| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * intel_powerclamp.c - package c-state idle injection | 
|  | 3 | * | 
|  | 4 | * Copyright (c) 2012, Intel Corporation. | 
|  | 5 | * | 
|  | 6 | * Authors: | 
|  | 7 | *     Arjan van de Ven <arjan@linux.intel.com> | 
|  | 8 | *     Jacob Pan <jacob.jun.pan@linux.intel.com> | 
|  | 9 | * | 
|  | 10 | * This program is free software; you can redistribute it and/or modify it | 
|  | 11 | * under the terms and conditions of the GNU General Public License, | 
|  | 12 | * version 2, as published by the Free Software Foundation. | 
|  | 13 | * | 
|  | 14 | * This program is distributed in the hope it will be useful, but WITHOUT | 
|  | 15 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | 16 | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | 17 | * more details. | 
|  | 18 | * | 
|  | 19 | * You should have received a copy of the GNU General Public License along with | 
|  | 20 | * this program; if not, write to the Free Software Foundation, Inc., | 
|  | 21 | * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  | 22 | * | 
|  | 23 | * | 
|  | 24 | *	TODO: | 
|  | 25 | *           1. better handle wakeup from external interrupts, currently a fixed | 
|  | 26 | *              compensation is added to clamping duration when excessive amount | 
|  | 27 | *              of wakeups are observed during idle time. the reason is that in | 
|  | 28 | *              case of external interrupts without need for ack, clamping down | 
|  | 29 | *              cpu in non-irq context does not reduce irq. for majority of the | 
|  | 30 | *              cases, clamping down cpu does help reduce irq as well, we should | 
|  | 31 | *              be able to differentiate the two cases and give a quantitative | 
|  | 32 | *              solution for the irqs that we can control. perhaps based on | 
|  | 33 | *              get_cpu_iowait_time_us() | 
|  | 34 | * | 
|  | 35 | *	     2. synchronization with other hw blocks | 
|  | 36 | * | 
|  | 37 | * | 
|  | 38 | */ | 
|  | 39 |  | 
|  | 40 | #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt | 
|  | 41 |  | 
|  | 42 | #include <linux/module.h> | 
|  | 43 | #include <linux/kernel.h> | 
|  | 44 | #include <linux/delay.h> | 
|  | 45 | #include <linux/kthread.h> | 
|  | 46 | #include <linux/cpu.h> | 
|  | 47 | #include <linux/thermal.h> | 
|  | 48 | #include <linux/slab.h> | 
|  | 49 | #include <linux/tick.h> | 
|  | 50 | #include <linux/debugfs.h> | 
|  | 51 | #include <linux/seq_file.h> | 
|  | 52 | #include <linux/sched/rt.h> | 
|  | 53 | #include <uapi/linux/sched/types.h> | 
|  | 54 |  | 
|  | 55 | #include <asm/nmi.h> | 
|  | 56 | #include <asm/msr.h> | 
|  | 57 | #include <asm/mwait.h> | 
|  | 58 | #include <asm/cpu_device_id.h> | 
|  | 59 | #include <asm/hardirq.h> | 
|  | 60 |  | 
|  | 61 | #define MAX_TARGET_RATIO (50U) | 
|  | 62 | /* For each undisturbed clamping period (no extra wake ups during idle time), | 
|  | 63 | * we increment the confidence counter for the given target ratio. | 
|  | 64 | * CONFIDENCE_OK defines the level where runtime calibration results are | 
|  | 65 | * valid. | 
|  | 66 | */ | 
|  | 67 | #define CONFIDENCE_OK (3) | 
|  | 68 | /* Default idle injection duration, driver adjust sleep time to meet target | 
|  | 69 | * idle ratio. Similar to frequency modulation. | 
|  | 70 | */ | 
|  | 71 | #define DEFAULT_DURATION_JIFFIES (6) | 
|  | 72 |  | 
|  | 73 | static unsigned int target_mwait; | 
|  | 74 | static struct dentry *debug_dir; | 
|  | 75 |  | 
|  | 76 | /* user selected target */ | 
|  | 77 | static unsigned int set_target_ratio; | 
|  | 78 | static unsigned int current_ratio; | 
|  | 79 | static bool should_skip; | 
|  | 80 | static bool reduce_irq; | 
|  | 81 | static atomic_t idle_wakeup_counter; | 
|  | 82 | static unsigned int control_cpu; /* The cpu assigned to collect stat and update | 
|  | 83 | * control parameters. default to BSP but BSP | 
|  | 84 | * can be offlined. | 
|  | 85 | */ | 
|  | 86 | static bool clamping; | 
|  | 87 |  | 
|  | 88 | static const struct sched_param sparam = { | 
|  | 89 | .sched_priority = MAX_USER_RT_PRIO / 2, | 
|  | 90 | }; | 
|  | 91 | struct powerclamp_worker_data { | 
|  | 92 | struct kthread_worker *worker; | 
|  | 93 | struct kthread_work balancing_work; | 
|  | 94 | struct kthread_delayed_work idle_injection_work; | 
|  | 95 | unsigned int cpu; | 
|  | 96 | unsigned int count; | 
|  | 97 | unsigned int guard; | 
|  | 98 | unsigned int window_size_now; | 
|  | 99 | unsigned int target_ratio; | 
|  | 100 | unsigned int duration_jiffies; | 
|  | 101 | bool clamping; | 
|  | 102 | }; | 
|  | 103 |  | 
|  | 104 | static struct powerclamp_worker_data __percpu *worker_data; | 
|  | 105 | static struct thermal_cooling_device *cooling_dev; | 
|  | 106 | static unsigned long *cpu_clamping_mask;  /* bit map for tracking per cpu | 
|  | 107 | * clamping kthread worker | 
|  | 108 | */ | 
|  | 109 |  | 
|  | 110 | static unsigned int duration; | 
|  | 111 | static unsigned int pkg_cstate_ratio_cur; | 
|  | 112 | static unsigned int window_size; | 
|  | 113 |  | 
|  | 114 | static int duration_set(const char *arg, const struct kernel_param *kp) | 
|  | 115 | { | 
|  | 116 | int ret = 0; | 
|  | 117 | unsigned long new_duration; | 
|  | 118 |  | 
|  | 119 | ret = kstrtoul(arg, 10, &new_duration); | 
|  | 120 | if (ret) | 
|  | 121 | goto exit; | 
|  | 122 | if (new_duration > 25 || new_duration < 6) { | 
|  | 123 | pr_err("Out of recommended range %lu, between 6-25ms\n", | 
|  | 124 | new_duration); | 
|  | 125 | ret = -EINVAL; | 
|  | 126 | } | 
|  | 127 |  | 
|  | 128 | duration = clamp(new_duration, 6ul, 25ul); | 
|  | 129 | smp_mb(); | 
|  | 130 |  | 
|  | 131 | exit: | 
|  | 132 |  | 
|  | 133 | return ret; | 
|  | 134 | } | 
|  | 135 |  | 
|  | 136 | static const struct kernel_param_ops duration_ops = { | 
|  | 137 | .set = duration_set, | 
|  | 138 | .get = param_get_int, | 
|  | 139 | }; | 
|  | 140 |  | 
|  | 141 |  | 
|  | 142 | module_param_cb(duration, &duration_ops, &duration, 0644); | 
|  | 143 | MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec."); | 
|  | 144 |  | 
|  | 145 | struct powerclamp_calibration_data { | 
|  | 146 | unsigned long confidence;  /* used for calibration, basically a counter | 
|  | 147 | * gets incremented each time a clamping | 
|  | 148 | * period is completed without extra wakeups | 
|  | 149 | * once that counter is reached given level, | 
|  | 150 | * compensation is deemed usable. | 
|  | 151 | */ | 
|  | 152 | unsigned long steady_comp; /* steady state compensation used when | 
|  | 153 | * no extra wakeups occurred. | 
|  | 154 | */ | 
|  | 155 | unsigned long dynamic_comp; /* compensate excessive wakeup from idle | 
|  | 156 | * mostly from external interrupts. | 
|  | 157 | */ | 
|  | 158 | }; | 
|  | 159 |  | 
|  | 160 | static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO]; | 
|  | 161 |  | 
|  | 162 | static int window_size_set(const char *arg, const struct kernel_param *kp) | 
|  | 163 | { | 
|  | 164 | int ret = 0; | 
|  | 165 | unsigned long new_window_size; | 
|  | 166 |  | 
|  | 167 | ret = kstrtoul(arg, 10, &new_window_size); | 
|  | 168 | if (ret) | 
|  | 169 | goto exit_win; | 
|  | 170 | if (new_window_size > 10 || new_window_size < 2) { | 
|  | 171 | pr_err("Out of recommended window size %lu, between 2-10\n", | 
|  | 172 | new_window_size); | 
|  | 173 | ret = -EINVAL; | 
|  | 174 | } | 
|  | 175 |  | 
|  | 176 | window_size = clamp(new_window_size, 2ul, 10ul); | 
|  | 177 | smp_mb(); | 
|  | 178 |  | 
|  | 179 | exit_win: | 
|  | 180 |  | 
|  | 181 | return ret; | 
|  | 182 | } | 
|  | 183 |  | 
|  | 184 | static const struct kernel_param_ops window_size_ops = { | 
|  | 185 | .set = window_size_set, | 
|  | 186 | .get = param_get_int, | 
|  | 187 | }; | 
|  | 188 |  | 
|  | 189 | module_param_cb(window_size, &window_size_ops, &window_size, 0644); | 
|  | 190 | MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n" | 
|  | 191 | "\tpowerclamp controls idle ratio within this window. larger\n" | 
|  | 192 | "\twindow size results in slower response time but more smooth\n" | 
|  | 193 | "\tclamping results. default to 2."); | 
|  | 194 |  | 
|  | 195 | static void find_target_mwait(void) | 
|  | 196 | { | 
|  | 197 | unsigned int eax, ebx, ecx, edx; | 
|  | 198 | unsigned int highest_cstate = 0; | 
|  | 199 | unsigned int highest_subcstate = 0; | 
|  | 200 | int i; | 
|  | 201 |  | 
|  | 202 | if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF) | 
|  | 203 | return; | 
|  | 204 |  | 
|  | 205 | cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx); | 
|  | 206 |  | 
|  | 207 | if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) || | 
|  | 208 | !(ecx & CPUID5_ECX_INTERRUPT_BREAK)) | 
|  | 209 | return; | 
|  | 210 |  | 
|  | 211 | edx >>= MWAIT_SUBSTATE_SIZE; | 
|  | 212 | for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { | 
|  | 213 | if (edx & MWAIT_SUBSTATE_MASK) { | 
|  | 214 | highest_cstate = i; | 
|  | 215 | highest_subcstate = edx & MWAIT_SUBSTATE_MASK; | 
|  | 216 | } | 
|  | 217 | } | 
|  | 218 | target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) | | 
|  | 219 | (highest_subcstate - 1); | 
|  | 220 |  | 
|  | 221 | } | 
|  | 222 |  | 
|  | 223 | struct pkg_cstate_info { | 
|  | 224 | bool skip; | 
|  | 225 | int msr_index; | 
|  | 226 | int cstate_id; | 
|  | 227 | }; | 
|  | 228 |  | 
|  | 229 | #define PKG_CSTATE_INIT(id) {				\ | 
|  | 230 | .msr_index = MSR_PKG_C##id##_RESIDENCY, \ | 
|  | 231 | .cstate_id = id				\ | 
|  | 232 | } | 
|  | 233 |  | 
|  | 234 | static struct pkg_cstate_info pkg_cstates[] = { | 
|  | 235 | PKG_CSTATE_INIT(2), | 
|  | 236 | PKG_CSTATE_INIT(3), | 
|  | 237 | PKG_CSTATE_INIT(6), | 
|  | 238 | PKG_CSTATE_INIT(7), | 
|  | 239 | PKG_CSTATE_INIT(8), | 
|  | 240 | PKG_CSTATE_INIT(9), | 
|  | 241 | PKG_CSTATE_INIT(10), | 
|  | 242 | {NULL}, | 
|  | 243 | }; | 
|  | 244 |  | 
|  | 245 | static bool has_pkg_state_counter(void) | 
|  | 246 | { | 
|  | 247 | u64 val; | 
|  | 248 | struct pkg_cstate_info *info = pkg_cstates; | 
|  | 249 |  | 
|  | 250 | /* check if any one of the counter msrs exists */ | 
|  | 251 | while (info->msr_index) { | 
|  | 252 | if (!rdmsrl_safe(info->msr_index, &val)) | 
|  | 253 | return true; | 
|  | 254 | info++; | 
|  | 255 | } | 
|  | 256 |  | 
|  | 257 | return false; | 
|  | 258 | } | 
|  | 259 |  | 
|  | 260 | static u64 pkg_state_counter(void) | 
|  | 261 | { | 
|  | 262 | u64 val; | 
|  | 263 | u64 count = 0; | 
|  | 264 | struct pkg_cstate_info *info = pkg_cstates; | 
|  | 265 |  | 
|  | 266 | while (info->msr_index) { | 
|  | 267 | if (!info->skip) { | 
|  | 268 | if (!rdmsrl_safe(info->msr_index, &val)) | 
|  | 269 | count += val; | 
|  | 270 | else | 
|  | 271 | info->skip = true; | 
|  | 272 | } | 
|  | 273 | info++; | 
|  | 274 | } | 
|  | 275 |  | 
|  | 276 | return count; | 
|  | 277 | } | 
|  | 278 |  | 
|  | 279 | static unsigned int get_compensation(int ratio) | 
|  | 280 | { | 
|  | 281 | unsigned int comp = 0; | 
|  | 282 |  | 
|  | 283 | /* we only use compensation if all adjacent ones are good */ | 
|  | 284 | if (ratio == 1 && | 
|  | 285 | cal_data[ratio].confidence >= CONFIDENCE_OK && | 
|  | 286 | cal_data[ratio + 1].confidence >= CONFIDENCE_OK && | 
|  | 287 | cal_data[ratio + 2].confidence >= CONFIDENCE_OK) { | 
|  | 288 | comp = (cal_data[ratio].steady_comp + | 
|  | 289 | cal_data[ratio + 1].steady_comp + | 
|  | 290 | cal_data[ratio + 2].steady_comp) / 3; | 
|  | 291 | } else if (ratio == MAX_TARGET_RATIO - 1 && | 
|  | 292 | cal_data[ratio].confidence >= CONFIDENCE_OK && | 
|  | 293 | cal_data[ratio - 1].confidence >= CONFIDENCE_OK && | 
|  | 294 | cal_data[ratio - 2].confidence >= CONFIDENCE_OK) { | 
|  | 295 | comp = (cal_data[ratio].steady_comp + | 
|  | 296 | cal_data[ratio - 1].steady_comp + | 
|  | 297 | cal_data[ratio - 2].steady_comp) / 3; | 
|  | 298 | } else if (cal_data[ratio].confidence >= CONFIDENCE_OK && | 
|  | 299 | cal_data[ratio - 1].confidence >= CONFIDENCE_OK && | 
|  | 300 | cal_data[ratio + 1].confidence >= CONFIDENCE_OK) { | 
|  | 301 | comp = (cal_data[ratio].steady_comp + | 
|  | 302 | cal_data[ratio - 1].steady_comp + | 
|  | 303 | cal_data[ratio + 1].steady_comp) / 3; | 
|  | 304 | } | 
|  | 305 |  | 
|  | 306 | /* REVISIT: simple penalty of double idle injection */ | 
|  | 307 | if (reduce_irq) | 
|  | 308 | comp = ratio; | 
|  | 309 | /* do not exceed limit */ | 
|  | 310 | if (comp + ratio >= MAX_TARGET_RATIO) | 
|  | 311 | comp = MAX_TARGET_RATIO - ratio - 1; | 
|  | 312 |  | 
|  | 313 | return comp; | 
|  | 314 | } | 
|  | 315 |  | 
|  | 316 | static void adjust_compensation(int target_ratio, unsigned int win) | 
|  | 317 | { | 
|  | 318 | int delta; | 
|  | 319 | struct powerclamp_calibration_data *d = &cal_data[target_ratio]; | 
|  | 320 |  | 
|  | 321 | /* | 
|  | 322 | * adjust compensations if confidence level has not been reached or | 
|  | 323 | * there are too many wakeups during the last idle injection period, we | 
|  | 324 | * cannot trust the data for compensation. | 
|  | 325 | */ | 
|  | 326 | if (d->confidence >= CONFIDENCE_OK || | 
|  | 327 | atomic_read(&idle_wakeup_counter) > | 
|  | 328 | win * num_online_cpus()) | 
|  | 329 | return; | 
|  | 330 |  | 
|  | 331 | delta = set_target_ratio - current_ratio; | 
|  | 332 | /* filter out bad data */ | 
|  | 333 | if (delta >= 0 && delta <= (1+target_ratio/10)) { | 
|  | 334 | if (d->steady_comp) | 
|  | 335 | d->steady_comp = | 
|  | 336 | roundup(delta+d->steady_comp, 2)/2; | 
|  | 337 | else | 
|  | 338 | d->steady_comp = delta; | 
|  | 339 | d->confidence++; | 
|  | 340 | } | 
|  | 341 | } | 
|  | 342 |  | 
|  | 343 | static bool powerclamp_adjust_controls(unsigned int target_ratio, | 
|  | 344 | unsigned int guard, unsigned int win) | 
|  | 345 | { | 
|  | 346 | static u64 msr_last, tsc_last; | 
|  | 347 | u64 msr_now, tsc_now; | 
|  | 348 | u64 val64; | 
|  | 349 |  | 
|  | 350 | /* check result for the last window */ | 
|  | 351 | msr_now = pkg_state_counter(); | 
|  | 352 | tsc_now = rdtsc(); | 
|  | 353 |  | 
|  | 354 | /* calculate pkg cstate vs tsc ratio */ | 
|  | 355 | if (!msr_last || !tsc_last) | 
|  | 356 | current_ratio = 1; | 
|  | 357 | else if (tsc_now-tsc_last) { | 
|  | 358 | val64 = 100*(msr_now-msr_last); | 
|  | 359 | do_div(val64, (tsc_now-tsc_last)); | 
|  | 360 | current_ratio = val64; | 
|  | 361 | } | 
|  | 362 |  | 
|  | 363 | /* update record */ | 
|  | 364 | msr_last = msr_now; | 
|  | 365 | tsc_last = tsc_now; | 
|  | 366 |  | 
|  | 367 | adjust_compensation(target_ratio, win); | 
|  | 368 | /* | 
|  | 369 | * too many external interrupts, set flag such | 
|  | 370 | * that we can take measure later. | 
|  | 371 | */ | 
|  | 372 | reduce_irq = atomic_read(&idle_wakeup_counter) >= | 
|  | 373 | 2 * win * num_online_cpus(); | 
|  | 374 |  | 
|  | 375 | atomic_set(&idle_wakeup_counter, 0); | 
|  | 376 | /* if we are above target+guard, skip */ | 
|  | 377 | return set_target_ratio + guard <= current_ratio; | 
|  | 378 | } | 
|  | 379 |  | 
|  | 380 | static void clamp_balancing_func(struct kthread_work *work) | 
|  | 381 | { | 
|  | 382 | struct powerclamp_worker_data *w_data; | 
|  | 383 | int sleeptime; | 
|  | 384 | unsigned long target_jiffies; | 
|  | 385 | unsigned int compensated_ratio; | 
|  | 386 | int interval; /* jiffies to sleep for each attempt */ | 
|  | 387 |  | 
|  | 388 | w_data = container_of(work, struct powerclamp_worker_data, | 
|  | 389 | balancing_work); | 
|  | 390 |  | 
|  | 391 | /* | 
|  | 392 | * make sure user selected ratio does not take effect until | 
|  | 393 | * the next round. adjust target_ratio if user has changed | 
|  | 394 | * target such that we can converge quickly. | 
|  | 395 | */ | 
|  | 396 | w_data->target_ratio = READ_ONCE(set_target_ratio); | 
|  | 397 | w_data->guard = 1 + w_data->target_ratio / 20; | 
|  | 398 | w_data->window_size_now = window_size; | 
|  | 399 | w_data->duration_jiffies = msecs_to_jiffies(duration); | 
|  | 400 | w_data->count++; | 
|  | 401 |  | 
|  | 402 | /* | 
|  | 403 | * systems may have different ability to enter package level | 
|  | 404 | * c-states, thus we need to compensate the injected idle ratio | 
|  | 405 | * to achieve the actual target reported by the HW. | 
|  | 406 | */ | 
|  | 407 | compensated_ratio = w_data->target_ratio + | 
|  | 408 | get_compensation(w_data->target_ratio); | 
|  | 409 | if (compensated_ratio <= 0) | 
|  | 410 | compensated_ratio = 1; | 
|  | 411 | interval = w_data->duration_jiffies * 100 / compensated_ratio; | 
|  | 412 |  | 
|  | 413 | /* align idle time */ | 
|  | 414 | target_jiffies = roundup(jiffies, interval); | 
|  | 415 | sleeptime = target_jiffies - jiffies; | 
|  | 416 | if (sleeptime <= 0) | 
|  | 417 | sleeptime = 1; | 
|  | 418 |  | 
|  | 419 | if (clamping && w_data->clamping && cpu_online(w_data->cpu)) | 
|  | 420 | kthread_queue_delayed_work(w_data->worker, | 
|  | 421 | &w_data->idle_injection_work, | 
|  | 422 | sleeptime); | 
|  | 423 | } | 
|  | 424 |  | 
|  | 425 | static void clamp_idle_injection_func(struct kthread_work *work) | 
|  | 426 | { | 
|  | 427 | struct powerclamp_worker_data *w_data; | 
|  | 428 |  | 
|  | 429 | w_data = container_of(work, struct powerclamp_worker_data, | 
|  | 430 | idle_injection_work.work); | 
|  | 431 |  | 
|  | 432 | /* | 
|  | 433 | * only elected controlling cpu can collect stats and update | 
|  | 434 | * control parameters. | 
|  | 435 | */ | 
|  | 436 | if (w_data->cpu == control_cpu && | 
|  | 437 | !(w_data->count % w_data->window_size_now)) { | 
|  | 438 | should_skip = | 
|  | 439 | powerclamp_adjust_controls(w_data->target_ratio, | 
|  | 440 | w_data->guard, | 
|  | 441 | w_data->window_size_now); | 
|  | 442 | smp_mb(); | 
|  | 443 | } | 
|  | 444 |  | 
|  | 445 | if (should_skip) | 
|  | 446 | goto balance; | 
|  | 447 |  | 
|  | 448 | play_idle(jiffies_to_msecs(w_data->duration_jiffies)); | 
|  | 449 |  | 
|  | 450 | balance: | 
|  | 451 | if (clamping && w_data->clamping && cpu_online(w_data->cpu)) | 
|  | 452 | kthread_queue_work(w_data->worker, &w_data->balancing_work); | 
|  | 453 | } | 
|  | 454 |  | 
|  | 455 | /* | 
|  | 456 | * 1 HZ polling while clamping is active, useful for userspace | 
|  | 457 | * to monitor actual idle ratio. | 
|  | 458 | */ | 
|  | 459 | static void poll_pkg_cstate(struct work_struct *dummy); | 
|  | 460 | static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate); | 
|  | 461 | static void poll_pkg_cstate(struct work_struct *dummy) | 
|  | 462 | { | 
|  | 463 | static u64 msr_last; | 
|  | 464 | static u64 tsc_last; | 
|  | 465 |  | 
|  | 466 | u64 msr_now; | 
|  | 467 | u64 tsc_now; | 
|  | 468 | u64 val64; | 
|  | 469 |  | 
|  | 470 | msr_now = pkg_state_counter(); | 
|  | 471 | tsc_now = rdtsc(); | 
|  | 472 |  | 
|  | 473 | /* calculate pkg cstate vs tsc ratio */ | 
|  | 474 | if (!msr_last || !tsc_last) | 
|  | 475 | pkg_cstate_ratio_cur = 1; | 
|  | 476 | else { | 
|  | 477 | if (tsc_now - tsc_last) { | 
|  | 478 | val64 = 100 * (msr_now - msr_last); | 
|  | 479 | do_div(val64, (tsc_now - tsc_last)); | 
|  | 480 | pkg_cstate_ratio_cur = val64; | 
|  | 481 | } | 
|  | 482 | } | 
|  | 483 |  | 
|  | 484 | /* update record */ | 
|  | 485 | msr_last = msr_now; | 
|  | 486 | tsc_last = tsc_now; | 
|  | 487 |  | 
|  | 488 | if (true == clamping) | 
|  | 489 | schedule_delayed_work(&poll_pkg_cstate_work, HZ); | 
|  | 490 | } | 
|  | 491 |  | 
|  | 492 | static void start_power_clamp_worker(unsigned long cpu) | 
|  | 493 | { | 
|  | 494 | struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu); | 
|  | 495 | struct kthread_worker *worker; | 
|  | 496 |  | 
|  | 497 | worker = kthread_create_worker_on_cpu(cpu, 0, "kidle_inj/%ld", cpu); | 
|  | 498 | if (IS_ERR(worker)) | 
|  | 499 | return; | 
|  | 500 |  | 
|  | 501 | w_data->worker = worker; | 
|  | 502 | w_data->count = 0; | 
|  | 503 | w_data->cpu = cpu; | 
|  | 504 | w_data->clamping = true; | 
|  | 505 | set_bit(cpu, cpu_clamping_mask); | 
|  | 506 | sched_setscheduler(worker->task, SCHED_FIFO, &sparam); | 
|  | 507 | kthread_init_work(&w_data->balancing_work, clamp_balancing_func); | 
|  | 508 | kthread_init_delayed_work(&w_data->idle_injection_work, | 
|  | 509 | clamp_idle_injection_func); | 
|  | 510 | kthread_queue_work(w_data->worker, &w_data->balancing_work); | 
|  | 511 | } | 
|  | 512 |  | 
|  | 513 | static void stop_power_clamp_worker(unsigned long cpu) | 
|  | 514 | { | 
|  | 515 | struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu); | 
|  | 516 |  | 
|  | 517 | if (!w_data->worker) | 
|  | 518 | return; | 
|  | 519 |  | 
|  | 520 | w_data->clamping = false; | 
|  | 521 | /* | 
|  | 522 | * Make sure that all works that get queued after this point see | 
|  | 523 | * the clamping disabled. The counter part is not needed because | 
|  | 524 | * there is an implicit memory barrier when the queued work | 
|  | 525 | * is proceed. | 
|  | 526 | */ | 
|  | 527 | smp_wmb(); | 
|  | 528 | kthread_cancel_work_sync(&w_data->balancing_work); | 
|  | 529 | kthread_cancel_delayed_work_sync(&w_data->idle_injection_work); | 
|  | 530 | /* | 
|  | 531 | * The balancing work still might be queued here because | 
|  | 532 | * the handling of the "clapming" variable, cancel, and queue | 
|  | 533 | * operations are not synchronized via a lock. But it is not | 
|  | 534 | * a big deal. The balancing work is fast and destroy kthread | 
|  | 535 | * will wait for it. | 
|  | 536 | */ | 
|  | 537 | clear_bit(w_data->cpu, cpu_clamping_mask); | 
|  | 538 | kthread_destroy_worker(w_data->worker); | 
|  | 539 |  | 
|  | 540 | w_data->worker = NULL; | 
|  | 541 | } | 
|  | 542 |  | 
|  | 543 | static int start_power_clamp(void) | 
|  | 544 | { | 
|  | 545 | unsigned long cpu; | 
|  | 546 |  | 
|  | 547 | set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1); | 
|  | 548 | /* prevent cpu hotplug */ | 
|  | 549 | get_online_cpus(); | 
|  | 550 |  | 
|  | 551 | /* prefer BSP */ | 
|  | 552 | control_cpu = 0; | 
|  | 553 | if (!cpu_online(control_cpu)) | 
|  | 554 | control_cpu = smp_processor_id(); | 
|  | 555 |  | 
|  | 556 | clamping = true; | 
|  | 557 | schedule_delayed_work(&poll_pkg_cstate_work, 0); | 
|  | 558 |  | 
|  | 559 | /* start one kthread worker per online cpu */ | 
|  | 560 | for_each_online_cpu(cpu) { | 
|  | 561 | start_power_clamp_worker(cpu); | 
|  | 562 | } | 
|  | 563 | put_online_cpus(); | 
|  | 564 |  | 
|  | 565 | return 0; | 
|  | 566 | } | 
|  | 567 |  | 
|  | 568 | static void end_power_clamp(void) | 
|  | 569 | { | 
|  | 570 | int i; | 
|  | 571 |  | 
|  | 572 | /* | 
|  | 573 | * Block requeuing in all the kthread workers. They will flush and | 
|  | 574 | * stop faster. | 
|  | 575 | */ | 
|  | 576 | clamping = false; | 
|  | 577 | if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) { | 
|  | 578 | for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) { | 
|  | 579 | pr_debug("clamping worker for cpu %d alive, destroy\n", | 
|  | 580 | i); | 
|  | 581 | stop_power_clamp_worker(i); | 
|  | 582 | } | 
|  | 583 | } | 
|  | 584 | } | 
|  | 585 |  | 
|  | 586 | static int powerclamp_cpu_online(unsigned int cpu) | 
|  | 587 | { | 
|  | 588 | if (clamping == false) | 
|  | 589 | return 0; | 
|  | 590 | start_power_clamp_worker(cpu); | 
|  | 591 | /* prefer BSP as controlling CPU */ | 
|  | 592 | if (cpu == 0) { | 
|  | 593 | control_cpu = 0; | 
|  | 594 | smp_mb(); | 
|  | 595 | } | 
|  | 596 | return 0; | 
|  | 597 | } | 
|  | 598 |  | 
|  | 599 | static int powerclamp_cpu_predown(unsigned int cpu) | 
|  | 600 | { | 
|  | 601 | if (clamping == false) | 
|  | 602 | return 0; | 
|  | 603 |  | 
|  | 604 | stop_power_clamp_worker(cpu); | 
|  | 605 | if (cpu != control_cpu) | 
|  | 606 | return 0; | 
|  | 607 |  | 
|  | 608 | control_cpu = cpumask_first(cpu_online_mask); | 
|  | 609 | if (control_cpu == cpu) | 
|  | 610 | control_cpu = cpumask_next(cpu, cpu_online_mask); | 
|  | 611 | smp_mb(); | 
|  | 612 | return 0; | 
|  | 613 | } | 
|  | 614 |  | 
|  | 615 | static int powerclamp_get_max_state(struct thermal_cooling_device *cdev, | 
|  | 616 | unsigned long *state) | 
|  | 617 | { | 
|  | 618 | *state = MAX_TARGET_RATIO; | 
|  | 619 |  | 
|  | 620 | return 0; | 
|  | 621 | } | 
|  | 622 |  | 
|  | 623 | static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev, | 
|  | 624 | unsigned long *state) | 
|  | 625 | { | 
|  | 626 | if (true == clamping) | 
|  | 627 | *state = pkg_cstate_ratio_cur; | 
|  | 628 | else | 
|  | 629 | /* to save power, do not poll idle ratio while not clamping */ | 
|  | 630 | *state = -1; /* indicates invalid state */ | 
|  | 631 |  | 
|  | 632 | return 0; | 
|  | 633 | } | 
|  | 634 |  | 
|  | 635 | static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev, | 
|  | 636 | unsigned long new_target_ratio) | 
|  | 637 | { | 
|  | 638 | int ret = 0; | 
|  | 639 |  | 
|  | 640 | new_target_ratio = clamp(new_target_ratio, 0UL, | 
|  | 641 | (unsigned long) (MAX_TARGET_RATIO-1)); | 
|  | 642 | if (set_target_ratio == 0 && new_target_ratio > 0) { | 
|  | 643 | pr_info("Start idle injection to reduce power\n"); | 
|  | 644 | set_target_ratio = new_target_ratio; | 
|  | 645 | ret = start_power_clamp(); | 
|  | 646 | goto exit_set; | 
|  | 647 | } else	if (set_target_ratio > 0 && new_target_ratio == 0) { | 
|  | 648 | pr_info("Stop forced idle injection\n"); | 
|  | 649 | end_power_clamp(); | 
|  | 650 | set_target_ratio = 0; | 
|  | 651 | } else	/* adjust currently running */ { | 
|  | 652 | set_target_ratio = new_target_ratio; | 
|  | 653 | /* make new set_target_ratio visible to other cpus */ | 
|  | 654 | smp_mb(); | 
|  | 655 | } | 
|  | 656 |  | 
|  | 657 | exit_set: | 
|  | 658 | return ret; | 
|  | 659 | } | 
|  | 660 |  | 
|  | 661 | /* bind to generic thermal layer as cooling device*/ | 
|  | 662 | static struct thermal_cooling_device_ops powerclamp_cooling_ops = { | 
|  | 663 | .get_max_state = powerclamp_get_max_state, | 
|  | 664 | .get_cur_state = powerclamp_get_cur_state, | 
|  | 665 | .set_cur_state = powerclamp_set_cur_state, | 
|  | 666 | }; | 
|  | 667 |  | 
|  | 668 | static const struct x86_cpu_id __initconst intel_powerclamp_ids[] = { | 
|  | 669 | { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_MWAIT }, | 
|  | 670 | {} | 
|  | 671 | }; | 
|  | 672 | MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids); | 
|  | 673 |  | 
|  | 674 | static int __init powerclamp_probe(void) | 
|  | 675 | { | 
|  | 676 |  | 
|  | 677 | if (!x86_match_cpu(intel_powerclamp_ids)) { | 
|  | 678 | pr_err("CPU does not support MWAIT\n"); | 
|  | 679 | return -ENODEV; | 
|  | 680 | } | 
|  | 681 |  | 
|  | 682 | /* The goal for idle time alignment is to achieve package cstate. */ | 
|  | 683 | if (!has_pkg_state_counter()) { | 
|  | 684 | pr_info("No package C-state available\n"); | 
|  | 685 | return -ENODEV; | 
|  | 686 | } | 
|  | 687 |  | 
|  | 688 | /* find the deepest mwait value */ | 
|  | 689 | find_target_mwait(); | 
|  | 690 |  | 
|  | 691 | return 0; | 
|  | 692 | } | 
|  | 693 |  | 
|  | 694 | static int powerclamp_debug_show(struct seq_file *m, void *unused) | 
|  | 695 | { | 
|  | 696 | int i = 0; | 
|  | 697 |  | 
|  | 698 | seq_printf(m, "controlling cpu: %d\n", control_cpu); | 
|  | 699 | seq_printf(m, "pct confidence steady dynamic (compensation)\n"); | 
|  | 700 | for (i = 0; i < MAX_TARGET_RATIO; i++) { | 
|  | 701 | seq_printf(m, "%d\t%lu\t%lu\t%lu\n", | 
|  | 702 | i, | 
|  | 703 | cal_data[i].confidence, | 
|  | 704 | cal_data[i].steady_comp, | 
|  | 705 | cal_data[i].dynamic_comp); | 
|  | 706 | } | 
|  | 707 |  | 
|  | 708 | return 0; | 
|  | 709 | } | 
|  | 710 |  | 
|  | 711 | static int powerclamp_debug_open(struct inode *inode, | 
|  | 712 | struct file *file) | 
|  | 713 | { | 
|  | 714 | return single_open(file, powerclamp_debug_show, inode->i_private); | 
|  | 715 | } | 
|  | 716 |  | 
|  | 717 | static const struct file_operations powerclamp_debug_fops = { | 
|  | 718 | .open		= powerclamp_debug_open, | 
|  | 719 | .read		= seq_read, | 
|  | 720 | .llseek		= seq_lseek, | 
|  | 721 | .release	= single_release, | 
|  | 722 | .owner		= THIS_MODULE, | 
|  | 723 | }; | 
|  | 724 |  | 
|  | 725 | static inline void powerclamp_create_debug_files(void) | 
|  | 726 | { | 
|  | 727 | debug_dir = debugfs_create_dir("intel_powerclamp", NULL); | 
|  | 728 | if (!debug_dir) | 
|  | 729 | return; | 
|  | 730 |  | 
|  | 731 | if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir, | 
|  | 732 | cal_data, &powerclamp_debug_fops)) | 
|  | 733 | goto file_error; | 
|  | 734 |  | 
|  | 735 | return; | 
|  | 736 |  | 
|  | 737 | file_error: | 
|  | 738 | debugfs_remove_recursive(debug_dir); | 
|  | 739 | } | 
|  | 740 |  | 
|  | 741 | static enum cpuhp_state hp_state; | 
|  | 742 |  | 
|  | 743 | static int __init powerclamp_init(void) | 
|  | 744 | { | 
|  | 745 | int retval; | 
|  | 746 | int bitmap_size; | 
|  | 747 |  | 
|  | 748 | bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long); | 
|  | 749 | cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL); | 
|  | 750 | if (!cpu_clamping_mask) | 
|  | 751 | return -ENOMEM; | 
|  | 752 |  | 
|  | 753 | /* probe cpu features and ids here */ | 
|  | 754 | retval = powerclamp_probe(); | 
|  | 755 | if (retval) | 
|  | 756 | goto exit_free; | 
|  | 757 |  | 
|  | 758 | /* set default limit, maybe adjusted during runtime based on feedback */ | 
|  | 759 | window_size = 2; | 
|  | 760 | retval = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, | 
|  | 761 | "thermal/intel_powerclamp:online", | 
|  | 762 | powerclamp_cpu_online, | 
|  | 763 | powerclamp_cpu_predown); | 
|  | 764 | if (retval < 0) | 
|  | 765 | goto exit_free; | 
|  | 766 |  | 
|  | 767 | hp_state = retval; | 
|  | 768 |  | 
|  | 769 | worker_data = alloc_percpu(struct powerclamp_worker_data); | 
|  | 770 | if (!worker_data) { | 
|  | 771 | retval = -ENOMEM; | 
|  | 772 | goto exit_unregister; | 
|  | 773 | } | 
|  | 774 |  | 
|  | 775 | cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL, | 
|  | 776 | &powerclamp_cooling_ops); | 
|  | 777 | if (IS_ERR(cooling_dev)) { | 
|  | 778 | retval = -ENODEV; | 
|  | 779 | goto exit_free_thread; | 
|  | 780 | } | 
|  | 781 |  | 
|  | 782 | if (!duration) | 
|  | 783 | duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES); | 
|  | 784 |  | 
|  | 785 | powerclamp_create_debug_files(); | 
|  | 786 |  | 
|  | 787 | return 0; | 
|  | 788 |  | 
|  | 789 | exit_free_thread: | 
|  | 790 | free_percpu(worker_data); | 
|  | 791 | exit_unregister: | 
|  | 792 | cpuhp_remove_state_nocalls(hp_state); | 
|  | 793 | exit_free: | 
|  | 794 | kfree(cpu_clamping_mask); | 
|  | 795 | return retval; | 
|  | 796 | } | 
|  | 797 | module_init(powerclamp_init); | 
|  | 798 |  | 
|  | 799 | static void __exit powerclamp_exit(void) | 
|  | 800 | { | 
|  | 801 | end_power_clamp(); | 
|  | 802 | cpuhp_remove_state_nocalls(hp_state); | 
|  | 803 | free_percpu(worker_data); | 
|  | 804 | thermal_cooling_device_unregister(cooling_dev); | 
|  | 805 | kfree(cpu_clamping_mask); | 
|  | 806 |  | 
|  | 807 | cancel_delayed_work_sync(&poll_pkg_cstate_work); | 
|  | 808 | debugfs_remove_recursive(debug_dir); | 
|  | 809 | } | 
|  | 810 | module_exit(powerclamp_exit); | 
|  | 811 |  | 
|  | 812 | MODULE_LICENSE("GPL"); | 
|  | 813 | MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>"); | 
|  | 814 | MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>"); | 
|  | 815 | MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs"); |