blob: 77a03c078fb6bddeea8741497cdff183dc6f912e [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * drivers/base/power/main.c - Where the driver meets power management.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 *
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
14 *
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
18 */
19
20#include <linux/device.h>
21#include <linux/export.h>
22#include <linux/mutex.h>
23#include <linux/pm.h>
24#include <linux/pm_runtime.h>
25#include <linux/pm-trace.h>
26#include <linux/pm_wakeirq.h>
27#include <linux/interrupt.h>
28#include <linux/sched.h>
29#include <linux/sched/debug.h>
30#include <linux/async.h>
31#include <linux/suspend.h>
32#include <trace/events/power.h>
33#include <linux/cpufreq.h>
34#include <linux/cpuidle.h>
35#include <linux/timer.h>
36#include <linux/wakeup_reason.h>
37
38#include "../base.h"
39#include "power.h"
40
41typedef int (*pm_callback_t)(struct device *);
42
43/*
44 * The entries in the dpm_list list are in a depth first order, simply
45 * because children are guaranteed to be discovered after parents, and
46 * are inserted at the back of the list on discovery.
47 *
48 * Since device_pm_add() may be called with a device lock held,
49 * we must never try to acquire a device lock while holding
50 * dpm_list_mutex.
51 */
52
53LIST_HEAD(dpm_list);
54static LIST_HEAD(dpm_prepared_list);
55static LIST_HEAD(dpm_suspended_list);
56static LIST_HEAD(dpm_late_early_list);
57static LIST_HEAD(dpm_noirq_list);
58
59struct suspend_stats suspend_stats;
60static DEFINE_MUTEX(dpm_list_mtx);
61static pm_message_t pm_transition;
62
63static int async_error;
64
65static const char *pm_verb(int event)
66{
67 switch (event) {
68 case PM_EVENT_SUSPEND:
69 return "suspend";
70 case PM_EVENT_RESUME:
71 return "resume";
72 case PM_EVENT_FREEZE:
73 return "freeze";
74 case PM_EVENT_QUIESCE:
75 return "quiesce";
76 case PM_EVENT_HIBERNATE:
77 return "hibernate";
78 case PM_EVENT_THAW:
79 return "thaw";
80 case PM_EVENT_RESTORE:
81 return "restore";
82 case PM_EVENT_RECOVER:
83 return "recover";
84 default:
85 return "(unknown PM event)";
86 }
87}
88
89/**
90 * device_pm_sleep_init - Initialize system suspend-related device fields.
91 * @dev: Device object being initialized.
92 */
93void device_pm_sleep_init(struct device *dev)
94{
95 dev->power.is_prepared = false;
96 dev->power.is_suspended = false;
97 dev->power.is_noirq_suspended = false;
98 dev->power.is_late_suspended = false;
99 init_completion(&dev->power.completion);
100 complete_all(&dev->power.completion);
101 dev->power.wakeup = NULL;
102 INIT_LIST_HEAD(&dev->power.entry);
103}
104
105/**
106 * device_pm_lock - Lock the list of active devices used by the PM core.
107 */
108void device_pm_lock(void)
109{
110 mutex_lock(&dpm_list_mtx);
111}
112
113/**
114 * device_pm_unlock - Unlock the list of active devices used by the PM core.
115 */
116void device_pm_unlock(void)
117{
118 mutex_unlock(&dpm_list_mtx);
119}
120
121/**
122 * device_pm_add - Add a device to the PM core's list of active devices.
123 * @dev: Device to add to the list.
124 */
125void device_pm_add(struct device *dev)
126{
127 /* Skip PM setup/initialization. */
128 if (device_pm_not_required(dev))
129 return;
130
131 pr_debug("PM: Adding info for %s:%s\n",
132 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
133 device_pm_check_callbacks(dev);
134 mutex_lock(&dpm_list_mtx);
135 if (dev->parent && dev->parent->power.is_prepared)
136 dev_warn(dev, "parent %s should not be sleeping\n",
137 dev_name(dev->parent));
138 list_add_tail(&dev->power.entry, &dpm_list);
139 dev->power.in_dpm_list = true;
140 mutex_unlock(&dpm_list_mtx);
141}
142
143/**
144 * device_pm_remove - Remove a device from the PM core's list of active devices.
145 * @dev: Device to be removed from the list.
146 */
147void device_pm_remove(struct device *dev)
148{
149 if (device_pm_not_required(dev))
150 return;
151
152 pr_debug("PM: Removing info for %s:%s\n",
153 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
154 complete_all(&dev->power.completion);
155 mutex_lock(&dpm_list_mtx);
156 list_del_init(&dev->power.entry);
157 dev->power.in_dpm_list = false;
158 mutex_unlock(&dpm_list_mtx);
159 device_wakeup_disable(dev);
160 pm_runtime_remove(dev);
161 device_pm_check_callbacks(dev);
162}
163
164/**
165 * device_pm_move_before - Move device in the PM core's list of active devices.
166 * @deva: Device to move in dpm_list.
167 * @devb: Device @deva should come before.
168 */
169void device_pm_move_before(struct device *deva, struct device *devb)
170{
171 pr_debug("PM: Moving %s:%s before %s:%s\n",
172 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
173 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
174 /* Delete deva from dpm_list and reinsert before devb. */
175 list_move_tail(&deva->power.entry, &devb->power.entry);
176}
177
178/**
179 * device_pm_move_after - Move device in the PM core's list of active devices.
180 * @deva: Device to move in dpm_list.
181 * @devb: Device @deva should come after.
182 */
183void device_pm_move_after(struct device *deva, struct device *devb)
184{
185 pr_debug("PM: Moving %s:%s after %s:%s\n",
186 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
187 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
188 /* Delete deva from dpm_list and reinsert after devb. */
189 list_move(&deva->power.entry, &devb->power.entry);
190}
191
192/**
193 * device_pm_move_last - Move device to end of the PM core's list of devices.
194 * @dev: Device to move in dpm_list.
195 */
196void device_pm_move_last(struct device *dev)
197{
198 pr_debug("PM: Moving %s:%s to end of list\n",
199 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
200 list_move_tail(&dev->power.entry, &dpm_list);
201}
202
203static ktime_t initcall_debug_start(struct device *dev, void *cb)
204{
205 if (!pm_print_times_enabled)
206 return 0;
207
208 dev_info(dev, "calling %pF @ %i, parent: %s\n", cb,
209 task_pid_nr(current),
210 dev->parent ? dev_name(dev->parent) : "none");
211 return ktime_get();
212}
213
214static void initcall_debug_report(struct device *dev, ktime_t calltime,
215 void *cb, int error)
216{
217 ktime_t rettime;
218 s64 nsecs;
219
220 if (!pm_print_times_enabled)
221 return;
222
223 rettime = ktime_get();
224 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
225
226 dev_info(dev, "%pF returned %d after %Ld usecs\n", cb, error,
227 (unsigned long long)nsecs >> 10);
228}
229
230/**
231 * dpm_wait - Wait for a PM operation to complete.
232 * @dev: Device to wait for.
233 * @async: If unset, wait only if the device's power.async_suspend flag is set.
234 */
235static void dpm_wait(struct device *dev, bool async)
236{
237 if (!dev)
238 return;
239
240 if (async || (pm_async_enabled && dev->power.async_suspend))
241 wait_for_completion(&dev->power.completion);
242}
243
244static int dpm_wait_fn(struct device *dev, void *async_ptr)
245{
246 dpm_wait(dev, *((bool *)async_ptr));
247 return 0;
248}
249
250static void dpm_wait_for_children(struct device *dev, bool async)
251{
252 device_for_each_child(dev, &async, dpm_wait_fn);
253}
254
255static void dpm_wait_for_suppliers(struct device *dev, bool async)
256{
257 struct device_link *link;
258 int idx;
259
260 idx = device_links_read_lock();
261
262 /*
263 * If the supplier goes away right after we've checked the link to it,
264 * we'll wait for its completion to change the state, but that's fine,
265 * because the only things that will block as a result are the SRCU
266 * callbacks freeing the link objects for the links in the list we're
267 * walking.
268 */
269 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
270 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
271 dpm_wait(link->supplier, async);
272
273 device_links_read_unlock(idx);
274}
275
276static void dpm_wait_for_superior(struct device *dev, bool async)
277{
278 dpm_wait(dev->parent, async);
279 dpm_wait_for_suppliers(dev, async);
280}
281
282static void dpm_wait_for_consumers(struct device *dev, bool async)
283{
284 struct device_link *link;
285 int idx;
286
287 idx = device_links_read_lock();
288
289 /*
290 * The status of a device link can only be changed from "dormant" by a
291 * probe, but that cannot happen during system suspend/resume. In
292 * theory it can change to "dormant" at that time, but then it is
293 * reasonable to wait for the target device anyway (eg. if it goes
294 * away, it's better to wait for it to go away completely and then
295 * continue instead of trying to continue in parallel with its
296 * unregistration).
297 */
298 list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
299 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
300 dpm_wait(link->consumer, async);
301
302 device_links_read_unlock(idx);
303}
304
305static void dpm_wait_for_subordinate(struct device *dev, bool async)
306{
307 dpm_wait_for_children(dev, async);
308 dpm_wait_for_consumers(dev, async);
309}
310
311/**
312 * pm_op - Return the PM operation appropriate for given PM event.
313 * @ops: PM operations to choose from.
314 * @state: PM transition of the system being carried out.
315 */
316static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
317{
318 switch (state.event) {
319#ifdef CONFIG_SUSPEND
320 case PM_EVENT_SUSPEND:
321 return ops->suspend;
322 case PM_EVENT_RESUME:
323 return ops->resume;
324#endif /* CONFIG_SUSPEND */
325#ifdef CONFIG_HIBERNATE_CALLBACKS
326 case PM_EVENT_FREEZE:
327 case PM_EVENT_QUIESCE:
328 return ops->freeze;
329 case PM_EVENT_HIBERNATE:
330 return ops->poweroff;
331 case PM_EVENT_THAW:
332 case PM_EVENT_RECOVER:
333 return ops->thaw;
334 break;
335 case PM_EVENT_RESTORE:
336 return ops->restore;
337#endif /* CONFIG_HIBERNATE_CALLBACKS */
338 }
339
340 return NULL;
341}
342
343/**
344 * pm_late_early_op - Return the PM operation appropriate for given PM event.
345 * @ops: PM operations to choose from.
346 * @state: PM transition of the system being carried out.
347 *
348 * Runtime PM is disabled for @dev while this function is being executed.
349 */
350static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
351 pm_message_t state)
352{
353 switch (state.event) {
354#ifdef CONFIG_SUSPEND
355 case PM_EVENT_SUSPEND:
356 return ops->suspend_late;
357 case PM_EVENT_RESUME:
358 return ops->resume_early;
359#endif /* CONFIG_SUSPEND */
360#ifdef CONFIG_HIBERNATE_CALLBACKS
361 case PM_EVENT_FREEZE:
362 case PM_EVENT_QUIESCE:
363 return ops->freeze_late;
364 case PM_EVENT_HIBERNATE:
365 return ops->poweroff_late;
366 case PM_EVENT_THAW:
367 case PM_EVENT_RECOVER:
368 return ops->thaw_early;
369 case PM_EVENT_RESTORE:
370 return ops->restore_early;
371#endif /* CONFIG_HIBERNATE_CALLBACKS */
372 }
373
374 return NULL;
375}
376
377/**
378 * pm_noirq_op - Return the PM operation appropriate for given PM event.
379 * @ops: PM operations to choose from.
380 * @state: PM transition of the system being carried out.
381 *
382 * The driver of @dev will not receive interrupts while this function is being
383 * executed.
384 */
385static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
386{
387 switch (state.event) {
388#ifdef CONFIG_SUSPEND
389 case PM_EVENT_SUSPEND:
390 return ops->suspend_noirq;
391 case PM_EVENT_RESUME:
392 return ops->resume_noirq;
393#endif /* CONFIG_SUSPEND */
394#ifdef CONFIG_HIBERNATE_CALLBACKS
395 case PM_EVENT_FREEZE:
396 case PM_EVENT_QUIESCE:
397 return ops->freeze_noirq;
398 case PM_EVENT_HIBERNATE:
399 return ops->poweroff_noirq;
400 case PM_EVENT_THAW:
401 case PM_EVENT_RECOVER:
402 return ops->thaw_noirq;
403 case PM_EVENT_RESTORE:
404 return ops->restore_noirq;
405#endif /* CONFIG_HIBERNATE_CALLBACKS */
406 }
407
408 return NULL;
409}
410
411static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
412{
413 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
414 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
415 ", may wakeup" : "");
416}
417
418static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
419 int error)
420{
421 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
422 dev_name(dev), pm_verb(state.event), info, error);
423}
424
425static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
426 const char *info)
427{
428 ktime_t calltime;
429 u64 usecs64;
430 int usecs;
431
432 calltime = ktime_get();
433 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
434 do_div(usecs64, NSEC_PER_USEC);
435 usecs = usecs64;
436 if (usecs == 0)
437 usecs = 1;
438
439 pr_info("%s%s%s of devices %s after %ld.%03ld msecs\n",
440 info ?: "", info ? " " : "", pm_verb(state.event),
441 error ? "aborted" : "complete",
442 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
443}
444
445static int dpm_run_callback(pm_callback_t cb, struct device *dev,
446 pm_message_t state, const char *info)
447{
448 ktime_t calltime;
449 int error;
450
451 if (!cb)
452 return 0;
453
454 calltime = initcall_debug_start(dev, cb);
455
456 pm_dev_dbg(dev, state, info);
457 trace_device_pm_callback_start(dev, info, state.event);
458 error = cb(dev);
459 trace_device_pm_callback_end(dev, error);
460 suspend_report_result(cb, error);
461
462 initcall_debug_report(dev, calltime, cb, error);
463
464 return error;
465}
466
467#ifdef CONFIG_DPM_WATCHDOG
468struct dpm_watchdog {
469 struct device *dev;
470 struct task_struct *tsk;
471 struct timer_list timer;
472};
473
474#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
475 struct dpm_watchdog wd
476
477/**
478 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
479 * @data: Watchdog object address.
480 *
481 * Called when a driver has timed out suspending or resuming.
482 * There's not much we can do here to recover so panic() to
483 * capture a crash-dump in pstore.
484 */
485static void dpm_watchdog_handler(struct timer_list *t)
486{
487 struct dpm_watchdog *wd = from_timer(wd, t, timer);
488
489 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
490 show_stack(wd->tsk, NULL);
491 panic("%s %s: unrecoverable failure\n",
492 dev_driver_string(wd->dev), dev_name(wd->dev));
493}
494
495/**
496 * dpm_watchdog_set - Enable pm watchdog for given device.
497 * @wd: Watchdog. Must be allocated on the stack.
498 * @dev: Device to handle.
499 */
500static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
501{
502 struct timer_list *timer = &wd->timer;
503
504 wd->dev = dev;
505 wd->tsk = current;
506
507 timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
508 /* use same timeout value for both suspend and resume */
509 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
510 add_timer(timer);
511}
512
513/**
514 * dpm_watchdog_clear - Disable suspend/resume watchdog.
515 * @wd: Watchdog to disable.
516 */
517static void dpm_watchdog_clear(struct dpm_watchdog *wd)
518{
519 struct timer_list *timer = &wd->timer;
520
521 del_timer_sync(timer);
522 destroy_timer_on_stack(timer);
523}
524#else
525#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
526#define dpm_watchdog_set(x, y)
527#define dpm_watchdog_clear(x)
528#endif
529
530/*------------------------- Resume routines -------------------------*/
531
532/**
533 * dev_pm_skip_next_resume_phases - Skip next system resume phases for device.
534 * @dev: Target device.
535 *
536 * Make the core skip the "early resume" and "resume" phases for @dev.
537 *
538 * This function can be called by middle-layer code during the "noirq" phase of
539 * system resume if necessary, but not by device drivers.
540 */
541void dev_pm_skip_next_resume_phases(struct device *dev)
542{
543 dev->power.is_late_suspended = false;
544 dev->power.is_suspended = false;
545}
546
547/**
548 * suspend_event - Return a "suspend" message for given "resume" one.
549 * @resume_msg: PM message representing a system-wide resume transition.
550 */
551static pm_message_t suspend_event(pm_message_t resume_msg)
552{
553 switch (resume_msg.event) {
554 case PM_EVENT_RESUME:
555 return PMSG_SUSPEND;
556 case PM_EVENT_THAW:
557 case PM_EVENT_RESTORE:
558 return PMSG_FREEZE;
559 case PM_EVENT_RECOVER:
560 return PMSG_HIBERNATE;
561 }
562 return PMSG_ON;
563}
564
565/**
566 * dev_pm_may_skip_resume - System-wide device resume optimization check.
567 * @dev: Target device.
568 *
569 * Checks whether or not the device may be left in suspend after a system-wide
570 * transition to the working state.
571 */
572bool dev_pm_may_skip_resume(struct device *dev)
573{
574 return !dev->power.must_resume && pm_transition.event != PM_EVENT_RESTORE;
575}
576
577static pm_callback_t dpm_subsys_resume_noirq_cb(struct device *dev,
578 pm_message_t state,
579 const char **info_p)
580{
581 pm_callback_t callback;
582 const char *info;
583
584 if (dev->pm_domain) {
585 info = "noirq power domain ";
586 callback = pm_noirq_op(&dev->pm_domain->ops, state);
587 } else if (dev->type && dev->type->pm) {
588 info = "noirq type ";
589 callback = pm_noirq_op(dev->type->pm, state);
590 } else if (dev->class && dev->class->pm) {
591 info = "noirq class ";
592 callback = pm_noirq_op(dev->class->pm, state);
593 } else if (dev->bus && dev->bus->pm) {
594 info = "noirq bus ";
595 callback = pm_noirq_op(dev->bus->pm, state);
596 } else {
597 return NULL;
598 }
599
600 if (info_p)
601 *info_p = info;
602
603 return callback;
604}
605
606static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
607 pm_message_t state,
608 const char **info_p);
609
610static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
611 pm_message_t state,
612 const char **info_p);
613
614/**
615 * device_resume_noirq - Execute a "noirq resume" callback for given device.
616 * @dev: Device to handle.
617 * @state: PM transition of the system being carried out.
618 * @async: If true, the device is being resumed asynchronously.
619 *
620 * The driver of @dev will not receive interrupts while this function is being
621 * executed.
622 */
623static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
624{
625 pm_callback_t callback;
626 const char *info;
627 bool skip_resume;
628 int error = 0;
629
630 TRACE_DEVICE(dev);
631 TRACE_RESUME(0);
632
633 if (dev->power.syscore || dev->power.direct_complete)
634 goto Out;
635
636 if (!dev->power.is_noirq_suspended)
637 goto Out;
638
639 dpm_wait_for_superior(dev, async);
640
641 skip_resume = dev_pm_may_skip_resume(dev);
642
643 callback = dpm_subsys_resume_noirq_cb(dev, state, &info);
644 if (callback)
645 goto Run;
646
647 if (skip_resume)
648 goto Skip;
649
650 if (dev_pm_smart_suspend_and_suspended(dev)) {
651 pm_message_t suspend_msg = suspend_event(state);
652
653 /*
654 * If "freeze" callbacks have been skipped during a transition
655 * related to hibernation, the subsequent "thaw" callbacks must
656 * be skipped too or bad things may happen. Otherwise, resume
657 * callbacks are going to be run for the device, so its runtime
658 * PM status must be changed to reflect the new state after the
659 * transition under way.
660 */
661 if (!dpm_subsys_suspend_late_cb(dev, suspend_msg, NULL) &&
662 !dpm_subsys_suspend_noirq_cb(dev, suspend_msg, NULL)) {
663 if (state.event == PM_EVENT_THAW) {
664 skip_resume = true;
665 goto Skip;
666 } else {
667 pm_runtime_set_active(dev);
668 }
669 }
670 }
671
672 if (dev->driver && dev->driver->pm) {
673 info = "noirq driver ";
674 callback = pm_noirq_op(dev->driver->pm, state);
675 }
676
677Run:
678 error = dpm_run_callback(callback, dev, state, info);
679
680Skip:
681 dev->power.is_noirq_suspended = false;
682
683 if (skip_resume) {
684 /*
685 * The device is going to be left in suspend, but it might not
686 * have been in runtime suspend before the system suspended, so
687 * its runtime PM status needs to be updated to avoid confusing
688 * the runtime PM framework when runtime PM is enabled for the
689 * device again.
690 */
691 pm_runtime_set_suspended(dev);
692 dev_pm_skip_next_resume_phases(dev);
693 }
694
695Out:
696 complete_all(&dev->power.completion);
697 TRACE_RESUME(error);
698 return error;
699}
700
701static bool is_async(struct device *dev)
702{
703 return dev->power.async_suspend && pm_async_enabled
704 && !pm_trace_is_enabled();
705}
706
707static void async_resume_noirq(void *data, async_cookie_t cookie)
708{
709 struct device *dev = (struct device *)data;
710 int error;
711
712 error = device_resume_noirq(dev, pm_transition, true);
713 if (error)
714 pm_dev_err(dev, pm_transition, " async", error);
715
716 put_device(dev);
717}
718
719void dpm_noirq_resume_devices(pm_message_t state)
720{
721 struct device *dev;
722 ktime_t starttime = ktime_get();
723
724 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
725 mutex_lock(&dpm_list_mtx);
726 pm_transition = state;
727
728 /*
729 * Advanced the async threads upfront,
730 * in case the starting of async threads is
731 * delayed by non-async resuming devices.
732 */
733 list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
734 reinit_completion(&dev->power.completion);
735 if (is_async(dev)) {
736 get_device(dev);
737 async_schedule(async_resume_noirq, dev);
738 }
739 }
740
741 while (!list_empty(&dpm_noirq_list)) {
742 dev = to_device(dpm_noirq_list.next);
743 get_device(dev);
744 list_move_tail(&dev->power.entry, &dpm_late_early_list);
745 mutex_unlock(&dpm_list_mtx);
746
747 if (!is_async(dev)) {
748 int error;
749
750 error = device_resume_noirq(dev, state, false);
751 if (error) {
752 suspend_stats.failed_resume_noirq++;
753 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
754 dpm_save_failed_dev(dev_name(dev));
755 pm_dev_err(dev, state, " noirq", error);
756 }
757 }
758
759 mutex_lock(&dpm_list_mtx);
760 put_device(dev);
761 }
762 mutex_unlock(&dpm_list_mtx);
763 async_synchronize_full();
764 dpm_show_time(starttime, state, 0, "noirq");
765 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
766}
767
768void dpm_noirq_end(void)
769{
770 resume_device_irqs();
771 device_wakeup_disarm_wake_irqs();
772 cpuidle_resume();
773}
774
775/**
776 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
777 * @state: PM transition of the system being carried out.
778 *
779 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
780 * allow device drivers' interrupt handlers to be called.
781 */
782void dpm_resume_noirq(pm_message_t state)
783{
784 dpm_noirq_resume_devices(state);
785 dpm_noirq_end();
786}
787
788static pm_callback_t dpm_subsys_resume_early_cb(struct device *dev,
789 pm_message_t state,
790 const char **info_p)
791{
792 pm_callback_t callback;
793 const char *info;
794
795 if (dev->pm_domain) {
796 info = "early power domain ";
797 callback = pm_late_early_op(&dev->pm_domain->ops, state);
798 } else if (dev->type && dev->type->pm) {
799 info = "early type ";
800 callback = pm_late_early_op(dev->type->pm, state);
801 } else if (dev->class && dev->class->pm) {
802 info = "early class ";
803 callback = pm_late_early_op(dev->class->pm, state);
804 } else if (dev->bus && dev->bus->pm) {
805 info = "early bus ";
806 callback = pm_late_early_op(dev->bus->pm, state);
807 } else {
808 return NULL;
809 }
810
811 if (info_p)
812 *info_p = info;
813
814 return callback;
815}
816
817/**
818 * device_resume_early - Execute an "early resume" callback for given device.
819 * @dev: Device to handle.
820 * @state: PM transition of the system being carried out.
821 * @async: If true, the device is being resumed asynchronously.
822 *
823 * Runtime PM is disabled for @dev while this function is being executed.
824 */
825static int device_resume_early(struct device *dev, pm_message_t state, bool async)
826{
827 pm_callback_t callback;
828 const char *info;
829 int error = 0;
830
831 TRACE_DEVICE(dev);
832 TRACE_RESUME(0);
833
834 if (dev->power.syscore || dev->power.direct_complete)
835 goto Out;
836
837 if (!dev->power.is_late_suspended)
838 goto Out;
839
840 dpm_wait_for_superior(dev, async);
841
842 callback = dpm_subsys_resume_early_cb(dev, state, &info);
843
844 if (!callback && dev->driver && dev->driver->pm) {
845 info = "early driver ";
846 callback = pm_late_early_op(dev->driver->pm, state);
847 }
848
849 error = dpm_run_callback(callback, dev, state, info);
850 dev->power.is_late_suspended = false;
851
852 Out:
853 TRACE_RESUME(error);
854
855 pm_runtime_enable(dev);
856 complete_all(&dev->power.completion);
857 return error;
858}
859
860static void async_resume_early(void *data, async_cookie_t cookie)
861{
862 struct device *dev = (struct device *)data;
863 int error;
864
865 error = device_resume_early(dev, pm_transition, true);
866 if (error)
867 pm_dev_err(dev, pm_transition, " async", error);
868
869 put_device(dev);
870}
871
872/**
873 * dpm_resume_early - Execute "early resume" callbacks for all devices.
874 * @state: PM transition of the system being carried out.
875 */
876void dpm_resume_early(pm_message_t state)
877{
878 struct device *dev;
879 ktime_t starttime = ktime_get();
880
881 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
882 mutex_lock(&dpm_list_mtx);
883 pm_transition = state;
884
885 /*
886 * Advanced the async threads upfront,
887 * in case the starting of async threads is
888 * delayed by non-async resuming devices.
889 */
890 list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
891 reinit_completion(&dev->power.completion);
892 if (is_async(dev)) {
893 get_device(dev);
894 async_schedule(async_resume_early, dev);
895 }
896 }
897
898 while (!list_empty(&dpm_late_early_list)) {
899 dev = to_device(dpm_late_early_list.next);
900 get_device(dev);
901 list_move_tail(&dev->power.entry, &dpm_suspended_list);
902 mutex_unlock(&dpm_list_mtx);
903
904 if (!is_async(dev)) {
905 int error;
906
907 error = device_resume_early(dev, state, false);
908 if (error) {
909 suspend_stats.failed_resume_early++;
910 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
911 dpm_save_failed_dev(dev_name(dev));
912 pm_dev_err(dev, state, " early", error);
913 }
914 }
915 mutex_lock(&dpm_list_mtx);
916 put_device(dev);
917 }
918 mutex_unlock(&dpm_list_mtx);
919 async_synchronize_full();
920 dpm_show_time(starttime, state, 0, "early");
921 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
922}
923
924/**
925 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
926 * @state: PM transition of the system being carried out.
927 */
928void dpm_resume_start(pm_message_t state)
929{
930 dpm_resume_noirq(state);
931 dpm_resume_early(state);
932}
933EXPORT_SYMBOL_GPL(dpm_resume_start);
934
935/**
936 * device_resume - Execute "resume" callbacks for given device.
937 * @dev: Device to handle.
938 * @state: PM transition of the system being carried out.
939 * @async: If true, the device is being resumed asynchronously.
940 */
941static int device_resume(struct device *dev, pm_message_t state, bool async)
942{
943 pm_callback_t callback = NULL;
944 const char *info = NULL;
945 int error = 0;
946 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
947
948 TRACE_DEVICE(dev);
949 TRACE_RESUME(0);
950
951 if (dev->power.syscore)
952 goto Complete;
953
954 if (dev->power.direct_complete) {
955 /* Match the pm_runtime_disable() in __device_suspend(). */
956 pm_runtime_enable(dev);
957 goto Complete;
958 }
959
960 dpm_wait_for_superior(dev, async);
961 dpm_watchdog_set(&wd, dev);
962 device_lock(dev);
963
964 /*
965 * This is a fib. But we'll allow new children to be added below
966 * a resumed device, even if the device hasn't been completed yet.
967 */
968 dev->power.is_prepared = false;
969
970 if (!dev->power.is_suspended)
971 goto Unlock;
972
973 if (dev->pm_domain) {
974 info = "power domain ";
975 callback = pm_op(&dev->pm_domain->ops, state);
976 goto Driver;
977 }
978
979 if (dev->type && dev->type->pm) {
980 info = "type ";
981 callback = pm_op(dev->type->pm, state);
982 goto Driver;
983 }
984
985 if (dev->class && dev->class->pm) {
986 info = "class ";
987 callback = pm_op(dev->class->pm, state);
988 goto Driver;
989 }
990
991 if (dev->bus) {
992 if (dev->bus->pm) {
993 info = "bus ";
994 callback = pm_op(dev->bus->pm, state);
995 } else if (dev->bus->resume) {
996 info = "legacy bus ";
997 callback = dev->bus->resume;
998 goto End;
999 }
1000 }
1001
1002 Driver:
1003 if (!callback && dev->driver && dev->driver->pm) {
1004 info = "driver ";
1005 callback = pm_op(dev->driver->pm, state);
1006 }
1007
1008 End:
1009 error = dpm_run_callback(callback, dev, state, info);
1010 dev->power.is_suspended = false;
1011
1012 Unlock:
1013 device_unlock(dev);
1014 dpm_watchdog_clear(&wd);
1015
1016 Complete:
1017 complete_all(&dev->power.completion);
1018
1019 TRACE_RESUME(error);
1020
1021 return error;
1022}
1023
1024static void async_resume(void *data, async_cookie_t cookie)
1025{
1026 struct device *dev = (struct device *)data;
1027 int error;
1028
1029 error = device_resume(dev, pm_transition, true);
1030 if (error)
1031 pm_dev_err(dev, pm_transition, " async", error);
1032 put_device(dev);
1033}
1034
1035/**
1036 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1037 * @state: PM transition of the system being carried out.
1038 *
1039 * Execute the appropriate "resume" callback for all devices whose status
1040 * indicates that they are suspended.
1041 */
1042void dpm_resume(pm_message_t state)
1043{
1044 struct device *dev;
1045 ktime_t starttime = ktime_get();
1046
1047 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1048 might_sleep();
1049
1050 mutex_lock(&dpm_list_mtx);
1051 pm_transition = state;
1052 async_error = 0;
1053
1054 list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
1055 reinit_completion(&dev->power.completion);
1056 if (is_async(dev)) {
1057 get_device(dev);
1058 async_schedule(async_resume, dev);
1059 }
1060 }
1061
1062 while (!list_empty(&dpm_suspended_list)) {
1063 dev = to_device(dpm_suspended_list.next);
1064 get_device(dev);
1065 if (!is_async(dev)) {
1066 int error;
1067
1068 mutex_unlock(&dpm_list_mtx);
1069
1070 error = device_resume(dev, state, false);
1071 if (error) {
1072 suspend_stats.failed_resume++;
1073 dpm_save_failed_step(SUSPEND_RESUME);
1074 dpm_save_failed_dev(dev_name(dev));
1075 pm_dev_err(dev, state, "", error);
1076 }
1077
1078 mutex_lock(&dpm_list_mtx);
1079 }
1080 if (!list_empty(&dev->power.entry))
1081 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1082 put_device(dev);
1083 }
1084 mutex_unlock(&dpm_list_mtx);
1085 async_synchronize_full();
1086 dpm_show_time(starttime, state, 0, NULL);
1087
1088 cpufreq_resume();
1089 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1090}
1091
1092/**
1093 * device_complete - Complete a PM transition for given device.
1094 * @dev: Device to handle.
1095 * @state: PM transition of the system being carried out.
1096 */
1097static void device_complete(struct device *dev, pm_message_t state)
1098{
1099 void (*callback)(struct device *) = NULL;
1100 const char *info = NULL;
1101
1102 if (dev->power.syscore)
1103 return;
1104
1105 device_lock(dev);
1106
1107 if (dev->pm_domain) {
1108 info = "completing power domain ";
1109 callback = dev->pm_domain->ops.complete;
1110 } else if (dev->type && dev->type->pm) {
1111 info = "completing type ";
1112 callback = dev->type->pm->complete;
1113 } else if (dev->class && dev->class->pm) {
1114 info = "completing class ";
1115 callback = dev->class->pm->complete;
1116 } else if (dev->bus && dev->bus->pm) {
1117 info = "completing bus ";
1118 callback = dev->bus->pm->complete;
1119 }
1120
1121 if (!callback && dev->driver && dev->driver->pm) {
1122 info = "completing driver ";
1123 callback = dev->driver->pm->complete;
1124 }
1125
1126 if (callback) {
1127 pm_dev_dbg(dev, state, info);
1128 callback(dev);
1129 }
1130
1131 device_unlock(dev);
1132
1133 pm_runtime_put(dev);
1134}
1135
1136/**
1137 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1138 * @state: PM transition of the system being carried out.
1139 *
1140 * Execute the ->complete() callbacks for all devices whose PM status is not
1141 * DPM_ON (this allows new devices to be registered).
1142 */
1143void dpm_complete(pm_message_t state)
1144{
1145 struct list_head list;
1146
1147 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1148 might_sleep();
1149
1150 INIT_LIST_HEAD(&list);
1151 mutex_lock(&dpm_list_mtx);
1152 while (!list_empty(&dpm_prepared_list)) {
1153 struct device *dev = to_device(dpm_prepared_list.prev);
1154
1155 get_device(dev);
1156 dev->power.is_prepared = false;
1157 list_move(&dev->power.entry, &list);
1158 mutex_unlock(&dpm_list_mtx);
1159
1160 trace_device_pm_callback_start(dev, "", state.event);
1161 device_complete(dev, state);
1162 trace_device_pm_callback_end(dev, 0);
1163
1164 mutex_lock(&dpm_list_mtx);
1165 put_device(dev);
1166 }
1167 list_splice(&list, &dpm_list);
1168 mutex_unlock(&dpm_list_mtx);
1169
1170 /* Allow device probing and trigger re-probing of deferred devices */
1171 device_unblock_probing();
1172 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1173}
1174
1175/**
1176 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1177 * @state: PM transition of the system being carried out.
1178 *
1179 * Execute "resume" callbacks for all devices and complete the PM transition of
1180 * the system.
1181 */
1182void dpm_resume_end(pm_message_t state)
1183{
1184 dpm_resume(state);
1185 dpm_complete(state);
1186}
1187EXPORT_SYMBOL_GPL(dpm_resume_end);
1188
1189
1190/*------------------------- Suspend routines -------------------------*/
1191
1192/**
1193 * resume_event - Return a "resume" message for given "suspend" sleep state.
1194 * @sleep_state: PM message representing a sleep state.
1195 *
1196 * Return a PM message representing the resume event corresponding to given
1197 * sleep state.
1198 */
1199static pm_message_t resume_event(pm_message_t sleep_state)
1200{
1201 switch (sleep_state.event) {
1202 case PM_EVENT_SUSPEND:
1203 return PMSG_RESUME;
1204 case PM_EVENT_FREEZE:
1205 case PM_EVENT_QUIESCE:
1206 return PMSG_RECOVER;
1207 case PM_EVENT_HIBERNATE:
1208 return PMSG_RESTORE;
1209 }
1210 return PMSG_ON;
1211}
1212
1213static void dpm_superior_set_must_resume(struct device *dev)
1214{
1215 struct device_link *link;
1216 int idx;
1217
1218 if (dev->parent)
1219 dev->parent->power.must_resume = true;
1220
1221 idx = device_links_read_lock();
1222
1223 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
1224 link->supplier->power.must_resume = true;
1225
1226 device_links_read_unlock(idx);
1227}
1228
1229static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
1230 pm_message_t state,
1231 const char **info_p)
1232{
1233 pm_callback_t callback;
1234 const char *info;
1235
1236 if (dev->pm_domain) {
1237 info = "noirq power domain ";
1238 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1239 } else if (dev->type && dev->type->pm) {
1240 info = "noirq type ";
1241 callback = pm_noirq_op(dev->type->pm, state);
1242 } else if (dev->class && dev->class->pm) {
1243 info = "noirq class ";
1244 callback = pm_noirq_op(dev->class->pm, state);
1245 } else if (dev->bus && dev->bus->pm) {
1246 info = "noirq bus ";
1247 callback = pm_noirq_op(dev->bus->pm, state);
1248 } else {
1249 return NULL;
1250 }
1251
1252 if (info_p)
1253 *info_p = info;
1254
1255 return callback;
1256}
1257
1258static bool device_must_resume(struct device *dev, pm_message_t state,
1259 bool no_subsys_suspend_noirq)
1260{
1261 pm_message_t resume_msg = resume_event(state);
1262
1263 /*
1264 * If all of the device driver's "noirq", "late" and "early" callbacks
1265 * are invoked directly by the core, the decision to allow the device to
1266 * stay in suspend can be based on its current runtime PM status and its
1267 * wakeup settings.
1268 */
1269 if (no_subsys_suspend_noirq &&
1270 !dpm_subsys_suspend_late_cb(dev, state, NULL) &&
1271 !dpm_subsys_resume_early_cb(dev, resume_msg, NULL) &&
1272 !dpm_subsys_resume_noirq_cb(dev, resume_msg, NULL))
1273 return !pm_runtime_status_suspended(dev) &&
1274 (resume_msg.event != PM_EVENT_RESUME ||
1275 (device_can_wakeup(dev) && !device_may_wakeup(dev)));
1276
1277 /*
1278 * The only safe strategy here is to require that if the device may not
1279 * be left in suspend, resume callbacks must be invoked for it.
1280 */
1281 return !dev->power.may_skip_resume;
1282}
1283
1284/**
1285 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1286 * @dev: Device to handle.
1287 * @state: PM transition of the system being carried out.
1288 * @async: If true, the device is being suspended asynchronously.
1289 *
1290 * The driver of @dev will not receive interrupts while this function is being
1291 * executed.
1292 */
1293static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1294{
1295 pm_callback_t callback;
1296 const char *info;
1297 bool no_subsys_cb = false;
1298 int error = 0;
1299
1300 TRACE_DEVICE(dev);
1301 TRACE_SUSPEND(0);
1302
1303 dpm_wait_for_subordinate(dev, async);
1304
1305 if (async_error)
1306 goto Complete;
1307
1308 if (pm_wakeup_pending()) {
1309 async_error = -EBUSY;
1310 goto Complete;
1311 }
1312
1313 if (dev->power.syscore || dev->power.direct_complete)
1314 goto Complete;
1315
1316 callback = dpm_subsys_suspend_noirq_cb(dev, state, &info);
1317 if (callback)
1318 goto Run;
1319
1320 no_subsys_cb = !dpm_subsys_suspend_late_cb(dev, state, NULL);
1321
1322 if (dev_pm_smart_suspend_and_suspended(dev) && no_subsys_cb)
1323 goto Skip;
1324
1325 if (dev->driver && dev->driver->pm) {
1326 info = "noirq driver ";
1327 callback = pm_noirq_op(dev->driver->pm, state);
1328 }
1329
1330Run:
1331 error = dpm_run_callback(callback, dev, state, info);
1332 if (error) {
1333 async_error = error;
1334 goto Complete;
1335 }
1336
1337Skip:
1338 dev->power.is_noirq_suspended = true;
1339
1340 if (dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED)) {
1341 dev->power.must_resume = dev->power.must_resume ||
1342 atomic_read(&dev->power.usage_count) > 1 ||
1343 device_must_resume(dev, state, no_subsys_cb);
1344 } else {
1345 dev->power.must_resume = true;
1346 }
1347
1348 if (dev->power.must_resume)
1349 dpm_superior_set_must_resume(dev);
1350
1351Complete:
1352 complete_all(&dev->power.completion);
1353 TRACE_SUSPEND(error);
1354 return error;
1355}
1356
1357static void async_suspend_noirq(void *data, async_cookie_t cookie)
1358{
1359 struct device *dev = (struct device *)data;
1360 int error;
1361
1362 error = __device_suspend_noirq(dev, pm_transition, true);
1363 if (error) {
1364 dpm_save_failed_dev(dev_name(dev));
1365 pm_dev_err(dev, pm_transition, " async", error);
1366 }
1367
1368 put_device(dev);
1369}
1370
1371static int device_suspend_noirq(struct device *dev)
1372{
1373 reinit_completion(&dev->power.completion);
1374
1375 if (is_async(dev)) {
1376 get_device(dev);
1377 async_schedule(async_suspend_noirq, dev);
1378 return 0;
1379 }
1380 return __device_suspend_noirq(dev, pm_transition, false);
1381}
1382
1383void dpm_noirq_begin(void)
1384{
1385 cpuidle_pause();
1386 device_wakeup_arm_wake_irqs();
1387 suspend_device_irqs();
1388}
1389
1390int dpm_noirq_suspend_devices(pm_message_t state)
1391{
1392 ktime_t starttime = ktime_get();
1393 int error = 0;
1394
1395 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1396 mutex_lock(&dpm_list_mtx);
1397 pm_transition = state;
1398 async_error = 0;
1399
1400 while (!list_empty(&dpm_late_early_list)) {
1401 struct device *dev = to_device(dpm_late_early_list.prev);
1402
1403 get_device(dev);
1404 mutex_unlock(&dpm_list_mtx);
1405
1406 error = device_suspend_noirq(dev);
1407
1408 mutex_lock(&dpm_list_mtx);
1409 if (error) {
1410 pm_dev_err(dev, state, " noirq", error);
1411 dpm_save_failed_dev(dev_name(dev));
1412 put_device(dev);
1413 break;
1414 }
1415 if (!list_empty(&dev->power.entry))
1416 list_move(&dev->power.entry, &dpm_noirq_list);
1417 put_device(dev);
1418
1419 if (async_error)
1420 break;
1421 }
1422 mutex_unlock(&dpm_list_mtx);
1423 async_synchronize_full();
1424 if (!error)
1425 error = async_error;
1426
1427 if (error) {
1428 suspend_stats.failed_suspend_noirq++;
1429 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1430 }
1431 dpm_show_time(starttime, state, error, "noirq");
1432 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1433 return error;
1434}
1435
1436/**
1437 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1438 * @state: PM transition of the system being carried out.
1439 *
1440 * Prevent device drivers' interrupt handlers from being called and invoke
1441 * "noirq" suspend callbacks for all non-sysdev devices.
1442 */
1443int dpm_suspend_noirq(pm_message_t state)
1444{
1445 int ret;
1446
1447 dpm_noirq_begin();
1448 ret = dpm_noirq_suspend_devices(state);
1449 if (ret)
1450 dpm_resume_noirq(resume_event(state));
1451
1452 return ret;
1453}
1454
1455static void dpm_propagate_wakeup_to_parent(struct device *dev)
1456{
1457 struct device *parent = dev->parent;
1458
1459 if (!parent)
1460 return;
1461
1462 spin_lock_irq(&parent->power.lock);
1463
1464 if (dev->power.wakeup_path && !parent->power.ignore_children)
1465 parent->power.wakeup_path = true;
1466
1467 spin_unlock_irq(&parent->power.lock);
1468}
1469
1470static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
1471 pm_message_t state,
1472 const char **info_p)
1473{
1474 pm_callback_t callback;
1475 const char *info;
1476
1477 if (dev->pm_domain) {
1478 info = "late power domain ";
1479 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1480 } else if (dev->type && dev->type->pm) {
1481 info = "late type ";
1482 callback = pm_late_early_op(dev->type->pm, state);
1483 } else if (dev->class && dev->class->pm) {
1484 info = "late class ";
1485 callback = pm_late_early_op(dev->class->pm, state);
1486 } else if (dev->bus && dev->bus->pm) {
1487 info = "late bus ";
1488 callback = pm_late_early_op(dev->bus->pm, state);
1489 } else {
1490 return NULL;
1491 }
1492
1493 if (info_p)
1494 *info_p = info;
1495
1496 return callback;
1497}
1498
1499/**
1500 * __device_suspend_late - Execute a "late suspend" callback for given device.
1501 * @dev: Device to handle.
1502 * @state: PM transition of the system being carried out.
1503 * @async: If true, the device is being suspended asynchronously.
1504 *
1505 * Runtime PM is disabled for @dev while this function is being executed.
1506 */
1507static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1508{
1509 pm_callback_t callback;
1510 const char *info;
1511 int error = 0;
1512
1513 TRACE_DEVICE(dev);
1514 TRACE_SUSPEND(0);
1515
1516 __pm_runtime_disable(dev, false);
1517
1518 dpm_wait_for_subordinate(dev, async);
1519
1520 if (async_error)
1521 goto Complete;
1522
1523 if (pm_wakeup_pending()) {
1524 async_error = -EBUSY;
1525 goto Complete;
1526 }
1527
1528 if (dev->power.syscore || dev->power.direct_complete)
1529 goto Complete;
1530
1531 callback = dpm_subsys_suspend_late_cb(dev, state, &info);
1532 if (callback)
1533 goto Run;
1534
1535 if (dev_pm_smart_suspend_and_suspended(dev) &&
1536 !dpm_subsys_suspend_noirq_cb(dev, state, NULL))
1537 goto Skip;
1538
1539 if (dev->driver && dev->driver->pm) {
1540 info = "late driver ";
1541 callback = pm_late_early_op(dev->driver->pm, state);
1542 }
1543
1544Run:
1545 error = dpm_run_callback(callback, dev, state, info);
1546 if (error) {
1547 async_error = error;
1548 goto Complete;
1549 }
1550 dpm_propagate_wakeup_to_parent(dev);
1551
1552Skip:
1553 dev->power.is_late_suspended = true;
1554
1555Complete:
1556 TRACE_SUSPEND(error);
1557 complete_all(&dev->power.completion);
1558 return error;
1559}
1560
1561static void async_suspend_late(void *data, async_cookie_t cookie)
1562{
1563 struct device *dev = (struct device *)data;
1564 int error;
1565
1566 error = __device_suspend_late(dev, pm_transition, true);
1567 if (error) {
1568 dpm_save_failed_dev(dev_name(dev));
1569 pm_dev_err(dev, pm_transition, " async", error);
1570 }
1571 put_device(dev);
1572}
1573
1574static int device_suspend_late(struct device *dev)
1575{
1576 reinit_completion(&dev->power.completion);
1577
1578 if (is_async(dev)) {
1579 get_device(dev);
1580 async_schedule(async_suspend_late, dev);
1581 return 0;
1582 }
1583
1584 return __device_suspend_late(dev, pm_transition, false);
1585}
1586
1587/**
1588 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1589 * @state: PM transition of the system being carried out.
1590 */
1591int dpm_suspend_late(pm_message_t state)
1592{
1593 ktime_t starttime = ktime_get();
1594 int error = 0;
1595
1596 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1597 mutex_lock(&dpm_list_mtx);
1598 pm_transition = state;
1599 async_error = 0;
1600
1601 while (!list_empty(&dpm_suspended_list)) {
1602 struct device *dev = to_device(dpm_suspended_list.prev);
1603
1604 get_device(dev);
1605 mutex_unlock(&dpm_list_mtx);
1606
1607 error = device_suspend_late(dev);
1608
1609 mutex_lock(&dpm_list_mtx);
1610 if (!list_empty(&dev->power.entry))
1611 list_move(&dev->power.entry, &dpm_late_early_list);
1612
1613 if (error) {
1614 pm_dev_err(dev, state, " late", error);
1615 dpm_save_failed_dev(dev_name(dev));
1616 put_device(dev);
1617 break;
1618 }
1619 put_device(dev);
1620
1621 if (async_error)
1622 break;
1623 }
1624 mutex_unlock(&dpm_list_mtx);
1625 async_synchronize_full();
1626 if (!error)
1627 error = async_error;
1628 if (error) {
1629 suspend_stats.failed_suspend_late++;
1630 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1631 dpm_resume_early(resume_event(state));
1632 }
1633 dpm_show_time(starttime, state, error, "late");
1634 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1635 return error;
1636}
1637
1638/**
1639 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1640 * @state: PM transition of the system being carried out.
1641 */
1642int dpm_suspend_end(pm_message_t state)
1643{
1644 int error = dpm_suspend_late(state);
1645 if (error)
1646 return error;
1647
1648 error = dpm_suspend_noirq(state);
1649 if (error) {
1650 dpm_resume_early(resume_event(state));
1651 return error;
1652 }
1653
1654 return 0;
1655}
1656EXPORT_SYMBOL_GPL(dpm_suspend_end);
1657
1658/**
1659 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1660 * @dev: Device to suspend.
1661 * @state: PM transition of the system being carried out.
1662 * @cb: Suspend callback to execute.
1663 * @info: string description of caller.
1664 */
1665static int legacy_suspend(struct device *dev, pm_message_t state,
1666 int (*cb)(struct device *dev, pm_message_t state),
1667 const char *info)
1668{
1669 int error;
1670 ktime_t calltime;
1671
1672 calltime = initcall_debug_start(dev, cb);
1673
1674 trace_device_pm_callback_start(dev, info, state.event);
1675 error = cb(dev, state);
1676 trace_device_pm_callback_end(dev, error);
1677 suspend_report_result(cb, error);
1678
1679 initcall_debug_report(dev, calltime, cb, error);
1680
1681 return error;
1682}
1683
1684static void dpm_clear_superiors_direct_complete(struct device *dev)
1685{
1686 struct device_link *link;
1687 int idx;
1688
1689 if (dev->parent) {
1690 spin_lock_irq(&dev->parent->power.lock);
1691 dev->parent->power.direct_complete = false;
1692 spin_unlock_irq(&dev->parent->power.lock);
1693 }
1694
1695 idx = device_links_read_lock();
1696
1697 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1698 spin_lock_irq(&link->supplier->power.lock);
1699 link->supplier->power.direct_complete = false;
1700 spin_unlock_irq(&link->supplier->power.lock);
1701 }
1702
1703 device_links_read_unlock(idx);
1704}
1705
1706/**
1707 * __device_suspend - Execute "suspend" callbacks for given device.
1708 * @dev: Device to handle.
1709 * @state: PM transition of the system being carried out.
1710 * @async: If true, the device is being suspended asynchronously.
1711 */
1712static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1713{
1714 pm_callback_t callback = NULL;
1715 const char *info = NULL;
1716 int error = 0;
1717 char suspend_abort[MAX_SUSPEND_ABORT_LEN];
1718 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1719
1720 TRACE_DEVICE(dev);
1721 TRACE_SUSPEND(0);
1722
1723 dpm_wait_for_subordinate(dev, async);
1724
1725 if (async_error) {
1726 dev->power.direct_complete = false;
1727 goto Complete;
1728 }
1729
1730 /*
1731 * If a device configured to wake up the system from sleep states
1732 * has been suspended at run time and there's a resume request pending
1733 * for it, this is equivalent to the device signaling wakeup, so the
1734 * system suspend operation should be aborted.
1735 */
1736 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1737 pm_wakeup_event(dev, 0);
1738
1739 if (pm_wakeup_pending()) {
1740 dev->power.direct_complete = false;
1741 pm_get_active_wakeup_sources(suspend_abort,
1742 MAX_SUSPEND_ABORT_LEN);
1743 log_suspend_abort_reason(suspend_abort);
1744 async_error = -EBUSY;
1745 goto Complete;
1746 }
1747
1748 if (dev->power.syscore)
1749 goto Complete;
1750
1751 /* Avoid direct_complete to let wakeup_path propagate. */
1752 if (device_may_wakeup(dev) || dev->power.wakeup_path)
1753 dev->power.direct_complete = false;
1754
1755 if (dev->power.direct_complete) {
1756 if (pm_runtime_status_suspended(dev)) {
1757 pm_runtime_disable(dev);
1758 if (pm_runtime_status_suspended(dev))
1759 goto Complete;
1760
1761 pm_runtime_enable(dev);
1762 }
1763 dev->power.direct_complete = false;
1764 }
1765
1766 dev->power.may_skip_resume = false;
1767 dev->power.must_resume = false;
1768
1769 dpm_watchdog_set(&wd, dev);
1770 device_lock(dev);
1771
1772 if (dev->pm_domain) {
1773 info = "power domain ";
1774 callback = pm_op(&dev->pm_domain->ops, state);
1775 goto Run;
1776 }
1777
1778 if (dev->type && dev->type->pm) {
1779 info = "type ";
1780 callback = pm_op(dev->type->pm, state);
1781 goto Run;
1782 }
1783
1784 if (dev->class && dev->class->pm) {
1785 info = "class ";
1786 callback = pm_op(dev->class->pm, state);
1787 goto Run;
1788 }
1789
1790 if (dev->bus) {
1791 if (dev->bus->pm) {
1792 info = "bus ";
1793 callback = pm_op(dev->bus->pm, state);
1794 } else if (dev->bus->suspend) {
1795 pm_dev_dbg(dev, state, "legacy bus ");
1796 error = legacy_suspend(dev, state, dev->bus->suspend,
1797 "legacy bus ");
1798 goto End;
1799 }
1800 }
1801
1802 Run:
1803 if (!callback && dev->driver && dev->driver->pm) {
1804 info = "driver ";
1805 callback = pm_op(dev->driver->pm, state);
1806 }
1807
1808 error = dpm_run_callback(callback, dev, state, info);
1809
1810 End:
1811 if (!error) {
1812 dev->power.is_suspended = true;
1813 if (device_may_wakeup(dev))
1814 dev->power.wakeup_path = true;
1815
1816 dpm_propagate_wakeup_to_parent(dev);
1817 dpm_clear_superiors_direct_complete(dev);
1818 }
1819
1820 device_unlock(dev);
1821 dpm_watchdog_clear(&wd);
1822
1823 Complete:
1824 if (error)
1825 async_error = error;
1826
1827 complete_all(&dev->power.completion);
1828 TRACE_SUSPEND(error);
1829 return error;
1830}
1831
1832static void async_suspend(void *data, async_cookie_t cookie)
1833{
1834 struct device *dev = (struct device *)data;
1835 int error;
1836
1837 error = __device_suspend(dev, pm_transition, true);
1838 if (error) {
1839 dpm_save_failed_dev(dev_name(dev));
1840 pm_dev_err(dev, pm_transition, " async", error);
1841 }
1842
1843 put_device(dev);
1844}
1845
1846static int device_suspend(struct device *dev)
1847{
1848 reinit_completion(&dev->power.completion);
1849
1850 if (is_async(dev)) {
1851 get_device(dev);
1852 async_schedule(async_suspend, dev);
1853 return 0;
1854 }
1855
1856 return __device_suspend(dev, pm_transition, false);
1857}
1858
1859/**
1860 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1861 * @state: PM transition of the system being carried out.
1862 */
1863int dpm_suspend(pm_message_t state)
1864{
1865 ktime_t starttime = ktime_get();
1866 int error = 0;
1867
1868 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1869 might_sleep();
1870
1871 cpufreq_suspend();
1872
1873 mutex_lock(&dpm_list_mtx);
1874 pm_transition = state;
1875 async_error = 0;
1876 while (!list_empty(&dpm_prepared_list)) {
1877 struct device *dev = to_device(dpm_prepared_list.prev);
1878
1879 get_device(dev);
1880 mutex_unlock(&dpm_list_mtx);
1881
1882 error = device_suspend(dev);
1883
1884 mutex_lock(&dpm_list_mtx);
1885 if (error) {
1886 pm_dev_err(dev, state, "", error);
1887 dpm_save_failed_dev(dev_name(dev));
1888 put_device(dev);
1889 break;
1890 }
1891 if (!list_empty(&dev->power.entry))
1892 list_move(&dev->power.entry, &dpm_suspended_list);
1893 put_device(dev);
1894 if (async_error)
1895 break;
1896 }
1897 mutex_unlock(&dpm_list_mtx);
1898 async_synchronize_full();
1899 if (!error)
1900 error = async_error;
1901 if (error) {
1902 suspend_stats.failed_suspend++;
1903 dpm_save_failed_step(SUSPEND_SUSPEND);
1904 }
1905 dpm_show_time(starttime, state, error, NULL);
1906 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1907 return error;
1908}
1909
1910/**
1911 * device_prepare - Prepare a device for system power transition.
1912 * @dev: Device to handle.
1913 * @state: PM transition of the system being carried out.
1914 *
1915 * Execute the ->prepare() callback(s) for given device. No new children of the
1916 * device may be registered after this function has returned.
1917 */
1918static int device_prepare(struct device *dev, pm_message_t state)
1919{
1920 int (*callback)(struct device *) = NULL;
1921 int ret = 0;
1922
1923 if (dev->power.syscore)
1924 return 0;
1925
1926 WARN_ON(!pm_runtime_enabled(dev) &&
1927 dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
1928 DPM_FLAG_LEAVE_SUSPENDED));
1929
1930 /*
1931 * If a device's parent goes into runtime suspend at the wrong time,
1932 * it won't be possible to resume the device. To prevent this we
1933 * block runtime suspend here, during the prepare phase, and allow
1934 * it again during the complete phase.
1935 */
1936 pm_runtime_get_noresume(dev);
1937
1938 device_lock(dev);
1939
1940 dev->power.wakeup_path = false;
1941
1942 if (dev->power.no_pm_callbacks)
1943 goto unlock;
1944
1945 if (dev->pm_domain)
1946 callback = dev->pm_domain->ops.prepare;
1947 else if (dev->type && dev->type->pm)
1948 callback = dev->type->pm->prepare;
1949 else if (dev->class && dev->class->pm)
1950 callback = dev->class->pm->prepare;
1951 else if (dev->bus && dev->bus->pm)
1952 callback = dev->bus->pm->prepare;
1953
1954 if (!callback && dev->driver && dev->driver->pm)
1955 callback = dev->driver->pm->prepare;
1956
1957 if (callback)
1958 ret = callback(dev);
1959
1960unlock:
1961 device_unlock(dev);
1962
1963 if (ret < 0) {
1964 suspend_report_result(callback, ret);
1965 pm_runtime_put(dev);
1966 return ret;
1967 }
1968 /*
1969 * A positive return value from ->prepare() means "this device appears
1970 * to be runtime-suspended and its state is fine, so if it really is
1971 * runtime-suspended, you can leave it in that state provided that you
1972 * will do the same thing with all of its descendants". This only
1973 * applies to suspend transitions, however.
1974 */
1975 spin_lock_irq(&dev->power.lock);
1976 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1977 ((pm_runtime_suspended(dev) && ret > 0) ||
1978 dev->power.no_pm_callbacks) &&
1979 !dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP);
1980 spin_unlock_irq(&dev->power.lock);
1981 return 0;
1982}
1983
1984/**
1985 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1986 * @state: PM transition of the system being carried out.
1987 *
1988 * Execute the ->prepare() callback(s) for all devices.
1989 */
1990int dpm_prepare(pm_message_t state)
1991{
1992 int error = 0;
1993
1994 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1995 might_sleep();
1996
1997 /*
1998 * Give a chance for the known devices to complete their probes, before
1999 * disable probing of devices. This sync point is important at least
2000 * at boot time + hibernation restore.
2001 */
2002 wait_for_device_probe();
2003 /*
2004 * It is unsafe if probing of devices will happen during suspend or
2005 * hibernation and system behavior will be unpredictable in this case.
2006 * So, let's prohibit device's probing here and defer their probes
2007 * instead. The normal behavior will be restored in dpm_complete().
2008 */
2009 device_block_probing();
2010
2011 mutex_lock(&dpm_list_mtx);
2012 while (!list_empty(&dpm_list)) {
2013 struct device *dev = to_device(dpm_list.next);
2014
2015 get_device(dev);
2016 mutex_unlock(&dpm_list_mtx);
2017
2018 trace_device_pm_callback_start(dev, "", state.event);
2019 error = device_prepare(dev, state);
2020 trace_device_pm_callback_end(dev, error);
2021
2022 mutex_lock(&dpm_list_mtx);
2023 if (error) {
2024 if (error == -EAGAIN) {
2025 put_device(dev);
2026 error = 0;
2027 continue;
2028 }
2029 printk(KERN_INFO "PM: Device %s not prepared "
2030 "for power transition: code %d\n",
2031 dev_name(dev), error);
2032 dpm_save_failed_dev(dev_name(dev));
2033 put_device(dev);
2034 break;
2035 }
2036 dev->power.is_prepared = true;
2037 if (!list_empty(&dev->power.entry))
2038 list_move_tail(&dev->power.entry, &dpm_prepared_list);
2039 put_device(dev);
2040 }
2041 mutex_unlock(&dpm_list_mtx);
2042 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
2043 return error;
2044}
2045
2046/**
2047 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
2048 * @state: PM transition of the system being carried out.
2049 *
2050 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
2051 * callbacks for them.
2052 */
2053int dpm_suspend_start(pm_message_t state)
2054{
2055 int error;
2056
2057 error = dpm_prepare(state);
2058 if (error) {
2059 suspend_stats.failed_prepare++;
2060 dpm_save_failed_step(SUSPEND_PREPARE);
2061 } else
2062 error = dpm_suspend(state);
2063 return error;
2064}
2065EXPORT_SYMBOL_GPL(dpm_suspend_start);
2066
2067void __suspend_report_result(const char *function, void *fn, int ret)
2068{
2069 if (ret)
2070 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
2071}
2072EXPORT_SYMBOL_GPL(__suspend_report_result);
2073
2074/**
2075 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
2076 * @dev: Device to wait for.
2077 * @subordinate: Device that needs to wait for @dev.
2078 */
2079int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
2080{
2081 dpm_wait(dev, subordinate->power.async_suspend);
2082 return async_error;
2083}
2084EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
2085
2086/**
2087 * dpm_for_each_dev - device iterator.
2088 * @data: data for the callback.
2089 * @fn: function to be called for each device.
2090 *
2091 * Iterate over devices in dpm_list, and call @fn for each device,
2092 * passing it @data.
2093 */
2094void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
2095{
2096 struct device *dev;
2097
2098 if (!fn)
2099 return;
2100
2101 device_pm_lock();
2102 list_for_each_entry(dev, &dpm_list, power.entry)
2103 fn(dev, data);
2104 device_pm_unlock();
2105}
2106EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2107
2108static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2109{
2110 if (!ops)
2111 return true;
2112
2113 return !ops->prepare &&
2114 !ops->suspend &&
2115 !ops->suspend_late &&
2116 !ops->suspend_noirq &&
2117 !ops->resume_noirq &&
2118 !ops->resume_early &&
2119 !ops->resume &&
2120 !ops->complete;
2121}
2122
2123void device_pm_check_callbacks(struct device *dev)
2124{
2125 spin_lock_irq(&dev->power.lock);
2126 dev->power.no_pm_callbacks =
2127 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2128 !dev->bus->suspend && !dev->bus->resume)) &&
2129 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2130 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2131 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2132 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2133 !dev->driver->suspend && !dev->driver->resume));
2134 spin_unlock_irq(&dev->power.lock);
2135}
2136
2137bool dev_pm_smart_suspend_and_suspended(struct device *dev)
2138{
2139 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2140 pm_runtime_status_suspended(dev);
2141}