cpumask); |
| 1318 | return cpu; |
| 1319 | } |
| 1320 | |
| 1321 | /* |
| 1322 | * It'd be great if the workqueue API had a way to pass |
| 1323 | * in a mask and had some smarts for more clever placement. |
| 1324 | * For now we just round-robin here, switching for every |
| 1325 | * BLK_MQ_CPU_WORK_BATCH queued items. |
| 1326 | */ |
| 1327 | static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) |
| 1328 | { |
| 1329 | bool tried = false; |
| 1330 | int next_cpu = hctx->next_cpu; |
| 1331 | |
| 1332 | if (hctx->queue->nr_hw_queues == 1) |
| 1333 | return WORK_CPU_UNBOUND; |
| 1334 | |
| 1335 | if (--hctx->next_cpu_batch <= 0) { |
| 1336 | select_cpu: |
| 1337 | next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, |
| 1338 | cpu_online_mask); |
| 1339 | if (next_cpu >= nr_cpu_ids) |
| 1340 | next_cpu = blk_mq_first_mapped_cpu(hctx); |
| 1341 | hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; |
| 1342 | } |
| 1343 | |
| 1344 | /* |
| 1345 | * Do unbound schedule if we can't find a online CPU for this hctx, |
| 1346 | * and it should only happen in the path of handling CPU DEAD. |
| 1347 | */ |
| 1348 | if (!cpu_online(next_cpu)) { |
| 1349 | if (!tried) { |
| 1350 | tried = true; |
| 1351 | goto select_cpu; |
| 1352 | } |
| 1353 | |
| 1354 | /* |
| 1355 | * Make sure to re-select CPU next time once after CPUs |
| 1356 | * in hctx->cpumask become online again. |
| 1357 | */ |
| 1358 | hctx->next_cpu = next_cpu; |
| 1359 | hctx->next_cpu_batch = 1; |
| 1360 | return WORK_CPU_UNBOUND; |
| 1361 | } |
| 1362 | |
| 1363 | hctx->next_cpu = next_cpu; |
| 1364 | return next_cpu; |
| 1365 | } |
| 1366 | |
| 1367 | static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, |
| 1368 | unsigned long msecs) |
| 1369 | { |
| 1370 | if (unlikely(blk_mq_hctx_stopped(hctx))) |
| 1371 | return; |
| 1372 | |
| 1373 | if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { |
| 1374 | int cpu = get_cpu(); |
| 1375 | if (cpumask_test_cpu(cpu, hctx->cpumask)) { |
| 1376 | __blk_mq_run_hw_queue(hctx); |
| 1377 | put_cpu(); |
| 1378 | return; |
| 1379 | } |
| 1380 | |
| 1381 | put_cpu(); |
| 1382 | } |
| 1383 | |
| 1384 | kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, |
| 1385 | msecs_to_jiffies(msecs)); |
| 1386 | } |
| 1387 | |
| 1388 | void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) |
| 1389 | { |
| 1390 | __blk_mq_delay_run_hw_queue(hctx, true, msecs); |
| 1391 | } |
| 1392 | EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); |
| 1393 | |
| 1394 | bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) |
| 1395 | { |
| 1396 | int srcu_idx; |
| 1397 | bool need_run; |
| 1398 | |
| 1399 | /* |
| 1400 | * When queue is quiesced, we may be switching io scheduler, or |
| 1401 | * updating nr_hw_queues, or other things, and we can't run queue |
| 1402 | * any more, even __blk_mq_hctx_has_pending() can't be called safely. |
| 1403 | * |
| 1404 | * And queue will be rerun in blk_mq_unquiesce_queue() if it is |
| 1405 | * quiesced. |
| 1406 | */ |
| 1407 | hctx_lock(hctx, &srcu_idx); |
| 1408 | need_run = !blk_queue_quiesced(hctx->queue) && |
| 1409 | blk_mq_hctx_has_pending(hctx); |
| 1410 | hctx_unlock(hctx, srcu_idx); |
| 1411 | |
| 1412 | if (need_run) { |
| 1413 | __blk_mq_delay_run_hw_queue(hctx, async, 0); |
| 1414 | return true; |
| 1415 | } |
| 1416 | |
| 1417 | return false; |
| 1418 | } |
| 1419 | EXPORT_SYMBOL(blk_mq_run_hw_queue); |
| 1420 | |
| 1421 | void blk_mq_run_hw_queues(struct request_queue *q, bool async) |
| 1422 | { |
| 1423 | struct blk_mq_hw_ctx *hctx; |
| 1424 | int i; |
| 1425 | |
| 1426 | queue_for_each_hw_ctx(q, hctx, i) { |
| 1427 | if (blk_mq_hctx_stopped(hctx)) |
| 1428 | continue; |
| 1429 | |
| 1430 | blk_mq_run_hw_queue(hctx, async); |
| 1431 | } |
| 1432 | } |
| 1433 | EXPORT_SYMBOL(blk_mq_run_hw_queues); |
| 1434 | |
| 1435 | /** |
| 1436 | * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped |
| 1437 | * @q: request queue. |
| 1438 | * |
| 1439 | * The caller is responsible for serializing this function against |
| 1440 | * blk_mq_{start,stop}_hw_queue(). |
| 1441 | */ |
| 1442 | bool blk_mq_queue_stopped(struct request_queue *q) |
| 1443 | { |
| 1444 | struct blk_mq_hw_ctx *hctx; |
| 1445 | int i; |
| 1446 | |
| 1447 | queue_for_each_hw_ctx(q, hctx, i) |
| 1448 | if (blk_mq_hctx_stopped(hctx)) |
| 1449 | return true; |
| 1450 | |
| 1451 | return false; |
| 1452 | } |
| 1453 | EXPORT_SYMBOL(blk_mq_queue_stopped); |
| 1454 | |
| 1455 | /* |
| 1456 | * This function is often used for pausing .queue_rq() by driver when |
| 1457 | * there isn't enough resource or some conditions aren't satisfied, and |
| 1458 | * BLK_STS_RESOURCE is usually returned. |
| 1459 | * |
| 1460 | * We do not guarantee that dispatch can be drained or blocked |
| 1461 | * after blk_mq_stop_hw_queue() returns. Please use |
| 1462 | * blk_mq_quiesce_queue() for that requirement. |
| 1463 | */ |
| 1464 | void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) |
| 1465 | { |
| 1466 | cancel_delayed_work(&hctx->run_work); |
| 1467 | |
| 1468 | set_bit(BLK_MQ_S_STOPPED, &hctx->state); |
| 1469 | } |
| 1470 | EXPORT_SYMBOL(blk_mq_stop_hw_queue); |
| 1471 | |
| 1472 | /* |
| 1473 | * This function is often used for pausing .queue_rq() by driver when |
| 1474 | * there isn't enough resource or some conditions aren't satisfied, and |
| 1475 | * BLK_STS_RESOURCE is usually returned. |
| 1476 | * |
| 1477 | * We do not guarantee that dispatch can be drained or blocked |
| 1478 | * after blk_mq_stop_hw_queues() returns. Please use |
| 1479 | * blk_mq_quiesce_queue() for that requirement. |
| 1480 | */ |
| 1481 | void blk_mq_stop_hw_queues(struct request_queue *q) |
| 1482 | { |
| 1483 | struct blk_mq_hw_ctx *hctx; |
| 1484 | int i; |
| 1485 | |
| 1486 | queue_for_each_hw_ctx(q, hctx, i) |
| 1487 | blk_mq_stop_hw_queue(hctx); |
| 1488 | } |
| 1489 | EXPORT_SYMBOL(blk_mq_stop_hw_queues); |
| 1490 | |
| 1491 | void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) |
| 1492 | { |
| 1493 | clear_bit(BLK_MQ_S_STOPPED, &hctx->state); |
| 1494 | |
| 1495 | blk_mq_run_hw_queue(hctx, false); |
| 1496 | } |
| 1497 | EXPORT_SYMBOL(blk_mq_start_hw_queue); |
| 1498 | |
| 1499 | void blk_mq_start_hw_queues(struct request_queue *q) |
| 1500 | { |
| 1501 | struct blk_mq_hw_ctx *hctx; |
| 1502 | int i; |
| 1503 | |
| 1504 | queue_for_each_hw_ctx(q, hctx, i) |
| 1505 | blk_mq_start_hw_queue(hctx); |
| 1506 | } |
| 1507 | EXPORT_SYMBOL(blk_mq_start_hw_queues); |
| 1508 | |
| 1509 | void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) |
| 1510 | { |
| 1511 | if (!blk_mq_hctx_stopped(hctx)) |
| 1512 | return; |
| 1513 | |
| 1514 | clear_bit(BLK_MQ_S_STOPPED, &hctx->state); |
| 1515 | blk_mq_run_hw_queue(hctx, async); |
| 1516 | } |
| 1517 | EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); |
| 1518 | |
| 1519 | void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) |
| 1520 | { |
| 1521 | struct blk_mq_hw_ctx *hctx; |
| 1522 | int i; |
| 1523 | |
| 1524 | queue_for_each_hw_ctx(q, hctx, i) |
| 1525 | blk_mq_start_stopped_hw_queue(hctx, async); |
| 1526 | } |
| 1527 | EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); |
| 1528 | |
| 1529 | static void blk_mq_run_work_fn(struct work_struct *work) |
| 1530 | { |
| 1531 | struct blk_mq_hw_ctx *hctx; |
| 1532 | |
| 1533 | hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); |
| 1534 | |
| 1535 | /* |
| 1536 | * If we are stopped, don't run the queue. |
| 1537 | */ |
| 1538 | if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) |
| 1539 | return; |
| 1540 | |
| 1541 | __blk_mq_run_hw_queue(hctx); |
| 1542 | } |
| 1543 | |
| 1544 | static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, |
| 1545 | struct request *rq, |
| 1546 | bool at_head) |
| 1547 | { |
| 1548 | struct blk_mq_ctx *ctx = rq->mq_ctx; |
| 1549 | |
| 1550 | lockdep_assert_held(&ctx->lock); |
| 1551 | |
| 1552 | trace_block_rq_insert(hctx->queue, rq); |
| 1553 | |
| 1554 | if (at_head) |
| 1555 | list_add(&rq->queuelist, &ctx->rq_list); |
| 1556 | else |
| 1557 | list_add_tail(&rq->queuelist, &ctx->rq_list); |
| 1558 | } |
| 1559 | |
| 1560 | void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, |
| 1561 | bool at_head) |
| 1562 | { |
| 1563 | struct blk_mq_ctx *ctx = rq->mq_ctx; |
| 1564 | |
| 1565 | lockdep_assert_held(&ctx->lock); |
| 1566 | |
| 1567 | __blk_mq_insert_req_list(hctx, rq, at_head); |
| 1568 | blk_mq_hctx_mark_pending(hctx, ctx); |
| 1569 | } |
| 1570 | |
| 1571 | /* |
| 1572 | * Should only be used carefully, when the caller knows we want to |
| 1573 | * bypass a potential IO scheduler on the target device. |
| 1574 | */ |
| 1575 | void blk_mq_request_bypass_insert(struct request *rq, bool run_queue) |
| 1576 | { |
| 1577 | struct blk_mq_ctx *ctx = rq->mq_ctx; |
| 1578 | struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); |
| 1579 | |
| 1580 | spin_lock(&hctx->lock); |
| 1581 | list_add_tail(&rq->queuelist, &hctx->dispatch); |
| 1582 | spin_unlock(&hctx->lock); |
| 1583 | |
| 1584 | if (run_queue) |
| 1585 | blk_mq_run_hw_queue(hctx, false); |
| 1586 | } |
| 1587 | |
| 1588 | void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, |
| 1589 | struct list_head *list) |
| 1590 | |
| 1591 | { |
| 1592 | struct request *rq; |
| 1593 | |
| 1594 | /* |
| 1595 | * preemption doesn't flush plug list, so it's possible ctx->cpu is |
| 1596 | * offline now |
| 1597 | */ |
| 1598 | list_for_each_entry(rq, list, queuelist) { |
| 1599 | BUG_ON(rq->mq_ctx != ctx); |
| 1600 | trace_block_rq_insert(hctx->queue, rq); |
| 1601 | } |
| 1602 | |
| 1603 | spin_lock(&ctx->lock); |
| 1604 | list_splice_tail_init(list, &ctx->rq_list); |
| 1605 | blk_mq_hctx_mark_pending(hctx, ctx); |
| 1606 | spin_unlock(&ctx->lock); |
| 1607 | } |
| 1608 | |
| 1609 | static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b) |
| 1610 | { |
| 1611 | struct request *rqa = container_of(a, struct request, queuelist); |
| 1612 | struct request *rqb = container_of(b, struct request, queuelist); |
| 1613 | |
| 1614 | return !(rqa->mq_ctx < rqb->mq_ctx || |
| 1615 | (rqa->mq_ctx == rqb->mq_ctx && |
| 1616 | blk_rq_pos(rqa) < blk_rq_pos(rqb))); |
| 1617 | } |
| 1618 | |
| 1619 | void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) |
| 1620 | { |
| 1621 | struct blk_mq_ctx *this_ctx; |
| 1622 | struct request_queue *this_q; |
| 1623 | struct request *rq; |
| 1624 | LIST_HEAD(list); |
| 1625 | LIST_HEAD(ctx_list); |
| 1626 | unsigned int depth; |
| 1627 | |
| 1628 | list_splice_init(&plug->mq_list, &list); |
| 1629 | |
| 1630 | list_sort(NULL, &list, plug_ctx_cmp); |
| 1631 | |
| 1632 | this_q = NULL; |
| 1633 | this_ctx = NULL; |
| 1634 | depth = 0; |
| 1635 | |
| 1636 | while (!list_empty(&list)) { |
| 1637 | rq = list_entry_rq(list.next); |
| 1638 | list_del_init(&rq->queuelist); |
| 1639 | BUG_ON(!rq->q); |
| 1640 | if (rq->mq_ctx != this_ctx) { |
| 1641 | if (this_ctx) { |
| 1642 | trace_block_unplug(this_q, depth, !from_schedule); |
| 1643 | blk_mq_sched_insert_requests(this_q, this_ctx, |
| 1644 | &ctx_list, |
| 1645 | from_schedule); |
| 1646 | } |
| 1647 | |
| 1648 | this_ctx = rq->mq_ctx; |
| 1649 | this_q = rq->q; |
| 1650 | depth = 0; |
| 1651 | } |
| 1652 | |
| 1653 | depth++; |
| 1654 | list_add_tail(&rq->queuelist, &ctx_list); |
| 1655 | } |
| 1656 | |
| 1657 | /* |
| 1658 | * If 'this_ctx' is set, we know we have entries to complete |
| 1659 | * on 'ctx_list'. Do those. |
| 1660 | */ |
| 1661 | if (this_ctx) { |
| 1662 | trace_block_unplug(this_q, depth, !from_schedule); |
| 1663 | blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list, |
| 1664 | from_schedule); |
| 1665 | } |
| 1666 | } |
| 1667 | |
| 1668 | static void blk_mq_bio_to_request(struct request *rq, struct bio *bio) |
| 1669 | { |
| 1670 | blk_init_request_from_bio(rq, bio); |
| 1671 | |
| 1672 | blk_rq_set_rl(rq, blk_get_rl(rq->q, bio)); |
| 1673 | |
| 1674 | blk_account_io_start(rq, true); |
| 1675 | } |
| 1676 | |
| 1677 | static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) |
| 1678 | { |
| 1679 | if (rq->tag != -1) |
| 1680 | return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false); |
| 1681 | |
| 1682 | return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true); |
| 1683 | } |
| 1684 | |
| 1685 | static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, |
| 1686 | struct request *rq, |
| 1687 | blk_qc_t *cookie) |
| 1688 | { |
| 1689 | struct request_queue *q = rq->q; |
| 1690 | struct blk_mq_queue_data bd = { |
| 1691 | .rq = rq, |
| 1692 | .last = true, |
| 1693 | }; |
| 1694 | blk_qc_t new_cookie; |
| 1695 | blk_status_t ret; |
| 1696 | |
| 1697 | new_cookie = request_to_qc_t(hctx, rq); |
| 1698 | |
| 1699 | /* |
| 1700 | * For OK queue, we are done. For error, caller may kill it. |
| 1701 | * Any other error (busy), just add it to our list as we |
| 1702 | * previously would have done. |
| 1703 | */ |
| 1704 | ret = q->mq_ops->queue_rq(hctx, &bd); |
| 1705 | switch (ret) { |
| 1706 | case BLK_STS_OK: |
| 1707 | blk_mq_update_dispatch_busy(hctx, false); |
| 1708 | *cookie = new_cookie; |
| 1709 | break; |
| 1710 | case BLK_STS_RESOURCE: |
| 1711 | case BLK_STS_DEV_RESOURCE: |
| 1712 | blk_mq_update_dispatch_busy(hctx, true); |
| 1713 | __blk_mq_requeue_request(rq); |
| 1714 | break; |
| 1715 | default: |
| 1716 | blk_mq_update_dispatch_busy(hctx, false); |
| 1717 | *cookie = BLK_QC_T_NONE; |
| 1718 | break; |
| 1719 | } |
| 1720 | |
| 1721 | return ret; |
| 1722 | } |
| 1723 | |
| 1724 | static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, |
| 1725 | struct request *rq, |
| 1726 | blk_qc_t *cookie, |
| 1727 | bool bypass_insert) |
| 1728 | { |
| 1729 | struct request_queue *q = rq->q; |
| 1730 | bool run_queue = true; |
| 1731 | |
| 1732 | /* |
| 1733 | * RCU or SRCU read lock is needed before checking quiesced flag. |
| 1734 | * |
| 1735 | * When queue is stopped or quiesced, ignore 'bypass_insert' from |
| 1736 | * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, |
| 1737 | * and avoid driver to try to dispatch again. |
| 1738 | */ |
| 1739 | if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { |
| 1740 | run_queue = false; |
| 1741 | bypass_insert = false; |
| 1742 | goto insert; |
| 1743 | } |
| 1744 | |
| 1745 | if (q->elevator && !bypass_insert) |
| 1746 | goto insert; |
| 1747 | |
| 1748 | if (!blk_mq_get_dispatch_budget(hctx)) |
| 1749 | goto insert; |
| 1750 | |
| 1751 | if (!blk_mq_get_driver_tag(rq)) { |
| 1752 | blk_mq_put_dispatch_budget(hctx); |
| 1753 | goto insert; |
| 1754 | } |
| 1755 | |
| 1756 | return __blk_mq_issue_directly(hctx, rq, cookie); |
| 1757 | insert: |
| 1758 | if (bypass_insert) |
| 1759 | return BLK_STS_RESOURCE; |
| 1760 | |
| 1761 | blk_mq_request_bypass_insert(rq, run_queue); |
| 1762 | return BLK_STS_OK; |
| 1763 | } |
| 1764 | |
| 1765 | static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, |
| 1766 | struct request *rq, blk_qc_t *cookie) |
| 1767 | { |
| 1768 | blk_status_t ret; |
| 1769 | int srcu_idx; |
| 1770 | |
| 1771 | might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); |
| 1772 | |
| 1773 | hctx_lock(hctx, &srcu_idx); |
| 1774 | |
| 1775 | ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false); |
| 1776 | if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) |
| 1777 | blk_mq_request_bypass_insert(rq, true); |
| 1778 | else if (ret != BLK_STS_OK) |
| 1779 | blk_mq_end_request(rq, ret); |
| 1780 | |
| 1781 | hctx_unlock(hctx, srcu_idx); |
| 1782 | } |
| 1783 | |
| 1784 | blk_status_t blk_mq_request_issue_directly(struct request *rq) |
| 1785 | { |
| 1786 | blk_status_t ret; |
| 1787 | int srcu_idx; |
| 1788 | blk_qc_t unused_cookie; |
| 1789 | struct blk_mq_ctx *ctx = rq->mq_ctx; |
| 1790 | struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu); |
| 1791 | |
| 1792 | hctx_lock(hctx, &srcu_idx); |
| 1793 | ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true); |
| 1794 | hctx_unlock(hctx, srcu_idx); |
| 1795 | |
| 1796 | return ret; |
| 1797 | } |
| 1798 | |
| 1799 | void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, |
| 1800 | struct list_head *list) |
| 1801 | { |
| 1802 | while (!list_empty(list)) { |
| 1803 | blk_status_t ret; |
| 1804 | struct request *rq = list_first_entry(list, struct request, |
| 1805 | queuelist); |
| 1806 | |
| 1807 | list_del_init(&rq->queuelist); |
| 1808 | ret = blk_mq_request_issue_directly(rq); |
| 1809 | if (ret != BLK_STS_OK) { |
| 1810 | if (ret == BLK_STS_RESOURCE || |
| 1811 | ret == BLK_STS_DEV_RESOURCE) { |
| 1812 | blk_mq_request_bypass_insert(rq, |
| 1813 | list_empty(list)); |
| 1814 | break; |
| 1815 | } |
| 1816 | blk_mq_end_request(rq, ret); |
| 1817 | } |
| 1818 | } |
| 1819 | } |
| 1820 | |
| 1821 | static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) |
| 1822 | { |
| 1823 | const int is_sync = op_is_sync(bio->bi_opf); |
| 1824 | const int is_flush_fua = op_is_flush(bio->bi_opf); |
| 1825 | struct blk_mq_alloc_data data = { .flags = 0 }; |
| 1826 | struct request *rq; |
| 1827 | unsigned int request_count = 0; |
| 1828 | struct blk_plug *plug; |
| 1829 | struct request *same_queue_rq = NULL; |
| 1830 | blk_qc_t cookie; |
| 1831 | |
| 1832 | blk_queue_bounce(q, &bio); |
| 1833 | |
| 1834 | blk_queue_split(q, &bio); |
| 1835 | |
| 1836 | if (!bio_integrity_prep(bio)) |
| 1837 | return BLK_QC_T_NONE; |
| 1838 | |
| 1839 | if (!is_flush_fua && !blk_queue_nomerges(q) && |
| 1840 | blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq)) |
| 1841 | return BLK_QC_T_NONE; |
| 1842 | |
| 1843 | if (blk_mq_sched_bio_merge(q, bio)) |
| 1844 | return BLK_QC_T_NONE; |
| 1845 | |
| 1846 | rq_qos_throttle(q, bio, NULL); |
| 1847 | |
| 1848 | trace_block_getrq(q, bio, bio->bi_opf); |
| 1849 | |
| 1850 | rq = blk_mq_get_request(q, bio, bio->bi_opf, &data); |
| 1851 | if (unlikely(!rq)) { |
| 1852 | rq_qos_cleanup(q, bio); |
| 1853 | if (bio->bi_opf & REQ_NOWAIT) |
| 1854 | bio_wouldblock_error(bio); |
| 1855 | return BLK_QC_T_NONE; |
| 1856 | } |
| 1857 | |
| 1858 | rq_qos_track(q, rq, bio); |
| 1859 | |
| 1860 | cookie = request_to_qc_t(data.hctx, rq); |
| 1861 | |
| 1862 | plug = current->plug; |
| 1863 | if (unlikely(is_flush_fua)) { |
| 1864 | blk_mq_put_ctx(data.ctx); |
| 1865 | blk_mq_bio_to_request(rq, bio); |
| 1866 | |
| 1867 | /* bypass scheduler for flush rq */ |
| 1868 | blk_insert_flush(rq); |
| 1869 | blk_mq_run_hw_queue(data.hctx, true); |
| 1870 | } else if (plug && q->nr_hw_queues == 1) { |
| 1871 | struct request *last = NULL; |
| 1872 | |
| 1873 | blk_mq_put_ctx(data.ctx); |
| 1874 | blk_mq_bio_to_request(rq, bio); |
| 1875 | |
| 1876 | /* |
| 1877 | * @request_count may become stale because of schedule |
| 1878 | * out, so check the list again. |
| 1879 | */ |
| 1880 | if (list_empty(&plug->mq_list)) |
| 1881 | request_count = 0; |
| 1882 | else if (blk_queue_nomerges(q)) |
| 1883 | request_count = blk_plug_queued_count(q); |
| 1884 | |
| 1885 | if (!request_count) |
| 1886 | trace_block_plug(q); |
| 1887 | else |
| 1888 | last = list_entry_rq(plug->mq_list.prev); |
| 1889 | |
| 1890 | if (request_count >= BLK_MAX_REQUEST_COUNT || (last && |
| 1891 | blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { |
| 1892 | blk_flush_plug_list(plug, false); |
| 1893 | trace_block_plug(q); |
| 1894 | } |
| 1895 | |
| 1896 | list_add_tail(&rq->queuelist, &plug->mq_list); |
| 1897 | } else if (plug && !blk_queue_nomerges(q)) { |
| 1898 | blk_mq_bio_to_request(rq, bio); |
| 1899 | |
| 1900 | /* |
| 1901 | * We do limited plugging. If the bio can be merged, do that. |
| 1902 | * Otherwise the existing request in the plug list will be |
| 1903 | * issued. So the plug list will have one request at most |
| 1904 | * The plug list might get flushed before this. If that happens, |
| 1905 | * the plug list is empty, and same_queue_rq is invalid. |
| 1906 | */ |
| 1907 | if (list_empty(&plug->mq_list)) |
| 1908 | same_queue_rq = NULL; |
| 1909 | if (same_queue_rq) |
| 1910 | list_del_init(&same_queue_rq->queuelist); |
| 1911 | list_add_tail(&rq->queuelist, &plug->mq_list); |
| 1912 | |
| 1913 | blk_mq_put_ctx(data.ctx); |
| 1914 | |
| 1915 | if (same_queue_rq) { |
| 1916 | data.hctx = blk_mq_map_queue(q, |
| 1917 | same_queue_rq->mq_ctx->cpu); |
| 1918 | blk_mq_try_issue_directly(data.hctx, same_queue_rq, |
| 1919 | &cookie); |
| 1920 | } |
| 1921 | } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator && |
| 1922 | !data.hctx->dispatch_busy)) { |
| 1923 | blk_mq_put_ctx(data.ctx); |
| 1924 | blk_mq_bio_to_request(rq, bio); |
| 1925 | blk_mq_try_issue_directly(data.hctx, rq, &cookie); |
| 1926 | } else { |
| 1927 | blk_mq_put_ctx(data.ctx); |
| 1928 | blk_mq_bio_to_request(rq, bio); |
| 1929 | blk_mq_sched_insert_request(rq, false, true, true); |
| 1930 | } |
| 1931 | |
| 1932 | return cookie; |
| 1933 | } |
| 1934 | |
| 1935 | void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, |
| 1936 | unsigned int hctx_idx) |
| 1937 | { |
| 1938 | struct page *page; |
| 1939 | |
| 1940 | if (tags->rqs && set->ops->exit_request) { |
| 1941 | int i; |
| 1942 | |
| 1943 | for (i = 0; i < tags->nr_tags; i++) { |
| 1944 | struct request *rq = tags->static_rqs[i]; |
| 1945 | |
| 1946 | if (!rq) |
| 1947 | continue; |
| 1948 | set->ops->exit_request(set, rq, hctx_idx); |
| 1949 | tags->static_rqs[i] = NULL; |
| 1950 | } |
| 1951 | } |
| 1952 | |
| 1953 | while (!list_empty(&tags->page_list)) { |
| 1954 | page = list_first_entry(&tags->page_list, struct page, lru); |
| 1955 | list_del_init(&page->lru); |
| 1956 | /* |
| 1957 | * Remove kmemleak object previously allocated in |
| 1958 | * blk_mq_init_rq_map(). |
| 1959 | */ |
| 1960 | kmemleak_free(page_address(page)); |
| 1961 | __free_pages(page, page->private); |
| 1962 | } |
| 1963 | } |
| 1964 | |
| 1965 | void blk_mq_free_rq_map(struct blk_mq_tags *tags) |
| 1966 | { |
| 1967 | kfree(tags->rqs); |
| 1968 | tags->rqs = NULL; |
| 1969 | kfree(tags->static_rqs); |
| 1970 | tags->static_rqs = NULL; |
| 1971 | |
| 1972 | blk_mq_free_tags(tags); |
| 1973 | } |
| 1974 | |
| 1975 | struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, |
| 1976 | unsigned int hctx_idx, |
| 1977 | unsigned int nr_tags, |
| 1978 | unsigned int reserved_tags) |
| 1979 | { |
| 1980 | struct blk_mq_tags *tags; |
| 1981 | int node; |
| 1982 | |
| 1983 | node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); |
| 1984 | if (node == NUMA_NO_NODE) |
| 1985 | node = set->numa_node; |
| 1986 | |
| 1987 | tags = blk_mq_init_tags(nr_tags, reserved_tags, node, |
| 1988 | BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); |
| 1989 | if (!tags) |
| 1990 | return NULL; |
| 1991 | |
| 1992 | tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), |
| 1993 | GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, |
| 1994 | node); |
| 1995 | if (!tags->rqs) { |
| 1996 | blk_mq_free_tags(tags); |
| 1997 | return NULL; |
| 1998 | } |
| 1999 | |
| 2000 | tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), |
| 2001 | GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, |
| 2002 | node); |
| 2003 | if (!tags->static_rqs) { |
| 2004 | kfree(tags->rqs); |
| 2005 | blk_mq_free_tags(tags); |
| 2006 | return NULL; |
| 2007 | } |
| 2008 | |
| 2009 | return tags; |
| 2010 | } |
| 2011 | |
| 2012 | static size_t order_to_size(unsigned int order) |
| 2013 | { |
| 2014 | return (size_t)PAGE_SIZE << order; |
| 2015 | } |
| 2016 | |
| 2017 | static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, |
| 2018 | unsigned int hctx_idx, int node) |
| 2019 | { |
| 2020 | int ret; |
| 2021 | |
| 2022 | if (set->ops->init_request) { |
| 2023 | ret = set->ops->init_request(set, rq, hctx_idx, node); |
| 2024 | if (ret) |
| 2025 | return ret; |
| 2026 | } |
| 2027 | |
| 2028 | WRITE_ONCE(rq->state, MQ_RQ_IDLE); |
| 2029 | return 0; |
| 2030 | } |
| 2031 | |
| 2032 | int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, |
| 2033 | unsigned int hctx_idx, unsigned int depth) |
| 2034 | { |
| 2035 | unsigned int i, j, entries_per_page, max_order = 4; |
| 2036 | size_t rq_size, left; |
| 2037 | int node; |
| 2038 | |
| 2039 | node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx); |
| 2040 | if (node == NUMA_NO_NODE) |
| 2041 | node = set->numa_node; |
| 2042 | |
| 2043 | INIT_LIST_HEAD(&tags->page_list); |
| 2044 | |
| 2045 | /* |
| 2046 | * rq_size is the size of the request plus driver payload, rounded |
| 2047 | * to the cacheline size |
| 2048 | */ |
| 2049 | rq_size = round_up(sizeof(struct request) + set->cmd_size, |
| 2050 | cache_line_size()); |
| 2051 | left = rq_size * depth; |
| 2052 | |
| 2053 | for (i = 0; i < depth; ) { |
| 2054 | int this_order = max_order; |
| 2055 | struct page *page; |
| 2056 | int to_do; |
| 2057 | void *p; |
| 2058 | |
| 2059 | while (this_order && left < order_to_size(this_order - 1)) |
| 2060 | this_order--; |
| 2061 | |
| 2062 | do { |
| 2063 | page = alloc_pages_node(node, |
| 2064 | GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, |
| 2065 | this_order); |
| 2066 | if (page) |
| 2067 | break; |
| 2068 | if (!this_order--) |
| 2069 | break; |
| 2070 | if (order_to_size(this_order) < rq_size) |
| 2071 | break; |
| 2072 | } while (1); |
| 2073 | |
| 2074 | if (!page) |
| 2075 | goto fail; |
| 2076 | |
| 2077 | page->private = this_order; |
| 2078 | list_add_tail(&page->lru, &tags->page_list); |
| 2079 | |
| 2080 | p = page_address(page); |
| 2081 | /* |
| 2082 | * Allow kmemleak to scan these pages as they contain pointers |
| 2083 | * to additional allocations like via ops->init_request(). |
| 2084 | */ |
| 2085 | kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); |
| 2086 | entries_per_page = order_to_size(this_order) / rq_size; |
| 2087 | to_do = min(entries_per_page, depth - i); |
| 2088 | left -= to_do * rq_size; |
| 2089 | for (j = 0; j < to_do; j++) { |
| 2090 | struct request *rq = p; |
| 2091 | |
| 2092 | tags->static_rqs[i] = rq; |
| 2093 | if (blk_mq_init_request(set, rq, hctx_idx, node)) { |
| 2094 | tags->static_rqs[i] = NULL; |
| 2095 | goto fail; |
| 2096 | } |
| 2097 | |
| 2098 | p += rq_size; |
| 2099 | i++; |
| 2100 | } |
| 2101 | } |
| 2102 | return 0; |
| 2103 | |
| 2104 | fail: |
| 2105 | blk_mq_free_rqs(set, tags, hctx_idx); |
| 2106 | return -ENOMEM; |
| 2107 | } |
| 2108 | |
| 2109 | /* |
| 2110 | * 'cpu' is going away. splice any existing rq_list entries from this |
| 2111 | * software queue to the hw queue dispatch list, and ensure that it |
| 2112 | * gets run. |
| 2113 | */ |
| 2114 | static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) |
| 2115 | { |
| 2116 | struct blk_mq_hw_ctx *hctx; |
| 2117 | struct blk_mq_ctx *ctx; |
| 2118 | LIST_HEAD(tmp); |
| 2119 | |
| 2120 | hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); |
| 2121 | ctx = __blk_mq_get_ctx(hctx->queue, cpu); |
| 2122 | |
| 2123 | spin_lock(&ctx->lock); |
| 2124 | if (!list_empty(&ctx->rq_list)) { |
| 2125 | list_splice_init(&ctx->rq_list, &tmp); |
| 2126 | blk_mq_hctx_clear_pending(hctx, ctx); |
| 2127 | } |
| 2128 | spin_unlock(&ctx->lock); |
| 2129 | |
| 2130 | if (list_empty(&tmp)) |
| 2131 | return 0; |
| 2132 | |
| 2133 | spin_lock(&hctx->lock); |
| 2134 | list_splice_tail_init(&tmp, &hctx->dispatch); |
| 2135 | spin_unlock(&hctx->lock); |
| 2136 | |
| 2137 | blk_mq_run_hw_queue(hctx, true); |
| 2138 | return 0; |
| 2139 | } |
| 2140 | |
| 2141 | static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) |
| 2142 | { |
| 2143 | cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, |
| 2144 | &hctx->cpuhp_dead); |
| 2145 | } |
| 2146 | |
| 2147 | /* hctx->ctxs will be freed in queue's release handler */ |
| 2148 | static void blk_mq_exit_hctx(struct request_queue *q, |
| 2149 | struct blk_mq_tag_set *set, |
| 2150 | struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) |
| 2151 | { |
| 2152 | blk_mq_debugfs_unregister_hctx(hctx); |
| 2153 | |
| 2154 | if (blk_mq_hw_queue_mapped(hctx)) |
| 2155 | blk_mq_tag_idle(hctx); |
| 2156 | |
| 2157 | if (set->ops->exit_request) |
| 2158 | set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); |
| 2159 | |
| 2160 | if (set->ops->exit_hctx) |
| 2161 | set->ops->exit_hctx(hctx, hctx_idx); |
| 2162 | |
| 2163 | blk_mq_remove_cpuhp(hctx); |
| 2164 | } |
| 2165 | |
| 2166 | static void blk_mq_exit_hw_queues(struct request_queue *q, |
| 2167 | struct blk_mq_tag_set *set, int nr_queue) |
| 2168 | { |
| 2169 | struct blk_mq_hw_ctx *hctx; |
| 2170 | unsigned int i; |
| 2171 | |
| 2172 | queue_for_each_hw_ctx(q, hctx, i) { |
| 2173 | if (i == nr_queue) |
| 2174 | break; |
| 2175 | blk_mq_exit_hctx(q, set, hctx, i); |
| 2176 | } |
| 2177 | } |
| 2178 | |
| 2179 | static int blk_mq_init_hctx(struct request_queue *q, |
| 2180 | struct blk_mq_tag_set *set, |
| 2181 | struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) |
| 2182 | { |
| 2183 | int node; |
| 2184 | |
| 2185 | node = hctx->numa_node; |
| 2186 | if (node == NUMA_NO_NODE) |
| 2187 | node = hctx->numa_node = set->numa_node; |
| 2188 | |
| 2189 | INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); |
| 2190 | spin_lock_init(&hctx->lock); |
| 2191 | INIT_LIST_HEAD(&hctx->dispatch); |
| 2192 | hctx->queue = q; |
| 2193 | hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; |
| 2194 | |
| 2195 | cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); |
| 2196 | |
| 2197 | hctx->tags = set->tags[hctx_idx]; |
| 2198 | |
| 2199 | /* |
| 2200 | * Allocate space for all possible cpus to avoid allocation at |
| 2201 | * runtime |
| 2202 | */ |
| 2203 | hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), |
| 2204 | GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node); |
| 2205 | if (!hctx->ctxs) |
| 2206 | goto unregister_cpu_notifier; |
| 2207 | |
| 2208 | if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), |
| 2209 | GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node)) |
| 2210 | goto free_ctxs; |
| 2211 | |
| 2212 | hctx->nr_ctx = 0; |
| 2213 | |
| 2214 | spin_lock_init(&hctx->dispatch_wait_lock); |
| 2215 | init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); |
| 2216 | INIT_LIST_HEAD(&hctx->dispatch_wait.entry); |
| 2217 | |
| 2218 | if (set->ops->init_hctx && |
| 2219 | set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) |
| 2220 | goto free_bitmap; |
| 2221 | |
| 2222 | hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size, |
| 2223 | GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); |
| 2224 | if (!hctx->fq) |
| 2225 | goto exit_hctx; |
| 2226 | |
| 2227 | if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node)) |
| 2228 | goto free_fq; |
| 2229 | |
| 2230 | if (hctx->flags & BLK_MQ_F_BLOCKING) |
| 2231 | init_srcu_struct(hctx->srcu); |
| 2232 | |
| 2233 | blk_mq_debugfs_register_hctx(q, hctx); |
| 2234 | |
| 2235 | return 0; |
| 2236 | |
| 2237 | free_fq: |
| 2238 | blk_free_flush_queue(hctx->fq); |
| 2239 | exit_hctx: |
| 2240 | if (set->ops->exit_hctx) |
| 2241 | set->ops->exit_hctx(hctx, hctx_idx); |
| 2242 | free_bitmap: |
| 2243 | sbitmap_free(&hctx->ctx_map); |
| 2244 | free_ctxs: |
| 2245 | kfree(hctx->ctxs); |
| 2246 | unregister_cpu_notifier: |
| 2247 | blk_mq_remove_cpuhp(hctx); |
| 2248 | return -1; |
| 2249 | } |
| 2250 | |
| 2251 | static void blk_mq_init_cpu_queues(struct request_queue *q, |
| 2252 | unsigned int nr_hw_queues) |
| 2253 | { |
| 2254 | unsigned int i; |
| 2255 | |
| 2256 | for_each_possible_cpu(i) { |
| 2257 | struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); |
| 2258 | struct blk_mq_hw_ctx *hctx; |
| 2259 | |
| 2260 | __ctx->cpu = i; |
| 2261 | spin_lock_init(&__ctx->lock); |
| 2262 | INIT_LIST_HEAD(&__ctx->rq_list); |
| 2263 | __ctx->queue = q; |
| 2264 | |
| 2265 | /* |
| 2266 | * Set local node, IFF we have more than one hw queue. If |
| 2267 | * not, we remain on the home node of the device |
| 2268 | */ |
| 2269 | hctx = blk_mq_map_queue(q, i); |
| 2270 | if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) |
| 2271 | hctx->numa_node = local_memory_node(cpu_to_node(i)); |
| 2272 | } |
| 2273 | } |
| 2274 | |
| 2275 | static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) |
| 2276 | { |
| 2277 | int ret = 0; |
| 2278 | |
| 2279 | set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, |
| 2280 | set->queue_depth, set->reserved_tags); |
| 2281 | if (!set->tags[hctx_idx]) |
| 2282 | return false; |
| 2283 | |
| 2284 | ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, |
| 2285 | set->queue_depth); |
| 2286 | if (!ret) |
| 2287 | return true; |
| 2288 | |
| 2289 | blk_mq_free_rq_map(set->tags[hctx_idx]); |
| 2290 | set->tags[hctx_idx] = NULL; |
| 2291 | return false; |
| 2292 | } |
| 2293 | |
| 2294 | static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, |
| 2295 | unsigned int hctx_idx) |
| 2296 | { |
| 2297 | if (set->tags[hctx_idx]) { |
| 2298 | blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); |
| 2299 | blk_mq_free_rq_map(set->tags[hctx_idx]); |
| 2300 | set->tags[hctx_idx] = NULL; |
| 2301 | } |
| 2302 | } |
| 2303 | |
| 2304 | static void blk_mq_map_swqueue(struct request_queue *q) |
| 2305 | { |
| 2306 | unsigned int i, hctx_idx; |
| 2307 | struct blk_mq_hw_ctx *hctx; |
| 2308 | struct blk_mq_ctx *ctx; |
| 2309 | struct blk_mq_tag_set *set = q->tag_set; |
| 2310 | |
| 2311 | /* |
| 2312 | * Avoid others reading imcomplete hctx->cpumask through sysfs |
| 2313 | */ |
| 2314 | mutex_lock(&q->sysfs_lock); |
| 2315 | |
| 2316 | queue_for_each_hw_ctx(q, hctx, i) { |
| 2317 | cpumask_clear(hctx->cpumask); |
| 2318 | hctx->nr_ctx = 0; |
| 2319 | hctx->dispatch_from = NULL; |
| 2320 | } |
| 2321 | |
| 2322 | /* |
| 2323 | * Map software to hardware queues. |
| 2324 | * |
| 2325 | * If the cpu isn't present, the cpu is mapped to first hctx. |
| 2326 | */ |
| 2327 | for_each_possible_cpu(i) { |
| 2328 | hctx_idx = q->mq_map[i]; |
| 2329 | /* unmapped hw queue can be remapped after CPU topo changed */ |
| 2330 | if (!set->tags[hctx_idx] && |
| 2331 | !__blk_mq_alloc_rq_map(set, hctx_idx)) { |
| 2332 | /* |
| 2333 | * If tags initialization fail for some hctx, |
| 2334 | * that hctx won't be brought online. In this |
| 2335 | * case, remap the current ctx to hctx[0] which |
| 2336 | * is guaranteed to always have tags allocated |
| 2337 | */ |
| 2338 | q->mq_map[i] = 0; |
| 2339 | } |
| 2340 | |
| 2341 | ctx = per_cpu_ptr(q->queue_ctx, i); |
| 2342 | hctx = blk_mq_map_queue(q, i); |
| 2343 | |
| 2344 | cpumask_set_cpu(i, hctx->cpumask); |
| 2345 | ctx->index_hw = hctx->nr_ctx; |
| 2346 | hctx->ctxs[hctx->nr_ctx++] = ctx; |
| 2347 | } |
| 2348 | |
| 2349 | mutex_unlock(&q->sysfs_lock); |
| 2350 | |
| 2351 | queue_for_each_hw_ctx(q, hctx, i) { |
| 2352 | /* |
| 2353 | * If no software queues are mapped to this hardware queue, |
| 2354 | * disable it and free the request entries. |
| 2355 | */ |
| 2356 | if (!hctx->nr_ctx) { |
| 2357 | /* Never unmap queue 0. We need it as a |
| 2358 | * fallback in case of a new remap fails |
| 2359 | * allocation |
| 2360 | */ |
| 2361 | if (i && set->tags[i]) |
| 2362 | blk_mq_free_map_and_requests(set, i); |
| 2363 | |
| 2364 | hctx->tags = NULL; |
| 2365 | continue; |
| 2366 | } |
| 2367 | |
| 2368 | hctx->tags = set->tags[i]; |
| 2369 | WARN_ON(!hctx->tags); |
| 2370 | |
| 2371 | /* |
| 2372 | * Set the map size to the number of mapped software queues. |
| 2373 | * This is more accurate and more efficient than looping |
| 2374 | * over all possibly mapped software queues. |
| 2375 | */ |
| 2376 | sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); |
| 2377 | |
| 2378 | /* |
| 2379 | * Initialize batch roundrobin counts |
| 2380 | */ |
| 2381 | hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); |
| 2382 | hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; |
| 2383 | } |
| 2384 | } |
| 2385 | |
| 2386 | /* |
| 2387 | * Caller needs to ensure that we're either frozen/quiesced, or that |
| 2388 | * the queue isn't live yet. |
| 2389 | */ |
| 2390 | static void queue_set_hctx_shared(struct request_queue *q, bool shared) |
| 2391 | { |
| 2392 | struct blk_mq_hw_ctx *hctx; |
| 2393 | int i; |
| 2394 | |
| 2395 | queue_for_each_hw_ctx(q, hctx, i) { |
| 2396 | if (shared) |
| 2397 | hctx->flags |= BLK_MQ_F_TAG_SHARED; |
| 2398 | else |
| 2399 | hctx->flags &= ~BLK_MQ_F_TAG_SHARED; |
| 2400 | } |
| 2401 | } |
| 2402 | |
| 2403 | static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, |
| 2404 | bool shared) |
| 2405 | { |
| 2406 | struct request_queue *q; |
| 2407 | |
| 2408 | lockdep_assert_held(&set->tag_list_lock); |
| 2409 | |
| 2410 | list_for_each_entry(q, &set->tag_list, tag_set_list) { |
| 2411 | blk_mq_freeze_queue(q); |
| 2412 | queue_set_hctx_shared(q, shared); |
| 2413 | blk_mq_unfreeze_queue(q); |
| 2414 | } |
| 2415 | } |
| 2416 | |
| 2417 | static void blk_mq_del_queue_tag_set(struct request_queue *q) |
| 2418 | { |
| 2419 | struct blk_mq_tag_set *set = q->tag_set; |
| 2420 | |
| 2421 | mutex_lock(&set->tag_list_lock); |
| 2422 | list_del_rcu(&q->tag_set_list); |
| 2423 | if (list_is_singular(&set->tag_list)) { |
| 2424 | /* just transitioned to unshared */ |
| 2425 | set->flags &= ~BLK_MQ_F_TAG_SHARED; |
| 2426 | /* update existing queue */ |
| 2427 | blk_mq_update_tag_set_depth(set, false); |
| 2428 | } |
| 2429 | mutex_unlock(&set->tag_list_lock); |
| 2430 | INIT_LIST_HEAD(&q->tag_set_list); |
| 2431 | } |
| 2432 | |
| 2433 | static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, |
| 2434 | struct request_queue *q) |
| 2435 | { |
| 2436 | q->tag_set = set; |
| 2437 | |
| 2438 | mutex_lock(&set->tag_list_lock); |
| 2439 | |
| 2440 | /* |
| 2441 | * Check to see if we're transitioning to shared (from 1 to 2 queues). |
| 2442 | */ |
| 2443 | if (!list_empty(&set->tag_list) && |
| 2444 | !(set->flags & BLK_MQ_F_TAG_SHARED)) { |
| 2445 | set->flags |= BLK_MQ_F_TAG_SHARED; |
| 2446 | /* update existing queue */ |
| 2447 | blk_mq_update_tag_set_depth(set, true); |
| 2448 | } |
| 2449 | if (set->flags & BLK_MQ_F_TAG_SHARED) |
| 2450 | queue_set_hctx_shared(q, true); |
| 2451 | list_add_tail_rcu(&q->tag_set_list, &set->tag_list); |
| 2452 | |
| 2453 | mutex_unlock(&set->tag_list_lock); |
| 2454 | } |
| 2455 | |
| 2456 | /* |
| 2457 | * It is the actual release handler for mq, but we do it from |
| 2458 | * request queue's release handler for avoiding use-after-free |
| 2459 | * and headache because q->mq_kobj shouldn't have been introduced, |
| 2460 | * but we can't group ctx/kctx kobj without it. |
| 2461 | */ |
| 2462 | void blk_mq_release(struct request_queue *q) |
| 2463 | { |
| 2464 | struct blk_mq_hw_ctx *hctx; |
| 2465 | unsigned int i; |
| 2466 | |
| 2467 | /* hctx kobj stays in hctx */ |
| 2468 | queue_for_each_hw_ctx(q, hctx, i) { |
| 2469 | if (!hctx) |
| 2470 | continue; |
| 2471 | kobject_put(&hctx->kobj); |
| 2472 | } |
| 2473 | |
| 2474 | q->mq_map = NULL; |
| 2475 | |
| 2476 | kfree(q->queue_hw_ctx); |
| 2477 | |
| 2478 | /* |
| 2479 | * release .mq_kobj and sw queue's kobject now because |
| 2480 | * both share lifetime with request queue. |
| 2481 | */ |
| 2482 | blk_mq_sysfs_deinit(q); |
| 2483 | |
| 2484 | free_percpu(q->queue_ctx); |
| 2485 | } |
| 2486 | |
| 2487 | struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) |
| 2488 | { |
| 2489 | struct request_queue *uninit_q, *q; |
| 2490 | |
| 2491 | uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL); |
| 2492 | if (!uninit_q) |
| 2493 | return ERR_PTR(-ENOMEM); |
| 2494 | |
| 2495 | q = blk_mq_init_allocated_queue(set, uninit_q); |
| 2496 | if (IS_ERR(q)) |
| 2497 | blk_cleanup_queue(uninit_q); |
| 2498 | |
| 2499 | return q; |
| 2500 | } |
| 2501 | EXPORT_SYMBOL(blk_mq_init_queue); |
| 2502 | |
| 2503 | static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) |
| 2504 | { |
| 2505 | int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); |
| 2506 | |
| 2507 | BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), |
| 2508 | __alignof__(struct blk_mq_hw_ctx)) != |
| 2509 | sizeof(struct blk_mq_hw_ctx)); |
| 2510 | |
| 2511 | if (tag_set->flags & BLK_MQ_F_BLOCKING) |
| 2512 | hw_ctx_size += sizeof(struct srcu_struct); |
| 2513 | |
| 2514 | return hw_ctx_size; |
| 2515 | } |
| 2516 | |
| 2517 | static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, |
| 2518 | struct request_queue *q) |
| 2519 | { |
| 2520 | int i, j; |
| 2521 | struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; |
| 2522 | |
| 2523 | blk_mq_sysfs_unregister(q); |
| 2524 | |
| 2525 | /* protect against switching io scheduler */ |
| 2526 | mutex_lock(&q->sysfs_lock); |
| 2527 | for (i = 0; i < set->nr_hw_queues; i++) { |
| 2528 | int node; |
| 2529 | |
| 2530 | if (hctxs[i]) |
| 2531 | continue; |
| 2532 | |
| 2533 | node = blk_mq_hw_queue_to_node(q->mq_map, i); |
| 2534 | hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set), |
| 2535 | GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, |
| 2536 | node); |
| 2537 | if (!hctxs[i]) |
| 2538 | break; |
| 2539 | |
| 2540 | if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, |
| 2541 | GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, |
| 2542 | node)) { |
| 2543 | kfree(hctxs[i]); |
| 2544 | hctxs[i] = NULL; |
| 2545 | break; |
| 2546 | } |
| 2547 | |
| 2548 | atomic_set(&hctxs[i]->nr_active, 0); |
| 2549 | hctxs[i]->numa_node = node; |
| 2550 | hctxs[i]->queue_num = i; |
| 2551 | |
| 2552 | if (blk_mq_init_hctx(q, set, hctxs[i], i)) { |
| 2553 | free_cpumask_var(hctxs[i]->cpumask); |
| 2554 | kfree(hctxs[i]); |
| 2555 | hctxs[i] = NULL; |
| 2556 | break; |
| 2557 | } |
| 2558 | blk_mq_hctx_kobj_init(hctxs[i]); |
| 2559 | } |
| 2560 | for (j = i; j < q->nr_hw_queues; j++) { |
| 2561 | struct blk_mq_hw_ctx *hctx = hctxs[j]; |
| 2562 | |
| 2563 | if (hctx) { |
| 2564 | if (hctx->tags) |
| 2565 | blk_mq_free_map_and_requests(set, j); |
| 2566 | blk_mq_exit_hctx(q, set, hctx, j); |
| 2567 | kobject_put(&hctx->kobj); |
| 2568 | hctxs[j] = NULL; |
| 2569 | |
| 2570 | } |
| 2571 | } |
| 2572 | q->nr_hw_queues = i; |
| 2573 | mutex_unlock(&q->sysfs_lock); |
| 2574 | blk_mq_sysfs_register(q); |
| 2575 | } |
| 2576 | |
| 2577 | struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, |
| 2578 | struct request_queue *q) |
| 2579 | { |
| 2580 | /* mark the queue as mq asap */ |
| 2581 | q->mq_ops = set->ops; |
| 2582 | |
| 2583 | q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, |
| 2584 | blk_mq_poll_stats_bkt, |
| 2585 | BLK_MQ_POLL_STATS_BKTS, q); |
| 2586 | if (!q->poll_cb) |
| 2587 | goto err_exit; |
| 2588 | |
| 2589 | q->queue_ctx = alloc_percpu(struct blk_mq_ctx); |
| 2590 | if (!q->queue_ctx) |
| 2591 | goto err_exit; |
| 2592 | |
| 2593 | /* init q->mq_kobj and sw queues' kobjects */ |
| 2594 | blk_mq_sysfs_init(q); |
| 2595 | |
| 2596 | q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)), |
| 2597 | GFP_KERNEL, set->numa_node); |
| 2598 | if (!q->queue_hw_ctx) |
| 2599 | goto err_percpu; |
| 2600 | |
| 2601 | q->mq_map = set->mq_map; |
| 2602 | |
| 2603 | blk_mq_realloc_hw_ctxs(set, q); |
| 2604 | if (!q->nr_hw_queues) |
| 2605 | goto err_hctxs; |
| 2606 | |
| 2607 | INIT_WORK(&q->timeout_work, blk_mq_timeout_work); |
| 2608 | blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); |
| 2609 | |
| 2610 | q->nr_queues = nr_cpu_ids; |
| 2611 | |
| 2612 | q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; |
| 2613 | |
| 2614 | if (!(set->flags & BLK_MQ_F_SG_MERGE)) |
| 2615 | queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q); |
| 2616 | |
| 2617 | q->sg_reserved_size = INT_MAX; |
| 2618 | |
| 2619 | INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); |
| 2620 | INIT_LIST_HEAD(&q->requeue_list); |
| 2621 | spin_lock_init(&q->requeue_lock); |
| 2622 | |
| 2623 | blk_queue_make_request(q, blk_mq_make_request); |
| 2624 | if (q->mq_ops->poll) |
| 2625 | q->poll_fn = blk_mq_poll; |
| 2626 | |
| 2627 | /* |
| 2628 | * Do this after blk_queue_make_request() overrides it... |
| 2629 | */ |
| 2630 | q->nr_requests = set->queue_depth; |
| 2631 | |
| 2632 | /* |
| 2633 | * Default to classic polling |
| 2634 | */ |
| 2635 | q->poll_nsec = -1; |
| 2636 | |
| 2637 | if (set->ops->complete) |
| 2638 | blk_queue_softirq_done(q, set->ops->complete); |
| 2639 | |
| 2640 | blk_mq_init_cpu_queues(q, set->nr_hw_queues); |
| 2641 | blk_mq_add_queue_tag_set(set, q); |
| 2642 | blk_mq_map_swqueue(q); |
| 2643 | |
| 2644 | if (!(set->flags & BLK_MQ_F_NO_SCHED)) { |
| 2645 | int ret; |
| 2646 | |
| 2647 | ret = elevator_init_mq(q); |
| 2648 | if (ret) |
| 2649 | return ERR_PTR(ret); |
| 2650 | } |
| 2651 | |
| 2652 | return q; |
| 2653 | |
| 2654 | err_hctxs: |
| 2655 | kfree(q->queue_hw_ctx); |
| 2656 | err_percpu: |
| 2657 | free_percpu(q->queue_ctx); |
| 2658 | err_exit: |
| 2659 | q->mq_ops = NULL; |
| 2660 | return ERR_PTR(-ENOMEM); |
| 2661 | } |
| 2662 | EXPORT_SYMBOL(blk_mq_init_allocated_queue); |
| 2663 | |
| 2664 | /* tags can _not_ be used after returning from blk_mq_exit_queue */ |
| 2665 | void blk_mq_exit_queue(struct request_queue *q) |
| 2666 | { |
| 2667 | struct blk_mq_tag_set *set = q->tag_set; |
| 2668 | |
| 2669 | blk_mq_del_queue_tag_set(q); |
| 2670 | blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); |
| 2671 | } |
| 2672 | |
| 2673 | /* Basically redo blk_mq_init_queue with queue frozen */ |
| 2674 | static void blk_mq_queue_reinit(struct request_queue *q) |
| 2675 | { |
| 2676 | WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth)); |
| 2677 | |
| 2678 | blk_mq_debugfs_unregister_hctxs(q); |
| 2679 | blk_mq_sysfs_unregister(q); |
| 2680 | |
| 2681 | /* |
| 2682 | * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe |
| 2683 | * we should change hctx numa_node according to the new topology (this |
| 2684 | * involves freeing and re-allocating memory, worth doing?) |
| 2685 | */ |
| 2686 | blk_mq_map_swqueue(q); |
| 2687 | |
| 2688 | blk_mq_sysfs_register(q); |
| 2689 | blk_mq_debugfs_register_hctxs(q); |
| 2690 | } |
| 2691 | |
| 2692 | static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) |
| 2693 | { |
| 2694 | int i; |
| 2695 | |
| 2696 | for (i = 0; i < set->nr_hw_queues; i++) |
| 2697 | if (!__blk_mq_alloc_rq_map(set, i)) |
| 2698 | goto out_unwind; |
| 2699 | |
| 2700 | return 0; |
| 2701 | |
| 2702 | out_unwind: |
| 2703 | while (--i >= 0) |
| 2704 | blk_mq_free_rq_map(set->tags[i]); |
| 2705 | |
| 2706 | return -ENOMEM; |
| 2707 | } |
| 2708 | |
| 2709 | /* |
| 2710 | * Allocate the request maps associated with this tag_set. Note that this |
| 2711 | * may reduce the depth asked for, if memory is tight. set->queue_depth |
| 2712 | * will be updated to reflect the allocated depth. |
| 2713 | */ |
| 2714 | static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) |
| 2715 | { |
| 2716 | unsigned int depth; |
| 2717 | int err; |
| 2718 | |
| 2719 | depth = set->queue_depth; |
| 2720 | do { |
| 2721 | err = __blk_mq_alloc_rq_maps(set); |
| 2722 | if (!err) |
| 2723 | break; |
| 2724 | |
| 2725 | set->queue_depth >>= 1; |
| 2726 | if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { |
| 2727 | err = -ENOMEM; |
| 2728 | break; |
| 2729 | } |
| 2730 | } while (set->queue_depth); |
| 2731 | |
| 2732 | if (!set->queue_depth || err) { |
| 2733 | pr_err("blk-mq: failed to allocate request map\n"); |
| 2734 | return -ENOMEM; |
| 2735 | } |
| 2736 | |
| 2737 | if (depth != set->queue_depth) |
| 2738 | pr_info("blk-mq: reduced tag depth (%u -> %u)\n", |
| 2739 | depth, set->queue_depth); |
| 2740 | |
| 2741 | return 0; |
| 2742 | } |
| 2743 | |
| 2744 | static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) |
| 2745 | { |
| 2746 | if (set->ops->map_queues) { |
| 2747 | /* |
| 2748 | * transport .map_queues is usually done in the following |
| 2749 | * way: |
| 2750 | * |
| 2751 | * for (queue = 0; queue < set->nr_hw_queues; queue++) { |
| 2752 | * mask = get_cpu_mask(queue) |
| 2753 | * for_each_cpu(cpu, mask) |
| 2754 | * set->mq_map[cpu] = queue; |
| 2755 | * } |
| 2756 | * |
| 2757 | * When we need to remap, the table has to be cleared for |
| 2758 | * killing stale mapping since one CPU may not be mapped |
| 2759 | * to any hw queue. |
| 2760 | */ |
| 2761 | blk_mq_clear_mq_map(set); |
| 2762 | |
| 2763 | return set->ops->map_queues(set); |
| 2764 | } else |
| 2765 | return blk_mq_map_queues(set); |
| 2766 | } |
| 2767 | |
| 2768 | /* |
| 2769 | * Alloc a tag set to be associated with one or more request queues. |
| 2770 | * May fail with EINVAL for various error conditions. May adjust the |
| 2771 | * requested depth down, if it's too large. In that case, the set |
| 2772 | * value will be stored in set->queue_depth. |
| 2773 | */ |
| 2774 | int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) |
| 2775 | { |
| 2776 | int ret; |
| 2777 | |
| 2778 | BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); |
| 2779 | |
| 2780 | if (!set->nr_hw_queues) |
| 2781 | return -EINVAL; |
| 2782 | if (!set->queue_depth) |
| 2783 | return -EINVAL; |
| 2784 | if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) |
| 2785 | return -EINVAL; |
| 2786 | |
| 2787 | if (!set->ops->queue_rq) |
| 2788 | return -EINVAL; |
| 2789 | |
| 2790 | if (!set->ops->get_budget ^ !set->ops->put_budget) |
| 2791 | return -EINVAL; |
| 2792 | |
| 2793 | if (set->queue_depth > BLK_MQ_MAX_DEPTH) { |
| 2794 | pr_info("blk-mq: reduced tag depth to %u\n", |
| 2795 | BLK_MQ_MAX_DEPTH); |
| 2796 | set->queue_depth = BLK_MQ_MAX_DEPTH; |
| 2797 | } |
| 2798 | |
| 2799 | /* |
| 2800 | * If a crashdump is active, then we are potentially in a very |
| 2801 | * memory constrained environment. Limit us to 1 queue and |
| 2802 | * 64 tags to prevent using too much memory. |
| 2803 | */ |
| 2804 | if (is_kdump_kernel()) { |
| 2805 | set->nr_hw_queues = 1; |
| 2806 | set->queue_depth = min(64U, set->queue_depth); |
| 2807 | } |
| 2808 | /* |
| 2809 | * There is no use for more h/w queues than cpus. |
| 2810 | */ |
| 2811 | if (set->nr_hw_queues > nr_cpu_ids) |
| 2812 | set->nr_hw_queues = nr_cpu_ids; |
| 2813 | |
| 2814 | set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *), |
| 2815 | GFP_KERNEL, set->numa_node); |
| 2816 | if (!set->tags) |
| 2817 | return -ENOMEM; |
| 2818 | |
| 2819 | ret = -ENOMEM; |
| 2820 | set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map), |
| 2821 | GFP_KERNEL, set->numa_node); |
| 2822 | if (!set->mq_map) |
| 2823 | goto out_free_tags; |
| 2824 | |
| 2825 | ret = blk_mq_update_queue_map(set); |
| 2826 | if (ret) |
| 2827 | goto out_free_mq_map; |
| 2828 | |
| 2829 | ret = blk_mq_alloc_rq_maps(set); |
| 2830 | if (ret) |
| 2831 | goto out_free_mq_map; |
| 2832 | |
| 2833 | mutex_init(&set->tag_list_lock); |
| 2834 | INIT_LIST_HEAD(&set->tag_list); |
| 2835 | |
| 2836 | return 0; |
| 2837 | |
| 2838 | out_free_mq_map: |
| 2839 | kfree(set->mq_map); |
| 2840 | set->mq_map = NULL; |
| 2841 | out_free_tags: |
| 2842 | kfree(set->tags); |
| 2843 | set->tags = NULL; |
| 2844 | return ret; |
| 2845 | } |
| 2846 | EXPORT_SYMBOL(blk_mq_alloc_tag_set); |
| 2847 | |
| 2848 | void blk_mq_free_tag_set(struct blk_mq_tag_set *set) |
| 2849 | { |
| 2850 | int i; |
| 2851 | |
| 2852 | for (i = 0; i < nr_cpu_ids; i++) |
| 2853 | blk_mq_free_map_and_requests(set, i); |
| 2854 | |
| 2855 | kfree(set->mq_map); |
| 2856 | set->mq_map = NULL; |
| 2857 | |
| 2858 | kfree(set->tags); |
| 2859 | set->tags = NULL; |
| 2860 | } |
| 2861 | EXPORT_SYMBOL(blk_mq_free_tag_set); |
| 2862 | |
| 2863 | int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) |
| 2864 | { |
| 2865 | struct blk_mq_tag_set *set = q->tag_set; |
| 2866 | struct blk_mq_hw_ctx *hctx; |
| 2867 | int i, ret; |
| 2868 | |
| 2869 | if (!set) |
| 2870 | return -EINVAL; |
| 2871 | |
| 2872 | blk_mq_freeze_queue(q); |
| 2873 | blk_mq_quiesce_queue(q); |
| 2874 | |
| 2875 | ret = 0; |
| 2876 | queue_for_each_hw_ctx(q, hctx, i) { |
| 2877 | if (!hctx->tags) |
| 2878 | continue; |
| 2879 | /* |
| 2880 | * If we're using an MQ scheduler, just update the scheduler |
| 2881 | * queue depth. This is similar to what the old code would do. |
| 2882 | */ |
| 2883 | if (!hctx->sched_tags) { |
| 2884 | ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, |
| 2885 | false); |
| 2886 | } else { |
| 2887 | ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, |
| 2888 | nr, true); |
| 2889 | } |
| 2890 | if (ret) |
| 2891 | break; |
| 2892 | if (q->elevator && q->elevator->type->ops.mq.depth_updated) |
| 2893 | q->elevator->type->ops.mq.depth_updated(hctx); |
| 2894 | } |
| 2895 | |
| 2896 | if (!ret) |
| 2897 | q->nr_requests = nr; |
| 2898 | |
| 2899 | blk_mq_unquiesce_queue(q); |
| 2900 | blk_mq_unfreeze_queue(q); |
| 2901 | |
| 2902 | return ret; |
| 2903 | } |
| 2904 | |
| 2905 | /* |
| 2906 | * request_queue and elevator_type pair. |
| 2907 | * It is just used by __blk_mq_update_nr_hw_queues to cache |
| 2908 | * the elevator_type associated with a request_queue. |
| 2909 | */ |
| 2910 | struct blk_mq_qe_pair { |
| 2911 | struct list_head node; |
| 2912 | struct request_queue *q; |
| 2913 | struct elevator_type *type; |
| 2914 | }; |
| 2915 | |
| 2916 | /* |
| 2917 | * Cache the elevator_type in qe pair list and switch the |
| 2918 | * io scheduler to 'none' |
| 2919 | */ |
| 2920 | static bool blk_mq_elv_switch_none(struct list_head *head, |
| 2921 | struct request_queue *q) |
| 2922 | { |
| 2923 | struct blk_mq_qe_pair *qe; |
| 2924 | |
| 2925 | if (!q->elevator) |
| 2926 | return true; |
| 2927 | |
| 2928 | qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); |
| 2929 | if (!qe) |
| 2930 | return false; |
| 2931 | |
| 2932 | INIT_LIST_HEAD(&qe->node); |
| 2933 | qe->q = q; |
| 2934 | qe->type = q->elevator->type; |
| 2935 | list_add(&qe->node, head); |
| 2936 | |
| 2937 | mutex_lock(&q->sysfs_lock); |
| 2938 | /* |
| 2939 | * After elevator_switch_mq, the previous elevator_queue will be |
| 2940 | * released by elevator_release. The reference of the io scheduler |
| 2941 | * module get by elevator_get will also be put. So we need to get |
| 2942 | * a reference of the io scheduler module here to prevent it to be |
| 2943 | * removed. |
| 2944 | */ |
| 2945 | __module_get(qe->type->elevator_owner); |
| 2946 | elevator_switch_mq(q, NULL); |
| 2947 | mutex_unlock(&q->sysfs_lock); |
| 2948 | |
| 2949 | return true; |
| 2950 | } |
| 2951 | |
| 2952 | static void blk_mq_elv_switch_back(struct list_head *head, |
| 2953 | struct request_queue *q) |
| 2954 | { |
| 2955 | struct blk_mq_qe_pair *qe; |
| 2956 | struct elevator_type *t = NULL; |
| 2957 | |
| 2958 | list_for_each_entry(qe, head, node) |
| 2959 | if (qe->q == q) { |
| 2960 | t = qe->type; |
| 2961 | break; |
| 2962 | } |
| 2963 | |
| 2964 | if (!t) |
| 2965 | return; |
| 2966 | |
| 2967 | list_del(&qe->node); |
| 2968 | kfree(qe); |
| 2969 | |
| 2970 | mutex_lock(&q->sysfs_lock); |
| 2971 | elevator_switch_mq(q, t); |
| 2972 | mutex_unlock(&q->sysfs_lock); |
| 2973 | } |
| 2974 | |
| 2975 | static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, |
| 2976 | int nr_hw_queues) |
| 2977 | { |
| 2978 | struct request_queue *q; |
| 2979 | LIST_HEAD(head); |
| 2980 | |
| 2981 | lockdep_assert_held(&set->tag_list_lock); |
| 2982 | |
| 2983 | if (nr_hw_queues > nr_cpu_ids) |
| 2984 | nr_hw_queues = nr_cpu_ids; |
| 2985 | if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) |
| 2986 | return; |
| 2987 | |
| 2988 | list_for_each_entry(q, &set->tag_list, tag_set_list) |
| 2989 | blk_mq_freeze_queue(q); |
| 2990 | /* |
| 2991 | * Sync with blk_mq_queue_tag_busy_iter. |
| 2992 | */ |
| 2993 | synchronize_rcu(); |
| 2994 | /* |
| 2995 | * Switch IO scheduler to 'none', cleaning up the data associated |
| 2996 | * with the previous scheduler. We will switch back once we are done |
| 2997 | * updating the new sw to hw queue mappings. |
| 2998 | */ |
| 2999 | list_for_each_entry(q, &set->tag_list, tag_set_list) |
| 3000 | if (!blk_mq_elv_switch_none(&head, q)) |
| 3001 | goto switch_back; |
| 3002 | |
| 3003 | set->nr_hw_queues = nr_hw_queues; |
| 3004 | blk_mq_update_queue_map(set); |
| 3005 | list_for_each_entry(q, &set->tag_list, tag_set_list) { |
| 3006 | blk_mq_realloc_hw_ctxs(set, q); |
| 3007 | blk_mq_queue_reinit(q); |
| 3008 | } |
| 3009 | |
| 3010 | switch_back: |
| 3011 | list_for_each_entry(q, &set->tag_list, tag_set_list) |
| 3012 | blk_mq_elv_switch_back(&head, q); |
| 3013 | |
| 3014 | list_for_each_entry(q, &set->tag_list, tag_set_list) |
| 3015 | blk_mq_unfreeze_queue(q); |
| 3016 | } |
| 3017 | |
| 3018 | void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) |
| 3019 | { |
| 3020 | mutex_lock(&set->tag_list_lock); |
| 3021 | __blk_mq_update_nr_hw_queues(set, nr_hw_queues); |
| 3022 | mutex_unlock(&set->tag_list_lock); |
| 3023 | } |
| 3024 | EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); |
| 3025 | |
| 3026 | /* Enable polling stats and return whether they were already enabled. */ |
| 3027 | static bool blk_poll_stats_enable(struct request_queue *q) |
| 3028 | { |
| 3029 | if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || |
| 3030 | blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) |
| 3031 | return true; |
| 3032 | blk_stat_add_callback(q, q->poll_cb); |
| 3033 | return false; |
| 3034 | } |
| 3035 | |
| 3036 | static void blk_mq_poll_stats_start(struct request_queue *q) |
| 3037 | { |
| 3038 | /* |
| 3039 | * We don't arm the callback if polling stats are not enabled or the |
| 3040 | * callback is already active. |
| 3041 | */ |
| 3042 | if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || |
| 3043 | blk_stat_is_active(q->poll_cb)) |
| 3044 | return; |
| 3045 | |
| 3046 | blk_stat_activate_msecs(q->poll_cb, 100); |
| 3047 | } |
| 3048 | |
| 3049 | static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) |
| 3050 | { |
| 3051 | struct request_queue *q = cb->data; |
| 3052 | int bucket; |
| 3053 | |
| 3054 | for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { |
| 3055 | if (cb->stat[bucket].nr_samples) |
| 3056 | q->poll_stat[bucket] = cb->stat[bucket]; |
| 3057 | } |
| 3058 | } |
| 3059 | |
| 3060 | static unsigned long blk_mq_poll_nsecs(struct request_queue *q, |
| 3061 | struct blk_mq_hw_ctx *hctx, |
| 3062 | struct request *rq) |
| 3063 | { |
| 3064 | unsigned long ret = 0; |
| 3065 | int bucket; |
| 3066 | |
| 3067 | /* |
| 3068 | * If stats collection isn't on, don't sleep but turn it on for |
| 3069 | * future users |
| 3070 | */ |
| 3071 | if (!blk_poll_stats_enable(q)) |
| 3072 | return 0; |
| 3073 | |
| 3074 | /* |
| 3075 | * As an optimistic guess, use half of the mean service time |
| 3076 | * for this type of request. We can (and should) make this smarter. |
| 3077 | * For instance, if the completion latencies are tight, we can |
| 3078 | * get closer than just half the mean. This is especially |
| 3079 | * important on devices where the completion latencies are longer |
| 3080 | * than ~10 usec. We do use the stats for the relevant IO size |
| 3081 | * if available which does lead to better estimates. |
| 3082 | */ |
| 3083 | bucket = blk_mq_poll_stats_bkt(rq); |
| 3084 | if (bucket < 0) |
| 3085 | return ret; |
| 3086 | |
| 3087 | if (q->poll_stat[bucket].nr_samples) |
| 3088 | ret = (q->poll_stat[bucket].mean + 1) / 2; |
| 3089 | |
| 3090 | return ret; |
| 3091 | } |
| 3092 | |
| 3093 | static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, |
| 3094 | struct blk_mq_hw_ctx *hctx, |
| 3095 | struct request *rq) |
| 3096 | { |
| 3097 | struct hrtimer_sleeper hs; |
| 3098 | enum hrtimer_mode mode; |
| 3099 | unsigned int nsecs; |
| 3100 | ktime_t kt; |
| 3101 | |
| 3102 | if (rq->rq_flags & RQF_MQ_POLL_SLEPT) |
| 3103 | return false; |
| 3104 | |
| 3105 | /* |
| 3106 | * poll_nsec can be: |
| 3107 | * |
| 3108 | * -1: don't ever hybrid sleep |
| 3109 | * 0: use half of prev avg |
| 3110 | * >0: use this specific value |
| 3111 | */ |
| 3112 | if (q->poll_nsec == -1) |
| 3113 | return false; |
| 3114 | else if (q->poll_nsec > 0) |
| 3115 | nsecs = q->poll_nsec; |
| 3116 | else |
| 3117 | nsecs = blk_mq_poll_nsecs(q, hctx, rq); |
| 3118 | |
| 3119 | if (!nsecs) |
| 3120 | return false; |
| 3121 | |
| 3122 | rq->rq_flags |= RQF_MQ_POLL_SLEPT; |
| 3123 | |
| 3124 | /* |
| 3125 | * This will be replaced with the stats tracking code, using |
| 3126 | * 'avg_completion_time / 2' as the pre-sleep target. |
| 3127 | */ |
| 3128 | kt = nsecs; |
| 3129 | |
| 3130 | mode = HRTIMER_MODE_REL; |
| 3131 | hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode); |
| 3132 | hrtimer_set_expires(&hs.timer, kt); |
| 3133 | |
| 3134 | hrtimer_init_sleeper(&hs, current); |
| 3135 | do { |
| 3136 | if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) |
| 3137 | break; |
| 3138 | set_current_state(TASK_UNINTERRUPTIBLE); |
| 3139 | hrtimer_start_expires(&hs.timer, mode); |
| 3140 | if (hs.task) |
| 3141 | io_schedule(); |
| 3142 | hrtimer_cancel(&hs.timer); |
| 3143 | mode = HRTIMER_MODE_ABS; |
| 3144 | } while (hs.task && !signal_pending(current)); |
| 3145 | |
| 3146 | __set_current_state(TASK_RUNNING); |
| 3147 | destroy_hrtimer_on_stack(&hs.timer); |
| 3148 | return true; |
| 3149 | } |
| 3150 | |
| 3151 | static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq) |
| 3152 | { |
| 3153 | struct request_queue *q = hctx->queue; |
| 3154 | long state; |
| 3155 | |
| 3156 | /* |
| 3157 | * If we sleep, have the caller restart the poll loop to reset |
| 3158 | * the state. Like for the other success return cases, the |
| 3159 | * caller is responsible for checking if the IO completed. If |
| 3160 | * the IO isn't complete, we'll get called again and will go |
| 3161 | * straight to the busy poll loop. |
| 3162 | */ |
| 3163 | if (blk_mq_poll_hybrid_sleep(q, hctx, rq)) |
| 3164 | return true; |
| 3165 | |
| 3166 | hctx->poll_considered++; |
| 3167 | |
| 3168 | state = current->state; |
| 3169 | while (!need_resched()) { |
| 3170 | int ret; |
| 3171 | |
| 3172 | hctx->poll_invoked++; |
| 3173 | |
| 3174 | ret = q->mq_ops->poll(hctx, rq->tag); |
| 3175 | if (ret > 0) { |
| 3176 | hctx->poll_success++; |
| 3177 | set_current_state(TASK_RUNNING); |
| 3178 | return true; |
| 3179 | } |
| 3180 | |
| 3181 | if (signal_pending_state(state, current)) |
| 3182 | set_current_state(TASK_RUNNING); |
| 3183 | |
| 3184 | if (current->state == TASK_RUNNING) |
| 3185 | return true; |
| 3186 | if (ret < 0) |
| 3187 | break; |
| 3188 | cpu_relax(); |
| 3189 | } |
| 3190 | |
| 3191 | __set_current_state(TASK_RUNNING); |
| 3192 | return false; |
| 3193 | } |
| 3194 | |
| 3195 | static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie) |
| 3196 | { |
| 3197 | struct blk_mq_hw_ctx *hctx; |
| 3198 | struct request *rq; |
| 3199 | |
| 3200 | if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) |
| 3201 | return false; |
| 3202 | |
| 3203 | hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; |
| 3204 | if (!blk_qc_t_is_internal(cookie)) |
| 3205 | rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); |
| 3206 | else { |
| 3207 | rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); |
| 3208 | /* |
| 3209 | * With scheduling, if the request has completed, we'll |
| 3210 | * get a NULL return here, as we clear the sched tag when |
| 3211 | * that happens. The request still remains valid, like always, |
| 3212 | * so we should be safe with just the NULL check. |
| 3213 | */ |
| 3214 | if (!rq) |
| 3215 | return false; |
| 3216 | } |
| 3217 | |
| 3218 | return __blk_mq_poll(hctx, rq); |
| 3219 | } |
| 3220 | |
| 3221 | static int __init blk_mq_init(void) |
| 3222 | { |
| 3223 | cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, |
| 3224 | blk_mq_hctx_notify_dead); |
| 3225 | return 0; |
| 3226 | } |
| 3227 | subsys_initcall(blk_mq_init); |