| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Copyright 2019 Google LLC |
| 4 | */ |
| 5 | |
| 6 | /** |
| 7 | * DOC: The Keyslot Manager |
| 8 | * |
| 9 | * Many devices with inline encryption support have a limited number of "slots" |
| 10 | * into which encryption contexts may be programmed, and requests can be tagged |
| 11 | * with a slot number to specify the key to use for en/decryption. |
| 12 | * |
| 13 | * As the number of slots are limited, and programming keys is expensive on |
| 14 | * many inline encryption hardware, we don't want to program the same key into |
| 15 | * multiple slots - if multiple requests are using the same key, we want to |
| 16 | * program just one slot with that key and use that slot for all requests. |
| 17 | * |
| 18 | * The keyslot manager manages these keyslots appropriately, and also acts as |
| 19 | * an abstraction between the inline encryption hardware and the upper layers. |
| 20 | * |
| 21 | * Lower layer devices will set up a keyslot manager in their request queue |
| 22 | * and tell it how to perform device specific operations like programming/ |
| 23 | * evicting keys from keyslots. |
| 24 | * |
| 25 | * Upper layers will call keyslot_manager_get_slot_for_key() to program a |
| 26 | * key into some slot in the inline encryption hardware. |
| 27 | */ |
| 28 | #include <crypto/algapi.h> |
| 29 | #include <linux/keyslot-manager.h> |
| 30 | #include <linux/atomic.h> |
| 31 | #include <linux/mutex.h> |
| 32 | #include <linux/wait.h> |
| 33 | #include <linux/blkdev.h> |
| 34 | |
| 35 | struct keyslot { |
| 36 | atomic_t slot_refs; |
| 37 | struct list_head idle_slot_node; |
| 38 | struct hlist_node hash_node; |
| 39 | struct blk_crypto_key key; |
| 40 | }; |
| 41 | |
| 42 | struct keyslot_manager { |
| 43 | unsigned int num_slots; |
| 44 | struct keyslot_mgmt_ll_ops ksm_ll_ops; |
| 45 | unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX]; |
| 46 | void *ll_priv_data; |
| 47 | |
| 48 | /* Protects programming and evicting keys from the device */ |
| 49 | struct rw_semaphore lock; |
| 50 | |
| 51 | /* List of idle slots, with least recently used slot at front */ |
| 52 | wait_queue_head_t idle_slots_wait_queue; |
| 53 | struct list_head idle_slots; |
| 54 | spinlock_t idle_slots_lock; |
| 55 | |
| 56 | /* |
| 57 | * Hash table which maps key hashes to keyslots, so that we can find a |
| 58 | * key's keyslot in O(1) time rather than O(num_slots). Protected by |
| 59 | * 'lock'. A cryptographic hash function is used so that timing attacks |
| 60 | * can't leak information about the raw keys. |
| 61 | */ |
| 62 | struct hlist_head *slot_hashtable; |
| 63 | unsigned int slot_hashtable_size; |
| 64 | |
| 65 | /* Per-keyslot data */ |
| 66 | struct keyslot slots[]; |
| 67 | }; |
| 68 | |
| 69 | /** |
| 70 | * keyslot_manager_create() - Create a keyslot manager |
| 71 | * @num_slots: The number of key slots to manage. |
| 72 | * @ksm_ll_ops: The struct keyslot_mgmt_ll_ops for the device that this keyslot |
| 73 | * manager will use to perform operations like programming and |
| 74 | * evicting keys. |
| 75 | * @crypto_mode_supported: Array of size BLK_ENCRYPTION_MODE_MAX of |
| 76 | * bitmasks that represents whether a crypto mode |
| 77 | * and data unit size are supported. The i'th bit |
| 78 | * of crypto_mode_supported[crypto_mode] is set iff |
| 79 | * a data unit size of (1 << i) is supported. We |
| 80 | * only support data unit sizes that are powers of |
| 81 | * 2. |
| 82 | * @ll_priv_data: Private data passed as is to the functions in ksm_ll_ops. |
| 83 | * |
| 84 | * Allocate memory for and initialize a keyslot manager. Called by e.g. |
| 85 | * storage drivers to set up a keyslot manager in their request_queue. |
| 86 | * |
| 87 | * Context: May sleep |
| 88 | * Return: Pointer to constructed keyslot manager or NULL on error. |
| 89 | */ |
| 90 | struct keyslot_manager *keyslot_manager_create(unsigned int num_slots, |
| 91 | const struct keyslot_mgmt_ll_ops *ksm_ll_ops, |
| 92 | const unsigned int crypto_mode_supported[BLK_ENCRYPTION_MODE_MAX], |
| 93 | void *ll_priv_data) |
| 94 | { |
| 95 | struct keyslot_manager *ksm; |
| 96 | unsigned int slot; |
| 97 | unsigned int i; |
| 98 | |
| 99 | if (num_slots == 0) |
| 100 | return NULL; |
| 101 | |
| 102 | /* Check that all ops are specified */ |
| 103 | if (ksm_ll_ops->keyslot_program == NULL || |
| 104 | ksm_ll_ops->keyslot_evict == NULL) |
| 105 | return NULL; |
| 106 | |
| 107 | ksm = kvzalloc(struct_size(ksm, slots, num_slots), GFP_KERNEL); |
| 108 | if (!ksm) |
| 109 | return NULL; |
| 110 | |
| 111 | ksm->num_slots = num_slots; |
| 112 | ksm->ksm_ll_ops = *ksm_ll_ops; |
| 113 | memcpy(ksm->crypto_mode_supported, crypto_mode_supported, |
| 114 | sizeof(ksm->crypto_mode_supported)); |
| 115 | ksm->ll_priv_data = ll_priv_data; |
| 116 | |
| 117 | init_rwsem(&ksm->lock); |
| 118 | |
| 119 | init_waitqueue_head(&ksm->idle_slots_wait_queue); |
| 120 | INIT_LIST_HEAD(&ksm->idle_slots); |
| 121 | |
| 122 | for (slot = 0; slot < num_slots; slot++) { |
| 123 | list_add_tail(&ksm->slots[slot].idle_slot_node, |
| 124 | &ksm->idle_slots); |
| 125 | } |
| 126 | |
| 127 | spin_lock_init(&ksm->idle_slots_lock); |
| 128 | |
| 129 | ksm->slot_hashtable_size = roundup_pow_of_two(num_slots); |
| 130 | ksm->slot_hashtable = kvmalloc_array(ksm->slot_hashtable_size, |
| 131 | sizeof(ksm->slot_hashtable[0]), |
| 132 | GFP_KERNEL); |
| 133 | if (!ksm->slot_hashtable) |
| 134 | goto err_free_ksm; |
| 135 | for (i = 0; i < ksm->slot_hashtable_size; i++) |
| 136 | INIT_HLIST_HEAD(&ksm->slot_hashtable[i]); |
| 137 | |
| 138 | return ksm; |
| 139 | |
| 140 | err_free_ksm: |
| 141 | keyslot_manager_destroy(ksm); |
| 142 | return NULL; |
| 143 | } |
| 144 | EXPORT_SYMBOL_GPL(keyslot_manager_create); |
| 145 | |
| 146 | static inline struct hlist_head * |
| 147 | hash_bucket_for_key(struct keyslot_manager *ksm, |
| 148 | const struct blk_crypto_key *key) |
| 149 | { |
| 150 | return &ksm->slot_hashtable[key->hash & (ksm->slot_hashtable_size - 1)]; |
| 151 | } |
| 152 | |
| 153 | static void remove_slot_from_lru_list(struct keyslot_manager *ksm, int slot) |
| 154 | { |
| 155 | unsigned long flags; |
| 156 | |
| 157 | spin_lock_irqsave(&ksm->idle_slots_lock, flags); |
| 158 | list_del(&ksm->slots[slot].idle_slot_node); |
| 159 | spin_unlock_irqrestore(&ksm->idle_slots_lock, flags); |
| 160 | } |
| 161 | |
| 162 | static int find_keyslot(struct keyslot_manager *ksm, |
| 163 | const struct blk_crypto_key *key) |
| 164 | { |
| 165 | const struct hlist_head *head = hash_bucket_for_key(ksm, key); |
| 166 | const struct keyslot *slotp; |
| 167 | |
| 168 | hlist_for_each_entry(slotp, head, hash_node) { |
| 169 | if (slotp->key.hash == key->hash && |
| 170 | slotp->key.crypto_mode == key->crypto_mode && |
| 171 | slotp->key.size == key->size && |
| 172 | slotp->key.data_unit_size == key->data_unit_size && |
| 173 | !crypto_memneq(slotp->key.raw, key->raw, key->size)) |
| 174 | return slotp - ksm->slots; |
| 175 | } |
| 176 | return -ENOKEY; |
| 177 | } |
| 178 | |
| 179 | static int find_and_grab_keyslot(struct keyslot_manager *ksm, |
| 180 | const struct blk_crypto_key *key) |
| 181 | { |
| 182 | int slot; |
| 183 | |
| 184 | slot = find_keyslot(ksm, key); |
| 185 | if (slot < 0) |
| 186 | return slot; |
| 187 | if (atomic_inc_return(&ksm->slots[slot].slot_refs) == 1) { |
| 188 | /* Took first reference to this slot; remove it from LRU list */ |
| 189 | remove_slot_from_lru_list(ksm, slot); |
| 190 | } |
| 191 | return slot; |
| 192 | } |
| 193 | |
| 194 | /** |
| 195 | * keyslot_manager_get_slot_for_key() - Program a key into a keyslot. |
| 196 | * @ksm: The keyslot manager to program the key into. |
| 197 | * @key: Pointer to the key object to program, including the raw key, crypto |
| 198 | * mode, and data unit size. |
| 199 | * |
| 200 | * Get a keyslot that's been programmed with the specified key. If one already |
| 201 | * exists, return it with incremented refcount. Otherwise, wait for a keyslot |
| 202 | * to become idle and program it. |
| 203 | * |
| 204 | * Context: Process context. Takes and releases ksm->lock. |
| 205 | * Return: The keyslot on success, else a -errno value. |
| 206 | */ |
| 207 | int keyslot_manager_get_slot_for_key(struct keyslot_manager *ksm, |
| 208 | const struct blk_crypto_key *key) |
| 209 | { |
| 210 | int slot; |
| 211 | int err; |
| 212 | struct keyslot *idle_slot; |
| 213 | |
| 214 | down_read(&ksm->lock); |
| 215 | slot = find_and_grab_keyslot(ksm, key); |
| 216 | up_read(&ksm->lock); |
| 217 | if (slot != -ENOKEY) |
| 218 | return slot; |
| 219 | |
| 220 | for (;;) { |
| 221 | down_write(&ksm->lock); |
| 222 | slot = find_and_grab_keyslot(ksm, key); |
| 223 | if (slot != -ENOKEY) { |
| 224 | up_write(&ksm->lock); |
| 225 | return slot; |
| 226 | } |
| 227 | |
| 228 | /* |
| 229 | * If we're here, that means there wasn't a slot that was |
| 230 | * already programmed with the key. So try to program it. |
| 231 | */ |
| 232 | if (!list_empty(&ksm->idle_slots)) |
| 233 | break; |
| 234 | |
| 235 | up_write(&ksm->lock); |
| 236 | wait_event(ksm->idle_slots_wait_queue, |
| 237 | !list_empty(&ksm->idle_slots)); |
| 238 | } |
| 239 | |
| 240 | idle_slot = list_first_entry(&ksm->idle_slots, struct keyslot, |
| 241 | idle_slot_node); |
| 242 | slot = idle_slot - ksm->slots; |
| 243 | |
| 244 | err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot); |
| 245 | if (err) { |
| 246 | wake_up(&ksm->idle_slots_wait_queue); |
| 247 | up_write(&ksm->lock); |
| 248 | return err; |
| 249 | } |
| 250 | |
| 251 | /* Move this slot to the hash list for the new key. */ |
| 252 | if (idle_slot->key.crypto_mode != BLK_ENCRYPTION_MODE_INVALID) |
| 253 | hlist_del(&idle_slot->hash_node); |
| 254 | hlist_add_head(&idle_slot->hash_node, hash_bucket_for_key(ksm, key)); |
| 255 | |
| 256 | atomic_set(&idle_slot->slot_refs, 1); |
| 257 | idle_slot->key = *key; |
| 258 | |
| 259 | remove_slot_from_lru_list(ksm, slot); |
| 260 | |
| 261 | up_write(&ksm->lock); |
| 262 | return slot; |
| 263 | } |
| 264 | |
| 265 | /** |
| 266 | * keyslot_manager_get_slot() - Increment the refcount on the specified slot. |
| 267 | * @ksm: The keyslot manager that we want to modify. |
| 268 | * @slot: The slot to increment the refcount of. |
| 269 | * |
| 270 | * This function assumes that there is already an active reference to that slot |
| 271 | * and simply increments the refcount. This is useful when cloning a bio that |
| 272 | * already has a reference to a keyslot, and we want the cloned bio to also have |
| 273 | * its own reference. |
| 274 | * |
| 275 | * Context: Any context. |
| 276 | */ |
| 277 | void keyslot_manager_get_slot(struct keyslot_manager *ksm, unsigned int slot) |
| 278 | { |
| 279 | if (WARN_ON(slot >= ksm->num_slots)) |
| 280 | return; |
| 281 | |
| 282 | WARN_ON(atomic_inc_return(&ksm->slots[slot].slot_refs) < 2); |
| 283 | } |
| 284 | |
| 285 | /** |
| 286 | * keyslot_manager_put_slot() - Release a reference to a slot |
| 287 | * @ksm: The keyslot manager to release the reference from. |
| 288 | * @slot: The slot to release the reference from. |
| 289 | * |
| 290 | * Context: Any context. |
| 291 | */ |
| 292 | void keyslot_manager_put_slot(struct keyslot_manager *ksm, unsigned int slot) |
| 293 | { |
| 294 | unsigned long flags; |
| 295 | |
| 296 | if (WARN_ON(slot >= ksm->num_slots)) |
| 297 | return; |
| 298 | |
| 299 | if (atomic_dec_and_lock_irqsave(&ksm->slots[slot].slot_refs, |
| 300 | &ksm->idle_slots_lock, flags)) { |
| 301 | list_add_tail(&ksm->slots[slot].idle_slot_node, |
| 302 | &ksm->idle_slots); |
| 303 | spin_unlock_irqrestore(&ksm->idle_slots_lock, flags); |
| 304 | wake_up(&ksm->idle_slots_wait_queue); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | /** |
| 309 | * keyslot_manager_crypto_mode_supported() - Find out if a crypto_mode/data |
| 310 | * unit size combination is supported |
| 311 | * by a ksm. |
| 312 | * @ksm: The keyslot manager to check |
| 313 | * @crypto_mode: The crypto mode to check for. |
| 314 | * @data_unit_size: The data_unit_size for the mode. |
| 315 | * |
| 316 | * Calls and returns the result of the crypto_mode_supported function specified |
| 317 | * by the ksm. |
| 318 | * |
| 319 | * Context: Process context. |
| 320 | * Return: Whether or not this ksm supports the specified crypto_mode/ |
| 321 | * data_unit_size combo. |
| 322 | */ |
| 323 | bool keyslot_manager_crypto_mode_supported(struct keyslot_manager *ksm, |
| 324 | enum blk_crypto_mode_num crypto_mode, |
| 325 | unsigned int data_unit_size) |
| 326 | { |
| 327 | if (!ksm) |
| 328 | return false; |
| 329 | if (WARN_ON(crypto_mode >= BLK_ENCRYPTION_MODE_MAX)) |
| 330 | return false; |
| 331 | if (WARN_ON(!is_power_of_2(data_unit_size))) |
| 332 | return false; |
| 333 | return ksm->crypto_mode_supported[crypto_mode] & data_unit_size; |
| 334 | } |
| 335 | |
| 336 | /** |
| 337 | * keyslot_manager_evict_key() - Evict a key from the lower layer device. |
| 338 | * @ksm: The keyslot manager to evict from |
| 339 | * @key: The key to evict |
| 340 | * |
| 341 | * Find the keyslot that the specified key was programmed into, and evict that |
| 342 | * slot from the lower layer device if that slot is not currently in use. |
| 343 | * |
| 344 | * Context: Process context. Takes and releases ksm->lock. |
| 345 | * Return: 0 on success, -EBUSY if the key is still in use, or another |
| 346 | * -errno value on other error. |
| 347 | */ |
| 348 | int keyslot_manager_evict_key(struct keyslot_manager *ksm, |
| 349 | const struct blk_crypto_key *key) |
| 350 | { |
| 351 | int slot; |
| 352 | int err; |
| 353 | struct keyslot *slotp; |
| 354 | |
| 355 | down_write(&ksm->lock); |
| 356 | slot = find_keyslot(ksm, key); |
| 357 | if (slot < 0) { |
| 358 | err = slot; |
| 359 | goto out_unlock; |
| 360 | } |
| 361 | slotp = &ksm->slots[slot]; |
| 362 | |
| 363 | if (atomic_read(&slotp->slot_refs) != 0) { |
| 364 | err = -EBUSY; |
| 365 | goto out_unlock; |
| 366 | } |
| 367 | err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, slot); |
| 368 | if (err) |
| 369 | goto out_unlock; |
| 370 | |
| 371 | hlist_del(&slotp->hash_node); |
| 372 | memzero_explicit(&slotp->key, sizeof(slotp->key)); |
| 373 | err = 0; |
| 374 | out_unlock: |
| 375 | up_write(&ksm->lock); |
| 376 | return err; |
| 377 | } |
| 378 | |
| 379 | /** |
| 380 | * keyslot_manager_reprogram_all_keys() - Re-program all keyslots. |
| 381 | * @ksm: The keyslot manager |
| 382 | * |
| 383 | * Re-program all keyslots that are supposed to have a key programmed. This is |
| 384 | * intended only for use by drivers for hardware that loses its keys on reset. |
| 385 | * |
| 386 | * Context: Process context. Takes and releases ksm->lock. |
| 387 | */ |
| 388 | void keyslot_manager_reprogram_all_keys(struct keyslot_manager *ksm) |
| 389 | { |
| 390 | unsigned int slot; |
| 391 | |
| 392 | down_write(&ksm->lock); |
| 393 | for (slot = 0; slot < ksm->num_slots; slot++) { |
| 394 | const struct keyslot *slotp = &ksm->slots[slot]; |
| 395 | int err; |
| 396 | |
| 397 | if (slotp->key.crypto_mode == BLK_ENCRYPTION_MODE_INVALID) |
| 398 | continue; |
| 399 | |
| 400 | err = ksm->ksm_ll_ops.keyslot_program(ksm, &slotp->key, slot); |
| 401 | WARN_ON(err); |
| 402 | } |
| 403 | up_write(&ksm->lock); |
| 404 | } |
| 405 | EXPORT_SYMBOL_GPL(keyslot_manager_reprogram_all_keys); |
| 406 | |
| 407 | /** |
| 408 | * keyslot_manager_private() - return the private data stored with ksm |
| 409 | * @ksm: The keyslot manager |
| 410 | * |
| 411 | * Returns the private data passed to the ksm when it was created. |
| 412 | */ |
| 413 | void *keyslot_manager_private(struct keyslot_manager *ksm) |
| 414 | { |
| 415 | return ksm->ll_priv_data; |
| 416 | } |
| 417 | EXPORT_SYMBOL_GPL(keyslot_manager_private); |
| 418 | |
| 419 | void keyslot_manager_destroy(struct keyslot_manager *ksm) |
| 420 | { |
| 421 | if (ksm) { |
| 422 | kvfree(ksm->slot_hashtable); |
| 423 | memzero_explicit(ksm, struct_size(ksm, slots, ksm->num_slots)); |
| 424 | kvfree(ksm); |
| 425 | } |
| 426 | } |
| 427 | EXPORT_SYMBOL_GPL(keyslot_manager_destroy); |
| 428 | |
| 429 | /** |
| 430 | * keyslot_manager_derive_raw_secret() - Derive software secret from wrapped key |
| 431 | * @ksm: The keyslot manager |
| 432 | * @wrapped_key: The wrapped key |
| 433 | * @wrapped_key_size: Size of the wrapped key in bytes |
| 434 | * @secret: (output) the software secret |
| 435 | * @secret_size: (output) the number of secret bytes to derive |
| 436 | * |
| 437 | * Given a hardware-wrapped key, ask the hardware to derive a secret which |
| 438 | * software can use for cryptographic tasks other than inline encryption. The |
| 439 | * derived secret is guaranteed to be cryptographically isolated from the key |
| 440 | * with which any inline encryption with this wrapped key would actually be |
| 441 | * done. I.e., both will be derived from the unwrapped key. |
| 442 | * |
| 443 | * Return: 0 on success, -EOPNOTSUPP if hardware-wrapped keys are unsupported, |
| 444 | * or another -errno code. |
| 445 | */ |
| 446 | int keyslot_manager_derive_raw_secret(struct keyslot_manager *ksm, |
| 447 | const u8 *wrapped_key, |
| 448 | unsigned int wrapped_key_size, |
| 449 | u8 *secret, unsigned int secret_size) |
| 450 | { |
| 451 | int err; |
| 452 | |
| 453 | down_write(&ksm->lock); |
| 454 | if (ksm->ksm_ll_ops.derive_raw_secret) { |
| 455 | err = ksm->ksm_ll_ops.derive_raw_secret(ksm, wrapped_key, |
| 456 | wrapped_key_size, |
| 457 | secret, secret_size); |
| 458 | } else { |
| 459 | err = -EOPNOTSUPP; |
| 460 | } |
| 461 | up_write(&ksm->lock); |
| 462 | |
| 463 | return err; |
| 464 | } |
| 465 | EXPORT_SYMBOL_GPL(keyslot_manager_derive_raw_secret); |