| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | *  fs/eventpoll.c (Efficient event retrieval implementation) | 
|  | 3 | *  Copyright (C) 2001,...,2009	 Davide Libenzi | 
|  | 4 | * | 
|  | 5 | *  This program is free software; you can redistribute it and/or modify | 
|  | 6 | *  it under the terms of the GNU General Public License as published by | 
|  | 7 | *  the Free Software Foundation; either version 2 of the License, or | 
|  | 8 | *  (at your option) any later version. | 
|  | 9 | * | 
|  | 10 | *  Davide Libenzi <davidel@xmailserver.org> | 
|  | 11 | * | 
|  | 12 | */ | 
|  | 13 |  | 
|  | 14 | #include <linux/init.h> | 
|  | 15 | #include <linux/kernel.h> | 
|  | 16 | #include <linux/sched/signal.h> | 
|  | 17 | #include <linux/fs.h> | 
|  | 18 | #include <linux/file.h> | 
|  | 19 | #include <linux/signal.h> | 
|  | 20 | #include <linux/errno.h> | 
|  | 21 | #include <linux/mm.h> | 
|  | 22 | #include <linux/slab.h> | 
|  | 23 | #include <linux/poll.h> | 
|  | 24 | #include <linux/string.h> | 
|  | 25 | #include <linux/list.h> | 
|  | 26 | #include <linux/hash.h> | 
|  | 27 | #include <linux/spinlock.h> | 
|  | 28 | #include <linux/syscalls.h> | 
|  | 29 | #include <linux/rbtree.h> | 
|  | 30 | #include <linux/wait.h> | 
|  | 31 | #include <linux/eventpoll.h> | 
|  | 32 | #include <linux/mount.h> | 
|  | 33 | #include <linux/bitops.h> | 
|  | 34 | #include <linux/mutex.h> | 
|  | 35 | #include <linux/anon_inodes.h> | 
|  | 36 | #include <linux/device.h> | 
|  | 37 | #include <linux/freezer.h> | 
|  | 38 | #include <linux/uaccess.h> | 
|  | 39 | #include <asm/io.h> | 
|  | 40 | #include <asm/mman.h> | 
|  | 41 | #include <linux/atomic.h> | 
|  | 42 | #include <linux/proc_fs.h> | 
|  | 43 | #include <linux/seq_file.h> | 
|  | 44 | #include <linux/compat.h> | 
|  | 45 | #include <linux/rculist.h> | 
|  | 46 | #include <net/busy_poll.h> | 
|  | 47 |  | 
|  | 48 | /* | 
|  | 49 | * LOCKING: | 
|  | 50 | * There are three level of locking required by epoll : | 
|  | 51 | * | 
|  | 52 | * 1) epmutex (mutex) | 
|  | 53 | * 2) ep->mtx (mutex) | 
|  | 54 | * 3) ep->wq.lock (spinlock) | 
|  | 55 | * | 
|  | 56 | * The acquire order is the one listed above, from 1 to 3. | 
|  | 57 | * We need a spinlock (ep->wq.lock) because we manipulate objects | 
|  | 58 | * from inside the poll callback, that might be triggered from | 
|  | 59 | * a wake_up() that in turn might be called from IRQ context. | 
|  | 60 | * So we can't sleep inside the poll callback and hence we need | 
|  | 61 | * a spinlock. During the event transfer loop (from kernel to | 
|  | 62 | * user space) we could end up sleeping due a copy_to_user(), so | 
|  | 63 | * we need a lock that will allow us to sleep. This lock is a | 
|  | 64 | * mutex (ep->mtx). It is acquired during the event transfer loop, | 
|  | 65 | * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). | 
|  | 66 | * Then we also need a global mutex to serialize eventpoll_release_file() | 
|  | 67 | * and ep_free(). | 
|  | 68 | * This mutex is acquired by ep_free() during the epoll file | 
|  | 69 | * cleanup path and it is also acquired by eventpoll_release_file() | 
|  | 70 | * if a file has been pushed inside an epoll set and it is then | 
|  | 71 | * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). | 
|  | 72 | * It is also acquired when inserting an epoll fd onto another epoll | 
|  | 73 | * fd. We do this so that we walk the epoll tree and ensure that this | 
|  | 74 | * insertion does not create a cycle of epoll file descriptors, which | 
|  | 75 | * could lead to deadlock. We need a global mutex to prevent two | 
|  | 76 | * simultaneous inserts (A into B and B into A) from racing and | 
|  | 77 | * constructing a cycle without either insert observing that it is | 
|  | 78 | * going to. | 
|  | 79 | * It is necessary to acquire multiple "ep->mtx"es at once in the | 
|  | 80 | * case when one epoll fd is added to another. In this case, we | 
|  | 81 | * always acquire the locks in the order of nesting (i.e. after | 
|  | 82 | * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired | 
|  | 83 | * before e2->mtx). Since we disallow cycles of epoll file | 
|  | 84 | * descriptors, this ensures that the mutexes are well-ordered. In | 
|  | 85 | * order to communicate this nesting to lockdep, when walking a tree | 
|  | 86 | * of epoll file descriptors, we use the current recursion depth as | 
|  | 87 | * the lockdep subkey. | 
|  | 88 | * It is possible to drop the "ep->mtx" and to use the global | 
|  | 89 | * mutex "epmutex" (together with "ep->wq.lock") to have it working, | 
|  | 90 | * but having "ep->mtx" will make the interface more scalable. | 
|  | 91 | * Events that require holding "epmutex" are very rare, while for | 
|  | 92 | * normal operations the epoll private "ep->mtx" will guarantee | 
|  | 93 | * a better scalability. | 
|  | 94 | */ | 
|  | 95 |  | 
|  | 96 | /* Epoll private bits inside the event mask */ | 
|  | 97 | #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) | 
|  | 98 |  | 
|  | 99 | #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) | 
|  | 100 |  | 
|  | 101 | #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ | 
|  | 102 | EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) | 
|  | 103 |  | 
|  | 104 | /* Maximum number of nesting allowed inside epoll sets */ | 
|  | 105 | #define EP_MAX_NESTS 4 | 
|  | 106 |  | 
|  | 107 | #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) | 
|  | 108 |  | 
|  | 109 | #define EP_UNACTIVE_PTR ((void *) -1L) | 
|  | 110 |  | 
|  | 111 | #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) | 
|  | 112 |  | 
|  | 113 | struct epoll_filefd { | 
|  | 114 | struct file *file; | 
|  | 115 | int fd; | 
|  | 116 | } __packed; | 
|  | 117 |  | 
|  | 118 | /* | 
|  | 119 | * Structure used to track possible nested calls, for too deep recursions | 
|  | 120 | * and loop cycles. | 
|  | 121 | */ | 
|  | 122 | struct nested_call_node { | 
|  | 123 | struct list_head llink; | 
|  | 124 | void *cookie; | 
|  | 125 | void *ctx; | 
|  | 126 | }; | 
|  | 127 |  | 
|  | 128 | /* | 
|  | 129 | * This structure is used as collector for nested calls, to check for | 
|  | 130 | * maximum recursion dept and loop cycles. | 
|  | 131 | */ | 
|  | 132 | struct nested_calls { | 
|  | 133 | struct list_head tasks_call_list; | 
|  | 134 | spinlock_t lock; | 
|  | 135 | }; | 
|  | 136 |  | 
|  | 137 | /* | 
|  | 138 | * Each file descriptor added to the eventpoll interface will | 
|  | 139 | * have an entry of this type linked to the "rbr" RB tree. | 
|  | 140 | * Avoid increasing the size of this struct, there can be many thousands | 
|  | 141 | * of these on a server and we do not want this to take another cache line. | 
|  | 142 | */ | 
|  | 143 | struct epitem { | 
|  | 144 | union { | 
|  | 145 | /* RB tree node links this structure to the eventpoll RB tree */ | 
|  | 146 | struct rb_node rbn; | 
|  | 147 | /* Used to free the struct epitem */ | 
|  | 148 | struct rcu_head rcu; | 
|  | 149 | }; | 
|  | 150 |  | 
|  | 151 | /* List header used to link this structure to the eventpoll ready list */ | 
|  | 152 | struct list_head rdllink; | 
|  | 153 |  | 
|  | 154 | /* | 
|  | 155 | * Works together "struct eventpoll"->ovflist in keeping the | 
|  | 156 | * single linked chain of items. | 
|  | 157 | */ | 
|  | 158 | struct epitem *next; | 
|  | 159 |  | 
|  | 160 | /* The file descriptor information this item refers to */ | 
|  | 161 | struct epoll_filefd ffd; | 
|  | 162 |  | 
|  | 163 | /* Number of active wait queue attached to poll operations */ | 
|  | 164 | int nwait; | 
|  | 165 |  | 
|  | 166 | /* List containing poll wait queues */ | 
|  | 167 | struct list_head pwqlist; | 
|  | 168 |  | 
|  | 169 | /* The "container" of this item */ | 
|  | 170 | struct eventpoll *ep; | 
|  | 171 |  | 
|  | 172 | /* List header used to link this item to the "struct file" items list */ | 
|  | 173 | struct list_head fllink; | 
|  | 174 |  | 
|  | 175 | /* wakeup_source used when EPOLLWAKEUP is set */ | 
|  | 176 | struct wakeup_source __rcu *ws; | 
|  | 177 |  | 
|  | 178 | /* The structure that describe the interested events and the source fd */ | 
|  | 179 | struct epoll_event event; | 
|  | 180 | }; | 
|  | 181 |  | 
|  | 182 | /* | 
|  | 183 | * This structure is stored inside the "private_data" member of the file | 
|  | 184 | * structure and represents the main data structure for the eventpoll | 
|  | 185 | * interface. | 
|  | 186 | * | 
|  | 187 | * Access to it is protected by the lock inside wq. | 
|  | 188 | */ | 
|  | 189 | struct eventpoll { | 
|  | 190 | /* | 
|  | 191 | * This mutex is used to ensure that files are not removed | 
|  | 192 | * while epoll is using them. This is held during the event | 
|  | 193 | * collection loop, the file cleanup path, the epoll file exit | 
|  | 194 | * code and the ctl operations. | 
|  | 195 | */ | 
|  | 196 | struct mutex mtx; | 
|  | 197 |  | 
|  | 198 | /* Wait queue used by sys_epoll_wait() */ | 
|  | 199 | wait_queue_head_t wq; | 
|  | 200 |  | 
|  | 201 | /* Wait queue used by file->poll() */ | 
|  | 202 | wait_queue_head_t poll_wait; | 
|  | 203 |  | 
|  | 204 | /* List of ready file descriptors */ | 
|  | 205 | struct list_head rdllist; | 
|  | 206 |  | 
|  | 207 | /* RB tree root used to store monitored fd structs */ | 
|  | 208 | struct rb_root_cached rbr; | 
|  | 209 |  | 
|  | 210 | /* | 
|  | 211 | * This is a single linked list that chains all the "struct epitem" that | 
|  | 212 | * happened while transferring ready events to userspace w/out | 
|  | 213 | * holding ->wq.lock. | 
|  | 214 | */ | 
|  | 215 | struct epitem *ovflist; | 
|  | 216 |  | 
|  | 217 | /* wakeup_source used when ep_scan_ready_list is running */ | 
|  | 218 | struct wakeup_source *ws; | 
|  | 219 |  | 
|  | 220 | /* The user that created the eventpoll descriptor */ | 
|  | 221 | struct user_struct *user; | 
|  | 222 |  | 
|  | 223 | struct file *file; | 
|  | 224 |  | 
|  | 225 | /* used to optimize loop detection check */ | 
|  | 226 | int visited; | 
|  | 227 | struct list_head visited_list_link; | 
|  | 228 |  | 
|  | 229 | #ifdef CONFIG_NET_RX_BUSY_POLL | 
|  | 230 | /* used to track busy poll napi_id */ | 
|  | 231 | unsigned int napi_id; | 
|  | 232 | #endif | 
|  | 233 | }; | 
|  | 234 |  | 
|  | 235 | /* Wait structure used by the poll hooks */ | 
|  | 236 | struct eppoll_entry { | 
|  | 237 | /* List header used to link this structure to the "struct epitem" */ | 
|  | 238 | struct list_head llink; | 
|  | 239 |  | 
|  | 240 | /* The "base" pointer is set to the container "struct epitem" */ | 
|  | 241 | struct epitem *base; | 
|  | 242 |  | 
|  | 243 | /* | 
|  | 244 | * Wait queue item that will be linked to the target file wait | 
|  | 245 | * queue head. | 
|  | 246 | */ | 
|  | 247 | wait_queue_entry_t wait; | 
|  | 248 |  | 
|  | 249 | /* The wait queue head that linked the "wait" wait queue item */ | 
|  | 250 | wait_queue_head_t *whead; | 
|  | 251 | }; | 
|  | 252 |  | 
|  | 253 | /* Wrapper struct used by poll queueing */ | 
|  | 254 | struct ep_pqueue { | 
|  | 255 | poll_table pt; | 
|  | 256 | struct epitem *epi; | 
|  | 257 | }; | 
|  | 258 |  | 
|  | 259 | /* Used by the ep_send_events() function as callback private data */ | 
|  | 260 | struct ep_send_events_data { | 
|  | 261 | int maxevents; | 
|  | 262 | struct epoll_event __user *events; | 
|  | 263 | int res; | 
|  | 264 | }; | 
|  | 265 |  | 
|  | 266 | /* | 
|  | 267 | * Configuration options available inside /proc/sys/fs/epoll/ | 
|  | 268 | */ | 
|  | 269 | /* Maximum number of epoll watched descriptors, per user */ | 
|  | 270 | static long max_user_watches __read_mostly; | 
|  | 271 |  | 
|  | 272 | /* | 
|  | 273 | * This mutex is used to serialize ep_free() and eventpoll_release_file(). | 
|  | 274 | */ | 
|  | 275 | static DEFINE_MUTEX(epmutex); | 
|  | 276 |  | 
|  | 277 | /* Used to check for epoll file descriptor inclusion loops */ | 
|  | 278 | static struct nested_calls poll_loop_ncalls; | 
|  | 279 |  | 
|  | 280 | /* Slab cache used to allocate "struct epitem" */ | 
|  | 281 | static struct kmem_cache *epi_cache __read_mostly; | 
|  | 282 |  | 
|  | 283 | /* Slab cache used to allocate "struct eppoll_entry" */ | 
|  | 284 | static struct kmem_cache *pwq_cache __read_mostly; | 
|  | 285 |  | 
|  | 286 | /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ | 
|  | 287 | static LIST_HEAD(visited_list); | 
|  | 288 |  | 
|  | 289 | /* | 
|  | 290 | * List of files with newly added links, where we may need to limit the number | 
|  | 291 | * of emanating paths. Protected by the epmutex. | 
|  | 292 | */ | 
|  | 293 | static LIST_HEAD(tfile_check_list); | 
|  | 294 |  | 
|  | 295 | #ifdef CONFIG_SYSCTL | 
|  | 296 |  | 
|  | 297 | #include <linux/sysctl.h> | 
|  | 298 |  | 
|  | 299 | static long zero; | 
|  | 300 | static long long_max = LONG_MAX; | 
|  | 301 |  | 
|  | 302 | struct ctl_table epoll_table[] = { | 
|  | 303 | { | 
|  | 304 | .procname	= "max_user_watches", | 
|  | 305 | .data		= &max_user_watches, | 
|  | 306 | .maxlen		= sizeof(max_user_watches), | 
|  | 307 | .mode		= 0644, | 
|  | 308 | .proc_handler	= proc_doulongvec_minmax, | 
|  | 309 | .extra1		= &zero, | 
|  | 310 | .extra2		= &long_max, | 
|  | 311 | }, | 
|  | 312 | { } | 
|  | 313 | }; | 
|  | 314 | #endif /* CONFIG_SYSCTL */ | 
|  | 315 |  | 
|  | 316 | static const struct file_operations eventpoll_fops; | 
|  | 317 |  | 
|  | 318 | static inline int is_file_epoll(struct file *f) | 
|  | 319 | { | 
|  | 320 | return f->f_op == &eventpoll_fops; | 
|  | 321 | } | 
|  | 322 |  | 
|  | 323 | /* Setup the structure that is used as key for the RB tree */ | 
|  | 324 | static inline void ep_set_ffd(struct epoll_filefd *ffd, | 
|  | 325 | struct file *file, int fd) | 
|  | 326 | { | 
|  | 327 | ffd->file = file; | 
|  | 328 | ffd->fd = fd; | 
|  | 329 | } | 
|  | 330 |  | 
|  | 331 | /* Compare RB tree keys */ | 
|  | 332 | static inline int ep_cmp_ffd(struct epoll_filefd *p1, | 
|  | 333 | struct epoll_filefd *p2) | 
|  | 334 | { | 
|  | 335 | return (p1->file > p2->file ? +1: | 
|  | 336 | (p1->file < p2->file ? -1 : p1->fd - p2->fd)); | 
|  | 337 | } | 
|  | 338 |  | 
|  | 339 | /* Tells us if the item is currently linked */ | 
|  | 340 | static inline int ep_is_linked(struct epitem *epi) | 
|  | 341 | { | 
|  | 342 | return !list_empty(&epi->rdllink); | 
|  | 343 | } | 
|  | 344 |  | 
|  | 345 | static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) | 
|  | 346 | { | 
|  | 347 | return container_of(p, struct eppoll_entry, wait); | 
|  | 348 | } | 
|  | 349 |  | 
|  | 350 | /* Get the "struct epitem" from a wait queue pointer */ | 
|  | 351 | static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) | 
|  | 352 | { | 
|  | 353 | return container_of(p, struct eppoll_entry, wait)->base; | 
|  | 354 | } | 
|  | 355 |  | 
|  | 356 | /* Get the "struct epitem" from an epoll queue wrapper */ | 
|  | 357 | static inline struct epitem *ep_item_from_epqueue(poll_table *p) | 
|  | 358 | { | 
|  | 359 | return container_of(p, struct ep_pqueue, pt)->epi; | 
|  | 360 | } | 
|  | 361 |  | 
|  | 362 | /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ | 
|  | 363 | static inline int ep_op_has_event(int op) | 
|  | 364 | { | 
|  | 365 | return op != EPOLL_CTL_DEL; | 
|  | 366 | } | 
|  | 367 |  | 
|  | 368 | /* Initialize the poll safe wake up structure */ | 
|  | 369 | static void ep_nested_calls_init(struct nested_calls *ncalls) | 
|  | 370 | { | 
|  | 371 | INIT_LIST_HEAD(&ncalls->tasks_call_list); | 
|  | 372 | spin_lock_init(&ncalls->lock); | 
|  | 373 | } | 
|  | 374 |  | 
|  | 375 | /** | 
|  | 376 | * ep_events_available - Checks if ready events might be available. | 
|  | 377 | * | 
|  | 378 | * @ep: Pointer to the eventpoll context. | 
|  | 379 | * | 
|  | 380 | * Returns: Returns a value different than zero if ready events are available, | 
|  | 381 | *          or zero otherwise. | 
|  | 382 | */ | 
|  | 383 | static inline int ep_events_available(struct eventpoll *ep) | 
|  | 384 | { | 
|  | 385 | return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; | 
|  | 386 | } | 
|  | 387 |  | 
|  | 388 | #ifdef CONFIG_NET_RX_BUSY_POLL | 
|  | 389 | static bool ep_busy_loop_end(void *p, unsigned long start_time) | 
|  | 390 | { | 
|  | 391 | struct eventpoll *ep = p; | 
|  | 392 |  | 
|  | 393 | return ep_events_available(ep) || busy_loop_timeout(start_time); | 
|  | 394 | } | 
|  | 395 |  | 
|  | 396 | /* | 
|  | 397 | * Busy poll if globally on and supporting sockets found && no events, | 
|  | 398 | * busy loop will return if need_resched or ep_events_available. | 
|  | 399 | * | 
|  | 400 | * we must do our busy polling with irqs enabled | 
|  | 401 | */ | 
|  | 402 | static void ep_busy_loop(struct eventpoll *ep, int nonblock) | 
|  | 403 | { | 
|  | 404 | unsigned int napi_id = READ_ONCE(ep->napi_id); | 
|  | 405 |  | 
|  | 406 | if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) | 
|  | 407 | napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep); | 
|  | 408 | } | 
|  | 409 |  | 
|  | 410 | static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) | 
|  | 411 | { | 
|  | 412 | if (ep->napi_id) | 
|  | 413 | ep->napi_id = 0; | 
|  | 414 | } | 
|  | 415 |  | 
|  | 416 | /* | 
|  | 417 | * Set epoll busy poll NAPI ID from sk. | 
|  | 418 | */ | 
|  | 419 | static inline void ep_set_busy_poll_napi_id(struct epitem *epi) | 
|  | 420 | { | 
|  | 421 | struct eventpoll *ep; | 
|  | 422 | unsigned int napi_id; | 
|  | 423 | struct socket *sock; | 
|  | 424 | struct sock *sk; | 
|  | 425 | int err; | 
|  | 426 |  | 
|  | 427 | if (!net_busy_loop_on()) | 
|  | 428 | return; | 
|  | 429 |  | 
|  | 430 | sock = sock_from_file(epi->ffd.file, &err); | 
|  | 431 | if (!sock) | 
|  | 432 | return; | 
|  | 433 |  | 
|  | 434 | sk = sock->sk; | 
|  | 435 | if (!sk) | 
|  | 436 | return; | 
|  | 437 |  | 
|  | 438 | napi_id = READ_ONCE(sk->sk_napi_id); | 
|  | 439 | ep = epi->ep; | 
|  | 440 |  | 
|  | 441 | /* Non-NAPI IDs can be rejected | 
|  | 442 | *	or | 
|  | 443 | * Nothing to do if we already have this ID | 
|  | 444 | */ | 
|  | 445 | if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) | 
|  | 446 | return; | 
|  | 447 |  | 
|  | 448 | /* record NAPI ID for use in next busy poll */ | 
|  | 449 | ep->napi_id = napi_id; | 
|  | 450 | } | 
|  | 451 |  | 
|  | 452 | #else | 
|  | 453 |  | 
|  | 454 | static inline void ep_busy_loop(struct eventpoll *ep, int nonblock) | 
|  | 455 | { | 
|  | 456 | } | 
|  | 457 |  | 
|  | 458 | static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) | 
|  | 459 | { | 
|  | 460 | } | 
|  | 461 |  | 
|  | 462 | static inline void ep_set_busy_poll_napi_id(struct epitem *epi) | 
|  | 463 | { | 
|  | 464 | } | 
|  | 465 |  | 
|  | 466 | #endif /* CONFIG_NET_RX_BUSY_POLL */ | 
|  | 467 |  | 
|  | 468 | /** | 
|  | 469 | * ep_call_nested - Perform a bound (possibly) nested call, by checking | 
|  | 470 | *                  that the recursion limit is not exceeded, and that | 
|  | 471 | *                  the same nested call (by the meaning of same cookie) is | 
|  | 472 | *                  no re-entered. | 
|  | 473 | * | 
|  | 474 | * @ncalls: Pointer to the nested_calls structure to be used for this call. | 
|  | 475 | * @max_nests: Maximum number of allowed nesting calls. | 
|  | 476 | * @nproc: Nested call core function pointer. | 
|  | 477 | * @priv: Opaque data to be passed to the @nproc callback. | 
|  | 478 | * @cookie: Cookie to be used to identify this nested call. | 
|  | 479 | * @ctx: This instance context. | 
|  | 480 | * | 
|  | 481 | * Returns: Returns the code returned by the @nproc callback, or -1 if | 
|  | 482 | *          the maximum recursion limit has been exceeded. | 
|  | 483 | */ | 
|  | 484 | static int ep_call_nested(struct nested_calls *ncalls, int max_nests, | 
|  | 485 | int (*nproc)(void *, void *, int), void *priv, | 
|  | 486 | void *cookie, void *ctx) | 
|  | 487 | { | 
|  | 488 | int error, call_nests = 0; | 
|  | 489 | unsigned long flags; | 
|  | 490 | struct list_head *lsthead = &ncalls->tasks_call_list; | 
|  | 491 | struct nested_call_node *tncur; | 
|  | 492 | struct nested_call_node tnode; | 
|  | 493 |  | 
|  | 494 | spin_lock_irqsave(&ncalls->lock, flags); | 
|  | 495 |  | 
|  | 496 | /* | 
|  | 497 | * Try to see if the current task is already inside this wakeup call. | 
|  | 498 | * We use a list here, since the population inside this set is always | 
|  | 499 | * very much limited. | 
|  | 500 | */ | 
|  | 501 | list_for_each_entry(tncur, lsthead, llink) { | 
|  | 502 | if (tncur->ctx == ctx && | 
|  | 503 | (tncur->cookie == cookie || ++call_nests > max_nests)) { | 
|  | 504 | /* | 
|  | 505 | * Ops ... loop detected or maximum nest level reached. | 
|  | 506 | * We abort this wake by breaking the cycle itself. | 
|  | 507 | */ | 
|  | 508 | error = -1; | 
|  | 509 | goto out_unlock; | 
|  | 510 | } | 
|  | 511 | } | 
|  | 512 |  | 
|  | 513 | /* Add the current task and cookie to the list */ | 
|  | 514 | tnode.ctx = ctx; | 
|  | 515 | tnode.cookie = cookie; | 
|  | 516 | list_add(&tnode.llink, lsthead); | 
|  | 517 |  | 
|  | 518 | spin_unlock_irqrestore(&ncalls->lock, flags); | 
|  | 519 |  | 
|  | 520 | /* Call the nested function */ | 
|  | 521 | error = (*nproc)(priv, cookie, call_nests); | 
|  | 522 |  | 
|  | 523 | /* Remove the current task from the list */ | 
|  | 524 | spin_lock_irqsave(&ncalls->lock, flags); | 
|  | 525 | list_del(&tnode.llink); | 
|  | 526 | out_unlock: | 
|  | 527 | spin_unlock_irqrestore(&ncalls->lock, flags); | 
|  | 528 |  | 
|  | 529 | return error; | 
|  | 530 | } | 
|  | 531 |  | 
|  | 532 | /* | 
|  | 533 | * As described in commit 0ccf831cb lockdep: annotate epoll | 
|  | 534 | * the use of wait queues used by epoll is done in a very controlled | 
|  | 535 | * manner. Wake ups can nest inside each other, but are never done | 
|  | 536 | * with the same locking. For example: | 
|  | 537 | * | 
|  | 538 | *   dfd = socket(...); | 
|  | 539 | *   efd1 = epoll_create(); | 
|  | 540 | *   efd2 = epoll_create(); | 
|  | 541 | *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); | 
|  | 542 | *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); | 
|  | 543 | * | 
|  | 544 | * When a packet arrives to the device underneath "dfd", the net code will | 
|  | 545 | * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a | 
|  | 546 | * callback wakeup entry on that queue, and the wake_up() performed by the | 
|  | 547 | * "dfd" net code will end up in ep_poll_callback(). At this point epoll | 
|  | 548 | * (efd1) notices that it may have some event ready, so it needs to wake up | 
|  | 549 | * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() | 
|  | 550 | * that ends up in another wake_up(), after having checked about the | 
|  | 551 | * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to | 
|  | 552 | * avoid stack blasting. | 
|  | 553 | * | 
|  | 554 | * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle | 
|  | 555 | * this special case of epoll. | 
|  | 556 | */ | 
|  | 557 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
|  | 558 |  | 
|  | 559 | static struct nested_calls poll_safewake_ncalls; | 
|  | 560 |  | 
|  | 561 | static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) | 
|  | 562 | { | 
|  | 563 | unsigned long flags; | 
|  | 564 | wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie; | 
|  | 565 |  | 
|  | 566 | spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1); | 
|  | 567 | wake_up_locked_poll(wqueue, EPOLLIN); | 
|  | 568 | spin_unlock_irqrestore(&wqueue->lock, flags); | 
|  | 569 |  | 
|  | 570 | return 0; | 
|  | 571 | } | 
|  | 572 |  | 
|  | 573 | static void ep_poll_safewake(wait_queue_head_t *wq) | 
|  | 574 | { | 
|  | 575 | int this_cpu = get_cpu(); | 
|  | 576 |  | 
|  | 577 | ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, | 
|  | 578 | ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); | 
|  | 579 |  | 
|  | 580 | put_cpu(); | 
|  | 581 | } | 
|  | 582 |  | 
|  | 583 | #else | 
|  | 584 |  | 
|  | 585 | static void ep_poll_safewake(wait_queue_head_t *wq) | 
|  | 586 | { | 
|  | 587 | wake_up_poll(wq, EPOLLIN); | 
|  | 588 | } | 
|  | 589 |  | 
|  | 590 | #endif | 
|  | 591 |  | 
|  | 592 | static void ep_remove_wait_queue(struct eppoll_entry *pwq) | 
|  | 593 | { | 
|  | 594 | wait_queue_head_t *whead; | 
|  | 595 |  | 
|  | 596 | rcu_read_lock(); | 
|  | 597 | /* | 
|  | 598 | * If it is cleared by POLLFREE, it should be rcu-safe. | 
|  | 599 | * If we read NULL we need a barrier paired with | 
|  | 600 | * smp_store_release() in ep_poll_callback(), otherwise | 
|  | 601 | * we rely on whead->lock. | 
|  | 602 | */ | 
|  | 603 | whead = smp_load_acquire(&pwq->whead); | 
|  | 604 | if (whead) | 
|  | 605 | remove_wait_queue(whead, &pwq->wait); | 
|  | 606 | rcu_read_unlock(); | 
|  | 607 | } | 
|  | 608 |  | 
|  | 609 | /* | 
|  | 610 | * This function unregisters poll callbacks from the associated file | 
|  | 611 | * descriptor.  Must be called with "mtx" held (or "epmutex" if called from | 
|  | 612 | * ep_free). | 
|  | 613 | */ | 
|  | 614 | static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) | 
|  | 615 | { | 
|  | 616 | struct list_head *lsthead = &epi->pwqlist; | 
|  | 617 | struct eppoll_entry *pwq; | 
|  | 618 |  | 
|  | 619 | while (!list_empty(lsthead)) { | 
|  | 620 | pwq = list_first_entry(lsthead, struct eppoll_entry, llink); | 
|  | 621 |  | 
|  | 622 | list_del(&pwq->llink); | 
|  | 623 | ep_remove_wait_queue(pwq); | 
|  | 624 | kmem_cache_free(pwq_cache, pwq); | 
|  | 625 | } | 
|  | 626 | } | 
|  | 627 |  | 
|  | 628 | /* call only when ep->mtx is held */ | 
|  | 629 | static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) | 
|  | 630 | { | 
|  | 631 | return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); | 
|  | 632 | } | 
|  | 633 |  | 
|  | 634 | /* call only when ep->mtx is held */ | 
|  | 635 | static inline void ep_pm_stay_awake(struct epitem *epi) | 
|  | 636 | { | 
|  | 637 | struct wakeup_source *ws = ep_wakeup_source(epi); | 
|  | 638 |  | 
|  | 639 | if (ws) | 
|  | 640 | __pm_stay_awake(ws); | 
|  | 641 | } | 
|  | 642 |  | 
|  | 643 | static inline bool ep_has_wakeup_source(struct epitem *epi) | 
|  | 644 | { | 
|  | 645 | return rcu_access_pointer(epi->ws) ? true : false; | 
|  | 646 | } | 
|  | 647 |  | 
|  | 648 | /* call when ep->mtx cannot be held (ep_poll_callback) */ | 
|  | 649 | static inline void ep_pm_stay_awake_rcu(struct epitem *epi) | 
|  | 650 | { | 
|  | 651 | struct wakeup_source *ws; | 
|  | 652 |  | 
|  | 653 | rcu_read_lock(); | 
|  | 654 | ws = rcu_dereference(epi->ws); | 
|  | 655 | if (ws) | 
|  | 656 | __pm_stay_awake(ws); | 
|  | 657 | rcu_read_unlock(); | 
|  | 658 | } | 
|  | 659 |  | 
|  | 660 | /** | 
|  | 661 | * ep_scan_ready_list - Scans the ready list in a way that makes possible for | 
|  | 662 | *                      the scan code, to call f_op->poll(). Also allows for | 
|  | 663 | *                      O(NumReady) performance. | 
|  | 664 | * | 
|  | 665 | * @ep: Pointer to the epoll private data structure. | 
|  | 666 | * @sproc: Pointer to the scan callback. | 
|  | 667 | * @priv: Private opaque data passed to the @sproc callback. | 
|  | 668 | * @depth: The current depth of recursive f_op->poll calls. | 
|  | 669 | * @ep_locked: caller already holds ep->mtx | 
|  | 670 | * | 
|  | 671 | * Returns: The same integer error code returned by the @sproc callback. | 
|  | 672 | */ | 
|  | 673 | static __poll_t ep_scan_ready_list(struct eventpoll *ep, | 
|  | 674 | __poll_t (*sproc)(struct eventpoll *, | 
|  | 675 | struct list_head *, void *), | 
|  | 676 | void *priv, int depth, bool ep_locked) | 
|  | 677 | { | 
|  | 678 | __poll_t res; | 
|  | 679 | int pwake = 0; | 
|  | 680 | struct epitem *epi, *nepi; | 
|  | 681 | LIST_HEAD(txlist); | 
|  | 682 |  | 
|  | 683 | lockdep_assert_irqs_enabled(); | 
|  | 684 |  | 
|  | 685 | /* | 
|  | 686 | * We need to lock this because we could be hit by | 
|  | 687 | * eventpoll_release_file() and epoll_ctl(). | 
|  | 688 | */ | 
|  | 689 |  | 
|  | 690 | if (!ep_locked) | 
|  | 691 | mutex_lock_nested(&ep->mtx, depth); | 
|  | 692 |  | 
|  | 693 | /* | 
|  | 694 | * Steal the ready list, and re-init the original one to the | 
|  | 695 | * empty list. Also, set ep->ovflist to NULL so that events | 
|  | 696 | * happening while looping w/out locks, are not lost. We cannot | 
|  | 697 | * have the poll callback to queue directly on ep->rdllist, | 
|  | 698 | * because we want the "sproc" callback to be able to do it | 
|  | 699 | * in a lockless way. | 
|  | 700 | */ | 
|  | 701 | spin_lock_irq(&ep->wq.lock); | 
|  | 702 | list_splice_init(&ep->rdllist, &txlist); | 
|  | 703 | ep->ovflist = NULL; | 
|  | 704 | spin_unlock_irq(&ep->wq.lock); | 
|  | 705 |  | 
|  | 706 | /* | 
|  | 707 | * Now call the callback function. | 
|  | 708 | */ | 
|  | 709 | res = (*sproc)(ep, &txlist, priv); | 
|  | 710 |  | 
|  | 711 | spin_lock_irq(&ep->wq.lock); | 
|  | 712 | /* | 
|  | 713 | * During the time we spent inside the "sproc" callback, some | 
|  | 714 | * other events might have been queued by the poll callback. | 
|  | 715 | * We re-insert them inside the main ready-list here. | 
|  | 716 | */ | 
|  | 717 | for (nepi = ep->ovflist; (epi = nepi) != NULL; | 
|  | 718 | nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { | 
|  | 719 | /* | 
|  | 720 | * We need to check if the item is already in the list. | 
|  | 721 | * During the "sproc" callback execution time, items are | 
|  | 722 | * queued into ->ovflist but the "txlist" might already | 
|  | 723 | * contain them, and the list_splice() below takes care of them. | 
|  | 724 | */ | 
|  | 725 | if (!ep_is_linked(epi)) { | 
|  | 726 | list_add_tail(&epi->rdllink, &ep->rdllist); | 
|  | 727 | ep_pm_stay_awake(epi); | 
|  | 728 | } | 
|  | 729 | } | 
|  | 730 | /* | 
|  | 731 | * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after | 
|  | 732 | * releasing the lock, events will be queued in the normal way inside | 
|  | 733 | * ep->rdllist. | 
|  | 734 | */ | 
|  | 735 | ep->ovflist = EP_UNACTIVE_PTR; | 
|  | 736 |  | 
|  | 737 | /* | 
|  | 738 | * Quickly re-inject items left on "txlist". | 
|  | 739 | */ | 
|  | 740 | list_splice(&txlist, &ep->rdllist); | 
|  | 741 | __pm_relax(ep->ws); | 
|  | 742 |  | 
|  | 743 | if (!list_empty(&ep->rdllist)) { | 
|  | 744 | /* | 
|  | 745 | * Wake up (if active) both the eventpoll wait list and | 
|  | 746 | * the ->poll() wait list (delayed after we release the lock). | 
|  | 747 | */ | 
|  | 748 | if (waitqueue_active(&ep->wq)) | 
|  | 749 | wake_up_locked(&ep->wq); | 
|  | 750 | if (waitqueue_active(&ep->poll_wait)) | 
|  | 751 | pwake++; | 
|  | 752 | } | 
|  | 753 | spin_unlock_irq(&ep->wq.lock); | 
|  | 754 |  | 
|  | 755 | if (!ep_locked) | 
|  | 756 | mutex_unlock(&ep->mtx); | 
|  | 757 |  | 
|  | 758 | /* We have to call this outside the lock */ | 
|  | 759 | if (pwake) | 
|  | 760 | ep_poll_safewake(&ep->poll_wait); | 
|  | 761 |  | 
|  | 762 | return res; | 
|  | 763 | } | 
|  | 764 |  | 
|  | 765 | static void epi_rcu_free(struct rcu_head *head) | 
|  | 766 | { | 
|  | 767 | struct epitem *epi = container_of(head, struct epitem, rcu); | 
|  | 768 | kmem_cache_free(epi_cache, epi); | 
|  | 769 | } | 
|  | 770 |  | 
|  | 771 | /* | 
|  | 772 | * Removes a "struct epitem" from the eventpoll RB tree and deallocates | 
|  | 773 | * all the associated resources. Must be called with "mtx" held. | 
|  | 774 | */ | 
|  | 775 | static int ep_remove(struct eventpoll *ep, struct epitem *epi) | 
|  | 776 | { | 
|  | 777 | struct file *file = epi->ffd.file; | 
|  | 778 |  | 
|  | 779 | lockdep_assert_irqs_enabled(); | 
|  | 780 |  | 
|  | 781 | /* | 
|  | 782 | * Removes poll wait queue hooks. | 
|  | 783 | */ | 
|  | 784 | ep_unregister_pollwait(ep, epi); | 
|  | 785 |  | 
|  | 786 | /* Remove the current item from the list of epoll hooks */ | 
|  | 787 | spin_lock(&file->f_lock); | 
|  | 788 | list_del_rcu(&epi->fllink); | 
|  | 789 | spin_unlock(&file->f_lock); | 
|  | 790 |  | 
|  | 791 | rb_erase_cached(&epi->rbn, &ep->rbr); | 
|  | 792 |  | 
|  | 793 | spin_lock_irq(&ep->wq.lock); | 
|  | 794 | if (ep_is_linked(epi)) | 
|  | 795 | list_del_init(&epi->rdllink); | 
|  | 796 | spin_unlock_irq(&ep->wq.lock); | 
|  | 797 |  | 
|  | 798 | wakeup_source_unregister(ep_wakeup_source(epi)); | 
|  | 799 | /* | 
|  | 800 | * At this point it is safe to free the eventpoll item. Use the union | 
|  | 801 | * field epi->rcu, since we are trying to minimize the size of | 
|  | 802 | * 'struct epitem'. The 'rbn' field is no longer in use. Protected by | 
|  | 803 | * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make | 
|  | 804 | * use of the rbn field. | 
|  | 805 | */ | 
|  | 806 | call_rcu(&epi->rcu, epi_rcu_free); | 
|  | 807 |  | 
|  | 808 | atomic_long_dec(&ep->user->epoll_watches); | 
|  | 809 |  | 
|  | 810 | return 0; | 
|  | 811 | } | 
|  | 812 |  | 
|  | 813 | static void ep_free(struct eventpoll *ep) | 
|  | 814 | { | 
|  | 815 | struct rb_node *rbp; | 
|  | 816 | struct epitem *epi; | 
|  | 817 |  | 
|  | 818 | /* We need to release all tasks waiting for these file */ | 
|  | 819 | if (waitqueue_active(&ep->poll_wait)) | 
|  | 820 | ep_poll_safewake(&ep->poll_wait); | 
|  | 821 |  | 
|  | 822 | /* | 
|  | 823 | * We need to lock this because we could be hit by | 
|  | 824 | * eventpoll_release_file() while we're freeing the "struct eventpoll". | 
|  | 825 | * We do not need to hold "ep->mtx" here because the epoll file | 
|  | 826 | * is on the way to be removed and no one has references to it | 
|  | 827 | * anymore. The only hit might come from eventpoll_release_file() but | 
|  | 828 | * holding "epmutex" is sufficient here. | 
|  | 829 | */ | 
|  | 830 | mutex_lock(&epmutex); | 
|  | 831 |  | 
|  | 832 | /* | 
|  | 833 | * Walks through the whole tree by unregistering poll callbacks. | 
|  | 834 | */ | 
|  | 835 | for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { | 
|  | 836 | epi = rb_entry(rbp, struct epitem, rbn); | 
|  | 837 |  | 
|  | 838 | ep_unregister_pollwait(ep, epi); | 
|  | 839 | cond_resched(); | 
|  | 840 | } | 
|  | 841 |  | 
|  | 842 | /* | 
|  | 843 | * Walks through the whole tree by freeing each "struct epitem". At this | 
|  | 844 | * point we are sure no poll callbacks will be lingering around, and also by | 
|  | 845 | * holding "epmutex" we can be sure that no file cleanup code will hit | 
|  | 846 | * us during this operation. So we can avoid the lock on "ep->wq.lock". | 
|  | 847 | * We do not need to lock ep->mtx, either, we only do it to prevent | 
|  | 848 | * a lockdep warning. | 
|  | 849 | */ | 
|  | 850 | mutex_lock(&ep->mtx); | 
|  | 851 | while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { | 
|  | 852 | epi = rb_entry(rbp, struct epitem, rbn); | 
|  | 853 | ep_remove(ep, epi); | 
|  | 854 | cond_resched(); | 
|  | 855 | } | 
|  | 856 | mutex_unlock(&ep->mtx); | 
|  | 857 |  | 
|  | 858 | mutex_unlock(&epmutex); | 
|  | 859 | mutex_destroy(&ep->mtx); | 
|  | 860 | free_uid(ep->user); | 
|  | 861 | wakeup_source_unregister(ep->ws); | 
|  | 862 | kfree(ep); | 
|  | 863 | } | 
|  | 864 |  | 
|  | 865 | static int ep_eventpoll_release(struct inode *inode, struct file *file) | 
|  | 866 | { | 
|  | 867 | struct eventpoll *ep = file->private_data; | 
|  | 868 |  | 
|  | 869 | if (ep) | 
|  | 870 | ep_free(ep); | 
|  | 871 |  | 
|  | 872 | return 0; | 
|  | 873 | } | 
|  | 874 |  | 
|  | 875 | static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, | 
|  | 876 | void *priv); | 
|  | 877 | static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, | 
|  | 878 | poll_table *pt); | 
|  | 879 |  | 
|  | 880 | /* | 
|  | 881 | * Differs from ep_eventpoll_poll() in that internal callers already have | 
|  | 882 | * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() | 
|  | 883 | * is correctly annotated. | 
|  | 884 | */ | 
|  | 885 | static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, | 
|  | 886 | int depth) | 
|  | 887 | { | 
|  | 888 | struct eventpoll *ep; | 
|  | 889 | bool locked; | 
|  | 890 |  | 
|  | 891 | pt->_key = epi->event.events; | 
|  | 892 | if (!is_file_epoll(epi->ffd.file)) | 
|  | 893 | return vfs_poll(epi->ffd.file, pt) & epi->event.events; | 
|  | 894 |  | 
|  | 895 | ep = epi->ffd.file->private_data; | 
|  | 896 | poll_wait(epi->ffd.file, &ep->poll_wait, pt); | 
|  | 897 | locked = pt && (pt->_qproc == ep_ptable_queue_proc); | 
|  | 898 |  | 
|  | 899 | return ep_scan_ready_list(epi->ffd.file->private_data, | 
|  | 900 | ep_read_events_proc, &depth, depth, | 
|  | 901 | locked) & epi->event.events; | 
|  | 902 | } | 
|  | 903 |  | 
|  | 904 | static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, | 
|  | 905 | void *priv) | 
|  | 906 | { | 
|  | 907 | struct epitem *epi, *tmp; | 
|  | 908 | poll_table pt; | 
|  | 909 | int depth = *(int *)priv; | 
|  | 910 |  | 
|  | 911 | init_poll_funcptr(&pt, NULL); | 
|  | 912 | depth++; | 
|  | 913 |  | 
|  | 914 | list_for_each_entry_safe(epi, tmp, head, rdllink) { | 
|  | 915 | if (ep_item_poll(epi, &pt, depth)) { | 
|  | 916 | return EPOLLIN | EPOLLRDNORM; | 
|  | 917 | } else { | 
|  | 918 | /* | 
|  | 919 | * Item has been dropped into the ready list by the poll | 
|  | 920 | * callback, but it's not actually ready, as far as | 
|  | 921 | * caller requested events goes. We can remove it here. | 
|  | 922 | */ | 
|  | 923 | __pm_relax(ep_wakeup_source(epi)); | 
|  | 924 | list_del_init(&epi->rdllink); | 
|  | 925 | } | 
|  | 926 | } | 
|  | 927 |  | 
|  | 928 | return 0; | 
|  | 929 | } | 
|  | 930 |  | 
|  | 931 | static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) | 
|  | 932 | { | 
|  | 933 | struct eventpoll *ep = file->private_data; | 
|  | 934 | int depth = 0; | 
|  | 935 |  | 
|  | 936 | /* Insert inside our poll wait queue */ | 
|  | 937 | poll_wait(file, &ep->poll_wait, wait); | 
|  | 938 |  | 
|  | 939 | /* | 
|  | 940 | * Proceed to find out if wanted events are really available inside | 
|  | 941 | * the ready list. | 
|  | 942 | */ | 
|  | 943 | return ep_scan_ready_list(ep, ep_read_events_proc, | 
|  | 944 | &depth, depth, false); | 
|  | 945 | } | 
|  | 946 |  | 
|  | 947 | #ifdef CONFIG_PROC_FS | 
|  | 948 | static void ep_show_fdinfo(struct seq_file *m, struct file *f) | 
|  | 949 | { | 
|  | 950 | struct eventpoll *ep = f->private_data; | 
|  | 951 | struct rb_node *rbp; | 
|  | 952 |  | 
|  | 953 | mutex_lock(&ep->mtx); | 
|  | 954 | for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { | 
|  | 955 | struct epitem *epi = rb_entry(rbp, struct epitem, rbn); | 
|  | 956 | struct inode *inode = file_inode(epi->ffd.file); | 
|  | 957 |  | 
|  | 958 | seq_printf(m, "tfd: %8d events: %8x data: %16llx " | 
|  | 959 | " pos:%lli ino:%lx sdev:%x\n", | 
|  | 960 | epi->ffd.fd, epi->event.events, | 
|  | 961 | (long long)epi->event.data, | 
|  | 962 | (long long)epi->ffd.file->f_pos, | 
|  | 963 | inode->i_ino, inode->i_sb->s_dev); | 
|  | 964 | if (seq_has_overflowed(m)) | 
|  | 965 | break; | 
|  | 966 | } | 
|  | 967 | mutex_unlock(&ep->mtx); | 
|  | 968 | } | 
|  | 969 | #endif | 
|  | 970 |  | 
|  | 971 | /* File callbacks that implement the eventpoll file behaviour */ | 
|  | 972 | static const struct file_operations eventpoll_fops = { | 
|  | 973 | #ifdef CONFIG_PROC_FS | 
|  | 974 | .show_fdinfo	= ep_show_fdinfo, | 
|  | 975 | #endif | 
|  | 976 | .release	= ep_eventpoll_release, | 
|  | 977 | .poll		= ep_eventpoll_poll, | 
|  | 978 | .llseek		= noop_llseek, | 
|  | 979 | }; | 
|  | 980 |  | 
|  | 981 | /* | 
|  | 982 | * This is called from eventpoll_release() to unlink files from the eventpoll | 
|  | 983 | * interface. We need to have this facility to cleanup correctly files that are | 
|  | 984 | * closed without being removed from the eventpoll interface. | 
|  | 985 | */ | 
|  | 986 | void eventpoll_release_file(struct file *file) | 
|  | 987 | { | 
|  | 988 | struct eventpoll *ep; | 
|  | 989 | struct epitem *epi, *next; | 
|  | 990 |  | 
|  | 991 | /* | 
|  | 992 | * We don't want to get "file->f_lock" because it is not | 
|  | 993 | * necessary. It is not necessary because we're in the "struct file" | 
|  | 994 | * cleanup path, and this means that no one is using this file anymore. | 
|  | 995 | * So, for example, epoll_ctl() cannot hit here since if we reach this | 
|  | 996 | * point, the file counter already went to zero and fget() would fail. | 
|  | 997 | * The only hit might come from ep_free() but by holding the mutex | 
|  | 998 | * will correctly serialize the operation. We do need to acquire | 
|  | 999 | * "ep->mtx" after "epmutex" because ep_remove() requires it when called | 
|  | 1000 | * from anywhere but ep_free(). | 
|  | 1001 | * | 
|  | 1002 | * Besides, ep_remove() acquires the lock, so we can't hold it here. | 
|  | 1003 | */ | 
|  | 1004 | mutex_lock(&epmutex); | 
|  | 1005 | list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { | 
|  | 1006 | ep = epi->ep; | 
|  | 1007 | mutex_lock_nested(&ep->mtx, 0); | 
|  | 1008 | ep_remove(ep, epi); | 
|  | 1009 | mutex_unlock(&ep->mtx); | 
|  | 1010 | } | 
|  | 1011 | mutex_unlock(&epmutex); | 
|  | 1012 | } | 
|  | 1013 |  | 
|  | 1014 | static int ep_alloc(struct eventpoll **pep) | 
|  | 1015 | { | 
|  | 1016 | int error; | 
|  | 1017 | struct user_struct *user; | 
|  | 1018 | struct eventpoll *ep; | 
|  | 1019 |  | 
|  | 1020 | user = get_current_user(); | 
|  | 1021 | error = -ENOMEM; | 
|  | 1022 | ep = kzalloc(sizeof(*ep), GFP_KERNEL); | 
|  | 1023 | if (unlikely(!ep)) | 
|  | 1024 | goto free_uid; | 
|  | 1025 |  | 
|  | 1026 | mutex_init(&ep->mtx); | 
|  | 1027 | init_waitqueue_head(&ep->wq); | 
|  | 1028 | init_waitqueue_head(&ep->poll_wait); | 
|  | 1029 | INIT_LIST_HEAD(&ep->rdllist); | 
|  | 1030 | ep->rbr = RB_ROOT_CACHED; | 
|  | 1031 | ep->ovflist = EP_UNACTIVE_PTR; | 
|  | 1032 | ep->user = user; | 
|  | 1033 |  | 
|  | 1034 | *pep = ep; | 
|  | 1035 |  | 
|  | 1036 | return 0; | 
|  | 1037 |  | 
|  | 1038 | free_uid: | 
|  | 1039 | free_uid(user); | 
|  | 1040 | return error; | 
|  | 1041 | } | 
|  | 1042 |  | 
|  | 1043 | /* | 
|  | 1044 | * Search the file inside the eventpoll tree. The RB tree operations | 
|  | 1045 | * are protected by the "mtx" mutex, and ep_find() must be called with | 
|  | 1046 | * "mtx" held. | 
|  | 1047 | */ | 
|  | 1048 | static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) | 
|  | 1049 | { | 
|  | 1050 | int kcmp; | 
|  | 1051 | struct rb_node *rbp; | 
|  | 1052 | struct epitem *epi, *epir = NULL; | 
|  | 1053 | struct epoll_filefd ffd; | 
|  | 1054 |  | 
|  | 1055 | ep_set_ffd(&ffd, file, fd); | 
|  | 1056 | for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { | 
|  | 1057 | epi = rb_entry(rbp, struct epitem, rbn); | 
|  | 1058 | kcmp = ep_cmp_ffd(&ffd, &epi->ffd); | 
|  | 1059 | if (kcmp > 0) | 
|  | 1060 | rbp = rbp->rb_right; | 
|  | 1061 | else if (kcmp < 0) | 
|  | 1062 | rbp = rbp->rb_left; | 
|  | 1063 | else { | 
|  | 1064 | epir = epi; | 
|  | 1065 | break; | 
|  | 1066 | } | 
|  | 1067 | } | 
|  | 1068 |  | 
|  | 1069 | return epir; | 
|  | 1070 | } | 
|  | 1071 |  | 
|  | 1072 | #ifdef CONFIG_CHECKPOINT_RESTORE | 
|  | 1073 | static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) | 
|  | 1074 | { | 
|  | 1075 | struct rb_node *rbp; | 
|  | 1076 | struct epitem *epi; | 
|  | 1077 |  | 
|  | 1078 | for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { | 
|  | 1079 | epi = rb_entry(rbp, struct epitem, rbn); | 
|  | 1080 | if (epi->ffd.fd == tfd) { | 
|  | 1081 | if (toff == 0) | 
|  | 1082 | return epi; | 
|  | 1083 | else | 
|  | 1084 | toff--; | 
|  | 1085 | } | 
|  | 1086 | cond_resched(); | 
|  | 1087 | } | 
|  | 1088 |  | 
|  | 1089 | return NULL; | 
|  | 1090 | } | 
|  | 1091 |  | 
|  | 1092 | struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, | 
|  | 1093 | unsigned long toff) | 
|  | 1094 | { | 
|  | 1095 | struct file *file_raw; | 
|  | 1096 | struct eventpoll *ep; | 
|  | 1097 | struct epitem *epi; | 
|  | 1098 |  | 
|  | 1099 | if (!is_file_epoll(file)) | 
|  | 1100 | return ERR_PTR(-EINVAL); | 
|  | 1101 |  | 
|  | 1102 | ep = file->private_data; | 
|  | 1103 |  | 
|  | 1104 | mutex_lock(&ep->mtx); | 
|  | 1105 | epi = ep_find_tfd(ep, tfd, toff); | 
|  | 1106 | if (epi) | 
|  | 1107 | file_raw = epi->ffd.file; | 
|  | 1108 | else | 
|  | 1109 | file_raw = ERR_PTR(-ENOENT); | 
|  | 1110 | mutex_unlock(&ep->mtx); | 
|  | 1111 |  | 
|  | 1112 | return file_raw; | 
|  | 1113 | } | 
|  | 1114 | #endif /* CONFIG_CHECKPOINT_RESTORE */ | 
|  | 1115 |  | 
|  | 1116 | /* | 
|  | 1117 | * This is the callback that is passed to the wait queue wakeup | 
|  | 1118 | * mechanism. It is called by the stored file descriptors when they | 
|  | 1119 | * have events to report. | 
|  | 1120 | */ | 
|  | 1121 | static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) | 
|  | 1122 | { | 
|  | 1123 | int pwake = 0; | 
|  | 1124 | unsigned long flags; | 
|  | 1125 | struct epitem *epi = ep_item_from_wait(wait); | 
|  | 1126 | struct eventpoll *ep = epi->ep; | 
|  | 1127 | __poll_t pollflags = key_to_poll(key); | 
|  | 1128 | int ewake = 0; | 
|  | 1129 |  | 
|  | 1130 | spin_lock_irqsave(&ep->wq.lock, flags); | 
|  | 1131 |  | 
|  | 1132 | ep_set_busy_poll_napi_id(epi); | 
|  | 1133 |  | 
|  | 1134 | /* | 
|  | 1135 | * If the event mask does not contain any poll(2) event, we consider the | 
|  | 1136 | * descriptor to be disabled. This condition is likely the effect of the | 
|  | 1137 | * EPOLLONESHOT bit that disables the descriptor when an event is received, | 
|  | 1138 | * until the next EPOLL_CTL_MOD will be issued. | 
|  | 1139 | */ | 
|  | 1140 | if (!(epi->event.events & ~EP_PRIVATE_BITS)) | 
|  | 1141 | goto out_unlock; | 
|  | 1142 |  | 
|  | 1143 | /* | 
|  | 1144 | * Check the events coming with the callback. At this stage, not | 
|  | 1145 | * every device reports the events in the "key" parameter of the | 
|  | 1146 | * callback. We need to be able to handle both cases here, hence the | 
|  | 1147 | * test for "key" != NULL before the event match test. | 
|  | 1148 | */ | 
|  | 1149 | if (pollflags && !(pollflags & epi->event.events)) | 
|  | 1150 | goto out_unlock; | 
|  | 1151 |  | 
|  | 1152 | /* | 
|  | 1153 | * If we are transferring events to userspace, we can hold no locks | 
|  | 1154 | * (because we're accessing user memory, and because of linux f_op->poll() | 
|  | 1155 | * semantics). All the events that happen during that period of time are | 
|  | 1156 | * chained in ep->ovflist and requeued later on. | 
|  | 1157 | */ | 
|  | 1158 | if (ep->ovflist != EP_UNACTIVE_PTR) { | 
|  | 1159 | if (epi->next == EP_UNACTIVE_PTR) { | 
|  | 1160 | epi->next = ep->ovflist; | 
|  | 1161 | ep->ovflist = epi; | 
|  | 1162 | if (epi->ws) { | 
|  | 1163 | /* | 
|  | 1164 | * Activate ep->ws since epi->ws may get | 
|  | 1165 | * deactivated at any time. | 
|  | 1166 | */ | 
|  | 1167 | __pm_stay_awake(ep->ws); | 
|  | 1168 | } | 
|  | 1169 |  | 
|  | 1170 | } | 
|  | 1171 | goto out_unlock; | 
|  | 1172 | } | 
|  | 1173 |  | 
|  | 1174 | /* If this file is already in the ready list we exit soon */ | 
|  | 1175 | if (!ep_is_linked(epi)) { | 
|  | 1176 | list_add_tail(&epi->rdllink, &ep->rdllist); | 
|  | 1177 | ep_pm_stay_awake_rcu(epi); | 
|  | 1178 | } | 
|  | 1179 |  | 
|  | 1180 | /* | 
|  | 1181 | * Wake up ( if active ) both the eventpoll wait list and the ->poll() | 
|  | 1182 | * wait list. | 
|  | 1183 | */ | 
|  | 1184 | if (waitqueue_active(&ep->wq)) { | 
|  | 1185 | if ((epi->event.events & EPOLLEXCLUSIVE) && | 
|  | 1186 | !(pollflags & POLLFREE)) { | 
|  | 1187 | switch (pollflags & EPOLLINOUT_BITS) { | 
|  | 1188 | case EPOLLIN: | 
|  | 1189 | if (epi->event.events & EPOLLIN) | 
|  | 1190 | ewake = 1; | 
|  | 1191 | break; | 
|  | 1192 | case EPOLLOUT: | 
|  | 1193 | if (epi->event.events & EPOLLOUT) | 
|  | 1194 | ewake = 1; | 
|  | 1195 | break; | 
|  | 1196 | case 0: | 
|  | 1197 | ewake = 1; | 
|  | 1198 | break; | 
|  | 1199 | } | 
|  | 1200 | } | 
|  | 1201 | wake_up_locked(&ep->wq); | 
|  | 1202 | } | 
|  | 1203 | if (waitqueue_active(&ep->poll_wait)) | 
|  | 1204 | pwake++; | 
|  | 1205 |  | 
|  | 1206 | out_unlock: | 
|  | 1207 | spin_unlock_irqrestore(&ep->wq.lock, flags); | 
|  | 1208 |  | 
|  | 1209 | /* We have to call this outside the lock */ | 
|  | 1210 | if (pwake) | 
|  | 1211 | ep_poll_safewake(&ep->poll_wait); | 
|  | 1212 |  | 
|  | 1213 | if (!(epi->event.events & EPOLLEXCLUSIVE)) | 
|  | 1214 | ewake = 1; | 
|  | 1215 |  | 
|  | 1216 | if (pollflags & POLLFREE) { | 
|  | 1217 | /* | 
|  | 1218 | * If we race with ep_remove_wait_queue() it can miss | 
|  | 1219 | * ->whead = NULL and do another remove_wait_queue() after | 
|  | 1220 | * us, so we can't use __remove_wait_queue(). | 
|  | 1221 | */ | 
|  | 1222 | list_del_init(&wait->entry); | 
|  | 1223 | /* | 
|  | 1224 | * ->whead != NULL protects us from the race with ep_free() | 
|  | 1225 | * or ep_remove(), ep_remove_wait_queue() takes whead->lock | 
|  | 1226 | * held by the caller. Once we nullify it, nothing protects | 
|  | 1227 | * ep/epi or even wait. | 
|  | 1228 | */ | 
|  | 1229 | smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); | 
|  | 1230 | } | 
|  | 1231 |  | 
|  | 1232 | return ewake; | 
|  | 1233 | } | 
|  | 1234 |  | 
|  | 1235 | /* | 
|  | 1236 | * This is the callback that is used to add our wait queue to the | 
|  | 1237 | * target file wakeup lists. | 
|  | 1238 | */ | 
|  | 1239 | static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, | 
|  | 1240 | poll_table *pt) | 
|  | 1241 | { | 
|  | 1242 | struct epitem *epi = ep_item_from_epqueue(pt); | 
|  | 1243 | struct eppoll_entry *pwq; | 
|  | 1244 |  | 
|  | 1245 | if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { | 
|  | 1246 | init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); | 
|  | 1247 | pwq->whead = whead; | 
|  | 1248 | pwq->base = epi; | 
|  | 1249 | if (epi->event.events & EPOLLEXCLUSIVE) | 
|  | 1250 | add_wait_queue_exclusive(whead, &pwq->wait); | 
|  | 1251 | else | 
|  | 1252 | add_wait_queue(whead, &pwq->wait); | 
|  | 1253 | list_add_tail(&pwq->llink, &epi->pwqlist); | 
|  | 1254 | epi->nwait++; | 
|  | 1255 | } else { | 
|  | 1256 | /* We have to signal that an error occurred */ | 
|  | 1257 | epi->nwait = -1; | 
|  | 1258 | } | 
|  | 1259 | } | 
|  | 1260 |  | 
|  | 1261 | static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) | 
|  | 1262 | { | 
|  | 1263 | int kcmp; | 
|  | 1264 | struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; | 
|  | 1265 | struct epitem *epic; | 
|  | 1266 | bool leftmost = true; | 
|  | 1267 |  | 
|  | 1268 | while (*p) { | 
|  | 1269 | parent = *p; | 
|  | 1270 | epic = rb_entry(parent, struct epitem, rbn); | 
|  | 1271 | kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); | 
|  | 1272 | if (kcmp > 0) { | 
|  | 1273 | p = &parent->rb_right; | 
|  | 1274 | leftmost = false; | 
|  | 1275 | } else | 
|  | 1276 | p = &parent->rb_left; | 
|  | 1277 | } | 
|  | 1278 | rb_link_node(&epi->rbn, parent, p); | 
|  | 1279 | rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); | 
|  | 1280 | } | 
|  | 1281 |  | 
|  | 1282 |  | 
|  | 1283 |  | 
|  | 1284 | #define PATH_ARR_SIZE 5 | 
|  | 1285 | /* | 
|  | 1286 | * These are the number paths of length 1 to 5, that we are allowing to emanate | 
|  | 1287 | * from a single file of interest. For example, we allow 1000 paths of length | 
|  | 1288 | * 1, to emanate from each file of interest. This essentially represents the | 
|  | 1289 | * potential wakeup paths, which need to be limited in order to avoid massive | 
|  | 1290 | * uncontrolled wakeup storms. The common use case should be a single ep which | 
|  | 1291 | * is connected to n file sources. In this case each file source has 1 path | 
|  | 1292 | * of length 1. Thus, the numbers below should be more than sufficient. These | 
|  | 1293 | * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify | 
|  | 1294 | * and delete can't add additional paths. Protected by the epmutex. | 
|  | 1295 | */ | 
|  | 1296 | static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; | 
|  | 1297 | static int path_count[PATH_ARR_SIZE]; | 
|  | 1298 |  | 
|  | 1299 | static int path_count_inc(int nests) | 
|  | 1300 | { | 
|  | 1301 | /* Allow an arbitrary number of depth 1 paths */ | 
|  | 1302 | if (nests == 0) | 
|  | 1303 | return 0; | 
|  | 1304 |  | 
|  | 1305 | if (++path_count[nests] > path_limits[nests]) | 
|  | 1306 | return -1; | 
|  | 1307 | return 0; | 
|  | 1308 | } | 
|  | 1309 |  | 
|  | 1310 | static void path_count_init(void) | 
|  | 1311 | { | 
|  | 1312 | int i; | 
|  | 1313 |  | 
|  | 1314 | for (i = 0; i < PATH_ARR_SIZE; i++) | 
|  | 1315 | path_count[i] = 0; | 
|  | 1316 | } | 
|  | 1317 |  | 
|  | 1318 | static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) | 
|  | 1319 | { | 
|  | 1320 | int error = 0; | 
|  | 1321 | struct file *file = priv; | 
|  | 1322 | struct file *child_file; | 
|  | 1323 | struct epitem *epi; | 
|  | 1324 |  | 
|  | 1325 | /* CTL_DEL can remove links here, but that can't increase our count */ | 
|  | 1326 | rcu_read_lock(); | 
|  | 1327 | list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { | 
|  | 1328 | child_file = epi->ep->file; | 
|  | 1329 | if (is_file_epoll(child_file)) { | 
|  | 1330 | if (list_empty(&child_file->f_ep_links)) { | 
|  | 1331 | if (path_count_inc(call_nests)) { | 
|  | 1332 | error = -1; | 
|  | 1333 | break; | 
|  | 1334 | } | 
|  | 1335 | } else { | 
|  | 1336 | error = ep_call_nested(&poll_loop_ncalls, | 
|  | 1337 | EP_MAX_NESTS, | 
|  | 1338 | reverse_path_check_proc, | 
|  | 1339 | child_file, child_file, | 
|  | 1340 | current); | 
|  | 1341 | } | 
|  | 1342 | if (error != 0) | 
|  | 1343 | break; | 
|  | 1344 | } else { | 
|  | 1345 | printk(KERN_ERR "reverse_path_check_proc: " | 
|  | 1346 | "file is not an ep!\n"); | 
|  | 1347 | } | 
|  | 1348 | } | 
|  | 1349 | rcu_read_unlock(); | 
|  | 1350 | return error; | 
|  | 1351 | } | 
|  | 1352 |  | 
|  | 1353 | /** | 
|  | 1354 | * reverse_path_check - The tfile_check_list is list of file *, which have | 
|  | 1355 | *                      links that are proposed to be newly added. We need to | 
|  | 1356 | *                      make sure that those added links don't add too many | 
|  | 1357 | *                      paths such that we will spend all our time waking up | 
|  | 1358 | *                      eventpoll objects. | 
|  | 1359 | * | 
|  | 1360 | * Returns: Returns zero if the proposed links don't create too many paths, | 
|  | 1361 | *	    -1 otherwise. | 
|  | 1362 | */ | 
|  | 1363 | static int reverse_path_check(void) | 
|  | 1364 | { | 
|  | 1365 | int error = 0; | 
|  | 1366 | struct file *current_file; | 
|  | 1367 |  | 
|  | 1368 | /* let's call this for all tfiles */ | 
|  | 1369 | list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { | 
|  | 1370 | path_count_init(); | 
|  | 1371 | error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, | 
|  | 1372 | reverse_path_check_proc, current_file, | 
|  | 1373 | current_file, current); | 
|  | 1374 | if (error) | 
|  | 1375 | break; | 
|  | 1376 | } | 
|  | 1377 | return error; | 
|  | 1378 | } | 
|  | 1379 |  | 
|  | 1380 | static int ep_create_wakeup_source(struct epitem *epi) | 
|  | 1381 | { | 
|  | 1382 | const char *name; | 
|  | 1383 | struct wakeup_source *ws; | 
|  | 1384 |  | 
|  | 1385 | if (!epi->ep->ws) { | 
|  | 1386 | epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); | 
|  | 1387 | if (!epi->ep->ws) | 
|  | 1388 | return -ENOMEM; | 
|  | 1389 | } | 
|  | 1390 |  | 
|  | 1391 | name = epi->ffd.file->f_path.dentry->d_name.name; | 
|  | 1392 | ws = wakeup_source_register(NULL, name); | 
|  | 1393 |  | 
|  | 1394 | if (!ws) | 
|  | 1395 | return -ENOMEM; | 
|  | 1396 | rcu_assign_pointer(epi->ws, ws); | 
|  | 1397 |  | 
|  | 1398 | return 0; | 
|  | 1399 | } | 
|  | 1400 |  | 
|  | 1401 | /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ | 
|  | 1402 | static noinline void ep_destroy_wakeup_source(struct epitem *epi) | 
|  | 1403 | { | 
|  | 1404 | struct wakeup_source *ws = ep_wakeup_source(epi); | 
|  | 1405 |  | 
|  | 1406 | RCU_INIT_POINTER(epi->ws, NULL); | 
|  | 1407 |  | 
|  | 1408 | /* | 
|  | 1409 | * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is | 
|  | 1410 | * used internally by wakeup_source_remove, too (called by | 
|  | 1411 | * wakeup_source_unregister), so we cannot use call_rcu | 
|  | 1412 | */ | 
|  | 1413 | synchronize_rcu(); | 
|  | 1414 | wakeup_source_unregister(ws); | 
|  | 1415 | } | 
|  | 1416 |  | 
|  | 1417 | /* | 
|  | 1418 | * Must be called with "mtx" held. | 
|  | 1419 | */ | 
|  | 1420 | static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, | 
|  | 1421 | struct file *tfile, int fd, int full_check) | 
|  | 1422 | { | 
|  | 1423 | int error, pwake = 0; | 
|  | 1424 | __poll_t revents; | 
|  | 1425 | long user_watches; | 
|  | 1426 | struct epitem *epi; | 
|  | 1427 | struct ep_pqueue epq; | 
|  | 1428 |  | 
|  | 1429 | lockdep_assert_irqs_enabled(); | 
|  | 1430 |  | 
|  | 1431 | user_watches = atomic_long_read(&ep->user->epoll_watches); | 
|  | 1432 | if (unlikely(user_watches >= max_user_watches)) | 
|  | 1433 | return -ENOSPC; | 
|  | 1434 | if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) | 
|  | 1435 | return -ENOMEM; | 
|  | 1436 |  | 
|  | 1437 | /* Item initialization follow here ... */ | 
|  | 1438 | INIT_LIST_HEAD(&epi->rdllink); | 
|  | 1439 | INIT_LIST_HEAD(&epi->fllink); | 
|  | 1440 | INIT_LIST_HEAD(&epi->pwqlist); | 
|  | 1441 | epi->ep = ep; | 
|  | 1442 | ep_set_ffd(&epi->ffd, tfile, fd); | 
|  | 1443 | epi->event = *event; | 
|  | 1444 | epi->nwait = 0; | 
|  | 1445 | epi->next = EP_UNACTIVE_PTR; | 
|  | 1446 | if (epi->event.events & EPOLLWAKEUP) { | 
|  | 1447 | error = ep_create_wakeup_source(epi); | 
|  | 1448 | if (error) | 
|  | 1449 | goto error_create_wakeup_source; | 
|  | 1450 | } else { | 
|  | 1451 | RCU_INIT_POINTER(epi->ws, NULL); | 
|  | 1452 | } | 
|  | 1453 |  | 
|  | 1454 | /* Initialize the poll table using the queue callback */ | 
|  | 1455 | epq.epi = epi; | 
|  | 1456 | init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); | 
|  | 1457 |  | 
|  | 1458 | /* | 
|  | 1459 | * Attach the item to the poll hooks and get current event bits. | 
|  | 1460 | * We can safely use the file* here because its usage count has | 
|  | 1461 | * been increased by the caller of this function. Note that after | 
|  | 1462 | * this operation completes, the poll callback can start hitting | 
|  | 1463 | * the new item. | 
|  | 1464 | */ | 
|  | 1465 | revents = ep_item_poll(epi, &epq.pt, 1); | 
|  | 1466 |  | 
|  | 1467 | /* | 
|  | 1468 | * We have to check if something went wrong during the poll wait queue | 
|  | 1469 | * install process. Namely an allocation for a wait queue failed due | 
|  | 1470 | * high memory pressure. | 
|  | 1471 | */ | 
|  | 1472 | error = -ENOMEM; | 
|  | 1473 | if (epi->nwait < 0) | 
|  | 1474 | goto error_unregister; | 
|  | 1475 |  | 
|  | 1476 | /* Add the current item to the list of active epoll hook for this file */ | 
|  | 1477 | spin_lock(&tfile->f_lock); | 
|  | 1478 | list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); | 
|  | 1479 | spin_unlock(&tfile->f_lock); | 
|  | 1480 |  | 
|  | 1481 | /* | 
|  | 1482 | * Add the current item to the RB tree. All RB tree operations are | 
|  | 1483 | * protected by "mtx", and ep_insert() is called with "mtx" held. | 
|  | 1484 | */ | 
|  | 1485 | ep_rbtree_insert(ep, epi); | 
|  | 1486 |  | 
|  | 1487 | /* now check if we've created too many backpaths */ | 
|  | 1488 | error = -EINVAL; | 
|  | 1489 | if (full_check && reverse_path_check()) | 
|  | 1490 | goto error_remove_epi; | 
|  | 1491 |  | 
|  | 1492 | /* We have to drop the new item inside our item list to keep track of it */ | 
|  | 1493 | spin_lock_irq(&ep->wq.lock); | 
|  | 1494 |  | 
|  | 1495 | /* record NAPI ID of new item if present */ | 
|  | 1496 | ep_set_busy_poll_napi_id(epi); | 
|  | 1497 |  | 
|  | 1498 | /* If the file is already "ready" we drop it inside the ready list */ | 
|  | 1499 | if (revents && !ep_is_linked(epi)) { | 
|  | 1500 | list_add_tail(&epi->rdllink, &ep->rdllist); | 
|  | 1501 | ep_pm_stay_awake(epi); | 
|  | 1502 |  | 
|  | 1503 | /* Notify waiting tasks that events are available */ | 
|  | 1504 | if (waitqueue_active(&ep->wq)) | 
|  | 1505 | wake_up_locked(&ep->wq); | 
|  | 1506 | if (waitqueue_active(&ep->poll_wait)) | 
|  | 1507 | pwake++; | 
|  | 1508 | } | 
|  | 1509 |  | 
|  | 1510 | spin_unlock_irq(&ep->wq.lock); | 
|  | 1511 |  | 
|  | 1512 | atomic_long_inc(&ep->user->epoll_watches); | 
|  | 1513 |  | 
|  | 1514 | /* We have to call this outside the lock */ | 
|  | 1515 | if (pwake) | 
|  | 1516 | ep_poll_safewake(&ep->poll_wait); | 
|  | 1517 |  | 
|  | 1518 | return 0; | 
|  | 1519 |  | 
|  | 1520 | error_remove_epi: | 
|  | 1521 | spin_lock(&tfile->f_lock); | 
|  | 1522 | list_del_rcu(&epi->fllink); | 
|  | 1523 | spin_unlock(&tfile->f_lock); | 
|  | 1524 |  | 
|  | 1525 | rb_erase_cached(&epi->rbn, &ep->rbr); | 
|  | 1526 |  | 
|  | 1527 | error_unregister: | 
|  | 1528 | ep_unregister_pollwait(ep, epi); | 
|  | 1529 |  | 
|  | 1530 | /* | 
|  | 1531 | * We need to do this because an event could have been arrived on some | 
|  | 1532 | * allocated wait queue. Note that we don't care about the ep->ovflist | 
|  | 1533 | * list, since that is used/cleaned only inside a section bound by "mtx". | 
|  | 1534 | * And ep_insert() is called with "mtx" held. | 
|  | 1535 | */ | 
|  | 1536 | spin_lock_irq(&ep->wq.lock); | 
|  | 1537 | if (ep_is_linked(epi)) | 
|  | 1538 | list_del_init(&epi->rdllink); | 
|  | 1539 | spin_unlock_irq(&ep->wq.lock); | 
|  | 1540 |  | 
|  | 1541 | wakeup_source_unregister(ep_wakeup_source(epi)); | 
|  | 1542 |  | 
|  | 1543 | error_create_wakeup_source: | 
|  | 1544 | kmem_cache_free(epi_cache, epi); | 
|  | 1545 |  | 
|  | 1546 | return error; | 
|  | 1547 | } | 
|  | 1548 |  | 
|  | 1549 | /* | 
|  | 1550 | * Modify the interest event mask by dropping an event if the new mask | 
|  | 1551 | * has a match in the current file status. Must be called with "mtx" held. | 
|  | 1552 | */ | 
|  | 1553 | static int ep_modify(struct eventpoll *ep, struct epitem *epi, | 
|  | 1554 | const struct epoll_event *event) | 
|  | 1555 | { | 
|  | 1556 | int pwake = 0; | 
|  | 1557 | poll_table pt; | 
|  | 1558 |  | 
|  | 1559 | lockdep_assert_irqs_enabled(); | 
|  | 1560 |  | 
|  | 1561 | init_poll_funcptr(&pt, NULL); | 
|  | 1562 |  | 
|  | 1563 | /* | 
|  | 1564 | * Set the new event interest mask before calling f_op->poll(); | 
|  | 1565 | * otherwise we might miss an event that happens between the | 
|  | 1566 | * f_op->poll() call and the new event set registering. | 
|  | 1567 | */ | 
|  | 1568 | epi->event.events = event->events; /* need barrier below */ | 
|  | 1569 | epi->event.data = event->data; /* protected by mtx */ | 
|  | 1570 | if (epi->event.events & EPOLLWAKEUP) { | 
|  | 1571 | if (!ep_has_wakeup_source(epi)) | 
|  | 1572 | ep_create_wakeup_source(epi); | 
|  | 1573 | } else if (ep_has_wakeup_source(epi)) { | 
|  | 1574 | ep_destroy_wakeup_source(epi); | 
|  | 1575 | } | 
|  | 1576 |  | 
|  | 1577 | /* | 
|  | 1578 | * The following barrier has two effects: | 
|  | 1579 | * | 
|  | 1580 | * 1) Flush epi changes above to other CPUs.  This ensures | 
|  | 1581 | *    we do not miss events from ep_poll_callback if an | 
|  | 1582 | *    event occurs immediately after we call f_op->poll(). | 
|  | 1583 | *    We need this because we did not take ep->wq.lock while | 
|  | 1584 | *    changing epi above (but ep_poll_callback does take | 
|  | 1585 | *    ep->wq.lock). | 
|  | 1586 | * | 
|  | 1587 | * 2) We also need to ensure we do not miss _past_ events | 
|  | 1588 | *    when calling f_op->poll().  This barrier also | 
|  | 1589 | *    pairs with the barrier in wq_has_sleeper (see | 
|  | 1590 | *    comments for wq_has_sleeper). | 
|  | 1591 | * | 
|  | 1592 | * This barrier will now guarantee ep_poll_callback or f_op->poll | 
|  | 1593 | * (or both) will notice the readiness of an item. | 
|  | 1594 | */ | 
|  | 1595 | smp_mb(); | 
|  | 1596 |  | 
|  | 1597 | /* | 
|  | 1598 | * Get current event bits. We can safely use the file* here because | 
|  | 1599 | * its usage count has been increased by the caller of this function. | 
|  | 1600 | * If the item is "hot" and it is not registered inside the ready | 
|  | 1601 | * list, push it inside. | 
|  | 1602 | */ | 
|  | 1603 | if (ep_item_poll(epi, &pt, 1)) { | 
|  | 1604 | spin_lock_irq(&ep->wq.lock); | 
|  | 1605 | if (!ep_is_linked(epi)) { | 
|  | 1606 | list_add_tail(&epi->rdllink, &ep->rdllist); | 
|  | 1607 | ep_pm_stay_awake(epi); | 
|  | 1608 |  | 
|  | 1609 | /* Notify waiting tasks that events are available */ | 
|  | 1610 | if (waitqueue_active(&ep->wq)) | 
|  | 1611 | wake_up_locked(&ep->wq); | 
|  | 1612 | if (waitqueue_active(&ep->poll_wait)) | 
|  | 1613 | pwake++; | 
|  | 1614 | } | 
|  | 1615 | spin_unlock_irq(&ep->wq.lock); | 
|  | 1616 | } | 
|  | 1617 |  | 
|  | 1618 | /* We have to call this outside the lock */ | 
|  | 1619 | if (pwake) | 
|  | 1620 | ep_poll_safewake(&ep->poll_wait); | 
|  | 1621 |  | 
|  | 1622 | return 0; | 
|  | 1623 | } | 
|  | 1624 |  | 
|  | 1625 | static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head, | 
|  | 1626 | void *priv) | 
|  | 1627 | { | 
|  | 1628 | struct ep_send_events_data *esed = priv; | 
|  | 1629 | __poll_t revents; | 
|  | 1630 | struct epitem *epi; | 
|  | 1631 | struct epoll_event __user *uevent; | 
|  | 1632 | struct wakeup_source *ws; | 
|  | 1633 | poll_table pt; | 
|  | 1634 |  | 
|  | 1635 | init_poll_funcptr(&pt, NULL); | 
|  | 1636 |  | 
|  | 1637 | /* | 
|  | 1638 | * We can loop without lock because we are passed a task private list. | 
|  | 1639 | * Items cannot vanish during the loop because ep_scan_ready_list() is | 
|  | 1640 | * holding "mtx" during this call. | 
|  | 1641 | */ | 
|  | 1642 | for (esed->res = 0, uevent = esed->events; | 
|  | 1643 | !list_empty(head) && esed->res < esed->maxevents;) { | 
|  | 1644 | epi = list_first_entry(head, struct epitem, rdllink); | 
|  | 1645 |  | 
|  | 1646 | /* | 
|  | 1647 | * Activate ep->ws before deactivating epi->ws to prevent | 
|  | 1648 | * triggering auto-suspend here (in case we reactive epi->ws | 
|  | 1649 | * below). | 
|  | 1650 | * | 
|  | 1651 | * This could be rearranged to delay the deactivation of epi->ws | 
|  | 1652 | * instead, but then epi->ws would temporarily be out of sync | 
|  | 1653 | * with ep_is_linked(). | 
|  | 1654 | */ | 
|  | 1655 | ws = ep_wakeup_source(epi); | 
|  | 1656 | if (ws) { | 
|  | 1657 | if (ws->active) | 
|  | 1658 | __pm_stay_awake(ep->ws); | 
|  | 1659 | __pm_relax(ws); | 
|  | 1660 | } | 
|  | 1661 |  | 
|  | 1662 | list_del_init(&epi->rdllink); | 
|  | 1663 |  | 
|  | 1664 | revents = ep_item_poll(epi, &pt, 1); | 
|  | 1665 |  | 
|  | 1666 | /* | 
|  | 1667 | * If the event mask intersect the caller-requested one, | 
|  | 1668 | * deliver the event to userspace. Again, ep_scan_ready_list() | 
|  | 1669 | * is holding "mtx", so no operations coming from userspace | 
|  | 1670 | * can change the item. | 
|  | 1671 | */ | 
|  | 1672 | if (revents) { | 
|  | 1673 | if (__put_user(revents, &uevent->events) || | 
|  | 1674 | __put_user(epi->event.data, &uevent->data)) { | 
|  | 1675 | list_add(&epi->rdllink, head); | 
|  | 1676 | ep_pm_stay_awake(epi); | 
|  | 1677 | if (!esed->res) | 
|  | 1678 | esed->res = -EFAULT; | 
|  | 1679 | return 0; | 
|  | 1680 | } | 
|  | 1681 | esed->res++; | 
|  | 1682 | uevent++; | 
|  | 1683 | if (epi->event.events & EPOLLONESHOT) | 
|  | 1684 | epi->event.events &= EP_PRIVATE_BITS; | 
|  | 1685 | else if (!(epi->event.events & EPOLLET)) { | 
|  | 1686 | /* | 
|  | 1687 | * If this file has been added with Level | 
|  | 1688 | * Trigger mode, we need to insert back inside | 
|  | 1689 | * the ready list, so that the next call to | 
|  | 1690 | * epoll_wait() will check again the events | 
|  | 1691 | * availability. At this point, no one can insert | 
|  | 1692 | * into ep->rdllist besides us. The epoll_ctl() | 
|  | 1693 | * callers are locked out by | 
|  | 1694 | * ep_scan_ready_list() holding "mtx" and the | 
|  | 1695 | * poll callback will queue them in ep->ovflist. | 
|  | 1696 | */ | 
|  | 1697 | list_add_tail(&epi->rdllink, &ep->rdllist); | 
|  | 1698 | ep_pm_stay_awake(epi); | 
|  | 1699 | } | 
|  | 1700 | } | 
|  | 1701 | } | 
|  | 1702 |  | 
|  | 1703 | return 0; | 
|  | 1704 | } | 
|  | 1705 |  | 
|  | 1706 | static int ep_send_events(struct eventpoll *ep, | 
|  | 1707 | struct epoll_event __user *events, int maxevents) | 
|  | 1708 | { | 
|  | 1709 | struct ep_send_events_data esed; | 
|  | 1710 |  | 
|  | 1711 | esed.maxevents = maxevents; | 
|  | 1712 | esed.events = events; | 
|  | 1713 |  | 
|  | 1714 | ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); | 
|  | 1715 | return esed.res; | 
|  | 1716 | } | 
|  | 1717 |  | 
|  | 1718 | static inline struct timespec64 ep_set_mstimeout(long ms) | 
|  | 1719 | { | 
|  | 1720 | struct timespec64 now, ts = { | 
|  | 1721 | .tv_sec = ms / MSEC_PER_SEC, | 
|  | 1722 | .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), | 
|  | 1723 | }; | 
|  | 1724 |  | 
|  | 1725 | ktime_get_ts64(&now); | 
|  | 1726 | return timespec64_add_safe(now, ts); | 
|  | 1727 | } | 
|  | 1728 |  | 
|  | 1729 | /** | 
|  | 1730 | * ep_poll - Retrieves ready events, and delivers them to the caller supplied | 
|  | 1731 | *           event buffer. | 
|  | 1732 | * | 
|  | 1733 | * @ep: Pointer to the eventpoll context. | 
|  | 1734 | * @events: Pointer to the userspace buffer where the ready events should be | 
|  | 1735 | *          stored. | 
|  | 1736 | * @maxevents: Size (in terms of number of events) of the caller event buffer. | 
|  | 1737 | * @timeout: Maximum timeout for the ready events fetch operation, in | 
|  | 1738 | *           milliseconds. If the @timeout is zero, the function will not block, | 
|  | 1739 | *           while if the @timeout is less than zero, the function will block | 
|  | 1740 | *           until at least one event has been retrieved (or an error | 
|  | 1741 | *           occurred). | 
|  | 1742 | * | 
|  | 1743 | * Returns: Returns the number of ready events which have been fetched, or an | 
|  | 1744 | *          error code, in case of error. | 
|  | 1745 | */ | 
|  | 1746 | static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, | 
|  | 1747 | int maxevents, long timeout) | 
|  | 1748 | { | 
|  | 1749 | int res = 0, eavail, timed_out = 0; | 
|  | 1750 | u64 slack = 0; | 
|  | 1751 | wait_queue_entry_t wait; | 
|  | 1752 | ktime_t expires, *to = NULL; | 
|  | 1753 |  | 
|  | 1754 | lockdep_assert_irqs_enabled(); | 
|  | 1755 |  | 
|  | 1756 | if (timeout > 0) { | 
|  | 1757 | struct timespec64 end_time = ep_set_mstimeout(timeout); | 
|  | 1758 |  | 
|  | 1759 | slack = select_estimate_accuracy(&end_time); | 
|  | 1760 | to = &expires; | 
|  | 1761 | *to = timespec64_to_ktime(end_time); | 
|  | 1762 | } else if (timeout == 0) { | 
|  | 1763 | /* | 
|  | 1764 | * Avoid the unnecessary trip to the wait queue loop, if the | 
|  | 1765 | * caller specified a non blocking operation. | 
|  | 1766 | */ | 
|  | 1767 | timed_out = 1; | 
|  | 1768 | spin_lock_irq(&ep->wq.lock); | 
|  | 1769 | goto check_events; | 
|  | 1770 | } | 
|  | 1771 |  | 
|  | 1772 | fetch_events: | 
|  | 1773 |  | 
|  | 1774 | if (!ep_events_available(ep)) | 
|  | 1775 | ep_busy_loop(ep, timed_out); | 
|  | 1776 |  | 
|  | 1777 | spin_lock_irq(&ep->wq.lock); | 
|  | 1778 |  | 
|  | 1779 | if (!ep_events_available(ep)) { | 
|  | 1780 | /* | 
|  | 1781 | * Busy poll timed out.  Drop NAPI ID for now, we can add | 
|  | 1782 | * it back in when we have moved a socket with a valid NAPI | 
|  | 1783 | * ID onto the ready list. | 
|  | 1784 | */ | 
|  | 1785 | ep_reset_busy_poll_napi_id(ep); | 
|  | 1786 |  | 
|  | 1787 | /* | 
|  | 1788 | * We don't have any available event to return to the caller. | 
|  | 1789 | * We need to sleep here, and we will be wake up by | 
|  | 1790 | * ep_poll_callback() when events will become available. | 
|  | 1791 | */ | 
|  | 1792 | init_waitqueue_entry(&wait, current); | 
|  | 1793 | __add_wait_queue_exclusive(&ep->wq, &wait); | 
|  | 1794 |  | 
|  | 1795 | for (;;) { | 
|  | 1796 | /* | 
|  | 1797 | * We don't want to sleep if the ep_poll_callback() sends us | 
|  | 1798 | * a wakeup in between. That's why we set the task state | 
|  | 1799 | * to TASK_INTERRUPTIBLE before doing the checks. | 
|  | 1800 | */ | 
|  | 1801 | set_current_state(TASK_INTERRUPTIBLE); | 
|  | 1802 | /* | 
|  | 1803 | * Always short-circuit for fatal signals to allow | 
|  | 1804 | * threads to make a timely exit without the chance of | 
|  | 1805 | * finding more events available and fetching | 
|  | 1806 | * repeatedly. | 
|  | 1807 | */ | 
|  | 1808 | if (fatal_signal_pending(current)) { | 
|  | 1809 | res = -EINTR; | 
|  | 1810 | break; | 
|  | 1811 | } | 
|  | 1812 | if (ep_events_available(ep) || timed_out) | 
|  | 1813 | break; | 
|  | 1814 | if (signal_pending(current)) { | 
|  | 1815 | res = -EINTR; | 
|  | 1816 | break; | 
|  | 1817 | } | 
|  | 1818 |  | 
|  | 1819 | spin_unlock_irq(&ep->wq.lock); | 
|  | 1820 | if (!freezable_schedule_hrtimeout_range(to, slack, | 
|  | 1821 | HRTIMER_MODE_ABS)) | 
|  | 1822 | timed_out = 1; | 
|  | 1823 |  | 
|  | 1824 | spin_lock_irq(&ep->wq.lock); | 
|  | 1825 | } | 
|  | 1826 |  | 
|  | 1827 | __remove_wait_queue(&ep->wq, &wait); | 
|  | 1828 | __set_current_state(TASK_RUNNING); | 
|  | 1829 | } | 
|  | 1830 | check_events: | 
|  | 1831 | /* Is it worth to try to dig for events ? */ | 
|  | 1832 | eavail = ep_events_available(ep); | 
|  | 1833 |  | 
|  | 1834 | spin_unlock_irq(&ep->wq.lock); | 
|  | 1835 |  | 
|  | 1836 | /* | 
|  | 1837 | * Try to transfer events to user space. In case we get 0 events and | 
|  | 1838 | * there's still timeout left over, we go trying again in search of | 
|  | 1839 | * more luck. | 
|  | 1840 | */ | 
|  | 1841 | if (!res && eavail && | 
|  | 1842 | !(res = ep_send_events(ep, events, maxevents)) && !timed_out) | 
|  | 1843 | goto fetch_events; | 
|  | 1844 |  | 
|  | 1845 | return res; | 
|  | 1846 | } | 
|  | 1847 |  | 
|  | 1848 | /** | 
|  | 1849 | * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() | 
|  | 1850 | *                      API, to verify that adding an epoll file inside another | 
|  | 1851 | *                      epoll structure, does not violate the constraints, in | 
|  | 1852 | *                      terms of closed loops, or too deep chains (which can | 
|  | 1853 | *                      result in excessive stack usage). | 
|  | 1854 | * | 
|  | 1855 | * @priv: Pointer to the epoll file to be currently checked. | 
|  | 1856 | * @cookie: Original cookie for this call. This is the top-of-the-chain epoll | 
|  | 1857 | *          data structure pointer. | 
|  | 1858 | * @call_nests: Current dept of the @ep_call_nested() call stack. | 
|  | 1859 | * | 
|  | 1860 | * Returns: Returns zero if adding the epoll @file inside current epoll | 
|  | 1861 | *          structure @ep does not violate the constraints, or -1 otherwise. | 
|  | 1862 | */ | 
|  | 1863 | static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) | 
|  | 1864 | { | 
|  | 1865 | int error = 0; | 
|  | 1866 | struct file *file = priv; | 
|  | 1867 | struct eventpoll *ep = file->private_data; | 
|  | 1868 | struct eventpoll *ep_tovisit; | 
|  | 1869 | struct rb_node *rbp; | 
|  | 1870 | struct epitem *epi; | 
|  | 1871 |  | 
|  | 1872 | mutex_lock_nested(&ep->mtx, call_nests + 1); | 
|  | 1873 | ep->visited = 1; | 
|  | 1874 | list_add(&ep->visited_list_link, &visited_list); | 
|  | 1875 | for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { | 
|  | 1876 | epi = rb_entry(rbp, struct epitem, rbn); | 
|  | 1877 | if (unlikely(is_file_epoll(epi->ffd.file))) { | 
|  | 1878 | ep_tovisit = epi->ffd.file->private_data; | 
|  | 1879 | if (ep_tovisit->visited) | 
|  | 1880 | continue; | 
|  | 1881 | error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, | 
|  | 1882 | ep_loop_check_proc, epi->ffd.file, | 
|  | 1883 | ep_tovisit, current); | 
|  | 1884 | if (error != 0) | 
|  | 1885 | break; | 
|  | 1886 | } else { | 
|  | 1887 | /* | 
|  | 1888 | * If we've reached a file that is not associated with | 
|  | 1889 | * an ep, then we need to check if the newly added | 
|  | 1890 | * links are going to add too many wakeup paths. We do | 
|  | 1891 | * this by adding it to the tfile_check_list, if it's | 
|  | 1892 | * not already there, and calling reverse_path_check() | 
|  | 1893 | * during ep_insert(). | 
|  | 1894 | */ | 
|  | 1895 | if (list_empty(&epi->ffd.file->f_tfile_llink)) | 
|  | 1896 | list_add(&epi->ffd.file->f_tfile_llink, | 
|  | 1897 | &tfile_check_list); | 
|  | 1898 | } | 
|  | 1899 | } | 
|  | 1900 | mutex_unlock(&ep->mtx); | 
|  | 1901 |  | 
|  | 1902 | return error; | 
|  | 1903 | } | 
|  | 1904 |  | 
|  | 1905 | /** | 
|  | 1906 | * ep_loop_check - Performs a check to verify that adding an epoll file (@file) | 
|  | 1907 | *                 another epoll file (represented by @ep) does not create | 
|  | 1908 | *                 closed loops or too deep chains. | 
|  | 1909 | * | 
|  | 1910 | * @ep: Pointer to the epoll private data structure. | 
|  | 1911 | * @file: Pointer to the epoll file to be checked. | 
|  | 1912 | * | 
|  | 1913 | * Returns: Returns zero if adding the epoll @file inside current epoll | 
|  | 1914 | *          structure @ep does not violate the constraints, or -1 otherwise. | 
|  | 1915 | */ | 
|  | 1916 | static int ep_loop_check(struct eventpoll *ep, struct file *file) | 
|  | 1917 | { | 
|  | 1918 | int ret; | 
|  | 1919 | struct eventpoll *ep_cur, *ep_next; | 
|  | 1920 |  | 
|  | 1921 | ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, | 
|  | 1922 | ep_loop_check_proc, file, ep, current); | 
|  | 1923 | /* clear visited list */ | 
|  | 1924 | list_for_each_entry_safe(ep_cur, ep_next, &visited_list, | 
|  | 1925 | visited_list_link) { | 
|  | 1926 | ep_cur->visited = 0; | 
|  | 1927 | list_del(&ep_cur->visited_list_link); | 
|  | 1928 | } | 
|  | 1929 | return ret; | 
|  | 1930 | } | 
|  | 1931 |  | 
|  | 1932 | static void clear_tfile_check_list(void) | 
|  | 1933 | { | 
|  | 1934 | struct file *file; | 
|  | 1935 |  | 
|  | 1936 | /* first clear the tfile_check_list */ | 
|  | 1937 | while (!list_empty(&tfile_check_list)) { | 
|  | 1938 | file = list_first_entry(&tfile_check_list, struct file, | 
|  | 1939 | f_tfile_llink); | 
|  | 1940 | list_del_init(&file->f_tfile_llink); | 
|  | 1941 | } | 
|  | 1942 | INIT_LIST_HEAD(&tfile_check_list); | 
|  | 1943 | } | 
|  | 1944 |  | 
|  | 1945 | /* | 
|  | 1946 | * Open an eventpoll file descriptor. | 
|  | 1947 | */ | 
|  | 1948 | static int do_epoll_create(int flags) | 
|  | 1949 | { | 
|  | 1950 | int error, fd; | 
|  | 1951 | struct eventpoll *ep = NULL; | 
|  | 1952 | struct file *file; | 
|  | 1953 |  | 
|  | 1954 | /* Check the EPOLL_* constant for consistency.  */ | 
|  | 1955 | BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); | 
|  | 1956 |  | 
|  | 1957 | if (flags & ~EPOLL_CLOEXEC) | 
|  | 1958 | return -EINVAL; | 
|  | 1959 | /* | 
|  | 1960 | * Create the internal data structure ("struct eventpoll"). | 
|  | 1961 | */ | 
|  | 1962 | error = ep_alloc(&ep); | 
|  | 1963 | if (error < 0) | 
|  | 1964 | return error; | 
|  | 1965 | /* | 
|  | 1966 | * Creates all the items needed to setup an eventpoll file. That is, | 
|  | 1967 | * a file structure and a free file descriptor. | 
|  | 1968 | */ | 
|  | 1969 | fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); | 
|  | 1970 | if (fd < 0) { | 
|  | 1971 | error = fd; | 
|  | 1972 | goto out_free_ep; | 
|  | 1973 | } | 
|  | 1974 | file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, | 
|  | 1975 | O_RDWR | (flags & O_CLOEXEC)); | 
|  | 1976 | if (IS_ERR(file)) { | 
|  | 1977 | error = PTR_ERR(file); | 
|  | 1978 | goto out_free_fd; | 
|  | 1979 | } | 
|  | 1980 | ep->file = file; | 
|  | 1981 | fd_install(fd, file); | 
|  | 1982 | return fd; | 
|  | 1983 |  | 
|  | 1984 | out_free_fd: | 
|  | 1985 | put_unused_fd(fd); | 
|  | 1986 | out_free_ep: | 
|  | 1987 | ep_free(ep); | 
|  | 1988 | return error; | 
|  | 1989 | } | 
|  | 1990 |  | 
|  | 1991 | SYSCALL_DEFINE1(epoll_create1, int, flags) | 
|  | 1992 | { | 
|  | 1993 | return do_epoll_create(flags); | 
|  | 1994 | } | 
|  | 1995 |  | 
|  | 1996 | SYSCALL_DEFINE1(epoll_create, int, size) | 
|  | 1997 | { | 
|  | 1998 | if (size <= 0) | 
|  | 1999 | return -EINVAL; | 
|  | 2000 |  | 
|  | 2001 | return do_epoll_create(0); | 
|  | 2002 | } | 
|  | 2003 |  | 
|  | 2004 | /* | 
|  | 2005 | * The following function implements the controller interface for | 
|  | 2006 | * the eventpoll file that enables the insertion/removal/change of | 
|  | 2007 | * file descriptors inside the interest set. | 
|  | 2008 | */ | 
|  | 2009 | SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, | 
|  | 2010 | struct epoll_event __user *, event) | 
|  | 2011 | { | 
|  | 2012 | int error; | 
|  | 2013 | int full_check = 0; | 
|  | 2014 | struct fd f, tf; | 
|  | 2015 | struct eventpoll *ep; | 
|  | 2016 | struct epitem *epi; | 
|  | 2017 | struct epoll_event epds; | 
|  | 2018 | struct eventpoll *tep = NULL; | 
|  | 2019 |  | 
|  | 2020 | error = -EFAULT; | 
|  | 2021 | if (ep_op_has_event(op) && | 
|  | 2022 | copy_from_user(&epds, event, sizeof(struct epoll_event))) | 
|  | 2023 | goto error_return; | 
|  | 2024 |  | 
|  | 2025 | error = -EBADF; | 
|  | 2026 | f = fdget(epfd); | 
|  | 2027 | if (!f.file) | 
|  | 2028 | goto error_return; | 
|  | 2029 |  | 
|  | 2030 | /* Get the "struct file *" for the target file */ | 
|  | 2031 | tf = fdget(fd); | 
|  | 2032 | if (!tf.file) | 
|  | 2033 | goto error_fput; | 
|  | 2034 |  | 
|  | 2035 | /* The target file descriptor must support poll */ | 
|  | 2036 | error = -EPERM; | 
|  | 2037 | if (!file_can_poll(tf.file)) | 
|  | 2038 | goto error_tgt_fput; | 
|  | 2039 |  | 
|  | 2040 | /* Check if EPOLLWAKEUP is allowed */ | 
|  | 2041 | if (ep_op_has_event(op)) | 
|  | 2042 | ep_take_care_of_epollwakeup(&epds); | 
|  | 2043 |  | 
|  | 2044 | /* | 
|  | 2045 | * We have to check that the file structure underneath the file descriptor | 
|  | 2046 | * the user passed to us _is_ an eventpoll file. And also we do not permit | 
|  | 2047 | * adding an epoll file descriptor inside itself. | 
|  | 2048 | */ | 
|  | 2049 | error = -EINVAL; | 
|  | 2050 | if (f.file == tf.file || !is_file_epoll(f.file)) | 
|  | 2051 | goto error_tgt_fput; | 
|  | 2052 |  | 
|  | 2053 | /* | 
|  | 2054 | * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, | 
|  | 2055 | * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. | 
|  | 2056 | * Also, we do not currently supported nested exclusive wakeups. | 
|  | 2057 | */ | 
|  | 2058 | if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) { | 
|  | 2059 | if (op == EPOLL_CTL_MOD) | 
|  | 2060 | goto error_tgt_fput; | 
|  | 2061 | if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || | 
|  | 2062 | (epds.events & ~EPOLLEXCLUSIVE_OK_BITS))) | 
|  | 2063 | goto error_tgt_fput; | 
|  | 2064 | } | 
|  | 2065 |  | 
|  | 2066 | /* | 
|  | 2067 | * At this point it is safe to assume that the "private_data" contains | 
|  | 2068 | * our own data structure. | 
|  | 2069 | */ | 
|  | 2070 | ep = f.file->private_data; | 
|  | 2071 |  | 
|  | 2072 | /* | 
|  | 2073 | * When we insert an epoll file descriptor, inside another epoll file | 
|  | 2074 | * descriptor, there is the change of creating closed loops, which are | 
|  | 2075 | * better be handled here, than in more critical paths. While we are | 
|  | 2076 | * checking for loops we also determine the list of files reachable | 
|  | 2077 | * and hang them on the tfile_check_list, so we can check that we | 
|  | 2078 | * haven't created too many possible wakeup paths. | 
|  | 2079 | * | 
|  | 2080 | * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when | 
|  | 2081 | * the epoll file descriptor is attaching directly to a wakeup source, | 
|  | 2082 | * unless the epoll file descriptor is nested. The purpose of taking the | 
|  | 2083 | * 'epmutex' on add is to prevent complex toplogies such as loops and | 
|  | 2084 | * deep wakeup paths from forming in parallel through multiple | 
|  | 2085 | * EPOLL_CTL_ADD operations. | 
|  | 2086 | */ | 
|  | 2087 | mutex_lock_nested(&ep->mtx, 0); | 
|  | 2088 | if (op == EPOLL_CTL_ADD) { | 
|  | 2089 | if (!list_empty(&f.file->f_ep_links) || | 
|  | 2090 | is_file_epoll(tf.file)) { | 
|  | 2091 | full_check = 1; | 
|  | 2092 | mutex_unlock(&ep->mtx); | 
|  | 2093 | mutex_lock(&epmutex); | 
|  | 2094 | if (is_file_epoll(tf.file)) { | 
|  | 2095 | error = -ELOOP; | 
|  | 2096 | if (ep_loop_check(ep, tf.file) != 0) { | 
|  | 2097 | clear_tfile_check_list(); | 
|  | 2098 | goto error_tgt_fput; | 
|  | 2099 | } | 
|  | 2100 | } else | 
|  | 2101 | list_add(&tf.file->f_tfile_llink, | 
|  | 2102 | &tfile_check_list); | 
|  | 2103 | mutex_lock_nested(&ep->mtx, 0); | 
|  | 2104 | if (is_file_epoll(tf.file)) { | 
|  | 2105 | tep = tf.file->private_data; | 
|  | 2106 | mutex_lock_nested(&tep->mtx, 1); | 
|  | 2107 | } | 
|  | 2108 | } | 
|  | 2109 | } | 
|  | 2110 |  | 
|  | 2111 | /* | 
|  | 2112 | * Try to lookup the file inside our RB tree, Since we grabbed "mtx" | 
|  | 2113 | * above, we can be sure to be able to use the item looked up by | 
|  | 2114 | * ep_find() till we release the mutex. | 
|  | 2115 | */ | 
|  | 2116 | epi = ep_find(ep, tf.file, fd); | 
|  | 2117 |  | 
|  | 2118 | error = -EINVAL; | 
|  | 2119 | switch (op) { | 
|  | 2120 | case EPOLL_CTL_ADD: | 
|  | 2121 | if (!epi) { | 
|  | 2122 | epds.events |= EPOLLERR | EPOLLHUP; | 
|  | 2123 | error = ep_insert(ep, &epds, tf.file, fd, full_check); | 
|  | 2124 | } else | 
|  | 2125 | error = -EEXIST; | 
|  | 2126 | if (full_check) | 
|  | 2127 | clear_tfile_check_list(); | 
|  | 2128 | break; | 
|  | 2129 | case EPOLL_CTL_DEL: | 
|  | 2130 | if (epi) | 
|  | 2131 | error = ep_remove(ep, epi); | 
|  | 2132 | else | 
|  | 2133 | error = -ENOENT; | 
|  | 2134 | break; | 
|  | 2135 | case EPOLL_CTL_MOD: | 
|  | 2136 | if (epi) { | 
|  | 2137 | if (!(epi->event.events & EPOLLEXCLUSIVE)) { | 
|  | 2138 | epds.events |= EPOLLERR | EPOLLHUP; | 
|  | 2139 | error = ep_modify(ep, epi, &epds); | 
|  | 2140 | } | 
|  | 2141 | } else | 
|  | 2142 | error = -ENOENT; | 
|  | 2143 | break; | 
|  | 2144 | } | 
|  | 2145 | if (tep != NULL) | 
|  | 2146 | mutex_unlock(&tep->mtx); | 
|  | 2147 | mutex_unlock(&ep->mtx); | 
|  | 2148 |  | 
|  | 2149 | error_tgt_fput: | 
|  | 2150 | if (full_check) | 
|  | 2151 | mutex_unlock(&epmutex); | 
|  | 2152 |  | 
|  | 2153 | fdput(tf); | 
|  | 2154 | error_fput: | 
|  | 2155 | fdput(f); | 
|  | 2156 | error_return: | 
|  | 2157 |  | 
|  | 2158 | return error; | 
|  | 2159 | } | 
|  | 2160 |  | 
|  | 2161 | /* | 
|  | 2162 | * Implement the event wait interface for the eventpoll file. It is the kernel | 
|  | 2163 | * part of the user space epoll_wait(2). | 
|  | 2164 | */ | 
|  | 2165 | static int do_epoll_wait(int epfd, struct epoll_event __user *events, | 
|  | 2166 | int maxevents, int timeout) | 
|  | 2167 | { | 
|  | 2168 | int error; | 
|  | 2169 | struct fd f; | 
|  | 2170 | struct eventpoll *ep; | 
|  | 2171 |  | 
|  | 2172 | /* The maximum number of event must be greater than zero */ | 
|  | 2173 | if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) | 
|  | 2174 | return -EINVAL; | 
|  | 2175 |  | 
|  | 2176 | /* Verify that the area passed by the user is writeable */ | 
|  | 2177 | if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) | 
|  | 2178 | return -EFAULT; | 
|  | 2179 |  | 
|  | 2180 | /* Get the "struct file *" for the eventpoll file */ | 
|  | 2181 | f = fdget(epfd); | 
|  | 2182 | if (!f.file) | 
|  | 2183 | return -EBADF; | 
|  | 2184 |  | 
|  | 2185 | /* | 
|  | 2186 | * We have to check that the file structure underneath the fd | 
|  | 2187 | * the user passed to us _is_ an eventpoll file. | 
|  | 2188 | */ | 
|  | 2189 | error = -EINVAL; | 
|  | 2190 | if (!is_file_epoll(f.file)) | 
|  | 2191 | goto error_fput; | 
|  | 2192 |  | 
|  | 2193 | /* | 
|  | 2194 | * At this point it is safe to assume that the "private_data" contains | 
|  | 2195 | * our own data structure. | 
|  | 2196 | */ | 
|  | 2197 | ep = f.file->private_data; | 
|  | 2198 |  | 
|  | 2199 | /* Time to fish for events ... */ | 
|  | 2200 | error = ep_poll(ep, events, maxevents, timeout); | 
|  | 2201 |  | 
|  | 2202 | error_fput: | 
|  | 2203 | fdput(f); | 
|  | 2204 | return error; | 
|  | 2205 | } | 
|  | 2206 |  | 
|  | 2207 | SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, | 
|  | 2208 | int, maxevents, int, timeout) | 
|  | 2209 | { | 
|  | 2210 | return do_epoll_wait(epfd, events, maxevents, timeout); | 
|  | 2211 | } | 
|  | 2212 |  | 
|  | 2213 | /* | 
|  | 2214 | * Implement the event wait interface for the eventpoll file. It is the kernel | 
|  | 2215 | * part of the user space epoll_pwait(2). | 
|  | 2216 | */ | 
|  | 2217 | SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, | 
|  | 2218 | int, maxevents, int, timeout, const sigset_t __user *, sigmask, | 
|  | 2219 | size_t, sigsetsize) | 
|  | 2220 | { | 
|  | 2221 | int error; | 
|  | 2222 | sigset_t ksigmask, sigsaved; | 
|  | 2223 |  | 
|  | 2224 | /* | 
|  | 2225 | * If the caller wants a certain signal mask to be set during the wait, | 
|  | 2226 | * we apply it here. | 
|  | 2227 | */ | 
|  | 2228 | if (sigmask) { | 
|  | 2229 | if (sigsetsize != sizeof(sigset_t)) | 
|  | 2230 | return -EINVAL; | 
|  | 2231 | if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) | 
|  | 2232 | return -EFAULT; | 
|  | 2233 | sigsaved = current->blocked; | 
|  | 2234 | set_current_blocked(&ksigmask); | 
|  | 2235 | } | 
|  | 2236 |  | 
|  | 2237 | error = do_epoll_wait(epfd, events, maxevents, timeout); | 
|  | 2238 |  | 
|  | 2239 | /* | 
|  | 2240 | * If we changed the signal mask, we need to restore the original one. | 
|  | 2241 | * In case we've got a signal while waiting, we do not restore the | 
|  | 2242 | * signal mask yet, and we allow do_signal() to deliver the signal on | 
|  | 2243 | * the way back to userspace, before the signal mask is restored. | 
|  | 2244 | */ | 
|  | 2245 | if (sigmask) { | 
|  | 2246 | if (error == -EINTR) { | 
|  | 2247 | memcpy(¤t->saved_sigmask, &sigsaved, | 
|  | 2248 | sizeof(sigsaved)); | 
|  | 2249 | set_restore_sigmask(); | 
|  | 2250 | } else | 
|  | 2251 | set_current_blocked(&sigsaved); | 
|  | 2252 | } | 
|  | 2253 |  | 
|  | 2254 | return error; | 
|  | 2255 | } | 
|  | 2256 |  | 
|  | 2257 | #ifdef CONFIG_COMPAT | 
|  | 2258 | COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, | 
|  | 2259 | struct epoll_event __user *, events, | 
|  | 2260 | int, maxevents, int, timeout, | 
|  | 2261 | const compat_sigset_t __user *, sigmask, | 
|  | 2262 | compat_size_t, sigsetsize) | 
|  | 2263 | { | 
|  | 2264 | long err; | 
|  | 2265 | sigset_t ksigmask, sigsaved; | 
|  | 2266 |  | 
|  | 2267 | /* | 
|  | 2268 | * If the caller wants a certain signal mask to be set during the wait, | 
|  | 2269 | * we apply it here. | 
|  | 2270 | */ | 
|  | 2271 | if (sigmask) { | 
|  | 2272 | if (sigsetsize != sizeof(compat_sigset_t)) | 
|  | 2273 | return -EINVAL; | 
|  | 2274 | if (get_compat_sigset(&ksigmask, sigmask)) | 
|  | 2275 | return -EFAULT; | 
|  | 2276 | sigsaved = current->blocked; | 
|  | 2277 | set_current_blocked(&ksigmask); | 
|  | 2278 | } | 
|  | 2279 |  | 
|  | 2280 | err = do_epoll_wait(epfd, events, maxevents, timeout); | 
|  | 2281 |  | 
|  | 2282 | /* | 
|  | 2283 | * If we changed the signal mask, we need to restore the original one. | 
|  | 2284 | * In case we've got a signal while waiting, we do not restore the | 
|  | 2285 | * signal mask yet, and we allow do_signal() to deliver the signal on | 
|  | 2286 | * the way back to userspace, before the signal mask is restored. | 
|  | 2287 | */ | 
|  | 2288 | if (sigmask) { | 
|  | 2289 | if (err == -EINTR) { | 
|  | 2290 | memcpy(¤t->saved_sigmask, &sigsaved, | 
|  | 2291 | sizeof(sigsaved)); | 
|  | 2292 | set_restore_sigmask(); | 
|  | 2293 | } else | 
|  | 2294 | set_current_blocked(&sigsaved); | 
|  | 2295 | } | 
|  | 2296 |  | 
|  | 2297 | return err; | 
|  | 2298 | } | 
|  | 2299 | #endif | 
|  | 2300 |  | 
|  | 2301 | static int __init eventpoll_init(void) | 
|  | 2302 | { | 
|  | 2303 | struct sysinfo si; | 
|  | 2304 |  | 
|  | 2305 | si_meminfo(&si); | 
|  | 2306 | /* | 
|  | 2307 | * Allows top 4% of lomem to be allocated for epoll watches (per user). | 
|  | 2308 | */ | 
|  | 2309 | max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / | 
|  | 2310 | EP_ITEM_COST; | 
|  | 2311 | BUG_ON(max_user_watches < 0); | 
|  | 2312 |  | 
|  | 2313 | /* | 
|  | 2314 | * Initialize the structure used to perform epoll file descriptor | 
|  | 2315 | * inclusion loops checks. | 
|  | 2316 | */ | 
|  | 2317 | ep_nested_calls_init(&poll_loop_ncalls); | 
|  | 2318 |  | 
|  | 2319 | #ifdef CONFIG_DEBUG_LOCK_ALLOC | 
|  | 2320 | /* Initialize the structure used to perform safe poll wait head wake ups */ | 
|  | 2321 | ep_nested_calls_init(&poll_safewake_ncalls); | 
|  | 2322 | #endif | 
|  | 2323 |  | 
|  | 2324 | /* | 
|  | 2325 | * We can have many thousands of epitems, so prevent this from | 
|  | 2326 | * using an extra cache line on 64-bit (and smaller) CPUs | 
|  | 2327 | */ | 
|  | 2328 | BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); | 
|  | 2329 |  | 
|  | 2330 | /* Allocates slab cache used to allocate "struct epitem" items */ | 
|  | 2331 | epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), | 
|  | 2332 | 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); | 
|  | 2333 |  | 
|  | 2334 | /* Allocates slab cache used to allocate "struct eppoll_entry" */ | 
|  | 2335 | pwq_cache = kmem_cache_create("eventpoll_pwq", | 
|  | 2336 | sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); | 
|  | 2337 |  | 
|  | 2338 | return 0; | 
|  | 2339 | } | 
|  | 2340 | fs_initcall(eventpoll_init); |