| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3 | 
|  | 3 | *                  I2C RTC / Alarm chip | 
|  | 4 | * | 
|  | 5 | * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org> | 
|  | 6 | * | 
|  | 7 | * Detailed datasheet of the chip is available here: | 
|  | 8 | * | 
|  | 9 | *  http://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf | 
|  | 10 | * | 
|  | 11 | * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c). | 
|  | 12 | * | 
|  | 13 | * This program is free software; you can redistribute it and/or modify | 
|  | 14 | * it under the terms of the GNU General Public License as published by | 
|  | 15 | * the Free Software Foundation; either version 2 of the License, or | 
|  | 16 | * (at your option) any later version. | 
|  | 17 | * | 
|  | 18 | * This program is distributed in the hope that it will be useful, | 
|  | 19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | 21 | * GNU General Public License for more details. | 
|  | 22 | */ | 
|  | 23 |  | 
|  | 24 | #include <linux/module.h> | 
|  | 25 | #include <linux/mutex.h> | 
|  | 26 | #include <linux/rtc.h> | 
|  | 27 | #include <linux/i2c.h> | 
|  | 28 | #include <linux/bcd.h> | 
|  | 29 | #include <linux/of.h> | 
|  | 30 | #include <linux/regmap.h> | 
|  | 31 | #include <linux/interrupt.h> | 
|  | 32 |  | 
|  | 33 | #define DRV_NAME "rtc-ab-b5ze-s3" | 
|  | 34 |  | 
|  | 35 | /* Control section */ | 
|  | 36 | #define ABB5ZES3_REG_CTRL1	   0x00	   /* Control 1 register */ | 
|  | 37 | #define ABB5ZES3_REG_CTRL1_CIE	   BIT(0)  /* Pulse interrupt enable */ | 
|  | 38 | #define ABB5ZES3_REG_CTRL1_AIE	   BIT(1)  /* Alarm interrupt enable */ | 
|  | 39 | #define ABB5ZES3_REG_CTRL1_SIE	   BIT(2)  /* Second interrupt enable */ | 
|  | 40 | #define ABB5ZES3_REG_CTRL1_PM	   BIT(3)  /* 24h/12h mode */ | 
|  | 41 | #define ABB5ZES3_REG_CTRL1_SR	   BIT(4)  /* Software reset */ | 
|  | 42 | #define ABB5ZES3_REG_CTRL1_STOP	   BIT(5)  /* RTC circuit enable */ | 
|  | 43 | #define ABB5ZES3_REG_CTRL1_CAP	   BIT(7) | 
|  | 44 |  | 
|  | 45 | #define ABB5ZES3_REG_CTRL2	   0x01	   /* Control 2 register */ | 
|  | 46 | #define ABB5ZES3_REG_CTRL2_CTBIE   BIT(0)  /* Countdown timer B int. enable */ | 
|  | 47 | #define ABB5ZES3_REG_CTRL2_CTAIE   BIT(1)  /* Countdown timer A int. enable */ | 
|  | 48 | #define ABB5ZES3_REG_CTRL2_WTAIE   BIT(2)  /* Watchdog timer A int. enable */ | 
|  | 49 | #define ABB5ZES3_REG_CTRL2_AF	   BIT(3)  /* Alarm interrupt status */ | 
|  | 50 | #define ABB5ZES3_REG_CTRL2_SF	   BIT(4)  /* Second interrupt status */ | 
|  | 51 | #define ABB5ZES3_REG_CTRL2_CTBF	   BIT(5)  /* Countdown timer B int. status */ | 
|  | 52 | #define ABB5ZES3_REG_CTRL2_CTAF	   BIT(6)  /* Countdown timer A int. status */ | 
|  | 53 | #define ABB5ZES3_REG_CTRL2_WTAF	   BIT(7)  /* Watchdog timer A int. status */ | 
|  | 54 |  | 
|  | 55 | #define ABB5ZES3_REG_CTRL3	   0x02	   /* Control 3 register */ | 
|  | 56 | #define ABB5ZES3_REG_CTRL3_PM2	   BIT(7)  /* Power Management bit 2 */ | 
|  | 57 | #define ABB5ZES3_REG_CTRL3_PM1	   BIT(6)  /* Power Management bit 1 */ | 
|  | 58 | #define ABB5ZES3_REG_CTRL3_PM0	   BIT(5)  /* Power Management bit 0 */ | 
|  | 59 | #define ABB5ZES3_REG_CTRL3_BSF	   BIT(3)  /* Battery switchover int. status */ | 
|  | 60 | #define ABB5ZES3_REG_CTRL3_BLF	   BIT(2)  /* Battery low int. status */ | 
|  | 61 | #define ABB5ZES3_REG_CTRL3_BSIE	   BIT(1)  /* Battery switchover int. enable */ | 
|  | 62 | #define ABB5ZES3_REG_CTRL3_BLIE	   BIT(0)  /* Battery low int. enable */ | 
|  | 63 |  | 
|  | 64 | #define ABB5ZES3_CTRL_SEC_LEN	   3 | 
|  | 65 |  | 
|  | 66 | /* RTC section */ | 
|  | 67 | #define ABB5ZES3_REG_RTC_SC	   0x03	   /* RTC Seconds register */ | 
|  | 68 | #define ABB5ZES3_REG_RTC_SC_OSC	   BIT(7)  /* Clock integrity status */ | 
|  | 69 | #define ABB5ZES3_REG_RTC_MN	   0x04	   /* RTC Minutes register */ | 
|  | 70 | #define ABB5ZES3_REG_RTC_HR	   0x05	   /* RTC Hours register */ | 
|  | 71 | #define ABB5ZES3_REG_RTC_HR_PM	   BIT(5)  /* RTC Hours PM bit */ | 
|  | 72 | #define ABB5ZES3_REG_RTC_DT	   0x06	   /* RTC Date register */ | 
|  | 73 | #define ABB5ZES3_REG_RTC_DW	   0x07	   /* RTC Day of the week register */ | 
|  | 74 | #define ABB5ZES3_REG_RTC_MO	   0x08	   /* RTC Month register */ | 
|  | 75 | #define ABB5ZES3_REG_RTC_YR	   0x09	   /* RTC Year register */ | 
|  | 76 |  | 
|  | 77 | #define ABB5ZES3_RTC_SEC_LEN	   7 | 
|  | 78 |  | 
|  | 79 | /* Alarm section (enable bits are all active low) */ | 
|  | 80 | #define ABB5ZES3_REG_ALRM_MN	   0x0A	   /* Alarm - minute register */ | 
|  | 81 | #define ABB5ZES3_REG_ALRM_MN_AE	   BIT(7)  /* Minute enable */ | 
|  | 82 | #define ABB5ZES3_REG_ALRM_HR	   0x0B	   /* Alarm - hours register */ | 
|  | 83 | #define ABB5ZES3_REG_ALRM_HR_AE	   BIT(7)  /* Hour enable */ | 
|  | 84 | #define ABB5ZES3_REG_ALRM_DT	   0x0C	   /* Alarm - date register */ | 
|  | 85 | #define ABB5ZES3_REG_ALRM_DT_AE	   BIT(7)  /* Date (day of the month) enable */ | 
|  | 86 | #define ABB5ZES3_REG_ALRM_DW	   0x0D	   /* Alarm - day of the week reg. */ | 
|  | 87 | #define ABB5ZES3_REG_ALRM_DW_AE	   BIT(7)  /* Day of the week enable */ | 
|  | 88 |  | 
|  | 89 | #define ABB5ZES3_ALRM_SEC_LEN	   4 | 
|  | 90 |  | 
|  | 91 | /* Frequency offset section */ | 
|  | 92 | #define ABB5ZES3_REG_FREQ_OF	   0x0E	   /* Frequency offset register */ | 
|  | 93 | #define ABB5ZES3_REG_FREQ_OF_MODE  0x0E	   /* Offset mode: 2 hours / minute */ | 
|  | 94 |  | 
|  | 95 | /* CLOCKOUT section */ | 
|  | 96 | #define ABB5ZES3_REG_TIM_CLK	   0x0F	   /* Timer & Clockout register */ | 
|  | 97 | #define ABB5ZES3_REG_TIM_CLK_TAM   BIT(7)  /* Permanent/pulsed timer A/int. 2 */ | 
|  | 98 | #define ABB5ZES3_REG_TIM_CLK_TBM   BIT(6)  /* Permanent/pulsed timer B */ | 
|  | 99 | #define ABB5ZES3_REG_TIM_CLK_COF2  BIT(5)  /* Clkout Freq bit 2 */ | 
|  | 100 | #define ABB5ZES3_REG_TIM_CLK_COF1  BIT(4)  /* Clkout Freq bit 1 */ | 
|  | 101 | #define ABB5ZES3_REG_TIM_CLK_COF0  BIT(3)  /* Clkout Freq bit 0 */ | 
|  | 102 | #define ABB5ZES3_REG_TIM_CLK_TAC1  BIT(2)  /* Timer A: - 01 : countdown */ | 
|  | 103 | #define ABB5ZES3_REG_TIM_CLK_TAC0  BIT(1)  /*	       - 10 : timer	*/ | 
|  | 104 | #define ABB5ZES3_REG_TIM_CLK_TBC   BIT(0)  /* Timer B enable */ | 
|  | 105 |  | 
|  | 106 | /* Timer A Section */ | 
|  | 107 | #define ABB5ZES3_REG_TIMA_CLK	   0x10	   /* Timer A clock register */ | 
|  | 108 | #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2)  /* Freq bit 2 */ | 
|  | 109 | #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1)  /* Freq bit 1 */ | 
|  | 110 | #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0)  /* Freq bit 0 */ | 
|  | 111 | #define ABB5ZES3_REG_TIMA	   0x11	   /* Timer A register */ | 
|  | 112 |  | 
|  | 113 | #define ABB5ZES3_TIMA_SEC_LEN	   2 | 
|  | 114 |  | 
|  | 115 | /* Timer B Section */ | 
|  | 116 | #define ABB5ZES3_REG_TIMB_CLK	   0x12	   /* Timer B clock register */ | 
|  | 117 | #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6) | 
|  | 118 | #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5) | 
|  | 119 | #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4) | 
|  | 120 | #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2) | 
|  | 121 | #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1) | 
|  | 122 | #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0) | 
|  | 123 | #define ABB5ZES3_REG_TIMB	   0x13	   /* Timer B register */ | 
|  | 124 | #define ABB5ZES3_TIMB_SEC_LEN	   2 | 
|  | 125 |  | 
|  | 126 | #define ABB5ZES3_MEM_MAP_LEN	   0x14 | 
|  | 127 |  | 
|  | 128 | struct abb5zes3_rtc_data { | 
|  | 129 | struct rtc_device *rtc; | 
|  | 130 | struct regmap *regmap; | 
|  | 131 | struct mutex lock; | 
|  | 132 |  | 
|  | 133 | int irq; | 
|  | 134 |  | 
|  | 135 | bool battery_low; | 
|  | 136 | bool timer_alarm; /* current alarm is via timer A */ | 
|  | 137 | }; | 
|  | 138 |  | 
|  | 139 | /* | 
|  | 140 | * Try and match register bits w/ fixed null values to see whether we | 
|  | 141 | * are dealing with an ABB5ZES3. Note: this function is called early | 
|  | 142 | * during init and hence does need mutex protection. | 
|  | 143 | */ | 
|  | 144 | static int abb5zes3_i2c_validate_chip(struct regmap *regmap) | 
|  | 145 | { | 
|  | 146 | u8 regs[ABB5ZES3_MEM_MAP_LEN]; | 
|  | 147 | static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00, | 
|  | 148 | 0x80, 0xc0, 0xc0, 0xf8, | 
|  | 149 | 0xe0, 0x00, 0x00, 0x40, | 
|  | 150 | 0x40, 0x78, 0x00, 0x00, | 
|  | 151 | 0xf8, 0x00, 0x88, 0x00 }; | 
|  | 152 | int ret, i; | 
|  | 153 |  | 
|  | 154 | ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN); | 
|  | 155 | if (ret) | 
|  | 156 | return ret; | 
|  | 157 |  | 
|  | 158 | for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) { | 
|  | 159 | if (regs[i] & mask[i]) /* check if bits are cleared */ | 
|  | 160 | return -ENODEV; | 
|  | 161 | } | 
|  | 162 |  | 
|  | 163 | return 0; | 
|  | 164 | } | 
|  | 165 |  | 
|  | 166 | /* Clear alarm status bit. */ | 
|  | 167 | static int _abb5zes3_rtc_clear_alarm(struct device *dev) | 
|  | 168 | { | 
|  | 169 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | 170 | int ret; | 
|  | 171 |  | 
|  | 172 | ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2, | 
|  | 173 | ABB5ZES3_REG_CTRL2_AF, 0); | 
|  | 174 | if (ret) | 
|  | 175 | dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret); | 
|  | 176 |  | 
|  | 177 | return ret; | 
|  | 178 | } | 
|  | 179 |  | 
|  | 180 | /* Enable or disable alarm (i.e. alarm interrupt generation) */ | 
|  | 181 | static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable) | 
|  | 182 | { | 
|  | 183 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | 184 | int ret; | 
|  | 185 |  | 
|  | 186 | ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1, | 
|  | 187 | ABB5ZES3_REG_CTRL1_AIE, | 
|  | 188 | enable ? ABB5ZES3_REG_CTRL1_AIE : 0); | 
|  | 189 | if (ret) | 
|  | 190 | dev_err(dev, "%s: writing alarm INT failed (%d)\n", | 
|  | 191 | __func__, ret); | 
|  | 192 |  | 
|  | 193 | return ret; | 
|  | 194 | } | 
|  | 195 |  | 
|  | 196 | /* Enable or disable timer (watchdog timer A interrupt generation) */ | 
|  | 197 | static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable) | 
|  | 198 | { | 
|  | 199 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | 200 | int ret; | 
|  | 201 |  | 
|  | 202 | ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2, | 
|  | 203 | ABB5ZES3_REG_CTRL2_WTAIE, | 
|  | 204 | enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0); | 
|  | 205 | if (ret) | 
|  | 206 | dev_err(dev, "%s: writing timer INT failed (%d)\n", | 
|  | 207 | __func__, ret); | 
|  | 208 |  | 
|  | 209 | return ret; | 
|  | 210 | } | 
|  | 211 |  | 
|  | 212 | /* | 
|  | 213 | * Note: we only read, so regmap inner lock protection is sufficient, i.e. | 
|  | 214 | * we do not need driver's main lock protection. | 
|  | 215 | */ | 
|  | 216 | static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm) | 
|  | 217 | { | 
|  | 218 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | 219 | u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN]; | 
|  | 220 | int ret = 0; | 
|  | 221 |  | 
|  | 222 | /* | 
|  | 223 | * As we need to read CTRL1 register anyway to access 24/12h | 
|  | 224 | * mode bit, we do a single bulk read of both control and RTC | 
|  | 225 | * sections (they are consecutive). This also ease indexing | 
|  | 226 | * of register values after bulk read. | 
|  | 227 | */ | 
|  | 228 | ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs, | 
|  | 229 | sizeof(regs)); | 
|  | 230 | if (ret) { | 
|  | 231 | dev_err(dev, "%s: reading RTC time failed (%d)\n", | 
|  | 232 | __func__, ret); | 
|  | 233 | goto err; | 
|  | 234 | } | 
|  | 235 |  | 
|  | 236 | /* If clock integrity is not guaranteed, do not return a time value */ | 
|  | 237 | if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC) { | 
|  | 238 | ret = -ENODATA; | 
|  | 239 | goto err; | 
|  | 240 | } | 
|  | 241 |  | 
|  | 242 | tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F); | 
|  | 243 | tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]); | 
|  | 244 |  | 
|  | 245 | if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */ | 
|  | 246 | tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f); | 
|  | 247 | if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */ | 
|  | 248 | tm->tm_hour += 12; | 
|  | 249 | } else {						/* 24hr mode */ | 
|  | 250 | tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]); | 
|  | 251 | } | 
|  | 252 |  | 
|  | 253 | tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]); | 
|  | 254 | tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]); | 
|  | 255 | tm->tm_mon  = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */ | 
|  | 256 | tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100; | 
|  | 257 |  | 
|  | 258 | err: | 
|  | 259 | return ret; | 
|  | 260 | } | 
|  | 261 |  | 
|  | 262 | static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm) | 
|  | 263 | { | 
|  | 264 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | 265 | u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN]; | 
|  | 266 | int ret; | 
|  | 267 |  | 
|  | 268 | regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */ | 
|  | 269 | regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min); | 
|  | 270 | regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */ | 
|  | 271 | regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday); | 
|  | 272 | regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday); | 
|  | 273 | regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1); | 
|  | 274 | regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100); | 
|  | 275 |  | 
|  | 276 | mutex_lock(&data->lock); | 
|  | 277 | ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC, | 
|  | 278 | regs + ABB5ZES3_REG_RTC_SC, | 
|  | 279 | ABB5ZES3_RTC_SEC_LEN); | 
|  | 280 | mutex_unlock(&data->lock); | 
|  | 281 |  | 
|  | 282 |  | 
|  | 283 | return ret; | 
|  | 284 | } | 
|  | 285 |  | 
|  | 286 | /* | 
|  | 287 | * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on | 
|  | 288 | * given number of seconds. | 
|  | 289 | */ | 
|  | 290 | static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a) | 
|  | 291 | { | 
|  | 292 | *taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */ | 
|  | 293 | *timer_a = secs; | 
|  | 294 | } | 
|  | 295 |  | 
|  | 296 | /* | 
|  | 297 | * Return current number of seconds in Timer A. As we only use | 
|  | 298 | * timer A with a 1Hz freq, this is what we expect to have. | 
|  | 299 | */ | 
|  | 300 | static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a) | 
|  | 301 | { | 
|  | 302 | if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */ | 
|  | 303 | return -EINVAL; | 
|  | 304 |  | 
|  | 305 | *secs = timer_a; | 
|  | 306 |  | 
|  | 307 | return 0; | 
|  | 308 | } | 
|  | 309 |  | 
|  | 310 | /* | 
|  | 311 | * Read alarm currently configured via a watchdog timer using timer A. This | 
|  | 312 | * is done by reading current RTC time and adding remaining timer time. | 
|  | 313 | */ | 
|  | 314 | static int _abb5zes3_rtc_read_timer(struct device *dev, | 
|  | 315 | struct rtc_wkalrm *alarm) | 
|  | 316 | { | 
|  | 317 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | 318 | struct rtc_time rtc_tm, *alarm_tm = &alarm->time; | 
|  | 319 | u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1]; | 
|  | 320 | unsigned long rtc_secs; | 
|  | 321 | unsigned int reg; | 
|  | 322 | u8 timer_secs; | 
|  | 323 | int ret; | 
|  | 324 |  | 
|  | 325 | /* | 
|  | 326 | * Instead of doing two separate calls, because they are consecutive, | 
|  | 327 | * we grab both clockout register and Timer A section. The latter is | 
|  | 328 | * used to decide if timer A is enabled (as a watchdog timer). | 
|  | 329 | */ | 
|  | 330 | ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs, | 
|  | 331 | ABB5ZES3_TIMA_SEC_LEN + 1); | 
|  | 332 | if (ret) { | 
|  | 333 | dev_err(dev, "%s: reading Timer A section failed (%d)\n", | 
|  | 334 | __func__, ret); | 
|  | 335 | goto err; | 
|  | 336 | } | 
|  | 337 |  | 
|  | 338 | /* get current time ... */ | 
|  | 339 | ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); | 
|  | 340 | if (ret) | 
|  | 341 | goto err; | 
|  | 342 |  | 
|  | 343 | /* ... convert to seconds ... */ | 
|  | 344 | ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); | 
|  | 345 | if (ret) | 
|  | 346 | goto err; | 
|  | 347 |  | 
|  | 348 | /* ... add remaining timer A time ... */ | 
|  | 349 | ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]); | 
|  | 350 | if (ret) | 
|  | 351 | goto err; | 
|  | 352 |  | 
|  | 353 | /* ... and convert back. */ | 
|  | 354 | rtc_time_to_tm(rtc_secs + timer_secs, alarm_tm); | 
|  | 355 |  | 
|  | 356 | ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, ®); | 
|  | 357 | if (ret) { | 
|  | 358 | dev_err(dev, "%s: reading ctrl reg failed (%d)\n", | 
|  | 359 | __func__, ret); | 
|  | 360 | goto err; | 
|  | 361 | } | 
|  | 362 |  | 
|  | 363 | alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE); | 
|  | 364 |  | 
|  | 365 | err: | 
|  | 366 | return ret; | 
|  | 367 | } | 
|  | 368 |  | 
|  | 369 | /* Read alarm currently configured via a RTC alarm registers. */ | 
|  | 370 | static int _abb5zes3_rtc_read_alarm(struct device *dev, | 
|  | 371 | struct rtc_wkalrm *alarm) | 
|  | 372 | { | 
|  | 373 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | 374 | struct rtc_time rtc_tm, *alarm_tm = &alarm->time; | 
|  | 375 | unsigned long rtc_secs, alarm_secs; | 
|  | 376 | u8 regs[ABB5ZES3_ALRM_SEC_LEN]; | 
|  | 377 | unsigned int reg; | 
|  | 378 | int ret; | 
|  | 379 |  | 
|  | 380 | ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs, | 
|  | 381 | ABB5ZES3_ALRM_SEC_LEN); | 
|  | 382 | if (ret) { | 
|  | 383 | dev_err(dev, "%s: reading alarm section failed (%d)\n", | 
|  | 384 | __func__, ret); | 
|  | 385 | goto err; | 
|  | 386 | } | 
|  | 387 |  | 
|  | 388 | alarm_tm->tm_sec  = 0; | 
|  | 389 | alarm_tm->tm_min  = bcd2bin(regs[0] & 0x7f); | 
|  | 390 | alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f); | 
|  | 391 | alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f); | 
|  | 392 | alarm_tm->tm_wday = -1; | 
|  | 393 |  | 
|  | 394 | /* | 
|  | 395 | * The alarm section does not store year/month. We use the ones in rtc | 
|  | 396 | * section as a basis and increment month and then year if needed to get | 
|  | 397 | * alarm after current time. | 
|  | 398 | */ | 
|  | 399 | ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); | 
|  | 400 | if (ret) | 
|  | 401 | goto err; | 
|  | 402 |  | 
|  | 403 | alarm_tm->tm_year = rtc_tm.tm_year; | 
|  | 404 | alarm_tm->tm_mon = rtc_tm.tm_mon; | 
|  | 405 |  | 
|  | 406 | ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); | 
|  | 407 | if (ret) | 
|  | 408 | goto err; | 
|  | 409 |  | 
|  | 410 | ret = rtc_tm_to_time(alarm_tm, &alarm_secs); | 
|  | 411 | if (ret) | 
|  | 412 | goto err; | 
|  | 413 |  | 
|  | 414 | if (alarm_secs < rtc_secs) { | 
|  | 415 | if (alarm_tm->tm_mon == 11) { | 
|  | 416 | alarm_tm->tm_mon = 0; | 
|  | 417 | alarm_tm->tm_year += 1; | 
|  | 418 | } else { | 
|  | 419 | alarm_tm->tm_mon += 1; | 
|  | 420 | } | 
|  | 421 | } | 
|  | 422 |  | 
|  | 423 | ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, ®); | 
|  | 424 | if (ret) { | 
|  | 425 | dev_err(dev, "%s: reading ctrl reg failed (%d)\n", | 
|  | 426 | __func__, ret); | 
|  | 427 | goto err; | 
|  | 428 | } | 
|  | 429 |  | 
|  | 430 | alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE); | 
|  | 431 |  | 
|  | 432 | err: | 
|  | 433 | return ret; | 
|  | 434 | } | 
|  | 435 |  | 
|  | 436 | /* | 
|  | 437 | * As the Alarm mechanism supported by the chip is only accurate to the | 
|  | 438 | * minute, we use the watchdog timer mechanism provided by timer A | 
|  | 439 | * (up to 256 seconds w/ a second accuracy) for low alarm values (below | 
|  | 440 | * 4 minutes). Otherwise, we use the common alarm mechanism provided | 
|  | 441 | * by the chip. In order for that to work, we keep track of currently | 
|  | 442 | * configured timer type via 'timer_alarm' flag in our private data | 
|  | 443 | * structure. | 
|  | 444 | */ | 
|  | 445 | static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) | 
|  | 446 | { | 
|  | 447 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | 448 | int ret; | 
|  | 449 |  | 
|  | 450 | mutex_lock(&data->lock); | 
|  | 451 | if (data->timer_alarm) | 
|  | 452 | ret = _abb5zes3_rtc_read_timer(dev, alarm); | 
|  | 453 | else | 
|  | 454 | ret = _abb5zes3_rtc_read_alarm(dev, alarm); | 
|  | 455 | mutex_unlock(&data->lock); | 
|  | 456 |  | 
|  | 457 | return ret; | 
|  | 458 | } | 
|  | 459 |  | 
|  | 460 | /* | 
|  | 461 | * Set alarm using chip alarm mechanism. It is only accurate to the | 
|  | 462 | * minute (not the second). The function expects alarm interrupt to | 
|  | 463 | * be disabled. | 
|  | 464 | */ | 
|  | 465 | static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) | 
|  | 466 | { | 
|  | 467 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | 468 | struct rtc_time *alarm_tm = &alarm->time; | 
|  | 469 | unsigned long rtc_secs, alarm_secs; | 
|  | 470 | u8 regs[ABB5ZES3_ALRM_SEC_LEN]; | 
|  | 471 | struct rtc_time rtc_tm; | 
|  | 472 | int ret, enable = 1; | 
|  | 473 |  | 
|  | 474 | ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); | 
|  | 475 | if (ret) | 
|  | 476 | goto err; | 
|  | 477 |  | 
|  | 478 | ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); | 
|  | 479 | if (ret) | 
|  | 480 | goto err; | 
|  | 481 |  | 
|  | 482 | ret = rtc_tm_to_time(alarm_tm, &alarm_secs); | 
|  | 483 | if (ret) | 
|  | 484 | goto err; | 
|  | 485 |  | 
|  | 486 | /* If alarm time is before current time, disable the alarm */ | 
|  | 487 | if (!alarm->enabled || alarm_secs <= rtc_secs) { | 
|  | 488 | enable = 0; | 
|  | 489 | } else { | 
|  | 490 | /* | 
|  | 491 | * Chip only support alarms up to one month in the future. Let's | 
|  | 492 | * return an error if we get something after that limit. | 
|  | 493 | * Comparison is done by incrementing rtc_tm month field by one | 
|  | 494 | * and checking alarm value is still below. | 
|  | 495 | */ | 
|  | 496 | if (rtc_tm.tm_mon == 11) { /* handle year wrapping */ | 
|  | 497 | rtc_tm.tm_mon = 0; | 
|  | 498 | rtc_tm.tm_year += 1; | 
|  | 499 | } else { | 
|  | 500 | rtc_tm.tm_mon += 1; | 
|  | 501 | } | 
|  | 502 |  | 
|  | 503 | ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); | 
|  | 504 | if (ret) | 
|  | 505 | goto err; | 
|  | 506 |  | 
|  | 507 | if (alarm_secs > rtc_secs) { | 
|  | 508 | dev_err(dev, "%s: alarm maximum is one month in the " | 
|  | 509 | "future (%d)\n", __func__, ret); | 
|  | 510 | ret = -EINVAL; | 
|  | 511 | goto err; | 
|  | 512 | } | 
|  | 513 | } | 
|  | 514 |  | 
|  | 515 | /* | 
|  | 516 | * Program all alarm registers but DW one. For each register, setting | 
|  | 517 | * MSB to 0 enables associated alarm. | 
|  | 518 | */ | 
|  | 519 | regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f; | 
|  | 520 | regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f; | 
|  | 521 | regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f; | 
|  | 522 | regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */ | 
|  | 523 |  | 
|  | 524 | ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs, | 
|  | 525 | ABB5ZES3_ALRM_SEC_LEN); | 
|  | 526 | if (ret < 0) { | 
|  | 527 | dev_err(dev, "%s: writing ALARM section failed (%d)\n", | 
|  | 528 | __func__, ret); | 
|  | 529 | goto err; | 
|  | 530 | } | 
|  | 531 |  | 
|  | 532 | /* Record currently configured alarm is not a timer */ | 
|  | 533 | data->timer_alarm = 0; | 
|  | 534 |  | 
|  | 535 | /* Enable or disable alarm interrupt generation */ | 
|  | 536 | ret = _abb5zes3_rtc_update_alarm(dev, enable); | 
|  | 537 |  | 
|  | 538 | err: | 
|  | 539 | return ret; | 
|  | 540 | } | 
|  | 541 |  | 
|  | 542 | /* | 
|  | 543 | * Set alarm using timer watchdog (via timer A) mechanism. The function expects | 
|  | 544 | * timer A interrupt to be disabled. | 
|  | 545 | */ | 
|  | 546 | static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm, | 
|  | 547 | u8 secs) | 
|  | 548 | { | 
|  | 549 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | 550 | u8 regs[ABB5ZES3_TIMA_SEC_LEN]; | 
|  | 551 | u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1; | 
|  | 552 | int ret = 0; | 
|  | 553 |  | 
|  | 554 | /* Program given number of seconds to Timer A registers */ | 
|  | 555 | sec_to_timer_a(secs, ®s[0], ®s[1]); | 
|  | 556 | ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs, | 
|  | 557 | ABB5ZES3_TIMA_SEC_LEN); | 
|  | 558 | if (ret < 0) { | 
|  | 559 | dev_err(dev, "%s: writing timer section failed\n", __func__); | 
|  | 560 | goto err; | 
|  | 561 | } | 
|  | 562 |  | 
|  | 563 | /* Configure Timer A as a watchdog timer */ | 
|  | 564 | ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK, | 
|  | 565 | mask, ABB5ZES3_REG_TIM_CLK_TAC1); | 
|  | 566 | if (ret) | 
|  | 567 | dev_err(dev, "%s: failed to update timer\n", __func__); | 
|  | 568 |  | 
|  | 569 | /* Record currently configured alarm is a timer */ | 
|  | 570 | data->timer_alarm = 1; | 
|  | 571 |  | 
|  | 572 | /* Enable or disable timer interrupt generation */ | 
|  | 573 | ret = _abb5zes3_rtc_update_timer(dev, alarm->enabled); | 
|  | 574 |  | 
|  | 575 | err: | 
|  | 576 | return ret; | 
|  | 577 | } | 
|  | 578 |  | 
|  | 579 | /* | 
|  | 580 | * The chip has an alarm which is only accurate to the minute. In order to | 
|  | 581 | * handle alarms below that limit, we use the watchdog timer function of | 
|  | 582 | * timer A. More precisely, the timer method is used for alarms below 240 | 
|  | 583 | * seconds. | 
|  | 584 | */ | 
|  | 585 | static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) | 
|  | 586 | { | 
|  | 587 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | 588 | struct rtc_time *alarm_tm = &alarm->time; | 
|  | 589 | unsigned long rtc_secs, alarm_secs; | 
|  | 590 | struct rtc_time rtc_tm; | 
|  | 591 | int ret; | 
|  | 592 |  | 
|  | 593 | mutex_lock(&data->lock); | 
|  | 594 | ret = _abb5zes3_rtc_read_time(dev, &rtc_tm); | 
|  | 595 | if (ret) | 
|  | 596 | goto err; | 
|  | 597 |  | 
|  | 598 | ret = rtc_tm_to_time(&rtc_tm, &rtc_secs); | 
|  | 599 | if (ret) | 
|  | 600 | goto err; | 
|  | 601 |  | 
|  | 602 | ret = rtc_tm_to_time(alarm_tm, &alarm_secs); | 
|  | 603 | if (ret) | 
|  | 604 | goto err; | 
|  | 605 |  | 
|  | 606 | /* Let's first disable both the alarm and the timer interrupts */ | 
|  | 607 | ret = _abb5zes3_rtc_update_alarm(dev, false); | 
|  | 608 | if (ret < 0) { | 
|  | 609 | dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__, | 
|  | 610 | ret); | 
|  | 611 | goto err; | 
|  | 612 | } | 
|  | 613 | ret = _abb5zes3_rtc_update_timer(dev, false); | 
|  | 614 | if (ret < 0) { | 
|  | 615 | dev_err(dev, "%s: unable to disable timer (%d)\n", __func__, | 
|  | 616 | ret); | 
|  | 617 | goto err; | 
|  | 618 | } | 
|  | 619 |  | 
|  | 620 | data->timer_alarm = 0; | 
|  | 621 |  | 
|  | 622 | /* | 
|  | 623 | * Let's now configure the alarm; if we are expected to ring in | 
|  | 624 | * more than 240s, then we setup an alarm. Otherwise, a timer. | 
|  | 625 | */ | 
|  | 626 | if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240)) | 
|  | 627 | ret = _abb5zes3_rtc_set_timer(dev, alarm, | 
|  | 628 | alarm_secs - rtc_secs); | 
|  | 629 | else | 
|  | 630 | ret = _abb5zes3_rtc_set_alarm(dev, alarm); | 
|  | 631 |  | 
|  | 632 | err: | 
|  | 633 | mutex_unlock(&data->lock); | 
|  | 634 |  | 
|  | 635 | if (ret) | 
|  | 636 | dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__, | 
|  | 637 | ret); | 
|  | 638 |  | 
|  | 639 | return ret; | 
|  | 640 | } | 
|  | 641 |  | 
|  | 642 | /* Enable or disable battery low irq generation */ | 
|  | 643 | static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap, | 
|  | 644 | bool enable) | 
|  | 645 | { | 
|  | 646 | return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, | 
|  | 647 | ABB5ZES3_REG_CTRL3_BLIE, | 
|  | 648 | enable ? ABB5ZES3_REG_CTRL3_BLIE : 0); | 
|  | 649 | } | 
|  | 650 |  | 
|  | 651 | /* | 
|  | 652 | * Check current RTC status and enable/disable what needs to be. Return 0 if | 
|  | 653 | * everything went ok and a negative value upon error. Note: this function | 
|  | 654 | * is called early during init and hence does need mutex protection. | 
|  | 655 | */ | 
|  | 656 | static int abb5zes3_rtc_check_setup(struct device *dev) | 
|  | 657 | { | 
|  | 658 | struct abb5zes3_rtc_data *data = dev_get_drvdata(dev); | 
|  | 659 | struct regmap *regmap = data->regmap; | 
|  | 660 | unsigned int reg; | 
|  | 661 | int ret; | 
|  | 662 | u8 mask; | 
|  | 663 |  | 
|  | 664 | /* | 
|  | 665 | * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It | 
|  | 666 | * is disabled here to prevent polluting the interrupt line and | 
|  | 667 | * uselessly triggering the IRQ handler we install for alarm and battery | 
|  | 668 | * low events. Note: this is done before clearing int. status below | 
|  | 669 | * in this function. | 
|  | 670 | * We also disable all timers and set timer interrupt to permanent (not | 
|  | 671 | * pulsed). | 
|  | 672 | */ | 
|  | 673 | mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 | | 
|  | 674 | ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 | | 
|  | 675 | ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 | | 
|  | 676 | ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM); | 
|  | 677 | ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask, | 
|  | 678 | ABB5ZES3_REG_TIM_CLK_COF0 | ABB5ZES3_REG_TIM_CLK_COF1 | | 
|  | 679 | ABB5ZES3_REG_TIM_CLK_COF2); | 
|  | 680 | if (ret < 0) { | 
|  | 681 | dev_err(dev, "%s: unable to initialize clkout register (%d)\n", | 
|  | 682 | __func__, ret); | 
|  | 683 | return ret; | 
|  | 684 | } | 
|  | 685 |  | 
|  | 686 | /* | 
|  | 687 | * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled | 
|  | 688 | * individually by clearing/setting MSB of each associated register. So, | 
|  | 689 | * we set all alarm enable bits to disable current alarm setting. | 
|  | 690 | */ | 
|  | 691 | mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE | | 
|  | 692 | ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE); | 
|  | 693 | ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask); | 
|  | 694 | if (ret < 0) { | 
|  | 695 | dev_err(dev, "%s: unable to disable alarm setting (%d)\n", | 
|  | 696 | __func__, ret); | 
|  | 697 | return ret; | 
|  | 698 | } | 
|  | 699 |  | 
|  | 700 | /* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */ | 
|  | 701 | mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE | | 
|  | 702 | ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM | | 
|  | 703 | ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP); | 
|  | 704 | ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0); | 
|  | 705 | if (ret < 0) { | 
|  | 706 | dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n", | 
|  | 707 | __func__, ret); | 
|  | 708 | return ret; | 
|  | 709 | } | 
|  | 710 |  | 
|  | 711 | /* | 
|  | 712 | * Set Control 2 register (timer int. disabled, alarm status cleared). | 
|  | 713 | * WTAF is read-only and cleared automatically by reading the register. | 
|  | 714 | */ | 
|  | 715 | mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE | | 
|  | 716 | ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF | | 
|  | 717 | ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF | | 
|  | 718 | ABB5ZES3_REG_CTRL2_CTAF); | 
|  | 719 | ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0); | 
|  | 720 | if (ret < 0) { | 
|  | 721 | dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n", | 
|  | 722 | __func__, ret); | 
|  | 723 | return ret; | 
|  | 724 | } | 
|  | 725 |  | 
|  | 726 | /* | 
|  | 727 | * Enable battery low detection function and battery switchover function | 
|  | 728 | * (standard mode). Disable associated interrupts. Clear battery | 
|  | 729 | * switchover flag but not battery low flag. The latter is checked | 
|  | 730 | * later below. | 
|  | 731 | */ | 
|  | 732 | mask = (ABB5ZES3_REG_CTRL3_PM0 | ABB5ZES3_REG_CTRL3_PM1 | | 
|  | 733 | ABB5ZES3_REG_CTRL3_PM2 | ABB5ZES3_REG_CTRL3_BLIE | | 
|  | 734 | ABB5ZES3_REG_CTRL3_BSIE| ABB5ZES3_REG_CTRL3_BSF); | 
|  | 735 | ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0); | 
|  | 736 | if (ret < 0) { | 
|  | 737 | dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n", | 
|  | 738 | __func__, ret); | 
|  | 739 | return ret; | 
|  | 740 | } | 
|  | 741 |  | 
|  | 742 | /* Check oscillator integrity flag */ | 
|  | 743 | ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, ®); | 
|  | 744 | if (ret < 0) { | 
|  | 745 | dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n", | 
|  | 746 | __func__, ret); | 
|  | 747 | return ret; | 
|  | 748 | } | 
|  | 749 |  | 
|  | 750 | if (reg & ABB5ZES3_REG_RTC_SC_OSC) { | 
|  | 751 | dev_err(dev, "clock integrity not guaranteed. Osc. has stopped " | 
|  | 752 | "or has been interrupted.\n"); | 
|  | 753 | dev_err(dev, "change battery (if not already done) and  " | 
|  | 754 | "then set time to reset osc. failure flag.\n"); | 
|  | 755 | } | 
|  | 756 |  | 
|  | 757 | /* | 
|  | 758 | * Check battery low flag at startup: this allows reporting battery | 
|  | 759 | * is low at startup when IRQ line is not connected. Note: we record | 
|  | 760 | * current status to avoid reenabling this interrupt later in probe | 
|  | 761 | * function if battery is low. | 
|  | 762 | */ | 
|  | 763 | ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, ®); | 
|  | 764 | if (ret < 0) { | 
|  | 765 | dev_err(dev, "%s: unable to read battery low flag (%d)\n", | 
|  | 766 | __func__, ret); | 
|  | 767 | return ret; | 
|  | 768 | } | 
|  | 769 |  | 
|  | 770 | data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF; | 
|  | 771 | if (data->battery_low) { | 
|  | 772 | dev_err(dev, "RTC battery is low; please, consider " | 
|  | 773 | "changing it!\n"); | 
|  | 774 |  | 
|  | 775 | ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false); | 
|  | 776 | if (ret) | 
|  | 777 | dev_err(dev, "%s: disabling battery low interrupt " | 
|  | 778 | "generation failed (%d)\n", __func__, ret); | 
|  | 779 | } | 
|  | 780 |  | 
|  | 781 | return ret; | 
|  | 782 | } | 
|  | 783 |  | 
|  | 784 | static int abb5zes3_rtc_alarm_irq_enable(struct device *dev, | 
|  | 785 | unsigned int enable) | 
|  | 786 | { | 
|  | 787 | struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); | 
|  | 788 | int ret = 0; | 
|  | 789 |  | 
|  | 790 | if (rtc_data->irq) { | 
|  | 791 | mutex_lock(&rtc_data->lock); | 
|  | 792 | if (rtc_data->timer_alarm) | 
|  | 793 | ret = _abb5zes3_rtc_update_timer(dev, enable); | 
|  | 794 | else | 
|  | 795 | ret = _abb5zes3_rtc_update_alarm(dev, enable); | 
|  | 796 | mutex_unlock(&rtc_data->lock); | 
|  | 797 | } | 
|  | 798 |  | 
|  | 799 | return ret; | 
|  | 800 | } | 
|  | 801 |  | 
|  | 802 | static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data) | 
|  | 803 | { | 
|  | 804 | struct i2c_client *client = data; | 
|  | 805 | struct device *dev = &client->dev; | 
|  | 806 | struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); | 
|  | 807 | struct rtc_device *rtc = rtc_data->rtc; | 
|  | 808 | u8 regs[ABB5ZES3_CTRL_SEC_LEN]; | 
|  | 809 | int ret, handled = IRQ_NONE; | 
|  | 810 |  | 
|  | 811 | ret = regmap_bulk_read(rtc_data->regmap, 0, regs, | 
|  | 812 | ABB5ZES3_CTRL_SEC_LEN); | 
|  | 813 | if (ret) { | 
|  | 814 | dev_err(dev, "%s: unable to read control section (%d)!\n", | 
|  | 815 | __func__, ret); | 
|  | 816 | return handled; | 
|  | 817 | } | 
|  | 818 |  | 
|  | 819 | /* | 
|  | 820 | * Check battery low detection flag and disable battery low interrupt | 
|  | 821 | * generation if flag is set (interrupt can only be cleared when | 
|  | 822 | * battery is replaced). | 
|  | 823 | */ | 
|  | 824 | if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) { | 
|  | 825 | dev_err(dev, "RTC battery is low; please change it!\n"); | 
|  | 826 |  | 
|  | 827 | _abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false); | 
|  | 828 |  | 
|  | 829 | handled = IRQ_HANDLED; | 
|  | 830 | } | 
|  | 831 |  | 
|  | 832 | /* Check alarm flag */ | 
|  | 833 | if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) { | 
|  | 834 | dev_dbg(dev, "RTC alarm!\n"); | 
|  | 835 |  | 
|  | 836 | rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); | 
|  | 837 |  | 
|  | 838 | /* Acknowledge and disable the alarm */ | 
|  | 839 | _abb5zes3_rtc_clear_alarm(dev); | 
|  | 840 | _abb5zes3_rtc_update_alarm(dev, 0); | 
|  | 841 |  | 
|  | 842 | handled = IRQ_HANDLED; | 
|  | 843 | } | 
|  | 844 |  | 
|  | 845 | /* Check watchdog Timer A flag */ | 
|  | 846 | if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) { | 
|  | 847 | dev_dbg(dev, "RTC timer!\n"); | 
|  | 848 |  | 
|  | 849 | rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF); | 
|  | 850 |  | 
|  | 851 | /* | 
|  | 852 | * Acknowledge and disable the alarm. Note: WTAF | 
|  | 853 | * flag had been cleared when reading CTRL2 | 
|  | 854 | */ | 
|  | 855 | _abb5zes3_rtc_update_timer(dev, 0); | 
|  | 856 |  | 
|  | 857 | rtc_data->timer_alarm = 0; | 
|  | 858 |  | 
|  | 859 | handled = IRQ_HANDLED; | 
|  | 860 | } | 
|  | 861 |  | 
|  | 862 | return handled; | 
|  | 863 | } | 
|  | 864 |  | 
|  | 865 | static const struct rtc_class_ops rtc_ops = { | 
|  | 866 | .read_time = _abb5zes3_rtc_read_time, | 
|  | 867 | .set_time = abb5zes3_rtc_set_time, | 
|  | 868 | .read_alarm = abb5zes3_rtc_read_alarm, | 
|  | 869 | .set_alarm = abb5zes3_rtc_set_alarm, | 
|  | 870 | .alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable, | 
|  | 871 | }; | 
|  | 872 |  | 
|  | 873 | static const struct regmap_config abb5zes3_rtc_regmap_config = { | 
|  | 874 | .reg_bits = 8, | 
|  | 875 | .val_bits = 8, | 
|  | 876 | }; | 
|  | 877 |  | 
|  | 878 | static int abb5zes3_probe(struct i2c_client *client, | 
|  | 879 | const struct i2c_device_id *id) | 
|  | 880 | { | 
|  | 881 | struct abb5zes3_rtc_data *data = NULL; | 
|  | 882 | struct device *dev = &client->dev; | 
|  | 883 | struct regmap *regmap; | 
|  | 884 | int ret; | 
|  | 885 |  | 
|  | 886 | if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C | | 
|  | 887 | I2C_FUNC_SMBUS_BYTE_DATA | | 
|  | 888 | I2C_FUNC_SMBUS_I2C_BLOCK)) { | 
|  | 889 | ret = -ENODEV; | 
|  | 890 | goto err; | 
|  | 891 | } | 
|  | 892 |  | 
|  | 893 | regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config); | 
|  | 894 | if (IS_ERR(regmap)) { | 
|  | 895 | ret = PTR_ERR(regmap); | 
|  | 896 | dev_err(dev, "%s: regmap allocation failed: %d\n", | 
|  | 897 | __func__, ret); | 
|  | 898 | goto err; | 
|  | 899 | } | 
|  | 900 |  | 
|  | 901 | ret = abb5zes3_i2c_validate_chip(regmap); | 
|  | 902 | if (ret) | 
|  | 903 | goto err; | 
|  | 904 |  | 
|  | 905 | data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL); | 
|  | 906 | if (!data) { | 
|  | 907 | ret = -ENOMEM; | 
|  | 908 | goto err; | 
|  | 909 | } | 
|  | 910 |  | 
|  | 911 | mutex_init(&data->lock); | 
|  | 912 | data->regmap = regmap; | 
|  | 913 | dev_set_drvdata(dev, data); | 
|  | 914 |  | 
|  | 915 | ret = abb5zes3_rtc_check_setup(dev); | 
|  | 916 | if (ret) | 
|  | 917 | goto err; | 
|  | 918 |  | 
|  | 919 | data->rtc = devm_rtc_allocate_device(dev); | 
|  | 920 | ret = PTR_ERR_OR_ZERO(data->rtc); | 
|  | 921 | if (ret) { | 
|  | 922 | dev_err(dev, "%s: unable to allocate RTC device (%d)\n", | 
|  | 923 | __func__, ret); | 
|  | 924 | goto err; | 
|  | 925 | } | 
|  | 926 |  | 
|  | 927 | if (client->irq > 0) { | 
|  | 928 | ret = devm_request_threaded_irq(dev, client->irq, NULL, | 
|  | 929 | _abb5zes3_rtc_interrupt, | 
|  | 930 | IRQF_SHARED|IRQF_ONESHOT, | 
|  | 931 | DRV_NAME, client); | 
|  | 932 | if (!ret) { | 
|  | 933 | device_init_wakeup(dev, true); | 
|  | 934 | data->irq = client->irq; | 
|  | 935 | dev_dbg(dev, "%s: irq %d used by RTC\n", __func__, | 
|  | 936 | client->irq); | 
|  | 937 | } else { | 
|  | 938 | dev_err(dev, "%s: irq %d unavailable (%d)\n", | 
|  | 939 | __func__, client->irq, ret); | 
|  | 940 | goto err; | 
|  | 941 | } | 
|  | 942 | } | 
|  | 943 |  | 
|  | 944 | data->rtc->ops = &rtc_ops; | 
|  | 945 | data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000; | 
|  | 946 | data->rtc->range_max = RTC_TIMESTAMP_END_2099; | 
|  | 947 |  | 
|  | 948 | /* Enable battery low detection interrupt if battery not already low */ | 
|  | 949 | if (!data->battery_low && data->irq) { | 
|  | 950 | ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true); | 
|  | 951 | if (ret) { | 
|  | 952 | dev_err(dev, "%s: enabling battery low interrupt " | 
|  | 953 | "generation failed (%d)\n", __func__, ret); | 
|  | 954 | goto err; | 
|  | 955 | } | 
|  | 956 | } | 
|  | 957 |  | 
|  | 958 | ret = rtc_register_device(data->rtc); | 
|  | 959 |  | 
|  | 960 | err: | 
|  | 961 | if (ret && data && data->irq) | 
|  | 962 | device_init_wakeup(dev, false); | 
|  | 963 | return ret; | 
|  | 964 | } | 
|  | 965 |  | 
|  | 966 | static int abb5zes3_remove(struct i2c_client *client) | 
|  | 967 | { | 
|  | 968 | struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(&client->dev); | 
|  | 969 |  | 
|  | 970 | if (rtc_data->irq > 0) | 
|  | 971 | device_init_wakeup(&client->dev, false); | 
|  | 972 |  | 
|  | 973 | return 0; | 
|  | 974 | } | 
|  | 975 |  | 
|  | 976 | #ifdef CONFIG_PM_SLEEP | 
|  | 977 | static int abb5zes3_rtc_suspend(struct device *dev) | 
|  | 978 | { | 
|  | 979 | struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); | 
|  | 980 |  | 
|  | 981 | if (device_may_wakeup(dev)) | 
|  | 982 | return enable_irq_wake(rtc_data->irq); | 
|  | 983 |  | 
|  | 984 | return 0; | 
|  | 985 | } | 
|  | 986 |  | 
|  | 987 | static int abb5zes3_rtc_resume(struct device *dev) | 
|  | 988 | { | 
|  | 989 | struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev); | 
|  | 990 |  | 
|  | 991 | if (device_may_wakeup(dev)) | 
|  | 992 | return disable_irq_wake(rtc_data->irq); | 
|  | 993 |  | 
|  | 994 | return 0; | 
|  | 995 | } | 
|  | 996 | #endif | 
|  | 997 |  | 
|  | 998 | static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend, | 
|  | 999 | abb5zes3_rtc_resume); | 
|  | 1000 |  | 
|  | 1001 | #ifdef CONFIG_OF | 
|  | 1002 | static const struct of_device_id abb5zes3_dt_match[] = { | 
|  | 1003 | { .compatible = "abracon,abb5zes3" }, | 
|  | 1004 | { }, | 
|  | 1005 | }; | 
|  | 1006 | MODULE_DEVICE_TABLE(of, abb5zes3_dt_match); | 
|  | 1007 | #endif | 
|  | 1008 |  | 
|  | 1009 | static const struct i2c_device_id abb5zes3_id[] = { | 
|  | 1010 | { "abb5zes3", 0 }, | 
|  | 1011 | { } | 
|  | 1012 | }; | 
|  | 1013 | MODULE_DEVICE_TABLE(i2c, abb5zes3_id); | 
|  | 1014 |  | 
|  | 1015 | static struct i2c_driver abb5zes3_driver = { | 
|  | 1016 | .driver = { | 
|  | 1017 | .name = DRV_NAME, | 
|  | 1018 | .pm = &abb5zes3_rtc_pm_ops, | 
|  | 1019 | .of_match_table = of_match_ptr(abb5zes3_dt_match), | 
|  | 1020 | }, | 
|  | 1021 | .probe	  = abb5zes3_probe, | 
|  | 1022 | .remove	  = abb5zes3_remove, | 
|  | 1023 | .id_table = abb5zes3_id, | 
|  | 1024 | }; | 
|  | 1025 | module_i2c_driver(abb5zes3_driver); | 
|  | 1026 |  | 
|  | 1027 | MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>"); | 
|  | 1028 | MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver"); | 
|  | 1029 | MODULE_LICENSE("GPL"); |