blob: bfead71274f293c7d0054dad9cb807d307aca2f3 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001#
2# IP configuration
3#
4config IP_MULTICAST
5 bool "IP: multicasting"
6 help
7 This is code for addressing several networked computers at once,
8 enlarging your kernel by about 2 KB. You need multicasting if you
9 intend to participate in the MBONE, a high bandwidth network on top
10 of the Internet which carries audio and video broadcasts. More
11 information about the MBONE is on the WWW at
12 <http://www.savetz.com/mbone/>. For most people, it's safe to say N.
13
14config IP_ADVANCED_ROUTER
15 bool "IP: advanced router"
16 ---help---
17 If you intend to run your Linux box mostly as a router, i.e. as a
18 computer that forwards and redistributes network packets, say Y; you
19 will then be presented with several options that allow more precise
20 control about the routing process.
21
22 The answer to this question won't directly affect the kernel:
23 answering N will just cause the configurator to skip all the
24 questions about advanced routing.
25
26 Note that your box can only act as a router if you enable IP
27 forwarding in your kernel; you can do that by saying Y to "/proc
28 file system support" and "Sysctl support" below and executing the
29 line
30
31 echo "1" > /proc/sys/net/ipv4/ip_forward
32
33 at boot time after the /proc file system has been mounted.
34
35 If you turn on IP forwarding, you should consider the rp_filter, which
36 automatically rejects incoming packets if the routing table entry
37 for their source address doesn't match the network interface they're
38 arriving on. This has security advantages because it prevents the
39 so-called IP spoofing, however it can pose problems if you use
40 asymmetric routing (packets from you to a host take a different path
41 than packets from that host to you) or if you operate a non-routing
42 host which has several IP addresses on different interfaces. To turn
43 rp_filter on use:
44
45 echo 1 > /proc/sys/net/ipv4/conf/<device>/rp_filter
46 or
47 echo 1 > /proc/sys/net/ipv4/conf/all/rp_filter
48
49 Note that some distributions enable it in startup scripts.
50 For details about rp_filter strict and loose mode read
51 <file:Documentation/networking/ip-sysctl.txt>.
52
53 If unsure, say N here.
54
55config IP_FIB_TRIE_STATS
56 bool "FIB TRIE statistics"
57 depends on IP_ADVANCED_ROUTER
58 ---help---
59 Keep track of statistics on structure of FIB TRIE table.
60 Useful for testing and measuring TRIE performance.
61
62config IP_MULTIPLE_TABLES
63 bool "IP: policy routing"
64 depends on IP_ADVANCED_ROUTER
65 select FIB_RULES
66 ---help---
67 Normally, a router decides what to do with a received packet based
68 solely on the packet's final destination address. If you say Y here,
69 the Linux router will also be able to take the packet's source
70 address into account. Furthermore, the TOS (Type-Of-Service) field
71 of the packet can be used for routing decisions as well.
72
73 If you need more information, see the Linux Advanced
74 Routing and Traffic Control documentation at
75 <http://lartc.org/howto/lartc.rpdb.html>
76
77 If unsure, say N.
78
79config IP_ROUTE_MULTIPATH
80 bool "IP: equal cost multipath"
81 depends on IP_ADVANCED_ROUTER
82 help
83 Normally, the routing tables specify a single action to be taken in
84 a deterministic manner for a given packet. If you say Y here
85 however, it becomes possible to attach several actions to a packet
86 pattern, in effect specifying several alternative paths to travel
87 for those packets. The router considers all these paths to be of
88 equal "cost" and chooses one of them in a non-deterministic fashion
89 if a matching packet arrives.
90
91config IP_ROUTE_VERBOSE
92 bool "IP: verbose route monitoring"
93 depends on IP_ADVANCED_ROUTER
94 help
95 If you say Y here, which is recommended, then the kernel will print
96 verbose messages regarding the routing, for example warnings about
97 received packets which look strange and could be evidence of an
98 attack or a misconfigured system somewhere. The information is
99 handled by the klogd daemon which is responsible for kernel messages
100 ("man klogd").
101
102config IP_ROUTE_CLASSID
103 bool
104
105config IP_PNP
106 bool "IP: kernel level autoconfiguration"
107 help
108 This enables automatic configuration of IP addresses of devices and
109 of the routing table during kernel boot, based on either information
110 supplied on the kernel command line or by BOOTP or RARP protocols.
111 You need to say Y only for diskless machines requiring network
112 access to boot (in which case you want to say Y to "Root file system
113 on NFS" as well), because all other machines configure the network
114 in their startup scripts.
115
116config IP_PNP_DHCP
117 bool "IP: DHCP support"
118 depends on IP_PNP
119 ---help---
120 If you want your Linux box to mount its whole root file system (the
121 one containing the directory /) from some other computer over the
122 net via NFS and you want the IP address of your computer to be
123 discovered automatically at boot time using the DHCP protocol (a
124 special protocol designed for doing this job), say Y here. In case
125 the boot ROM of your network card was designed for booting Linux and
126 does DHCP itself, providing all necessary information on the kernel
127 command line, you can say N here.
128
129 If unsure, say Y. Note that if you want to use DHCP, a DHCP server
130 must be operating on your network. Read
131 <file:Documentation/filesystems/nfs/nfsroot.txt> for details.
132
133config IP_PNP_BOOTP
134 bool "IP: BOOTP support"
135 depends on IP_PNP
136 ---help---
137 If you want your Linux box to mount its whole root file system (the
138 one containing the directory /) from some other computer over the
139 net via NFS and you want the IP address of your computer to be
140 discovered automatically at boot time using the BOOTP protocol (a
141 special protocol designed for doing this job), say Y here. In case
142 the boot ROM of your network card was designed for booting Linux and
143 does BOOTP itself, providing all necessary information on the kernel
144 command line, you can say N here. If unsure, say Y. Note that if you
145 want to use BOOTP, a BOOTP server must be operating on your network.
146 Read <file:Documentation/filesystems/nfs/nfsroot.txt> for details.
147
148config IP_PNP_RARP
149 bool "IP: RARP support"
150 depends on IP_PNP
151 help
152 If you want your Linux box to mount its whole root file system (the
153 one containing the directory /) from some other computer over the
154 net via NFS and you want the IP address of your computer to be
155 discovered automatically at boot time using the RARP protocol (an
156 older protocol which is being obsoleted by BOOTP and DHCP), say Y
157 here. Note that if you want to use RARP, a RARP server must be
158 operating on your network. Read
159 <file:Documentation/filesystems/nfs/nfsroot.txt> for details.
160
161config NET_IPIP
162 tristate "IP: tunneling"
163 select INET_TUNNEL
164 select NET_IP_TUNNEL
165 ---help---
166 Tunneling means encapsulating data of one protocol type within
167 another protocol and sending it over a channel that understands the
168 encapsulating protocol. This particular tunneling driver implements
169 encapsulation of IP within IP, which sounds kind of pointless, but
170 can be useful if you want to make your (or some other) machine
171 appear on a different network than it physically is, or to use
172 mobile-IP facilities (allowing laptops to seamlessly move between
173 networks without changing their IP addresses).
174
175 Saying Y to this option will produce two modules ( = code which can
176 be inserted in and removed from the running kernel whenever you
177 want). Most people won't need this and can say N.
178
179config NET_IPGRE_DEMUX
180 tristate "IP: GRE demultiplexer"
181 help
182 This is helper module to demultiplex GRE packets on GRE version field criteria.
183 Required by ip_gre and pptp modules.
184
185config NET_IP_TUNNEL
186 tristate
187 select DST_CACHE
188 select GRO_CELLS
189 default n
190
191config NET_IPGRE
192 tristate "IP: GRE tunnels over IP"
193 depends on (IPV6 || IPV6=n) && NET_IPGRE_DEMUX
194 select NET_IP_TUNNEL
195 help
196 Tunneling means encapsulating data of one protocol type within
197 another protocol and sending it over a channel that understands the
198 encapsulating protocol. This particular tunneling driver implements
199 GRE (Generic Routing Encapsulation) and at this time allows
200 encapsulating of IPv4 or IPv6 over existing IPv4 infrastructure.
201 This driver is useful if the other endpoint is a Cisco router: Cisco
202 likes GRE much better than the other Linux tunneling driver ("IP
203 tunneling" above). In addition, GRE allows multicast redistribution
204 through the tunnel.
205
206config NET_IPGRE_BROADCAST
207 bool "IP: broadcast GRE over IP"
208 depends on IP_MULTICAST && NET_IPGRE
209 help
210 One application of GRE/IP is to construct a broadcast WAN (Wide Area
211 Network), which looks like a normal Ethernet LAN (Local Area
212 Network), but can be distributed all over the Internet. If you want
213 to do that, say Y here and to "IP multicast routing" below.
214
215config IP_MROUTE_COMMON
216 bool
217 depends on IP_MROUTE || IPV6_MROUTE
218
219config IP_MROUTE
220 bool "IP: multicast routing"
221 depends on IP_MULTICAST
222 select IP_MROUTE_COMMON
223 help
224 This is used if you want your machine to act as a router for IP
225 packets that have several destination addresses. It is needed on the
226 MBONE, a high bandwidth network on top of the Internet which carries
227 audio and video broadcasts. In order to do that, you would most
228 likely run the program mrouted. If you haven't heard about it, you
229 don't need it.
230
231config IP_MROUTE_MULTIPLE_TABLES
232 bool "IP: multicast policy routing"
233 depends on IP_MROUTE && IP_ADVANCED_ROUTER
234 select FIB_RULES
235 help
236 Normally, a multicast router runs a userspace daemon and decides
237 what to do with a multicast packet based on the source and
238 destination addresses. If you say Y here, the multicast router
239 will also be able to take interfaces and packet marks into
240 account and run multiple instances of userspace daemons
241 simultaneously, each one handling a single table.
242
243 If unsure, say N.
244
245config IP_PIMSM_V1
246 bool "IP: PIM-SM version 1 support"
247 depends on IP_MROUTE
248 help
249 Kernel side support for Sparse Mode PIM (Protocol Independent
250 Multicast) version 1. This multicast routing protocol is used widely
251 because Cisco supports it. You need special software to use it
252 (pimd-v1). Please see <http://netweb.usc.edu/pim/> for more
253 information about PIM.
254
255 Say Y if you want to use PIM-SM v1. Note that you can say N here if
256 you just want to use Dense Mode PIM.
257
258config IP_PIMSM_V2
259 bool "IP: PIM-SM version 2 support"
260 depends on IP_MROUTE
261 help
262 Kernel side support for Sparse Mode PIM version 2. In order to use
263 this, you need an experimental routing daemon supporting it (pimd or
264 gated-5). This routing protocol is not used widely, so say N unless
265 you want to play with it.
266
267config SYN_COOKIES
268 bool "IP: TCP syncookie support"
269 ---help---
270 Normal TCP/IP networking is open to an attack known as "SYN
271 flooding". This denial-of-service attack prevents legitimate remote
272 users from being able to connect to your computer during an ongoing
273 attack and requires very little work from the attacker, who can
274 operate from anywhere on the Internet.
275
276 SYN cookies provide protection against this type of attack. If you
277 say Y here, the TCP/IP stack will use a cryptographic challenge
278 protocol known as "SYN cookies" to enable legitimate users to
279 continue to connect, even when your machine is under attack. There
280 is no need for the legitimate users to change their TCP/IP software;
281 SYN cookies work transparently to them. For technical information
282 about SYN cookies, check out <http://cr.yp.to/syncookies.html>.
283
284 If you are SYN flooded, the source address reported by the kernel is
285 likely to have been forged by the attacker; it is only reported as
286 an aid in tracing the packets to their actual source and should not
287 be taken as absolute truth.
288
289 SYN cookies may prevent correct error reporting on clients when the
290 server is really overloaded. If this happens frequently better turn
291 them off.
292
293 If you say Y here, you can disable SYN cookies at run time by
294 saying Y to "/proc file system support" and
295 "Sysctl support" below and executing the command
296
297 echo 0 > /proc/sys/net/ipv4/tcp_syncookies
298
299 after the /proc file system has been mounted.
300
301 If unsure, say N.
302
303config NET_IPVTI
304 tristate "Virtual (secure) IP: tunneling"
305 select INET_TUNNEL
306 select NET_IP_TUNNEL
307 depends on INET_XFRM_MODE_TUNNEL
308 ---help---
309 Tunneling means encapsulating data of one protocol type within
310 another protocol and sending it over a channel that understands the
311 encapsulating protocol. This can be used with xfrm mode tunnel to give
312 the notion of a secure tunnel for IPSEC and then use routing protocol
313 on top.
314
315config NET_UDP_TUNNEL
316 tristate
317 select NET_IP_TUNNEL
318 default n
319
320config NET_FOU
321 tristate "IP: Foo (IP protocols) over UDP"
322 select XFRM
323 select NET_UDP_TUNNEL
324 ---help---
325 Foo over UDP allows any IP protocol to be directly encapsulated
326 over UDP include tunnels (IPIP, GRE, SIT). By encapsulating in UDP
327 network mechanisms and optimizations for UDP (such as ECMP
328 and RSS) can be leveraged to provide better service.
329
330config NET_FOU_IP_TUNNELS
331 bool "IP: FOU encapsulation of IP tunnels"
332 depends on NET_IPIP || NET_IPGRE || IPV6_SIT
333 select NET_FOU
334 ---help---
335 Allow configuration of FOU or GUE encapsulation for IP tunnels.
336 When this option is enabled IP tunnels can be configured to use
337 FOU or GUE encapsulation.
338
339config INET_AH
340 tristate "IP: AH transformation"
341 select XFRM_ALGO
342 select CRYPTO
343 select CRYPTO_HMAC
344 select CRYPTO_MD5
345 select CRYPTO_SHA1
346 ---help---
347 Support for IPsec AH.
348
349 If unsure, say Y.
350
351config INET_ESP
352 tristate "IP: ESP transformation"
353 select XFRM_ALGO
354 select CRYPTO
355 select CRYPTO_AUTHENC
356 select CRYPTO_HMAC
357 select CRYPTO_MD5
358 select CRYPTO_CBC
359 select CRYPTO_SHA1
360 select CRYPTO_DES
361 select CRYPTO_ECHAINIV
362 ---help---
363 Support for IPsec ESP.
364
365 If unsure, say Y.
366
367config INET_ESP_OFFLOAD
368 tristate "IP: ESP transformation offload"
369 depends on INET_ESP
370 select XFRM_OFFLOAD
371 default n
372 ---help---
373 Support for ESP transformation offload. This makes sense
374 only if this system really does IPsec and want to do it
375 with high throughput. A typical desktop system does not
376 need it, even if it does IPsec.
377
378 If unsure, say N.
379
380config INET_IPCOMP
381 tristate "IP: IPComp transformation"
382 select INET_XFRM_TUNNEL
383 select XFRM_IPCOMP
384 ---help---
385 Support for IP Payload Compression Protocol (IPComp) (RFC3173),
386 typically needed for IPsec.
387
388 If unsure, say Y.
389
390config INET_XFRM_TUNNEL
391 tristate
392 select INET_TUNNEL
393 default n
394
395config INET_TUNNEL
396 tristate
397 default n
398
399config INET_XFRM_MODE_TRANSPORT
400 tristate "IP: IPsec transport mode"
401 default y
402 select XFRM
403 ---help---
404 Support for IPsec transport mode.
405
406 If unsure, say Y.
407
408config INET_XFRM_MODE_TUNNEL
409 tristate "IP: IPsec tunnel mode"
410 default y
411 select XFRM
412 ---help---
413 Support for IPsec tunnel mode.
414
415 If unsure, say Y.
416
417config INET_XFRM_MODE_BEET
418 tristate "IP: IPsec BEET mode"
419 default y
420 select XFRM
421 ---help---
422 Support for IPsec BEET mode.
423
424 If unsure, say Y.
425
426config INET_DIAG
427 tristate "INET: socket monitoring interface"
428 select SOCK_DIAG
429 default y
430 ---help---
431 Support for INET (TCP, DCCP, etc) socket monitoring interface used by
432 native Linux tools such as ss. ss is included in iproute2, currently
433 downloadable at:
434
435 http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
436
437 If unsure, say Y.
438
439config INET_TCP_DIAG
440 depends on INET_DIAG
441 def_tristate INET_DIAG
442
443config INET_UDP_DIAG
444 tristate "UDP: socket monitoring interface"
445 depends on INET_DIAG && (IPV6 || IPV6=n)
446 default n
447 ---help---
448 Support for UDP socket monitoring interface used by the ss tool.
449 If unsure, say Y.
450
451config INET_RAW_DIAG
452 tristate "RAW: socket monitoring interface"
453 depends on INET_DIAG && (IPV6 || IPV6=n)
454 default n
455 ---help---
456 Support for RAW socket monitoring interface used by the ss tool.
457 If unsure, say Y.
458
459config INET_DIAG_DESTROY
460 bool "INET: allow privileged process to administratively close sockets"
461 depends on INET_DIAG
462 default n
463 ---help---
464 Provides a SOCK_DESTROY operation that allows privileged processes
465 (e.g., a connection manager or a network administration tool such as
466 ss) to close sockets opened by other processes. Closing a socket in
467 this way interrupts any blocking read/write/connect operations on
468 the socket and causes future socket calls to behave as if the socket
469 had been disconnected.
470 If unsure, say N.
471
472menuconfig TCP_CONG_ADVANCED
473 bool "TCP: advanced congestion control"
474 ---help---
475 Support for selection of various TCP congestion control
476 modules.
477
478 Nearly all users can safely say no here, and a safe default
479 selection will be made (CUBIC with new Reno as a fallback).
480
481 If unsure, say N.
482
483if TCP_CONG_ADVANCED
484
485config TCP_CONG_BIC
486 tristate "Binary Increase Congestion (BIC) control"
487 default m
488 ---help---
489 BIC-TCP is a sender-side only change that ensures a linear RTT
490 fairness under large windows while offering both scalability and
491 bounded TCP-friendliness. The protocol combines two schemes
492 called additive increase and binary search increase. When the
493 congestion window is large, additive increase with a large
494 increment ensures linear RTT fairness as well as good
495 scalability. Under small congestion windows, binary search
496 increase provides TCP friendliness.
497 See http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/
498
499config TCP_CONG_CUBIC
500 tristate "CUBIC TCP"
501 default y
502 ---help---
503 This is version 2.0 of BIC-TCP which uses a cubic growth function
504 among other techniques.
505 See http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf
506
507config TCP_CONG_WESTWOOD
508 tristate "TCP Westwood+"
509 default m
510 ---help---
511 TCP Westwood+ is a sender-side only modification of the TCP Reno
512 protocol stack that optimizes the performance of TCP congestion
513 control. It is based on end-to-end bandwidth estimation to set
514 congestion window and slow start threshold after a congestion
515 episode. Using this estimation, TCP Westwood+ adaptively sets a
516 slow start threshold and a congestion window which takes into
517 account the bandwidth used at the time congestion is experienced.
518 TCP Westwood+ significantly increases fairness wrt TCP Reno in
519 wired networks and throughput over wireless links.
520
521config TCP_CONG_HTCP
522 tristate "H-TCP"
523 default m
524 ---help---
525 H-TCP is a send-side only modifications of the TCP Reno
526 protocol stack that optimizes the performance of TCP
527 congestion control for high speed network links. It uses a
528 modeswitch to change the alpha and beta parameters of TCP Reno
529 based on network conditions and in a way so as to be fair with
530 other Reno and H-TCP flows.
531
532config TCP_CONG_HSTCP
533 tristate "High Speed TCP"
534 default n
535 ---help---
536 Sally Floyd's High Speed TCP (RFC 3649) congestion control.
537 A modification to TCP's congestion control mechanism for use
538 with large congestion windows. A table indicates how much to
539 increase the congestion window by when an ACK is received.
540 For more detail see http://www.icir.org/floyd/hstcp.html
541
542config TCP_CONG_HYBLA
543 tristate "TCP-Hybla congestion control algorithm"
544 default n
545 ---help---
546 TCP-Hybla is a sender-side only change that eliminates penalization of
547 long-RTT, large-bandwidth connections, like when satellite legs are
548 involved, especially when sharing a common bottleneck with normal
549 terrestrial connections.
550
551config TCP_CONG_VEGAS
552 tristate "TCP Vegas"
553 default n
554 ---help---
555 TCP Vegas is a sender-side only change to TCP that anticipates
556 the onset of congestion by estimating the bandwidth. TCP Vegas
557 adjusts the sending rate by modifying the congestion
558 window. TCP Vegas should provide less packet loss, but it is
559 not as aggressive as TCP Reno.
560
561config TCP_CONG_NV
562 tristate "TCP NV"
563 default n
564 ---help---
565 TCP NV is a follow up to TCP Vegas. It has been modified to deal with
566 10G networks, measurement noise introduced by LRO, GRO and interrupt
567 coalescence. In addition, it will decrease its cwnd multiplicatively
568 instead of linearly.
569
570 Note that in general congestion avoidance (cwnd decreased when # packets
571 queued grows) cannot coexist with congestion control (cwnd decreased only
572 when there is packet loss) due to fairness issues. One scenario when they
573 can coexist safely is when the CA flows have RTTs << CC flows RTTs.
574
575 For further details see http://www.brakmo.org/networking/tcp-nv/
576
577config TCP_CONG_SCALABLE
578 tristate "Scalable TCP"
579 default n
580 ---help---
581 Scalable TCP is a sender-side only change to TCP which uses a
582 MIMD congestion control algorithm which has some nice scaling
583 properties, though is known to have fairness issues.
584 See http://www.deneholme.net/tom/scalable/
585
586config TCP_CONG_LP
587 tristate "TCP Low Priority"
588 default n
589 ---help---
590 TCP Low Priority (TCP-LP), a distributed algorithm whose goal is
591 to utilize only the excess network bandwidth as compared to the
592 ``fair share`` of bandwidth as targeted by TCP.
593 See http://www-ece.rice.edu/networks/TCP-LP/
594
595config TCP_CONG_VENO
596 tristate "TCP Veno"
597 default n
598 ---help---
599 TCP Veno is a sender-side only enhancement of TCP to obtain better
600 throughput over wireless networks. TCP Veno makes use of state
601 distinguishing to circumvent the difficult judgment of the packet loss
602 type. TCP Veno cuts down less congestion window in response to random
603 loss packets.
604 See <http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1177186>
605
606config TCP_CONG_YEAH
607 tristate "YeAH TCP"
608 select TCP_CONG_VEGAS
609 default n
610 ---help---
611 YeAH-TCP is a sender-side high-speed enabled TCP congestion control
612 algorithm, which uses a mixed loss/delay approach to compute the
613 congestion window. It's design goals target high efficiency,
614 internal, RTT and Reno fairness, resilience to link loss while
615 keeping network elements load as low as possible.
616
617 For further details look here:
618 http://wil.cs.caltech.edu/pfldnet2007/paper/YeAH_TCP.pdf
619
620config TCP_CONG_ILLINOIS
621 tristate "TCP Illinois"
622 default n
623 ---help---
624 TCP-Illinois is a sender-side modification of TCP Reno for
625 high speed long delay links. It uses round-trip-time to
626 adjust the alpha and beta parameters to achieve a higher average
627 throughput and maintain fairness.
628
629 For further details see:
630 http://www.ews.uiuc.edu/~shaoliu/tcpillinois/index.html
631
632config TCP_CONG_DCTCP
633 tristate "DataCenter TCP (DCTCP)"
634 default n
635 ---help---
636 DCTCP leverages Explicit Congestion Notification (ECN) in the network to
637 provide multi-bit feedback to the end hosts. It is designed to provide:
638
639 - High burst tolerance (incast due to partition/aggregate),
640 - Low latency (short flows, queries),
641 - High throughput (continuous data updates, large file transfers) with
642 commodity, shallow-buffered switches.
643
644 All switches in the data center network running DCTCP must support
645 ECN marking and be configured for marking when reaching defined switch
646 buffer thresholds. The default ECN marking threshold heuristic for
647 DCTCP on switches is 20 packets (30KB) at 1Gbps, and 65 packets
648 (~100KB) at 10Gbps, but might need further careful tweaking.
649
650 For further details see:
651 http://simula.stanford.edu/~alizade/Site/DCTCP_files/dctcp-final.pdf
652
653config TCP_CONG_CDG
654 tristate "CAIA Delay-Gradient (CDG)"
655 default n
656 ---help---
657 CAIA Delay-Gradient (CDG) is a TCP congestion control that modifies
658 the TCP sender in order to:
659
660 o Use the delay gradient as a congestion signal.
661 o Back off with an average probability that is independent of the RTT.
662 o Coexist with flows that use loss-based congestion control.
663 o Tolerate packet loss unrelated to congestion.
664
665 For further details see:
666 D.A. Hayes and G. Armitage. "Revisiting TCP congestion control using
667 delay gradients." In Networking 2011. Preprint: http://goo.gl/No3vdg
668
669config TCP_CONG_BBR
670 tristate "BBR TCP"
671 default n
672 ---help---
673
674 BBR (Bottleneck Bandwidth and RTT) TCP congestion control aims to
675 maximize network utilization and minimize queues. It builds an explicit
676 model of the the bottleneck delivery rate and path round-trip
677 propagation delay. It tolerates packet loss and delay unrelated to
678 congestion. It can operate over LAN, WAN, cellular, wifi, or cable
679 modem links. It can coexist with flows that use loss-based congestion
680 control, and can operate with shallow buffers, deep buffers,
681 bufferbloat, policers, or AQM schemes that do not provide a delay
682 signal. It requires the fq ("Fair Queue") pacing packet scheduler.
683
684choice
685 prompt "Default TCP congestion control"
686 default DEFAULT_CUBIC
687 help
688 Select the TCP congestion control that will be used by default
689 for all connections.
690
691 config DEFAULT_BIC
692 bool "Bic" if TCP_CONG_BIC=y
693
694 config DEFAULT_CUBIC
695 bool "Cubic" if TCP_CONG_CUBIC=y
696
697 config DEFAULT_HTCP
698 bool "Htcp" if TCP_CONG_HTCP=y
699
700 config DEFAULT_HYBLA
701 bool "Hybla" if TCP_CONG_HYBLA=y
702
703 config DEFAULT_VEGAS
704 bool "Vegas" if TCP_CONG_VEGAS=y
705
706 config DEFAULT_VENO
707 bool "Veno" if TCP_CONG_VENO=y
708
709 config DEFAULT_WESTWOOD
710 bool "Westwood" if TCP_CONG_WESTWOOD=y
711
712 config DEFAULT_DCTCP
713 bool "DCTCP" if TCP_CONG_DCTCP=y
714
715 config DEFAULT_CDG
716 bool "CDG" if TCP_CONG_CDG=y
717
718 config DEFAULT_BBR
719 bool "BBR" if TCP_CONG_BBR=y
720
721 config DEFAULT_RENO
722 bool "Reno"
723endchoice
724
725endif
726
727config TCP_CONG_CUBIC
728 tristate
729 depends on !TCP_CONG_ADVANCED
730 default y
731
732config DEFAULT_TCP_CONG
733 string
734 default "bic" if DEFAULT_BIC
735 default "cubic" if DEFAULT_CUBIC
736 default "htcp" if DEFAULT_HTCP
737 default "hybla" if DEFAULT_HYBLA
738 default "vegas" if DEFAULT_VEGAS
739 default "westwood" if DEFAULT_WESTWOOD
740 default "veno" if DEFAULT_VENO
741 default "reno" if DEFAULT_RENO
742 default "dctcp" if DEFAULT_DCTCP
743 default "cdg" if DEFAULT_CDG
744 default "bbr" if DEFAULT_BBR
745 default "cubic"
746
747config TCP_MD5SIG
748 bool "TCP: MD5 Signature Option support (RFC2385)"
749 select CRYPTO
750 select CRYPTO_MD5
751 ---help---
752 RFC2385 specifies a method of giving MD5 protection to TCP sessions.
753 Its main (only?) use is to protect BGP sessions between core routers
754 on the Internet.
755
756 If unsure, say N.