blob: 22f9ffe03caf8bfa2de7f382211c957fd22a7333 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0+
2/*
3 * linux/fs/jbd2/transaction.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem transaction handling code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages transactions (compound commits managed by the
13 * journaling code) and handles (individual atomic operations by the
14 * filesystem).
15 */
16
17#include <linux/time.h>
18#include <linux/fs.h>
19#include <linux/jbd2.h>
20#include <linux/errno.h>
21#include <linux/slab.h>
22#include <linux/timer.h>
23#include <linux/mm.h>
24#include <linux/highmem.h>
25#include <linux/hrtimer.h>
26#include <linux/backing-dev.h>
27#include <linux/bug.h>
28#include <linux/module.h>
29#include <linux/sched/mm.h>
30
31#include <trace/events/jbd2.h>
32
33static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36static struct kmem_cache *transaction_cache;
37int __init jbd2_journal_init_transaction_cache(void)
38{
39 J_ASSERT(!transaction_cache);
40 transaction_cache = kmem_cache_create("jbd2_transaction_s",
41 sizeof(transaction_t),
42 0,
43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 NULL);
45 if (!transaction_cache) {
46 pr_emerg("JBD2: failed to create transaction cache\n");
47 return -ENOMEM;
48 }
49 return 0;
50}
51
52void jbd2_journal_destroy_transaction_cache(void)
53{
54 kmem_cache_destroy(transaction_cache);
55 transaction_cache = NULL;
56}
57
58void jbd2_journal_free_transaction(transaction_t *transaction)
59{
60 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 return;
62 kmem_cache_free(transaction_cache, transaction);
63}
64
65/*
66 * jbd2_get_transaction: obtain a new transaction_t object.
67 *
68 * Simply allocate and initialise a new transaction. Create it in
69 * RUNNING state and add it to the current journal (which should not
70 * have an existing running transaction: we only make a new transaction
71 * once we have started to commit the old one).
72 *
73 * Preconditions:
74 * The journal MUST be locked. We don't perform atomic mallocs on the
75 * new transaction and we can't block without protecting against other
76 * processes trying to touch the journal while it is in transition.
77 *
78 */
79
80static transaction_t *
81jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
82{
83 transaction->t_journal = journal;
84 transaction->t_state = T_RUNNING;
85 transaction->t_start_time = ktime_get();
86 transaction->t_tid = journal->j_transaction_sequence++;
87 transaction->t_expires = jiffies + journal->j_commit_interval;
88 spin_lock_init(&transaction->t_handle_lock);
89 atomic_set(&transaction->t_updates, 0);
90 atomic_set(&transaction->t_outstanding_credits,
91 atomic_read(&journal->j_reserved_credits));
92 atomic_set(&transaction->t_handle_count, 0);
93 INIT_LIST_HEAD(&transaction->t_inode_list);
94 INIT_LIST_HEAD(&transaction->t_private_list);
95
96 /* Set up the commit timer for the new transaction. */
97 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
98 add_timer(&journal->j_commit_timer);
99
100 J_ASSERT(journal->j_running_transaction == NULL);
101 journal->j_running_transaction = transaction;
102 transaction->t_max_wait = 0;
103 transaction->t_start = jiffies;
104 transaction->t_requested = 0;
105
106 return transaction;
107}
108
109/*
110 * Handle management.
111 *
112 * A handle_t is an object which represents a single atomic update to a
113 * filesystem, and which tracks all of the modifications which form part
114 * of that one update.
115 */
116
117/*
118 * Update transaction's maximum wait time, if debugging is enabled.
119 *
120 * In order for t_max_wait to be reliable, it must be protected by a
121 * lock. But doing so will mean that start_this_handle() can not be
122 * run in parallel on SMP systems, which limits our scalability. So
123 * unless debugging is enabled, we no longer update t_max_wait, which
124 * means that maximum wait time reported by the jbd2_run_stats
125 * tracepoint will always be zero.
126 */
127static inline void update_t_max_wait(transaction_t *transaction,
128 unsigned long ts)
129{
130#ifdef CONFIG_JBD2_DEBUG
131 if (jbd2_journal_enable_debug &&
132 time_after(transaction->t_start, ts)) {
133 ts = jbd2_time_diff(ts, transaction->t_start);
134 spin_lock(&transaction->t_handle_lock);
135 if (ts > transaction->t_max_wait)
136 transaction->t_max_wait = ts;
137 spin_unlock(&transaction->t_handle_lock);
138 }
139#endif
140}
141
142/*
143 * Wait until running transaction passes T_LOCKED state. Also starts the commit
144 * if needed. The function expects running transaction to exist and releases
145 * j_state_lock.
146 */
147static void wait_transaction_locked(journal_t *journal)
148 __releases(journal->j_state_lock)
149{
150 DEFINE_WAIT(wait);
151 int need_to_start;
152 tid_t tid = journal->j_running_transaction->t_tid;
153
154 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
155 TASK_UNINTERRUPTIBLE);
156 need_to_start = !tid_geq(journal->j_commit_request, tid);
157 read_unlock(&journal->j_state_lock);
158 if (need_to_start)
159 jbd2_log_start_commit(journal, tid);
160 jbd2_might_wait_for_commit(journal);
161 schedule();
162 finish_wait(&journal->j_wait_transaction_locked, &wait);
163}
164
165static void sub_reserved_credits(journal_t *journal, int blocks)
166{
167 atomic_sub(blocks, &journal->j_reserved_credits);
168 wake_up(&journal->j_wait_reserved);
169}
170
171/*
172 * Wait until we can add credits for handle to the running transaction. Called
173 * with j_state_lock held for reading. Returns 0 if handle joined the running
174 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
175 * caller must retry.
176 */
177static int add_transaction_credits(journal_t *journal, int blocks,
178 int rsv_blocks)
179{
180 transaction_t *t = journal->j_running_transaction;
181 int needed;
182 int total = blocks + rsv_blocks;
183
184 /*
185 * If the current transaction is locked down for commit, wait
186 * for the lock to be released.
187 */
188 if (t->t_state == T_LOCKED) {
189 wait_transaction_locked(journal);
190 return 1;
191 }
192
193 /*
194 * If there is not enough space left in the log to write all
195 * potential buffers requested by this operation, we need to
196 * stall pending a log checkpoint to free some more log space.
197 */
198 needed = atomic_add_return(total, &t->t_outstanding_credits);
199 if (needed > journal->j_max_transaction_buffers) {
200 /*
201 * If the current transaction is already too large,
202 * then start to commit it: we can then go back and
203 * attach this handle to a new transaction.
204 */
205 atomic_sub(total, &t->t_outstanding_credits);
206
207 /*
208 * Is the number of reserved credits in the current transaction too
209 * big to fit this handle? Wait until reserved credits are freed.
210 */
211 if (atomic_read(&journal->j_reserved_credits) + total >
212 journal->j_max_transaction_buffers) {
213 read_unlock(&journal->j_state_lock);
214 jbd2_might_wait_for_commit(journal);
215 wait_event(journal->j_wait_reserved,
216 atomic_read(&journal->j_reserved_credits) + total <=
217 journal->j_max_transaction_buffers);
218 return 1;
219 }
220
221 wait_transaction_locked(journal);
222 return 1;
223 }
224
225 /*
226 * The commit code assumes that it can get enough log space
227 * without forcing a checkpoint. This is *critical* for
228 * correctness: a checkpoint of a buffer which is also
229 * associated with a committing transaction creates a deadlock,
230 * so commit simply cannot force through checkpoints.
231 *
232 * We must therefore ensure the necessary space in the journal
233 * *before* starting to dirty potentially checkpointed buffers
234 * in the new transaction.
235 */
236 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
237 atomic_sub(total, &t->t_outstanding_credits);
238 read_unlock(&journal->j_state_lock);
239 jbd2_might_wait_for_commit(journal);
240 write_lock(&journal->j_state_lock);
241 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
242 __jbd2_log_wait_for_space(journal);
243 write_unlock(&journal->j_state_lock);
244 return 1;
245 }
246
247 /* No reservation? We are done... */
248 if (!rsv_blocks)
249 return 0;
250
251 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
252 /* We allow at most half of a transaction to be reserved */
253 if (needed > journal->j_max_transaction_buffers / 2) {
254 sub_reserved_credits(journal, rsv_blocks);
255 atomic_sub(total, &t->t_outstanding_credits);
256 read_unlock(&journal->j_state_lock);
257 jbd2_might_wait_for_commit(journal);
258 wait_event(journal->j_wait_reserved,
259 atomic_read(&journal->j_reserved_credits) + rsv_blocks
260 <= journal->j_max_transaction_buffers / 2);
261 return 1;
262 }
263 return 0;
264}
265
266/*
267 * start_this_handle: Given a handle, deal with any locking or stalling
268 * needed to make sure that there is enough journal space for the handle
269 * to begin. Attach the handle to a transaction and set up the
270 * transaction's buffer credits.
271 */
272
273static int start_this_handle(journal_t *journal, handle_t *handle,
274 gfp_t gfp_mask)
275{
276 transaction_t *transaction, *new_transaction = NULL;
277 int blocks = handle->h_buffer_credits;
278 int rsv_blocks = 0;
279 unsigned long ts = jiffies;
280
281 if (handle->h_rsv_handle)
282 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
283
284 /*
285 * Limit the number of reserved credits to 1/2 of maximum transaction
286 * size and limit the number of total credits to not exceed maximum
287 * transaction size per operation.
288 */
289 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
290 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
291 printk(KERN_ERR "JBD2: %s wants too many credits "
292 "credits:%d rsv_credits:%d max:%d\n",
293 current->comm, blocks, rsv_blocks,
294 journal->j_max_transaction_buffers);
295 WARN_ON(1);
296 return -ENOSPC;
297 }
298
299alloc_transaction:
300 if (!journal->j_running_transaction) {
301 /*
302 * If __GFP_FS is not present, then we may be being called from
303 * inside the fs writeback layer, so we MUST NOT fail.
304 */
305 if ((gfp_mask & __GFP_FS) == 0)
306 gfp_mask |= __GFP_NOFAIL;
307 new_transaction = kmem_cache_zalloc(transaction_cache,
308 gfp_mask);
309 if (!new_transaction)
310 return -ENOMEM;
311 }
312
313 jbd_debug(3, "New handle %p going live.\n", handle);
314
315 /*
316 * We need to hold j_state_lock until t_updates has been incremented,
317 * for proper journal barrier handling
318 */
319repeat:
320 read_lock(&journal->j_state_lock);
321 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
322 if (is_journal_aborted(journal) ||
323 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
324 read_unlock(&journal->j_state_lock);
325 jbd2_journal_free_transaction(new_transaction);
326 return -EROFS;
327 }
328
329 /*
330 * Wait on the journal's transaction barrier if necessary. Specifically
331 * we allow reserved handles to proceed because otherwise commit could
332 * deadlock on page writeback not being able to complete.
333 */
334 if (!handle->h_reserved && journal->j_barrier_count) {
335 read_unlock(&journal->j_state_lock);
336 wait_event(journal->j_wait_transaction_locked,
337 journal->j_barrier_count == 0);
338 goto repeat;
339 }
340
341 if (!journal->j_running_transaction) {
342 read_unlock(&journal->j_state_lock);
343 if (!new_transaction)
344 goto alloc_transaction;
345 write_lock(&journal->j_state_lock);
346 if (!journal->j_running_transaction &&
347 (handle->h_reserved || !journal->j_barrier_count)) {
348 jbd2_get_transaction(journal, new_transaction);
349 new_transaction = NULL;
350 }
351 write_unlock(&journal->j_state_lock);
352 goto repeat;
353 }
354
355 transaction = journal->j_running_transaction;
356
357 if (!handle->h_reserved) {
358 /* We may have dropped j_state_lock - restart in that case */
359 if (add_transaction_credits(journal, blocks, rsv_blocks))
360 goto repeat;
361 } else {
362 /*
363 * We have handle reserved so we are allowed to join T_LOCKED
364 * transaction and we don't have to check for transaction size
365 * and journal space.
366 */
367 sub_reserved_credits(journal, blocks);
368 handle->h_reserved = 0;
369 }
370
371 /* OK, account for the buffers that this operation expects to
372 * use and add the handle to the running transaction.
373 */
374 update_t_max_wait(transaction, ts);
375 handle->h_transaction = transaction;
376 handle->h_requested_credits = blocks;
377 handle->h_start_jiffies = jiffies;
378 atomic_inc(&transaction->t_updates);
379 atomic_inc(&transaction->t_handle_count);
380 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
381 handle, blocks,
382 atomic_read(&transaction->t_outstanding_credits),
383 jbd2_log_space_left(journal));
384 read_unlock(&journal->j_state_lock);
385 current->journal_info = handle;
386 jbd2_journal_free_transaction(new_transaction);
387 /*
388 * Ensure that no allocations done while the transaction is open are
389 * going to recurse back to the fs layer.
390 */
391 handle->saved_alloc_context = memalloc_nofs_save();
392 return 0;
393}
394
395/* Allocate a new handle. This should probably be in a slab... */
396static handle_t *new_handle(int nblocks)
397{
398 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
399 if (!handle)
400 return NULL;
401 handle->h_buffer_credits = nblocks;
402 handle->h_ref = 1;
403
404 return handle;
405}
406
407handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
408 gfp_t gfp_mask, unsigned int type,
409 unsigned int line_no)
410{
411 handle_t *handle = journal_current_handle();
412 int err;
413
414 if (!journal)
415 return ERR_PTR(-EROFS);
416
417 if (handle) {
418 J_ASSERT(handle->h_transaction->t_journal == journal);
419 handle->h_ref++;
420 return handle;
421 }
422
423 handle = new_handle(nblocks);
424 if (!handle)
425 return ERR_PTR(-ENOMEM);
426 if (rsv_blocks) {
427 handle_t *rsv_handle;
428
429 rsv_handle = new_handle(rsv_blocks);
430 if (!rsv_handle) {
431 jbd2_free_handle(handle);
432 return ERR_PTR(-ENOMEM);
433 }
434 rsv_handle->h_reserved = 1;
435 rsv_handle->h_journal = journal;
436 handle->h_rsv_handle = rsv_handle;
437 }
438
439 err = start_this_handle(journal, handle, gfp_mask);
440 if (err < 0) {
441 if (handle->h_rsv_handle)
442 jbd2_free_handle(handle->h_rsv_handle);
443 jbd2_free_handle(handle);
444 return ERR_PTR(err);
445 }
446 handle->h_type = type;
447 handle->h_line_no = line_no;
448 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
449 handle->h_transaction->t_tid, type,
450 line_no, nblocks);
451
452 return handle;
453}
454EXPORT_SYMBOL(jbd2__journal_start);
455
456
457/**
458 * handle_t *jbd2_journal_start() - Obtain a new handle.
459 * @journal: Journal to start transaction on.
460 * @nblocks: number of block buffer we might modify
461 *
462 * We make sure that the transaction can guarantee at least nblocks of
463 * modified buffers in the log. We block until the log can guarantee
464 * that much space. Additionally, if rsv_blocks > 0, we also create another
465 * handle with rsv_blocks reserved blocks in the journal. This handle is
466 * is stored in h_rsv_handle. It is not attached to any particular transaction
467 * and thus doesn't block transaction commit. If the caller uses this reserved
468 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
469 * on the parent handle will dispose the reserved one. Reserved handle has to
470 * be converted to a normal handle using jbd2_journal_start_reserved() before
471 * it can be used.
472 *
473 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
474 * on failure.
475 */
476handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
477{
478 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
479}
480EXPORT_SYMBOL(jbd2_journal_start);
481
482void jbd2_journal_free_reserved(handle_t *handle)
483{
484 journal_t *journal = handle->h_journal;
485
486 WARN_ON(!handle->h_reserved);
487 sub_reserved_credits(journal, handle->h_buffer_credits);
488 jbd2_free_handle(handle);
489}
490EXPORT_SYMBOL(jbd2_journal_free_reserved);
491
492/**
493 * int jbd2_journal_start_reserved() - start reserved handle
494 * @handle: handle to start
495 * @type: for handle statistics
496 * @line_no: for handle statistics
497 *
498 * Start handle that has been previously reserved with jbd2_journal_reserve().
499 * This attaches @handle to the running transaction (or creates one if there's
500 * not transaction running). Unlike jbd2_journal_start() this function cannot
501 * block on journal commit, checkpointing, or similar stuff. It can block on
502 * memory allocation or frozen journal though.
503 *
504 * Return 0 on success, non-zero on error - handle is freed in that case.
505 */
506int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
507 unsigned int line_no)
508{
509 journal_t *journal = handle->h_journal;
510 int ret = -EIO;
511
512 if (WARN_ON(!handle->h_reserved)) {
513 /* Someone passed in normal handle? Just stop it. */
514 jbd2_journal_stop(handle);
515 return ret;
516 }
517 /*
518 * Usefulness of mixing of reserved and unreserved handles is
519 * questionable. So far nobody seems to need it so just error out.
520 */
521 if (WARN_ON(current->journal_info)) {
522 jbd2_journal_free_reserved(handle);
523 return ret;
524 }
525
526 handle->h_journal = NULL;
527 /*
528 * GFP_NOFS is here because callers are likely from writeback or
529 * similarly constrained call sites
530 */
531 ret = start_this_handle(journal, handle, GFP_NOFS);
532 if (ret < 0) {
533 handle->h_journal = journal;
534 jbd2_journal_free_reserved(handle);
535 return ret;
536 }
537 handle->h_type = type;
538 handle->h_line_no = line_no;
539 return 0;
540}
541EXPORT_SYMBOL(jbd2_journal_start_reserved);
542
543/**
544 * int jbd2_journal_extend() - extend buffer credits.
545 * @handle: handle to 'extend'
546 * @nblocks: nr blocks to try to extend by.
547 *
548 * Some transactions, such as large extends and truncates, can be done
549 * atomically all at once or in several stages. The operation requests
550 * a credit for a number of buffer modifications in advance, but can
551 * extend its credit if it needs more.
552 *
553 * jbd2_journal_extend tries to give the running handle more buffer credits.
554 * It does not guarantee that allocation - this is a best-effort only.
555 * The calling process MUST be able to deal cleanly with a failure to
556 * extend here.
557 *
558 * Return 0 on success, non-zero on failure.
559 *
560 * return code < 0 implies an error
561 * return code > 0 implies normal transaction-full status.
562 */
563int jbd2_journal_extend(handle_t *handle, int nblocks)
564{
565 transaction_t *transaction = handle->h_transaction;
566 journal_t *journal;
567 int result;
568 int wanted;
569
570 if (is_handle_aborted(handle))
571 return -EROFS;
572 journal = transaction->t_journal;
573
574 result = 1;
575
576 read_lock(&journal->j_state_lock);
577
578 /* Don't extend a locked-down transaction! */
579 if (transaction->t_state != T_RUNNING) {
580 jbd_debug(3, "denied handle %p %d blocks: "
581 "transaction not running\n", handle, nblocks);
582 goto error_out;
583 }
584
585 spin_lock(&transaction->t_handle_lock);
586 wanted = atomic_add_return(nblocks,
587 &transaction->t_outstanding_credits);
588
589 if (wanted > journal->j_max_transaction_buffers) {
590 jbd_debug(3, "denied handle %p %d blocks: "
591 "transaction too large\n", handle, nblocks);
592 atomic_sub(nblocks, &transaction->t_outstanding_credits);
593 goto unlock;
594 }
595
596 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
597 jbd2_log_space_left(journal)) {
598 jbd_debug(3, "denied handle %p %d blocks: "
599 "insufficient log space\n", handle, nblocks);
600 atomic_sub(nblocks, &transaction->t_outstanding_credits);
601 goto unlock;
602 }
603
604 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
605 transaction->t_tid,
606 handle->h_type, handle->h_line_no,
607 handle->h_buffer_credits,
608 nblocks);
609
610 handle->h_buffer_credits += nblocks;
611 handle->h_requested_credits += nblocks;
612 result = 0;
613
614 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
615unlock:
616 spin_unlock(&transaction->t_handle_lock);
617error_out:
618 read_unlock(&journal->j_state_lock);
619 return result;
620}
621
622
623/**
624 * int jbd2_journal_restart() - restart a handle .
625 * @handle: handle to restart
626 * @nblocks: nr credits requested
627 * @gfp_mask: memory allocation flags (for start_this_handle)
628 *
629 * Restart a handle for a multi-transaction filesystem
630 * operation.
631 *
632 * If the jbd2_journal_extend() call above fails to grant new buffer credits
633 * to a running handle, a call to jbd2_journal_restart will commit the
634 * handle's transaction so far and reattach the handle to a new
635 * transaction capable of guaranteeing the requested number of
636 * credits. We preserve reserved handle if there's any attached to the
637 * passed in handle.
638 */
639int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
640{
641 transaction_t *transaction = handle->h_transaction;
642 journal_t *journal;
643 tid_t tid;
644 int need_to_start, ret;
645
646 /* If we've had an abort of any type, don't even think about
647 * actually doing the restart! */
648 if (is_handle_aborted(handle))
649 return 0;
650 journal = transaction->t_journal;
651
652 /*
653 * First unlink the handle from its current transaction, and start the
654 * commit on that.
655 */
656 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
657 J_ASSERT(journal_current_handle() == handle);
658
659 read_lock(&journal->j_state_lock);
660 spin_lock(&transaction->t_handle_lock);
661 atomic_sub(handle->h_buffer_credits,
662 &transaction->t_outstanding_credits);
663 if (handle->h_rsv_handle) {
664 sub_reserved_credits(journal,
665 handle->h_rsv_handle->h_buffer_credits);
666 }
667 if (atomic_dec_and_test(&transaction->t_updates))
668 wake_up(&journal->j_wait_updates);
669 tid = transaction->t_tid;
670 spin_unlock(&transaction->t_handle_lock);
671 handle->h_transaction = NULL;
672 current->journal_info = NULL;
673
674 jbd_debug(2, "restarting handle %p\n", handle);
675 need_to_start = !tid_geq(journal->j_commit_request, tid);
676 read_unlock(&journal->j_state_lock);
677 if (need_to_start)
678 jbd2_log_start_commit(journal, tid);
679 handle->h_buffer_credits = nblocks;
680 /*
681 * Restore the original nofs context because the journal restart
682 * is basically the same thing as journal stop and start.
683 * start_this_handle will start a new nofs context.
684 */
685 memalloc_nofs_restore(handle->saved_alloc_context);
686 ret = start_this_handle(journal, handle, gfp_mask);
687 return ret;
688}
689EXPORT_SYMBOL(jbd2__journal_restart);
690
691
692int jbd2_journal_restart(handle_t *handle, int nblocks)
693{
694 return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
695}
696EXPORT_SYMBOL(jbd2_journal_restart);
697
698/**
699 * void jbd2_journal_lock_updates () - establish a transaction barrier.
700 * @journal: Journal to establish a barrier on.
701 *
702 * This locks out any further updates from being started, and blocks
703 * until all existing updates have completed, returning only once the
704 * journal is in a quiescent state with no updates running.
705 *
706 * The journal lock should not be held on entry.
707 */
708void jbd2_journal_lock_updates(journal_t *journal)
709{
710 DEFINE_WAIT(wait);
711
712 jbd2_might_wait_for_commit(journal);
713
714 write_lock(&journal->j_state_lock);
715 ++journal->j_barrier_count;
716
717 /* Wait until there are no reserved handles */
718 if (atomic_read(&journal->j_reserved_credits)) {
719 write_unlock(&journal->j_state_lock);
720 wait_event(journal->j_wait_reserved,
721 atomic_read(&journal->j_reserved_credits) == 0);
722 write_lock(&journal->j_state_lock);
723 }
724
725 /* Wait until there are no running updates */
726 while (1) {
727 transaction_t *transaction = journal->j_running_transaction;
728
729 if (!transaction)
730 break;
731
732 spin_lock(&transaction->t_handle_lock);
733 prepare_to_wait(&journal->j_wait_updates, &wait,
734 TASK_UNINTERRUPTIBLE);
735 if (!atomic_read(&transaction->t_updates)) {
736 spin_unlock(&transaction->t_handle_lock);
737 finish_wait(&journal->j_wait_updates, &wait);
738 break;
739 }
740 spin_unlock(&transaction->t_handle_lock);
741 write_unlock(&journal->j_state_lock);
742 schedule();
743 finish_wait(&journal->j_wait_updates, &wait);
744 write_lock(&journal->j_state_lock);
745 }
746 write_unlock(&journal->j_state_lock);
747
748 /*
749 * We have now established a barrier against other normal updates, but
750 * we also need to barrier against other jbd2_journal_lock_updates() calls
751 * to make sure that we serialise special journal-locked operations
752 * too.
753 */
754 mutex_lock(&journal->j_barrier);
755}
756
757/**
758 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
759 * @journal: Journal to release the barrier on.
760 *
761 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
762 *
763 * Should be called without the journal lock held.
764 */
765void jbd2_journal_unlock_updates (journal_t *journal)
766{
767 J_ASSERT(journal->j_barrier_count != 0);
768
769 mutex_unlock(&journal->j_barrier);
770 write_lock(&journal->j_state_lock);
771 --journal->j_barrier_count;
772 write_unlock(&journal->j_state_lock);
773 wake_up(&journal->j_wait_transaction_locked);
774}
775
776static void warn_dirty_buffer(struct buffer_head *bh)
777{
778 printk(KERN_WARNING
779 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
780 "There's a risk of filesystem corruption in case of system "
781 "crash.\n",
782 bh->b_bdev, (unsigned long long)bh->b_blocknr);
783}
784
785/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
786static void jbd2_freeze_jh_data(struct journal_head *jh)
787{
788 struct page *page;
789 int offset;
790 char *source;
791 struct buffer_head *bh = jh2bh(jh);
792
793 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
794 page = bh->b_page;
795 offset = offset_in_page(bh->b_data);
796 source = kmap_atomic(page);
797 /* Fire data frozen trigger just before we copy the data */
798 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
799 memcpy(jh->b_frozen_data, source + offset, bh->b_size);
800 kunmap_atomic(source);
801
802 /*
803 * Now that the frozen data is saved off, we need to store any matching
804 * triggers.
805 */
806 jh->b_frozen_triggers = jh->b_triggers;
807}
808
809/*
810 * If the buffer is already part of the current transaction, then there
811 * is nothing we need to do. If it is already part of a prior
812 * transaction which we are still committing to disk, then we need to
813 * make sure that we do not overwrite the old copy: we do copy-out to
814 * preserve the copy going to disk. We also account the buffer against
815 * the handle's metadata buffer credits (unless the buffer is already
816 * part of the transaction, that is).
817 *
818 */
819static int
820do_get_write_access(handle_t *handle, struct journal_head *jh,
821 int force_copy)
822{
823 struct buffer_head *bh;
824 transaction_t *transaction = handle->h_transaction;
825 journal_t *journal;
826 int error;
827 char *frozen_buffer = NULL;
828 unsigned long start_lock, time_lock;
829
830 if (is_handle_aborted(handle))
831 return -EROFS;
832 journal = transaction->t_journal;
833
834 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
835
836 JBUFFER_TRACE(jh, "entry");
837repeat:
838 bh = jh2bh(jh);
839
840 /* @@@ Need to check for errors here at some point. */
841
842 start_lock = jiffies;
843 lock_buffer(bh);
844 jbd_lock_bh_state(bh);
845
846 /* If it takes too long to lock the buffer, trace it */
847 time_lock = jbd2_time_diff(start_lock, jiffies);
848 if (time_lock > HZ/10)
849 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
850 jiffies_to_msecs(time_lock));
851
852 /* We now hold the buffer lock so it is safe to query the buffer
853 * state. Is the buffer dirty?
854 *
855 * If so, there are two possibilities. The buffer may be
856 * non-journaled, and undergoing a quite legitimate writeback.
857 * Otherwise, it is journaled, and we don't expect dirty buffers
858 * in that state (the buffers should be marked JBD_Dirty
859 * instead.) So either the IO is being done under our own
860 * control and this is a bug, or it's a third party IO such as
861 * dump(8) (which may leave the buffer scheduled for read ---
862 * ie. locked but not dirty) or tune2fs (which may actually have
863 * the buffer dirtied, ugh.) */
864
865 if (buffer_dirty(bh)) {
866 /*
867 * First question: is this buffer already part of the current
868 * transaction or the existing committing transaction?
869 */
870 if (jh->b_transaction) {
871 J_ASSERT_JH(jh,
872 jh->b_transaction == transaction ||
873 jh->b_transaction ==
874 journal->j_committing_transaction);
875 if (jh->b_next_transaction)
876 J_ASSERT_JH(jh, jh->b_next_transaction ==
877 transaction);
878 warn_dirty_buffer(bh);
879 }
880 /*
881 * In any case we need to clean the dirty flag and we must
882 * do it under the buffer lock to be sure we don't race
883 * with running write-out.
884 */
885 JBUFFER_TRACE(jh, "Journalling dirty buffer");
886 clear_buffer_dirty(bh);
887 set_buffer_jbddirty(bh);
888 }
889
890 unlock_buffer(bh);
891
892 error = -EROFS;
893 if (is_handle_aborted(handle)) {
894 jbd_unlock_bh_state(bh);
895 goto out;
896 }
897 error = 0;
898
899 /*
900 * The buffer is already part of this transaction if b_transaction or
901 * b_next_transaction points to it
902 */
903 if (jh->b_transaction == transaction ||
904 jh->b_next_transaction == transaction)
905 goto done;
906
907 /*
908 * this is the first time this transaction is touching this buffer,
909 * reset the modified flag
910 */
911 jh->b_modified = 0;
912
913 /*
914 * If the buffer is not journaled right now, we need to make sure it
915 * doesn't get written to disk before the caller actually commits the
916 * new data
917 */
918 if (!jh->b_transaction) {
919 JBUFFER_TRACE(jh, "no transaction");
920 J_ASSERT_JH(jh, !jh->b_next_transaction);
921 JBUFFER_TRACE(jh, "file as BJ_Reserved");
922 /*
923 * Make sure all stores to jh (b_modified, b_frozen_data) are
924 * visible before attaching it to the running transaction.
925 * Paired with barrier in jbd2_write_access_granted()
926 */
927 smp_wmb();
928 spin_lock(&journal->j_list_lock);
929 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
930 spin_unlock(&journal->j_list_lock);
931 goto done;
932 }
933 /*
934 * If there is already a copy-out version of this buffer, then we don't
935 * need to make another one
936 */
937 if (jh->b_frozen_data) {
938 JBUFFER_TRACE(jh, "has frozen data");
939 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
940 goto attach_next;
941 }
942
943 JBUFFER_TRACE(jh, "owned by older transaction");
944 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
945 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
946
947 /*
948 * There is one case we have to be very careful about. If the
949 * committing transaction is currently writing this buffer out to disk
950 * and has NOT made a copy-out, then we cannot modify the buffer
951 * contents at all right now. The essence of copy-out is that it is
952 * the extra copy, not the primary copy, which gets journaled. If the
953 * primary copy is already going to disk then we cannot do copy-out
954 * here.
955 */
956 if (buffer_shadow(bh)) {
957 JBUFFER_TRACE(jh, "on shadow: sleep");
958 jbd_unlock_bh_state(bh);
959 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
960 goto repeat;
961 }
962
963 /*
964 * Only do the copy if the currently-owning transaction still needs it.
965 * If buffer isn't on BJ_Metadata list, the committing transaction is
966 * past that stage (here we use the fact that BH_Shadow is set under
967 * bh_state lock together with refiling to BJ_Shadow list and at this
968 * point we know the buffer doesn't have BH_Shadow set).
969 *
970 * Subtle point, though: if this is a get_undo_access, then we will be
971 * relying on the frozen_data to contain the new value of the
972 * committed_data record after the transaction, so we HAVE to force the
973 * frozen_data copy in that case.
974 */
975 if (jh->b_jlist == BJ_Metadata || force_copy) {
976 JBUFFER_TRACE(jh, "generate frozen data");
977 if (!frozen_buffer) {
978 JBUFFER_TRACE(jh, "allocate memory for buffer");
979 jbd_unlock_bh_state(bh);
980 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
981 GFP_NOFS | __GFP_NOFAIL);
982 goto repeat;
983 }
984 jh->b_frozen_data = frozen_buffer;
985 frozen_buffer = NULL;
986 jbd2_freeze_jh_data(jh);
987 }
988attach_next:
989 /*
990 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
991 * before attaching it to the running transaction. Paired with barrier
992 * in jbd2_write_access_granted()
993 */
994 smp_wmb();
995 jh->b_next_transaction = transaction;
996
997done:
998 jbd_unlock_bh_state(bh);
999
1000 /*
1001 * If we are about to journal a buffer, then any revoke pending on it is
1002 * no longer valid
1003 */
1004 jbd2_journal_cancel_revoke(handle, jh);
1005
1006out:
1007 if (unlikely(frozen_buffer)) /* It's usually NULL */
1008 jbd2_free(frozen_buffer, bh->b_size);
1009
1010 JBUFFER_TRACE(jh, "exit");
1011 return error;
1012}
1013
1014/* Fast check whether buffer is already attached to the required transaction */
1015static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1016 bool undo)
1017{
1018 struct journal_head *jh;
1019 bool ret = false;
1020
1021 /* Dirty buffers require special handling... */
1022 if (buffer_dirty(bh))
1023 return false;
1024
1025 /*
1026 * RCU protects us from dereferencing freed pages. So the checks we do
1027 * are guaranteed not to oops. However the jh slab object can get freed
1028 * & reallocated while we work with it. So we have to be careful. When
1029 * we see jh attached to the running transaction, we know it must stay
1030 * so until the transaction is committed. Thus jh won't be freed and
1031 * will be attached to the same bh while we run. However it can
1032 * happen jh gets freed, reallocated, and attached to the transaction
1033 * just after we get pointer to it from bh. So we have to be careful
1034 * and recheck jh still belongs to our bh before we return success.
1035 */
1036 rcu_read_lock();
1037 if (!buffer_jbd(bh))
1038 goto out;
1039 /* This should be bh2jh() but that doesn't work with inline functions */
1040 jh = READ_ONCE(bh->b_private);
1041 if (!jh)
1042 goto out;
1043 /* For undo access buffer must have data copied */
1044 if (undo && !jh->b_committed_data)
1045 goto out;
1046 if (jh->b_transaction != handle->h_transaction &&
1047 jh->b_next_transaction != handle->h_transaction)
1048 goto out;
1049 /*
1050 * There are two reasons for the barrier here:
1051 * 1) Make sure to fetch b_bh after we did previous checks so that we
1052 * detect when jh went through free, realloc, attach to transaction
1053 * while we were checking. Paired with implicit barrier in that path.
1054 * 2) So that access to bh done after jbd2_write_access_granted()
1055 * doesn't get reordered and see inconsistent state of concurrent
1056 * do_get_write_access().
1057 */
1058 smp_mb();
1059 if (unlikely(jh->b_bh != bh))
1060 goto out;
1061 ret = true;
1062out:
1063 rcu_read_unlock();
1064 return ret;
1065}
1066
1067/**
1068 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1069 * @handle: transaction to add buffer modifications to
1070 * @bh: bh to be used for metadata writes
1071 *
1072 * Returns: error code or 0 on success.
1073 *
1074 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1075 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1076 */
1077
1078int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1079{
1080 struct journal_head *jh;
1081 int rc;
1082
1083 if (jbd2_write_access_granted(handle, bh, false))
1084 return 0;
1085
1086 jh = jbd2_journal_add_journal_head(bh);
1087 /* We do not want to get caught playing with fields which the
1088 * log thread also manipulates. Make sure that the buffer
1089 * completes any outstanding IO before proceeding. */
1090 rc = do_get_write_access(handle, jh, 0);
1091 jbd2_journal_put_journal_head(jh);
1092 return rc;
1093}
1094
1095
1096/*
1097 * When the user wants to journal a newly created buffer_head
1098 * (ie. getblk() returned a new buffer and we are going to populate it
1099 * manually rather than reading off disk), then we need to keep the
1100 * buffer_head locked until it has been completely filled with new
1101 * data. In this case, we should be able to make the assertion that
1102 * the bh is not already part of an existing transaction.
1103 *
1104 * The buffer should already be locked by the caller by this point.
1105 * There is no lock ranking violation: it was a newly created,
1106 * unlocked buffer beforehand. */
1107
1108/**
1109 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1110 * @handle: transaction to new buffer to
1111 * @bh: new buffer.
1112 *
1113 * Call this if you create a new bh.
1114 */
1115int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1116{
1117 transaction_t *transaction = handle->h_transaction;
1118 journal_t *journal;
1119 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1120 int err;
1121
1122 jbd_debug(5, "journal_head %p\n", jh);
1123 err = -EROFS;
1124 if (is_handle_aborted(handle))
1125 goto out;
1126 journal = transaction->t_journal;
1127 err = 0;
1128
1129 JBUFFER_TRACE(jh, "entry");
1130 /*
1131 * The buffer may already belong to this transaction due to pre-zeroing
1132 * in the filesystem's new_block code. It may also be on the previous,
1133 * committing transaction's lists, but it HAS to be in Forget state in
1134 * that case: the transaction must have deleted the buffer for it to be
1135 * reused here.
1136 */
1137 jbd_lock_bh_state(bh);
1138 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1139 jh->b_transaction == NULL ||
1140 (jh->b_transaction == journal->j_committing_transaction &&
1141 jh->b_jlist == BJ_Forget)));
1142
1143 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1144 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1145
1146 if (jh->b_transaction == NULL) {
1147 /*
1148 * Previous jbd2_journal_forget() could have left the buffer
1149 * with jbddirty bit set because it was being committed. When
1150 * the commit finished, we've filed the buffer for
1151 * checkpointing and marked it dirty. Now we are reallocating
1152 * the buffer so the transaction freeing it must have
1153 * committed and so it's safe to clear the dirty bit.
1154 */
1155 clear_buffer_dirty(jh2bh(jh));
1156 /* first access by this transaction */
1157 jh->b_modified = 0;
1158
1159 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1160 spin_lock(&journal->j_list_lock);
1161 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1162 spin_unlock(&journal->j_list_lock);
1163 } else if (jh->b_transaction == journal->j_committing_transaction) {
1164 /* first access by this transaction */
1165 jh->b_modified = 0;
1166
1167 JBUFFER_TRACE(jh, "set next transaction");
1168 spin_lock(&journal->j_list_lock);
1169 jh->b_next_transaction = transaction;
1170 spin_unlock(&journal->j_list_lock);
1171 }
1172 jbd_unlock_bh_state(bh);
1173
1174 /*
1175 * akpm: I added this. ext3_alloc_branch can pick up new indirect
1176 * blocks which contain freed but then revoked metadata. We need
1177 * to cancel the revoke in case we end up freeing it yet again
1178 * and the reallocating as data - this would cause a second revoke,
1179 * which hits an assertion error.
1180 */
1181 JBUFFER_TRACE(jh, "cancelling revoke");
1182 jbd2_journal_cancel_revoke(handle, jh);
1183out:
1184 jbd2_journal_put_journal_head(jh);
1185 return err;
1186}
1187
1188/**
1189 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with
1190 * non-rewindable consequences
1191 * @handle: transaction
1192 * @bh: buffer to undo
1193 *
1194 * Sometimes there is a need to distinguish between metadata which has
1195 * been committed to disk and that which has not. The ext3fs code uses
1196 * this for freeing and allocating space, we have to make sure that we
1197 * do not reuse freed space until the deallocation has been committed,
1198 * since if we overwrote that space we would make the delete
1199 * un-rewindable in case of a crash.
1200 *
1201 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1202 * buffer for parts of non-rewindable operations such as delete
1203 * operations on the bitmaps. The journaling code must keep a copy of
1204 * the buffer's contents prior to the undo_access call until such time
1205 * as we know that the buffer has definitely been committed to disk.
1206 *
1207 * We never need to know which transaction the committed data is part
1208 * of, buffers touched here are guaranteed to be dirtied later and so
1209 * will be committed to a new transaction in due course, at which point
1210 * we can discard the old committed data pointer.
1211 *
1212 * Returns error number or 0 on success.
1213 */
1214int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1215{
1216 int err;
1217 struct journal_head *jh;
1218 char *committed_data = NULL;
1219
1220 if (jbd2_write_access_granted(handle, bh, true))
1221 return 0;
1222
1223 jh = jbd2_journal_add_journal_head(bh);
1224 JBUFFER_TRACE(jh, "entry");
1225
1226 /*
1227 * Do this first --- it can drop the journal lock, so we want to
1228 * make sure that obtaining the committed_data is done
1229 * atomically wrt. completion of any outstanding commits.
1230 */
1231 err = do_get_write_access(handle, jh, 1);
1232 if (err)
1233 goto out;
1234
1235repeat:
1236 if (!jh->b_committed_data)
1237 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1238 GFP_NOFS|__GFP_NOFAIL);
1239
1240 jbd_lock_bh_state(bh);
1241 if (!jh->b_committed_data) {
1242 /* Copy out the current buffer contents into the
1243 * preserved, committed copy. */
1244 JBUFFER_TRACE(jh, "generate b_committed data");
1245 if (!committed_data) {
1246 jbd_unlock_bh_state(bh);
1247 goto repeat;
1248 }
1249
1250 jh->b_committed_data = committed_data;
1251 committed_data = NULL;
1252 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1253 }
1254 jbd_unlock_bh_state(bh);
1255out:
1256 jbd2_journal_put_journal_head(jh);
1257 if (unlikely(committed_data))
1258 jbd2_free(committed_data, bh->b_size);
1259 return err;
1260}
1261
1262/**
1263 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1264 * @bh: buffer to trigger on
1265 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1266 *
1267 * Set any triggers on this journal_head. This is always safe, because
1268 * triggers for a committing buffer will be saved off, and triggers for
1269 * a running transaction will match the buffer in that transaction.
1270 *
1271 * Call with NULL to clear the triggers.
1272 */
1273void jbd2_journal_set_triggers(struct buffer_head *bh,
1274 struct jbd2_buffer_trigger_type *type)
1275{
1276 struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1277
1278 if (WARN_ON(!jh))
1279 return;
1280 jh->b_triggers = type;
1281 jbd2_journal_put_journal_head(jh);
1282}
1283
1284void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1285 struct jbd2_buffer_trigger_type *triggers)
1286{
1287 struct buffer_head *bh = jh2bh(jh);
1288
1289 if (!triggers || !triggers->t_frozen)
1290 return;
1291
1292 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1293}
1294
1295void jbd2_buffer_abort_trigger(struct journal_head *jh,
1296 struct jbd2_buffer_trigger_type *triggers)
1297{
1298 if (!triggers || !triggers->t_abort)
1299 return;
1300
1301 triggers->t_abort(triggers, jh2bh(jh));
1302}
1303
1304/**
1305 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
1306 * @handle: transaction to add buffer to.
1307 * @bh: buffer to mark
1308 *
1309 * mark dirty metadata which needs to be journaled as part of the current
1310 * transaction.
1311 *
1312 * The buffer must have previously had jbd2_journal_get_write_access()
1313 * called so that it has a valid journal_head attached to the buffer
1314 * head.
1315 *
1316 * The buffer is placed on the transaction's metadata list and is marked
1317 * as belonging to the transaction.
1318 *
1319 * Returns error number or 0 on success.
1320 *
1321 * Special care needs to be taken if the buffer already belongs to the
1322 * current committing transaction (in which case we should have frozen
1323 * data present for that commit). In that case, we don't relink the
1324 * buffer: that only gets done when the old transaction finally
1325 * completes its commit.
1326 */
1327int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1328{
1329 transaction_t *transaction = handle->h_transaction;
1330 journal_t *journal;
1331 struct journal_head *jh;
1332 int ret = 0;
1333
1334 if (is_handle_aborted(handle))
1335 return -EROFS;
1336 if (!buffer_jbd(bh))
1337 return -EUCLEAN;
1338
1339 /*
1340 * We don't grab jh reference here since the buffer must be part
1341 * of the running transaction.
1342 */
1343 jh = bh2jh(bh);
1344 jbd_debug(5, "journal_head %p\n", jh);
1345 JBUFFER_TRACE(jh, "entry");
1346
1347 /*
1348 * This and the following assertions are unreliable since we may see jh
1349 * in inconsistent state unless we grab bh_state lock. But this is
1350 * crucial to catch bugs so let's do a reliable check until the
1351 * lockless handling is fully proven.
1352 */
1353 if (jh->b_transaction != transaction &&
1354 jh->b_next_transaction != transaction) {
1355 jbd_lock_bh_state(bh);
1356 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1357 jh->b_next_transaction == transaction);
1358 jbd_unlock_bh_state(bh);
1359 }
1360 if (jh->b_modified == 1) {
1361 /* If it's in our transaction it must be in BJ_Metadata list. */
1362 if (jh->b_transaction == transaction &&
1363 jh->b_jlist != BJ_Metadata) {
1364 jbd_lock_bh_state(bh);
1365 if (jh->b_transaction == transaction &&
1366 jh->b_jlist != BJ_Metadata)
1367 pr_err("JBD2: assertion failure: h_type=%u "
1368 "h_line_no=%u block_no=%llu jlist=%u\n",
1369 handle->h_type, handle->h_line_no,
1370 (unsigned long long) bh->b_blocknr,
1371 jh->b_jlist);
1372 J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1373 jh->b_jlist == BJ_Metadata);
1374 jbd_unlock_bh_state(bh);
1375 }
1376 goto out;
1377 }
1378
1379 journal = transaction->t_journal;
1380 jbd_lock_bh_state(bh);
1381
1382 if (jh->b_modified == 0) {
1383 /*
1384 * This buffer's got modified and becoming part
1385 * of the transaction. This needs to be done
1386 * once a transaction -bzzz
1387 */
1388 if (handle->h_buffer_credits <= 0) {
1389 ret = -ENOSPC;
1390 goto out_unlock_bh;
1391 }
1392 jh->b_modified = 1;
1393 handle->h_buffer_credits--;
1394 }
1395
1396 /*
1397 * fastpath, to avoid expensive locking. If this buffer is already
1398 * on the running transaction's metadata list there is nothing to do.
1399 * Nobody can take it off again because there is a handle open.
1400 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1401 * result in this test being false, so we go in and take the locks.
1402 */
1403 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1404 JBUFFER_TRACE(jh, "fastpath");
1405 if (unlikely(jh->b_transaction !=
1406 journal->j_running_transaction)) {
1407 printk(KERN_ERR "JBD2: %s: "
1408 "jh->b_transaction (%llu, %p, %u) != "
1409 "journal->j_running_transaction (%p, %u)\n",
1410 journal->j_devname,
1411 (unsigned long long) bh->b_blocknr,
1412 jh->b_transaction,
1413 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1414 journal->j_running_transaction,
1415 journal->j_running_transaction ?
1416 journal->j_running_transaction->t_tid : 0);
1417 ret = -EINVAL;
1418 }
1419 goto out_unlock_bh;
1420 }
1421
1422 set_buffer_jbddirty(bh);
1423
1424 /*
1425 * Metadata already on the current transaction list doesn't
1426 * need to be filed. Metadata on another transaction's list must
1427 * be committing, and will be refiled once the commit completes:
1428 * leave it alone for now.
1429 */
1430 if (jh->b_transaction != transaction) {
1431 JBUFFER_TRACE(jh, "already on other transaction");
1432 if (unlikely(((jh->b_transaction !=
1433 journal->j_committing_transaction)) ||
1434 (jh->b_next_transaction != transaction))) {
1435 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1436 "bad jh for block %llu: "
1437 "transaction (%p, %u), "
1438 "jh->b_transaction (%p, %u), "
1439 "jh->b_next_transaction (%p, %u), jlist %u\n",
1440 journal->j_devname,
1441 (unsigned long long) bh->b_blocknr,
1442 transaction, transaction->t_tid,
1443 jh->b_transaction,
1444 jh->b_transaction ?
1445 jh->b_transaction->t_tid : 0,
1446 jh->b_next_transaction,
1447 jh->b_next_transaction ?
1448 jh->b_next_transaction->t_tid : 0,
1449 jh->b_jlist);
1450 WARN_ON(1);
1451 ret = -EINVAL;
1452 }
1453 /* And this case is illegal: we can't reuse another
1454 * transaction's data buffer, ever. */
1455 goto out_unlock_bh;
1456 }
1457
1458 /* That test should have eliminated the following case: */
1459 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1460
1461 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1462 spin_lock(&journal->j_list_lock);
1463 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1464 spin_unlock(&journal->j_list_lock);
1465out_unlock_bh:
1466 jbd_unlock_bh_state(bh);
1467out:
1468 JBUFFER_TRACE(jh, "exit");
1469 return ret;
1470}
1471
1472/**
1473 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1474 * @handle: transaction handle
1475 * @bh: bh to 'forget'
1476 *
1477 * We can only do the bforget if there are no commits pending against the
1478 * buffer. If the buffer is dirty in the current running transaction we
1479 * can safely unlink it.
1480 *
1481 * bh may not be a journalled buffer at all - it may be a non-JBD
1482 * buffer which came off the hashtable. Check for this.
1483 *
1484 * Decrements bh->b_count by one.
1485 *
1486 * Allow this call even if the handle has aborted --- it may be part of
1487 * the caller's cleanup after an abort.
1488 */
1489int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1490{
1491 transaction_t *transaction = handle->h_transaction;
1492 journal_t *journal;
1493 struct journal_head *jh;
1494 int drop_reserve = 0;
1495 int err = 0;
1496 int was_modified = 0;
1497
1498 if (is_handle_aborted(handle))
1499 return -EROFS;
1500 journal = transaction->t_journal;
1501
1502 BUFFER_TRACE(bh, "entry");
1503
1504 jbd_lock_bh_state(bh);
1505
1506 if (!buffer_jbd(bh))
1507 goto not_jbd;
1508 jh = bh2jh(bh);
1509
1510 /* Critical error: attempting to delete a bitmap buffer, maybe?
1511 * Don't do any jbd operations, and return an error. */
1512 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1513 "inconsistent data on disk")) {
1514 err = -EIO;
1515 goto not_jbd;
1516 }
1517
1518 /* keep track of whether or not this transaction modified us */
1519 was_modified = jh->b_modified;
1520
1521 /*
1522 * The buffer's going from the transaction, we must drop
1523 * all references -bzzz
1524 */
1525 jh->b_modified = 0;
1526
1527 if (jh->b_transaction == transaction) {
1528 J_ASSERT_JH(jh, !jh->b_frozen_data);
1529
1530 /* If we are forgetting a buffer which is already part
1531 * of this transaction, then we can just drop it from
1532 * the transaction immediately. */
1533 clear_buffer_dirty(bh);
1534 clear_buffer_jbddirty(bh);
1535
1536 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1537
1538 /*
1539 * we only want to drop a reference if this transaction
1540 * modified the buffer
1541 */
1542 if (was_modified)
1543 drop_reserve = 1;
1544
1545 /*
1546 * We are no longer going to journal this buffer.
1547 * However, the commit of this transaction is still
1548 * important to the buffer: the delete that we are now
1549 * processing might obsolete an old log entry, so by
1550 * committing, we can satisfy the buffer's checkpoint.
1551 *
1552 * So, if we have a checkpoint on the buffer, we should
1553 * now refile the buffer on our BJ_Forget list so that
1554 * we know to remove the checkpoint after we commit.
1555 */
1556
1557 spin_lock(&journal->j_list_lock);
1558 if (jh->b_cp_transaction) {
1559 __jbd2_journal_temp_unlink_buffer(jh);
1560 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1561 } else {
1562 __jbd2_journal_unfile_buffer(jh);
1563 if (!buffer_jbd(bh)) {
1564 spin_unlock(&journal->j_list_lock);
1565 jbd_unlock_bh_state(bh);
1566 __bforget(bh);
1567 goto drop;
1568 }
1569 }
1570 spin_unlock(&journal->j_list_lock);
1571 } else if (jh->b_transaction) {
1572 J_ASSERT_JH(jh, (jh->b_transaction ==
1573 journal->j_committing_transaction));
1574 /* However, if the buffer is still owned by a prior
1575 * (committing) transaction, we can't drop it yet... */
1576 JBUFFER_TRACE(jh, "belongs to older transaction");
1577 /* ... but we CAN drop it from the new transaction through
1578 * marking the buffer as freed and set j_next_transaction to
1579 * the new transaction, so that not only the commit code
1580 * knows it should clear dirty bits when it is done with the
1581 * buffer, but also the buffer can be checkpointed only
1582 * after the new transaction commits. */
1583
1584 set_buffer_freed(bh);
1585
1586 if (!jh->b_next_transaction) {
1587 spin_lock(&journal->j_list_lock);
1588 jh->b_next_transaction = transaction;
1589 spin_unlock(&journal->j_list_lock);
1590 } else {
1591 J_ASSERT(jh->b_next_transaction == transaction);
1592
1593 /*
1594 * only drop a reference if this transaction modified
1595 * the buffer
1596 */
1597 if (was_modified)
1598 drop_reserve = 1;
1599 }
1600 }
1601
1602not_jbd:
1603 jbd_unlock_bh_state(bh);
1604 __brelse(bh);
1605drop:
1606 if (drop_reserve) {
1607 /* no need to reserve log space for this block -bzzz */
1608 handle->h_buffer_credits++;
1609 }
1610 return err;
1611}
1612
1613/**
1614 * int jbd2_journal_stop() - complete a transaction
1615 * @handle: transaction to complete.
1616 *
1617 * All done for a particular handle.
1618 *
1619 * There is not much action needed here. We just return any remaining
1620 * buffer credits to the transaction and remove the handle. The only
1621 * complication is that we need to start a commit operation if the
1622 * filesystem is marked for synchronous update.
1623 *
1624 * jbd2_journal_stop itself will not usually return an error, but it may
1625 * do so in unusual circumstances. In particular, expect it to
1626 * return -EIO if a jbd2_journal_abort has been executed since the
1627 * transaction began.
1628 */
1629int jbd2_journal_stop(handle_t *handle)
1630{
1631 transaction_t *transaction = handle->h_transaction;
1632 journal_t *journal;
1633 int err = 0, wait_for_commit = 0;
1634 tid_t tid;
1635 pid_t pid;
1636
1637 if (!transaction) {
1638 /*
1639 * Handle is already detached from the transaction so
1640 * there is nothing to do other than decrease a refcount,
1641 * or free the handle if refcount drops to zero
1642 */
1643 if (--handle->h_ref > 0) {
1644 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1645 handle->h_ref);
1646 return err;
1647 } else {
1648 if (handle->h_rsv_handle)
1649 jbd2_free_handle(handle->h_rsv_handle);
1650 goto free_and_exit;
1651 }
1652 }
1653 journal = transaction->t_journal;
1654
1655 J_ASSERT(journal_current_handle() == handle);
1656
1657 if (is_handle_aborted(handle))
1658 err = -EIO;
1659 else
1660 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1661
1662 if (--handle->h_ref > 0) {
1663 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1664 handle->h_ref);
1665 return err;
1666 }
1667
1668 jbd_debug(4, "Handle %p going down\n", handle);
1669 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1670 transaction->t_tid,
1671 handle->h_type, handle->h_line_no,
1672 jiffies - handle->h_start_jiffies,
1673 handle->h_sync, handle->h_requested_credits,
1674 (handle->h_requested_credits -
1675 handle->h_buffer_credits));
1676
1677 /*
1678 * Implement synchronous transaction batching. If the handle
1679 * was synchronous, don't force a commit immediately. Let's
1680 * yield and let another thread piggyback onto this
1681 * transaction. Keep doing that while new threads continue to
1682 * arrive. It doesn't cost much - we're about to run a commit
1683 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1684 * operations by 30x or more...
1685 *
1686 * We try and optimize the sleep time against what the
1687 * underlying disk can do, instead of having a static sleep
1688 * time. This is useful for the case where our storage is so
1689 * fast that it is more optimal to go ahead and force a flush
1690 * and wait for the transaction to be committed than it is to
1691 * wait for an arbitrary amount of time for new writers to
1692 * join the transaction. We achieve this by measuring how
1693 * long it takes to commit a transaction, and compare it with
1694 * how long this transaction has been running, and if run time
1695 * < commit time then we sleep for the delta and commit. This
1696 * greatly helps super fast disks that would see slowdowns as
1697 * more threads started doing fsyncs.
1698 *
1699 * But don't do this if this process was the most recent one
1700 * to perform a synchronous write. We do this to detect the
1701 * case where a single process is doing a stream of sync
1702 * writes. No point in waiting for joiners in that case.
1703 *
1704 * Setting max_batch_time to 0 disables this completely.
1705 */
1706 pid = current->pid;
1707 if (handle->h_sync && journal->j_last_sync_writer != pid &&
1708 journal->j_max_batch_time) {
1709 u64 commit_time, trans_time;
1710
1711 journal->j_last_sync_writer = pid;
1712
1713 read_lock(&journal->j_state_lock);
1714 commit_time = journal->j_average_commit_time;
1715 read_unlock(&journal->j_state_lock);
1716
1717 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1718 transaction->t_start_time));
1719
1720 commit_time = max_t(u64, commit_time,
1721 1000*journal->j_min_batch_time);
1722 commit_time = min_t(u64, commit_time,
1723 1000*journal->j_max_batch_time);
1724
1725 if (trans_time < commit_time) {
1726 ktime_t expires = ktime_add_ns(ktime_get(),
1727 commit_time);
1728 set_current_state(TASK_UNINTERRUPTIBLE);
1729 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1730 }
1731 }
1732
1733 if (handle->h_sync)
1734 transaction->t_synchronous_commit = 1;
1735 current->journal_info = NULL;
1736 atomic_sub(handle->h_buffer_credits,
1737 &transaction->t_outstanding_credits);
1738
1739 /*
1740 * If the handle is marked SYNC, we need to set another commit
1741 * going! We also want to force a commit if the current
1742 * transaction is occupying too much of the log, or if the
1743 * transaction is too old now.
1744 */
1745 if (handle->h_sync ||
1746 (atomic_read(&transaction->t_outstanding_credits) >
1747 journal->j_max_transaction_buffers) ||
1748 time_after_eq(jiffies, transaction->t_expires)) {
1749 /* Do this even for aborted journals: an abort still
1750 * completes the commit thread, it just doesn't write
1751 * anything to disk. */
1752
1753 jbd_debug(2, "transaction too old, requesting commit for "
1754 "handle %p\n", handle);
1755 /* This is non-blocking */
1756 jbd2_log_start_commit(journal, transaction->t_tid);
1757
1758 /*
1759 * Special case: JBD2_SYNC synchronous updates require us
1760 * to wait for the commit to complete.
1761 */
1762 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1763 wait_for_commit = 1;
1764 }
1765
1766 /*
1767 * Once we drop t_updates, if it goes to zero the transaction
1768 * could start committing on us and eventually disappear. So
1769 * once we do this, we must not dereference transaction
1770 * pointer again.
1771 */
1772 tid = transaction->t_tid;
1773 if (atomic_dec_and_test(&transaction->t_updates)) {
1774 wake_up(&journal->j_wait_updates);
1775 if (journal->j_barrier_count)
1776 wake_up(&journal->j_wait_transaction_locked);
1777 }
1778 if (wait_for_commit)
1779 err = jbd2_log_wait_commit(journal, tid);
1780
1781 if (handle->h_rsv_handle)
1782 jbd2_journal_free_reserved(handle->h_rsv_handle);
1783free_and_exit:
1784 /*
1785 * Scope of the GFP_NOFS context is over here and so we can restore the
1786 * original alloc context.
1787 */
1788 memalloc_nofs_restore(handle->saved_alloc_context);
1789 jbd2_free_handle(handle);
1790 return err;
1791}
1792
1793/*
1794 *
1795 * List management code snippets: various functions for manipulating the
1796 * transaction buffer lists.
1797 *
1798 */
1799
1800/*
1801 * Append a buffer to a transaction list, given the transaction's list head
1802 * pointer.
1803 *
1804 * j_list_lock is held.
1805 *
1806 * jbd_lock_bh_state(jh2bh(jh)) is held.
1807 */
1808
1809static inline void
1810__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1811{
1812 if (!*list) {
1813 jh->b_tnext = jh->b_tprev = jh;
1814 *list = jh;
1815 } else {
1816 /* Insert at the tail of the list to preserve order */
1817 struct journal_head *first = *list, *last = first->b_tprev;
1818 jh->b_tprev = last;
1819 jh->b_tnext = first;
1820 last->b_tnext = first->b_tprev = jh;
1821 }
1822}
1823
1824/*
1825 * Remove a buffer from a transaction list, given the transaction's list
1826 * head pointer.
1827 *
1828 * Called with j_list_lock held, and the journal may not be locked.
1829 *
1830 * jbd_lock_bh_state(jh2bh(jh)) is held.
1831 */
1832
1833static inline void
1834__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1835{
1836 if (*list == jh) {
1837 *list = jh->b_tnext;
1838 if (*list == jh)
1839 *list = NULL;
1840 }
1841 jh->b_tprev->b_tnext = jh->b_tnext;
1842 jh->b_tnext->b_tprev = jh->b_tprev;
1843}
1844
1845/*
1846 * Remove a buffer from the appropriate transaction list.
1847 *
1848 * Note that this function can *change* the value of
1849 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1850 * t_reserved_list. If the caller is holding onto a copy of one of these
1851 * pointers, it could go bad. Generally the caller needs to re-read the
1852 * pointer from the transaction_t.
1853 *
1854 * Called under j_list_lock.
1855 */
1856static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1857{
1858 struct journal_head **list = NULL;
1859 transaction_t *transaction;
1860 struct buffer_head *bh = jh2bh(jh);
1861
1862 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1863 transaction = jh->b_transaction;
1864 if (transaction)
1865 assert_spin_locked(&transaction->t_journal->j_list_lock);
1866
1867 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1868 if (jh->b_jlist != BJ_None)
1869 J_ASSERT_JH(jh, transaction != NULL);
1870
1871 switch (jh->b_jlist) {
1872 case BJ_None:
1873 return;
1874 case BJ_Metadata:
1875 transaction->t_nr_buffers--;
1876 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1877 list = &transaction->t_buffers;
1878 break;
1879 case BJ_Forget:
1880 list = &transaction->t_forget;
1881 break;
1882 case BJ_Shadow:
1883 list = &transaction->t_shadow_list;
1884 break;
1885 case BJ_Reserved:
1886 list = &transaction->t_reserved_list;
1887 break;
1888 }
1889
1890 __blist_del_buffer(list, jh);
1891 jh->b_jlist = BJ_None;
1892 if (transaction && is_journal_aborted(transaction->t_journal))
1893 clear_buffer_jbddirty(bh);
1894 else if (test_clear_buffer_jbddirty(bh))
1895 mark_buffer_dirty(bh); /* Expose it to the VM */
1896}
1897
1898/*
1899 * Remove buffer from all transactions.
1900 *
1901 * Called with bh_state lock and j_list_lock
1902 *
1903 * jh and bh may be already freed when this function returns.
1904 */
1905static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1906{
1907 __jbd2_journal_temp_unlink_buffer(jh);
1908 jh->b_transaction = NULL;
1909 jbd2_journal_put_journal_head(jh);
1910}
1911
1912void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1913{
1914 struct buffer_head *bh = jh2bh(jh);
1915
1916 /* Get reference so that buffer cannot be freed before we unlock it */
1917 get_bh(bh);
1918 jbd_lock_bh_state(bh);
1919 spin_lock(&journal->j_list_lock);
1920 __jbd2_journal_unfile_buffer(jh);
1921 spin_unlock(&journal->j_list_lock);
1922 jbd_unlock_bh_state(bh);
1923 __brelse(bh);
1924}
1925
1926/*
1927 * Called from jbd2_journal_try_to_free_buffers().
1928 *
1929 * Called under jbd_lock_bh_state(bh)
1930 */
1931static void
1932__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1933{
1934 struct journal_head *jh;
1935
1936 jh = bh2jh(bh);
1937
1938 if (buffer_locked(bh) || buffer_dirty(bh))
1939 goto out;
1940
1941 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1942 goto out;
1943
1944 spin_lock(&journal->j_list_lock);
1945 if (jh->b_cp_transaction != NULL) {
1946 /* written-back checkpointed metadata buffer */
1947 JBUFFER_TRACE(jh, "remove from checkpoint list");
1948 __jbd2_journal_remove_checkpoint(jh);
1949 }
1950 spin_unlock(&journal->j_list_lock);
1951out:
1952 return;
1953}
1954
1955/**
1956 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1957 * @journal: journal for operation
1958 * @page: to try and free
1959 * @gfp_mask: we use the mask to detect how hard should we try to release
1960 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1961 * code to release the buffers.
1962 *
1963 *
1964 * For all the buffers on this page,
1965 * if they are fully written out ordered data, move them onto BUF_CLEAN
1966 * so try_to_free_buffers() can reap them.
1967 *
1968 * This function returns non-zero if we wish try_to_free_buffers()
1969 * to be called. We do this if the page is releasable by try_to_free_buffers().
1970 * We also do it if the page has locked or dirty buffers and the caller wants
1971 * us to perform sync or async writeout.
1972 *
1973 * This complicates JBD locking somewhat. We aren't protected by the
1974 * BKL here. We wish to remove the buffer from its committing or
1975 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1976 *
1977 * This may *change* the value of transaction_t->t_datalist, so anyone
1978 * who looks at t_datalist needs to lock against this function.
1979 *
1980 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1981 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
1982 * will come out of the lock with the buffer dirty, which makes it
1983 * ineligible for release here.
1984 *
1985 * Who else is affected by this? hmm... Really the only contender
1986 * is do_get_write_access() - it could be looking at the buffer while
1987 * journal_try_to_free_buffer() is changing its state. But that
1988 * cannot happen because we never reallocate freed data as metadata
1989 * while the data is part of a transaction. Yes?
1990 *
1991 * Return 0 on failure, 1 on success
1992 */
1993int jbd2_journal_try_to_free_buffers(journal_t *journal,
1994 struct page *page, gfp_t gfp_mask)
1995{
1996 struct buffer_head *head;
1997 struct buffer_head *bh;
1998 int ret = 0;
1999
2000 J_ASSERT(PageLocked(page));
2001
2002 head = page_buffers(page);
2003 bh = head;
2004 do {
2005 struct journal_head *jh;
2006
2007 /*
2008 * We take our own ref against the journal_head here to avoid
2009 * having to add tons of locking around each instance of
2010 * jbd2_journal_put_journal_head().
2011 */
2012 jh = jbd2_journal_grab_journal_head(bh);
2013 if (!jh)
2014 continue;
2015
2016 jbd_lock_bh_state(bh);
2017 __journal_try_to_free_buffer(journal, bh);
2018 jbd2_journal_put_journal_head(jh);
2019 jbd_unlock_bh_state(bh);
2020 if (buffer_jbd(bh))
2021 goto busy;
2022 } while ((bh = bh->b_this_page) != head);
2023
2024 ret = try_to_free_buffers(page);
2025
2026busy:
2027 return ret;
2028}
2029
2030/*
2031 * This buffer is no longer needed. If it is on an older transaction's
2032 * checkpoint list we need to record it on this transaction's forget list
2033 * to pin this buffer (and hence its checkpointing transaction) down until
2034 * this transaction commits. If the buffer isn't on a checkpoint list, we
2035 * release it.
2036 * Returns non-zero if JBD no longer has an interest in the buffer.
2037 *
2038 * Called under j_list_lock.
2039 *
2040 * Called under jbd_lock_bh_state(bh).
2041 */
2042static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2043{
2044 int may_free = 1;
2045 struct buffer_head *bh = jh2bh(jh);
2046
2047 if (jh->b_cp_transaction) {
2048 JBUFFER_TRACE(jh, "on running+cp transaction");
2049 __jbd2_journal_temp_unlink_buffer(jh);
2050 /*
2051 * We don't want to write the buffer anymore, clear the
2052 * bit so that we don't confuse checks in
2053 * __journal_file_buffer
2054 */
2055 clear_buffer_dirty(bh);
2056 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2057 may_free = 0;
2058 } else {
2059 JBUFFER_TRACE(jh, "on running transaction");
2060 __jbd2_journal_unfile_buffer(jh);
2061 }
2062 return may_free;
2063}
2064
2065/*
2066 * jbd2_journal_invalidatepage
2067 *
2068 * This code is tricky. It has a number of cases to deal with.
2069 *
2070 * There are two invariants which this code relies on:
2071 *
2072 * i_size must be updated on disk before we start calling invalidatepage on the
2073 * data.
2074 *
2075 * This is done in ext3 by defining an ext3_setattr method which
2076 * updates i_size before truncate gets going. By maintaining this
2077 * invariant, we can be sure that it is safe to throw away any buffers
2078 * attached to the current transaction: once the transaction commits,
2079 * we know that the data will not be needed.
2080 *
2081 * Note however that we can *not* throw away data belonging to the
2082 * previous, committing transaction!
2083 *
2084 * Any disk blocks which *are* part of the previous, committing
2085 * transaction (and which therefore cannot be discarded immediately) are
2086 * not going to be reused in the new running transaction
2087 *
2088 * The bitmap committed_data images guarantee this: any block which is
2089 * allocated in one transaction and removed in the next will be marked
2090 * as in-use in the committed_data bitmap, so cannot be reused until
2091 * the next transaction to delete the block commits. This means that
2092 * leaving committing buffers dirty is quite safe: the disk blocks
2093 * cannot be reallocated to a different file and so buffer aliasing is
2094 * not possible.
2095 *
2096 *
2097 * The above applies mainly to ordered data mode. In writeback mode we
2098 * don't make guarantees about the order in which data hits disk --- in
2099 * particular we don't guarantee that new dirty data is flushed before
2100 * transaction commit --- so it is always safe just to discard data
2101 * immediately in that mode. --sct
2102 */
2103
2104/*
2105 * The journal_unmap_buffer helper function returns zero if the buffer
2106 * concerned remains pinned as an anonymous buffer belonging to an older
2107 * transaction.
2108 *
2109 * We're outside-transaction here. Either or both of j_running_transaction
2110 * and j_committing_transaction may be NULL.
2111 */
2112static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2113 int partial_page)
2114{
2115 transaction_t *transaction;
2116 struct journal_head *jh;
2117 int may_free = 1;
2118
2119 BUFFER_TRACE(bh, "entry");
2120
2121 /*
2122 * It is safe to proceed here without the j_list_lock because the
2123 * buffers cannot be stolen by try_to_free_buffers as long as we are
2124 * holding the page lock. --sct
2125 */
2126
2127 if (!buffer_jbd(bh))
2128 goto zap_buffer_unlocked;
2129
2130 /* OK, we have data buffer in journaled mode */
2131 write_lock(&journal->j_state_lock);
2132 jbd_lock_bh_state(bh);
2133 spin_lock(&journal->j_list_lock);
2134
2135 jh = jbd2_journal_grab_journal_head(bh);
2136 if (!jh)
2137 goto zap_buffer_no_jh;
2138
2139 /*
2140 * We cannot remove the buffer from checkpoint lists until the
2141 * transaction adding inode to orphan list (let's call it T)
2142 * is committed. Otherwise if the transaction changing the
2143 * buffer would be cleaned from the journal before T is
2144 * committed, a crash will cause that the correct contents of
2145 * the buffer will be lost. On the other hand we have to
2146 * clear the buffer dirty bit at latest at the moment when the
2147 * transaction marking the buffer as freed in the filesystem
2148 * structures is committed because from that moment on the
2149 * block can be reallocated and used by a different page.
2150 * Since the block hasn't been freed yet but the inode has
2151 * already been added to orphan list, it is safe for us to add
2152 * the buffer to BJ_Forget list of the newest transaction.
2153 *
2154 * Also we have to clear buffer_mapped flag of a truncated buffer
2155 * because the buffer_head may be attached to the page straddling
2156 * i_size (can happen only when blocksize < pagesize) and thus the
2157 * buffer_head can be reused when the file is extended again. So we end
2158 * up keeping around invalidated buffers attached to transactions'
2159 * BJ_Forget list just to stop checkpointing code from cleaning up
2160 * the transaction this buffer was modified in.
2161 */
2162 transaction = jh->b_transaction;
2163 if (transaction == NULL) {
2164 /* First case: not on any transaction. If it
2165 * has no checkpoint link, then we can zap it:
2166 * it's a writeback-mode buffer so we don't care
2167 * if it hits disk safely. */
2168 if (!jh->b_cp_transaction) {
2169 JBUFFER_TRACE(jh, "not on any transaction: zap");
2170 goto zap_buffer;
2171 }
2172
2173 if (!buffer_dirty(bh)) {
2174 /* bdflush has written it. We can drop it now */
2175 __jbd2_journal_remove_checkpoint(jh);
2176 goto zap_buffer;
2177 }
2178
2179 /* OK, it must be in the journal but still not
2180 * written fully to disk: it's metadata or
2181 * journaled data... */
2182
2183 if (journal->j_running_transaction) {
2184 /* ... and once the current transaction has
2185 * committed, the buffer won't be needed any
2186 * longer. */
2187 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2188 may_free = __dispose_buffer(jh,
2189 journal->j_running_transaction);
2190 goto zap_buffer;
2191 } else {
2192 /* There is no currently-running transaction. So the
2193 * orphan record which we wrote for this file must have
2194 * passed into commit. We must attach this buffer to
2195 * the committing transaction, if it exists. */
2196 if (journal->j_committing_transaction) {
2197 JBUFFER_TRACE(jh, "give to committing trans");
2198 may_free = __dispose_buffer(jh,
2199 journal->j_committing_transaction);
2200 goto zap_buffer;
2201 } else {
2202 /* The orphan record's transaction has
2203 * committed. We can cleanse this buffer */
2204 clear_buffer_jbddirty(bh);
2205 __jbd2_journal_remove_checkpoint(jh);
2206 goto zap_buffer;
2207 }
2208 }
2209 } else if (transaction == journal->j_committing_transaction) {
2210 JBUFFER_TRACE(jh, "on committing transaction");
2211 /*
2212 * The buffer is committing, we simply cannot touch
2213 * it. If the page is straddling i_size we have to wait
2214 * for commit and try again.
2215 */
2216 if (partial_page) {
2217 jbd2_journal_put_journal_head(jh);
2218 spin_unlock(&journal->j_list_lock);
2219 jbd_unlock_bh_state(bh);
2220 write_unlock(&journal->j_state_lock);
2221 return -EBUSY;
2222 }
2223 /*
2224 * OK, buffer won't be reachable after truncate. We just set
2225 * j_next_transaction to the running transaction (if there is
2226 * one) and mark buffer as freed so that commit code knows it
2227 * should clear dirty bits when it is done with the buffer.
2228 */
2229 set_buffer_freed(bh);
2230 if (journal->j_running_transaction && buffer_jbddirty(bh))
2231 jh->b_next_transaction = journal->j_running_transaction;
2232 jbd2_journal_put_journal_head(jh);
2233 spin_unlock(&journal->j_list_lock);
2234 jbd_unlock_bh_state(bh);
2235 write_unlock(&journal->j_state_lock);
2236 return 0;
2237 } else {
2238 /* Good, the buffer belongs to the running transaction.
2239 * We are writing our own transaction's data, not any
2240 * previous one's, so it is safe to throw it away
2241 * (remember that we expect the filesystem to have set
2242 * i_size already for this truncate so recovery will not
2243 * expose the disk blocks we are discarding here.) */
2244 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2245 JBUFFER_TRACE(jh, "on running transaction");
2246 may_free = __dispose_buffer(jh, transaction);
2247 }
2248
2249zap_buffer:
2250 /*
2251 * This is tricky. Although the buffer is truncated, it may be reused
2252 * if blocksize < pagesize and it is attached to the page straddling
2253 * EOF. Since the buffer might have been added to BJ_Forget list of the
2254 * running transaction, journal_get_write_access() won't clear
2255 * b_modified and credit accounting gets confused. So clear b_modified
2256 * here.
2257 */
2258 jh->b_modified = 0;
2259 jbd2_journal_put_journal_head(jh);
2260zap_buffer_no_jh:
2261 spin_unlock(&journal->j_list_lock);
2262 jbd_unlock_bh_state(bh);
2263 write_unlock(&journal->j_state_lock);
2264zap_buffer_unlocked:
2265 clear_buffer_dirty(bh);
2266 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2267 clear_buffer_mapped(bh);
2268 clear_buffer_req(bh);
2269 clear_buffer_new(bh);
2270 clear_buffer_delay(bh);
2271 clear_buffer_unwritten(bh);
2272 bh->b_bdev = NULL;
2273 return may_free;
2274}
2275
2276/**
2277 * void jbd2_journal_invalidatepage()
2278 * @journal: journal to use for flush...
2279 * @page: page to flush
2280 * @offset: start of the range to invalidate
2281 * @length: length of the range to invalidate
2282 *
2283 * Reap page buffers containing data after in the specified range in page.
2284 * Can return -EBUSY if buffers are part of the committing transaction and
2285 * the page is straddling i_size. Caller then has to wait for current commit
2286 * and try again.
2287 */
2288int jbd2_journal_invalidatepage(journal_t *journal,
2289 struct page *page,
2290 unsigned int offset,
2291 unsigned int length)
2292{
2293 struct buffer_head *head, *bh, *next;
2294 unsigned int stop = offset + length;
2295 unsigned int curr_off = 0;
2296 int partial_page = (offset || length < PAGE_SIZE);
2297 int may_free = 1;
2298 int ret = 0;
2299
2300 if (!PageLocked(page))
2301 BUG();
2302 if (!page_has_buffers(page))
2303 return 0;
2304
2305 BUG_ON(stop > PAGE_SIZE || stop < length);
2306
2307 /* We will potentially be playing with lists other than just the
2308 * data lists (especially for journaled data mode), so be
2309 * cautious in our locking. */
2310
2311 head = bh = page_buffers(page);
2312 do {
2313 unsigned int next_off = curr_off + bh->b_size;
2314 next = bh->b_this_page;
2315
2316 if (next_off > stop)
2317 return 0;
2318
2319 if (offset <= curr_off) {
2320 /* This block is wholly outside the truncation point */
2321 lock_buffer(bh);
2322 ret = journal_unmap_buffer(journal, bh, partial_page);
2323 unlock_buffer(bh);
2324 if (ret < 0)
2325 return ret;
2326 may_free &= ret;
2327 }
2328 curr_off = next_off;
2329 bh = next;
2330
2331 } while (bh != head);
2332
2333 if (!partial_page) {
2334 if (may_free && try_to_free_buffers(page))
2335 J_ASSERT(!page_has_buffers(page));
2336 }
2337 return 0;
2338}
2339
2340/*
2341 * File a buffer on the given transaction list.
2342 */
2343void __jbd2_journal_file_buffer(struct journal_head *jh,
2344 transaction_t *transaction, int jlist)
2345{
2346 struct journal_head **list = NULL;
2347 int was_dirty = 0;
2348 struct buffer_head *bh = jh2bh(jh);
2349
2350 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2351 assert_spin_locked(&transaction->t_journal->j_list_lock);
2352
2353 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2354 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2355 jh->b_transaction == NULL);
2356
2357 if (jh->b_transaction && jh->b_jlist == jlist)
2358 return;
2359
2360 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2361 jlist == BJ_Shadow || jlist == BJ_Forget) {
2362 /*
2363 * For metadata buffers, we track dirty bit in buffer_jbddirty
2364 * instead of buffer_dirty. We should not see a dirty bit set
2365 * here because we clear it in do_get_write_access but e.g.
2366 * tune2fs can modify the sb and set the dirty bit at any time
2367 * so we try to gracefully handle that.
2368 */
2369 if (buffer_dirty(bh))
2370 warn_dirty_buffer(bh);
2371 if (test_clear_buffer_dirty(bh) ||
2372 test_clear_buffer_jbddirty(bh))
2373 was_dirty = 1;
2374 }
2375
2376 if (jh->b_transaction)
2377 __jbd2_journal_temp_unlink_buffer(jh);
2378 else
2379 jbd2_journal_grab_journal_head(bh);
2380 jh->b_transaction = transaction;
2381
2382 switch (jlist) {
2383 case BJ_None:
2384 J_ASSERT_JH(jh, !jh->b_committed_data);
2385 J_ASSERT_JH(jh, !jh->b_frozen_data);
2386 return;
2387 case BJ_Metadata:
2388 transaction->t_nr_buffers++;
2389 list = &transaction->t_buffers;
2390 break;
2391 case BJ_Forget:
2392 list = &transaction->t_forget;
2393 break;
2394 case BJ_Shadow:
2395 list = &transaction->t_shadow_list;
2396 break;
2397 case BJ_Reserved:
2398 list = &transaction->t_reserved_list;
2399 break;
2400 }
2401
2402 __blist_add_buffer(list, jh);
2403 jh->b_jlist = jlist;
2404
2405 if (was_dirty)
2406 set_buffer_jbddirty(bh);
2407}
2408
2409void jbd2_journal_file_buffer(struct journal_head *jh,
2410 transaction_t *transaction, int jlist)
2411{
2412 jbd_lock_bh_state(jh2bh(jh));
2413 spin_lock(&transaction->t_journal->j_list_lock);
2414 __jbd2_journal_file_buffer(jh, transaction, jlist);
2415 spin_unlock(&transaction->t_journal->j_list_lock);
2416 jbd_unlock_bh_state(jh2bh(jh));
2417}
2418
2419/*
2420 * Remove a buffer from its current buffer list in preparation for
2421 * dropping it from its current transaction entirely. If the buffer has
2422 * already started to be used by a subsequent transaction, refile the
2423 * buffer on that transaction's metadata list.
2424 *
2425 * Called under j_list_lock
2426 * Called under jbd_lock_bh_state(jh2bh(jh))
2427 *
2428 * jh and bh may be already free when this function returns
2429 */
2430void __jbd2_journal_refile_buffer(struct journal_head *jh)
2431{
2432 int was_dirty, jlist;
2433 struct buffer_head *bh = jh2bh(jh);
2434
2435 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2436 if (jh->b_transaction)
2437 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2438
2439 /* If the buffer is now unused, just drop it. */
2440 if (jh->b_next_transaction == NULL) {
2441 __jbd2_journal_unfile_buffer(jh);
2442 return;
2443 }
2444
2445 /*
2446 * It has been modified by a later transaction: add it to the new
2447 * transaction's metadata list.
2448 */
2449
2450 was_dirty = test_clear_buffer_jbddirty(bh);
2451 __jbd2_journal_temp_unlink_buffer(jh);
2452 /*
2453 * We set b_transaction here because b_next_transaction will inherit
2454 * our jh reference and thus __jbd2_journal_file_buffer() must not
2455 * take a new one.
2456 */
2457 jh->b_transaction = jh->b_next_transaction;
2458 jh->b_next_transaction = NULL;
2459 if (buffer_freed(bh))
2460 jlist = BJ_Forget;
2461 else if (jh->b_modified)
2462 jlist = BJ_Metadata;
2463 else
2464 jlist = BJ_Reserved;
2465 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2466 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2467
2468 if (was_dirty)
2469 set_buffer_jbddirty(bh);
2470}
2471
2472/*
2473 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2474 * bh reference so that we can safely unlock bh.
2475 *
2476 * The jh and bh may be freed by this call.
2477 */
2478void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2479{
2480 struct buffer_head *bh = jh2bh(jh);
2481
2482 /* Get reference so that buffer cannot be freed before we unlock it */
2483 get_bh(bh);
2484 jbd_lock_bh_state(bh);
2485 spin_lock(&journal->j_list_lock);
2486 __jbd2_journal_refile_buffer(jh);
2487 jbd_unlock_bh_state(bh);
2488 spin_unlock(&journal->j_list_lock);
2489 __brelse(bh);
2490}
2491
2492/*
2493 * File inode in the inode list of the handle's transaction
2494 */
2495static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2496 unsigned long flags, loff_t start_byte, loff_t end_byte)
2497{
2498 transaction_t *transaction = handle->h_transaction;
2499 journal_t *journal;
2500
2501 if (is_handle_aborted(handle))
2502 return -EROFS;
2503 journal = transaction->t_journal;
2504
2505 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2506 transaction->t_tid);
2507
2508 spin_lock(&journal->j_list_lock);
2509 jinode->i_flags |= flags;
2510
2511 if (jinode->i_dirty_end) {
2512 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2513 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2514 } else {
2515 jinode->i_dirty_start = start_byte;
2516 jinode->i_dirty_end = end_byte;
2517 }
2518
2519 /* Is inode already attached where we need it? */
2520 if (jinode->i_transaction == transaction ||
2521 jinode->i_next_transaction == transaction)
2522 goto done;
2523
2524 /*
2525 * We only ever set this variable to 1 so the test is safe. Since
2526 * t_need_data_flush is likely to be set, we do the test to save some
2527 * cacheline bouncing
2528 */
2529 if (!transaction->t_need_data_flush)
2530 transaction->t_need_data_flush = 1;
2531 /* On some different transaction's list - should be
2532 * the committing one */
2533 if (jinode->i_transaction) {
2534 J_ASSERT(jinode->i_next_transaction == NULL);
2535 J_ASSERT(jinode->i_transaction ==
2536 journal->j_committing_transaction);
2537 jinode->i_next_transaction = transaction;
2538 goto done;
2539 }
2540 /* Not on any transaction list... */
2541 J_ASSERT(!jinode->i_next_transaction);
2542 jinode->i_transaction = transaction;
2543 list_add(&jinode->i_list, &transaction->t_inode_list);
2544done:
2545 spin_unlock(&journal->j_list_lock);
2546
2547 return 0;
2548}
2549
2550int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2551{
2552 return jbd2_journal_file_inode(handle, jinode,
2553 JI_WRITE_DATA | JI_WAIT_DATA, 0, LLONG_MAX);
2554}
2555
2556int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2557{
2558 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 0,
2559 LLONG_MAX);
2560}
2561
2562int jbd2_journal_inode_ranged_write(handle_t *handle,
2563 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2564{
2565 return jbd2_journal_file_inode(handle, jinode,
2566 JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2567 start_byte + length - 1);
2568}
2569
2570int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2571 loff_t start_byte, loff_t length)
2572{
2573 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2574 start_byte, start_byte + length - 1);
2575}
2576
2577/*
2578 * File truncate and transaction commit interact with each other in a
2579 * non-trivial way. If a transaction writing data block A is
2580 * committing, we cannot discard the data by truncate until we have
2581 * written them. Otherwise if we crashed after the transaction with
2582 * write has committed but before the transaction with truncate has
2583 * committed, we could see stale data in block A. This function is a
2584 * helper to solve this problem. It starts writeout of the truncated
2585 * part in case it is in the committing transaction.
2586 *
2587 * Filesystem code must call this function when inode is journaled in
2588 * ordered mode before truncation happens and after the inode has been
2589 * placed on orphan list with the new inode size. The second condition
2590 * avoids the race that someone writes new data and we start
2591 * committing the transaction after this function has been called but
2592 * before a transaction for truncate is started (and furthermore it
2593 * allows us to optimize the case where the addition to orphan list
2594 * happens in the same transaction as write --- we don't have to write
2595 * any data in such case).
2596 */
2597int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2598 struct jbd2_inode *jinode,
2599 loff_t new_size)
2600{
2601 transaction_t *inode_trans, *commit_trans;
2602 int ret = 0;
2603
2604 /* This is a quick check to avoid locking if not necessary */
2605 if (!jinode->i_transaction)
2606 goto out;
2607 /* Locks are here just to force reading of recent values, it is
2608 * enough that the transaction was not committing before we started
2609 * a transaction adding the inode to orphan list */
2610 read_lock(&journal->j_state_lock);
2611 commit_trans = journal->j_committing_transaction;
2612 read_unlock(&journal->j_state_lock);
2613 spin_lock(&journal->j_list_lock);
2614 inode_trans = jinode->i_transaction;
2615 spin_unlock(&journal->j_list_lock);
2616 if (inode_trans == commit_trans) {
2617 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2618 new_size, LLONG_MAX);
2619 if (ret)
2620 jbd2_journal_abort(journal, ret);
2621 }
2622out:
2623 return ret;
2624}