| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
|  | 2 | /* | 
|  | 3 | *  linux/mm/swap_state.c | 
|  | 4 | * | 
|  | 5 | *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | 6 | *  Swap reorganised 29.12.95, Stephen Tweedie | 
|  | 7 | * | 
|  | 8 | *  Rewritten to use page cache, (C) 1998 Stephen Tweedie | 
|  | 9 | */ | 
|  | 10 | #include <linux/mm.h> | 
|  | 11 | #include <linux/gfp.h> | 
|  | 12 | #include <linux/kernel_stat.h> | 
|  | 13 | #include <linux/swap.h> | 
|  | 14 | #include <linux/swapops.h> | 
|  | 15 | #include <linux/init.h> | 
|  | 16 | #include <linux/pagemap.h> | 
|  | 17 | #include <linux/backing-dev.h> | 
|  | 18 | #include <linux/blkdev.h> | 
|  | 19 | #include <linux/pagevec.h> | 
|  | 20 | #include <linux/migrate.h> | 
|  | 21 | #include <linux/vmalloc.h> | 
|  | 22 | #include <linux/swap_slots.h> | 
|  | 23 | #include <linux/huge_mm.h> | 
|  | 24 |  | 
|  | 25 | #include <asm/pgtable.h> | 
|  | 26 |  | 
|  | 27 | /* | 
|  | 28 | * swapper_space is a fiction, retained to simplify the path through | 
|  | 29 | * vmscan's shrink_page_list. | 
|  | 30 | */ | 
|  | 31 | static const struct address_space_operations swap_aops = { | 
|  | 32 | .writepage	= swap_writepage, | 
|  | 33 | .set_page_dirty	= swap_set_page_dirty, | 
|  | 34 | #ifdef CONFIG_MIGRATION | 
|  | 35 | .migratepage	= migrate_page, | 
|  | 36 | #endif | 
|  | 37 | }; | 
|  | 38 |  | 
|  | 39 | struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; | 
|  | 40 | static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; | 
|  | 41 | static bool enable_vma_readahead __read_mostly = true; | 
|  | 42 |  | 
|  | 43 | #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2) | 
|  | 44 | #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1) | 
|  | 45 | #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK | 
|  | 46 | #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK) | 
|  | 47 |  | 
|  | 48 | #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK) | 
|  | 49 | #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) | 
|  | 50 | #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK) | 
|  | 51 |  | 
|  | 52 | #define SWAP_RA_VAL(addr, win, hits)				\ | 
|  | 53 | (((addr) & PAGE_MASK) |					\ | 
|  | 54 | (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\ | 
|  | 55 | ((hits) & SWAP_RA_HITS_MASK)) | 
|  | 56 |  | 
|  | 57 | /* Initial readahead hits is 4 to start up with a small window */ | 
|  | 58 | #define GET_SWAP_RA_VAL(vma)					\ | 
|  | 59 | (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) | 
|  | 60 |  | 
|  | 61 | #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0) | 
|  | 62 | #define ADD_CACHE_INFO(x, nr)	do { swap_cache_info.x += (nr); } while (0) | 
|  | 63 |  | 
|  | 64 | static struct { | 
|  | 65 | unsigned long add_total; | 
|  | 66 | unsigned long del_total; | 
|  | 67 | unsigned long find_success; | 
|  | 68 | unsigned long find_total; | 
|  | 69 | } swap_cache_info; | 
|  | 70 |  | 
|  | 71 | unsigned long total_swapcache_pages(void) | 
|  | 72 | { | 
|  | 73 | unsigned int i, j, nr; | 
|  | 74 | unsigned long ret = 0; | 
|  | 75 | struct address_space *spaces; | 
|  | 76 |  | 
|  | 77 | rcu_read_lock(); | 
|  | 78 | for (i = 0; i < MAX_SWAPFILES; i++) { | 
|  | 79 | /* | 
|  | 80 | * The corresponding entries in nr_swapper_spaces and | 
|  | 81 | * swapper_spaces will be reused only after at least | 
|  | 82 | * one grace period.  So it is impossible for them | 
|  | 83 | * belongs to different usage. | 
|  | 84 | */ | 
|  | 85 | nr = nr_swapper_spaces[i]; | 
|  | 86 | spaces = rcu_dereference(swapper_spaces[i]); | 
|  | 87 | if (!nr || !spaces) | 
|  | 88 | continue; | 
|  | 89 | for (j = 0; j < nr; j++) | 
|  | 90 | ret += spaces[j].nrpages; | 
|  | 91 | } | 
|  | 92 | rcu_read_unlock(); | 
|  | 93 | return ret; | 
|  | 94 | } | 
|  | 95 |  | 
|  | 96 | static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); | 
|  | 97 |  | 
|  | 98 | void show_swap_cache_info(void) | 
|  | 99 | { | 
|  | 100 | printk("%lu pages in swap cache\n", total_swapcache_pages()); | 
|  | 101 | printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", | 
|  | 102 | swap_cache_info.add_total, swap_cache_info.del_total, | 
|  | 103 | swap_cache_info.find_success, swap_cache_info.find_total); | 
|  | 104 | printk("Free swap  = %ldkB\n", | 
|  | 105 | get_nr_swap_pages() << (PAGE_SHIFT - 10)); | 
|  | 106 | printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); | 
|  | 107 | } | 
|  | 108 |  | 
|  | 109 | /* | 
|  | 110 | * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, | 
|  | 111 | * but sets SwapCache flag and private instead of mapping and index. | 
|  | 112 | */ | 
|  | 113 | int __add_to_swap_cache(struct page *page, swp_entry_t entry) | 
|  | 114 | { | 
|  | 115 | int error, i, nr = hpage_nr_pages(page); | 
|  | 116 | struct address_space *address_space; | 
|  | 117 | pgoff_t idx = swp_offset(entry); | 
|  | 118 |  | 
|  | 119 | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | 120 | VM_BUG_ON_PAGE(PageSwapCache(page), page); | 
|  | 121 | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); | 
|  | 122 |  | 
|  | 123 | page_ref_add(page, nr); | 
|  | 124 | SetPageSwapCache(page); | 
|  | 125 |  | 
|  | 126 | address_space = swap_address_space(entry); | 
|  | 127 | xa_lock_irq(&address_space->i_pages); | 
|  | 128 | for (i = 0; i < nr; i++) { | 
|  | 129 | set_page_private(page + i, entry.val + i); | 
|  | 130 | error = radix_tree_insert(&address_space->i_pages, | 
|  | 131 | idx + i, page + i); | 
|  | 132 | if (unlikely(error)) | 
|  | 133 | break; | 
|  | 134 | } | 
|  | 135 | if (likely(!error)) { | 
|  | 136 | address_space->nrpages += nr; | 
|  | 137 | __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); | 
|  | 138 | ADD_CACHE_INFO(add_total, nr); | 
|  | 139 | } else { | 
|  | 140 | /* | 
|  | 141 | * Only the context which have set SWAP_HAS_CACHE flag | 
|  | 142 | * would call add_to_swap_cache(). | 
|  | 143 | * So add_to_swap_cache() doesn't returns -EEXIST. | 
|  | 144 | */ | 
|  | 145 | VM_BUG_ON(error == -EEXIST); | 
|  | 146 | set_page_private(page + i, 0UL); | 
|  | 147 | while (i--) { | 
|  | 148 | radix_tree_delete(&address_space->i_pages, idx + i); | 
|  | 149 | set_page_private(page + i, 0UL); | 
|  | 150 | } | 
|  | 151 | ClearPageSwapCache(page); | 
|  | 152 | page_ref_sub(page, nr); | 
|  | 153 | } | 
|  | 154 | xa_unlock_irq(&address_space->i_pages); | 
|  | 155 |  | 
|  | 156 | return error; | 
|  | 157 | } | 
|  | 158 |  | 
|  | 159 |  | 
|  | 160 | int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) | 
|  | 161 | { | 
|  | 162 | int error; | 
|  | 163 |  | 
|  | 164 | error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page)); | 
|  | 165 | if (!error) { | 
|  | 166 | error = __add_to_swap_cache(page, entry); | 
|  | 167 | radix_tree_preload_end(); | 
|  | 168 | } | 
|  | 169 | return error; | 
|  | 170 | } | 
|  | 171 |  | 
|  | 172 | /* | 
|  | 173 | * This must be called only on pages that have | 
|  | 174 | * been verified to be in the swap cache. | 
|  | 175 | */ | 
|  | 176 | void __delete_from_swap_cache(struct page *page) | 
|  | 177 | { | 
|  | 178 | struct address_space *address_space; | 
|  | 179 | int i, nr = hpage_nr_pages(page); | 
|  | 180 | swp_entry_t entry; | 
|  | 181 | pgoff_t idx; | 
|  | 182 |  | 
|  | 183 | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | 184 | VM_BUG_ON_PAGE(!PageSwapCache(page), page); | 
|  | 185 | VM_BUG_ON_PAGE(PageWriteback(page), page); | 
|  | 186 |  | 
|  | 187 | entry.val = page_private(page); | 
|  | 188 | address_space = swap_address_space(entry); | 
|  | 189 | idx = swp_offset(entry); | 
|  | 190 | for (i = 0; i < nr; i++) { | 
|  | 191 | radix_tree_delete(&address_space->i_pages, idx + i); | 
|  | 192 | set_page_private(page + i, 0); | 
|  | 193 | } | 
|  | 194 | ClearPageSwapCache(page); | 
|  | 195 | address_space->nrpages -= nr; | 
|  | 196 | __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); | 
|  | 197 | ADD_CACHE_INFO(del_total, nr); | 
|  | 198 | } | 
|  | 199 |  | 
|  | 200 | /** | 
|  | 201 | * add_to_swap - allocate swap space for a page | 
|  | 202 | * @page: page we want to move to swap | 
|  | 203 | * | 
|  | 204 | * Allocate swap space for the page and add the page to the | 
|  | 205 | * swap cache.  Caller needs to hold the page lock. | 
|  | 206 | */ | 
|  | 207 | int add_to_swap(struct page *page) | 
|  | 208 | { | 
|  | 209 | swp_entry_t entry; | 
|  | 210 | int err; | 
|  | 211 |  | 
|  | 212 | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | 213 | VM_BUG_ON_PAGE(!PageUptodate(page), page); | 
|  | 214 |  | 
|  | 215 | entry = get_swap_page(page); | 
|  | 216 | if (!entry.val) | 
|  | 217 | return 0; | 
|  | 218 |  | 
|  | 219 | /* | 
|  | 220 | * Radix-tree node allocations from PF_MEMALLOC contexts could | 
|  | 221 | * completely exhaust the page allocator. __GFP_NOMEMALLOC | 
|  | 222 | * stops emergency reserves from being allocated. | 
|  | 223 | * | 
|  | 224 | * TODO: this could cause a theoretical memory reclaim | 
|  | 225 | * deadlock in the swap out path. | 
|  | 226 | */ | 
|  | 227 | /* | 
|  | 228 | * Add it to the swap cache. | 
|  | 229 | */ | 
|  | 230 | err = add_to_swap_cache(page, entry, | 
|  | 231 | __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); | 
|  | 232 | /* -ENOMEM radix-tree allocation failure */ | 
|  | 233 | if (err) | 
|  | 234 | /* | 
|  | 235 | * add_to_swap_cache() doesn't return -EEXIST, so we can safely | 
|  | 236 | * clear SWAP_HAS_CACHE flag. | 
|  | 237 | */ | 
|  | 238 | goto fail; | 
|  | 239 | /* | 
|  | 240 | * Normally the page will be dirtied in unmap because its pte should be | 
|  | 241 | * dirty. A special case is MADV_FREE page. The page'e pte could have | 
|  | 242 | * dirty bit cleared but the page's SwapBacked bit is still set because | 
|  | 243 | * clearing the dirty bit and SwapBacked bit has no lock protected. For | 
|  | 244 | * such page, unmap will not set dirty bit for it, so page reclaim will | 
|  | 245 | * not write the page out. This can cause data corruption when the page | 
|  | 246 | * is swap in later. Always setting the dirty bit for the page solves | 
|  | 247 | * the problem. | 
|  | 248 | */ | 
|  | 249 | set_page_dirty(page); | 
|  | 250 |  | 
|  | 251 | return 1; | 
|  | 252 |  | 
|  | 253 | fail: | 
|  | 254 | put_swap_page(page, entry); | 
|  | 255 | return 0; | 
|  | 256 | } | 
|  | 257 |  | 
|  | 258 | /* | 
|  | 259 | * This must be called only on pages that have | 
|  | 260 | * been verified to be in the swap cache and locked. | 
|  | 261 | * It will never put the page into the free list, | 
|  | 262 | * the caller has a reference on the page. | 
|  | 263 | */ | 
|  | 264 | void delete_from_swap_cache(struct page *page) | 
|  | 265 | { | 
|  | 266 | swp_entry_t entry; | 
|  | 267 | struct address_space *address_space; | 
|  | 268 |  | 
|  | 269 | entry.val = page_private(page); | 
|  | 270 |  | 
|  | 271 | address_space = swap_address_space(entry); | 
|  | 272 | xa_lock_irq(&address_space->i_pages); | 
|  | 273 | __delete_from_swap_cache(page); | 
|  | 274 | xa_unlock_irq(&address_space->i_pages); | 
|  | 275 |  | 
|  | 276 | put_swap_page(page, entry); | 
|  | 277 | page_ref_sub(page, hpage_nr_pages(page)); | 
|  | 278 | } | 
|  | 279 |  | 
|  | 280 | /* | 
|  | 281 | * If we are the only user, then try to free up the swap cache. | 
|  | 282 | * | 
|  | 283 | * Its ok to check for PageSwapCache without the page lock | 
|  | 284 | * here because we are going to recheck again inside | 
|  | 285 | * try_to_free_swap() _with_ the lock. | 
|  | 286 | * 					- Marcelo | 
|  | 287 | */ | 
|  | 288 | static inline void free_swap_cache(struct page *page) | 
|  | 289 | { | 
|  | 290 | if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { | 
|  | 291 | try_to_free_swap(page); | 
|  | 292 | unlock_page(page); | 
|  | 293 | } | 
|  | 294 | } | 
|  | 295 |  | 
|  | 296 | /* | 
|  | 297 | * Perform a free_page(), also freeing any swap cache associated with | 
|  | 298 | * this page if it is the last user of the page. | 
|  | 299 | */ | 
|  | 300 | void free_page_and_swap_cache(struct page *page) | 
|  | 301 | { | 
|  | 302 | free_swap_cache(page); | 
|  | 303 | if (!is_huge_zero_page(page)) | 
|  | 304 | put_page(page); | 
|  | 305 | } | 
|  | 306 |  | 
|  | 307 | /* | 
|  | 308 | * Passed an array of pages, drop them all from swapcache and then release | 
|  | 309 | * them.  They are removed from the LRU and freed if this is their last use. | 
|  | 310 | */ | 
|  | 311 | void free_pages_and_swap_cache(struct page **pages, int nr) | 
|  | 312 | { | 
|  | 313 | struct page **pagep = pages; | 
|  | 314 | int i; | 
|  | 315 |  | 
|  | 316 | lru_add_drain(); | 
|  | 317 | for (i = 0; i < nr; i++) | 
|  | 318 | free_swap_cache(pagep[i]); | 
|  | 319 | release_pages(pagep, nr); | 
|  | 320 | } | 
|  | 321 |  | 
|  | 322 | static inline bool swap_use_vma_readahead(void) | 
|  | 323 | { | 
|  | 324 | return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); | 
|  | 325 | } | 
|  | 326 |  | 
|  | 327 | /* | 
|  | 328 | * Lookup a swap entry in the swap cache. A found page will be returned | 
|  | 329 | * unlocked and with its refcount incremented - we rely on the kernel | 
|  | 330 | * lock getting page table operations atomic even if we drop the page | 
|  | 331 | * lock before returning. | 
|  | 332 | */ | 
|  | 333 | struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma, | 
|  | 334 | unsigned long addr) | 
|  | 335 | { | 
|  | 336 | struct page *page; | 
|  | 337 |  | 
|  | 338 | page = find_get_page(swap_address_space(entry), swp_offset(entry)); | 
|  | 339 |  | 
|  | 340 | INC_CACHE_INFO(find_total); | 
|  | 341 | if (page) { | 
|  | 342 | bool vma_ra = swap_use_vma_readahead(); | 
|  | 343 | bool readahead; | 
|  | 344 |  | 
|  | 345 | INC_CACHE_INFO(find_success); | 
|  | 346 | /* | 
|  | 347 | * At the moment, we don't support PG_readahead for anon THP | 
|  | 348 | * so let's bail out rather than confusing the readahead stat. | 
|  | 349 | */ | 
|  | 350 | if (unlikely(PageTransCompound(page))) | 
|  | 351 | return page; | 
|  | 352 |  | 
|  | 353 | readahead = TestClearPageReadahead(page); | 
|  | 354 | if (vma && vma_ra) { | 
|  | 355 | unsigned long ra_val; | 
|  | 356 | int win, hits; | 
|  | 357 |  | 
|  | 358 | ra_val = GET_SWAP_RA_VAL(vma); | 
|  | 359 | win = SWAP_RA_WIN(ra_val); | 
|  | 360 | hits = SWAP_RA_HITS(ra_val); | 
|  | 361 | if (readahead) | 
|  | 362 | hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); | 
|  | 363 | atomic_long_set(&vma->swap_readahead_info, | 
|  | 364 | SWAP_RA_VAL(addr, win, hits)); | 
|  | 365 | } | 
|  | 366 |  | 
|  | 367 | if (readahead) { | 
|  | 368 | count_vm_event(SWAP_RA_HIT); | 
|  | 369 | if (!vma || !vma_ra) | 
|  | 370 | atomic_inc(&swapin_readahead_hits); | 
|  | 371 | } | 
|  | 372 | } | 
|  | 373 |  | 
|  | 374 | return page; | 
|  | 375 | } | 
|  | 376 |  | 
|  | 377 | struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, | 
|  | 378 | struct vm_area_struct *vma, unsigned long addr, | 
|  | 379 | bool *new_page_allocated) | 
|  | 380 | { | 
|  | 381 | struct page *found_page, *new_page = NULL; | 
|  | 382 | struct address_space *swapper_space = swap_address_space(entry); | 
|  | 383 | int err; | 
|  | 384 | *new_page_allocated = false; | 
|  | 385 |  | 
|  | 386 | do { | 
|  | 387 | /* | 
|  | 388 | * First check the swap cache.  Since this is normally | 
|  | 389 | * called after lookup_swap_cache() failed, re-calling | 
|  | 390 | * that would confuse statistics. | 
|  | 391 | */ | 
|  | 392 | found_page = find_get_page(swapper_space, swp_offset(entry)); | 
|  | 393 | if (found_page) | 
|  | 394 | break; | 
|  | 395 |  | 
|  | 396 | /* | 
|  | 397 | * Just skip read ahead for unused swap slot. | 
|  | 398 | * During swap_off when swap_slot_cache is disabled, | 
|  | 399 | * we have to handle the race between putting | 
|  | 400 | * swap entry in swap cache and marking swap slot | 
|  | 401 | * as SWAP_HAS_CACHE.  That's done in later part of code or | 
|  | 402 | * else swap_off will be aborted if we return NULL. | 
|  | 403 | */ | 
|  | 404 | if (!__swp_swapcount(entry) && swap_slot_cache_enabled) | 
|  | 405 | break; | 
|  | 406 |  | 
|  | 407 | /* | 
|  | 408 | * Get a new page to read into from swap. | 
|  | 409 | */ | 
|  | 410 | if (!new_page) { | 
|  | 411 | new_page = alloc_page_vma(gfp_mask, vma, addr); | 
|  | 412 | if (!new_page) | 
|  | 413 | break;		/* Out of memory */ | 
|  | 414 | } | 
|  | 415 |  | 
|  | 416 | /* | 
|  | 417 | * call radix_tree_preload() while we can wait. | 
|  | 418 | */ | 
|  | 419 | err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL); | 
|  | 420 | if (err) | 
|  | 421 | break; | 
|  | 422 |  | 
|  | 423 | /* | 
|  | 424 | * Swap entry may have been freed since our caller observed it. | 
|  | 425 | */ | 
|  | 426 | err = swapcache_prepare(entry); | 
|  | 427 | if (err == -EEXIST) { | 
|  | 428 | radix_tree_preload_end(); | 
|  | 429 | /* | 
|  | 430 | * We might race against get_swap_page() and stumble | 
|  | 431 | * across a SWAP_HAS_CACHE swap_map entry whose page | 
|  | 432 | * has not been brought into the swapcache yet. | 
|  | 433 | */ | 
|  | 434 | cond_resched(); | 
|  | 435 | continue; | 
|  | 436 | } | 
|  | 437 | if (err) {		/* swp entry is obsolete ? */ | 
|  | 438 | radix_tree_preload_end(); | 
|  | 439 | break; | 
|  | 440 | } | 
|  | 441 |  | 
|  | 442 | /* May fail (-ENOMEM) if radix-tree node allocation failed. */ | 
|  | 443 | __SetPageLocked(new_page); | 
|  | 444 | __SetPageSwapBacked(new_page); | 
|  | 445 | err = __add_to_swap_cache(new_page, entry); | 
|  | 446 | if (likely(!err)) { | 
|  | 447 | radix_tree_preload_end(); | 
|  | 448 | /* | 
|  | 449 | * Initiate read into locked page and return. | 
|  | 450 | */ | 
|  | 451 | SetPageWorkingset(new_page); | 
|  | 452 | lru_cache_add_anon(new_page); | 
|  | 453 | *new_page_allocated = true; | 
|  | 454 | return new_page; | 
|  | 455 | } | 
|  | 456 | radix_tree_preload_end(); | 
|  | 457 | __ClearPageLocked(new_page); | 
|  | 458 | /* | 
|  | 459 | * add_to_swap_cache() doesn't return -EEXIST, so we can safely | 
|  | 460 | * clear SWAP_HAS_CACHE flag. | 
|  | 461 | */ | 
|  | 462 | put_swap_page(new_page, entry); | 
|  | 463 | } while (err != -ENOMEM); | 
|  | 464 |  | 
|  | 465 | if (new_page) | 
|  | 466 | put_page(new_page); | 
|  | 467 | return found_page; | 
|  | 468 | } | 
|  | 469 |  | 
|  | 470 | /* | 
|  | 471 | * Locate a page of swap in physical memory, reserving swap cache space | 
|  | 472 | * and reading the disk if it is not already cached. | 
|  | 473 | * A failure return means that either the page allocation failed or that | 
|  | 474 | * the swap entry is no longer in use. | 
|  | 475 | */ | 
|  | 476 | struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, | 
|  | 477 | struct vm_area_struct *vma, unsigned long addr, bool do_poll) | 
|  | 478 | { | 
|  | 479 | bool page_was_allocated; | 
|  | 480 | struct page *retpage = __read_swap_cache_async(entry, gfp_mask, | 
|  | 481 | vma, addr, &page_was_allocated); | 
|  | 482 |  | 
|  | 483 | if (page_was_allocated) | 
|  | 484 | swap_readpage(retpage, do_poll); | 
|  | 485 |  | 
|  | 486 | return retpage; | 
|  | 487 | } | 
|  | 488 |  | 
|  | 489 | static unsigned int __swapin_nr_pages(unsigned long prev_offset, | 
|  | 490 | unsigned long offset, | 
|  | 491 | int hits, | 
|  | 492 | int max_pages, | 
|  | 493 | int prev_win) | 
|  | 494 | { | 
|  | 495 | unsigned int pages, last_ra; | 
|  | 496 |  | 
|  | 497 | /* | 
|  | 498 | * This heuristic has been found to work well on both sequential and | 
|  | 499 | * random loads, swapping to hard disk or to SSD: please don't ask | 
|  | 500 | * what the "+ 2" means, it just happens to work well, that's all. | 
|  | 501 | */ | 
|  | 502 | pages = hits + 2; | 
|  | 503 | if (pages == 2) { | 
|  | 504 | /* | 
|  | 505 | * We can have no readahead hits to judge by: but must not get | 
|  | 506 | * stuck here forever, so check for an adjacent offset instead | 
|  | 507 | * (and don't even bother to check whether swap type is same). | 
|  | 508 | */ | 
|  | 509 | if (offset != prev_offset + 1 && offset != prev_offset - 1) | 
|  | 510 | pages = 1; | 
|  | 511 | } else { | 
|  | 512 | unsigned int roundup = 4; | 
|  | 513 | while (roundup < pages) | 
|  | 514 | roundup <<= 1; | 
|  | 515 | pages = roundup; | 
|  | 516 | } | 
|  | 517 |  | 
|  | 518 | if (pages > max_pages) | 
|  | 519 | pages = max_pages; | 
|  | 520 |  | 
|  | 521 | /* Don't shrink readahead too fast */ | 
|  | 522 | last_ra = prev_win / 2; | 
|  | 523 | if (pages < last_ra) | 
|  | 524 | pages = last_ra; | 
|  | 525 |  | 
|  | 526 | return pages; | 
|  | 527 | } | 
|  | 528 |  | 
|  | 529 | static unsigned long swapin_nr_pages(unsigned long offset) | 
|  | 530 | { | 
|  | 531 | static unsigned long prev_offset; | 
|  | 532 | unsigned int hits, pages, max_pages; | 
|  | 533 | static atomic_t last_readahead_pages; | 
|  | 534 |  | 
|  | 535 | max_pages = 1 << READ_ONCE(page_cluster); | 
|  | 536 | if (max_pages <= 1) | 
|  | 537 | return 1; | 
|  | 538 |  | 
|  | 539 | hits = atomic_xchg(&swapin_readahead_hits, 0); | 
|  | 540 | pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages, | 
|  | 541 | atomic_read(&last_readahead_pages)); | 
|  | 542 | if (!hits) | 
|  | 543 | prev_offset = offset; | 
|  | 544 | atomic_set(&last_readahead_pages, pages); | 
|  | 545 |  | 
|  | 546 | return pages; | 
|  | 547 | } | 
|  | 548 |  | 
|  | 549 | /** | 
|  | 550 | * swap_cluster_readahead - swap in pages in hope we need them soon | 
|  | 551 | * @entry: swap entry of this memory | 
|  | 552 | * @gfp_mask: memory allocation flags | 
|  | 553 | * @vmf: fault information | 
|  | 554 | * | 
|  | 555 | * Returns the struct page for entry and addr, after queueing swapin. | 
|  | 556 | * | 
|  | 557 | * Primitive swap readahead code. We simply read an aligned block of | 
|  | 558 | * (1 << page_cluster) entries in the swap area. This method is chosen | 
|  | 559 | * because it doesn't cost us any seek time.  We also make sure to queue | 
|  | 560 | * the 'original' request together with the readahead ones... | 
|  | 561 | * | 
|  | 562 | * This has been extended to use the NUMA policies from the mm triggering | 
|  | 563 | * the readahead. | 
|  | 564 | * | 
|  | 565 | * Caller must hold down_read on the vma->vm_mm if vmf->vma is not NULL. | 
|  | 566 | */ | 
|  | 567 | struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, | 
|  | 568 | struct vm_fault *vmf) | 
|  | 569 | { | 
|  | 570 | struct page *page; | 
|  | 571 | unsigned long entry_offset = swp_offset(entry); | 
|  | 572 | unsigned long offset = entry_offset; | 
|  | 573 | unsigned long start_offset, end_offset; | 
|  | 574 | unsigned long mask; | 
|  | 575 | struct swap_info_struct *si = swp_swap_info(entry); | 
|  | 576 | struct blk_plug plug; | 
|  | 577 | bool do_poll = true, page_allocated; | 
|  | 578 | struct vm_area_struct *vma = vmf->vma; | 
|  | 579 | unsigned long addr = vmf->address; | 
|  | 580 |  | 
|  | 581 | mask = swapin_nr_pages(offset) - 1; | 
|  | 582 | if (!mask) | 
|  | 583 | goto skip; | 
|  | 584 |  | 
|  | 585 | do_poll = false; | 
|  | 586 | /* Read a page_cluster sized and aligned cluster around offset. */ | 
|  | 587 | start_offset = offset & ~mask; | 
|  | 588 | end_offset = offset | mask; | 
|  | 589 | if (!start_offset)	/* First page is swap header. */ | 
|  | 590 | start_offset++; | 
|  | 591 | if (end_offset >= si->max) | 
|  | 592 | end_offset = si->max - 1; | 
|  | 593 |  | 
|  | 594 | blk_start_plug(&plug); | 
|  | 595 | for (offset = start_offset; offset <= end_offset ; offset++) { | 
|  | 596 | /* Ok, do the async read-ahead now */ | 
|  | 597 | page = __read_swap_cache_async( | 
|  | 598 | swp_entry(swp_type(entry), offset), | 
|  | 599 | gfp_mask, vma, addr, &page_allocated); | 
|  | 600 | if (!page) | 
|  | 601 | continue; | 
|  | 602 | if (page_allocated) { | 
|  | 603 | swap_readpage(page, false); | 
|  | 604 | if (offset != entry_offset) { | 
|  | 605 | SetPageReadahead(page); | 
|  | 606 | count_vm_event(SWAP_RA); | 
|  | 607 | } | 
|  | 608 | } | 
|  | 609 | put_page(page); | 
|  | 610 | } | 
|  | 611 | blk_finish_plug(&plug); | 
|  | 612 |  | 
|  | 613 | lru_add_drain();	/* Push any new pages onto the LRU now */ | 
|  | 614 | skip: | 
|  | 615 | return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll); | 
|  | 616 | } | 
|  | 617 |  | 
|  | 618 | int init_swap_address_space(unsigned int type, unsigned long nr_pages) | 
|  | 619 | { | 
|  | 620 | struct address_space *spaces, *space; | 
|  | 621 | unsigned int i, nr; | 
|  | 622 |  | 
|  | 623 | nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); | 
|  | 624 | spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); | 
|  | 625 | if (!spaces) | 
|  | 626 | return -ENOMEM; | 
|  | 627 | for (i = 0; i < nr; i++) { | 
|  | 628 | space = spaces + i; | 
|  | 629 | INIT_RADIX_TREE(&space->i_pages, GFP_ATOMIC|__GFP_NOWARN); | 
|  | 630 | atomic_set(&space->i_mmap_writable, 0); | 
|  | 631 | space->a_ops = &swap_aops; | 
|  | 632 | /* swap cache doesn't use writeback related tags */ | 
|  | 633 | mapping_set_no_writeback_tags(space); | 
|  | 634 | } | 
|  | 635 | nr_swapper_spaces[type] = nr; | 
|  | 636 | rcu_assign_pointer(swapper_spaces[type], spaces); | 
|  | 637 |  | 
|  | 638 | return 0; | 
|  | 639 | } | 
|  | 640 |  | 
|  | 641 | void exit_swap_address_space(unsigned int type) | 
|  | 642 | { | 
|  | 643 | struct address_space *spaces; | 
|  | 644 |  | 
|  | 645 | spaces = swapper_spaces[type]; | 
|  | 646 | nr_swapper_spaces[type] = 0; | 
|  | 647 | rcu_assign_pointer(swapper_spaces[type], NULL); | 
|  | 648 | synchronize_rcu(); | 
|  | 649 | kvfree(spaces); | 
|  | 650 | } | 
|  | 651 |  | 
|  | 652 | static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma, | 
|  | 653 | unsigned long faddr, | 
|  | 654 | unsigned long lpfn, | 
|  | 655 | unsigned long rpfn, | 
|  | 656 | unsigned long *start, | 
|  | 657 | unsigned long *end) | 
|  | 658 | { | 
|  | 659 | *start = max3(lpfn, PFN_DOWN(vma->vm_start), | 
|  | 660 | PFN_DOWN(faddr & PMD_MASK)); | 
|  | 661 | *end = min3(rpfn, PFN_DOWN(vma->vm_end), | 
|  | 662 | PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); | 
|  | 663 | } | 
|  | 664 |  | 
|  | 665 | static void swap_ra_info(struct vm_fault *vmf, | 
|  | 666 | struct vma_swap_readahead *ra_info) | 
|  | 667 | { | 
|  | 668 | struct vm_area_struct *vma = vmf->vma; | 
|  | 669 | unsigned long ra_val; | 
|  | 670 | swp_entry_t entry; | 
|  | 671 | unsigned long faddr, pfn, fpfn; | 
|  | 672 | unsigned long start, end; | 
|  | 673 | pte_t *pte, *orig_pte; | 
|  | 674 | unsigned int max_win, hits, prev_win, win, left; | 
|  | 675 | #ifndef CONFIG_64BIT | 
|  | 676 | pte_t *tpte; | 
|  | 677 | #endif | 
|  | 678 |  | 
|  | 679 | max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), | 
|  | 680 | SWAP_RA_ORDER_CEILING); | 
|  | 681 | if (max_win == 1) { | 
|  | 682 | ra_info->win = 1; | 
|  | 683 | return; | 
|  | 684 | } | 
|  | 685 |  | 
|  | 686 | faddr = vmf->address; | 
|  | 687 | orig_pte = pte = pte_offset_map(vmf->pmd, faddr); | 
|  | 688 | entry = pte_to_swp_entry(*pte); | 
|  | 689 | if ((unlikely(non_swap_entry(entry)))) { | 
|  | 690 | pte_unmap(orig_pte); | 
|  | 691 | return; | 
|  | 692 | } | 
|  | 693 |  | 
|  | 694 | fpfn = PFN_DOWN(faddr); | 
|  | 695 | ra_val = GET_SWAP_RA_VAL(vma); | 
|  | 696 | pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); | 
|  | 697 | prev_win = SWAP_RA_WIN(ra_val); | 
|  | 698 | hits = SWAP_RA_HITS(ra_val); | 
|  | 699 | ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, | 
|  | 700 | max_win, prev_win); | 
|  | 701 | atomic_long_set(&vma->swap_readahead_info, | 
|  | 702 | SWAP_RA_VAL(faddr, win, 0)); | 
|  | 703 |  | 
|  | 704 | if (win == 1) { | 
|  | 705 | pte_unmap(orig_pte); | 
|  | 706 | return; | 
|  | 707 | } | 
|  | 708 |  | 
|  | 709 | /* Copy the PTEs because the page table may be unmapped */ | 
|  | 710 | if (fpfn == pfn + 1) | 
|  | 711 | swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end); | 
|  | 712 | else if (pfn == fpfn + 1) | 
|  | 713 | swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1, | 
|  | 714 | &start, &end); | 
|  | 715 | else { | 
|  | 716 | left = (win - 1) / 2; | 
|  | 717 | swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left, | 
|  | 718 | &start, &end); | 
|  | 719 | } | 
|  | 720 | ra_info->nr_pte = end - start; | 
|  | 721 | ra_info->offset = fpfn - start; | 
|  | 722 | pte -= ra_info->offset; | 
|  | 723 | #ifdef CONFIG_64BIT | 
|  | 724 | ra_info->ptes = pte; | 
|  | 725 | #else | 
|  | 726 | tpte = ra_info->ptes; | 
|  | 727 | for (pfn = start; pfn != end; pfn++) | 
|  | 728 | *tpte++ = *pte++; | 
|  | 729 | #endif | 
|  | 730 | pte_unmap(orig_pte); | 
|  | 731 | } | 
|  | 732 |  | 
|  | 733 | static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask, | 
|  | 734 | struct vm_fault *vmf) | 
|  | 735 | { | 
|  | 736 | struct blk_plug plug; | 
|  | 737 | struct vm_area_struct *vma = vmf->vma; | 
|  | 738 | struct page *page; | 
|  | 739 | pte_t *pte, pentry; | 
|  | 740 | swp_entry_t entry; | 
|  | 741 | unsigned int i; | 
|  | 742 | bool page_allocated; | 
|  | 743 | struct vma_swap_readahead ra_info = {0,}; | 
|  | 744 |  | 
|  | 745 | swap_ra_info(vmf, &ra_info); | 
|  | 746 | if (ra_info.win == 1) | 
|  | 747 | goto skip; | 
|  | 748 |  | 
|  | 749 | blk_start_plug(&plug); | 
|  | 750 | for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte; | 
|  | 751 | i++, pte++) { | 
|  | 752 | pentry = *pte; | 
|  | 753 | if (pte_none(pentry)) | 
|  | 754 | continue; | 
|  | 755 | if (pte_present(pentry)) | 
|  | 756 | continue; | 
|  | 757 | entry = pte_to_swp_entry(pentry); | 
|  | 758 | if (unlikely(non_swap_entry(entry))) | 
|  | 759 | continue; | 
|  | 760 | page = __read_swap_cache_async(entry, gfp_mask, vma, | 
|  | 761 | vmf->address, &page_allocated); | 
|  | 762 | if (!page) | 
|  | 763 | continue; | 
|  | 764 | if (page_allocated) { | 
|  | 765 | swap_readpage(page, false); | 
|  | 766 | if (i != ra_info.offset) { | 
|  | 767 | SetPageReadahead(page); | 
|  | 768 | count_vm_event(SWAP_RA); | 
|  | 769 | } | 
|  | 770 | } | 
|  | 771 | put_page(page); | 
|  | 772 | } | 
|  | 773 | blk_finish_plug(&plug); | 
|  | 774 | lru_add_drain(); | 
|  | 775 | skip: | 
|  | 776 | return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, | 
|  | 777 | ra_info.win == 1); | 
|  | 778 | } | 
|  | 779 |  | 
|  | 780 | /** | 
|  | 781 | * swapin_readahead - swap in pages in hope we need them soon | 
|  | 782 | * @entry: swap entry of this memory | 
|  | 783 | * @gfp_mask: memory allocation flags | 
|  | 784 | * @vmf: fault information | 
|  | 785 | * | 
|  | 786 | * Returns the struct page for entry and addr, after queueing swapin. | 
|  | 787 | * | 
|  | 788 | * It's a main entry function for swap readahead. By the configuration, | 
|  | 789 | * it will read ahead blocks by cluster-based(ie, physical disk based) | 
|  | 790 | * or vma-based(ie, virtual address based on faulty address) readahead. | 
|  | 791 | */ | 
|  | 792 | struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, | 
|  | 793 | struct vm_fault *vmf) | 
|  | 794 | { | 
|  | 795 | return swap_use_vma_readahead() ? | 
|  | 796 | swap_vma_readahead(entry, gfp_mask, vmf) : | 
|  | 797 | swap_cluster_readahead(entry, gfp_mask, vmf); | 
|  | 798 | } | 
|  | 799 |  | 
|  | 800 | #ifdef CONFIG_SYSFS | 
|  | 801 | static ssize_t vma_ra_enabled_show(struct kobject *kobj, | 
|  | 802 | struct kobj_attribute *attr, char *buf) | 
|  | 803 | { | 
|  | 804 | return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false"); | 
|  | 805 | } | 
|  | 806 | static ssize_t vma_ra_enabled_store(struct kobject *kobj, | 
|  | 807 | struct kobj_attribute *attr, | 
|  | 808 | const char *buf, size_t count) | 
|  | 809 | { | 
|  | 810 | if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1)) | 
|  | 811 | enable_vma_readahead = true; | 
|  | 812 | else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1)) | 
|  | 813 | enable_vma_readahead = false; | 
|  | 814 | else | 
|  | 815 | return -EINVAL; | 
|  | 816 |  | 
|  | 817 | return count; | 
|  | 818 | } | 
|  | 819 | static struct kobj_attribute vma_ra_enabled_attr = | 
|  | 820 | __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show, | 
|  | 821 | vma_ra_enabled_store); | 
|  | 822 |  | 
|  | 823 | static struct attribute *swap_attrs[] = { | 
|  | 824 | &vma_ra_enabled_attr.attr, | 
|  | 825 | NULL, | 
|  | 826 | }; | 
|  | 827 |  | 
|  | 828 | static struct attribute_group swap_attr_group = { | 
|  | 829 | .attrs = swap_attrs, | 
|  | 830 | }; | 
|  | 831 |  | 
|  | 832 | static int __init swap_init_sysfs(void) | 
|  | 833 | { | 
|  | 834 | int err; | 
|  | 835 | struct kobject *swap_kobj; | 
|  | 836 |  | 
|  | 837 | swap_kobj = kobject_create_and_add("swap", mm_kobj); | 
|  | 838 | if (!swap_kobj) { | 
|  | 839 | pr_err("failed to create swap kobject\n"); | 
|  | 840 | return -ENOMEM; | 
|  | 841 | } | 
|  | 842 | err = sysfs_create_group(swap_kobj, &swap_attr_group); | 
|  | 843 | if (err) { | 
|  | 844 | pr_err("failed to register swap group\n"); | 
|  | 845 | goto delete_obj; | 
|  | 846 | } | 
|  | 847 | return 0; | 
|  | 848 |  | 
|  | 849 | delete_obj: | 
|  | 850 | kobject_put(swap_kobj); | 
|  | 851 | return err; | 
|  | 852 | } | 
|  | 853 | subsys_initcall(swap_init_sysfs); | 
|  | 854 | #endif |