| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
|  | 2 | /* | 
|  | 3 | * Code for working with individual keys, and sorted sets of keys with in a | 
|  | 4 | * btree node | 
|  | 5 | * | 
|  | 6 | * Copyright 2012 Google, Inc. | 
|  | 7 | */ | 
|  | 8 |  | 
|  | 9 | #define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__ | 
|  | 10 |  | 
|  | 11 | #include "util.h" | 
|  | 12 | #include "bset.h" | 
|  | 13 |  | 
|  | 14 | #include <linux/console.h> | 
|  | 15 | #include <linux/sched/clock.h> | 
|  | 16 | #include <linux/random.h> | 
|  | 17 | #include <linux/prefetch.h> | 
|  | 18 |  | 
|  | 19 | #ifdef CONFIG_BCACHE_DEBUG | 
|  | 20 |  | 
|  | 21 | void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned int set) | 
|  | 22 | { | 
|  | 23 | struct bkey *k, *next; | 
|  | 24 |  | 
|  | 25 | for (k = i->start; k < bset_bkey_last(i); k = next) { | 
|  | 26 | next = bkey_next(k); | 
|  | 27 |  | 
|  | 28 | pr_err("block %u key %u/%u: ", set, | 
|  | 29 | (unsigned int) ((u64 *) k - i->d), i->keys); | 
|  | 30 |  | 
|  | 31 | if (b->ops->key_dump) | 
|  | 32 | b->ops->key_dump(b, k); | 
|  | 33 | else | 
|  | 34 | pr_err("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k)); | 
|  | 35 |  | 
|  | 36 | if (next < bset_bkey_last(i) && | 
|  | 37 | bkey_cmp(k, b->ops->is_extents ? | 
|  | 38 | &START_KEY(next) : next) > 0) | 
|  | 39 | pr_err("Key skipped backwards\n"); | 
|  | 40 | } | 
|  | 41 | } | 
|  | 42 |  | 
|  | 43 | void bch_dump_bucket(struct btree_keys *b) | 
|  | 44 | { | 
|  | 45 | unsigned int i; | 
|  | 46 |  | 
|  | 47 | console_lock(); | 
|  | 48 | for (i = 0; i <= b->nsets; i++) | 
|  | 49 | bch_dump_bset(b, b->set[i].data, | 
|  | 50 | bset_sector_offset(b, b->set[i].data)); | 
|  | 51 | console_unlock(); | 
|  | 52 | } | 
|  | 53 |  | 
|  | 54 | int __bch_count_data(struct btree_keys *b) | 
|  | 55 | { | 
|  | 56 | unsigned int ret = 0; | 
|  | 57 | struct btree_iter iter; | 
|  | 58 | struct bkey *k; | 
|  | 59 |  | 
|  | 60 | if (b->ops->is_extents) | 
|  | 61 | for_each_key(b, k, &iter) | 
|  | 62 | ret += KEY_SIZE(k); | 
|  | 63 | return ret; | 
|  | 64 | } | 
|  | 65 |  | 
|  | 66 | void __bch_check_keys(struct btree_keys *b, const char *fmt, ...) | 
|  | 67 | { | 
|  | 68 | va_list args; | 
|  | 69 | struct bkey *k, *p = NULL; | 
|  | 70 | struct btree_iter iter; | 
|  | 71 | const char *err; | 
|  | 72 |  | 
|  | 73 | for_each_key(b, k, &iter) { | 
|  | 74 | if (b->ops->is_extents) { | 
|  | 75 | err = "Keys out of order"; | 
|  | 76 | if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0) | 
|  | 77 | goto bug; | 
|  | 78 |  | 
|  | 79 | if (bch_ptr_invalid(b, k)) | 
|  | 80 | continue; | 
|  | 81 |  | 
|  | 82 | err =  "Overlapping keys"; | 
|  | 83 | if (p && bkey_cmp(p, &START_KEY(k)) > 0) | 
|  | 84 | goto bug; | 
|  | 85 | } else { | 
|  | 86 | if (bch_ptr_bad(b, k)) | 
|  | 87 | continue; | 
|  | 88 |  | 
|  | 89 | err = "Duplicate keys"; | 
|  | 90 | if (p && !bkey_cmp(p, k)) | 
|  | 91 | goto bug; | 
|  | 92 | } | 
|  | 93 | p = k; | 
|  | 94 | } | 
|  | 95 | #if 0 | 
|  | 96 | err = "Key larger than btree node key"; | 
|  | 97 | if (p && bkey_cmp(p, &b->key) > 0) | 
|  | 98 | goto bug; | 
|  | 99 | #endif | 
|  | 100 | return; | 
|  | 101 | bug: | 
|  | 102 | bch_dump_bucket(b); | 
|  | 103 |  | 
|  | 104 | va_start(args, fmt); | 
|  | 105 | vprintk(fmt, args); | 
|  | 106 | va_end(args); | 
|  | 107 |  | 
|  | 108 | panic("bch_check_keys error:  %s:\n", err); | 
|  | 109 | } | 
|  | 110 |  | 
|  | 111 | static void bch_btree_iter_next_check(struct btree_iter *iter) | 
|  | 112 | { | 
|  | 113 | struct bkey *k = iter->data->k, *next = bkey_next(k); | 
|  | 114 |  | 
|  | 115 | if (next < iter->data->end && | 
|  | 116 | bkey_cmp(k, iter->b->ops->is_extents ? | 
|  | 117 | &START_KEY(next) : next) > 0) { | 
|  | 118 | bch_dump_bucket(iter->b); | 
|  | 119 | panic("Key skipped backwards\n"); | 
|  | 120 | } | 
|  | 121 | } | 
|  | 122 |  | 
|  | 123 | #else | 
|  | 124 |  | 
|  | 125 | static inline void bch_btree_iter_next_check(struct btree_iter *iter) {} | 
|  | 126 |  | 
|  | 127 | #endif | 
|  | 128 |  | 
|  | 129 | /* Keylists */ | 
|  | 130 |  | 
|  | 131 | int __bch_keylist_realloc(struct keylist *l, unsigned int u64s) | 
|  | 132 | { | 
|  | 133 | size_t oldsize = bch_keylist_nkeys(l); | 
|  | 134 | size_t newsize = oldsize + u64s; | 
|  | 135 | uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p; | 
|  | 136 | uint64_t *new_keys; | 
|  | 137 |  | 
|  | 138 | newsize = roundup_pow_of_two(newsize); | 
|  | 139 |  | 
|  | 140 | if (newsize <= KEYLIST_INLINE || | 
|  | 141 | roundup_pow_of_two(oldsize) == newsize) | 
|  | 142 | return 0; | 
|  | 143 |  | 
|  | 144 | new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO); | 
|  | 145 |  | 
|  | 146 | if (!new_keys) | 
|  | 147 | return -ENOMEM; | 
|  | 148 |  | 
|  | 149 | if (!old_keys) | 
|  | 150 | memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize); | 
|  | 151 |  | 
|  | 152 | l->keys_p = new_keys; | 
|  | 153 | l->top_p = new_keys + oldsize; | 
|  | 154 |  | 
|  | 155 | return 0; | 
|  | 156 | } | 
|  | 157 |  | 
|  | 158 | struct bkey *bch_keylist_pop(struct keylist *l) | 
|  | 159 | { | 
|  | 160 | struct bkey *k = l->keys; | 
|  | 161 |  | 
|  | 162 | if (k == l->top) | 
|  | 163 | return NULL; | 
|  | 164 |  | 
|  | 165 | while (bkey_next(k) != l->top) | 
|  | 166 | k = bkey_next(k); | 
|  | 167 |  | 
|  | 168 | return l->top = k; | 
|  | 169 | } | 
|  | 170 |  | 
|  | 171 | void bch_keylist_pop_front(struct keylist *l) | 
|  | 172 | { | 
|  | 173 | l->top_p -= bkey_u64s(l->keys); | 
|  | 174 |  | 
|  | 175 | memmove(l->keys, | 
|  | 176 | bkey_next(l->keys), | 
|  | 177 | bch_keylist_bytes(l)); | 
|  | 178 | } | 
|  | 179 |  | 
|  | 180 | /* Key/pointer manipulation */ | 
|  | 181 |  | 
|  | 182 | void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src, | 
|  | 183 | unsigned int i) | 
|  | 184 | { | 
|  | 185 | BUG_ON(i > KEY_PTRS(src)); | 
|  | 186 |  | 
|  | 187 | /* Only copy the header, key, and one pointer. */ | 
|  | 188 | memcpy(dest, src, 2 * sizeof(uint64_t)); | 
|  | 189 | dest->ptr[0] = src->ptr[i]; | 
|  | 190 | SET_KEY_PTRS(dest, 1); | 
|  | 191 | /* We didn't copy the checksum so clear that bit. */ | 
|  | 192 | SET_KEY_CSUM(dest, 0); | 
|  | 193 | } | 
|  | 194 |  | 
|  | 195 | bool __bch_cut_front(const struct bkey *where, struct bkey *k) | 
|  | 196 | { | 
|  | 197 | unsigned int i, len = 0; | 
|  | 198 |  | 
|  | 199 | if (bkey_cmp(where, &START_KEY(k)) <= 0) | 
|  | 200 | return false; | 
|  | 201 |  | 
|  | 202 | if (bkey_cmp(where, k) < 0) | 
|  | 203 | len = KEY_OFFSET(k) - KEY_OFFSET(where); | 
|  | 204 | else | 
|  | 205 | bkey_copy_key(k, where); | 
|  | 206 |  | 
|  | 207 | for (i = 0; i < KEY_PTRS(k); i++) | 
|  | 208 | SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len); | 
|  | 209 |  | 
|  | 210 | BUG_ON(len > KEY_SIZE(k)); | 
|  | 211 | SET_KEY_SIZE(k, len); | 
|  | 212 | return true; | 
|  | 213 | } | 
|  | 214 |  | 
|  | 215 | bool __bch_cut_back(const struct bkey *where, struct bkey *k) | 
|  | 216 | { | 
|  | 217 | unsigned int len = 0; | 
|  | 218 |  | 
|  | 219 | if (bkey_cmp(where, k) >= 0) | 
|  | 220 | return false; | 
|  | 221 |  | 
|  | 222 | BUG_ON(KEY_INODE(where) != KEY_INODE(k)); | 
|  | 223 |  | 
|  | 224 | if (bkey_cmp(where, &START_KEY(k)) > 0) | 
|  | 225 | len = KEY_OFFSET(where) - KEY_START(k); | 
|  | 226 |  | 
|  | 227 | bkey_copy_key(k, where); | 
|  | 228 |  | 
|  | 229 | BUG_ON(len > KEY_SIZE(k)); | 
|  | 230 | SET_KEY_SIZE(k, len); | 
|  | 231 | return true; | 
|  | 232 | } | 
|  | 233 |  | 
|  | 234 | /* Auxiliary search trees */ | 
|  | 235 |  | 
|  | 236 | /* 32 bits total: */ | 
|  | 237 | #define BKEY_MID_BITS		3 | 
|  | 238 | #define BKEY_EXPONENT_BITS	7 | 
|  | 239 | #define BKEY_MANTISSA_BITS	(32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS) | 
|  | 240 | #define BKEY_MANTISSA_MASK	((1 << BKEY_MANTISSA_BITS) - 1) | 
|  | 241 |  | 
|  | 242 | struct bkey_float { | 
|  | 243 | unsigned int	exponent:BKEY_EXPONENT_BITS; | 
|  | 244 | unsigned int	m:BKEY_MID_BITS; | 
|  | 245 | unsigned int	mantissa:BKEY_MANTISSA_BITS; | 
|  | 246 | } __packed; | 
|  | 247 |  | 
|  | 248 | /* | 
|  | 249 | * BSET_CACHELINE was originally intended to match the hardware cacheline size - | 
|  | 250 | * it used to be 64, but I realized the lookup code would touch slightly less | 
|  | 251 | * memory if it was 128. | 
|  | 252 | * | 
|  | 253 | * It definites the number of bytes (in struct bset) per struct bkey_float in | 
|  | 254 | * the auxiliar search tree - when we're done searching the bset_float tree we | 
|  | 255 | * have this many bytes left that we do a linear search over. | 
|  | 256 | * | 
|  | 257 | * Since (after level 5) every level of the bset_tree is on a new cacheline, | 
|  | 258 | * we're touching one fewer cacheline in the bset tree in exchange for one more | 
|  | 259 | * cacheline in the linear search - but the linear search might stop before it | 
|  | 260 | * gets to the second cacheline. | 
|  | 261 | */ | 
|  | 262 |  | 
|  | 263 | #define BSET_CACHELINE		128 | 
|  | 264 |  | 
|  | 265 | /* Space required for the btree node keys */ | 
|  | 266 | static inline size_t btree_keys_bytes(struct btree_keys *b) | 
|  | 267 | { | 
|  | 268 | return PAGE_SIZE << b->page_order; | 
|  | 269 | } | 
|  | 270 |  | 
|  | 271 | static inline size_t btree_keys_cachelines(struct btree_keys *b) | 
|  | 272 | { | 
|  | 273 | return btree_keys_bytes(b) / BSET_CACHELINE; | 
|  | 274 | } | 
|  | 275 |  | 
|  | 276 | /* Space required for the auxiliary search trees */ | 
|  | 277 | static inline size_t bset_tree_bytes(struct btree_keys *b) | 
|  | 278 | { | 
|  | 279 | return btree_keys_cachelines(b) * sizeof(struct bkey_float); | 
|  | 280 | } | 
|  | 281 |  | 
|  | 282 | /* Space required for the prev pointers */ | 
|  | 283 | static inline size_t bset_prev_bytes(struct btree_keys *b) | 
|  | 284 | { | 
|  | 285 | return btree_keys_cachelines(b) * sizeof(uint8_t); | 
|  | 286 | } | 
|  | 287 |  | 
|  | 288 | /* Memory allocation */ | 
|  | 289 |  | 
|  | 290 | void bch_btree_keys_free(struct btree_keys *b) | 
|  | 291 | { | 
|  | 292 | struct bset_tree *t = b->set; | 
|  | 293 |  | 
|  | 294 | if (bset_prev_bytes(b) < PAGE_SIZE) | 
|  | 295 | kfree(t->prev); | 
|  | 296 | else | 
|  | 297 | free_pages((unsigned long) t->prev, | 
|  | 298 | get_order(bset_prev_bytes(b))); | 
|  | 299 |  | 
|  | 300 | if (bset_tree_bytes(b) < PAGE_SIZE) | 
|  | 301 | kfree(t->tree); | 
|  | 302 | else | 
|  | 303 | free_pages((unsigned long) t->tree, | 
|  | 304 | get_order(bset_tree_bytes(b))); | 
|  | 305 |  | 
|  | 306 | free_pages((unsigned long) t->data, b->page_order); | 
|  | 307 |  | 
|  | 308 | t->prev = NULL; | 
|  | 309 | t->tree = NULL; | 
|  | 310 | t->data = NULL; | 
|  | 311 | } | 
|  | 312 | EXPORT_SYMBOL(bch_btree_keys_free); | 
|  | 313 |  | 
|  | 314 | int bch_btree_keys_alloc(struct btree_keys *b, | 
|  | 315 | unsigned int page_order, | 
|  | 316 | gfp_t gfp) | 
|  | 317 | { | 
|  | 318 | struct bset_tree *t = b->set; | 
|  | 319 |  | 
|  | 320 | BUG_ON(t->data); | 
|  | 321 |  | 
|  | 322 | b->page_order = page_order; | 
|  | 323 |  | 
|  | 324 | t->data = (void *) __get_free_pages(gfp, b->page_order); | 
|  | 325 | if (!t->data) | 
|  | 326 | goto err; | 
|  | 327 |  | 
|  | 328 | t->tree = bset_tree_bytes(b) < PAGE_SIZE | 
|  | 329 | ? kmalloc(bset_tree_bytes(b), gfp) | 
|  | 330 | : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b))); | 
|  | 331 | if (!t->tree) | 
|  | 332 | goto err; | 
|  | 333 |  | 
|  | 334 | t->prev = bset_prev_bytes(b) < PAGE_SIZE | 
|  | 335 | ? kmalloc(bset_prev_bytes(b), gfp) | 
|  | 336 | : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b))); | 
|  | 337 | if (!t->prev) | 
|  | 338 | goto err; | 
|  | 339 |  | 
|  | 340 | return 0; | 
|  | 341 | err: | 
|  | 342 | bch_btree_keys_free(b); | 
|  | 343 | return -ENOMEM; | 
|  | 344 | } | 
|  | 345 | EXPORT_SYMBOL(bch_btree_keys_alloc); | 
|  | 346 |  | 
|  | 347 | void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops, | 
|  | 348 | bool *expensive_debug_checks) | 
|  | 349 | { | 
|  | 350 | unsigned int i; | 
|  | 351 |  | 
|  | 352 | b->ops = ops; | 
|  | 353 | b->expensive_debug_checks = expensive_debug_checks; | 
|  | 354 | b->nsets = 0; | 
|  | 355 | b->last_set_unwritten = 0; | 
|  | 356 |  | 
|  | 357 | /* XXX: shouldn't be needed */ | 
|  | 358 | for (i = 0; i < MAX_BSETS; i++) | 
|  | 359 | b->set[i].size = 0; | 
|  | 360 | /* | 
|  | 361 | * Second loop starts at 1 because b->keys[0]->data is the memory we | 
|  | 362 | * allocated | 
|  | 363 | */ | 
|  | 364 | for (i = 1; i < MAX_BSETS; i++) | 
|  | 365 | b->set[i].data = NULL; | 
|  | 366 | } | 
|  | 367 | EXPORT_SYMBOL(bch_btree_keys_init); | 
|  | 368 |  | 
|  | 369 | /* Binary tree stuff for auxiliary search trees */ | 
|  | 370 |  | 
|  | 371 | /* | 
|  | 372 | * return array index next to j when does in-order traverse | 
|  | 373 | * of a binary tree which is stored in a linear array | 
|  | 374 | */ | 
|  | 375 | static unsigned int inorder_next(unsigned int j, unsigned int size) | 
|  | 376 | { | 
|  | 377 | if (j * 2 + 1 < size) { | 
|  | 378 | j = j * 2 + 1; | 
|  | 379 |  | 
|  | 380 | while (j * 2 < size) | 
|  | 381 | j *= 2; | 
|  | 382 | } else | 
|  | 383 | j >>= ffz(j) + 1; | 
|  | 384 |  | 
|  | 385 | return j; | 
|  | 386 | } | 
|  | 387 |  | 
|  | 388 | /* | 
|  | 389 | * return array index previous to j when does in-order traverse | 
|  | 390 | * of a binary tree which is stored in a linear array | 
|  | 391 | */ | 
|  | 392 | static unsigned int inorder_prev(unsigned int j, unsigned int size) | 
|  | 393 | { | 
|  | 394 | if (j * 2 < size) { | 
|  | 395 | j = j * 2; | 
|  | 396 |  | 
|  | 397 | while (j * 2 + 1 < size) | 
|  | 398 | j = j * 2 + 1; | 
|  | 399 | } else | 
|  | 400 | j >>= ffs(j); | 
|  | 401 |  | 
|  | 402 | return j; | 
|  | 403 | } | 
|  | 404 |  | 
|  | 405 | /* | 
|  | 406 | * I have no idea why this code works... and I'm the one who wrote it | 
|  | 407 | * | 
|  | 408 | * However, I do know what it does: | 
|  | 409 | * Given a binary tree constructed in an array (i.e. how you normally implement | 
|  | 410 | * a heap), it converts a node in the tree - referenced by array index - to the | 
|  | 411 | * index it would have if you did an inorder traversal. | 
|  | 412 | * | 
|  | 413 | * Also tested for every j, size up to size somewhere around 6 million. | 
|  | 414 | * | 
|  | 415 | * The binary tree starts at array index 1, not 0 | 
|  | 416 | * extra is a function of size: | 
|  | 417 | *   extra = (size - rounddown_pow_of_two(size - 1)) << 1; | 
|  | 418 | */ | 
|  | 419 | static unsigned int __to_inorder(unsigned int j, | 
|  | 420 | unsigned int size, | 
|  | 421 | unsigned int extra) | 
|  | 422 | { | 
|  | 423 | unsigned int b = fls(j); | 
|  | 424 | unsigned int shift = fls(size - 1) - b; | 
|  | 425 |  | 
|  | 426 | j  ^= 1U << (b - 1); | 
|  | 427 | j <<= 1; | 
|  | 428 | j  |= 1; | 
|  | 429 | j <<= shift; | 
|  | 430 |  | 
|  | 431 | if (j > extra) | 
|  | 432 | j -= (j - extra) >> 1; | 
|  | 433 |  | 
|  | 434 | return j; | 
|  | 435 | } | 
|  | 436 |  | 
|  | 437 | /* | 
|  | 438 | * Return the cacheline index in bset_tree->data, where j is index | 
|  | 439 | * from a linear array which stores the auxiliar binary tree | 
|  | 440 | */ | 
|  | 441 | static unsigned int to_inorder(unsigned int j, struct bset_tree *t) | 
|  | 442 | { | 
|  | 443 | return __to_inorder(j, t->size, t->extra); | 
|  | 444 | } | 
|  | 445 |  | 
|  | 446 | static unsigned int __inorder_to_tree(unsigned int j, | 
|  | 447 | unsigned int size, | 
|  | 448 | unsigned int extra) | 
|  | 449 | { | 
|  | 450 | unsigned int shift; | 
|  | 451 |  | 
|  | 452 | if (j > extra) | 
|  | 453 | j += j - extra; | 
|  | 454 |  | 
|  | 455 | shift = ffs(j); | 
|  | 456 |  | 
|  | 457 | j >>= shift; | 
|  | 458 | j  |= roundup_pow_of_two(size) >> shift; | 
|  | 459 |  | 
|  | 460 | return j; | 
|  | 461 | } | 
|  | 462 |  | 
|  | 463 | /* | 
|  | 464 | * Return an index from a linear array which stores the auxiliar binary | 
|  | 465 | * tree, j is the cacheline index of t->data. | 
|  | 466 | */ | 
|  | 467 | static unsigned int inorder_to_tree(unsigned int j, struct bset_tree *t) | 
|  | 468 | { | 
|  | 469 | return __inorder_to_tree(j, t->size, t->extra); | 
|  | 470 | } | 
|  | 471 |  | 
|  | 472 | #if 0 | 
|  | 473 | void inorder_test(void) | 
|  | 474 | { | 
|  | 475 | unsigned long done = 0; | 
|  | 476 | ktime_t start = ktime_get(); | 
|  | 477 |  | 
|  | 478 | for (unsigned int size = 2; | 
|  | 479 | size < 65536000; | 
|  | 480 | size++) { | 
|  | 481 | unsigned int extra = | 
|  | 482 | (size - rounddown_pow_of_two(size - 1)) << 1; | 
|  | 483 | unsigned int i = 1, j = rounddown_pow_of_two(size - 1); | 
|  | 484 |  | 
|  | 485 | if (!(size % 4096)) | 
|  | 486 | pr_notice("loop %u, %llu per us\n", size, | 
|  | 487 | done / ktime_us_delta(ktime_get(), start)); | 
|  | 488 |  | 
|  | 489 | while (1) { | 
|  | 490 | if (__inorder_to_tree(i, size, extra) != j) | 
|  | 491 | panic("size %10u j %10u i %10u", size, j, i); | 
|  | 492 |  | 
|  | 493 | if (__to_inorder(j, size, extra) != i) | 
|  | 494 | panic("size %10u j %10u i %10u", size, j, i); | 
|  | 495 |  | 
|  | 496 | if (j == rounddown_pow_of_two(size) - 1) | 
|  | 497 | break; | 
|  | 498 |  | 
|  | 499 | BUG_ON(inorder_prev(inorder_next(j, size), size) != j); | 
|  | 500 |  | 
|  | 501 | j = inorder_next(j, size); | 
|  | 502 | i++; | 
|  | 503 | } | 
|  | 504 |  | 
|  | 505 | done += size - 1; | 
|  | 506 | } | 
|  | 507 | } | 
|  | 508 | #endif | 
|  | 509 |  | 
|  | 510 | /* | 
|  | 511 | * Cacheline/offset <-> bkey pointer arithmetic: | 
|  | 512 | * | 
|  | 513 | * t->tree is a binary search tree in an array; each node corresponds to a key | 
|  | 514 | * in one cacheline in t->set (BSET_CACHELINE bytes). | 
|  | 515 | * | 
|  | 516 | * This means we don't have to store the full index of the key that a node in | 
|  | 517 | * the binary tree points to; to_inorder() gives us the cacheline, and then | 
|  | 518 | * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes. | 
|  | 519 | * | 
|  | 520 | * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to | 
|  | 521 | * make this work. | 
|  | 522 | * | 
|  | 523 | * To construct the bfloat for an arbitrary key we need to know what the key | 
|  | 524 | * immediately preceding it is: we have to check if the two keys differ in the | 
|  | 525 | * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size | 
|  | 526 | * of the previous key so we can walk backwards to it from t->tree[j]'s key. | 
|  | 527 | */ | 
|  | 528 |  | 
|  | 529 | static struct bkey *cacheline_to_bkey(struct bset_tree *t, | 
|  | 530 | unsigned int cacheline, | 
|  | 531 | unsigned int offset) | 
|  | 532 | { | 
|  | 533 | return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8; | 
|  | 534 | } | 
|  | 535 |  | 
|  | 536 | static unsigned int bkey_to_cacheline(struct bset_tree *t, struct bkey *k) | 
|  | 537 | { | 
|  | 538 | return ((void *) k - (void *) t->data) / BSET_CACHELINE; | 
|  | 539 | } | 
|  | 540 |  | 
|  | 541 | static unsigned int bkey_to_cacheline_offset(struct bset_tree *t, | 
|  | 542 | unsigned int cacheline, | 
|  | 543 | struct bkey *k) | 
|  | 544 | { | 
|  | 545 | return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0); | 
|  | 546 | } | 
|  | 547 |  | 
|  | 548 | static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned int j) | 
|  | 549 | { | 
|  | 550 | return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m); | 
|  | 551 | } | 
|  | 552 |  | 
|  | 553 | static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned int j) | 
|  | 554 | { | 
|  | 555 | return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]); | 
|  | 556 | } | 
|  | 557 |  | 
|  | 558 | /* | 
|  | 559 | * For the write set - the one we're currently inserting keys into - we don't | 
|  | 560 | * maintain a full search tree, we just keep a simple lookup table in t->prev. | 
|  | 561 | */ | 
|  | 562 | static struct bkey *table_to_bkey(struct bset_tree *t, unsigned int cacheline) | 
|  | 563 | { | 
|  | 564 | return cacheline_to_bkey(t, cacheline, t->prev[cacheline]); | 
|  | 565 | } | 
|  | 566 |  | 
|  | 567 | static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift) | 
|  | 568 | { | 
|  | 569 | low >>= shift; | 
|  | 570 | low  |= (high << 1) << (63U - shift); | 
|  | 571 | return low; | 
|  | 572 | } | 
|  | 573 |  | 
|  | 574 | /* | 
|  | 575 | * Calculate mantissa value for struct bkey_float. | 
|  | 576 | * If most significant bit of f->exponent is not set, then | 
|  | 577 | *  - f->exponent >> 6 is 0 | 
|  | 578 | *  - p[0] points to bkey->low | 
|  | 579 | *  - p[-1] borrows bits from KEY_INODE() of bkey->high | 
|  | 580 | * if most isgnificant bits of f->exponent is set, then | 
|  | 581 | *  - f->exponent >> 6 is 1 | 
|  | 582 | *  - p[0] points to bits from KEY_INODE() of bkey->high | 
|  | 583 | *  - p[-1] points to other bits from KEY_INODE() of | 
|  | 584 | *    bkey->high too. | 
|  | 585 | * See make_bfloat() to check when most significant bit of f->exponent | 
|  | 586 | * is set or not. | 
|  | 587 | */ | 
|  | 588 | static inline unsigned int bfloat_mantissa(const struct bkey *k, | 
|  | 589 | struct bkey_float *f) | 
|  | 590 | { | 
|  | 591 | const uint64_t *p = &k->low - (f->exponent >> 6); | 
|  | 592 |  | 
|  | 593 | return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK; | 
|  | 594 | } | 
|  | 595 |  | 
|  | 596 | static void make_bfloat(struct bset_tree *t, unsigned int j) | 
|  | 597 | { | 
|  | 598 | struct bkey_float *f = &t->tree[j]; | 
|  | 599 | struct bkey *m = tree_to_bkey(t, j); | 
|  | 600 | struct bkey *p = tree_to_prev_bkey(t, j); | 
|  | 601 |  | 
|  | 602 | struct bkey *l = is_power_of_2(j) | 
|  | 603 | ? t->data->start | 
|  | 604 | : tree_to_prev_bkey(t, j >> ffs(j)); | 
|  | 605 |  | 
|  | 606 | struct bkey *r = is_power_of_2(j + 1) | 
|  | 607 | ? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end)) | 
|  | 608 | : tree_to_bkey(t, j >> (ffz(j) + 1)); | 
|  | 609 |  | 
|  | 610 | BUG_ON(m < l || m > r); | 
|  | 611 | BUG_ON(bkey_next(p) != m); | 
|  | 612 |  | 
|  | 613 | /* | 
|  | 614 | * If l and r have different KEY_INODE values (different backing | 
|  | 615 | * device), f->exponent records how many least significant bits | 
|  | 616 | * are different in KEY_INODE values and sets most significant | 
|  | 617 | * bits to 1 (by +64). | 
|  | 618 | * If l and r have same KEY_INODE value, f->exponent records | 
|  | 619 | * how many different bits in least significant bits of bkey->low. | 
|  | 620 | * See bfloat_mantiss() how the most significant bit of | 
|  | 621 | * f->exponent is used to calculate bfloat mantissa value. | 
|  | 622 | */ | 
|  | 623 | if (KEY_INODE(l) != KEY_INODE(r)) | 
|  | 624 | f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64; | 
|  | 625 | else | 
|  | 626 | f->exponent = fls64(r->low ^ l->low); | 
|  | 627 |  | 
|  | 628 | f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0); | 
|  | 629 |  | 
|  | 630 | /* | 
|  | 631 | * Setting f->exponent = 127 flags this node as failed, and causes the | 
|  | 632 | * lookup code to fall back to comparing against the original key. | 
|  | 633 | */ | 
|  | 634 |  | 
|  | 635 | if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f)) | 
|  | 636 | f->mantissa = bfloat_mantissa(m, f) - 1; | 
|  | 637 | else | 
|  | 638 | f->exponent = 127; | 
|  | 639 | } | 
|  | 640 |  | 
|  | 641 | static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t) | 
|  | 642 | { | 
|  | 643 | if (t != b->set) { | 
|  | 644 | unsigned int j = roundup(t[-1].size, | 
|  | 645 | 64 / sizeof(struct bkey_float)); | 
|  | 646 |  | 
|  | 647 | t->tree = t[-1].tree + j; | 
|  | 648 | t->prev = t[-1].prev + j; | 
|  | 649 | } | 
|  | 650 |  | 
|  | 651 | while (t < b->set + MAX_BSETS) | 
|  | 652 | t++->size = 0; | 
|  | 653 | } | 
|  | 654 |  | 
|  | 655 | static void bch_bset_build_unwritten_tree(struct btree_keys *b) | 
|  | 656 | { | 
|  | 657 | struct bset_tree *t = bset_tree_last(b); | 
|  | 658 |  | 
|  | 659 | BUG_ON(b->last_set_unwritten); | 
|  | 660 | b->last_set_unwritten = 1; | 
|  | 661 |  | 
|  | 662 | bset_alloc_tree(b, t); | 
|  | 663 |  | 
|  | 664 | if (t->tree != b->set->tree + btree_keys_cachelines(b)) { | 
|  | 665 | t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start); | 
|  | 666 | t->size = 1; | 
|  | 667 | } | 
|  | 668 | } | 
|  | 669 |  | 
|  | 670 | void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic) | 
|  | 671 | { | 
|  | 672 | if (i != b->set->data) { | 
|  | 673 | b->set[++b->nsets].data = i; | 
|  | 674 | i->seq = b->set->data->seq; | 
|  | 675 | } else | 
|  | 676 | get_random_bytes(&i->seq, sizeof(uint64_t)); | 
|  | 677 |  | 
|  | 678 | i->magic	= magic; | 
|  | 679 | i->version	= 0; | 
|  | 680 | i->keys		= 0; | 
|  | 681 |  | 
|  | 682 | bch_bset_build_unwritten_tree(b); | 
|  | 683 | } | 
|  | 684 | EXPORT_SYMBOL(bch_bset_init_next); | 
|  | 685 |  | 
|  | 686 | /* | 
|  | 687 | * Build auxiliary binary tree 'struct bset_tree *t', this tree is used to | 
|  | 688 | * accelerate bkey search in a btree node (pointed by bset_tree->data in | 
|  | 689 | * memory). After search in the auxiliar tree by calling bset_search_tree(), | 
|  | 690 | * a struct bset_search_iter is returned which indicates range [l, r] from | 
|  | 691 | * bset_tree->data where the searching bkey might be inside. Then a followed | 
|  | 692 | * linear comparison does the exact search, see __bch_bset_search() for how | 
|  | 693 | * the auxiliary tree is used. | 
|  | 694 | */ | 
|  | 695 | void bch_bset_build_written_tree(struct btree_keys *b) | 
|  | 696 | { | 
|  | 697 | struct bset_tree *t = bset_tree_last(b); | 
|  | 698 | struct bkey *prev = NULL, *k = t->data->start; | 
|  | 699 | unsigned int j, cacheline = 1; | 
|  | 700 |  | 
|  | 701 | b->last_set_unwritten = 0; | 
|  | 702 |  | 
|  | 703 | bset_alloc_tree(b, t); | 
|  | 704 |  | 
|  | 705 | t->size = min_t(unsigned int, | 
|  | 706 | bkey_to_cacheline(t, bset_bkey_last(t->data)), | 
|  | 707 | b->set->tree + btree_keys_cachelines(b) - t->tree); | 
|  | 708 |  | 
|  | 709 | if (t->size < 2) { | 
|  | 710 | t->size = 0; | 
|  | 711 | return; | 
|  | 712 | } | 
|  | 713 |  | 
|  | 714 | t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; | 
|  | 715 |  | 
|  | 716 | /* First we figure out where the first key in each cacheline is */ | 
|  | 717 | for (j = inorder_next(0, t->size); | 
|  | 718 | j; | 
|  | 719 | j = inorder_next(j, t->size)) { | 
|  | 720 | while (bkey_to_cacheline(t, k) < cacheline) | 
|  | 721 | prev = k, k = bkey_next(k); | 
|  | 722 |  | 
|  | 723 | t->prev[j] = bkey_u64s(prev); | 
|  | 724 | t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k); | 
|  | 725 | } | 
|  | 726 |  | 
|  | 727 | while (bkey_next(k) != bset_bkey_last(t->data)) | 
|  | 728 | k = bkey_next(k); | 
|  | 729 |  | 
|  | 730 | t->end = *k; | 
|  | 731 |  | 
|  | 732 | /* Then we build the tree */ | 
|  | 733 | for (j = inorder_next(0, t->size); | 
|  | 734 | j; | 
|  | 735 | j = inorder_next(j, t->size)) | 
|  | 736 | make_bfloat(t, j); | 
|  | 737 | } | 
|  | 738 | EXPORT_SYMBOL(bch_bset_build_written_tree); | 
|  | 739 |  | 
|  | 740 | /* Insert */ | 
|  | 741 |  | 
|  | 742 | void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k) | 
|  | 743 | { | 
|  | 744 | struct bset_tree *t; | 
|  | 745 | unsigned int inorder, j = 1; | 
|  | 746 |  | 
|  | 747 | for (t = b->set; t <= bset_tree_last(b); t++) | 
|  | 748 | if (k < bset_bkey_last(t->data)) | 
|  | 749 | goto found_set; | 
|  | 750 |  | 
|  | 751 | BUG(); | 
|  | 752 | found_set: | 
|  | 753 | if (!t->size || !bset_written(b, t)) | 
|  | 754 | return; | 
|  | 755 |  | 
|  | 756 | inorder = bkey_to_cacheline(t, k); | 
|  | 757 |  | 
|  | 758 | if (k == t->data->start) | 
|  | 759 | goto fix_left; | 
|  | 760 |  | 
|  | 761 | if (bkey_next(k) == bset_bkey_last(t->data)) { | 
|  | 762 | t->end = *k; | 
|  | 763 | goto fix_right; | 
|  | 764 | } | 
|  | 765 |  | 
|  | 766 | j = inorder_to_tree(inorder, t); | 
|  | 767 |  | 
|  | 768 | if (j && | 
|  | 769 | j < t->size && | 
|  | 770 | k == tree_to_bkey(t, j)) | 
|  | 771 | fix_left:	do { | 
|  | 772 | make_bfloat(t, j); | 
|  | 773 | j = j * 2; | 
|  | 774 | } while (j < t->size); | 
|  | 775 |  | 
|  | 776 | j = inorder_to_tree(inorder + 1, t); | 
|  | 777 |  | 
|  | 778 | if (j && | 
|  | 779 | j < t->size && | 
|  | 780 | k == tree_to_prev_bkey(t, j)) | 
|  | 781 | fix_right:	do { | 
|  | 782 | make_bfloat(t, j); | 
|  | 783 | j = j * 2 + 1; | 
|  | 784 | } while (j < t->size); | 
|  | 785 | } | 
|  | 786 | EXPORT_SYMBOL(bch_bset_fix_invalidated_key); | 
|  | 787 |  | 
|  | 788 | static void bch_bset_fix_lookup_table(struct btree_keys *b, | 
|  | 789 | struct bset_tree *t, | 
|  | 790 | struct bkey *k) | 
|  | 791 | { | 
|  | 792 | unsigned int shift = bkey_u64s(k); | 
|  | 793 | unsigned int j = bkey_to_cacheline(t, k); | 
|  | 794 |  | 
|  | 795 | /* We're getting called from btree_split() or btree_gc, just bail out */ | 
|  | 796 | if (!t->size) | 
|  | 797 | return; | 
|  | 798 |  | 
|  | 799 | /* | 
|  | 800 | * k is the key we just inserted; we need to find the entry in the | 
|  | 801 | * lookup table for the first key that is strictly greater than k: | 
|  | 802 | * it's either k's cacheline or the next one | 
|  | 803 | */ | 
|  | 804 | while (j < t->size && | 
|  | 805 | table_to_bkey(t, j) <= k) | 
|  | 806 | j++; | 
|  | 807 |  | 
|  | 808 | /* | 
|  | 809 | * Adjust all the lookup table entries, and find a new key for any that | 
|  | 810 | * have gotten too big | 
|  | 811 | */ | 
|  | 812 | for (; j < t->size; j++) { | 
|  | 813 | t->prev[j] += shift; | 
|  | 814 |  | 
|  | 815 | if (t->prev[j] > 7) { | 
|  | 816 | k = table_to_bkey(t, j - 1); | 
|  | 817 |  | 
|  | 818 | while (k < cacheline_to_bkey(t, j, 0)) | 
|  | 819 | k = bkey_next(k); | 
|  | 820 |  | 
|  | 821 | t->prev[j] = bkey_to_cacheline_offset(t, j, k); | 
|  | 822 | } | 
|  | 823 | } | 
|  | 824 |  | 
|  | 825 | if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree) | 
|  | 826 | return; | 
|  | 827 |  | 
|  | 828 | /* Possibly add a new entry to the end of the lookup table */ | 
|  | 829 |  | 
|  | 830 | for (k = table_to_bkey(t, t->size - 1); | 
|  | 831 | k != bset_bkey_last(t->data); | 
|  | 832 | k = bkey_next(k)) | 
|  | 833 | if (t->size == bkey_to_cacheline(t, k)) { | 
|  | 834 | t->prev[t->size] = | 
|  | 835 | bkey_to_cacheline_offset(t, t->size, k); | 
|  | 836 | t->size++; | 
|  | 837 | } | 
|  | 838 | } | 
|  | 839 |  | 
|  | 840 | /* | 
|  | 841 | * Tries to merge l and r: l should be lower than r | 
|  | 842 | * Returns true if we were able to merge. If we did merge, l will be the merged | 
|  | 843 | * key, r will be untouched. | 
|  | 844 | */ | 
|  | 845 | bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r) | 
|  | 846 | { | 
|  | 847 | if (!b->ops->key_merge) | 
|  | 848 | return false; | 
|  | 849 |  | 
|  | 850 | /* | 
|  | 851 | * Generic header checks | 
|  | 852 | * Assumes left and right are in order | 
|  | 853 | * Left and right must be exactly aligned | 
|  | 854 | */ | 
|  | 855 | if (!bch_bkey_equal_header(l, r) || | 
|  | 856 | bkey_cmp(l, &START_KEY(r))) | 
|  | 857 | return false; | 
|  | 858 |  | 
|  | 859 | return b->ops->key_merge(b, l, r); | 
|  | 860 | } | 
|  | 861 | EXPORT_SYMBOL(bch_bkey_try_merge); | 
|  | 862 |  | 
|  | 863 | void bch_bset_insert(struct btree_keys *b, struct bkey *where, | 
|  | 864 | struct bkey *insert) | 
|  | 865 | { | 
|  | 866 | struct bset_tree *t = bset_tree_last(b); | 
|  | 867 |  | 
|  | 868 | BUG_ON(!b->last_set_unwritten); | 
|  | 869 | BUG_ON(bset_byte_offset(b, t->data) + | 
|  | 870 | __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) > | 
|  | 871 | PAGE_SIZE << b->page_order); | 
|  | 872 |  | 
|  | 873 | memmove((uint64_t *) where + bkey_u64s(insert), | 
|  | 874 | where, | 
|  | 875 | (void *) bset_bkey_last(t->data) - (void *) where); | 
|  | 876 |  | 
|  | 877 | t->data->keys += bkey_u64s(insert); | 
|  | 878 | bkey_copy(where, insert); | 
|  | 879 | bch_bset_fix_lookup_table(b, t, where); | 
|  | 880 | } | 
|  | 881 | EXPORT_SYMBOL(bch_bset_insert); | 
|  | 882 |  | 
|  | 883 | unsigned int bch_btree_insert_key(struct btree_keys *b, struct bkey *k, | 
|  | 884 | struct bkey *replace_key) | 
|  | 885 | { | 
|  | 886 | unsigned int status = BTREE_INSERT_STATUS_NO_INSERT; | 
|  | 887 | struct bset *i = bset_tree_last(b)->data; | 
|  | 888 | struct bkey *m, *prev = NULL; | 
|  | 889 | struct btree_iter iter; | 
|  | 890 | struct bkey preceding_key_on_stack = ZERO_KEY; | 
|  | 891 | struct bkey *preceding_key_p = &preceding_key_on_stack; | 
|  | 892 |  | 
|  | 893 | BUG_ON(b->ops->is_extents && !KEY_SIZE(k)); | 
|  | 894 |  | 
|  | 895 | /* | 
|  | 896 | * If k has preceding key, preceding_key_p will be set to address | 
|  | 897 | *  of k's preceding key; otherwise preceding_key_p will be set | 
|  | 898 | * to NULL inside preceding_key(). | 
|  | 899 | */ | 
|  | 900 | if (b->ops->is_extents) | 
|  | 901 | preceding_key(&START_KEY(k), &preceding_key_p); | 
|  | 902 | else | 
|  | 903 | preceding_key(k, &preceding_key_p); | 
|  | 904 |  | 
|  | 905 | m = bch_btree_iter_init(b, &iter, preceding_key_p); | 
|  | 906 |  | 
|  | 907 | if (b->ops->insert_fixup(b, k, &iter, replace_key)) | 
|  | 908 | return status; | 
|  | 909 |  | 
|  | 910 | status = BTREE_INSERT_STATUS_INSERT; | 
|  | 911 |  | 
|  | 912 | while (m != bset_bkey_last(i) && | 
|  | 913 | bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0) | 
|  | 914 | prev = m, m = bkey_next(m); | 
|  | 915 |  | 
|  | 916 | /* prev is in the tree, if we merge we're done */ | 
|  | 917 | status = BTREE_INSERT_STATUS_BACK_MERGE; | 
|  | 918 | if (prev && | 
|  | 919 | bch_bkey_try_merge(b, prev, k)) | 
|  | 920 | goto merged; | 
|  | 921 | #if 0 | 
|  | 922 | status = BTREE_INSERT_STATUS_OVERWROTE; | 
|  | 923 | if (m != bset_bkey_last(i) && | 
|  | 924 | KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m)) | 
|  | 925 | goto copy; | 
|  | 926 | #endif | 
|  | 927 | status = BTREE_INSERT_STATUS_FRONT_MERGE; | 
|  | 928 | if (m != bset_bkey_last(i) && | 
|  | 929 | bch_bkey_try_merge(b, k, m)) | 
|  | 930 | goto copy; | 
|  | 931 |  | 
|  | 932 | bch_bset_insert(b, m, k); | 
|  | 933 | copy:	bkey_copy(m, k); | 
|  | 934 | merged: | 
|  | 935 | return status; | 
|  | 936 | } | 
|  | 937 | EXPORT_SYMBOL(bch_btree_insert_key); | 
|  | 938 |  | 
|  | 939 | /* Lookup */ | 
|  | 940 |  | 
|  | 941 | struct bset_search_iter { | 
|  | 942 | struct bkey *l, *r; | 
|  | 943 | }; | 
|  | 944 |  | 
|  | 945 | static struct bset_search_iter bset_search_write_set(struct bset_tree *t, | 
|  | 946 | const struct bkey *search) | 
|  | 947 | { | 
|  | 948 | unsigned int li = 0, ri = t->size; | 
|  | 949 |  | 
|  | 950 | while (li + 1 != ri) { | 
|  | 951 | unsigned int m = (li + ri) >> 1; | 
|  | 952 |  | 
|  | 953 | if (bkey_cmp(table_to_bkey(t, m), search) > 0) | 
|  | 954 | ri = m; | 
|  | 955 | else | 
|  | 956 | li = m; | 
|  | 957 | } | 
|  | 958 |  | 
|  | 959 | return (struct bset_search_iter) { | 
|  | 960 | table_to_bkey(t, li), | 
|  | 961 | ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data) | 
|  | 962 | }; | 
|  | 963 | } | 
|  | 964 |  | 
|  | 965 | static struct bset_search_iter bset_search_tree(struct bset_tree *t, | 
|  | 966 | const struct bkey *search) | 
|  | 967 | { | 
|  | 968 | struct bkey *l, *r; | 
|  | 969 | struct bkey_float *f; | 
|  | 970 | unsigned int inorder, j, n = 1; | 
|  | 971 |  | 
|  | 972 | do { | 
|  | 973 | /* | 
|  | 974 | * A bit trick here. | 
|  | 975 | * If p < t->size, (int)(p - t->size) is a minus value and | 
|  | 976 | * the most significant bit is set, right shifting 31 bits | 
|  | 977 | * gets 1. If p >= t->size, the most significant bit is | 
|  | 978 | * not set, right shifting 31 bits gets 0. | 
|  | 979 | * So the following 2 lines equals to | 
|  | 980 | *	if (p >= t->size) | 
|  | 981 | *		p = 0; | 
|  | 982 | * but a branch instruction is avoided. | 
|  | 983 | */ | 
|  | 984 | unsigned int p = n << 4; | 
|  | 985 |  | 
|  | 986 | p &= ((int) (p - t->size)) >> 31; | 
|  | 987 |  | 
|  | 988 | prefetch(&t->tree[p]); | 
|  | 989 |  | 
|  | 990 | j = n; | 
|  | 991 | f = &t->tree[j]; | 
|  | 992 |  | 
|  | 993 | /* | 
|  | 994 | * Similar bit trick, use subtract operation to avoid a branch | 
|  | 995 | * instruction. | 
|  | 996 | * | 
|  | 997 | * n = (f->mantissa > bfloat_mantissa()) | 
|  | 998 | *	? j * 2 | 
|  | 999 | *	: j * 2 + 1; | 
|  | 1000 | * | 
|  | 1001 | * We need to subtract 1 from f->mantissa for the sign bit trick | 
|  | 1002 | * to work  - that's done in make_bfloat() | 
|  | 1003 | */ | 
|  | 1004 | if (likely(f->exponent != 127)) | 
|  | 1005 | n = j * 2 + (((unsigned int) | 
|  | 1006 | (f->mantissa - | 
|  | 1007 | bfloat_mantissa(search, f))) >> 31); | 
|  | 1008 | else | 
|  | 1009 | n = (bkey_cmp(tree_to_bkey(t, j), search) > 0) | 
|  | 1010 | ? j * 2 | 
|  | 1011 | : j * 2 + 1; | 
|  | 1012 | } while (n < t->size); | 
|  | 1013 |  | 
|  | 1014 | inorder = to_inorder(j, t); | 
|  | 1015 |  | 
|  | 1016 | /* | 
|  | 1017 | * n would have been the node we recursed to - the low bit tells us if | 
|  | 1018 | * we recursed left or recursed right. | 
|  | 1019 | */ | 
|  | 1020 | if (n & 1) { | 
|  | 1021 | l = cacheline_to_bkey(t, inorder, f->m); | 
|  | 1022 |  | 
|  | 1023 | if (++inorder != t->size) { | 
|  | 1024 | f = &t->tree[inorder_next(j, t->size)]; | 
|  | 1025 | r = cacheline_to_bkey(t, inorder, f->m); | 
|  | 1026 | } else | 
|  | 1027 | r = bset_bkey_last(t->data); | 
|  | 1028 | } else { | 
|  | 1029 | r = cacheline_to_bkey(t, inorder, f->m); | 
|  | 1030 |  | 
|  | 1031 | if (--inorder) { | 
|  | 1032 | f = &t->tree[inorder_prev(j, t->size)]; | 
|  | 1033 | l = cacheline_to_bkey(t, inorder, f->m); | 
|  | 1034 | } else | 
|  | 1035 | l = t->data->start; | 
|  | 1036 | } | 
|  | 1037 |  | 
|  | 1038 | return (struct bset_search_iter) {l, r}; | 
|  | 1039 | } | 
|  | 1040 |  | 
|  | 1041 | struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t, | 
|  | 1042 | const struct bkey *search) | 
|  | 1043 | { | 
|  | 1044 | struct bset_search_iter i; | 
|  | 1045 |  | 
|  | 1046 | /* | 
|  | 1047 | * First, we search for a cacheline, then lastly we do a linear search | 
|  | 1048 | * within that cacheline. | 
|  | 1049 | * | 
|  | 1050 | * To search for the cacheline, there's three different possibilities: | 
|  | 1051 | *  * The set is too small to have a search tree, so we just do a linear | 
|  | 1052 | *    search over the whole set. | 
|  | 1053 | *  * The set is the one we're currently inserting into; keeping a full | 
|  | 1054 | *    auxiliary search tree up to date would be too expensive, so we | 
|  | 1055 | *    use a much simpler lookup table to do a binary search - | 
|  | 1056 | *    bset_search_write_set(). | 
|  | 1057 | *  * Or we use the auxiliary search tree we constructed earlier - | 
|  | 1058 | *    bset_search_tree() | 
|  | 1059 | */ | 
|  | 1060 |  | 
|  | 1061 | if (unlikely(!t->size)) { | 
|  | 1062 | i.l = t->data->start; | 
|  | 1063 | i.r = bset_bkey_last(t->data); | 
|  | 1064 | } else if (bset_written(b, t)) { | 
|  | 1065 | /* | 
|  | 1066 | * Each node in the auxiliary search tree covers a certain range | 
|  | 1067 | * of bits, and keys above and below the set it covers might | 
|  | 1068 | * differ outside those bits - so we have to special case the | 
|  | 1069 | * start and end - handle that here: | 
|  | 1070 | */ | 
|  | 1071 |  | 
|  | 1072 | if (unlikely(bkey_cmp(search, &t->end) >= 0)) | 
|  | 1073 | return bset_bkey_last(t->data); | 
|  | 1074 |  | 
|  | 1075 | if (unlikely(bkey_cmp(search, t->data->start) < 0)) | 
|  | 1076 | return t->data->start; | 
|  | 1077 |  | 
|  | 1078 | i = bset_search_tree(t, search); | 
|  | 1079 | } else { | 
|  | 1080 | BUG_ON(!b->nsets && | 
|  | 1081 | t->size < bkey_to_cacheline(t, bset_bkey_last(t->data))); | 
|  | 1082 |  | 
|  | 1083 | i = bset_search_write_set(t, search); | 
|  | 1084 | } | 
|  | 1085 |  | 
|  | 1086 | if (btree_keys_expensive_checks(b)) { | 
|  | 1087 | BUG_ON(bset_written(b, t) && | 
|  | 1088 | i.l != t->data->start && | 
|  | 1089 | bkey_cmp(tree_to_prev_bkey(t, | 
|  | 1090 | inorder_to_tree(bkey_to_cacheline(t, i.l), t)), | 
|  | 1091 | search) > 0); | 
|  | 1092 |  | 
|  | 1093 | BUG_ON(i.r != bset_bkey_last(t->data) && | 
|  | 1094 | bkey_cmp(i.r, search) <= 0); | 
|  | 1095 | } | 
|  | 1096 |  | 
|  | 1097 | while (likely(i.l != i.r) && | 
|  | 1098 | bkey_cmp(i.l, search) <= 0) | 
|  | 1099 | i.l = bkey_next(i.l); | 
|  | 1100 |  | 
|  | 1101 | return i.l; | 
|  | 1102 | } | 
|  | 1103 | EXPORT_SYMBOL(__bch_bset_search); | 
|  | 1104 |  | 
|  | 1105 | /* Btree iterator */ | 
|  | 1106 |  | 
|  | 1107 | typedef bool (btree_iter_cmp_fn)(struct btree_iter_set, | 
|  | 1108 | struct btree_iter_set); | 
|  | 1109 |  | 
|  | 1110 | static inline bool btree_iter_cmp(struct btree_iter_set l, | 
|  | 1111 | struct btree_iter_set r) | 
|  | 1112 | { | 
|  | 1113 | return bkey_cmp(l.k, r.k) > 0; | 
|  | 1114 | } | 
|  | 1115 |  | 
|  | 1116 | static inline bool btree_iter_end(struct btree_iter *iter) | 
|  | 1117 | { | 
|  | 1118 | return !iter->used; | 
|  | 1119 | } | 
|  | 1120 |  | 
|  | 1121 | void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k, | 
|  | 1122 | struct bkey *end) | 
|  | 1123 | { | 
|  | 1124 | if (k != end) | 
|  | 1125 | BUG_ON(!heap_add(iter, | 
|  | 1126 | ((struct btree_iter_set) { k, end }), | 
|  | 1127 | btree_iter_cmp)); | 
|  | 1128 | } | 
|  | 1129 |  | 
|  | 1130 | static struct bkey *__bch_btree_iter_init(struct btree_keys *b, | 
|  | 1131 | struct btree_iter *iter, | 
|  | 1132 | struct bkey *search, | 
|  | 1133 | struct bset_tree *start) | 
|  | 1134 | { | 
|  | 1135 | struct bkey *ret = NULL; | 
|  | 1136 |  | 
|  | 1137 | iter->size = ARRAY_SIZE(iter->data); | 
|  | 1138 | iter->used = 0; | 
|  | 1139 |  | 
|  | 1140 | #ifdef CONFIG_BCACHE_DEBUG | 
|  | 1141 | iter->b = b; | 
|  | 1142 | #endif | 
|  | 1143 |  | 
|  | 1144 | for (; start <= bset_tree_last(b); start++) { | 
|  | 1145 | ret = bch_bset_search(b, start, search); | 
|  | 1146 | bch_btree_iter_push(iter, ret, bset_bkey_last(start->data)); | 
|  | 1147 | } | 
|  | 1148 |  | 
|  | 1149 | return ret; | 
|  | 1150 | } | 
|  | 1151 |  | 
|  | 1152 | struct bkey *bch_btree_iter_init(struct btree_keys *b, | 
|  | 1153 | struct btree_iter *iter, | 
|  | 1154 | struct bkey *search) | 
|  | 1155 | { | 
|  | 1156 | return __bch_btree_iter_init(b, iter, search, b->set); | 
|  | 1157 | } | 
|  | 1158 | EXPORT_SYMBOL(bch_btree_iter_init); | 
|  | 1159 |  | 
|  | 1160 | static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter, | 
|  | 1161 | btree_iter_cmp_fn *cmp) | 
|  | 1162 | { | 
|  | 1163 | struct btree_iter_set b __maybe_unused; | 
|  | 1164 | struct bkey *ret = NULL; | 
|  | 1165 |  | 
|  | 1166 | if (!btree_iter_end(iter)) { | 
|  | 1167 | bch_btree_iter_next_check(iter); | 
|  | 1168 |  | 
|  | 1169 | ret = iter->data->k; | 
|  | 1170 | iter->data->k = bkey_next(iter->data->k); | 
|  | 1171 |  | 
|  | 1172 | if (iter->data->k > iter->data->end) { | 
|  | 1173 | WARN_ONCE(1, "bset was corrupt!\n"); | 
|  | 1174 | iter->data->k = iter->data->end; | 
|  | 1175 | } | 
|  | 1176 |  | 
|  | 1177 | if (iter->data->k == iter->data->end) | 
|  | 1178 | heap_pop(iter, b, cmp); | 
|  | 1179 | else | 
|  | 1180 | heap_sift(iter, 0, cmp); | 
|  | 1181 | } | 
|  | 1182 |  | 
|  | 1183 | return ret; | 
|  | 1184 | } | 
|  | 1185 |  | 
|  | 1186 | struct bkey *bch_btree_iter_next(struct btree_iter *iter) | 
|  | 1187 | { | 
|  | 1188 | return __bch_btree_iter_next(iter, btree_iter_cmp); | 
|  | 1189 |  | 
|  | 1190 | } | 
|  | 1191 | EXPORT_SYMBOL(bch_btree_iter_next); | 
|  | 1192 |  | 
|  | 1193 | struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter, | 
|  | 1194 | struct btree_keys *b, ptr_filter_fn fn) | 
|  | 1195 | { | 
|  | 1196 | struct bkey *ret; | 
|  | 1197 |  | 
|  | 1198 | do { | 
|  | 1199 | ret = bch_btree_iter_next(iter); | 
|  | 1200 | } while (ret && fn(b, ret)); | 
|  | 1201 |  | 
|  | 1202 | return ret; | 
|  | 1203 | } | 
|  | 1204 |  | 
|  | 1205 | /* Mergesort */ | 
|  | 1206 |  | 
|  | 1207 | void bch_bset_sort_state_free(struct bset_sort_state *state) | 
|  | 1208 | { | 
|  | 1209 | mempool_exit(&state->pool); | 
|  | 1210 | } | 
|  | 1211 |  | 
|  | 1212 | int bch_bset_sort_state_init(struct bset_sort_state *state, | 
|  | 1213 | unsigned int page_order) | 
|  | 1214 | { | 
|  | 1215 | spin_lock_init(&state->time.lock); | 
|  | 1216 |  | 
|  | 1217 | state->page_order = page_order; | 
|  | 1218 | state->crit_factor = int_sqrt(1 << page_order); | 
|  | 1219 |  | 
|  | 1220 | return mempool_init_page_pool(&state->pool, 1, page_order); | 
|  | 1221 | } | 
|  | 1222 | EXPORT_SYMBOL(bch_bset_sort_state_init); | 
|  | 1223 |  | 
|  | 1224 | static void btree_mergesort(struct btree_keys *b, struct bset *out, | 
|  | 1225 | struct btree_iter *iter, | 
|  | 1226 | bool fixup, bool remove_stale) | 
|  | 1227 | { | 
|  | 1228 | int i; | 
|  | 1229 | struct bkey *k, *last = NULL; | 
|  | 1230 | BKEY_PADDED(k) tmp; | 
|  | 1231 | bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale | 
|  | 1232 | ? bch_ptr_bad | 
|  | 1233 | : bch_ptr_invalid; | 
|  | 1234 |  | 
|  | 1235 | /* Heapify the iterator, using our comparison function */ | 
|  | 1236 | for (i = iter->used / 2 - 1; i >= 0; --i) | 
|  | 1237 | heap_sift(iter, i, b->ops->sort_cmp); | 
|  | 1238 |  | 
|  | 1239 | while (!btree_iter_end(iter)) { | 
|  | 1240 | if (b->ops->sort_fixup && fixup) | 
|  | 1241 | k = b->ops->sort_fixup(iter, &tmp.k); | 
|  | 1242 | else | 
|  | 1243 | k = NULL; | 
|  | 1244 |  | 
|  | 1245 | if (!k) | 
|  | 1246 | k = __bch_btree_iter_next(iter, b->ops->sort_cmp); | 
|  | 1247 |  | 
|  | 1248 | if (bad(b, k)) | 
|  | 1249 | continue; | 
|  | 1250 |  | 
|  | 1251 | if (!last) { | 
|  | 1252 | last = out->start; | 
|  | 1253 | bkey_copy(last, k); | 
|  | 1254 | } else if (!bch_bkey_try_merge(b, last, k)) { | 
|  | 1255 | last = bkey_next(last); | 
|  | 1256 | bkey_copy(last, k); | 
|  | 1257 | } | 
|  | 1258 | } | 
|  | 1259 |  | 
|  | 1260 | out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0; | 
|  | 1261 |  | 
|  | 1262 | pr_debug("sorted %i keys", out->keys); | 
|  | 1263 | } | 
|  | 1264 |  | 
|  | 1265 | static void __btree_sort(struct btree_keys *b, struct btree_iter *iter, | 
|  | 1266 | unsigned int start, unsigned int order, bool fixup, | 
|  | 1267 | struct bset_sort_state *state) | 
|  | 1268 | { | 
|  | 1269 | uint64_t start_time; | 
|  | 1270 | bool used_mempool = false; | 
|  | 1271 | struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT, | 
|  | 1272 | order); | 
|  | 1273 | if (!out) { | 
|  | 1274 | struct page *outp; | 
|  | 1275 |  | 
|  | 1276 | BUG_ON(order > state->page_order); | 
|  | 1277 |  | 
|  | 1278 | outp = mempool_alloc(&state->pool, GFP_NOIO); | 
|  | 1279 | out = page_address(outp); | 
|  | 1280 | used_mempool = true; | 
|  | 1281 | order = state->page_order; | 
|  | 1282 | } | 
|  | 1283 |  | 
|  | 1284 | start_time = local_clock(); | 
|  | 1285 |  | 
|  | 1286 | btree_mergesort(b, out, iter, fixup, false); | 
|  | 1287 | b->nsets = start; | 
|  | 1288 |  | 
|  | 1289 | if (!start && order == b->page_order) { | 
|  | 1290 | /* | 
|  | 1291 | * Our temporary buffer is the same size as the btree node's | 
|  | 1292 | * buffer, we can just swap buffers instead of doing a big | 
|  | 1293 | * memcpy() | 
|  | 1294 | */ | 
|  | 1295 |  | 
|  | 1296 | out->magic	= b->set->data->magic; | 
|  | 1297 | out->seq	= b->set->data->seq; | 
|  | 1298 | out->version	= b->set->data->version; | 
|  | 1299 | swap(out, b->set->data); | 
|  | 1300 | } else { | 
|  | 1301 | b->set[start].data->keys = out->keys; | 
|  | 1302 | memcpy(b->set[start].data->start, out->start, | 
|  | 1303 | (void *) bset_bkey_last(out) - (void *) out->start); | 
|  | 1304 | } | 
|  | 1305 |  | 
|  | 1306 | if (used_mempool) | 
|  | 1307 | mempool_free(virt_to_page(out), &state->pool); | 
|  | 1308 | else | 
|  | 1309 | free_pages((unsigned long) out, order); | 
|  | 1310 |  | 
|  | 1311 | bch_bset_build_written_tree(b); | 
|  | 1312 |  | 
|  | 1313 | if (!start) | 
|  | 1314 | bch_time_stats_update(&state->time, start_time); | 
|  | 1315 | } | 
|  | 1316 |  | 
|  | 1317 | void bch_btree_sort_partial(struct btree_keys *b, unsigned int start, | 
|  | 1318 | struct bset_sort_state *state) | 
|  | 1319 | { | 
|  | 1320 | size_t order = b->page_order, keys = 0; | 
|  | 1321 | struct btree_iter iter; | 
|  | 1322 | int oldsize = bch_count_data(b); | 
|  | 1323 |  | 
|  | 1324 | __bch_btree_iter_init(b, &iter, NULL, &b->set[start]); | 
|  | 1325 |  | 
|  | 1326 | if (start) { | 
|  | 1327 | unsigned int i; | 
|  | 1328 |  | 
|  | 1329 | for (i = start; i <= b->nsets; i++) | 
|  | 1330 | keys += b->set[i].data->keys; | 
|  | 1331 |  | 
|  | 1332 | order = get_order(__set_bytes(b->set->data, keys)); | 
|  | 1333 | } | 
|  | 1334 |  | 
|  | 1335 | __btree_sort(b, &iter, start, order, false, state); | 
|  | 1336 |  | 
|  | 1337 | EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize); | 
|  | 1338 | } | 
|  | 1339 | EXPORT_SYMBOL(bch_btree_sort_partial); | 
|  | 1340 |  | 
|  | 1341 | void bch_btree_sort_and_fix_extents(struct btree_keys *b, | 
|  | 1342 | struct btree_iter *iter, | 
|  | 1343 | struct bset_sort_state *state) | 
|  | 1344 | { | 
|  | 1345 | __btree_sort(b, iter, 0, b->page_order, true, state); | 
|  | 1346 | } | 
|  | 1347 |  | 
|  | 1348 | void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new, | 
|  | 1349 | struct bset_sort_state *state) | 
|  | 1350 | { | 
|  | 1351 | uint64_t start_time = local_clock(); | 
|  | 1352 | struct btree_iter iter; | 
|  | 1353 |  | 
|  | 1354 | bch_btree_iter_init(b, &iter, NULL); | 
|  | 1355 |  | 
|  | 1356 | btree_mergesort(b, new->set->data, &iter, false, true); | 
|  | 1357 |  | 
|  | 1358 | bch_time_stats_update(&state->time, start_time); | 
|  | 1359 |  | 
|  | 1360 | new->set->size = 0; // XXX: why? | 
|  | 1361 | } | 
|  | 1362 |  | 
|  | 1363 | #define SORT_CRIT	(4096 / sizeof(uint64_t)) | 
|  | 1364 |  | 
|  | 1365 | void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state) | 
|  | 1366 | { | 
|  | 1367 | unsigned int crit = SORT_CRIT; | 
|  | 1368 | int i; | 
|  | 1369 |  | 
|  | 1370 | /* Don't sort if nothing to do */ | 
|  | 1371 | if (!b->nsets) | 
|  | 1372 | goto out; | 
|  | 1373 |  | 
|  | 1374 | for (i = b->nsets - 1; i >= 0; --i) { | 
|  | 1375 | crit *= state->crit_factor; | 
|  | 1376 |  | 
|  | 1377 | if (b->set[i].data->keys < crit) { | 
|  | 1378 | bch_btree_sort_partial(b, i, state); | 
|  | 1379 | return; | 
|  | 1380 | } | 
|  | 1381 | } | 
|  | 1382 |  | 
|  | 1383 | /* Sort if we'd overflow */ | 
|  | 1384 | if (b->nsets + 1 == MAX_BSETS) { | 
|  | 1385 | bch_btree_sort(b, state); | 
|  | 1386 | return; | 
|  | 1387 | } | 
|  | 1388 |  | 
|  | 1389 | out: | 
|  | 1390 | bch_bset_build_written_tree(b); | 
|  | 1391 | } | 
|  | 1392 | EXPORT_SYMBOL(bch_btree_sort_lazy); | 
|  | 1393 |  | 
|  | 1394 | void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats) | 
|  | 1395 | { | 
|  | 1396 | unsigned int i; | 
|  | 1397 |  | 
|  | 1398 | for (i = 0; i <= b->nsets; i++) { | 
|  | 1399 | struct bset_tree *t = &b->set[i]; | 
|  | 1400 | size_t bytes = t->data->keys * sizeof(uint64_t); | 
|  | 1401 | size_t j; | 
|  | 1402 |  | 
|  | 1403 | if (bset_written(b, t)) { | 
|  | 1404 | stats->sets_written++; | 
|  | 1405 | stats->bytes_written += bytes; | 
|  | 1406 |  | 
|  | 1407 | stats->floats += t->size - 1; | 
|  | 1408 |  | 
|  | 1409 | for (j = 1; j < t->size; j++) | 
|  | 1410 | if (t->tree[j].exponent == 127) | 
|  | 1411 | stats->failed++; | 
|  | 1412 | } else { | 
|  | 1413 | stats->sets_unwritten++; | 
|  | 1414 | stats->bytes_unwritten += bytes; | 
|  | 1415 | } | 
|  | 1416 | } | 
|  | 1417 | } |