| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (c) International Business Machines Corp., 2006 | 
|  | 3 | * | 
|  | 4 | * This program is free software; you can redistribute it and/or modify | 
|  | 5 | * it under the terms of the GNU General Public License as published by | 
|  | 6 | * the Free Software Foundation; either version 2 of the License, or | 
|  | 7 | * (at your option) any later version. | 
|  | 8 | * | 
|  | 9 | * This program is distributed in the hope that it will be useful, | 
|  | 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See | 
|  | 12 | * the GNU General Public License for more details. | 
|  | 13 | * | 
|  | 14 | * You should have received a copy of the GNU General Public License | 
|  | 15 | * along with this program; if not, write to the Free Software | 
|  | 16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | 
|  | 17 | * | 
|  | 18 | * Author: Artem Bityutskiy (Битюцкий Артём) | 
|  | 19 | */ | 
|  | 20 |  | 
|  | 21 | /* | 
|  | 22 | * The UBI Eraseblock Association (EBA) sub-system. | 
|  | 23 | * | 
|  | 24 | * This sub-system is responsible for I/O to/from logical eraseblock. | 
|  | 25 | * | 
|  | 26 | * Although in this implementation the EBA table is fully kept and managed in | 
|  | 27 | * RAM, which assumes poor scalability, it might be (partially) maintained on | 
|  | 28 | * flash in future implementations. | 
|  | 29 | * | 
|  | 30 | * The EBA sub-system implements per-logical eraseblock locking. Before | 
|  | 31 | * accessing a logical eraseblock it is locked for reading or writing. The | 
|  | 32 | * per-logical eraseblock locking is implemented by means of the lock tree. The | 
|  | 33 | * lock tree is an RB-tree which refers all the currently locked logical | 
|  | 34 | * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects. | 
|  | 35 | * They are indexed by (@vol_id, @lnum) pairs. | 
|  | 36 | * | 
|  | 37 | * EBA also maintains the global sequence counter which is incremented each | 
|  | 38 | * time a logical eraseblock is mapped to a physical eraseblock and it is | 
|  | 39 | * stored in the volume identifier header. This means that each VID header has | 
|  | 40 | * a unique sequence number. The sequence number is only increased an we assume | 
|  | 41 | * 64 bits is enough to never overflow. | 
|  | 42 | */ | 
|  | 43 |  | 
|  | 44 | #include <linux/slab.h> | 
|  | 45 | #include <linux/crc32.h> | 
|  | 46 | #include <linux/err.h> | 
|  | 47 | #include "ubi.h" | 
|  | 48 |  | 
|  | 49 | /* Number of physical eraseblocks reserved for atomic LEB change operation */ | 
|  | 50 | #define EBA_RESERVED_PEBS 1 | 
|  | 51 |  | 
|  | 52 | /** | 
|  | 53 | * struct ubi_eba_entry - structure encoding a single LEB -> PEB association | 
|  | 54 | * @pnum: the physical eraseblock number attached to the LEB | 
|  | 55 | * | 
|  | 56 | * This structure is encoding a LEB -> PEB association. Note that the LEB | 
|  | 57 | * number is not stored here, because it is the index used to access the | 
|  | 58 | * entries table. | 
|  | 59 | */ | 
|  | 60 | struct ubi_eba_entry { | 
|  | 61 | int pnum; | 
|  | 62 | }; | 
|  | 63 |  | 
|  | 64 | /** | 
|  | 65 | * struct ubi_eba_table - LEB -> PEB association information | 
|  | 66 | * @entries: the LEB to PEB mapping (one entry per LEB). | 
|  | 67 | * | 
|  | 68 | * This structure is private to the EBA logic and should be kept here. | 
|  | 69 | * It is encoding the LEB to PEB association table, and is subject to | 
|  | 70 | * changes. | 
|  | 71 | */ | 
|  | 72 | struct ubi_eba_table { | 
|  | 73 | struct ubi_eba_entry *entries; | 
|  | 74 | }; | 
|  | 75 |  | 
|  | 76 | /** | 
|  | 77 | * next_sqnum - get next sequence number. | 
|  | 78 | * @ubi: UBI device description object | 
|  | 79 | * | 
|  | 80 | * This function returns next sequence number to use, which is just the current | 
|  | 81 | * global sequence counter value. It also increases the global sequence | 
|  | 82 | * counter. | 
|  | 83 | */ | 
|  | 84 | unsigned long long ubi_next_sqnum(struct ubi_device *ubi) | 
|  | 85 | { | 
|  | 86 | unsigned long long sqnum; | 
|  | 87 |  | 
|  | 88 | spin_lock(&ubi->ltree_lock); | 
|  | 89 | sqnum = ubi->global_sqnum++; | 
|  | 90 | spin_unlock(&ubi->ltree_lock); | 
|  | 91 |  | 
|  | 92 | return sqnum; | 
|  | 93 | } | 
|  | 94 |  | 
|  | 95 | /** | 
|  | 96 | * ubi_get_compat - get compatibility flags of a volume. | 
|  | 97 | * @ubi: UBI device description object | 
|  | 98 | * @vol_id: volume ID | 
|  | 99 | * | 
|  | 100 | * This function returns compatibility flags for an internal volume. User | 
|  | 101 | * volumes have no compatibility flags, so %0 is returned. | 
|  | 102 | */ | 
|  | 103 | static int ubi_get_compat(const struct ubi_device *ubi, int vol_id) | 
|  | 104 | { | 
|  | 105 | if (vol_id == UBI_LAYOUT_VOLUME_ID) | 
|  | 106 | return UBI_LAYOUT_VOLUME_COMPAT; | 
|  | 107 | return 0; | 
|  | 108 | } | 
|  | 109 |  | 
|  | 110 | /** | 
|  | 111 | * ubi_eba_get_ldesc - get information about a LEB | 
|  | 112 | * @vol: volume description object | 
|  | 113 | * @lnum: logical eraseblock number | 
|  | 114 | * @ldesc: the LEB descriptor to fill | 
|  | 115 | * | 
|  | 116 | * Used to query information about a specific LEB. | 
|  | 117 | * It is currently only returning the physical position of the LEB, but will be | 
|  | 118 | * extended to provide more information. | 
|  | 119 | */ | 
|  | 120 | void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum, | 
|  | 121 | struct ubi_eba_leb_desc *ldesc) | 
|  | 122 | { | 
|  | 123 | ldesc->lnum = lnum; | 
|  | 124 | ldesc->pnum = vol->eba_tbl->entries[lnum].pnum; | 
|  | 125 | } | 
|  | 126 |  | 
|  | 127 | /** | 
|  | 128 | * ubi_eba_create_table - allocate a new EBA table and initialize it with all | 
|  | 129 | *			  LEBs unmapped | 
|  | 130 | * @vol: volume containing the EBA table to copy | 
|  | 131 | * @nentries: number of entries in the table | 
|  | 132 | * | 
|  | 133 | * Allocate a new EBA table and initialize it with all LEBs unmapped. | 
|  | 134 | * Returns a valid pointer if it succeed, an ERR_PTR() otherwise. | 
|  | 135 | */ | 
|  | 136 | struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol, | 
|  | 137 | int nentries) | 
|  | 138 | { | 
|  | 139 | struct ubi_eba_table *tbl; | 
|  | 140 | int err = -ENOMEM; | 
|  | 141 | int i; | 
|  | 142 |  | 
|  | 143 | tbl = kzalloc(sizeof(*tbl), GFP_KERNEL); | 
|  | 144 | if (!tbl) | 
|  | 145 | return ERR_PTR(-ENOMEM); | 
|  | 146 |  | 
|  | 147 | tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries), | 
|  | 148 | GFP_KERNEL); | 
|  | 149 | if (!tbl->entries) | 
|  | 150 | goto err; | 
|  | 151 |  | 
|  | 152 | for (i = 0; i < nentries; i++) | 
|  | 153 | tbl->entries[i].pnum = UBI_LEB_UNMAPPED; | 
|  | 154 |  | 
|  | 155 | return tbl; | 
|  | 156 |  | 
|  | 157 | err: | 
|  | 158 | kfree(tbl->entries); | 
|  | 159 | kfree(tbl); | 
|  | 160 |  | 
|  | 161 | return ERR_PTR(err); | 
|  | 162 | } | 
|  | 163 |  | 
|  | 164 | /** | 
|  | 165 | * ubi_eba_destroy_table - destroy an EBA table | 
|  | 166 | * @tbl: the table to destroy | 
|  | 167 | * | 
|  | 168 | * Destroy an EBA table. | 
|  | 169 | */ | 
|  | 170 | void ubi_eba_destroy_table(struct ubi_eba_table *tbl) | 
|  | 171 | { | 
|  | 172 | if (!tbl) | 
|  | 173 | return; | 
|  | 174 |  | 
|  | 175 | kfree(tbl->entries); | 
|  | 176 | kfree(tbl); | 
|  | 177 | } | 
|  | 178 |  | 
|  | 179 | /** | 
|  | 180 | * ubi_eba_copy_table - copy the EBA table attached to vol into another table | 
|  | 181 | * @vol: volume containing the EBA table to copy | 
|  | 182 | * @dst: destination | 
|  | 183 | * @nentries: number of entries to copy | 
|  | 184 | * | 
|  | 185 | * Copy the EBA table stored in vol into the one pointed by dst. | 
|  | 186 | */ | 
|  | 187 | void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst, | 
|  | 188 | int nentries) | 
|  | 189 | { | 
|  | 190 | struct ubi_eba_table *src; | 
|  | 191 | int i; | 
|  | 192 |  | 
|  | 193 | ubi_assert(dst && vol && vol->eba_tbl); | 
|  | 194 |  | 
|  | 195 | src = vol->eba_tbl; | 
|  | 196 |  | 
|  | 197 | for (i = 0; i < nentries; i++) | 
|  | 198 | dst->entries[i].pnum = src->entries[i].pnum; | 
|  | 199 | } | 
|  | 200 |  | 
|  | 201 | /** | 
|  | 202 | * ubi_eba_replace_table - assign a new EBA table to a volume | 
|  | 203 | * @vol: volume containing the EBA table to copy | 
|  | 204 | * @tbl: new EBA table | 
|  | 205 | * | 
|  | 206 | * Assign a new EBA table to the volume and release the old one. | 
|  | 207 | */ | 
|  | 208 | void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl) | 
|  | 209 | { | 
|  | 210 | ubi_eba_destroy_table(vol->eba_tbl); | 
|  | 211 | vol->eba_tbl = tbl; | 
|  | 212 | } | 
|  | 213 |  | 
|  | 214 | /** | 
|  | 215 | * ltree_lookup - look up the lock tree. | 
|  | 216 | * @ubi: UBI device description object | 
|  | 217 | * @vol_id: volume ID | 
|  | 218 | * @lnum: logical eraseblock number | 
|  | 219 | * | 
|  | 220 | * This function returns a pointer to the corresponding &struct ubi_ltree_entry | 
|  | 221 | * object if the logical eraseblock is locked and %NULL if it is not. | 
|  | 222 | * @ubi->ltree_lock has to be locked. | 
|  | 223 | */ | 
|  | 224 | static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id, | 
|  | 225 | int lnum) | 
|  | 226 | { | 
|  | 227 | struct rb_node *p; | 
|  | 228 |  | 
|  | 229 | p = ubi->ltree.rb_node; | 
|  | 230 | while (p) { | 
|  | 231 | struct ubi_ltree_entry *le; | 
|  | 232 |  | 
|  | 233 | le = rb_entry(p, struct ubi_ltree_entry, rb); | 
|  | 234 |  | 
|  | 235 | if (vol_id < le->vol_id) | 
|  | 236 | p = p->rb_left; | 
|  | 237 | else if (vol_id > le->vol_id) | 
|  | 238 | p = p->rb_right; | 
|  | 239 | else { | 
|  | 240 | if (lnum < le->lnum) | 
|  | 241 | p = p->rb_left; | 
|  | 242 | else if (lnum > le->lnum) | 
|  | 243 | p = p->rb_right; | 
|  | 244 | else | 
|  | 245 | return le; | 
|  | 246 | } | 
|  | 247 | } | 
|  | 248 |  | 
|  | 249 | return NULL; | 
|  | 250 | } | 
|  | 251 |  | 
|  | 252 | /** | 
|  | 253 | * ltree_add_entry - add new entry to the lock tree. | 
|  | 254 | * @ubi: UBI device description object | 
|  | 255 | * @vol_id: volume ID | 
|  | 256 | * @lnum: logical eraseblock number | 
|  | 257 | * | 
|  | 258 | * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the | 
|  | 259 | * lock tree. If such entry is already there, its usage counter is increased. | 
|  | 260 | * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation | 
|  | 261 | * failed. | 
|  | 262 | */ | 
|  | 263 | static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi, | 
|  | 264 | int vol_id, int lnum) | 
|  | 265 | { | 
|  | 266 | struct ubi_ltree_entry *le, *le1, *le_free; | 
|  | 267 |  | 
|  | 268 | le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS); | 
|  | 269 | if (!le) | 
|  | 270 | return ERR_PTR(-ENOMEM); | 
|  | 271 |  | 
|  | 272 | le->users = 0; | 
|  | 273 | init_rwsem(&le->mutex); | 
|  | 274 | le->vol_id = vol_id; | 
|  | 275 | le->lnum = lnum; | 
|  | 276 |  | 
|  | 277 | spin_lock(&ubi->ltree_lock); | 
|  | 278 | le1 = ltree_lookup(ubi, vol_id, lnum); | 
|  | 279 |  | 
|  | 280 | if (le1) { | 
|  | 281 | /* | 
|  | 282 | * This logical eraseblock is already locked. The newly | 
|  | 283 | * allocated lock entry is not needed. | 
|  | 284 | */ | 
|  | 285 | le_free = le; | 
|  | 286 | le = le1; | 
|  | 287 | } else { | 
|  | 288 | struct rb_node **p, *parent = NULL; | 
|  | 289 |  | 
|  | 290 | /* | 
|  | 291 | * No lock entry, add the newly allocated one to the | 
|  | 292 | * @ubi->ltree RB-tree. | 
|  | 293 | */ | 
|  | 294 | le_free = NULL; | 
|  | 295 |  | 
|  | 296 | p = &ubi->ltree.rb_node; | 
|  | 297 | while (*p) { | 
|  | 298 | parent = *p; | 
|  | 299 | le1 = rb_entry(parent, struct ubi_ltree_entry, rb); | 
|  | 300 |  | 
|  | 301 | if (vol_id < le1->vol_id) | 
|  | 302 | p = &(*p)->rb_left; | 
|  | 303 | else if (vol_id > le1->vol_id) | 
|  | 304 | p = &(*p)->rb_right; | 
|  | 305 | else { | 
|  | 306 | ubi_assert(lnum != le1->lnum); | 
|  | 307 | if (lnum < le1->lnum) | 
|  | 308 | p = &(*p)->rb_left; | 
|  | 309 | else | 
|  | 310 | p = &(*p)->rb_right; | 
|  | 311 | } | 
|  | 312 | } | 
|  | 313 |  | 
|  | 314 | rb_link_node(&le->rb, parent, p); | 
|  | 315 | rb_insert_color(&le->rb, &ubi->ltree); | 
|  | 316 | } | 
|  | 317 | le->users += 1; | 
|  | 318 | spin_unlock(&ubi->ltree_lock); | 
|  | 319 |  | 
|  | 320 | kfree(le_free); | 
|  | 321 | return le; | 
|  | 322 | } | 
|  | 323 |  | 
|  | 324 | /** | 
|  | 325 | * leb_read_lock - lock logical eraseblock for reading. | 
|  | 326 | * @ubi: UBI device description object | 
|  | 327 | * @vol_id: volume ID | 
|  | 328 | * @lnum: logical eraseblock number | 
|  | 329 | * | 
|  | 330 | * This function locks a logical eraseblock for reading. Returns zero in case | 
|  | 331 | * of success and a negative error code in case of failure. | 
|  | 332 | */ | 
|  | 333 | static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum) | 
|  | 334 | { | 
|  | 335 | struct ubi_ltree_entry *le; | 
|  | 336 |  | 
|  | 337 | le = ltree_add_entry(ubi, vol_id, lnum); | 
|  | 338 | if (IS_ERR(le)) | 
|  | 339 | return PTR_ERR(le); | 
|  | 340 | down_read(&le->mutex); | 
|  | 341 | return 0; | 
|  | 342 | } | 
|  | 343 |  | 
|  | 344 | /** | 
|  | 345 | * leb_read_unlock - unlock logical eraseblock. | 
|  | 346 | * @ubi: UBI device description object | 
|  | 347 | * @vol_id: volume ID | 
|  | 348 | * @lnum: logical eraseblock number | 
|  | 349 | */ | 
|  | 350 | static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum) | 
|  | 351 | { | 
|  | 352 | struct ubi_ltree_entry *le; | 
|  | 353 |  | 
|  | 354 | spin_lock(&ubi->ltree_lock); | 
|  | 355 | le = ltree_lookup(ubi, vol_id, lnum); | 
|  | 356 | le->users -= 1; | 
|  | 357 | ubi_assert(le->users >= 0); | 
|  | 358 | up_read(&le->mutex); | 
|  | 359 | if (le->users == 0) { | 
|  | 360 | rb_erase(&le->rb, &ubi->ltree); | 
|  | 361 | kfree(le); | 
|  | 362 | } | 
|  | 363 | spin_unlock(&ubi->ltree_lock); | 
|  | 364 | } | 
|  | 365 |  | 
|  | 366 | /** | 
|  | 367 | * leb_write_lock - lock logical eraseblock for writing. | 
|  | 368 | * @ubi: UBI device description object | 
|  | 369 | * @vol_id: volume ID | 
|  | 370 | * @lnum: logical eraseblock number | 
|  | 371 | * | 
|  | 372 | * This function locks a logical eraseblock for writing. Returns zero in case | 
|  | 373 | * of success and a negative error code in case of failure. | 
|  | 374 | */ | 
|  | 375 | static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum) | 
|  | 376 | { | 
|  | 377 | struct ubi_ltree_entry *le; | 
|  | 378 |  | 
|  | 379 | le = ltree_add_entry(ubi, vol_id, lnum); | 
|  | 380 | if (IS_ERR(le)) | 
|  | 381 | return PTR_ERR(le); | 
|  | 382 | down_write(&le->mutex); | 
|  | 383 | return 0; | 
|  | 384 | } | 
|  | 385 |  | 
|  | 386 | /** | 
|  | 387 | * leb_write_trylock - try to lock logical eraseblock for writing. | 
|  | 388 | * @ubi: UBI device description object | 
|  | 389 | * @vol_id: volume ID | 
|  | 390 | * @lnum: logical eraseblock number | 
|  | 391 | * | 
|  | 392 | * This function locks a logical eraseblock for writing if there is no | 
|  | 393 | * contention and does nothing if there is contention. Returns %0 in case of | 
|  | 394 | * success, %1 in case of contention, and and a negative error code in case of | 
|  | 395 | * failure. | 
|  | 396 | */ | 
|  | 397 | static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum) | 
|  | 398 | { | 
|  | 399 | struct ubi_ltree_entry *le; | 
|  | 400 |  | 
|  | 401 | le = ltree_add_entry(ubi, vol_id, lnum); | 
|  | 402 | if (IS_ERR(le)) | 
|  | 403 | return PTR_ERR(le); | 
|  | 404 | if (down_write_trylock(&le->mutex)) | 
|  | 405 | return 0; | 
|  | 406 |  | 
|  | 407 | /* Contention, cancel */ | 
|  | 408 | spin_lock(&ubi->ltree_lock); | 
|  | 409 | le->users -= 1; | 
|  | 410 | ubi_assert(le->users >= 0); | 
|  | 411 | if (le->users == 0) { | 
|  | 412 | rb_erase(&le->rb, &ubi->ltree); | 
|  | 413 | kfree(le); | 
|  | 414 | } | 
|  | 415 | spin_unlock(&ubi->ltree_lock); | 
|  | 416 |  | 
|  | 417 | return 1; | 
|  | 418 | } | 
|  | 419 |  | 
|  | 420 | /** | 
|  | 421 | * leb_write_unlock - unlock logical eraseblock. | 
|  | 422 | * @ubi: UBI device description object | 
|  | 423 | * @vol_id: volume ID | 
|  | 424 | * @lnum: logical eraseblock number | 
|  | 425 | */ | 
|  | 426 | static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum) | 
|  | 427 | { | 
|  | 428 | struct ubi_ltree_entry *le; | 
|  | 429 |  | 
|  | 430 | spin_lock(&ubi->ltree_lock); | 
|  | 431 | le = ltree_lookup(ubi, vol_id, lnum); | 
|  | 432 | le->users -= 1; | 
|  | 433 | ubi_assert(le->users >= 0); | 
|  | 434 | up_write(&le->mutex); | 
|  | 435 | if (le->users == 0) { | 
|  | 436 | rb_erase(&le->rb, &ubi->ltree); | 
|  | 437 | kfree(le); | 
|  | 438 | } | 
|  | 439 | spin_unlock(&ubi->ltree_lock); | 
|  | 440 | } | 
|  | 441 |  | 
|  | 442 | /** | 
|  | 443 | * ubi_eba_is_mapped - check if a LEB is mapped. | 
|  | 444 | * @vol: volume description object | 
|  | 445 | * @lnum: logical eraseblock number | 
|  | 446 | * | 
|  | 447 | * This function returns true if the LEB is mapped, false otherwise. | 
|  | 448 | */ | 
|  | 449 | bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum) | 
|  | 450 | { | 
|  | 451 | return vol->eba_tbl->entries[lnum].pnum >= 0; | 
|  | 452 | } | 
|  | 453 |  | 
|  | 454 | /** | 
|  | 455 | * ubi_eba_unmap_leb - un-map logical eraseblock. | 
|  | 456 | * @ubi: UBI device description object | 
|  | 457 | * @vol: volume description object | 
|  | 458 | * @lnum: logical eraseblock number | 
|  | 459 | * | 
|  | 460 | * This function un-maps logical eraseblock @lnum and schedules corresponding | 
|  | 461 | * physical eraseblock for erasure. Returns zero in case of success and a | 
|  | 462 | * negative error code in case of failure. | 
|  | 463 | */ | 
|  | 464 | int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, | 
|  | 465 | int lnum) | 
|  | 466 | { | 
|  | 467 | int err, pnum, vol_id = vol->vol_id; | 
|  | 468 |  | 
|  | 469 | if (ubi->ro_mode) | 
|  | 470 | return -EROFS; | 
|  | 471 |  | 
|  | 472 | err = leb_write_lock(ubi, vol_id, lnum); | 
|  | 473 | if (err) | 
|  | 474 | return err; | 
|  | 475 |  | 
|  | 476 | pnum = vol->eba_tbl->entries[lnum].pnum; | 
|  | 477 | if (pnum < 0) | 
|  | 478 | /* This logical eraseblock is already unmapped */ | 
|  | 479 | goto out_unlock; | 
|  | 480 |  | 
|  | 481 | dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); | 
|  | 482 |  | 
|  | 483 | down_read(&ubi->fm_eba_sem); | 
|  | 484 | vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED; | 
|  | 485 | up_read(&ubi->fm_eba_sem); | 
|  | 486 | err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0); | 
|  | 487 |  | 
|  | 488 | out_unlock: | 
|  | 489 | leb_write_unlock(ubi, vol_id, lnum); | 
|  | 490 | return err; | 
|  | 491 | } | 
|  | 492 |  | 
|  | 493 | #ifdef CONFIG_MTD_UBI_FASTMAP | 
|  | 494 | /** | 
|  | 495 | * check_mapping - check and fixup a mapping | 
|  | 496 | * @ubi: UBI device description object | 
|  | 497 | * @vol: volume description object | 
|  | 498 | * @lnum: logical eraseblock number | 
|  | 499 | * @pnum: physical eraseblock number | 
|  | 500 | * | 
|  | 501 | * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap | 
|  | 502 | * operations, if such an operation is interrupted the mapping still looks | 
|  | 503 | * good, but upon first read an ECC is reported to the upper layer. | 
|  | 504 | * Normaly during the full-scan at attach time this is fixed, for Fastmap | 
|  | 505 | * we have to deal with it while reading. | 
|  | 506 | * If the PEB behind a LEB shows this symthom we change the mapping to | 
|  | 507 | * %UBI_LEB_UNMAPPED and schedule the PEB for erasure. | 
|  | 508 | * | 
|  | 509 | * Returns 0 on success, negative error code in case of failure. | 
|  | 510 | */ | 
|  | 511 | static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, | 
|  | 512 | int *pnum) | 
|  | 513 | { | 
|  | 514 | int err; | 
|  | 515 | struct ubi_vid_io_buf *vidb; | 
|  | 516 | struct ubi_vid_hdr *vid_hdr; | 
|  | 517 |  | 
|  | 518 | if (!ubi->fast_attach) | 
|  | 519 | return 0; | 
|  | 520 |  | 
|  | 521 | if (!vol->checkmap || test_bit(lnum, vol->checkmap)) | 
|  | 522 | return 0; | 
|  | 523 |  | 
|  | 524 | vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); | 
|  | 525 | if (!vidb) | 
|  | 526 | return -ENOMEM; | 
|  | 527 |  | 
|  | 528 | err = ubi_io_read_vid_hdr(ubi, *pnum, vidb, 0); | 
|  | 529 | if (err > 0 && err != UBI_IO_BITFLIPS) { | 
|  | 530 | int torture = 0; | 
|  | 531 |  | 
|  | 532 | switch (err) { | 
|  | 533 | case UBI_IO_FF: | 
|  | 534 | case UBI_IO_FF_BITFLIPS: | 
|  | 535 | case UBI_IO_BAD_HDR: | 
|  | 536 | case UBI_IO_BAD_HDR_EBADMSG: | 
|  | 537 | break; | 
|  | 538 | default: | 
|  | 539 | ubi_assert(0); | 
|  | 540 | } | 
|  | 541 |  | 
|  | 542 | if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_FF_BITFLIPS) | 
|  | 543 | torture = 1; | 
|  | 544 |  | 
|  | 545 | down_read(&ubi->fm_eba_sem); | 
|  | 546 | vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED; | 
|  | 547 | up_read(&ubi->fm_eba_sem); | 
|  | 548 | ubi_wl_put_peb(ubi, vol->vol_id, lnum, *pnum, torture); | 
|  | 549 |  | 
|  | 550 | *pnum = UBI_LEB_UNMAPPED; | 
|  | 551 | } else if (err < 0) { | 
|  | 552 | ubi_err(ubi, "unable to read VID header back from PEB %i: %i", | 
|  | 553 | *pnum, err); | 
|  | 554 |  | 
|  | 555 | goto out_free; | 
|  | 556 | } else { | 
|  | 557 | int found_vol_id, found_lnum; | 
|  | 558 |  | 
|  | 559 | ubi_assert(err == 0 || err == UBI_IO_BITFLIPS); | 
|  | 560 |  | 
|  | 561 | vid_hdr = ubi_get_vid_hdr(vidb); | 
|  | 562 | found_vol_id = be32_to_cpu(vid_hdr->vol_id); | 
|  | 563 | found_lnum = be32_to_cpu(vid_hdr->lnum); | 
|  | 564 |  | 
|  | 565 | if (found_lnum != lnum || found_vol_id != vol->vol_id) { | 
|  | 566 | ubi_err(ubi, "EBA mismatch! PEB %i is LEB %i:%i instead of LEB %i:%i", | 
|  | 567 | *pnum, found_vol_id, found_lnum, vol->vol_id, lnum); | 
|  | 568 | ubi_ro_mode(ubi); | 
|  | 569 | err = -EINVAL; | 
|  | 570 | goto out_free; | 
|  | 571 | } | 
|  | 572 | } | 
|  | 573 |  | 
|  | 574 | set_bit(lnum, vol->checkmap); | 
|  | 575 | err = 0; | 
|  | 576 |  | 
|  | 577 | out_free: | 
|  | 578 | ubi_free_vid_buf(vidb); | 
|  | 579 |  | 
|  | 580 | return err; | 
|  | 581 | } | 
|  | 582 | #else | 
|  | 583 | static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, | 
|  | 584 | int *pnum) | 
|  | 585 | { | 
|  | 586 | return 0; | 
|  | 587 | } | 
|  | 588 | #endif | 
|  | 589 |  | 
|  | 590 | /** | 
|  | 591 | * ubi_eba_read_leb - read data. | 
|  | 592 | * @ubi: UBI device description object | 
|  | 593 | * @vol: volume description object | 
|  | 594 | * @lnum: logical eraseblock number | 
|  | 595 | * @buf: buffer to store the read data | 
|  | 596 | * @offset: offset from where to read | 
|  | 597 | * @len: how many bytes to read | 
|  | 598 | * @check: data CRC check flag | 
|  | 599 | * | 
|  | 600 | * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF | 
|  | 601 | * bytes. The @check flag only makes sense for static volumes and forces | 
|  | 602 | * eraseblock data CRC checking. | 
|  | 603 | * | 
|  | 604 | * In case of success this function returns zero. In case of a static volume, | 
|  | 605 | * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be | 
|  | 606 | * returned for any volume type if an ECC error was detected by the MTD device | 
|  | 607 | * driver. Other negative error cored may be returned in case of other errors. | 
|  | 608 | */ | 
|  | 609 | int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, | 
|  | 610 | void *buf, int offset, int len, int check) | 
|  | 611 | { | 
|  | 612 | int err, pnum, scrub = 0, vol_id = vol->vol_id; | 
|  | 613 | struct ubi_vid_io_buf *vidb; | 
|  | 614 | struct ubi_vid_hdr *vid_hdr; | 
|  | 615 | uint32_t uninitialized_var(crc); | 
|  | 616 |  | 
|  | 617 | err = leb_read_lock(ubi, vol_id, lnum); | 
|  | 618 | if (err) | 
|  | 619 | return err; | 
|  | 620 |  | 
|  | 621 | pnum = vol->eba_tbl->entries[lnum].pnum; | 
|  | 622 | if (pnum >= 0) { | 
|  | 623 | err = check_mapping(ubi, vol, lnum, &pnum); | 
|  | 624 | if (err < 0) | 
|  | 625 | goto out_unlock; | 
|  | 626 | } | 
|  | 627 |  | 
|  | 628 | if (pnum == UBI_LEB_UNMAPPED) { | 
|  | 629 | /* | 
|  | 630 | * The logical eraseblock is not mapped, fill the whole buffer | 
|  | 631 | * with 0xFF bytes. The exception is static volumes for which | 
|  | 632 | * it is an error to read unmapped logical eraseblocks. | 
|  | 633 | */ | 
|  | 634 | dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)", | 
|  | 635 | len, offset, vol_id, lnum); | 
|  | 636 | leb_read_unlock(ubi, vol_id, lnum); | 
|  | 637 | ubi_assert(vol->vol_type != UBI_STATIC_VOLUME); | 
|  | 638 | memset(buf, 0xFF, len); | 
|  | 639 | return 0; | 
|  | 640 | } | 
|  | 641 |  | 
|  | 642 | dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d", | 
|  | 643 | len, offset, vol_id, lnum, pnum); | 
|  | 644 |  | 
|  | 645 | if (vol->vol_type == UBI_DYNAMIC_VOLUME) | 
|  | 646 | check = 0; | 
|  | 647 |  | 
|  | 648 | retry: | 
|  | 649 | if (check) { | 
|  | 650 | vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); | 
|  | 651 | if (!vidb) { | 
|  | 652 | err = -ENOMEM; | 
|  | 653 | goto out_unlock; | 
|  | 654 | } | 
|  | 655 |  | 
|  | 656 | vid_hdr = ubi_get_vid_hdr(vidb); | 
|  | 657 |  | 
|  | 658 | err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1); | 
|  | 659 | if (err && err != UBI_IO_BITFLIPS) { | 
|  | 660 | if (err > 0) { | 
|  | 661 | /* | 
|  | 662 | * The header is either absent or corrupted. | 
|  | 663 | * The former case means there is a bug - | 
|  | 664 | * switch to read-only mode just in case. | 
|  | 665 | * The latter case means a real corruption - we | 
|  | 666 | * may try to recover data. FIXME: but this is | 
|  | 667 | * not implemented. | 
|  | 668 | */ | 
|  | 669 | if (err == UBI_IO_BAD_HDR_EBADMSG || | 
|  | 670 | err == UBI_IO_BAD_HDR) { | 
|  | 671 | ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d", | 
|  | 672 | pnum, vol_id, lnum); | 
|  | 673 | err = -EBADMSG; | 
|  | 674 | } else { | 
|  | 675 | /* | 
|  | 676 | * Ending up here in the non-Fastmap case | 
|  | 677 | * is a clear bug as the VID header had to | 
|  | 678 | * be present at scan time to have it referenced. | 
|  | 679 | * With fastmap the story is more complicated. | 
|  | 680 | * Fastmap has the mapping info without the need | 
|  | 681 | * of a full scan. So the LEB could have been | 
|  | 682 | * unmapped, Fastmap cannot know this and keeps | 
|  | 683 | * the LEB referenced. | 
|  | 684 | * This is valid and works as the layer above UBI | 
|  | 685 | * has to do bookkeeping about used/referenced | 
|  | 686 | * LEBs in any case. | 
|  | 687 | */ | 
|  | 688 | if (ubi->fast_attach) { | 
|  | 689 | err = -EBADMSG; | 
|  | 690 | } else { | 
|  | 691 | err = -EINVAL; | 
|  | 692 | ubi_ro_mode(ubi); | 
|  | 693 | } | 
|  | 694 | } | 
|  | 695 | } | 
|  | 696 | goto out_free; | 
|  | 697 | } else if (err == UBI_IO_BITFLIPS) | 
|  | 698 | scrub = 1; | 
|  | 699 |  | 
|  | 700 | ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs)); | 
|  | 701 | ubi_assert(len == be32_to_cpu(vid_hdr->data_size)); | 
|  | 702 |  | 
|  | 703 | crc = be32_to_cpu(vid_hdr->data_crc); | 
|  | 704 | ubi_free_vid_buf(vidb); | 
|  | 705 | } | 
|  | 706 |  | 
|  | 707 | err = ubi_io_read_data(ubi, buf, pnum, offset, len); | 
|  | 708 | if (err) { | 
|  | 709 | if (err == UBI_IO_BITFLIPS) | 
|  | 710 | scrub = 1; | 
|  | 711 | else if (mtd_is_eccerr(err)) { | 
|  | 712 | if (vol->vol_type == UBI_DYNAMIC_VOLUME) | 
|  | 713 | goto out_unlock; | 
|  | 714 | scrub = 1; | 
|  | 715 | if (!check) { | 
|  | 716 | ubi_msg(ubi, "force data checking"); | 
|  | 717 | check = 1; | 
|  | 718 | goto retry; | 
|  | 719 | } | 
|  | 720 | } else | 
|  | 721 | goto out_unlock; | 
|  | 722 | } | 
|  | 723 |  | 
|  | 724 | if (check) { | 
|  | 725 | uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len); | 
|  | 726 | if (crc1 != crc) { | 
|  | 727 | ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x", | 
|  | 728 | crc1, crc); | 
|  | 729 | err = -EBADMSG; | 
|  | 730 | goto out_unlock; | 
|  | 731 | } | 
|  | 732 | } | 
|  | 733 |  | 
|  | 734 | if (scrub) | 
|  | 735 | err = ubi_wl_scrub_peb(ubi, pnum); | 
|  | 736 |  | 
|  | 737 | leb_read_unlock(ubi, vol_id, lnum); | 
|  | 738 | return err; | 
|  | 739 |  | 
|  | 740 | out_free: | 
|  | 741 | ubi_free_vid_buf(vidb); | 
|  | 742 | out_unlock: | 
|  | 743 | leb_read_unlock(ubi, vol_id, lnum); | 
|  | 744 | return err; | 
|  | 745 | } | 
|  | 746 |  | 
|  | 747 | /** | 
|  | 748 | * ubi_eba_read_leb_sg - read data into a scatter gather list. | 
|  | 749 | * @ubi: UBI device description object | 
|  | 750 | * @vol: volume description object | 
|  | 751 | * @lnum: logical eraseblock number | 
|  | 752 | * @sgl: UBI scatter gather list to store the read data | 
|  | 753 | * @offset: offset from where to read | 
|  | 754 | * @len: how many bytes to read | 
|  | 755 | * @check: data CRC check flag | 
|  | 756 | * | 
|  | 757 | * This function works exactly like ubi_eba_read_leb(). But instead of | 
|  | 758 | * storing the read data into a buffer it writes to an UBI scatter gather | 
|  | 759 | * list. | 
|  | 760 | */ | 
|  | 761 | int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol, | 
|  | 762 | struct ubi_sgl *sgl, int lnum, int offset, int len, | 
|  | 763 | int check) | 
|  | 764 | { | 
|  | 765 | int to_read; | 
|  | 766 | int ret; | 
|  | 767 | struct scatterlist *sg; | 
|  | 768 |  | 
|  | 769 | for (;;) { | 
|  | 770 | ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT); | 
|  | 771 | sg = &sgl->sg[sgl->list_pos]; | 
|  | 772 | if (len < sg->length - sgl->page_pos) | 
|  | 773 | to_read = len; | 
|  | 774 | else | 
|  | 775 | to_read = sg->length - sgl->page_pos; | 
|  | 776 |  | 
|  | 777 | ret = ubi_eba_read_leb(ubi, vol, lnum, | 
|  | 778 | sg_virt(sg) + sgl->page_pos, offset, | 
|  | 779 | to_read, check); | 
|  | 780 | if (ret < 0) | 
|  | 781 | return ret; | 
|  | 782 |  | 
|  | 783 | offset += to_read; | 
|  | 784 | len -= to_read; | 
|  | 785 | if (!len) { | 
|  | 786 | sgl->page_pos += to_read; | 
|  | 787 | if (sgl->page_pos == sg->length) { | 
|  | 788 | sgl->list_pos++; | 
|  | 789 | sgl->page_pos = 0; | 
|  | 790 | } | 
|  | 791 |  | 
|  | 792 | break; | 
|  | 793 | } | 
|  | 794 |  | 
|  | 795 | sgl->list_pos++; | 
|  | 796 | sgl->page_pos = 0; | 
|  | 797 | } | 
|  | 798 |  | 
|  | 799 | return ret; | 
|  | 800 | } | 
|  | 801 |  | 
|  | 802 | /** | 
|  | 803 | * try_recover_peb - try to recover from write failure. | 
|  | 804 | * @vol: volume description object | 
|  | 805 | * @pnum: the physical eraseblock to recover | 
|  | 806 | * @lnum: logical eraseblock number | 
|  | 807 | * @buf: data which was not written because of the write failure | 
|  | 808 | * @offset: offset of the failed write | 
|  | 809 | * @len: how many bytes should have been written | 
|  | 810 | * @vidb: VID buffer | 
|  | 811 | * @retry: whether the caller should retry in case of failure | 
|  | 812 | * | 
|  | 813 | * This function is called in case of a write failure and moves all good data | 
|  | 814 | * from the potentially bad physical eraseblock to a good physical eraseblock. | 
|  | 815 | * This function also writes the data which was not written due to the failure. | 
|  | 816 | * Returns 0 in case of success, and a negative error code in case of failure. | 
|  | 817 | * In case of failure, the %retry parameter is set to false if this is a fatal | 
|  | 818 | * error (retrying won't help), and true otherwise. | 
|  | 819 | */ | 
|  | 820 | static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum, | 
|  | 821 | const void *buf, int offset, int len, | 
|  | 822 | struct ubi_vid_io_buf *vidb, bool *retry) | 
|  | 823 | { | 
|  | 824 | struct ubi_device *ubi = vol->ubi; | 
|  | 825 | struct ubi_vid_hdr *vid_hdr; | 
|  | 826 | int new_pnum, err, vol_id = vol->vol_id, data_size; | 
|  | 827 | uint32_t crc; | 
|  | 828 |  | 
|  | 829 | *retry = false; | 
|  | 830 |  | 
|  | 831 | new_pnum = ubi_wl_get_peb(ubi); | 
|  | 832 | if (new_pnum < 0) { | 
|  | 833 | err = new_pnum; | 
|  | 834 | goto out_put; | 
|  | 835 | } | 
|  | 836 |  | 
|  | 837 | ubi_msg(ubi, "recover PEB %d, move data to PEB %d", | 
|  | 838 | pnum, new_pnum); | 
|  | 839 |  | 
|  | 840 | err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1); | 
|  | 841 | if (err && err != UBI_IO_BITFLIPS) { | 
|  | 842 | if (err > 0) | 
|  | 843 | err = -EIO; | 
|  | 844 | goto out_put; | 
|  | 845 | } | 
|  | 846 |  | 
|  | 847 | vid_hdr = ubi_get_vid_hdr(vidb); | 
|  | 848 | ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC); | 
|  | 849 |  | 
|  | 850 | mutex_lock(&ubi->buf_mutex); | 
|  | 851 | memset(ubi->peb_buf + offset, 0xFF, len); | 
|  | 852 |  | 
|  | 853 | /* Read everything before the area where the write failure happened */ | 
|  | 854 | if (offset > 0) { | 
|  | 855 | err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset); | 
|  | 856 | if (err && err != UBI_IO_BITFLIPS) | 
|  | 857 | goto out_unlock; | 
|  | 858 | } | 
|  | 859 |  | 
|  | 860 | *retry = true; | 
|  | 861 |  | 
|  | 862 | memcpy(ubi->peb_buf + offset, buf, len); | 
|  | 863 |  | 
|  | 864 | data_size = offset + len; | 
|  | 865 | crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); | 
|  | 866 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); | 
|  | 867 | vid_hdr->copy_flag = 1; | 
|  | 868 | vid_hdr->data_size = cpu_to_be32(data_size); | 
|  | 869 | vid_hdr->data_crc = cpu_to_be32(crc); | 
|  | 870 | err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb); | 
|  | 871 | if (err) | 
|  | 872 | goto out_unlock; | 
|  | 873 |  | 
|  | 874 | err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size); | 
|  | 875 |  | 
|  | 876 | out_unlock: | 
|  | 877 | mutex_unlock(&ubi->buf_mutex); | 
|  | 878 |  | 
|  | 879 | if (!err) | 
|  | 880 | vol->eba_tbl->entries[lnum].pnum = new_pnum; | 
|  | 881 |  | 
|  | 882 | out_put: | 
|  | 883 | up_read(&ubi->fm_eba_sem); | 
|  | 884 |  | 
|  | 885 | if (!err) { | 
|  | 886 | ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); | 
|  | 887 | ubi_msg(ubi, "data was successfully recovered"); | 
|  | 888 | } else if (new_pnum >= 0) { | 
|  | 889 | /* | 
|  | 890 | * Bad luck? This physical eraseblock is bad too? Crud. Let's | 
|  | 891 | * try to get another one. | 
|  | 892 | */ | 
|  | 893 | ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1); | 
|  | 894 | ubi_warn(ubi, "failed to write to PEB %d", new_pnum); | 
|  | 895 | } | 
|  | 896 |  | 
|  | 897 | return err; | 
|  | 898 | } | 
|  | 899 |  | 
|  | 900 | /** | 
|  | 901 | * recover_peb - recover from write failure. | 
|  | 902 | * @ubi: UBI device description object | 
|  | 903 | * @pnum: the physical eraseblock to recover | 
|  | 904 | * @vol_id: volume ID | 
|  | 905 | * @lnum: logical eraseblock number | 
|  | 906 | * @buf: data which was not written because of the write failure | 
|  | 907 | * @offset: offset of the failed write | 
|  | 908 | * @len: how many bytes should have been written | 
|  | 909 | * | 
|  | 910 | * This function is called in case of a write failure and moves all good data | 
|  | 911 | * from the potentially bad physical eraseblock to a good physical eraseblock. | 
|  | 912 | * This function also writes the data which was not written due to the failure. | 
|  | 913 | * Returns 0 in case of success, and a negative error code in case of failure. | 
|  | 914 | * This function tries %UBI_IO_RETRIES before giving up. | 
|  | 915 | */ | 
|  | 916 | static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, | 
|  | 917 | const void *buf, int offset, int len) | 
|  | 918 | { | 
|  | 919 | int err, idx = vol_id2idx(ubi, vol_id), tries; | 
|  | 920 | struct ubi_volume *vol = ubi->volumes[idx]; | 
|  | 921 | struct ubi_vid_io_buf *vidb; | 
|  | 922 |  | 
|  | 923 | vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); | 
|  | 924 | if (!vidb) | 
|  | 925 | return -ENOMEM; | 
|  | 926 |  | 
|  | 927 | for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { | 
|  | 928 | bool retry; | 
|  | 929 |  | 
|  | 930 | err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb, | 
|  | 931 | &retry); | 
|  | 932 | if (!err || !retry) | 
|  | 933 | break; | 
|  | 934 |  | 
|  | 935 | ubi_msg(ubi, "try again"); | 
|  | 936 | } | 
|  | 937 |  | 
|  | 938 | ubi_free_vid_buf(vidb); | 
|  | 939 |  | 
|  | 940 | return err; | 
|  | 941 | } | 
|  | 942 |  | 
|  | 943 | /** | 
|  | 944 | * try_write_vid_and_data - try to write VID header and data to a new PEB. | 
|  | 945 | * @vol: volume description object | 
|  | 946 | * @lnum: logical eraseblock number | 
|  | 947 | * @vidb: the VID buffer to write | 
|  | 948 | * @buf: buffer containing the data | 
|  | 949 | * @offset: where to start writing data | 
|  | 950 | * @len: how many bytes should be written | 
|  | 951 | * | 
|  | 952 | * This function tries to write VID header and data belonging to logical | 
|  | 953 | * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero | 
|  | 954 | * in case of success and a negative error code in case of failure. | 
|  | 955 | * In case of error, it is possible that something was still written to the | 
|  | 956 | * flash media, but may be some garbage. | 
|  | 957 | */ | 
|  | 958 | static int try_write_vid_and_data(struct ubi_volume *vol, int lnum, | 
|  | 959 | struct ubi_vid_io_buf *vidb, const void *buf, | 
|  | 960 | int offset, int len) | 
|  | 961 | { | 
|  | 962 | struct ubi_device *ubi = vol->ubi; | 
|  | 963 | int pnum, opnum, err, vol_id = vol->vol_id; | 
|  | 964 |  | 
|  | 965 | pnum = ubi_wl_get_peb(ubi); | 
|  | 966 | if (pnum < 0) { | 
|  | 967 | err = pnum; | 
|  | 968 | goto out_put; | 
|  | 969 | } | 
|  | 970 |  | 
|  | 971 | opnum = vol->eba_tbl->entries[lnum].pnum; | 
|  | 972 |  | 
|  | 973 | dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d", | 
|  | 974 | len, offset, vol_id, lnum, pnum); | 
|  | 975 |  | 
|  | 976 | err = ubi_io_write_vid_hdr(ubi, pnum, vidb); | 
|  | 977 | if (err) { | 
|  | 978 | ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d", | 
|  | 979 | vol_id, lnum, pnum); | 
|  | 980 | goto out_put; | 
|  | 981 | } | 
|  | 982 |  | 
|  | 983 | if (len) { | 
|  | 984 | err = ubi_io_write_data(ubi, buf, pnum, offset, len); | 
|  | 985 | if (err) { | 
|  | 986 | ubi_warn(ubi, | 
|  | 987 | "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d", | 
|  | 988 | len, offset, vol_id, lnum, pnum); | 
|  | 989 | goto out_put; | 
|  | 990 | } | 
|  | 991 | } | 
|  | 992 |  | 
|  | 993 | vol->eba_tbl->entries[lnum].pnum = pnum; | 
|  | 994 |  | 
|  | 995 | out_put: | 
|  | 996 | up_read(&ubi->fm_eba_sem); | 
|  | 997 |  | 
|  | 998 | if (err && pnum >= 0) | 
|  | 999 | err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); | 
|  | 1000 | else if (!err && opnum >= 0) | 
|  | 1001 | err = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0); | 
|  | 1002 |  | 
|  | 1003 | return err; | 
|  | 1004 | } | 
|  | 1005 |  | 
|  | 1006 | /** | 
|  | 1007 | * ubi_eba_write_leb - write data to dynamic volume. | 
|  | 1008 | * @ubi: UBI device description object | 
|  | 1009 | * @vol: volume description object | 
|  | 1010 | * @lnum: logical eraseblock number | 
|  | 1011 | * @buf: the data to write | 
|  | 1012 | * @offset: offset within the logical eraseblock where to write | 
|  | 1013 | * @len: how many bytes to write | 
|  | 1014 | * | 
|  | 1015 | * This function writes data to logical eraseblock @lnum of a dynamic volume | 
|  | 1016 | * @vol. Returns zero in case of success and a negative error code in case | 
|  | 1017 | * of failure. In case of error, it is possible that something was still | 
|  | 1018 | * written to the flash media, but may be some garbage. | 
|  | 1019 | * This function retries %UBI_IO_RETRIES times before giving up. | 
|  | 1020 | */ | 
|  | 1021 | int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, | 
|  | 1022 | const void *buf, int offset, int len) | 
|  | 1023 | { | 
|  | 1024 | int err, pnum, tries, vol_id = vol->vol_id; | 
|  | 1025 | struct ubi_vid_io_buf *vidb; | 
|  | 1026 | struct ubi_vid_hdr *vid_hdr; | 
|  | 1027 |  | 
|  | 1028 | if (ubi->ro_mode) | 
|  | 1029 | return -EROFS; | 
|  | 1030 |  | 
|  | 1031 | err = leb_write_lock(ubi, vol_id, lnum); | 
|  | 1032 | if (err) | 
|  | 1033 | return err; | 
|  | 1034 |  | 
|  | 1035 | pnum = vol->eba_tbl->entries[lnum].pnum; | 
|  | 1036 | if (pnum >= 0) { | 
|  | 1037 | err = check_mapping(ubi, vol, lnum, &pnum); | 
|  | 1038 | if (err < 0) | 
|  | 1039 | goto out; | 
|  | 1040 | } | 
|  | 1041 |  | 
|  | 1042 | if (pnum >= 0) { | 
|  | 1043 | dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d", | 
|  | 1044 | len, offset, vol_id, lnum, pnum); | 
|  | 1045 |  | 
|  | 1046 | err = ubi_io_write_data(ubi, buf, pnum, offset, len); | 
|  | 1047 | if (err) { | 
|  | 1048 | ubi_warn(ubi, "failed to write data to PEB %d", pnum); | 
|  | 1049 | if (err == -EIO && ubi->bad_allowed) | 
|  | 1050 | err = recover_peb(ubi, pnum, vol_id, lnum, buf, | 
|  | 1051 | offset, len); | 
|  | 1052 | } | 
|  | 1053 |  | 
|  | 1054 | goto out; | 
|  | 1055 | } | 
|  | 1056 |  | 
|  | 1057 | /* | 
|  | 1058 | * The logical eraseblock is not mapped. We have to get a free physical | 
|  | 1059 | * eraseblock and write the volume identifier header there first. | 
|  | 1060 | */ | 
|  | 1061 | vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); | 
|  | 1062 | if (!vidb) { | 
|  | 1063 | leb_write_unlock(ubi, vol_id, lnum); | 
|  | 1064 | return -ENOMEM; | 
|  | 1065 | } | 
|  | 1066 |  | 
|  | 1067 | vid_hdr = ubi_get_vid_hdr(vidb); | 
|  | 1068 |  | 
|  | 1069 | vid_hdr->vol_type = UBI_VID_DYNAMIC; | 
|  | 1070 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); | 
|  | 1071 | vid_hdr->vol_id = cpu_to_be32(vol_id); | 
|  | 1072 | vid_hdr->lnum = cpu_to_be32(lnum); | 
|  | 1073 | vid_hdr->compat = ubi_get_compat(ubi, vol_id); | 
|  | 1074 | vid_hdr->data_pad = cpu_to_be32(vol->data_pad); | 
|  | 1075 |  | 
|  | 1076 | for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { | 
|  | 1077 | err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len); | 
|  | 1078 | if (err != -EIO || !ubi->bad_allowed) | 
|  | 1079 | break; | 
|  | 1080 |  | 
|  | 1081 | /* | 
|  | 1082 | * Fortunately, this is the first write operation to this | 
|  | 1083 | * physical eraseblock, so just put it and request a new one. | 
|  | 1084 | * We assume that if this physical eraseblock went bad, the | 
|  | 1085 | * erase code will handle that. | 
|  | 1086 | */ | 
|  | 1087 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); | 
|  | 1088 | ubi_msg(ubi, "try another PEB"); | 
|  | 1089 | } | 
|  | 1090 |  | 
|  | 1091 | ubi_free_vid_buf(vidb); | 
|  | 1092 |  | 
|  | 1093 | out: | 
|  | 1094 | if (err) | 
|  | 1095 | ubi_ro_mode(ubi); | 
|  | 1096 |  | 
|  | 1097 | leb_write_unlock(ubi, vol_id, lnum); | 
|  | 1098 |  | 
|  | 1099 | return err; | 
|  | 1100 | } | 
|  | 1101 |  | 
|  | 1102 | /** | 
|  | 1103 | * ubi_eba_write_leb_st - write data to static volume. | 
|  | 1104 | * @ubi: UBI device description object | 
|  | 1105 | * @vol: volume description object | 
|  | 1106 | * @lnum: logical eraseblock number | 
|  | 1107 | * @buf: data to write | 
|  | 1108 | * @len: how many bytes to write | 
|  | 1109 | * @used_ebs: how many logical eraseblocks will this volume contain | 
|  | 1110 | * | 
|  | 1111 | * This function writes data to logical eraseblock @lnum of static volume | 
|  | 1112 | * @vol. The @used_ebs argument should contain total number of logical | 
|  | 1113 | * eraseblock in this static volume. | 
|  | 1114 | * | 
|  | 1115 | * When writing to the last logical eraseblock, the @len argument doesn't have | 
|  | 1116 | * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent | 
|  | 1117 | * to the real data size, although the @buf buffer has to contain the | 
|  | 1118 | * alignment. In all other cases, @len has to be aligned. | 
|  | 1119 | * | 
|  | 1120 | * It is prohibited to write more than once to logical eraseblocks of static | 
|  | 1121 | * volumes. This function returns zero in case of success and a negative error | 
|  | 1122 | * code in case of failure. | 
|  | 1123 | */ | 
|  | 1124 | int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, | 
|  | 1125 | int lnum, const void *buf, int len, int used_ebs) | 
|  | 1126 | { | 
|  | 1127 | int err, tries, data_size = len, vol_id = vol->vol_id; | 
|  | 1128 | struct ubi_vid_io_buf *vidb; | 
|  | 1129 | struct ubi_vid_hdr *vid_hdr; | 
|  | 1130 | uint32_t crc; | 
|  | 1131 |  | 
|  | 1132 | if (ubi->ro_mode) | 
|  | 1133 | return -EROFS; | 
|  | 1134 |  | 
|  | 1135 | if (lnum == used_ebs - 1) | 
|  | 1136 | /* If this is the last LEB @len may be unaligned */ | 
|  | 1137 | len = ALIGN(data_size, ubi->min_io_size); | 
|  | 1138 | else | 
|  | 1139 | ubi_assert(!(len & (ubi->min_io_size - 1))); | 
|  | 1140 |  | 
|  | 1141 | vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); | 
|  | 1142 | if (!vidb) | 
|  | 1143 | return -ENOMEM; | 
|  | 1144 |  | 
|  | 1145 | vid_hdr = ubi_get_vid_hdr(vidb); | 
|  | 1146 |  | 
|  | 1147 | err = leb_write_lock(ubi, vol_id, lnum); | 
|  | 1148 | if (err) | 
|  | 1149 | goto out; | 
|  | 1150 |  | 
|  | 1151 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); | 
|  | 1152 | vid_hdr->vol_id = cpu_to_be32(vol_id); | 
|  | 1153 | vid_hdr->lnum = cpu_to_be32(lnum); | 
|  | 1154 | vid_hdr->compat = ubi_get_compat(ubi, vol_id); | 
|  | 1155 | vid_hdr->data_pad = cpu_to_be32(vol->data_pad); | 
|  | 1156 |  | 
|  | 1157 | crc = crc32(UBI_CRC32_INIT, buf, data_size); | 
|  | 1158 | vid_hdr->vol_type = UBI_VID_STATIC; | 
|  | 1159 | vid_hdr->data_size = cpu_to_be32(data_size); | 
|  | 1160 | vid_hdr->used_ebs = cpu_to_be32(used_ebs); | 
|  | 1161 | vid_hdr->data_crc = cpu_to_be32(crc); | 
|  | 1162 |  | 
|  | 1163 | ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0); | 
|  | 1164 |  | 
|  | 1165 | for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { | 
|  | 1166 | err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len); | 
|  | 1167 | if (err != -EIO || !ubi->bad_allowed) | 
|  | 1168 | break; | 
|  | 1169 |  | 
|  | 1170 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); | 
|  | 1171 | ubi_msg(ubi, "try another PEB"); | 
|  | 1172 | } | 
|  | 1173 |  | 
|  | 1174 | if (err) | 
|  | 1175 | ubi_ro_mode(ubi); | 
|  | 1176 |  | 
|  | 1177 | leb_write_unlock(ubi, vol_id, lnum); | 
|  | 1178 |  | 
|  | 1179 | out: | 
|  | 1180 | ubi_free_vid_buf(vidb); | 
|  | 1181 |  | 
|  | 1182 | return err; | 
|  | 1183 | } | 
|  | 1184 |  | 
|  | 1185 | /* | 
|  | 1186 | * ubi_eba_atomic_leb_change - change logical eraseblock atomically. | 
|  | 1187 | * @ubi: UBI device description object | 
|  | 1188 | * @vol: volume description object | 
|  | 1189 | * @lnum: logical eraseblock number | 
|  | 1190 | * @buf: data to write | 
|  | 1191 | * @len: how many bytes to write | 
|  | 1192 | * | 
|  | 1193 | * This function changes the contents of a logical eraseblock atomically. @buf | 
|  | 1194 | * has to contain new logical eraseblock data, and @len - the length of the | 
|  | 1195 | * data, which has to be aligned. This function guarantees that in case of an | 
|  | 1196 | * unclean reboot the old contents is preserved. Returns zero in case of | 
|  | 1197 | * success and a negative error code in case of failure. | 
|  | 1198 | * | 
|  | 1199 | * UBI reserves one LEB for the "atomic LEB change" operation, so only one | 
|  | 1200 | * LEB change may be done at a time. This is ensured by @ubi->alc_mutex. | 
|  | 1201 | */ | 
|  | 1202 | int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, | 
|  | 1203 | int lnum, const void *buf, int len) | 
|  | 1204 | { | 
|  | 1205 | int err, tries, vol_id = vol->vol_id; | 
|  | 1206 | struct ubi_vid_io_buf *vidb; | 
|  | 1207 | struct ubi_vid_hdr *vid_hdr; | 
|  | 1208 | uint32_t crc; | 
|  | 1209 |  | 
|  | 1210 | if (ubi->ro_mode) | 
|  | 1211 | return -EROFS; | 
|  | 1212 |  | 
|  | 1213 | if (len == 0) { | 
|  | 1214 | /* | 
|  | 1215 | * Special case when data length is zero. In this case the LEB | 
|  | 1216 | * has to be unmapped and mapped somewhere else. | 
|  | 1217 | */ | 
|  | 1218 | err = ubi_eba_unmap_leb(ubi, vol, lnum); | 
|  | 1219 | if (err) | 
|  | 1220 | return err; | 
|  | 1221 | return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0); | 
|  | 1222 | } | 
|  | 1223 |  | 
|  | 1224 | vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); | 
|  | 1225 | if (!vidb) | 
|  | 1226 | return -ENOMEM; | 
|  | 1227 |  | 
|  | 1228 | vid_hdr = ubi_get_vid_hdr(vidb); | 
|  | 1229 |  | 
|  | 1230 | mutex_lock(&ubi->alc_mutex); | 
|  | 1231 | err = leb_write_lock(ubi, vol_id, lnum); | 
|  | 1232 | if (err) | 
|  | 1233 | goto out_mutex; | 
|  | 1234 |  | 
|  | 1235 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); | 
|  | 1236 | vid_hdr->vol_id = cpu_to_be32(vol_id); | 
|  | 1237 | vid_hdr->lnum = cpu_to_be32(lnum); | 
|  | 1238 | vid_hdr->compat = ubi_get_compat(ubi, vol_id); | 
|  | 1239 | vid_hdr->data_pad = cpu_to_be32(vol->data_pad); | 
|  | 1240 |  | 
|  | 1241 | crc = crc32(UBI_CRC32_INIT, buf, len); | 
|  | 1242 | vid_hdr->vol_type = UBI_VID_DYNAMIC; | 
|  | 1243 | vid_hdr->data_size = cpu_to_be32(len); | 
|  | 1244 | vid_hdr->copy_flag = 1; | 
|  | 1245 | vid_hdr->data_crc = cpu_to_be32(crc); | 
|  | 1246 |  | 
|  | 1247 | dbg_eba("change LEB %d:%d", vol_id, lnum); | 
|  | 1248 |  | 
|  | 1249 | for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { | 
|  | 1250 | err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len); | 
|  | 1251 | if (err != -EIO || !ubi->bad_allowed) | 
|  | 1252 | break; | 
|  | 1253 |  | 
|  | 1254 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); | 
|  | 1255 | ubi_msg(ubi, "try another PEB"); | 
|  | 1256 | } | 
|  | 1257 |  | 
|  | 1258 | /* | 
|  | 1259 | * This flash device does not admit of bad eraseblocks or | 
|  | 1260 | * something nasty and unexpected happened. Switch to read-only | 
|  | 1261 | * mode just in case. | 
|  | 1262 | */ | 
|  | 1263 | if (err) | 
|  | 1264 | ubi_ro_mode(ubi); | 
|  | 1265 |  | 
|  | 1266 | leb_write_unlock(ubi, vol_id, lnum); | 
|  | 1267 |  | 
|  | 1268 | out_mutex: | 
|  | 1269 | mutex_unlock(&ubi->alc_mutex); | 
|  | 1270 | ubi_free_vid_buf(vidb); | 
|  | 1271 | return err; | 
|  | 1272 | } | 
|  | 1273 |  | 
|  | 1274 | /** | 
|  | 1275 | * is_error_sane - check whether a read error is sane. | 
|  | 1276 | * @err: code of the error happened during reading | 
|  | 1277 | * | 
|  | 1278 | * This is a helper function for 'ubi_eba_copy_leb()' which is called when we | 
|  | 1279 | * cannot read data from the target PEB (an error @err happened). If the error | 
|  | 1280 | * code is sane, then we treat this error as non-fatal. Otherwise the error is | 
|  | 1281 | * fatal and UBI will be switched to R/O mode later. | 
|  | 1282 | * | 
|  | 1283 | * The idea is that we try not to switch to R/O mode if the read error is | 
|  | 1284 | * something which suggests there was a real read problem. E.g., %-EIO. Or a | 
|  | 1285 | * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O | 
|  | 1286 | * mode, simply because we do not know what happened at the MTD level, and we | 
|  | 1287 | * cannot handle this. E.g., the underlying driver may have become crazy, and | 
|  | 1288 | * it is safer to switch to R/O mode to preserve the data. | 
|  | 1289 | * | 
|  | 1290 | * And bear in mind, this is about reading from the target PEB, i.e. the PEB | 
|  | 1291 | * which we have just written. | 
|  | 1292 | */ | 
|  | 1293 | static int is_error_sane(int err) | 
|  | 1294 | { | 
|  | 1295 | if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR || | 
|  | 1296 | err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT) | 
|  | 1297 | return 0; | 
|  | 1298 | return 1; | 
|  | 1299 | } | 
|  | 1300 |  | 
|  | 1301 | /** | 
|  | 1302 | * ubi_eba_copy_leb - copy logical eraseblock. | 
|  | 1303 | * @ubi: UBI device description object | 
|  | 1304 | * @from: physical eraseblock number from where to copy | 
|  | 1305 | * @to: physical eraseblock number where to copy | 
|  | 1306 | * @vid_hdr: VID header of the @from physical eraseblock | 
|  | 1307 | * | 
|  | 1308 | * This function copies logical eraseblock from physical eraseblock @from to | 
|  | 1309 | * physical eraseblock @to. The @vid_hdr buffer may be changed by this | 
|  | 1310 | * function. Returns: | 
|  | 1311 | *   o %0 in case of success; | 
|  | 1312 | *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc; | 
|  | 1313 | *   o a negative error code in case of failure. | 
|  | 1314 | */ | 
|  | 1315 | int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, | 
|  | 1316 | struct ubi_vid_io_buf *vidb) | 
|  | 1317 | { | 
|  | 1318 | int err, vol_id, lnum, data_size, aldata_size, idx; | 
|  | 1319 | struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb); | 
|  | 1320 | struct ubi_volume *vol; | 
|  | 1321 | uint32_t crc; | 
|  | 1322 |  | 
|  | 1323 | ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem)); | 
|  | 1324 |  | 
|  | 1325 | vol_id = be32_to_cpu(vid_hdr->vol_id); | 
|  | 1326 | lnum = be32_to_cpu(vid_hdr->lnum); | 
|  | 1327 |  | 
|  | 1328 | dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to); | 
|  | 1329 |  | 
|  | 1330 | if (vid_hdr->vol_type == UBI_VID_STATIC) { | 
|  | 1331 | data_size = be32_to_cpu(vid_hdr->data_size); | 
|  | 1332 | aldata_size = ALIGN(data_size, ubi->min_io_size); | 
|  | 1333 | } else | 
|  | 1334 | data_size = aldata_size = | 
|  | 1335 | ubi->leb_size - be32_to_cpu(vid_hdr->data_pad); | 
|  | 1336 |  | 
|  | 1337 | idx = vol_id2idx(ubi, vol_id); | 
|  | 1338 | spin_lock(&ubi->volumes_lock); | 
|  | 1339 | /* | 
|  | 1340 | * Note, we may race with volume deletion, which means that the volume | 
|  | 1341 | * this logical eraseblock belongs to might be being deleted. Since the | 
|  | 1342 | * volume deletion un-maps all the volume's logical eraseblocks, it will | 
|  | 1343 | * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish. | 
|  | 1344 | */ | 
|  | 1345 | vol = ubi->volumes[idx]; | 
|  | 1346 | spin_unlock(&ubi->volumes_lock); | 
|  | 1347 | if (!vol) { | 
|  | 1348 | /* No need to do further work, cancel */ | 
|  | 1349 | dbg_wl("volume %d is being removed, cancel", vol_id); | 
|  | 1350 | return MOVE_CANCEL_RACE; | 
|  | 1351 | } | 
|  | 1352 |  | 
|  | 1353 | /* | 
|  | 1354 | * We do not want anybody to write to this logical eraseblock while we | 
|  | 1355 | * are moving it, so lock it. | 
|  | 1356 | * | 
|  | 1357 | * Note, we are using non-waiting locking here, because we cannot sleep | 
|  | 1358 | * on the LEB, since it may cause deadlocks. Indeed, imagine a task is | 
|  | 1359 | * unmapping the LEB which is mapped to the PEB we are going to move | 
|  | 1360 | * (@from). This task locks the LEB and goes sleep in the | 
|  | 1361 | * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are | 
|  | 1362 | * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the | 
|  | 1363 | * LEB is already locked, we just do not move it and return | 
|  | 1364 | * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because | 
|  | 1365 | * we do not know the reasons of the contention - it may be just a | 
|  | 1366 | * normal I/O on this LEB, so we want to re-try. | 
|  | 1367 | */ | 
|  | 1368 | err = leb_write_trylock(ubi, vol_id, lnum); | 
|  | 1369 | if (err) { | 
|  | 1370 | dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum); | 
|  | 1371 | return MOVE_RETRY; | 
|  | 1372 | } | 
|  | 1373 |  | 
|  | 1374 | /* | 
|  | 1375 | * The LEB might have been put meanwhile, and the task which put it is | 
|  | 1376 | * probably waiting on @ubi->move_mutex. No need to continue the work, | 
|  | 1377 | * cancel it. | 
|  | 1378 | */ | 
|  | 1379 | if (vol->eba_tbl->entries[lnum].pnum != from) { | 
|  | 1380 | dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel", | 
|  | 1381 | vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum); | 
|  | 1382 | err = MOVE_CANCEL_RACE; | 
|  | 1383 | goto out_unlock_leb; | 
|  | 1384 | } | 
|  | 1385 |  | 
|  | 1386 | /* | 
|  | 1387 | * OK, now the LEB is locked and we can safely start moving it. Since | 
|  | 1388 | * this function utilizes the @ubi->peb_buf buffer which is shared | 
|  | 1389 | * with some other functions - we lock the buffer by taking the | 
|  | 1390 | * @ubi->buf_mutex. | 
|  | 1391 | */ | 
|  | 1392 | mutex_lock(&ubi->buf_mutex); | 
|  | 1393 | dbg_wl("read %d bytes of data", aldata_size); | 
|  | 1394 | err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size); | 
|  | 1395 | if (err && err != UBI_IO_BITFLIPS) { | 
|  | 1396 | ubi_warn(ubi, "error %d while reading data from PEB %d", | 
|  | 1397 | err, from); | 
|  | 1398 | err = MOVE_SOURCE_RD_ERR; | 
|  | 1399 | goto out_unlock_buf; | 
|  | 1400 | } | 
|  | 1401 |  | 
|  | 1402 | /* | 
|  | 1403 | * Now we have got to calculate how much data we have to copy. In | 
|  | 1404 | * case of a static volume it is fairly easy - the VID header contains | 
|  | 1405 | * the data size. In case of a dynamic volume it is more difficult - we | 
|  | 1406 | * have to read the contents, cut 0xFF bytes from the end and copy only | 
|  | 1407 | * the first part. We must do this to avoid writing 0xFF bytes as it | 
|  | 1408 | * may have some side-effects. And not only this. It is important not | 
|  | 1409 | * to include those 0xFFs to CRC because later the they may be filled | 
|  | 1410 | * by data. | 
|  | 1411 | */ | 
|  | 1412 | if (vid_hdr->vol_type == UBI_VID_DYNAMIC) | 
|  | 1413 | aldata_size = data_size = | 
|  | 1414 | ubi_calc_data_len(ubi, ubi->peb_buf, data_size); | 
|  | 1415 |  | 
|  | 1416 | cond_resched(); | 
|  | 1417 | crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); | 
|  | 1418 | cond_resched(); | 
|  | 1419 |  | 
|  | 1420 | /* | 
|  | 1421 | * It may turn out to be that the whole @from physical eraseblock | 
|  | 1422 | * contains only 0xFF bytes. Then we have to only write the VID header | 
|  | 1423 | * and do not write any data. This also means we should not set | 
|  | 1424 | * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc. | 
|  | 1425 | */ | 
|  | 1426 | if (data_size > 0) { | 
|  | 1427 | vid_hdr->copy_flag = 1; | 
|  | 1428 | vid_hdr->data_size = cpu_to_be32(data_size); | 
|  | 1429 | vid_hdr->data_crc = cpu_to_be32(crc); | 
|  | 1430 | } | 
|  | 1431 | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); | 
|  | 1432 |  | 
|  | 1433 | err = ubi_io_write_vid_hdr(ubi, to, vidb); | 
|  | 1434 | if (err) { | 
|  | 1435 | if (err == -EIO) | 
|  | 1436 | err = MOVE_TARGET_WR_ERR; | 
|  | 1437 | goto out_unlock_buf; | 
|  | 1438 | } | 
|  | 1439 |  | 
|  | 1440 | cond_resched(); | 
|  | 1441 |  | 
|  | 1442 | /* Read the VID header back and check if it was written correctly */ | 
|  | 1443 | err = ubi_io_read_vid_hdr(ubi, to, vidb, 1); | 
|  | 1444 | if (err) { | 
|  | 1445 | if (err != UBI_IO_BITFLIPS) { | 
|  | 1446 | ubi_warn(ubi, "error %d while reading VID header back from PEB %d", | 
|  | 1447 | err, to); | 
|  | 1448 | if (is_error_sane(err)) | 
|  | 1449 | err = MOVE_TARGET_RD_ERR; | 
|  | 1450 | } else | 
|  | 1451 | err = MOVE_TARGET_BITFLIPS; | 
|  | 1452 | goto out_unlock_buf; | 
|  | 1453 | } | 
|  | 1454 |  | 
|  | 1455 | if (data_size > 0) { | 
|  | 1456 | err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size); | 
|  | 1457 | if (err) { | 
|  | 1458 | if (err == -EIO) | 
|  | 1459 | err = MOVE_TARGET_WR_ERR; | 
|  | 1460 | goto out_unlock_buf; | 
|  | 1461 | } | 
|  | 1462 |  | 
|  | 1463 | cond_resched(); | 
|  | 1464 | } | 
|  | 1465 |  | 
|  | 1466 | ubi_assert(vol->eba_tbl->entries[lnum].pnum == from); | 
|  | 1467 | vol->eba_tbl->entries[lnum].pnum = to; | 
|  | 1468 |  | 
|  | 1469 | out_unlock_buf: | 
|  | 1470 | mutex_unlock(&ubi->buf_mutex); | 
|  | 1471 | out_unlock_leb: | 
|  | 1472 | leb_write_unlock(ubi, vol_id, lnum); | 
|  | 1473 | return err; | 
|  | 1474 | } | 
|  | 1475 |  | 
|  | 1476 | /** | 
|  | 1477 | * print_rsvd_warning - warn about not having enough reserved PEBs. | 
|  | 1478 | * @ubi: UBI device description object | 
|  | 1479 | * | 
|  | 1480 | * This is a helper function for 'ubi_eba_init()' which is called when UBI | 
|  | 1481 | * cannot reserve enough PEBs for bad block handling. This function makes a | 
|  | 1482 | * decision whether we have to print a warning or not. The algorithm is as | 
|  | 1483 | * follows: | 
|  | 1484 | *   o if this is a new UBI image, then just print the warning | 
|  | 1485 | *   o if this is an UBI image which has already been used for some time, print | 
|  | 1486 | *     a warning only if we can reserve less than 10% of the expected amount of | 
|  | 1487 | *     the reserved PEB. | 
|  | 1488 | * | 
|  | 1489 | * The idea is that when UBI is used, PEBs become bad, and the reserved pool | 
|  | 1490 | * of PEBs becomes smaller, which is normal and we do not want to scare users | 
|  | 1491 | * with a warning every time they attach the MTD device. This was an issue | 
|  | 1492 | * reported by real users. | 
|  | 1493 | */ | 
|  | 1494 | static void print_rsvd_warning(struct ubi_device *ubi, | 
|  | 1495 | struct ubi_attach_info *ai) | 
|  | 1496 | { | 
|  | 1497 | /* | 
|  | 1498 | * The 1 << 18 (256KiB) number is picked randomly, just a reasonably | 
|  | 1499 | * large number to distinguish between newly flashed and used images. | 
|  | 1500 | */ | 
|  | 1501 | if (ai->max_sqnum > (1 << 18)) { | 
|  | 1502 | int min = ubi->beb_rsvd_level / 10; | 
|  | 1503 |  | 
|  | 1504 | if (!min) | 
|  | 1505 | min = 1; | 
|  | 1506 | if (ubi->beb_rsvd_pebs > min) | 
|  | 1507 | return; | 
|  | 1508 | } | 
|  | 1509 |  | 
|  | 1510 | ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d", | 
|  | 1511 | ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); | 
|  | 1512 | if (ubi->corr_peb_count) | 
|  | 1513 | ubi_warn(ubi, "%d PEBs are corrupted and not used", | 
|  | 1514 | ubi->corr_peb_count); | 
|  | 1515 | } | 
|  | 1516 |  | 
|  | 1517 | /** | 
|  | 1518 | * self_check_eba - run a self check on the EBA table constructed by fastmap. | 
|  | 1519 | * @ubi: UBI device description object | 
|  | 1520 | * @ai_fastmap: UBI attach info object created by fastmap | 
|  | 1521 | * @ai_scan: UBI attach info object created by scanning | 
|  | 1522 | * | 
|  | 1523 | * Returns < 0 in case of an internal error, 0 otherwise. | 
|  | 1524 | * If a bad EBA table entry was found it will be printed out and | 
|  | 1525 | * ubi_assert() triggers. | 
|  | 1526 | */ | 
|  | 1527 | int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap, | 
|  | 1528 | struct ubi_attach_info *ai_scan) | 
|  | 1529 | { | 
|  | 1530 | int i, j, num_volumes, ret = 0; | 
|  | 1531 | int **scan_eba, **fm_eba; | 
|  | 1532 | struct ubi_ainf_volume *av; | 
|  | 1533 | struct ubi_volume *vol; | 
|  | 1534 | struct ubi_ainf_peb *aeb; | 
|  | 1535 | struct rb_node *rb; | 
|  | 1536 |  | 
|  | 1537 | num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; | 
|  | 1538 |  | 
|  | 1539 | scan_eba = kmalloc_array(num_volumes, sizeof(*scan_eba), GFP_KERNEL); | 
|  | 1540 | if (!scan_eba) | 
|  | 1541 | return -ENOMEM; | 
|  | 1542 |  | 
|  | 1543 | fm_eba = kmalloc_array(num_volumes, sizeof(*fm_eba), GFP_KERNEL); | 
|  | 1544 | if (!fm_eba) { | 
|  | 1545 | kfree(scan_eba); | 
|  | 1546 | return -ENOMEM; | 
|  | 1547 | } | 
|  | 1548 |  | 
|  | 1549 | for (i = 0; i < num_volumes; i++) { | 
|  | 1550 | vol = ubi->volumes[i]; | 
|  | 1551 | if (!vol) | 
|  | 1552 | continue; | 
|  | 1553 |  | 
|  | 1554 | scan_eba[i] = kmalloc_array(vol->reserved_pebs, | 
|  | 1555 | sizeof(**scan_eba), | 
|  | 1556 | GFP_KERNEL); | 
|  | 1557 | if (!scan_eba[i]) { | 
|  | 1558 | ret = -ENOMEM; | 
|  | 1559 | goto out_free; | 
|  | 1560 | } | 
|  | 1561 |  | 
|  | 1562 | fm_eba[i] = kmalloc_array(vol->reserved_pebs, | 
|  | 1563 | sizeof(**fm_eba), | 
|  | 1564 | GFP_KERNEL); | 
|  | 1565 | if (!fm_eba[i]) { | 
|  | 1566 | ret = -ENOMEM; | 
|  | 1567 | goto out_free; | 
|  | 1568 | } | 
|  | 1569 |  | 
|  | 1570 | for (j = 0; j < vol->reserved_pebs; j++) | 
|  | 1571 | scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED; | 
|  | 1572 |  | 
|  | 1573 | av = ubi_find_av(ai_scan, idx2vol_id(ubi, i)); | 
|  | 1574 | if (!av) | 
|  | 1575 | continue; | 
|  | 1576 |  | 
|  | 1577 | ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) | 
|  | 1578 | scan_eba[i][aeb->lnum] = aeb->pnum; | 
|  | 1579 |  | 
|  | 1580 | av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i)); | 
|  | 1581 | if (!av) | 
|  | 1582 | continue; | 
|  | 1583 |  | 
|  | 1584 | ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) | 
|  | 1585 | fm_eba[i][aeb->lnum] = aeb->pnum; | 
|  | 1586 |  | 
|  | 1587 | for (j = 0; j < vol->reserved_pebs; j++) { | 
|  | 1588 | if (scan_eba[i][j] != fm_eba[i][j]) { | 
|  | 1589 | if (scan_eba[i][j] == UBI_LEB_UNMAPPED || | 
|  | 1590 | fm_eba[i][j] == UBI_LEB_UNMAPPED) | 
|  | 1591 | continue; | 
|  | 1592 |  | 
|  | 1593 | ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!", | 
|  | 1594 | vol->vol_id, j, fm_eba[i][j], | 
|  | 1595 | scan_eba[i][j]); | 
|  | 1596 | ubi_assert(0); | 
|  | 1597 | } | 
|  | 1598 | } | 
|  | 1599 | } | 
|  | 1600 |  | 
|  | 1601 | out_free: | 
|  | 1602 | for (i = 0; i < num_volumes; i++) { | 
|  | 1603 | if (!ubi->volumes[i]) | 
|  | 1604 | continue; | 
|  | 1605 |  | 
|  | 1606 | kfree(scan_eba[i]); | 
|  | 1607 | kfree(fm_eba[i]); | 
|  | 1608 | } | 
|  | 1609 |  | 
|  | 1610 | kfree(scan_eba); | 
|  | 1611 | kfree(fm_eba); | 
|  | 1612 | return ret; | 
|  | 1613 | } | 
|  | 1614 |  | 
|  | 1615 | /** | 
|  | 1616 | * ubi_eba_init - initialize the EBA sub-system using attaching information. | 
|  | 1617 | * @ubi: UBI device description object | 
|  | 1618 | * @ai: attaching information | 
|  | 1619 | * | 
|  | 1620 | * This function returns zero in case of success and a negative error code in | 
|  | 1621 | * case of failure. | 
|  | 1622 | */ | 
|  | 1623 | int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai) | 
|  | 1624 | { | 
|  | 1625 | int i, err, num_volumes; | 
|  | 1626 | struct ubi_ainf_volume *av; | 
|  | 1627 | struct ubi_volume *vol; | 
|  | 1628 | struct ubi_ainf_peb *aeb; | 
|  | 1629 | struct rb_node *rb; | 
|  | 1630 |  | 
|  | 1631 | dbg_eba("initialize EBA sub-system"); | 
|  | 1632 |  | 
|  | 1633 | spin_lock_init(&ubi->ltree_lock); | 
|  | 1634 | mutex_init(&ubi->alc_mutex); | 
|  | 1635 | ubi->ltree = RB_ROOT; | 
|  | 1636 |  | 
|  | 1637 | ubi->global_sqnum = ai->max_sqnum + 1; | 
|  | 1638 | num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; | 
|  | 1639 |  | 
|  | 1640 | for (i = 0; i < num_volumes; i++) { | 
|  | 1641 | struct ubi_eba_table *tbl; | 
|  | 1642 |  | 
|  | 1643 | vol = ubi->volumes[i]; | 
|  | 1644 | if (!vol) | 
|  | 1645 | continue; | 
|  | 1646 |  | 
|  | 1647 | cond_resched(); | 
|  | 1648 |  | 
|  | 1649 | tbl = ubi_eba_create_table(vol, vol->reserved_pebs); | 
|  | 1650 | if (IS_ERR(tbl)) { | 
|  | 1651 | err = PTR_ERR(tbl); | 
|  | 1652 | goto out_free; | 
|  | 1653 | } | 
|  | 1654 |  | 
|  | 1655 | ubi_eba_replace_table(vol, tbl); | 
|  | 1656 |  | 
|  | 1657 | av = ubi_find_av(ai, idx2vol_id(ubi, i)); | 
|  | 1658 | if (!av) | 
|  | 1659 | continue; | 
|  | 1660 |  | 
|  | 1661 | ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { | 
|  | 1662 | if (aeb->lnum >= vol->reserved_pebs) { | 
|  | 1663 | /* | 
|  | 1664 | * This may happen in case of an unclean reboot | 
|  | 1665 | * during re-size. | 
|  | 1666 | */ | 
|  | 1667 | ubi_move_aeb_to_list(av, aeb, &ai->erase); | 
|  | 1668 | } else { | 
|  | 1669 | struct ubi_eba_entry *entry; | 
|  | 1670 |  | 
|  | 1671 | entry = &vol->eba_tbl->entries[aeb->lnum]; | 
|  | 1672 | entry->pnum = aeb->pnum; | 
|  | 1673 | } | 
|  | 1674 | } | 
|  | 1675 | } | 
|  | 1676 |  | 
|  | 1677 | if (ubi->avail_pebs < EBA_RESERVED_PEBS) { | 
|  | 1678 | ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", | 
|  | 1679 | ubi->avail_pebs, EBA_RESERVED_PEBS); | 
|  | 1680 | if (ubi->corr_peb_count) | 
|  | 1681 | ubi_err(ubi, "%d PEBs are corrupted and not used", | 
|  | 1682 | ubi->corr_peb_count); | 
|  | 1683 | err = -ENOSPC; | 
|  | 1684 | goto out_free; | 
|  | 1685 | } | 
|  | 1686 | ubi->avail_pebs -= EBA_RESERVED_PEBS; | 
|  | 1687 | ubi->rsvd_pebs += EBA_RESERVED_PEBS; | 
|  | 1688 |  | 
|  | 1689 | if (ubi->bad_allowed) { | 
|  | 1690 | ubi_calculate_reserved(ubi); | 
|  | 1691 |  | 
|  | 1692 | if (ubi->avail_pebs < ubi->beb_rsvd_level) { | 
|  | 1693 | /* No enough free physical eraseblocks */ | 
|  | 1694 | ubi->beb_rsvd_pebs = ubi->avail_pebs; | 
|  | 1695 | print_rsvd_warning(ubi, ai); | 
|  | 1696 | } else | 
|  | 1697 | ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; | 
|  | 1698 |  | 
|  | 1699 | ubi->avail_pebs -= ubi->beb_rsvd_pebs; | 
|  | 1700 | ubi->rsvd_pebs  += ubi->beb_rsvd_pebs; | 
|  | 1701 | } | 
|  | 1702 |  | 
|  | 1703 | dbg_eba("EBA sub-system is initialized"); | 
|  | 1704 | return 0; | 
|  | 1705 |  | 
|  | 1706 | out_free: | 
|  | 1707 | for (i = 0; i < num_volumes; i++) { | 
|  | 1708 | if (!ubi->volumes[i]) | 
|  | 1709 | continue; | 
|  | 1710 | ubi_eba_replace_table(ubi->volumes[i], NULL); | 
|  | 1711 | } | 
|  | 1712 | return err; | 
|  | 1713 | } |