blob: 64841238df855f5a4e3289736cc668e273f30ec0 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24/**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50#include <linux/kernel.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/list.h>
54#include <linux/ctype.h>
55#include <linux/nl80211.h>
56#include <linux/platform_device.h>
57#include <linux/verification.h>
58#include <linux/moduleparam.h>
59#include <linux/firmware.h>
60#include <net/cfg80211.h>
61#include "core.h"
62#include "reg.h"
63#include "rdev-ops.h"
64#include "nl80211.h"
65
66/*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70#define REG_ENFORCE_GRACE_MS 60000
71
72/**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87};
88
89static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96};
97
98/*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105/* To trigger userspace events and load firmware */
106static struct platform_device *reg_pdev;
107
108/*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116/*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121static int reg_num_devs_support_basehint;
122
123/*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128static bool reg_is_indoor;
129static spinlock_t reg_indoor_lock;
130
131/* Used to track the userspace process controlling the indoor setting */
132static u32 reg_is_indoor_portid;
133
134static void restore_regulatory_settings(bool reset_user);
135
136static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
137{
138 return rcu_dereference_rtnl(cfg80211_regdomain);
139}
140
141const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
142{
143 return rcu_dereference_rtnl(wiphy->regd);
144}
145
146static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
147{
148 switch (dfs_region) {
149 case NL80211_DFS_UNSET:
150 return "unset";
151 case NL80211_DFS_FCC:
152 return "FCC";
153 case NL80211_DFS_ETSI:
154 return "ETSI";
155 case NL80211_DFS_JP:
156 return "JP";
157 }
158 return "Unknown";
159}
160
161enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
162{
163 const struct ieee80211_regdomain *regd = NULL;
164 const struct ieee80211_regdomain *wiphy_regd = NULL;
165
166 regd = get_cfg80211_regdom();
167 if (!wiphy)
168 goto out;
169
170 wiphy_regd = get_wiphy_regdom(wiphy);
171 if (!wiphy_regd)
172 goto out;
173
174 if (wiphy_regd->dfs_region == regd->dfs_region)
175 goto out;
176
177 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178 dev_name(&wiphy->dev),
179 reg_dfs_region_str(wiphy_regd->dfs_region),
180 reg_dfs_region_str(regd->dfs_region));
181
182out:
183 return regd->dfs_region;
184}
185
186static void rcu_free_regdom(const struct ieee80211_regdomain *r)
187{
188 if (!r)
189 return;
190 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
191}
192
193static struct regulatory_request *get_last_request(void)
194{
195 return rcu_dereference_rtnl(last_request);
196}
197
198/* Used to queue up regulatory hints */
199static LIST_HEAD(reg_requests_list);
200static spinlock_t reg_requests_lock;
201
202/* Used to queue up beacon hints for review */
203static LIST_HEAD(reg_pending_beacons);
204static spinlock_t reg_pending_beacons_lock;
205
206/* Used to keep track of processed beacon hints */
207static LIST_HEAD(reg_beacon_list);
208
209struct reg_beacon {
210 struct list_head list;
211 struct ieee80211_channel chan;
212};
213
214static void reg_check_chans_work(struct work_struct *work);
215static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
216
217static void reg_todo(struct work_struct *work);
218static DECLARE_WORK(reg_work, reg_todo);
219
220/* We keep a static world regulatory domain in case of the absence of CRDA */
221static const struct ieee80211_regdomain world_regdom = {
222 .n_reg_rules = 8,
223 .alpha2 = "00",
224 .reg_rules = {
225 /* IEEE 802.11b/g, channels 1..11 */
226 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227 /* IEEE 802.11b/g, channels 12..13. */
228 REG_RULE(2467-10, 2472+10, 20, 6, 20,
229 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
230 /* IEEE 802.11 channel 14 - Only JP enables
231 * this and for 802.11b only */
232 REG_RULE(2484-10, 2484+10, 20, 6, 20,
233 NL80211_RRF_NO_IR |
234 NL80211_RRF_NO_OFDM),
235 /* IEEE 802.11a, channel 36..48 */
236 REG_RULE(5180-10, 5240+10, 80, 6, 20,
237 NL80211_RRF_NO_IR |
238 NL80211_RRF_AUTO_BW),
239
240 /* IEEE 802.11a, channel 52..64 - DFS required */
241 REG_RULE(5260-10, 5320+10, 80, 6, 20,
242 NL80211_RRF_NO_IR |
243 NL80211_RRF_AUTO_BW |
244 NL80211_RRF_DFS),
245
246 /* IEEE 802.11a, channel 100..144 - DFS required */
247 REG_RULE(5500-10, 5720+10, 160, 6, 20,
248 NL80211_RRF_NO_IR |
249 NL80211_RRF_DFS),
250
251 /* IEEE 802.11a, channel 149..165 */
252 REG_RULE(5745-10, 5825+10, 80, 6, 20,
253 NL80211_RRF_NO_IR),
254
255 /* IEEE 802.11ad (60GHz), channels 1..3 */
256 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
257 }
258};
259
260/* protected by RTNL */
261static const struct ieee80211_regdomain *cfg80211_world_regdom =
262 &world_regdom;
263
264static char *ieee80211_regdom = "00";
265static char user_alpha2[2];
266
267module_param(ieee80211_regdom, charp, 0444);
268MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
269
270static void reg_free_request(struct regulatory_request *request)
271{
272 if (request == &core_request_world)
273 return;
274
275 if (request != get_last_request())
276 kfree(request);
277}
278
279static void reg_free_last_request(void)
280{
281 struct regulatory_request *lr = get_last_request();
282
283 if (lr != &core_request_world && lr)
284 kfree_rcu(lr, rcu_head);
285}
286
287static void reg_update_last_request(struct regulatory_request *request)
288{
289 struct regulatory_request *lr;
290
291 lr = get_last_request();
292 if (lr == request)
293 return;
294
295 reg_free_last_request();
296 rcu_assign_pointer(last_request, request);
297}
298
299static void reset_regdomains(bool full_reset,
300 const struct ieee80211_regdomain *new_regdom)
301{
302 const struct ieee80211_regdomain *r;
303
304 ASSERT_RTNL();
305
306 r = get_cfg80211_regdom();
307
308 /* avoid freeing static information or freeing something twice */
309 if (r == cfg80211_world_regdom)
310 r = NULL;
311 if (cfg80211_world_regdom == &world_regdom)
312 cfg80211_world_regdom = NULL;
313 if (r == &world_regdom)
314 r = NULL;
315
316 rcu_free_regdom(r);
317 rcu_free_regdom(cfg80211_world_regdom);
318
319 cfg80211_world_regdom = &world_regdom;
320 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
321
322 if (!full_reset)
323 return;
324
325 reg_update_last_request(&core_request_world);
326}
327
328/*
329 * Dynamic world regulatory domain requested by the wireless
330 * core upon initialization
331 */
332static void update_world_regdomain(const struct ieee80211_regdomain *rd)
333{
334 struct regulatory_request *lr;
335
336 lr = get_last_request();
337
338 WARN_ON(!lr);
339
340 reset_regdomains(false, rd);
341
342 cfg80211_world_regdom = rd;
343}
344
345bool is_world_regdom(const char *alpha2)
346{
347 if (!alpha2)
348 return false;
349 return alpha2[0] == '0' && alpha2[1] == '0';
350}
351
352static bool is_alpha2_set(const char *alpha2)
353{
354 if (!alpha2)
355 return false;
356 return alpha2[0] && alpha2[1];
357}
358
359static bool is_unknown_alpha2(const char *alpha2)
360{
361 if (!alpha2)
362 return false;
363 /*
364 * Special case where regulatory domain was built by driver
365 * but a specific alpha2 cannot be determined
366 */
367 return alpha2[0] == '9' && alpha2[1] == '9';
368}
369
370static bool is_intersected_alpha2(const char *alpha2)
371{
372 if (!alpha2)
373 return false;
374 /*
375 * Special case where regulatory domain is the
376 * result of an intersection between two regulatory domain
377 * structures
378 */
379 return alpha2[0] == '9' && alpha2[1] == '8';
380}
381
382static bool is_an_alpha2(const char *alpha2)
383{
384 if (!alpha2)
385 return false;
386 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
387}
388
389static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
390{
391 if (!alpha2_x || !alpha2_y)
392 return false;
393 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
394}
395
396static bool regdom_changes(const char *alpha2)
397{
398 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
399
400 if (!r)
401 return true;
402 return !alpha2_equal(r->alpha2, alpha2);
403}
404
405/*
406 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408 * has ever been issued.
409 */
410static bool is_user_regdom_saved(void)
411{
412 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
413 return false;
414
415 /* This would indicate a mistake on the design */
416 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
417 "Unexpected user alpha2: %c%c\n",
418 user_alpha2[0], user_alpha2[1]))
419 return false;
420
421 return true;
422}
423
424static const struct ieee80211_regdomain *
425reg_copy_regd(const struct ieee80211_regdomain *src_regd)
426{
427 struct ieee80211_regdomain *regd;
428 int size_of_regd;
429 unsigned int i;
430
431 size_of_regd =
432 sizeof(struct ieee80211_regdomain) +
433 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
434
435 regd = kzalloc(size_of_regd, GFP_KERNEL);
436 if (!regd)
437 return ERR_PTR(-ENOMEM);
438
439 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
440
441 for (i = 0; i < src_regd->n_reg_rules; i++)
442 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
443 sizeof(struct ieee80211_reg_rule));
444
445 return regd;
446}
447
448struct reg_regdb_apply_request {
449 struct list_head list;
450 const struct ieee80211_regdomain *regdom;
451};
452
453static LIST_HEAD(reg_regdb_apply_list);
454static DEFINE_MUTEX(reg_regdb_apply_mutex);
455
456static void reg_regdb_apply(struct work_struct *work)
457{
458 struct reg_regdb_apply_request *request;
459
460 rtnl_lock();
461
462 mutex_lock(&reg_regdb_apply_mutex);
463 while (!list_empty(&reg_regdb_apply_list)) {
464 request = list_first_entry(&reg_regdb_apply_list,
465 struct reg_regdb_apply_request,
466 list);
467 list_del(&request->list);
468
469 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
470 kfree(request);
471 }
472 mutex_unlock(&reg_regdb_apply_mutex);
473
474 rtnl_unlock();
475}
476
477static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
478
479static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
480{
481 struct reg_regdb_apply_request *request;
482
483 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
484 if (!request) {
485 kfree(regdom);
486 return -ENOMEM;
487 }
488
489 request->regdom = regdom;
490
491 mutex_lock(&reg_regdb_apply_mutex);
492 list_add_tail(&request->list, &reg_regdb_apply_list);
493 mutex_unlock(&reg_regdb_apply_mutex);
494
495 schedule_work(&reg_regdb_work);
496 return 0;
497}
498
499#ifdef CONFIG_CFG80211_CRDA_SUPPORT
500/* Max number of consecutive attempts to communicate with CRDA */
501#define REG_MAX_CRDA_TIMEOUTS 10
502
503static u32 reg_crda_timeouts;
504
505static void crda_timeout_work(struct work_struct *work);
506static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
507
508static void crda_timeout_work(struct work_struct *work)
509{
510 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
511 rtnl_lock();
512 reg_crda_timeouts++;
513 restore_regulatory_settings(true);
514 rtnl_unlock();
515}
516
517static void cancel_crda_timeout(void)
518{
519 cancel_delayed_work(&crda_timeout);
520}
521
522static void cancel_crda_timeout_sync(void)
523{
524 cancel_delayed_work_sync(&crda_timeout);
525}
526
527static void reset_crda_timeouts(void)
528{
529 reg_crda_timeouts = 0;
530}
531
532/*
533 * This lets us keep regulatory code which is updated on a regulatory
534 * basis in userspace.
535 */
536static int call_crda(const char *alpha2)
537{
538 char country[12];
539 char *env[] = { country, NULL };
540 int ret;
541
542 snprintf(country, sizeof(country), "COUNTRY=%c%c",
543 alpha2[0], alpha2[1]);
544
545 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
546 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
547 return -EINVAL;
548 }
549
550 if (!is_world_regdom((char *) alpha2))
551 pr_debug("Calling CRDA for country: %c%c\n",
552 alpha2[0], alpha2[1]);
553 else
554 pr_debug("Calling CRDA to update world regulatory domain\n");
555
556 ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
557 if (ret)
558 return ret;
559
560 queue_delayed_work(system_power_efficient_wq,
561 &crda_timeout, msecs_to_jiffies(3142));
562 return 0;
563}
564#else
565static inline void cancel_crda_timeout(void) {}
566static inline void cancel_crda_timeout_sync(void) {}
567static inline void reset_crda_timeouts(void) {}
568static inline int call_crda(const char *alpha2)
569{
570 return -ENODATA;
571}
572#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
573
574/* code to directly load a firmware database through request_firmware */
575static const struct fwdb_header *regdb;
576
577struct fwdb_country {
578 u8 alpha2[2];
579 __be16 coll_ptr;
580 /* this struct cannot be extended */
581} __packed __aligned(4);
582
583struct fwdb_collection {
584 u8 len;
585 u8 n_rules;
586 u8 dfs_region;
587 /* no optional data yet */
588 /* aligned to 2, then followed by __be16 array of rule pointers */
589} __packed __aligned(4);
590
591enum fwdb_flags {
592 FWDB_FLAG_NO_OFDM = BIT(0),
593 FWDB_FLAG_NO_OUTDOOR = BIT(1),
594 FWDB_FLAG_DFS = BIT(2),
595 FWDB_FLAG_NO_IR = BIT(3),
596 FWDB_FLAG_AUTO_BW = BIT(4),
597};
598
599struct fwdb_wmm_ac {
600 u8 ecw;
601 u8 aifsn;
602 __be16 cot;
603} __packed;
604
605struct fwdb_wmm_rule {
606 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
607 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
608} __packed;
609
610struct fwdb_rule {
611 u8 len;
612 u8 flags;
613 __be16 max_eirp;
614 __be32 start, end, max_bw;
615 /* start of optional data */
616 __be16 cac_timeout;
617 __be16 wmm_ptr;
618} __packed __aligned(4);
619
620#define FWDB_MAGIC 0x52474442
621#define FWDB_VERSION 20
622
623struct fwdb_header {
624 __be32 magic;
625 __be32 version;
626 struct fwdb_country country[];
627} __packed __aligned(4);
628
629static int ecw2cw(int ecw)
630{
631 return (1 << ecw) - 1;
632}
633
634static bool valid_wmm(struct fwdb_wmm_rule *rule)
635{
636 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
637 int i;
638
639 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
640 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
641 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
642 u8 aifsn = ac[i].aifsn;
643
644 if (cw_min >= cw_max)
645 return false;
646
647 if (aifsn < 1)
648 return false;
649 }
650
651 return true;
652}
653
654static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
655{
656 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
657
658 if ((u8 *)rule + sizeof(rule->len) > data + size)
659 return false;
660
661 /* mandatory fields */
662 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
663 return false;
664 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
665 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
666 struct fwdb_wmm_rule *wmm;
667
668 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
669 return false;
670
671 wmm = (void *)(data + wmm_ptr);
672
673 if (!valid_wmm(wmm))
674 return false;
675 }
676 return true;
677}
678
679static bool valid_country(const u8 *data, unsigned int size,
680 const struct fwdb_country *country)
681{
682 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
683 struct fwdb_collection *coll = (void *)(data + ptr);
684 __be16 *rules_ptr;
685 unsigned int i;
686
687 /* make sure we can read len/n_rules */
688 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
689 return false;
690
691 /* make sure base struct and all rules fit */
692 if ((u8 *)coll + ALIGN(coll->len, 2) +
693 (coll->n_rules * 2) > data + size)
694 return false;
695
696 /* mandatory fields must exist */
697 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
698 return false;
699
700 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
701
702 for (i = 0; i < coll->n_rules; i++) {
703 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
704
705 if (!valid_rule(data, size, rule_ptr))
706 return false;
707 }
708
709 return true;
710}
711
712#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
713static struct key *builtin_regdb_keys;
714
715static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
716{
717 const u8 *end = p + buflen;
718 size_t plen;
719 key_ref_t key;
720
721 while (p < end) {
722 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
723 * than 256 bytes in size.
724 */
725 if (end - p < 4)
726 goto dodgy_cert;
727 if (p[0] != 0x30 &&
728 p[1] != 0x82)
729 goto dodgy_cert;
730 plen = (p[2] << 8) | p[3];
731 plen += 4;
732 if (plen > end - p)
733 goto dodgy_cert;
734
735 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
736 "asymmetric", NULL, p, plen,
737 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
738 KEY_USR_VIEW | KEY_USR_READ),
739 KEY_ALLOC_NOT_IN_QUOTA |
740 KEY_ALLOC_BUILT_IN |
741 KEY_ALLOC_BYPASS_RESTRICTION);
742 if (IS_ERR(key)) {
743 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
744 PTR_ERR(key));
745 } else {
746 pr_notice("Loaded X.509 cert '%s'\n",
747 key_ref_to_ptr(key)->description);
748 key_ref_put(key);
749 }
750 p += plen;
751 }
752
753 return;
754
755dodgy_cert:
756 pr_err("Problem parsing in-kernel X.509 certificate list\n");
757}
758
759static int __init load_builtin_regdb_keys(void)
760{
761 builtin_regdb_keys =
762 keyring_alloc(".builtin_regdb_keys",
763 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
764 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
766 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
767 if (IS_ERR(builtin_regdb_keys))
768 return PTR_ERR(builtin_regdb_keys);
769
770 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
771
772#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
773 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
774#endif
775#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
776 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
777 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
778#endif
779
780 return 0;
781}
782
783static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
784{
785 const struct firmware *sig;
786 bool result;
787
788 if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
789 return false;
790
791 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
792 builtin_regdb_keys,
793 VERIFYING_UNSPECIFIED_SIGNATURE,
794 NULL, NULL) == 0;
795
796 release_firmware(sig);
797
798 return result;
799}
800
801static void free_regdb_keyring(void)
802{
803 key_put(builtin_regdb_keys);
804}
805#else
806static int load_builtin_regdb_keys(void)
807{
808 return 0;
809}
810
811static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
812{
813 return true;
814}
815
816static void free_regdb_keyring(void)
817{
818}
819#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
820
821static bool valid_regdb(const u8 *data, unsigned int size)
822{
823 const struct fwdb_header *hdr = (void *)data;
824 const struct fwdb_country *country;
825
826 if (size < sizeof(*hdr))
827 return false;
828
829 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
830 return false;
831
832 if (hdr->version != cpu_to_be32(FWDB_VERSION))
833 return false;
834
835 if (!regdb_has_valid_signature(data, size))
836 return false;
837
838 country = &hdr->country[0];
839 while ((u8 *)(country + 1) <= data + size) {
840 if (!country->coll_ptr)
841 break;
842 if (!valid_country(data, size, country))
843 return false;
844 country++;
845 }
846
847 return true;
848}
849
850static void set_wmm_rule(const struct fwdb_header *db,
851 const struct fwdb_country *country,
852 const struct fwdb_rule *rule,
853 struct ieee80211_reg_rule *rrule)
854{
855 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
856 struct fwdb_wmm_rule *wmm;
857 unsigned int i, wmm_ptr;
858
859 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
860 wmm = (void *)((u8 *)db + wmm_ptr);
861
862 if (!valid_wmm(wmm)) {
863 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
864 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
865 country->alpha2[0], country->alpha2[1]);
866 return;
867 }
868
869 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
870 wmm_rule->client[i].cw_min =
871 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
872 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
873 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
874 wmm_rule->client[i].cot =
875 1000 * be16_to_cpu(wmm->client[i].cot);
876 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
877 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
878 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
879 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
880 }
881
882 rrule->has_wmm = true;
883}
884
885static int __regdb_query_wmm(const struct fwdb_header *db,
886 const struct fwdb_country *country, int freq,
887 struct ieee80211_reg_rule *rrule)
888{
889 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
890 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
891 int i;
892
893 for (i = 0; i < coll->n_rules; i++) {
894 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
895 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
896 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
897
898 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
899 continue;
900
901 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
902 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
903 set_wmm_rule(db, country, rule, rrule);
904 return 0;
905 }
906 }
907
908 return -ENODATA;
909}
910
911int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
912{
913 const struct fwdb_header *hdr = regdb;
914 const struct fwdb_country *country;
915
916 if (!regdb)
917 return -ENODATA;
918
919 if (IS_ERR(regdb))
920 return PTR_ERR(regdb);
921
922 country = &hdr->country[0];
923 while (country->coll_ptr) {
924 if (alpha2_equal(alpha2, country->alpha2))
925 return __regdb_query_wmm(regdb, country, freq, rule);
926
927 country++;
928 }
929
930 return -ENODATA;
931}
932EXPORT_SYMBOL(reg_query_regdb_wmm);
933
934static int regdb_query_country(const struct fwdb_header *db,
935 const struct fwdb_country *country)
936{
937 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
938 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
939 struct ieee80211_regdomain *regdom;
940 unsigned int size_of_regd, i;
941
942 size_of_regd = sizeof(struct ieee80211_regdomain) +
943 coll->n_rules * sizeof(struct ieee80211_reg_rule);
944
945 regdom = kzalloc(size_of_regd, GFP_KERNEL);
946 if (!regdom)
947 return -ENOMEM;
948
949 regdom->n_reg_rules = coll->n_rules;
950 regdom->alpha2[0] = country->alpha2[0];
951 regdom->alpha2[1] = country->alpha2[1];
952 regdom->dfs_region = coll->dfs_region;
953
954 for (i = 0; i < regdom->n_reg_rules; i++) {
955 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
956 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
957 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
958 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
959
960 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
961 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
962 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
963
964 rrule->power_rule.max_antenna_gain = 0;
965 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
966
967 rrule->flags = 0;
968 if (rule->flags & FWDB_FLAG_NO_OFDM)
969 rrule->flags |= NL80211_RRF_NO_OFDM;
970 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
971 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
972 if (rule->flags & FWDB_FLAG_DFS)
973 rrule->flags |= NL80211_RRF_DFS;
974 if (rule->flags & FWDB_FLAG_NO_IR)
975 rrule->flags |= NL80211_RRF_NO_IR;
976 if (rule->flags & FWDB_FLAG_AUTO_BW)
977 rrule->flags |= NL80211_RRF_AUTO_BW;
978
979 rrule->dfs_cac_ms = 0;
980
981 /* handle optional data */
982 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
983 rrule->dfs_cac_ms =
984 1000 * be16_to_cpu(rule->cac_timeout);
985 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
986 set_wmm_rule(db, country, rule, rrule);
987 }
988
989 return reg_schedule_apply(regdom);
990}
991
992static int query_regdb(const char *alpha2)
993{
994 const struct fwdb_header *hdr = regdb;
995 const struct fwdb_country *country;
996
997 ASSERT_RTNL();
998
999 if (IS_ERR(regdb))
1000 return PTR_ERR(regdb);
1001
1002 country = &hdr->country[0];
1003 while (country->coll_ptr) {
1004 if (alpha2_equal(alpha2, country->alpha2))
1005 return regdb_query_country(regdb, country);
1006 country++;
1007 }
1008
1009 return -ENODATA;
1010}
1011
1012static void regdb_fw_cb(const struct firmware *fw, void *context)
1013{
1014 int set_error = 0;
1015 bool restore = true;
1016 void *db;
1017
1018 if (!fw) {
1019 pr_info("failed to load regulatory.db\n");
1020 set_error = -ENODATA;
1021 } else if (!valid_regdb(fw->data, fw->size)) {
1022 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1023 set_error = -EINVAL;
1024 }
1025
1026 rtnl_lock();
1027 if (WARN_ON(regdb && !IS_ERR(regdb))) {
1028 /* just restore and free new db */
1029 } else if (set_error) {
1030 regdb = ERR_PTR(set_error);
1031 } else if (fw) {
1032 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1033 if (db) {
1034 regdb = db;
1035 restore = context && query_regdb(context);
1036 } else {
1037 restore = true;
1038 }
1039 }
1040
1041 if (restore)
1042 restore_regulatory_settings(true);
1043
1044 rtnl_unlock();
1045
1046 kfree(context);
1047
1048 release_firmware(fw);
1049}
1050
1051static int query_regdb_file(const char *alpha2)
1052{
1053 ASSERT_RTNL();
1054
1055 if (regdb)
1056 return query_regdb(alpha2);
1057
1058 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1059 if (!alpha2)
1060 return -ENOMEM;
1061
1062 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1063 &reg_pdev->dev, GFP_KERNEL,
1064 (void *)alpha2, regdb_fw_cb);
1065}
1066
1067int reg_reload_regdb(void)
1068{
1069 const struct firmware *fw;
1070 void *db;
1071 int err;
1072
1073 err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1074 if (err)
1075 return err;
1076
1077 if (!valid_regdb(fw->data, fw->size)) {
1078 err = -ENODATA;
1079 goto out;
1080 }
1081
1082 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1083 if (!db) {
1084 err = -ENOMEM;
1085 goto out;
1086 }
1087
1088 rtnl_lock();
1089 if (!IS_ERR_OR_NULL(regdb))
1090 kfree(regdb);
1091 regdb = db;
1092 rtnl_unlock();
1093
1094 out:
1095 release_firmware(fw);
1096 return err;
1097}
1098
1099static bool reg_query_database(struct regulatory_request *request)
1100{
1101 if (query_regdb_file(request->alpha2) == 0)
1102 return true;
1103
1104 if (call_crda(request->alpha2) == 0)
1105 return true;
1106
1107 return false;
1108}
1109
1110bool reg_is_valid_request(const char *alpha2)
1111{
1112 struct regulatory_request *lr = get_last_request();
1113
1114 if (!lr || lr->processed)
1115 return false;
1116
1117 return alpha2_equal(lr->alpha2, alpha2);
1118}
1119
1120static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1121{
1122 struct regulatory_request *lr = get_last_request();
1123
1124 /*
1125 * Follow the driver's regulatory domain, if present, unless a country
1126 * IE has been processed or a user wants to help complaince further
1127 */
1128 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1129 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1130 wiphy->regd)
1131 return get_wiphy_regdom(wiphy);
1132
1133 return get_cfg80211_regdom();
1134}
1135
1136static unsigned int
1137reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1138 const struct ieee80211_reg_rule *rule)
1139{
1140 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1141 const struct ieee80211_freq_range *freq_range_tmp;
1142 const struct ieee80211_reg_rule *tmp;
1143 u32 start_freq, end_freq, idx, no;
1144
1145 for (idx = 0; idx < rd->n_reg_rules; idx++)
1146 if (rule == &rd->reg_rules[idx])
1147 break;
1148
1149 if (idx == rd->n_reg_rules)
1150 return 0;
1151
1152 /* get start_freq */
1153 no = idx;
1154
1155 while (no) {
1156 tmp = &rd->reg_rules[--no];
1157 freq_range_tmp = &tmp->freq_range;
1158
1159 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1160 break;
1161
1162 freq_range = freq_range_tmp;
1163 }
1164
1165 start_freq = freq_range->start_freq_khz;
1166
1167 /* get end_freq */
1168 freq_range = &rule->freq_range;
1169 no = idx;
1170
1171 while (no < rd->n_reg_rules - 1) {
1172 tmp = &rd->reg_rules[++no];
1173 freq_range_tmp = &tmp->freq_range;
1174
1175 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1176 break;
1177
1178 freq_range = freq_range_tmp;
1179 }
1180
1181 end_freq = freq_range->end_freq_khz;
1182
1183 return end_freq - start_freq;
1184}
1185
1186unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1187 const struct ieee80211_reg_rule *rule)
1188{
1189 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1190
1191 if (rule->flags & NL80211_RRF_NO_160MHZ)
1192 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1193 if (rule->flags & NL80211_RRF_NO_80MHZ)
1194 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1195
1196 /*
1197 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1198 * are not allowed.
1199 */
1200 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1201 rule->flags & NL80211_RRF_NO_HT40PLUS)
1202 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1203
1204 return bw;
1205}
1206
1207/* Sanity check on a regulatory rule */
1208static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1209{
1210 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1211 u32 freq_diff;
1212
1213 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1214 return false;
1215
1216 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1217 return false;
1218
1219 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1220
1221 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1222 freq_range->max_bandwidth_khz > freq_diff)
1223 return false;
1224
1225 return true;
1226}
1227
1228static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1229{
1230 const struct ieee80211_reg_rule *reg_rule = NULL;
1231 unsigned int i;
1232
1233 if (!rd->n_reg_rules)
1234 return false;
1235
1236 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1237 return false;
1238
1239 for (i = 0; i < rd->n_reg_rules; i++) {
1240 reg_rule = &rd->reg_rules[i];
1241 if (!is_valid_reg_rule(reg_rule))
1242 return false;
1243 }
1244
1245 return true;
1246}
1247
1248/**
1249 * freq_in_rule_band - tells us if a frequency is in a frequency band
1250 * @freq_range: frequency rule we want to query
1251 * @freq_khz: frequency we are inquiring about
1252 *
1253 * This lets us know if a specific frequency rule is or is not relevant to
1254 * a specific frequency's band. Bands are device specific and artificial
1255 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1256 * however it is safe for now to assume that a frequency rule should not be
1257 * part of a frequency's band if the start freq or end freq are off by more
1258 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1259 * 60 GHz band.
1260 * This resolution can be lowered and should be considered as we add
1261 * regulatory rule support for other "bands".
1262 **/
1263static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1264 u32 freq_khz)
1265{
1266#define ONE_GHZ_IN_KHZ 1000000
1267 /*
1268 * From 802.11ad: directional multi-gigabit (DMG):
1269 * Pertaining to operation in a frequency band containing a channel
1270 * with the Channel starting frequency above 45 GHz.
1271 */
1272 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1273 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1274 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1275 return true;
1276 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1277 return true;
1278 return false;
1279#undef ONE_GHZ_IN_KHZ
1280}
1281
1282/*
1283 * Later on we can perhaps use the more restrictive DFS
1284 * region but we don't have information for that yet so
1285 * for now simply disallow conflicts.
1286 */
1287static enum nl80211_dfs_regions
1288reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1289 const enum nl80211_dfs_regions dfs_region2)
1290{
1291 if (dfs_region1 != dfs_region2)
1292 return NL80211_DFS_UNSET;
1293 return dfs_region1;
1294}
1295
1296static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1297 const struct ieee80211_wmm_ac *wmm_ac2,
1298 struct ieee80211_wmm_ac *intersect)
1299{
1300 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1301 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1302 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1303 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1304}
1305
1306/*
1307 * Helper for regdom_intersect(), this does the real
1308 * mathematical intersection fun
1309 */
1310static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1311 const struct ieee80211_regdomain *rd2,
1312 const struct ieee80211_reg_rule *rule1,
1313 const struct ieee80211_reg_rule *rule2,
1314 struct ieee80211_reg_rule *intersected_rule)
1315{
1316 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1317 struct ieee80211_freq_range *freq_range;
1318 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1319 struct ieee80211_power_rule *power_rule;
1320 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1321 struct ieee80211_wmm_rule *wmm_rule;
1322 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1323
1324 freq_range1 = &rule1->freq_range;
1325 freq_range2 = &rule2->freq_range;
1326 freq_range = &intersected_rule->freq_range;
1327
1328 power_rule1 = &rule1->power_rule;
1329 power_rule2 = &rule2->power_rule;
1330 power_rule = &intersected_rule->power_rule;
1331
1332 wmm_rule1 = &rule1->wmm_rule;
1333 wmm_rule2 = &rule2->wmm_rule;
1334 wmm_rule = &intersected_rule->wmm_rule;
1335
1336 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1337 freq_range2->start_freq_khz);
1338 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1339 freq_range2->end_freq_khz);
1340
1341 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1342 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1343
1344 if (rule1->flags & NL80211_RRF_AUTO_BW)
1345 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1346 if (rule2->flags & NL80211_RRF_AUTO_BW)
1347 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1348
1349 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1350
1351 intersected_rule->flags = rule1->flags | rule2->flags;
1352
1353 /*
1354 * In case NL80211_RRF_AUTO_BW requested for both rules
1355 * set AUTO_BW in intersected rule also. Next we will
1356 * calculate BW correctly in handle_channel function.
1357 * In other case remove AUTO_BW flag while we calculate
1358 * maximum bandwidth correctly and auto calculation is
1359 * not required.
1360 */
1361 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1362 (rule2->flags & NL80211_RRF_AUTO_BW))
1363 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1364 else
1365 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1366
1367 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1368 if (freq_range->max_bandwidth_khz > freq_diff)
1369 freq_range->max_bandwidth_khz = freq_diff;
1370
1371 power_rule->max_eirp = min(power_rule1->max_eirp,
1372 power_rule2->max_eirp);
1373 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1374 power_rule2->max_antenna_gain);
1375
1376 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1377 rule2->dfs_cac_ms);
1378
1379 if (rule1->has_wmm && rule2->has_wmm) {
1380 u8 ac;
1381
1382 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1383 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1384 &wmm_rule2->client[ac],
1385 &wmm_rule->client[ac]);
1386 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1387 &wmm_rule2->ap[ac],
1388 &wmm_rule->ap[ac]);
1389 }
1390
1391 intersected_rule->has_wmm = true;
1392 } else if (rule1->has_wmm) {
1393 *wmm_rule = *wmm_rule1;
1394 intersected_rule->has_wmm = true;
1395 } else if (rule2->has_wmm) {
1396 *wmm_rule = *wmm_rule2;
1397 intersected_rule->has_wmm = true;
1398 } else {
1399 intersected_rule->has_wmm = false;
1400 }
1401
1402 if (!is_valid_reg_rule(intersected_rule))
1403 return -EINVAL;
1404
1405 return 0;
1406}
1407
1408/* check whether old rule contains new rule */
1409static bool rule_contains(struct ieee80211_reg_rule *r1,
1410 struct ieee80211_reg_rule *r2)
1411{
1412 /* for simplicity, currently consider only same flags */
1413 if (r1->flags != r2->flags)
1414 return false;
1415
1416 /* verify r1 is more restrictive */
1417 if ((r1->power_rule.max_antenna_gain >
1418 r2->power_rule.max_antenna_gain) ||
1419 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1420 return false;
1421
1422 /* make sure r2's range is contained within r1 */
1423 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1424 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1425 return false;
1426
1427 /* and finally verify that r1.max_bw >= r2.max_bw */
1428 if (r1->freq_range.max_bandwidth_khz <
1429 r2->freq_range.max_bandwidth_khz)
1430 return false;
1431
1432 return true;
1433}
1434
1435/* add or extend current rules. do nothing if rule is already contained */
1436static void add_rule(struct ieee80211_reg_rule *rule,
1437 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1438{
1439 struct ieee80211_reg_rule *tmp_rule;
1440 int i;
1441
1442 for (i = 0; i < *n_rules; i++) {
1443 tmp_rule = &reg_rules[i];
1444 /* rule is already contained - do nothing */
1445 if (rule_contains(tmp_rule, rule))
1446 return;
1447
1448 /* extend rule if possible */
1449 if (rule_contains(rule, tmp_rule)) {
1450 memcpy(tmp_rule, rule, sizeof(*rule));
1451 return;
1452 }
1453 }
1454
1455 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1456 (*n_rules)++;
1457}
1458
1459/**
1460 * regdom_intersect - do the intersection between two regulatory domains
1461 * @rd1: first regulatory domain
1462 * @rd2: second regulatory domain
1463 *
1464 * Use this function to get the intersection between two regulatory domains.
1465 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1466 * as no one single alpha2 can represent this regulatory domain.
1467 *
1468 * Returns a pointer to the regulatory domain structure which will hold the
1469 * resulting intersection of rules between rd1 and rd2. We will
1470 * kzalloc() this structure for you.
1471 */
1472static struct ieee80211_regdomain *
1473regdom_intersect(const struct ieee80211_regdomain *rd1,
1474 const struct ieee80211_regdomain *rd2)
1475{
1476 int r, size_of_regd;
1477 unsigned int x, y;
1478 unsigned int num_rules = 0;
1479 const struct ieee80211_reg_rule *rule1, *rule2;
1480 struct ieee80211_reg_rule intersected_rule;
1481 struct ieee80211_regdomain *rd;
1482
1483 if (!rd1 || !rd2)
1484 return NULL;
1485
1486 /*
1487 * First we get a count of the rules we'll need, then we actually
1488 * build them. This is to so we can malloc() and free() a
1489 * regdomain once. The reason we use reg_rules_intersect() here
1490 * is it will return -EINVAL if the rule computed makes no sense.
1491 * All rules that do check out OK are valid.
1492 */
1493
1494 for (x = 0; x < rd1->n_reg_rules; x++) {
1495 rule1 = &rd1->reg_rules[x];
1496 for (y = 0; y < rd2->n_reg_rules; y++) {
1497 rule2 = &rd2->reg_rules[y];
1498 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1499 &intersected_rule))
1500 num_rules++;
1501 }
1502 }
1503
1504 if (!num_rules)
1505 return NULL;
1506
1507 size_of_regd = sizeof(struct ieee80211_regdomain) +
1508 num_rules * sizeof(struct ieee80211_reg_rule);
1509
1510 rd = kzalloc(size_of_regd, GFP_KERNEL);
1511 if (!rd)
1512 return NULL;
1513
1514 for (x = 0; x < rd1->n_reg_rules; x++) {
1515 rule1 = &rd1->reg_rules[x];
1516 for (y = 0; y < rd2->n_reg_rules; y++) {
1517 rule2 = &rd2->reg_rules[y];
1518 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1519 &intersected_rule);
1520 /*
1521 * No need to memset here the intersected rule here as
1522 * we're not using the stack anymore
1523 */
1524 if (r)
1525 continue;
1526
1527 add_rule(&intersected_rule, rd->reg_rules,
1528 &rd->n_reg_rules);
1529 }
1530 }
1531
1532 rd->alpha2[0] = '9';
1533 rd->alpha2[1] = '8';
1534 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1535 rd2->dfs_region);
1536
1537 return rd;
1538}
1539
1540/*
1541 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1542 * want to just have the channel structure use these
1543 */
1544static u32 map_regdom_flags(u32 rd_flags)
1545{
1546 u32 channel_flags = 0;
1547 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1548 channel_flags |= IEEE80211_CHAN_NO_IR;
1549 if (rd_flags & NL80211_RRF_DFS)
1550 channel_flags |= IEEE80211_CHAN_RADAR;
1551 if (rd_flags & NL80211_RRF_NO_OFDM)
1552 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1553 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1554 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1555 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1556 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1557 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1558 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1559 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1560 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1561 if (rd_flags & NL80211_RRF_NO_80MHZ)
1562 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1563 if (rd_flags & NL80211_RRF_NO_160MHZ)
1564 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1565 return channel_flags;
1566}
1567
1568static const struct ieee80211_reg_rule *
1569freq_reg_info_regd(u32 center_freq,
1570 const struct ieee80211_regdomain *regd, u32 bw)
1571{
1572 int i;
1573 bool band_rule_found = false;
1574 bool bw_fits = false;
1575
1576 if (!regd)
1577 return ERR_PTR(-EINVAL);
1578
1579 for (i = 0; i < regd->n_reg_rules; i++) {
1580 const struct ieee80211_reg_rule *rr;
1581 const struct ieee80211_freq_range *fr = NULL;
1582
1583 rr = &regd->reg_rules[i];
1584 fr = &rr->freq_range;
1585
1586 /*
1587 * We only need to know if one frequency rule was
1588 * was in center_freq's band, that's enough, so lets
1589 * not overwrite it once found
1590 */
1591 if (!band_rule_found)
1592 band_rule_found = freq_in_rule_band(fr, center_freq);
1593
1594 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1595
1596 if (band_rule_found && bw_fits)
1597 return rr;
1598 }
1599
1600 if (!band_rule_found)
1601 return ERR_PTR(-ERANGE);
1602
1603 return ERR_PTR(-EINVAL);
1604}
1605
1606static const struct ieee80211_reg_rule *
1607__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1608{
1609 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1610 const struct ieee80211_reg_rule *reg_rule = NULL;
1611 u32 bw;
1612
1613 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1614 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1615 if (!IS_ERR(reg_rule))
1616 return reg_rule;
1617 }
1618
1619 return reg_rule;
1620}
1621
1622const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1623 u32 center_freq)
1624{
1625 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1626}
1627EXPORT_SYMBOL(freq_reg_info);
1628
1629const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1630{
1631 switch (initiator) {
1632 case NL80211_REGDOM_SET_BY_CORE:
1633 return "core";
1634 case NL80211_REGDOM_SET_BY_USER:
1635 return "user";
1636 case NL80211_REGDOM_SET_BY_DRIVER:
1637 return "driver";
1638 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1639 return "country element";
1640 default:
1641 WARN_ON(1);
1642 return "bug";
1643 }
1644}
1645EXPORT_SYMBOL(reg_initiator_name);
1646
1647static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1648 const struct ieee80211_reg_rule *reg_rule,
1649 const struct ieee80211_channel *chan)
1650{
1651 const struct ieee80211_freq_range *freq_range = NULL;
1652 u32 max_bandwidth_khz, bw_flags = 0;
1653
1654 freq_range = &reg_rule->freq_range;
1655
1656 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1657 /* Check if auto calculation requested */
1658 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1659 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1660
1661 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1662 if (!cfg80211_does_bw_fit_range(freq_range,
1663 MHZ_TO_KHZ(chan->center_freq),
1664 MHZ_TO_KHZ(10)))
1665 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1666 if (!cfg80211_does_bw_fit_range(freq_range,
1667 MHZ_TO_KHZ(chan->center_freq),
1668 MHZ_TO_KHZ(20)))
1669 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1670
1671 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1672 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1673 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1674 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1675 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1676 bw_flags |= IEEE80211_CHAN_NO_HT40;
1677 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1678 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1679 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1680 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1681 return bw_flags;
1682}
1683
1684/*
1685 * Note that right now we assume the desired channel bandwidth
1686 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1687 * per channel, the primary and the extension channel).
1688 */
1689static void handle_channel(struct wiphy *wiphy,
1690 enum nl80211_reg_initiator initiator,
1691 struct ieee80211_channel *chan)
1692{
1693 u32 flags, bw_flags = 0;
1694 const struct ieee80211_reg_rule *reg_rule = NULL;
1695 const struct ieee80211_power_rule *power_rule = NULL;
1696 struct wiphy *request_wiphy = NULL;
1697 struct regulatory_request *lr = get_last_request();
1698 const struct ieee80211_regdomain *regd;
1699
1700 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1701
1702 flags = chan->orig_flags;
1703
1704 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1705 if (IS_ERR(reg_rule)) {
1706 /*
1707 * We will disable all channels that do not match our
1708 * received regulatory rule unless the hint is coming
1709 * from a Country IE and the Country IE had no information
1710 * about a band. The IEEE 802.11 spec allows for an AP
1711 * to send only a subset of the regulatory rules allowed,
1712 * so an AP in the US that only supports 2.4 GHz may only send
1713 * a country IE with information for the 2.4 GHz band
1714 * while 5 GHz is still supported.
1715 */
1716 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1717 PTR_ERR(reg_rule) == -ERANGE)
1718 return;
1719
1720 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1721 request_wiphy && request_wiphy == wiphy &&
1722 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1723 pr_debug("Disabling freq %d MHz for good\n",
1724 chan->center_freq);
1725 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1726 chan->flags = chan->orig_flags;
1727 } else {
1728 pr_debug("Disabling freq %d MHz\n",
1729 chan->center_freq);
1730 chan->flags |= IEEE80211_CHAN_DISABLED;
1731 }
1732 return;
1733 }
1734
1735 regd = reg_get_regdomain(wiphy);
1736
1737 power_rule = &reg_rule->power_rule;
1738 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1739
1740 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1741 request_wiphy && request_wiphy == wiphy &&
1742 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1743 /*
1744 * This guarantees the driver's requested regulatory domain
1745 * will always be used as a base for further regulatory
1746 * settings
1747 */
1748 chan->flags = chan->orig_flags =
1749 map_regdom_flags(reg_rule->flags) | bw_flags;
1750 chan->max_antenna_gain = chan->orig_mag =
1751 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1752 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1753 (int) MBM_TO_DBM(power_rule->max_eirp);
1754
1755 if (chan->flags & IEEE80211_CHAN_RADAR) {
1756 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1757 if (reg_rule->dfs_cac_ms)
1758 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1759 }
1760
1761 return;
1762 }
1763
1764 chan->dfs_state = NL80211_DFS_USABLE;
1765 chan->dfs_state_entered = jiffies;
1766
1767 chan->beacon_found = false;
1768 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1769 chan->max_antenna_gain =
1770 min_t(int, chan->orig_mag,
1771 MBI_TO_DBI(power_rule->max_antenna_gain));
1772 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1773
1774 if (chan->flags & IEEE80211_CHAN_RADAR) {
1775 if (reg_rule->dfs_cac_ms)
1776 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1777 else
1778 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1779 }
1780
1781 if (chan->orig_mpwr) {
1782 /*
1783 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1784 * will always follow the passed country IE power settings.
1785 */
1786 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1787 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1788 chan->max_power = chan->max_reg_power;
1789 else
1790 chan->max_power = min(chan->orig_mpwr,
1791 chan->max_reg_power);
1792 } else
1793 chan->max_power = chan->max_reg_power;
1794}
1795
1796static void handle_band(struct wiphy *wiphy,
1797 enum nl80211_reg_initiator initiator,
1798 struct ieee80211_supported_band *sband)
1799{
1800 unsigned int i;
1801
1802 if (!sband)
1803 return;
1804
1805 for (i = 0; i < sband->n_channels; i++)
1806 handle_channel(wiphy, initiator, &sband->channels[i]);
1807}
1808
1809static bool reg_request_cell_base(struct regulatory_request *request)
1810{
1811 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1812 return false;
1813 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1814}
1815
1816bool reg_last_request_cell_base(void)
1817{
1818 return reg_request_cell_base(get_last_request());
1819}
1820
1821#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1822/* Core specific check */
1823static enum reg_request_treatment
1824reg_ignore_cell_hint(struct regulatory_request *pending_request)
1825{
1826 struct regulatory_request *lr = get_last_request();
1827
1828 if (!reg_num_devs_support_basehint)
1829 return REG_REQ_IGNORE;
1830
1831 if (reg_request_cell_base(lr) &&
1832 !regdom_changes(pending_request->alpha2))
1833 return REG_REQ_ALREADY_SET;
1834
1835 return REG_REQ_OK;
1836}
1837
1838/* Device specific check */
1839static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1840{
1841 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1842}
1843#else
1844static enum reg_request_treatment
1845reg_ignore_cell_hint(struct regulatory_request *pending_request)
1846{
1847 return REG_REQ_IGNORE;
1848}
1849
1850static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1851{
1852 return true;
1853}
1854#endif
1855
1856static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1857{
1858 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1859 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1860 return true;
1861 return false;
1862}
1863
1864static bool ignore_reg_update(struct wiphy *wiphy,
1865 enum nl80211_reg_initiator initiator)
1866{
1867 struct regulatory_request *lr = get_last_request();
1868
1869 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1870 return true;
1871
1872 if (!lr) {
1873 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1874 reg_initiator_name(initiator));
1875 return true;
1876 }
1877
1878 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1879 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1880 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1881 reg_initiator_name(initiator));
1882 return true;
1883 }
1884
1885 /*
1886 * wiphy->regd will be set once the device has its own
1887 * desired regulatory domain set
1888 */
1889 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1890 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1891 !is_world_regdom(lr->alpha2)) {
1892 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1893 reg_initiator_name(initiator));
1894 return true;
1895 }
1896
1897 if (reg_request_cell_base(lr))
1898 return reg_dev_ignore_cell_hint(wiphy);
1899
1900 return false;
1901}
1902
1903static bool reg_is_world_roaming(struct wiphy *wiphy)
1904{
1905 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1906 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1907 struct regulatory_request *lr = get_last_request();
1908
1909 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1910 return true;
1911
1912 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1913 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1914 return true;
1915
1916 return false;
1917}
1918
1919static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1920 struct reg_beacon *reg_beacon)
1921{
1922 struct ieee80211_supported_band *sband;
1923 struct ieee80211_channel *chan;
1924 bool channel_changed = false;
1925 struct ieee80211_channel chan_before;
1926
1927 sband = wiphy->bands[reg_beacon->chan.band];
1928 chan = &sband->channels[chan_idx];
1929
1930 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1931 return;
1932
1933 if (chan->beacon_found)
1934 return;
1935
1936 chan->beacon_found = true;
1937
1938 if (!reg_is_world_roaming(wiphy))
1939 return;
1940
1941 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1942 return;
1943
1944 chan_before = *chan;
1945
1946 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1947 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1948 channel_changed = true;
1949 }
1950
1951 if (channel_changed)
1952 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1953}
1954
1955/*
1956 * Called when a scan on a wiphy finds a beacon on
1957 * new channel
1958 */
1959static void wiphy_update_new_beacon(struct wiphy *wiphy,
1960 struct reg_beacon *reg_beacon)
1961{
1962 unsigned int i;
1963 struct ieee80211_supported_band *sband;
1964
1965 if (!wiphy->bands[reg_beacon->chan.band])
1966 return;
1967
1968 sband = wiphy->bands[reg_beacon->chan.band];
1969
1970 for (i = 0; i < sband->n_channels; i++)
1971 handle_reg_beacon(wiphy, i, reg_beacon);
1972}
1973
1974/*
1975 * Called upon reg changes or a new wiphy is added
1976 */
1977static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1978{
1979 unsigned int i;
1980 struct ieee80211_supported_band *sband;
1981 struct reg_beacon *reg_beacon;
1982
1983 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1984 if (!wiphy->bands[reg_beacon->chan.band])
1985 continue;
1986 sband = wiphy->bands[reg_beacon->chan.band];
1987 for (i = 0; i < sband->n_channels; i++)
1988 handle_reg_beacon(wiphy, i, reg_beacon);
1989 }
1990}
1991
1992/* Reap the advantages of previously found beacons */
1993static void reg_process_beacons(struct wiphy *wiphy)
1994{
1995 /*
1996 * Means we are just firing up cfg80211, so no beacons would
1997 * have been processed yet.
1998 */
1999 if (!last_request)
2000 return;
2001 wiphy_update_beacon_reg(wiphy);
2002}
2003
2004static bool is_ht40_allowed(struct ieee80211_channel *chan)
2005{
2006 if (!chan)
2007 return false;
2008 if (chan->flags & IEEE80211_CHAN_DISABLED)
2009 return false;
2010 /* This would happen when regulatory rules disallow HT40 completely */
2011 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2012 return false;
2013 return true;
2014}
2015
2016static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2017 struct ieee80211_channel *channel)
2018{
2019 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2020 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2021 const struct ieee80211_regdomain *regd;
2022 unsigned int i;
2023 u32 flags;
2024
2025 if (!is_ht40_allowed(channel)) {
2026 channel->flags |= IEEE80211_CHAN_NO_HT40;
2027 return;
2028 }
2029
2030 /*
2031 * We need to ensure the extension channels exist to
2032 * be able to use HT40- or HT40+, this finds them (or not)
2033 */
2034 for (i = 0; i < sband->n_channels; i++) {
2035 struct ieee80211_channel *c = &sband->channels[i];
2036
2037 if (c->center_freq == (channel->center_freq - 20))
2038 channel_before = c;
2039 if (c->center_freq == (channel->center_freq + 20))
2040 channel_after = c;
2041 }
2042
2043 flags = 0;
2044 regd = get_wiphy_regdom(wiphy);
2045 if (regd) {
2046 const struct ieee80211_reg_rule *reg_rule =
2047 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2048 regd, MHZ_TO_KHZ(20));
2049
2050 if (!IS_ERR(reg_rule))
2051 flags = reg_rule->flags;
2052 }
2053
2054 /*
2055 * Please note that this assumes target bandwidth is 20 MHz,
2056 * if that ever changes we also need to change the below logic
2057 * to include that as well.
2058 */
2059 if (!is_ht40_allowed(channel_before) ||
2060 flags & NL80211_RRF_NO_HT40MINUS)
2061 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2062 else
2063 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2064
2065 if (!is_ht40_allowed(channel_after) ||
2066 flags & NL80211_RRF_NO_HT40PLUS)
2067 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2068 else
2069 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2070}
2071
2072static void reg_process_ht_flags_band(struct wiphy *wiphy,
2073 struct ieee80211_supported_band *sband)
2074{
2075 unsigned int i;
2076
2077 if (!sband)
2078 return;
2079
2080 for (i = 0; i < sband->n_channels; i++)
2081 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2082}
2083
2084static void reg_process_ht_flags(struct wiphy *wiphy)
2085{
2086 enum nl80211_band band;
2087
2088 if (!wiphy)
2089 return;
2090
2091 for (band = 0; band < NUM_NL80211_BANDS; band++)
2092 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2093}
2094
2095static void reg_call_notifier(struct wiphy *wiphy,
2096 struct regulatory_request *request)
2097{
2098 if (wiphy->reg_notifier)
2099 wiphy->reg_notifier(wiphy, request);
2100}
2101
2102static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2103{
2104 struct cfg80211_chan_def chandef = {};
2105 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2106 enum nl80211_iftype iftype;
2107
2108 wdev_lock(wdev);
2109 iftype = wdev->iftype;
2110
2111 /* make sure the interface is active */
2112 if (!wdev->netdev || !netif_running(wdev->netdev))
2113 goto wdev_inactive_unlock;
2114
2115 switch (iftype) {
2116 case NL80211_IFTYPE_AP:
2117 case NL80211_IFTYPE_P2P_GO:
2118 if (!wdev->beacon_interval)
2119 goto wdev_inactive_unlock;
2120 chandef = wdev->chandef;
2121 break;
2122 case NL80211_IFTYPE_ADHOC:
2123 if (!wdev->ssid_len)
2124 goto wdev_inactive_unlock;
2125 chandef = wdev->chandef;
2126 break;
2127 case NL80211_IFTYPE_STATION:
2128 case NL80211_IFTYPE_P2P_CLIENT:
2129 if (!wdev->current_bss ||
2130 !wdev->current_bss->pub.channel)
2131 goto wdev_inactive_unlock;
2132
2133 if (!rdev->ops->get_channel ||
2134 rdev_get_channel(rdev, wdev, &chandef))
2135 cfg80211_chandef_create(&chandef,
2136 wdev->current_bss->pub.channel,
2137 NL80211_CHAN_NO_HT);
2138 break;
2139 case NL80211_IFTYPE_MONITOR:
2140 case NL80211_IFTYPE_AP_VLAN:
2141 case NL80211_IFTYPE_P2P_DEVICE:
2142 /* no enforcement required */
2143 break;
2144 default:
2145 /* others not implemented for now */
2146 WARN_ON(1);
2147 break;
2148 }
2149
2150 wdev_unlock(wdev);
2151
2152 switch (iftype) {
2153 case NL80211_IFTYPE_AP:
2154 case NL80211_IFTYPE_P2P_GO:
2155 case NL80211_IFTYPE_ADHOC:
2156 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2157 case NL80211_IFTYPE_STATION:
2158 case NL80211_IFTYPE_P2P_CLIENT:
2159 return cfg80211_chandef_usable(wiphy, &chandef,
2160 IEEE80211_CHAN_DISABLED);
2161 default:
2162 break;
2163 }
2164
2165 return true;
2166
2167wdev_inactive_unlock:
2168 wdev_unlock(wdev);
2169 return true;
2170}
2171
2172static void reg_leave_invalid_chans(struct wiphy *wiphy)
2173{
2174 struct wireless_dev *wdev;
2175 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2176
2177 ASSERT_RTNL();
2178
2179 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2180 if (!reg_wdev_chan_valid(wiphy, wdev))
2181 cfg80211_leave(rdev, wdev);
2182}
2183
2184static void reg_check_chans_work(struct work_struct *work)
2185{
2186 struct cfg80211_registered_device *rdev;
2187
2188 pr_debug("Verifying active interfaces after reg change\n");
2189 rtnl_lock();
2190
2191 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2192 if (!(rdev->wiphy.regulatory_flags &
2193 REGULATORY_IGNORE_STALE_KICKOFF))
2194 reg_leave_invalid_chans(&rdev->wiphy);
2195
2196 rtnl_unlock();
2197}
2198
2199static void reg_check_channels(void)
2200{
2201 /*
2202 * Give usermode a chance to do something nicer (move to another
2203 * channel, orderly disconnection), before forcing a disconnection.
2204 */
2205 mod_delayed_work(system_power_efficient_wq,
2206 &reg_check_chans,
2207 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2208}
2209
2210static void wiphy_update_regulatory(struct wiphy *wiphy,
2211 enum nl80211_reg_initiator initiator)
2212{
2213 enum nl80211_band band;
2214 struct regulatory_request *lr = get_last_request();
2215
2216 if (ignore_reg_update(wiphy, initiator)) {
2217 /*
2218 * Regulatory updates set by CORE are ignored for custom
2219 * regulatory cards. Let us notify the changes to the driver,
2220 * as some drivers used this to restore its orig_* reg domain.
2221 */
2222 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2223 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2224 !(wiphy->regulatory_flags &
2225 REGULATORY_WIPHY_SELF_MANAGED))
2226 reg_call_notifier(wiphy, lr);
2227 return;
2228 }
2229
2230 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2231
2232 for (band = 0; band < NUM_NL80211_BANDS; band++)
2233 handle_band(wiphy, initiator, wiphy->bands[band]);
2234
2235 reg_process_beacons(wiphy);
2236 reg_process_ht_flags(wiphy);
2237 reg_call_notifier(wiphy, lr);
2238}
2239
2240static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2241{
2242 struct cfg80211_registered_device *rdev;
2243 struct wiphy *wiphy;
2244
2245 ASSERT_RTNL();
2246
2247 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2248 wiphy = &rdev->wiphy;
2249 wiphy_update_regulatory(wiphy, initiator);
2250 }
2251
2252 reg_check_channels();
2253}
2254
2255static void handle_channel_custom(struct wiphy *wiphy,
2256 struct ieee80211_channel *chan,
2257 const struct ieee80211_regdomain *regd)
2258{
2259 u32 bw_flags = 0;
2260 const struct ieee80211_reg_rule *reg_rule = NULL;
2261 const struct ieee80211_power_rule *power_rule = NULL;
2262 u32 bw;
2263
2264 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2265 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2266 regd, bw);
2267 if (!IS_ERR(reg_rule))
2268 break;
2269 }
2270
2271 if (IS_ERR(reg_rule)) {
2272 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2273 chan->center_freq);
2274 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2275 chan->flags |= IEEE80211_CHAN_DISABLED;
2276 } else {
2277 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2278 chan->flags = chan->orig_flags;
2279 }
2280 return;
2281 }
2282
2283 power_rule = &reg_rule->power_rule;
2284 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2285
2286 chan->dfs_state_entered = jiffies;
2287 chan->dfs_state = NL80211_DFS_USABLE;
2288
2289 chan->beacon_found = false;
2290
2291 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2292 chan->flags = chan->orig_flags | bw_flags |
2293 map_regdom_flags(reg_rule->flags);
2294 else
2295 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2296
2297 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2298 chan->max_reg_power = chan->max_power =
2299 (int) MBM_TO_DBM(power_rule->max_eirp);
2300
2301 if (chan->flags & IEEE80211_CHAN_RADAR) {
2302 if (reg_rule->dfs_cac_ms)
2303 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2304 else
2305 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2306 }
2307
2308 chan->max_power = chan->max_reg_power;
2309}
2310
2311static void handle_band_custom(struct wiphy *wiphy,
2312 struct ieee80211_supported_band *sband,
2313 const struct ieee80211_regdomain *regd)
2314{
2315 unsigned int i;
2316
2317 if (!sband)
2318 return;
2319
2320 for (i = 0; i < sband->n_channels; i++)
2321 handle_channel_custom(wiphy, &sband->channels[i], regd);
2322}
2323
2324/* Used by drivers prior to wiphy registration */
2325void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2326 const struct ieee80211_regdomain *regd)
2327{
2328 enum nl80211_band band;
2329 unsigned int bands_set = 0;
2330
2331 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2332 "wiphy should have REGULATORY_CUSTOM_REG\n");
2333 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2334
2335 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2336 if (!wiphy->bands[band])
2337 continue;
2338 handle_band_custom(wiphy, wiphy->bands[band], regd);
2339 bands_set++;
2340 }
2341
2342 /*
2343 * no point in calling this if it won't have any effect
2344 * on your device's supported bands.
2345 */
2346 WARN_ON(!bands_set);
2347}
2348EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2349
2350static void reg_set_request_processed(void)
2351{
2352 bool need_more_processing = false;
2353 struct regulatory_request *lr = get_last_request();
2354
2355 lr->processed = true;
2356
2357 spin_lock(&reg_requests_lock);
2358 if (!list_empty(&reg_requests_list))
2359 need_more_processing = true;
2360 spin_unlock(&reg_requests_lock);
2361
2362 cancel_crda_timeout();
2363
2364 if (need_more_processing)
2365 schedule_work(&reg_work);
2366}
2367
2368/**
2369 * reg_process_hint_core - process core regulatory requests
2370 * @pending_request: a pending core regulatory request
2371 *
2372 * The wireless subsystem can use this function to process
2373 * a regulatory request issued by the regulatory core.
2374 */
2375static enum reg_request_treatment
2376reg_process_hint_core(struct regulatory_request *core_request)
2377{
2378 if (reg_query_database(core_request)) {
2379 core_request->intersect = false;
2380 core_request->processed = false;
2381 reg_update_last_request(core_request);
2382 return REG_REQ_OK;
2383 }
2384
2385 return REG_REQ_IGNORE;
2386}
2387
2388static enum reg_request_treatment
2389__reg_process_hint_user(struct regulatory_request *user_request)
2390{
2391 struct regulatory_request *lr = get_last_request();
2392
2393 if (reg_request_cell_base(user_request))
2394 return reg_ignore_cell_hint(user_request);
2395
2396 if (reg_request_cell_base(lr))
2397 return REG_REQ_IGNORE;
2398
2399 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2400 return REG_REQ_INTERSECT;
2401 /*
2402 * If the user knows better the user should set the regdom
2403 * to their country before the IE is picked up
2404 */
2405 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2406 lr->intersect)
2407 return REG_REQ_IGNORE;
2408 /*
2409 * Process user requests only after previous user/driver/core
2410 * requests have been processed
2411 */
2412 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2413 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2414 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2415 regdom_changes(lr->alpha2))
2416 return REG_REQ_IGNORE;
2417
2418 if (!regdom_changes(user_request->alpha2))
2419 return REG_REQ_ALREADY_SET;
2420
2421 return REG_REQ_OK;
2422}
2423
2424/**
2425 * reg_process_hint_user - process user regulatory requests
2426 * @user_request: a pending user regulatory request
2427 *
2428 * The wireless subsystem can use this function to process
2429 * a regulatory request initiated by userspace.
2430 */
2431static enum reg_request_treatment
2432reg_process_hint_user(struct regulatory_request *user_request)
2433{
2434 enum reg_request_treatment treatment;
2435
2436 treatment = __reg_process_hint_user(user_request);
2437 if (treatment == REG_REQ_IGNORE ||
2438 treatment == REG_REQ_ALREADY_SET)
2439 return REG_REQ_IGNORE;
2440
2441 user_request->intersect = treatment == REG_REQ_INTERSECT;
2442 user_request->processed = false;
2443
2444 if (reg_query_database(user_request)) {
2445 reg_update_last_request(user_request);
2446 user_alpha2[0] = user_request->alpha2[0];
2447 user_alpha2[1] = user_request->alpha2[1];
2448 return REG_REQ_OK;
2449 }
2450
2451 return REG_REQ_IGNORE;
2452}
2453
2454static enum reg_request_treatment
2455__reg_process_hint_driver(struct regulatory_request *driver_request)
2456{
2457 struct regulatory_request *lr = get_last_request();
2458
2459 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2460 if (regdom_changes(driver_request->alpha2))
2461 return REG_REQ_OK;
2462 return REG_REQ_ALREADY_SET;
2463 }
2464
2465 /*
2466 * This would happen if you unplug and plug your card
2467 * back in or if you add a new device for which the previously
2468 * loaded card also agrees on the regulatory domain.
2469 */
2470 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2471 !regdom_changes(driver_request->alpha2))
2472 return REG_REQ_ALREADY_SET;
2473
2474 return REG_REQ_INTERSECT;
2475}
2476
2477/**
2478 * reg_process_hint_driver - process driver regulatory requests
2479 * @driver_request: a pending driver regulatory request
2480 *
2481 * The wireless subsystem can use this function to process
2482 * a regulatory request issued by an 802.11 driver.
2483 *
2484 * Returns one of the different reg request treatment values.
2485 */
2486static enum reg_request_treatment
2487reg_process_hint_driver(struct wiphy *wiphy,
2488 struct regulatory_request *driver_request)
2489{
2490 const struct ieee80211_regdomain *regd, *tmp;
2491 enum reg_request_treatment treatment;
2492
2493 treatment = __reg_process_hint_driver(driver_request);
2494
2495 switch (treatment) {
2496 case REG_REQ_OK:
2497 break;
2498 case REG_REQ_IGNORE:
2499 return REG_REQ_IGNORE;
2500 case REG_REQ_INTERSECT:
2501 case REG_REQ_ALREADY_SET:
2502 regd = reg_copy_regd(get_cfg80211_regdom());
2503 if (IS_ERR(regd))
2504 return REG_REQ_IGNORE;
2505
2506 tmp = get_wiphy_regdom(wiphy);
2507 rcu_assign_pointer(wiphy->regd, regd);
2508 rcu_free_regdom(tmp);
2509 }
2510
2511
2512 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2513 driver_request->processed = false;
2514
2515 /*
2516 * Since CRDA will not be called in this case as we already
2517 * have applied the requested regulatory domain before we just
2518 * inform userspace we have processed the request
2519 */
2520 if (treatment == REG_REQ_ALREADY_SET) {
2521 nl80211_send_reg_change_event(driver_request);
2522 reg_update_last_request(driver_request);
2523 reg_set_request_processed();
2524 return REG_REQ_ALREADY_SET;
2525 }
2526
2527 if (reg_query_database(driver_request)) {
2528 reg_update_last_request(driver_request);
2529 return REG_REQ_OK;
2530 }
2531
2532 return REG_REQ_IGNORE;
2533}
2534
2535static enum reg_request_treatment
2536__reg_process_hint_country_ie(struct wiphy *wiphy,
2537 struct regulatory_request *country_ie_request)
2538{
2539 struct wiphy *last_wiphy = NULL;
2540 struct regulatory_request *lr = get_last_request();
2541
2542 if (reg_request_cell_base(lr)) {
2543 /* Trust a Cell base station over the AP's country IE */
2544 if (regdom_changes(country_ie_request->alpha2))
2545 return REG_REQ_IGNORE;
2546 return REG_REQ_ALREADY_SET;
2547 } else {
2548 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2549 return REG_REQ_IGNORE;
2550 }
2551
2552 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2553 return -EINVAL;
2554
2555 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2556 return REG_REQ_OK;
2557
2558 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2559
2560 if (last_wiphy != wiphy) {
2561 /*
2562 * Two cards with two APs claiming different
2563 * Country IE alpha2s. We could
2564 * intersect them, but that seems unlikely
2565 * to be correct. Reject second one for now.
2566 */
2567 if (regdom_changes(country_ie_request->alpha2))
2568 return REG_REQ_IGNORE;
2569 return REG_REQ_ALREADY_SET;
2570 }
2571
2572 if (regdom_changes(country_ie_request->alpha2))
2573 return REG_REQ_OK;
2574 return REG_REQ_ALREADY_SET;
2575}
2576
2577/**
2578 * reg_process_hint_country_ie - process regulatory requests from country IEs
2579 * @country_ie_request: a regulatory request from a country IE
2580 *
2581 * The wireless subsystem can use this function to process
2582 * a regulatory request issued by a country Information Element.
2583 *
2584 * Returns one of the different reg request treatment values.
2585 */
2586static enum reg_request_treatment
2587reg_process_hint_country_ie(struct wiphy *wiphy,
2588 struct regulatory_request *country_ie_request)
2589{
2590 enum reg_request_treatment treatment;
2591
2592 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2593
2594 switch (treatment) {
2595 case REG_REQ_OK:
2596 break;
2597 case REG_REQ_IGNORE:
2598 return REG_REQ_IGNORE;
2599 case REG_REQ_ALREADY_SET:
2600 reg_free_request(country_ie_request);
2601 return REG_REQ_ALREADY_SET;
2602 case REG_REQ_INTERSECT:
2603 /*
2604 * This doesn't happen yet, not sure we
2605 * ever want to support it for this case.
2606 */
2607 WARN_ONCE(1, "Unexpected intersection for country elements");
2608 return REG_REQ_IGNORE;
2609 }
2610
2611 country_ie_request->intersect = false;
2612 country_ie_request->processed = false;
2613
2614 if (reg_query_database(country_ie_request)) {
2615 reg_update_last_request(country_ie_request);
2616 return REG_REQ_OK;
2617 }
2618
2619 return REG_REQ_IGNORE;
2620}
2621
2622bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2623{
2624 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2625 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2626 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2627 bool dfs_domain_same;
2628
2629 rcu_read_lock();
2630
2631 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2632 wiphy1_regd = rcu_dereference(wiphy1->regd);
2633 if (!wiphy1_regd)
2634 wiphy1_regd = cfg80211_regd;
2635
2636 wiphy2_regd = rcu_dereference(wiphy2->regd);
2637 if (!wiphy2_regd)
2638 wiphy2_regd = cfg80211_regd;
2639
2640 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2641
2642 rcu_read_unlock();
2643
2644 return dfs_domain_same;
2645}
2646
2647static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2648 struct ieee80211_channel *src_chan)
2649{
2650 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2651 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2652 return;
2653
2654 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2655 src_chan->flags & IEEE80211_CHAN_DISABLED)
2656 return;
2657
2658 if (src_chan->center_freq == dst_chan->center_freq &&
2659 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2660 dst_chan->dfs_state = src_chan->dfs_state;
2661 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2662 }
2663}
2664
2665static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2666 struct wiphy *src_wiphy)
2667{
2668 struct ieee80211_supported_band *src_sband, *dst_sband;
2669 struct ieee80211_channel *src_chan, *dst_chan;
2670 int i, j, band;
2671
2672 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2673 return;
2674
2675 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2676 dst_sband = dst_wiphy->bands[band];
2677 src_sband = src_wiphy->bands[band];
2678 if (!dst_sband || !src_sband)
2679 continue;
2680
2681 for (i = 0; i < dst_sband->n_channels; i++) {
2682 dst_chan = &dst_sband->channels[i];
2683 for (j = 0; j < src_sband->n_channels; j++) {
2684 src_chan = &src_sband->channels[j];
2685 reg_copy_dfs_chan_state(dst_chan, src_chan);
2686 }
2687 }
2688 }
2689}
2690
2691static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2692{
2693 struct cfg80211_registered_device *rdev;
2694
2695 ASSERT_RTNL();
2696
2697 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2698 if (wiphy == &rdev->wiphy)
2699 continue;
2700 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2701 }
2702}
2703
2704/* This processes *all* regulatory hints */
2705static void reg_process_hint(struct regulatory_request *reg_request)
2706{
2707 struct wiphy *wiphy = NULL;
2708 enum reg_request_treatment treatment;
2709 enum nl80211_reg_initiator initiator = reg_request->initiator;
2710
2711 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2712 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2713
2714 switch (initiator) {
2715 case NL80211_REGDOM_SET_BY_CORE:
2716 treatment = reg_process_hint_core(reg_request);
2717 break;
2718 case NL80211_REGDOM_SET_BY_USER:
2719 treatment = reg_process_hint_user(reg_request);
2720 break;
2721 case NL80211_REGDOM_SET_BY_DRIVER:
2722 if (!wiphy)
2723 goto out_free;
2724 treatment = reg_process_hint_driver(wiphy, reg_request);
2725 break;
2726 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2727 if (!wiphy)
2728 goto out_free;
2729 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2730 break;
2731 default:
2732 WARN(1, "invalid initiator %d\n", initiator);
2733 goto out_free;
2734 }
2735
2736 if (treatment == REG_REQ_IGNORE)
2737 goto out_free;
2738
2739 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2740 "unexpected treatment value %d\n", treatment);
2741
2742 /* This is required so that the orig_* parameters are saved.
2743 * NOTE: treatment must be set for any case that reaches here!
2744 */
2745 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2746 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2747 wiphy_update_regulatory(wiphy, initiator);
2748 wiphy_all_share_dfs_chan_state(wiphy);
2749 reg_check_channels();
2750 }
2751
2752 return;
2753
2754out_free:
2755 reg_free_request(reg_request);
2756}
2757
2758static void notify_self_managed_wiphys(struct regulatory_request *request)
2759{
2760 struct cfg80211_registered_device *rdev;
2761 struct wiphy *wiphy;
2762
2763 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2764 wiphy = &rdev->wiphy;
2765 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2766 request->initiator == NL80211_REGDOM_SET_BY_USER &&
2767 request->user_reg_hint_type ==
2768 NL80211_USER_REG_HINT_CELL_BASE)
2769 reg_call_notifier(wiphy, request);
2770 }
2771}
2772
2773/*
2774 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2775 * Regulatory hints come on a first come first serve basis and we
2776 * must process each one atomically.
2777 */
2778static void reg_process_pending_hints(void)
2779{
2780 struct regulatory_request *reg_request, *lr;
2781
2782 lr = get_last_request();
2783
2784 /* When last_request->processed becomes true this will be rescheduled */
2785 if (lr && !lr->processed) {
2786 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
2787 return;
2788 }
2789
2790 spin_lock(&reg_requests_lock);
2791
2792 if (list_empty(&reg_requests_list)) {
2793 spin_unlock(&reg_requests_lock);
2794 return;
2795 }
2796
2797 reg_request = list_first_entry(&reg_requests_list,
2798 struct regulatory_request,
2799 list);
2800 list_del_init(&reg_request->list);
2801
2802 spin_unlock(&reg_requests_lock);
2803
2804 notify_self_managed_wiphys(reg_request);
2805
2806 reg_process_hint(reg_request);
2807
2808 lr = get_last_request();
2809
2810 spin_lock(&reg_requests_lock);
2811 if (!list_empty(&reg_requests_list) && lr && lr->processed)
2812 schedule_work(&reg_work);
2813 spin_unlock(&reg_requests_lock);
2814}
2815
2816/* Processes beacon hints -- this has nothing to do with country IEs */
2817static void reg_process_pending_beacon_hints(void)
2818{
2819 struct cfg80211_registered_device *rdev;
2820 struct reg_beacon *pending_beacon, *tmp;
2821
2822 /* This goes through the _pending_ beacon list */
2823 spin_lock_bh(&reg_pending_beacons_lock);
2824
2825 list_for_each_entry_safe(pending_beacon, tmp,
2826 &reg_pending_beacons, list) {
2827 list_del_init(&pending_beacon->list);
2828
2829 /* Applies the beacon hint to current wiphys */
2830 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2831 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2832
2833 /* Remembers the beacon hint for new wiphys or reg changes */
2834 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2835 }
2836
2837 spin_unlock_bh(&reg_pending_beacons_lock);
2838}
2839
2840static void reg_process_self_managed_hints(void)
2841{
2842 struct cfg80211_registered_device *rdev;
2843 struct wiphy *wiphy;
2844 const struct ieee80211_regdomain *tmp;
2845 const struct ieee80211_regdomain *regd;
2846 enum nl80211_band band;
2847 struct regulatory_request request = {};
2848
2849 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2850 wiphy = &rdev->wiphy;
2851
2852 spin_lock(&reg_requests_lock);
2853 regd = rdev->requested_regd;
2854 rdev->requested_regd = NULL;
2855 spin_unlock(&reg_requests_lock);
2856
2857 if (regd == NULL)
2858 continue;
2859
2860 tmp = get_wiphy_regdom(wiphy);
2861 rcu_assign_pointer(wiphy->regd, regd);
2862 rcu_free_regdom(tmp);
2863
2864 for (band = 0; band < NUM_NL80211_BANDS; band++)
2865 handle_band_custom(wiphy, wiphy->bands[band], regd);
2866
2867 reg_process_ht_flags(wiphy);
2868
2869 request.wiphy_idx = get_wiphy_idx(wiphy);
2870 request.alpha2[0] = regd->alpha2[0];
2871 request.alpha2[1] = regd->alpha2[1];
2872 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2873
2874 nl80211_send_wiphy_reg_change_event(&request);
2875 }
2876
2877 reg_check_channels();
2878}
2879
2880static void reg_todo(struct work_struct *work)
2881{
2882 rtnl_lock();
2883 reg_process_pending_hints();
2884 reg_process_pending_beacon_hints();
2885 reg_process_self_managed_hints();
2886 rtnl_unlock();
2887}
2888
2889static void queue_regulatory_request(struct regulatory_request *request)
2890{
2891 request->alpha2[0] = toupper(request->alpha2[0]);
2892 request->alpha2[1] = toupper(request->alpha2[1]);
2893
2894 spin_lock(&reg_requests_lock);
2895 list_add_tail(&request->list, &reg_requests_list);
2896 spin_unlock(&reg_requests_lock);
2897
2898 schedule_work(&reg_work);
2899}
2900
2901/*
2902 * Core regulatory hint -- happens during cfg80211_init()
2903 * and when we restore regulatory settings.
2904 */
2905static int regulatory_hint_core(const char *alpha2)
2906{
2907 struct regulatory_request *request;
2908
2909 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2910 if (!request)
2911 return -ENOMEM;
2912
2913 request->alpha2[0] = alpha2[0];
2914 request->alpha2[1] = alpha2[1];
2915 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2916 request->wiphy_idx = WIPHY_IDX_INVALID;
2917
2918 queue_regulatory_request(request);
2919
2920 return 0;
2921}
2922
2923/* User hints */
2924int regulatory_hint_user(const char *alpha2,
2925 enum nl80211_user_reg_hint_type user_reg_hint_type)
2926{
2927 struct regulatory_request *request;
2928
2929 if (WARN_ON(!alpha2))
2930 return -EINVAL;
2931
2932 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2933 if (!request)
2934 return -ENOMEM;
2935
2936 request->wiphy_idx = WIPHY_IDX_INVALID;
2937 request->alpha2[0] = alpha2[0];
2938 request->alpha2[1] = alpha2[1];
2939 request->initiator = NL80211_REGDOM_SET_BY_USER;
2940 request->user_reg_hint_type = user_reg_hint_type;
2941
2942 /* Allow calling CRDA again */
2943 reset_crda_timeouts();
2944
2945 queue_regulatory_request(request);
2946
2947 return 0;
2948}
2949
2950int regulatory_hint_indoor(bool is_indoor, u32 portid)
2951{
2952 spin_lock(&reg_indoor_lock);
2953
2954 /* It is possible that more than one user space process is trying to
2955 * configure the indoor setting. To handle such cases, clear the indoor
2956 * setting in case that some process does not think that the device
2957 * is operating in an indoor environment. In addition, if a user space
2958 * process indicates that it is controlling the indoor setting, save its
2959 * portid, i.e., make it the owner.
2960 */
2961 reg_is_indoor = is_indoor;
2962 if (reg_is_indoor) {
2963 if (!reg_is_indoor_portid)
2964 reg_is_indoor_portid = portid;
2965 } else {
2966 reg_is_indoor_portid = 0;
2967 }
2968
2969 spin_unlock(&reg_indoor_lock);
2970
2971 if (!is_indoor)
2972 reg_check_channels();
2973
2974 return 0;
2975}
2976
2977void regulatory_netlink_notify(u32 portid)
2978{
2979 spin_lock(&reg_indoor_lock);
2980
2981 if (reg_is_indoor_portid != portid) {
2982 spin_unlock(&reg_indoor_lock);
2983 return;
2984 }
2985
2986 reg_is_indoor = false;
2987 reg_is_indoor_portid = 0;
2988
2989 spin_unlock(&reg_indoor_lock);
2990
2991 reg_check_channels();
2992}
2993
2994/* Driver hints */
2995int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2996{
2997 struct regulatory_request *request;
2998
2999 if (WARN_ON(!alpha2 || !wiphy))
3000 return -EINVAL;
3001
3002 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3003
3004 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3005 if (!request)
3006 return -ENOMEM;
3007
3008 request->wiphy_idx = get_wiphy_idx(wiphy);
3009
3010 request->alpha2[0] = alpha2[0];
3011 request->alpha2[1] = alpha2[1];
3012 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3013
3014 /* Allow calling CRDA again */
3015 reset_crda_timeouts();
3016
3017 queue_regulatory_request(request);
3018
3019 return 0;
3020}
3021EXPORT_SYMBOL(regulatory_hint);
3022
3023void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3024 const u8 *country_ie, u8 country_ie_len)
3025{
3026 char alpha2[2];
3027 enum environment_cap env = ENVIRON_ANY;
3028 struct regulatory_request *request = NULL, *lr;
3029
3030 /* IE len must be evenly divisible by 2 */
3031 if (country_ie_len & 0x01)
3032 return;
3033
3034 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3035 return;
3036
3037 request = kzalloc(sizeof(*request), GFP_KERNEL);
3038 if (!request)
3039 return;
3040
3041 alpha2[0] = country_ie[0];
3042 alpha2[1] = country_ie[1];
3043
3044 if (country_ie[2] == 'I')
3045 env = ENVIRON_INDOOR;
3046 else if (country_ie[2] == 'O')
3047 env = ENVIRON_OUTDOOR;
3048
3049 rcu_read_lock();
3050 lr = get_last_request();
3051
3052 if (unlikely(!lr))
3053 goto out;
3054
3055 /*
3056 * We will run this only upon a successful connection on cfg80211.
3057 * We leave conflict resolution to the workqueue, where can hold
3058 * the RTNL.
3059 */
3060 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3061 lr->wiphy_idx != WIPHY_IDX_INVALID)
3062 goto out;
3063
3064 request->wiphy_idx = get_wiphy_idx(wiphy);
3065 request->alpha2[0] = alpha2[0];
3066 request->alpha2[1] = alpha2[1];
3067 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3068 request->country_ie_env = env;
3069
3070 /* Allow calling CRDA again */
3071 reset_crda_timeouts();
3072
3073 queue_regulatory_request(request);
3074 request = NULL;
3075out:
3076 kfree(request);
3077 rcu_read_unlock();
3078}
3079
3080static void restore_alpha2(char *alpha2, bool reset_user)
3081{
3082 /* indicates there is no alpha2 to consider for restoration */
3083 alpha2[0] = '9';
3084 alpha2[1] = '7';
3085
3086 /* The user setting has precedence over the module parameter */
3087 if (is_user_regdom_saved()) {
3088 /* Unless we're asked to ignore it and reset it */
3089 if (reset_user) {
3090 pr_debug("Restoring regulatory settings including user preference\n");
3091 user_alpha2[0] = '9';
3092 user_alpha2[1] = '7';
3093
3094 /*
3095 * If we're ignoring user settings, we still need to
3096 * check the module parameter to ensure we put things
3097 * back as they were for a full restore.
3098 */
3099 if (!is_world_regdom(ieee80211_regdom)) {
3100 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3101 ieee80211_regdom[0], ieee80211_regdom[1]);
3102 alpha2[0] = ieee80211_regdom[0];
3103 alpha2[1] = ieee80211_regdom[1];
3104 }
3105 } else {
3106 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3107 user_alpha2[0], user_alpha2[1]);
3108 alpha2[0] = user_alpha2[0];
3109 alpha2[1] = user_alpha2[1];
3110 }
3111 } else if (!is_world_regdom(ieee80211_regdom)) {
3112 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3113 ieee80211_regdom[0], ieee80211_regdom[1]);
3114 alpha2[0] = ieee80211_regdom[0];
3115 alpha2[1] = ieee80211_regdom[1];
3116 } else
3117 pr_debug("Restoring regulatory settings\n");
3118}
3119
3120static void restore_custom_reg_settings(struct wiphy *wiphy)
3121{
3122 struct ieee80211_supported_band *sband;
3123 enum nl80211_band band;
3124 struct ieee80211_channel *chan;
3125 int i;
3126
3127 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3128 sband = wiphy->bands[band];
3129 if (!sband)
3130 continue;
3131 for (i = 0; i < sband->n_channels; i++) {
3132 chan = &sband->channels[i];
3133 chan->flags = chan->orig_flags;
3134 chan->max_antenna_gain = chan->orig_mag;
3135 chan->max_power = chan->orig_mpwr;
3136 chan->beacon_found = false;
3137 }
3138 }
3139}
3140
3141/*
3142 * Restoring regulatory settings involves ingoring any
3143 * possibly stale country IE information and user regulatory
3144 * settings if so desired, this includes any beacon hints
3145 * learned as we could have traveled outside to another country
3146 * after disconnection. To restore regulatory settings we do
3147 * exactly what we did at bootup:
3148 *
3149 * - send a core regulatory hint
3150 * - send a user regulatory hint if applicable
3151 *
3152 * Device drivers that send a regulatory hint for a specific country
3153 * keep their own regulatory domain on wiphy->regd so that does does
3154 * not need to be remembered.
3155 */
3156static void restore_regulatory_settings(bool reset_user)
3157{
3158 char alpha2[2];
3159 char world_alpha2[2];
3160 struct reg_beacon *reg_beacon, *btmp;
3161 LIST_HEAD(tmp_reg_req_list);
3162 struct cfg80211_registered_device *rdev;
3163
3164 ASSERT_RTNL();
3165
3166 /*
3167 * Clear the indoor setting in case that it is not controlled by user
3168 * space, as otherwise there is no guarantee that the device is still
3169 * operating in an indoor environment.
3170 */
3171 spin_lock(&reg_indoor_lock);
3172 if (reg_is_indoor && !reg_is_indoor_portid) {
3173 reg_is_indoor = false;
3174 reg_check_channels();
3175 }
3176 spin_unlock(&reg_indoor_lock);
3177
3178 reset_regdomains(true, &world_regdom);
3179 restore_alpha2(alpha2, reset_user);
3180
3181 /*
3182 * If there's any pending requests we simply
3183 * stash them to a temporary pending queue and
3184 * add then after we've restored regulatory
3185 * settings.
3186 */
3187 spin_lock(&reg_requests_lock);
3188 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3189 spin_unlock(&reg_requests_lock);
3190
3191 /* Clear beacon hints */
3192 spin_lock_bh(&reg_pending_beacons_lock);
3193 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3194 list_del(&reg_beacon->list);
3195 kfree(reg_beacon);
3196 }
3197 spin_unlock_bh(&reg_pending_beacons_lock);
3198
3199 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3200 list_del(&reg_beacon->list);
3201 kfree(reg_beacon);
3202 }
3203
3204 /* First restore to the basic regulatory settings */
3205 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3206 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3207
3208 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3209 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3210 continue;
3211 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3212 restore_custom_reg_settings(&rdev->wiphy);
3213 }
3214
3215 regulatory_hint_core(world_alpha2);
3216
3217 /*
3218 * This restores the ieee80211_regdom module parameter
3219 * preference or the last user requested regulatory
3220 * settings, user regulatory settings takes precedence.
3221 */
3222 if (is_an_alpha2(alpha2))
3223 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3224
3225 spin_lock(&reg_requests_lock);
3226 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3227 spin_unlock(&reg_requests_lock);
3228
3229 pr_debug("Kicking the queue\n");
3230
3231 schedule_work(&reg_work);
3232}
3233
3234static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3235{
3236 struct cfg80211_registered_device *rdev;
3237 struct wireless_dev *wdev;
3238
3239 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3240 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3241 wdev_lock(wdev);
3242 if (!(wdev->wiphy->regulatory_flags & flag)) {
3243 wdev_unlock(wdev);
3244 return false;
3245 }
3246 wdev_unlock(wdev);
3247 }
3248 }
3249
3250 return true;
3251}
3252
3253void regulatory_hint_disconnect(void)
3254{
3255 /* Restore of regulatory settings is not required when wiphy(s)
3256 * ignore IE from connected access point but clearance of beacon hints
3257 * is required when wiphy(s) supports beacon hints.
3258 */
3259 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3260 struct reg_beacon *reg_beacon, *btmp;
3261
3262 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3263 return;
3264
3265 spin_lock_bh(&reg_pending_beacons_lock);
3266 list_for_each_entry_safe(reg_beacon, btmp,
3267 &reg_pending_beacons, list) {
3268 list_del(&reg_beacon->list);
3269 kfree(reg_beacon);
3270 }
3271 spin_unlock_bh(&reg_pending_beacons_lock);
3272
3273 list_for_each_entry_safe(reg_beacon, btmp,
3274 &reg_beacon_list, list) {
3275 list_del(&reg_beacon->list);
3276 kfree(reg_beacon);
3277 }
3278
3279 return;
3280 }
3281
3282 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3283 restore_regulatory_settings(false);
3284}
3285
3286static bool freq_is_chan_12_13_14(u16 freq)
3287{
3288 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3289 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3290 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3291 return true;
3292 return false;
3293}
3294
3295static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3296{
3297 struct reg_beacon *pending_beacon;
3298
3299 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3300 if (beacon_chan->center_freq ==
3301 pending_beacon->chan.center_freq)
3302 return true;
3303 return false;
3304}
3305
3306int regulatory_hint_found_beacon(struct wiphy *wiphy,
3307 struct ieee80211_channel *beacon_chan,
3308 gfp_t gfp)
3309{
3310 struct reg_beacon *reg_beacon;
3311 bool processing;
3312
3313 if (beacon_chan->beacon_found ||
3314 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3315 (beacon_chan->band == NL80211_BAND_2GHZ &&
3316 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3317 return 0;
3318
3319 spin_lock_bh(&reg_pending_beacons_lock);
3320 processing = pending_reg_beacon(beacon_chan);
3321 spin_unlock_bh(&reg_pending_beacons_lock);
3322
3323 if (processing)
3324 return 0;
3325
3326 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3327 if (!reg_beacon)
3328 return -ENOMEM;
3329
3330 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3331 beacon_chan->center_freq,
3332 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3333 wiphy_name(wiphy));
3334
3335 memcpy(&reg_beacon->chan, beacon_chan,
3336 sizeof(struct ieee80211_channel));
3337
3338 /*
3339 * Since we can be called from BH or and non-BH context
3340 * we must use spin_lock_bh()
3341 */
3342 spin_lock_bh(&reg_pending_beacons_lock);
3343 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3344 spin_unlock_bh(&reg_pending_beacons_lock);
3345
3346 schedule_work(&reg_work);
3347
3348 return 0;
3349}
3350
3351static void print_rd_rules(const struct ieee80211_regdomain *rd)
3352{
3353 unsigned int i;
3354 const struct ieee80211_reg_rule *reg_rule = NULL;
3355 const struct ieee80211_freq_range *freq_range = NULL;
3356 const struct ieee80211_power_rule *power_rule = NULL;
3357 char bw[32], cac_time[32];
3358
3359 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3360
3361 for (i = 0; i < rd->n_reg_rules; i++) {
3362 reg_rule = &rd->reg_rules[i];
3363 freq_range = &reg_rule->freq_range;
3364 power_rule = &reg_rule->power_rule;
3365
3366 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3367 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3368 freq_range->max_bandwidth_khz,
3369 reg_get_max_bandwidth(rd, reg_rule));
3370 else
3371 snprintf(bw, sizeof(bw), "%d KHz",
3372 freq_range->max_bandwidth_khz);
3373
3374 if (reg_rule->flags & NL80211_RRF_DFS)
3375 scnprintf(cac_time, sizeof(cac_time), "%u s",
3376 reg_rule->dfs_cac_ms/1000);
3377 else
3378 scnprintf(cac_time, sizeof(cac_time), "N/A");
3379
3380
3381 /*
3382 * There may not be documentation for max antenna gain
3383 * in certain regions
3384 */
3385 if (power_rule->max_antenna_gain)
3386 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3387 freq_range->start_freq_khz,
3388 freq_range->end_freq_khz,
3389 bw,
3390 power_rule->max_antenna_gain,
3391 power_rule->max_eirp,
3392 cac_time);
3393 else
3394 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3395 freq_range->start_freq_khz,
3396 freq_range->end_freq_khz,
3397 bw,
3398 power_rule->max_eirp,
3399 cac_time);
3400 }
3401}
3402
3403bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3404{
3405 switch (dfs_region) {
3406 case NL80211_DFS_UNSET:
3407 case NL80211_DFS_FCC:
3408 case NL80211_DFS_ETSI:
3409 case NL80211_DFS_JP:
3410 return true;
3411 default:
3412 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3413 return false;
3414 }
3415}
3416
3417static void print_regdomain(const struct ieee80211_regdomain *rd)
3418{
3419 struct regulatory_request *lr = get_last_request();
3420
3421 if (is_intersected_alpha2(rd->alpha2)) {
3422 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3423 struct cfg80211_registered_device *rdev;
3424 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3425 if (rdev) {
3426 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3427 rdev->country_ie_alpha2[0],
3428 rdev->country_ie_alpha2[1]);
3429 } else
3430 pr_debug("Current regulatory domain intersected:\n");
3431 } else
3432 pr_debug("Current regulatory domain intersected:\n");
3433 } else if (is_world_regdom(rd->alpha2)) {
3434 pr_debug("World regulatory domain updated:\n");
3435 } else {
3436 if (is_unknown_alpha2(rd->alpha2))
3437 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3438 else {
3439 if (reg_request_cell_base(lr))
3440 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3441 rd->alpha2[0], rd->alpha2[1]);
3442 else
3443 pr_debug("Regulatory domain changed to country: %c%c\n",
3444 rd->alpha2[0], rd->alpha2[1]);
3445 }
3446 }
3447
3448 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3449 print_rd_rules(rd);
3450}
3451
3452static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3453{
3454 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3455 print_rd_rules(rd);
3456}
3457
3458static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3459{
3460 if (!is_world_regdom(rd->alpha2))
3461 return -EINVAL;
3462 update_world_regdomain(rd);
3463 return 0;
3464}
3465
3466static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3467 struct regulatory_request *user_request)
3468{
3469 const struct ieee80211_regdomain *intersected_rd = NULL;
3470
3471 if (!regdom_changes(rd->alpha2))
3472 return -EALREADY;
3473
3474 if (!is_valid_rd(rd)) {
3475 pr_err("Invalid regulatory domain detected: %c%c\n",
3476 rd->alpha2[0], rd->alpha2[1]);
3477 print_regdomain_info(rd);
3478 return -EINVAL;
3479 }
3480
3481 if (!user_request->intersect) {
3482 reset_regdomains(false, rd);
3483 return 0;
3484 }
3485
3486 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3487 if (!intersected_rd)
3488 return -EINVAL;
3489
3490 kfree(rd);
3491 rd = NULL;
3492 reset_regdomains(false, intersected_rd);
3493
3494 return 0;
3495}
3496
3497static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3498 struct regulatory_request *driver_request)
3499{
3500 const struct ieee80211_regdomain *regd;
3501 const struct ieee80211_regdomain *intersected_rd = NULL;
3502 const struct ieee80211_regdomain *tmp;
3503 struct wiphy *request_wiphy;
3504
3505 if (is_world_regdom(rd->alpha2))
3506 return -EINVAL;
3507
3508 if (!regdom_changes(rd->alpha2))
3509 return -EALREADY;
3510
3511 if (!is_valid_rd(rd)) {
3512 pr_err("Invalid regulatory domain detected: %c%c\n",
3513 rd->alpha2[0], rd->alpha2[1]);
3514 print_regdomain_info(rd);
3515 return -EINVAL;
3516 }
3517
3518 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3519 if (!request_wiphy)
3520 return -ENODEV;
3521
3522 if (!driver_request->intersect) {
3523 if (request_wiphy->regd)
3524 return -EALREADY;
3525
3526 regd = reg_copy_regd(rd);
3527 if (IS_ERR(regd))
3528 return PTR_ERR(regd);
3529
3530 rcu_assign_pointer(request_wiphy->regd, regd);
3531 reset_regdomains(false, rd);
3532 return 0;
3533 }
3534
3535 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3536 if (!intersected_rd)
3537 return -EINVAL;
3538
3539 /*
3540 * We can trash what CRDA provided now.
3541 * However if a driver requested this specific regulatory
3542 * domain we keep it for its private use
3543 */
3544 tmp = get_wiphy_regdom(request_wiphy);
3545 rcu_assign_pointer(request_wiphy->regd, rd);
3546 rcu_free_regdom(tmp);
3547
3548 rd = NULL;
3549
3550 reset_regdomains(false, intersected_rd);
3551
3552 return 0;
3553}
3554
3555static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3556 struct regulatory_request *country_ie_request)
3557{
3558 struct wiphy *request_wiphy;
3559
3560 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3561 !is_unknown_alpha2(rd->alpha2))
3562 return -EINVAL;
3563
3564 /*
3565 * Lets only bother proceeding on the same alpha2 if the current
3566 * rd is non static (it means CRDA was present and was used last)
3567 * and the pending request came in from a country IE
3568 */
3569
3570 if (!is_valid_rd(rd)) {
3571 pr_err("Invalid regulatory domain detected: %c%c\n",
3572 rd->alpha2[0], rd->alpha2[1]);
3573 print_regdomain_info(rd);
3574 return -EINVAL;
3575 }
3576
3577 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3578 if (!request_wiphy)
3579 return -ENODEV;
3580
3581 if (country_ie_request->intersect)
3582 return -EINVAL;
3583
3584 reset_regdomains(false, rd);
3585 return 0;
3586}
3587
3588/*
3589 * Use this call to set the current regulatory domain. Conflicts with
3590 * multiple drivers can be ironed out later. Caller must've already
3591 * kmalloc'd the rd structure.
3592 */
3593int set_regdom(const struct ieee80211_regdomain *rd,
3594 enum ieee80211_regd_source regd_src)
3595{
3596 struct regulatory_request *lr;
3597 bool user_reset = false;
3598 int r;
3599
3600 if (!reg_is_valid_request(rd->alpha2)) {
3601 kfree(rd);
3602 return -EINVAL;
3603 }
3604
3605 if (regd_src == REGD_SOURCE_CRDA)
3606 reset_crda_timeouts();
3607
3608 lr = get_last_request();
3609
3610 /* Note that this doesn't update the wiphys, this is done below */
3611 switch (lr->initiator) {
3612 case NL80211_REGDOM_SET_BY_CORE:
3613 r = reg_set_rd_core(rd);
3614 break;
3615 case NL80211_REGDOM_SET_BY_USER:
3616 r = reg_set_rd_user(rd, lr);
3617 user_reset = true;
3618 break;
3619 case NL80211_REGDOM_SET_BY_DRIVER:
3620 r = reg_set_rd_driver(rd, lr);
3621 break;
3622 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3623 r = reg_set_rd_country_ie(rd, lr);
3624 break;
3625 default:
3626 WARN(1, "invalid initiator %d\n", lr->initiator);
3627 kfree(rd);
3628 return -EINVAL;
3629 }
3630
3631 if (r) {
3632 switch (r) {
3633 case -EALREADY:
3634 reg_set_request_processed();
3635 break;
3636 default:
3637 /* Back to world regulatory in case of errors */
3638 restore_regulatory_settings(user_reset);
3639 }
3640
3641 kfree(rd);
3642 return r;
3643 }
3644
3645 /* This would make this whole thing pointless */
3646 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3647 return -EINVAL;
3648
3649 /* update all wiphys now with the new established regulatory domain */
3650 update_all_wiphy_regulatory(lr->initiator);
3651
3652 print_regdomain(get_cfg80211_regdom());
3653
3654 nl80211_send_reg_change_event(lr);
3655
3656 reg_set_request_processed();
3657
3658 return 0;
3659}
3660
3661static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3662 struct ieee80211_regdomain *rd)
3663{
3664 const struct ieee80211_regdomain *regd;
3665 const struct ieee80211_regdomain *prev_regd;
3666 struct cfg80211_registered_device *rdev;
3667
3668 if (WARN_ON(!wiphy || !rd))
3669 return -EINVAL;
3670
3671 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3672 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3673 return -EPERM;
3674
3675 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3676 print_regdomain_info(rd);
3677 return -EINVAL;
3678 }
3679
3680 regd = reg_copy_regd(rd);
3681 if (IS_ERR(regd))
3682 return PTR_ERR(regd);
3683
3684 rdev = wiphy_to_rdev(wiphy);
3685
3686 spin_lock(&reg_requests_lock);
3687 prev_regd = rdev->requested_regd;
3688 rdev->requested_regd = regd;
3689 spin_unlock(&reg_requests_lock);
3690
3691 kfree(prev_regd);
3692 return 0;
3693}
3694
3695int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3696 struct ieee80211_regdomain *rd)
3697{
3698 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3699
3700 if (ret)
3701 return ret;
3702
3703 schedule_work(&reg_work);
3704 return 0;
3705}
3706EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3707
3708int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3709 struct ieee80211_regdomain *rd)
3710{
3711 int ret;
3712
3713 ASSERT_RTNL();
3714
3715 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3716 if (ret)
3717 return ret;
3718
3719 /* process the request immediately */
3720 reg_process_self_managed_hints();
3721 return 0;
3722}
3723EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3724
3725void wiphy_regulatory_register(struct wiphy *wiphy)
3726{
3727 struct regulatory_request *lr = get_last_request();
3728
3729 /* self-managed devices ignore beacon hints and country IE */
3730 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3731 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3732 REGULATORY_COUNTRY_IE_IGNORE;
3733
3734 /*
3735 * The last request may have been received before this
3736 * registration call. Call the driver notifier if
3737 * initiator is USER and user type is CELL_BASE.
3738 */
3739 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
3740 lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE)
3741 reg_call_notifier(wiphy, lr);
3742 }
3743
3744 if (!reg_dev_ignore_cell_hint(wiphy))
3745 reg_num_devs_support_basehint++;
3746
3747 wiphy_update_regulatory(wiphy, lr->initiator);
3748 wiphy_all_share_dfs_chan_state(wiphy);
3749}
3750
3751void wiphy_regulatory_deregister(struct wiphy *wiphy)
3752{
3753 struct wiphy *request_wiphy = NULL;
3754 struct regulatory_request *lr;
3755
3756 lr = get_last_request();
3757
3758 if (!reg_dev_ignore_cell_hint(wiphy))
3759 reg_num_devs_support_basehint--;
3760
3761 rcu_free_regdom(get_wiphy_regdom(wiphy));
3762 RCU_INIT_POINTER(wiphy->regd, NULL);
3763
3764 if (lr)
3765 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3766
3767 if (!request_wiphy || request_wiphy != wiphy)
3768 return;
3769
3770 lr->wiphy_idx = WIPHY_IDX_INVALID;
3771 lr->country_ie_env = ENVIRON_ANY;
3772}
3773
3774/*
3775 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3776 * UNII band definitions
3777 */
3778int cfg80211_get_unii(int freq)
3779{
3780 /* UNII-1 */
3781 if (freq >= 5150 && freq <= 5250)
3782 return 0;
3783
3784 /* UNII-2A */
3785 if (freq > 5250 && freq <= 5350)
3786 return 1;
3787
3788 /* UNII-2B */
3789 if (freq > 5350 && freq <= 5470)
3790 return 2;
3791
3792 /* UNII-2C */
3793 if (freq > 5470 && freq <= 5725)
3794 return 3;
3795
3796 /* UNII-3 */
3797 if (freq > 5725 && freq <= 5825)
3798 return 4;
3799
3800 return -EINVAL;
3801}
3802
3803bool regulatory_indoor_allowed(void)
3804{
3805 return reg_is_indoor;
3806}
3807
3808bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3809{
3810 const struct ieee80211_regdomain *regd = NULL;
3811 const struct ieee80211_regdomain *wiphy_regd = NULL;
3812 bool pre_cac_allowed = false;
3813
3814 rcu_read_lock();
3815
3816 regd = rcu_dereference(cfg80211_regdomain);
3817 wiphy_regd = rcu_dereference(wiphy->regd);
3818 if (!wiphy_regd) {
3819 if (regd->dfs_region == NL80211_DFS_ETSI)
3820 pre_cac_allowed = true;
3821
3822 rcu_read_unlock();
3823
3824 return pre_cac_allowed;
3825 }
3826
3827 if (regd->dfs_region == wiphy_regd->dfs_region &&
3828 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3829 pre_cac_allowed = true;
3830
3831 rcu_read_unlock();
3832
3833 return pre_cac_allowed;
3834}
3835
3836void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3837 struct cfg80211_chan_def *chandef,
3838 enum nl80211_dfs_state dfs_state,
3839 enum nl80211_radar_event event)
3840{
3841 struct cfg80211_registered_device *rdev;
3842
3843 ASSERT_RTNL();
3844
3845 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3846 return;
3847
3848 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3849 if (wiphy == &rdev->wiphy)
3850 continue;
3851
3852 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3853 continue;
3854
3855 if (!ieee80211_get_channel(&rdev->wiphy,
3856 chandef->chan->center_freq))
3857 continue;
3858
3859 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3860
3861 if (event == NL80211_RADAR_DETECTED ||
3862 event == NL80211_RADAR_CAC_FINISHED)
3863 cfg80211_sched_dfs_chan_update(rdev);
3864
3865 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3866 }
3867}
3868
3869static int __init regulatory_init_db(void)
3870{
3871 int err;
3872
3873 err = load_builtin_regdb_keys();
3874 if (err)
3875 return err;
3876
3877 /* We always try to get an update for the static regdomain */
3878 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3879 if (err) {
3880 if (err == -ENOMEM) {
3881 platform_device_unregister(reg_pdev);
3882 return err;
3883 }
3884 /*
3885 * N.B. kobject_uevent_env() can fail mainly for when we're out
3886 * memory which is handled and propagated appropriately above
3887 * but it can also fail during a netlink_broadcast() or during
3888 * early boot for call_usermodehelper(). For now treat these
3889 * errors as non-fatal.
3890 */
3891 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3892 }
3893
3894 /*
3895 * Finally, if the user set the module parameter treat it
3896 * as a user hint.
3897 */
3898 if (!is_world_regdom(ieee80211_regdom))
3899 regulatory_hint_user(ieee80211_regdom,
3900 NL80211_USER_REG_HINT_USER);
3901
3902 return 0;
3903}
3904#ifndef MODULE
3905late_initcall(regulatory_init_db);
3906#endif
3907
3908int __init regulatory_init(void)
3909{
3910 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3911 if (IS_ERR(reg_pdev))
3912 return PTR_ERR(reg_pdev);
3913
3914 spin_lock_init(&reg_requests_lock);
3915 spin_lock_init(&reg_pending_beacons_lock);
3916 spin_lock_init(&reg_indoor_lock);
3917
3918 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3919
3920 user_alpha2[0] = '9';
3921 user_alpha2[1] = '7';
3922
3923#ifdef MODULE
3924 return regulatory_init_db();
3925#else
3926 return 0;
3927#endif
3928}
3929
3930void regulatory_exit(void)
3931{
3932 struct regulatory_request *reg_request, *tmp;
3933 struct reg_beacon *reg_beacon, *btmp;
3934
3935 cancel_work_sync(&reg_work);
3936 cancel_crda_timeout_sync();
3937 cancel_delayed_work_sync(&reg_check_chans);
3938
3939 /* Lock to suppress warnings */
3940 rtnl_lock();
3941 reset_regdomains(true, NULL);
3942 rtnl_unlock();
3943
3944 dev_set_uevent_suppress(&reg_pdev->dev, true);
3945
3946 platform_device_unregister(reg_pdev);
3947
3948 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3949 list_del(&reg_beacon->list);
3950 kfree(reg_beacon);
3951 }
3952
3953 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3954 list_del(&reg_beacon->list);
3955 kfree(reg_beacon);
3956 }
3957
3958 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3959 list_del(&reg_request->list);
3960 kfree(reg_request);
3961 }
3962
3963 if (!IS_ERR_OR_NULL(regdb))
3964 kfree(regdb);
3965
3966 free_regdb_keyring();
3967}