blob: 87dcba101e56268619453bf62c40a44dc29fbf6b [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Utility functions for x86 operand and address decoding
3 *
4 * Copyright (C) Intel Corporation 2017
5 */
6#include <linux/kernel.h>
7#include <linux/string.h>
8#include <linux/ratelimit.h>
9#include <linux/mmu_context.h>
10#include <asm/desc_defs.h>
11#include <asm/desc.h>
12#include <asm/inat.h>
13#include <asm/insn.h>
14#include <asm/insn-eval.h>
15#include <asm/ldt.h>
16#include <asm/vm86.h>
17
18#undef pr_fmt
19#define pr_fmt(fmt) "insn: " fmt
20
21enum reg_type {
22 REG_TYPE_RM = 0,
23 REG_TYPE_INDEX,
24 REG_TYPE_BASE,
25};
26
27/**
28 * is_string_insn() - Determine if instruction is a string instruction
29 * @insn: Instruction containing the opcode to inspect
30 *
31 * Returns:
32 *
33 * true if the instruction, determined by the opcode, is any of the
34 * string instructions as defined in the Intel Software Development manual.
35 * False otherwise.
36 */
37static bool is_string_insn(struct insn *insn)
38{
39 insn_get_opcode(insn);
40
41 /* All string instructions have a 1-byte opcode. */
42 if (insn->opcode.nbytes != 1)
43 return false;
44
45 switch (insn->opcode.bytes[0]) {
46 case 0x6c ... 0x6f: /* INS, OUTS */
47 case 0xa4 ... 0xa7: /* MOVS, CMPS */
48 case 0xaa ... 0xaf: /* STOS, LODS, SCAS */
49 return true;
50 default:
51 return false;
52 }
53}
54
55/**
56 * get_seg_reg_override_idx() - obtain segment register override index
57 * @insn: Valid instruction with segment override prefixes
58 *
59 * Inspect the instruction prefixes in @insn and find segment overrides, if any.
60 *
61 * Returns:
62 *
63 * A constant identifying the segment register to use, among CS, SS, DS,
64 * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
65 * prefixes were found.
66 *
67 * -EINVAL in case of error.
68 */
69static int get_seg_reg_override_idx(struct insn *insn)
70{
71 int idx = INAT_SEG_REG_DEFAULT;
72 int num_overrides = 0, i;
73
74 insn_get_prefixes(insn);
75
76 /* Look for any segment override prefixes. */
77 for (i = 0; i < insn->prefixes.nbytes; i++) {
78 insn_attr_t attr;
79
80 attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
81 switch (attr) {
82 case INAT_MAKE_PREFIX(INAT_PFX_CS):
83 idx = INAT_SEG_REG_CS;
84 num_overrides++;
85 break;
86 case INAT_MAKE_PREFIX(INAT_PFX_SS):
87 idx = INAT_SEG_REG_SS;
88 num_overrides++;
89 break;
90 case INAT_MAKE_PREFIX(INAT_PFX_DS):
91 idx = INAT_SEG_REG_DS;
92 num_overrides++;
93 break;
94 case INAT_MAKE_PREFIX(INAT_PFX_ES):
95 idx = INAT_SEG_REG_ES;
96 num_overrides++;
97 break;
98 case INAT_MAKE_PREFIX(INAT_PFX_FS):
99 idx = INAT_SEG_REG_FS;
100 num_overrides++;
101 break;
102 case INAT_MAKE_PREFIX(INAT_PFX_GS):
103 idx = INAT_SEG_REG_GS;
104 num_overrides++;
105 break;
106 /* No default action needed. */
107 }
108 }
109
110 /* More than one segment override prefix leads to undefined behavior. */
111 if (num_overrides > 1)
112 return -EINVAL;
113
114 return idx;
115}
116
117/**
118 * check_seg_overrides() - check if segment override prefixes are allowed
119 * @insn: Valid instruction with segment override prefixes
120 * @regoff: Operand offset, in pt_regs, for which the check is performed
121 *
122 * For a particular register used in register-indirect addressing, determine if
123 * segment override prefixes can be used. Specifically, no overrides are allowed
124 * for rDI if used with a string instruction.
125 *
126 * Returns:
127 *
128 * True if segment override prefixes can be used with the register indicated
129 * in @regoff. False if otherwise.
130 */
131static bool check_seg_overrides(struct insn *insn, int regoff)
132{
133 if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
134 return false;
135
136 return true;
137}
138
139/**
140 * resolve_default_seg() - resolve default segment register index for an operand
141 * @insn: Instruction with opcode and address size. Must be valid.
142 * @regs: Register values as seen when entering kernel mode
143 * @off: Operand offset, in pt_regs, for which resolution is needed
144 *
145 * Resolve the default segment register index associated with the instruction
146 * operand register indicated by @off. Such index is resolved based on defaults
147 * described in the Intel Software Development Manual.
148 *
149 * Returns:
150 *
151 * If in protected mode, a constant identifying the segment register to use,
152 * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
153 *
154 * -EINVAL in case of error.
155 */
156static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
157{
158 if (user_64bit_mode(regs))
159 return INAT_SEG_REG_IGNORE;
160 /*
161 * Resolve the default segment register as described in Section 3.7.4
162 * of the Intel Software Development Manual Vol. 1:
163 *
164 * + DS for all references involving r[ABCD]X, and rSI.
165 * + If used in a string instruction, ES for rDI. Otherwise, DS.
166 * + AX, CX and DX are not valid register operands in 16-bit address
167 * encodings but are valid for 32-bit and 64-bit encodings.
168 * + -EDOM is reserved to identify for cases in which no register
169 * is used (i.e., displacement-only addressing). Use DS.
170 * + SS for rSP or rBP.
171 * + CS for rIP.
172 */
173
174 switch (off) {
175 case offsetof(struct pt_regs, ax):
176 case offsetof(struct pt_regs, cx):
177 case offsetof(struct pt_regs, dx):
178 /* Need insn to verify address size. */
179 if (insn->addr_bytes == 2)
180 return -EINVAL;
181
182 case -EDOM:
183 case offsetof(struct pt_regs, bx):
184 case offsetof(struct pt_regs, si):
185 return INAT_SEG_REG_DS;
186
187 case offsetof(struct pt_regs, di):
188 if (is_string_insn(insn))
189 return INAT_SEG_REG_ES;
190 return INAT_SEG_REG_DS;
191
192 case offsetof(struct pt_regs, bp):
193 case offsetof(struct pt_regs, sp):
194 return INAT_SEG_REG_SS;
195
196 case offsetof(struct pt_regs, ip):
197 return INAT_SEG_REG_CS;
198
199 default:
200 return -EINVAL;
201 }
202}
203
204/**
205 * resolve_seg_reg() - obtain segment register index
206 * @insn: Instruction with operands
207 * @regs: Register values as seen when entering kernel mode
208 * @regoff: Operand offset, in pt_regs, used to deterimine segment register
209 *
210 * Determine the segment register associated with the operands and, if
211 * applicable, prefixes and the instruction pointed by @insn.
212 *
213 * The segment register associated to an operand used in register-indirect
214 * addressing depends on:
215 *
216 * a) Whether running in long mode (in such a case segments are ignored, except
217 * if FS or GS are used).
218 *
219 * b) Whether segment override prefixes can be used. Certain instructions and
220 * registers do not allow override prefixes.
221 *
222 * c) Whether segment overrides prefixes are found in the instruction prefixes.
223 *
224 * d) If there are not segment override prefixes or they cannot be used, the
225 * default segment register associated with the operand register is used.
226 *
227 * The function checks first if segment override prefixes can be used with the
228 * operand indicated by @regoff. If allowed, obtain such overridden segment
229 * register index. Lastly, if not prefixes were found or cannot be used, resolve
230 * the segment register index to use based on the defaults described in the
231 * Intel documentation. In long mode, all segment register indexes will be
232 * ignored, except if overrides were found for FS or GS. All these operations
233 * are done using helper functions.
234 *
235 * The operand register, @regoff, is represented as the offset from the base of
236 * pt_regs.
237 *
238 * As stated, the main use of this function is to determine the segment register
239 * index based on the instruction, its operands and prefixes. Hence, @insn
240 * must be valid. However, if @regoff indicates rIP, we don't need to inspect
241 * @insn at all as in this case CS is used in all cases. This case is checked
242 * before proceeding further.
243 *
244 * Please note that this function does not return the value in the segment
245 * register (i.e., the segment selector) but our defined index. The segment
246 * selector needs to be obtained using get_segment_selector() and passing the
247 * segment register index resolved by this function.
248 *
249 * Returns:
250 *
251 * An index identifying the segment register to use, among CS, SS, DS,
252 * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
253 *
254 * -EINVAL in case of error.
255 */
256static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
257{
258 int idx;
259
260 /*
261 * In the unlikely event of having to resolve the segment register
262 * index for rIP, do it first. Segment override prefixes should not
263 * be used. Hence, it is not necessary to inspect the instruction,
264 * which may be invalid at this point.
265 */
266 if (regoff == offsetof(struct pt_regs, ip)) {
267 if (user_64bit_mode(regs))
268 return INAT_SEG_REG_IGNORE;
269 else
270 return INAT_SEG_REG_CS;
271 }
272
273 if (!insn)
274 return -EINVAL;
275
276 if (!check_seg_overrides(insn, regoff))
277 return resolve_default_seg(insn, regs, regoff);
278
279 idx = get_seg_reg_override_idx(insn);
280 if (idx < 0)
281 return idx;
282
283 if (idx == INAT_SEG_REG_DEFAULT)
284 return resolve_default_seg(insn, regs, regoff);
285
286 /*
287 * In long mode, segment override prefixes are ignored, except for
288 * overrides for FS and GS.
289 */
290 if (user_64bit_mode(regs)) {
291 if (idx != INAT_SEG_REG_FS &&
292 idx != INAT_SEG_REG_GS)
293 idx = INAT_SEG_REG_IGNORE;
294 }
295
296 return idx;
297}
298
299/**
300 * get_segment_selector() - obtain segment selector
301 * @regs: Register values as seen when entering kernel mode
302 * @seg_reg_idx: Segment register index to use
303 *
304 * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
305 * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
306 * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
307 * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
308 * registers. This done for only for completeness as in CONFIG_X86_64 segment
309 * registers are ignored.
310 *
311 * Returns:
312 *
313 * Value of the segment selector, including null when running in
314 * long mode.
315 *
316 * -EINVAL on error.
317 */
318static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
319{
320#ifdef CONFIG_X86_64
321 unsigned short sel;
322
323 switch (seg_reg_idx) {
324 case INAT_SEG_REG_IGNORE:
325 return 0;
326 case INAT_SEG_REG_CS:
327 return (unsigned short)(regs->cs & 0xffff);
328 case INAT_SEG_REG_SS:
329 return (unsigned short)(regs->ss & 0xffff);
330 case INAT_SEG_REG_DS:
331 savesegment(ds, sel);
332 return sel;
333 case INAT_SEG_REG_ES:
334 savesegment(es, sel);
335 return sel;
336 case INAT_SEG_REG_FS:
337 savesegment(fs, sel);
338 return sel;
339 case INAT_SEG_REG_GS:
340 savesegment(gs, sel);
341 return sel;
342 default:
343 return -EINVAL;
344 }
345#else /* CONFIG_X86_32 */
346 struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
347
348 if (v8086_mode(regs)) {
349 switch (seg_reg_idx) {
350 case INAT_SEG_REG_CS:
351 return (unsigned short)(regs->cs & 0xffff);
352 case INAT_SEG_REG_SS:
353 return (unsigned short)(regs->ss & 0xffff);
354 case INAT_SEG_REG_DS:
355 return vm86regs->ds;
356 case INAT_SEG_REG_ES:
357 return vm86regs->es;
358 case INAT_SEG_REG_FS:
359 return vm86regs->fs;
360 case INAT_SEG_REG_GS:
361 return vm86regs->gs;
362 case INAT_SEG_REG_IGNORE:
363 /* fall through */
364 default:
365 return -EINVAL;
366 }
367 }
368
369 switch (seg_reg_idx) {
370 case INAT_SEG_REG_CS:
371 return (unsigned short)(regs->cs & 0xffff);
372 case INAT_SEG_REG_SS:
373 return (unsigned short)(regs->ss & 0xffff);
374 case INAT_SEG_REG_DS:
375 return (unsigned short)(regs->ds & 0xffff);
376 case INAT_SEG_REG_ES:
377 return (unsigned short)(regs->es & 0xffff);
378 case INAT_SEG_REG_FS:
379 return (unsigned short)(regs->fs & 0xffff);
380 case INAT_SEG_REG_GS:
381 /*
382 * GS may or may not be in regs as per CONFIG_X86_32_LAZY_GS.
383 * The macro below takes care of both cases.
384 */
385 return get_user_gs(regs);
386 case INAT_SEG_REG_IGNORE:
387 /* fall through */
388 default:
389 return -EINVAL;
390 }
391#endif /* CONFIG_X86_64 */
392}
393
394static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
395 enum reg_type type)
396{
397 int regno = 0;
398
399 static const int regoff[] = {
400 offsetof(struct pt_regs, ax),
401 offsetof(struct pt_regs, cx),
402 offsetof(struct pt_regs, dx),
403 offsetof(struct pt_regs, bx),
404 offsetof(struct pt_regs, sp),
405 offsetof(struct pt_regs, bp),
406 offsetof(struct pt_regs, si),
407 offsetof(struct pt_regs, di),
408#ifdef CONFIG_X86_64
409 offsetof(struct pt_regs, r8),
410 offsetof(struct pt_regs, r9),
411 offsetof(struct pt_regs, r10),
412 offsetof(struct pt_regs, r11),
413 offsetof(struct pt_regs, r12),
414 offsetof(struct pt_regs, r13),
415 offsetof(struct pt_regs, r14),
416 offsetof(struct pt_regs, r15),
417#endif
418 };
419 int nr_registers = ARRAY_SIZE(regoff);
420 /*
421 * Don't possibly decode a 32-bit instructions as
422 * reading a 64-bit-only register.
423 */
424 if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
425 nr_registers -= 8;
426
427 switch (type) {
428 case REG_TYPE_RM:
429 regno = X86_MODRM_RM(insn->modrm.value);
430
431 /*
432 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
433 * follows the ModRM byte.
434 */
435 if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
436 return -EDOM;
437
438 if (X86_REX_B(insn->rex_prefix.value))
439 regno += 8;
440 break;
441
442 case REG_TYPE_INDEX:
443 regno = X86_SIB_INDEX(insn->sib.value);
444 if (X86_REX_X(insn->rex_prefix.value))
445 regno += 8;
446
447 /*
448 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
449 * portion of the address computation is null. This is
450 * true only if REX.X is 0. In such a case, the SIB index
451 * is used in the address computation.
452 */
453 if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
454 return -EDOM;
455 break;
456
457 case REG_TYPE_BASE:
458 regno = X86_SIB_BASE(insn->sib.value);
459 /*
460 * If ModRM.mod is 0 and SIB.base == 5, the base of the
461 * register-indirect addressing is 0. In this case, a
462 * 32-bit displacement follows the SIB byte.
463 */
464 if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
465 return -EDOM;
466
467 if (X86_REX_B(insn->rex_prefix.value))
468 regno += 8;
469 break;
470
471 default:
472 pr_err_ratelimited("invalid register type: %d\n", type);
473 return -EINVAL;
474 }
475
476 if (regno >= nr_registers) {
477 WARN_ONCE(1, "decoded an instruction with an invalid register");
478 return -EINVAL;
479 }
480 return regoff[regno];
481}
482
483/**
484 * get_reg_offset_16() - Obtain offset of register indicated by instruction
485 * @insn: Instruction containing ModRM byte
486 * @regs: Register values as seen when entering kernel mode
487 * @offs1: Offset of the first operand register
488 * @offs2: Offset of the second opeand register, if applicable
489 *
490 * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
491 * in @insn. This function is to be used with 16-bit address encodings. The
492 * @offs1 and @offs2 will be written with the offset of the two registers
493 * indicated by the instruction. In cases where any of the registers is not
494 * referenced by the instruction, the value will be set to -EDOM.
495 *
496 * Returns:
497 *
498 * 0 on success, -EINVAL on error.
499 */
500static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
501 int *offs1, int *offs2)
502{
503 /*
504 * 16-bit addressing can use one or two registers. Specifics of
505 * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
506 * ModR/M Byte" of the Intel Software Development Manual.
507 */
508 static const int regoff1[] = {
509 offsetof(struct pt_regs, bx),
510 offsetof(struct pt_regs, bx),
511 offsetof(struct pt_regs, bp),
512 offsetof(struct pt_regs, bp),
513 offsetof(struct pt_regs, si),
514 offsetof(struct pt_regs, di),
515 offsetof(struct pt_regs, bp),
516 offsetof(struct pt_regs, bx),
517 };
518
519 static const int regoff2[] = {
520 offsetof(struct pt_regs, si),
521 offsetof(struct pt_regs, di),
522 offsetof(struct pt_regs, si),
523 offsetof(struct pt_regs, di),
524 -EDOM,
525 -EDOM,
526 -EDOM,
527 -EDOM,
528 };
529
530 if (!offs1 || !offs2)
531 return -EINVAL;
532
533 /* Operand is a register, use the generic function. */
534 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
535 *offs1 = insn_get_modrm_rm_off(insn, regs);
536 *offs2 = -EDOM;
537 return 0;
538 }
539
540 *offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
541 *offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
542
543 /*
544 * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
545 * only addressing. This means that no registers are involved in
546 * computing the effective address. Thus, ensure that the first
547 * register offset is invalild. The second register offset is already
548 * invalid under the aforementioned conditions.
549 */
550 if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
551 (X86_MODRM_RM(insn->modrm.value) == 6))
552 *offs1 = -EDOM;
553
554 return 0;
555}
556
557/**
558 * get_desc() - Obtain contents of a segment descriptor
559 * @out: Segment descriptor contents on success
560 * @sel: Segment selector
561 *
562 * Given a segment selector, obtain a pointer to the segment descriptor.
563 * Both global and local descriptor tables are supported.
564 *
565 * Returns:
566 *
567 * True on success, false on failure.
568 *
569 * NULL on error.
570 */
571static bool get_desc(struct desc_struct *out, unsigned short sel)
572{
573 struct desc_ptr gdt_desc = {0, 0};
574 unsigned long desc_base;
575
576#ifdef CONFIG_MODIFY_LDT_SYSCALL
577 if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
578 bool success = false;
579 struct ldt_struct *ldt;
580
581 /* Bits [15:3] contain the index of the desired entry. */
582 sel >>= 3;
583
584 mutex_lock(&current->active_mm->context.lock);
585 ldt = current->active_mm->context.ldt;
586 if (ldt && sel < ldt->nr_entries) {
587 *out = ldt->entries[sel];
588 success = true;
589 }
590
591 mutex_unlock(&current->active_mm->context.lock);
592
593 return success;
594 }
595#endif
596 native_store_gdt(&gdt_desc);
597
598 /*
599 * Segment descriptors have a size of 8 bytes. Thus, the index is
600 * multiplied by 8 to obtain the memory offset of the desired descriptor
601 * from the base of the GDT. As bits [15:3] of the segment selector
602 * contain the index, it can be regarded as multiplied by 8 already.
603 * All that remains is to clear bits [2:0].
604 */
605 desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
606
607 if (desc_base > gdt_desc.size)
608 return false;
609
610 *out = *(struct desc_struct *)(gdt_desc.address + desc_base);
611 return true;
612}
613
614/**
615 * insn_get_seg_base() - Obtain base address of segment descriptor.
616 * @regs: Register values as seen when entering kernel mode
617 * @seg_reg_idx: Index of the segment register pointing to seg descriptor
618 *
619 * Obtain the base address of the segment as indicated by the segment descriptor
620 * pointed by the segment selector. The segment selector is obtained from the
621 * input segment register index @seg_reg_idx.
622 *
623 * Returns:
624 *
625 * In protected mode, base address of the segment. Zero in long mode,
626 * except when FS or GS are used. In virtual-8086 mode, the segment
627 * selector shifted 4 bits to the right.
628 *
629 * -1L in case of error.
630 */
631unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
632{
633 struct desc_struct desc;
634 short sel;
635
636 sel = get_segment_selector(regs, seg_reg_idx);
637 if (sel < 0)
638 return -1L;
639
640 if (v8086_mode(regs))
641 /*
642 * Base is simply the segment selector shifted 4
643 * bits to the right.
644 */
645 return (unsigned long)(sel << 4);
646
647 if (user_64bit_mode(regs)) {
648 /*
649 * Only FS or GS will have a base address, the rest of
650 * the segments' bases are forced to 0.
651 */
652 unsigned long base;
653
654 if (seg_reg_idx == INAT_SEG_REG_FS)
655 rdmsrl(MSR_FS_BASE, base);
656 else if (seg_reg_idx == INAT_SEG_REG_GS)
657 /*
658 * swapgs was called at the kernel entry point. Thus,
659 * MSR_KERNEL_GS_BASE will have the user-space GS base.
660 */
661 rdmsrl(MSR_KERNEL_GS_BASE, base);
662 else
663 base = 0;
664 return base;
665 }
666
667 /* In protected mode the segment selector cannot be null. */
668 if (!sel)
669 return -1L;
670
671 if (!get_desc(&desc, sel))
672 return -1L;
673
674 return get_desc_base(&desc);
675}
676
677/**
678 * get_seg_limit() - Obtain the limit of a segment descriptor
679 * @regs: Register values as seen when entering kernel mode
680 * @seg_reg_idx: Index of the segment register pointing to seg descriptor
681 *
682 * Obtain the limit of the segment as indicated by the segment descriptor
683 * pointed by the segment selector. The segment selector is obtained from the
684 * input segment register index @seg_reg_idx.
685 *
686 * Returns:
687 *
688 * In protected mode, the limit of the segment descriptor in bytes.
689 * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
690 * limit is returned as -1L to imply a limit-less segment.
691 *
692 * Zero is returned on error.
693 */
694static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
695{
696 struct desc_struct desc;
697 unsigned long limit;
698 short sel;
699
700 sel = get_segment_selector(regs, seg_reg_idx);
701 if (sel < 0)
702 return 0;
703
704 if (user_64bit_mode(regs) || v8086_mode(regs))
705 return -1L;
706
707 if (!sel)
708 return 0;
709
710 if (!get_desc(&desc, sel))
711 return 0;
712
713 /*
714 * If the granularity bit is set, the limit is given in multiples
715 * of 4096. This also means that the 12 least significant bits are
716 * not tested when checking the segment limits. In practice,
717 * this means that the segment ends in (limit << 12) + 0xfff.
718 */
719 limit = get_desc_limit(&desc);
720 if (desc.g)
721 limit = (limit << 12) + 0xfff;
722
723 return limit;
724}
725
726/**
727 * insn_get_code_seg_params() - Obtain code segment parameters
728 * @regs: Structure with register values as seen when entering kernel mode
729 *
730 * Obtain address and operand sizes of the code segment. It is obtained from the
731 * selector contained in the CS register in regs. In protected mode, the default
732 * address is determined by inspecting the L and D bits of the segment
733 * descriptor. In virtual-8086 mode, the default is always two bytes for both
734 * address and operand sizes.
735 *
736 * Returns:
737 *
738 * An int containing ORed-in default parameters on success.
739 *
740 * -EINVAL on error.
741 */
742int insn_get_code_seg_params(struct pt_regs *regs)
743{
744 struct desc_struct desc;
745 short sel;
746
747 if (v8086_mode(regs))
748 /* Address and operand size are both 16-bit. */
749 return INSN_CODE_SEG_PARAMS(2, 2);
750
751 sel = get_segment_selector(regs, INAT_SEG_REG_CS);
752 if (sel < 0)
753 return sel;
754
755 if (!get_desc(&desc, sel))
756 return -EINVAL;
757
758 /*
759 * The most significant byte of the Type field of the segment descriptor
760 * determines whether a segment contains data or code. If this is a data
761 * segment, return error.
762 */
763 if (!(desc.type & BIT(3)))
764 return -EINVAL;
765
766 switch ((desc.l << 1) | desc.d) {
767 case 0: /*
768 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
769 * both 16-bit.
770 */
771 return INSN_CODE_SEG_PARAMS(2, 2);
772 case 1: /*
773 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
774 * both 32-bit.
775 */
776 return INSN_CODE_SEG_PARAMS(4, 4);
777 case 2: /*
778 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
779 * operand size is 32-bit.
780 */
781 return INSN_CODE_SEG_PARAMS(4, 8);
782 case 3: /* Invalid setting. CS.L=1, CS.D=1 */
783 /* fall through */
784 default:
785 return -EINVAL;
786 }
787}
788
789/**
790 * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
791 * @insn: Instruction containing the ModRM byte
792 * @regs: Register values as seen when entering kernel mode
793 *
794 * Returns:
795 *
796 * The register indicated by the r/m part of the ModRM byte. The
797 * register is obtained as an offset from the base of pt_regs. In specific
798 * cases, the returned value can be -EDOM to indicate that the particular value
799 * of ModRM does not refer to a register and shall be ignored.
800 */
801int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
802{
803 return get_reg_offset(insn, regs, REG_TYPE_RM);
804}
805
806/**
807 * get_seg_base_limit() - obtain base address and limit of a segment
808 * @insn: Instruction. Must be valid.
809 * @regs: Register values as seen when entering kernel mode
810 * @regoff: Operand offset, in pt_regs, used to resolve segment descriptor
811 * @base: Obtained segment base
812 * @limit: Obtained segment limit
813 *
814 * Obtain the base address and limit of the segment associated with the operand
815 * @regoff and, if any or allowed, override prefixes in @insn. This function is
816 * different from insn_get_seg_base() as the latter does not resolve the segment
817 * associated with the instruction operand. If a limit is not needed (e.g.,
818 * when running in long mode), @limit can be NULL.
819 *
820 * Returns:
821 *
822 * 0 on success. @base and @limit will contain the base address and of the
823 * resolved segment, respectively.
824 *
825 * -EINVAL on error.
826 */
827static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
828 int regoff, unsigned long *base,
829 unsigned long *limit)
830{
831 int seg_reg_idx;
832
833 if (!base)
834 return -EINVAL;
835
836 seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
837 if (seg_reg_idx < 0)
838 return seg_reg_idx;
839
840 *base = insn_get_seg_base(regs, seg_reg_idx);
841 if (*base == -1L)
842 return -EINVAL;
843
844 if (!limit)
845 return 0;
846
847 *limit = get_seg_limit(regs, seg_reg_idx);
848 if (!(*limit))
849 return -EINVAL;
850
851 return 0;
852}
853
854/**
855 * get_eff_addr_reg() - Obtain effective address from register operand
856 * @insn: Instruction. Must be valid.
857 * @regs: Register values as seen when entering kernel mode
858 * @regoff: Obtained operand offset, in pt_regs, with the effective address
859 * @eff_addr: Obtained effective address
860 *
861 * Obtain the effective address stored in the register operand as indicated by
862 * the ModRM byte. This function is to be used only with register addressing
863 * (i.e., ModRM.mod is 3). The effective address is saved in @eff_addr. The
864 * register operand, as an offset from the base of pt_regs, is saved in @regoff;
865 * such offset can then be used to resolve the segment associated with the
866 * operand. This function can be used with any of the supported address sizes
867 * in x86.
868 *
869 * Returns:
870 *
871 * 0 on success. @eff_addr will have the effective address stored in the
872 * operand indicated by ModRM. @regoff will have such operand as an offset from
873 * the base of pt_regs.
874 *
875 * -EINVAL on error.
876 */
877static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
878 int *regoff, long *eff_addr)
879{
880 insn_get_modrm(insn);
881
882 if (!insn->modrm.nbytes)
883 return -EINVAL;
884
885 if (X86_MODRM_MOD(insn->modrm.value) != 3)
886 return -EINVAL;
887
888 *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
889 if (*regoff < 0)
890 return -EINVAL;
891
892 /* Ignore bytes that are outside the address size. */
893 if (insn->addr_bytes == 2)
894 *eff_addr = regs_get_register(regs, *regoff) & 0xffff;
895 else if (insn->addr_bytes == 4)
896 *eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
897 else /* 64-bit address */
898 *eff_addr = regs_get_register(regs, *regoff);
899
900 return 0;
901}
902
903/**
904 * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
905 * @insn: Instruction. Must be valid.
906 * @regs: Register values as seen when entering kernel mode
907 * @regoff: Obtained operand offset, in pt_regs, associated with segment
908 * @eff_addr: Obtained effective address
909 *
910 * Obtain the effective address referenced by the ModRM byte of @insn. After
911 * identifying the registers involved in the register-indirect memory reference,
912 * its value is obtained from the operands in @regs. The computed address is
913 * stored @eff_addr. Also, the register operand that indicates the associated
914 * segment is stored in @regoff, this parameter can later be used to determine
915 * such segment.
916 *
917 * Returns:
918 *
919 * 0 on success. @eff_addr will have the referenced effective address. @regoff
920 * will have a register, as an offset from the base of pt_regs, that can be used
921 * to resolve the associated segment.
922 *
923 * -EINVAL on error.
924 */
925static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
926 int *regoff, long *eff_addr)
927{
928 long tmp;
929
930 if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
931 return -EINVAL;
932
933 insn_get_modrm(insn);
934
935 if (!insn->modrm.nbytes)
936 return -EINVAL;
937
938 if (X86_MODRM_MOD(insn->modrm.value) > 2)
939 return -EINVAL;
940
941 *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
942
943 /*
944 * -EDOM means that we must ignore the address_offset. In such a case,
945 * in 64-bit mode the effective address relative to the rIP of the
946 * following instruction.
947 */
948 if (*regoff == -EDOM) {
949 if (user_64bit_mode(regs))
950 tmp = regs->ip + insn->length;
951 else
952 tmp = 0;
953 } else if (*regoff < 0) {
954 return -EINVAL;
955 } else {
956 tmp = regs_get_register(regs, *regoff);
957 }
958
959 if (insn->addr_bytes == 4) {
960 int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
961
962 *eff_addr = addr32 & 0xffffffff;
963 } else {
964 *eff_addr = tmp + insn->displacement.value;
965 }
966
967 return 0;
968}
969
970/**
971 * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
972 * @insn: Instruction. Must be valid.
973 * @regs: Register values as seen when entering kernel mode
974 * @regoff: Obtained operand offset, in pt_regs, associated with segment
975 * @eff_addr: Obtained effective address
976 *
977 * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
978 * After identifying the registers involved in the register-indirect memory
979 * reference, its value is obtained from the operands in @regs. The computed
980 * address is stored @eff_addr. Also, the register operand that indicates
981 * the associated segment is stored in @regoff, this parameter can later be used
982 * to determine such segment.
983 *
984 * Returns:
985 *
986 * 0 on success. @eff_addr will have the referenced effective address. @regoff
987 * will have a register, as an offset from the base of pt_regs, that can be used
988 * to resolve the associated segment.
989 *
990 * -EINVAL on error.
991 */
992static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
993 int *regoff, short *eff_addr)
994{
995 int addr_offset1, addr_offset2, ret;
996 short addr1 = 0, addr2 = 0, displacement;
997
998 if (insn->addr_bytes != 2)
999 return -EINVAL;
1000
1001 insn_get_modrm(insn);
1002
1003 if (!insn->modrm.nbytes)
1004 return -EINVAL;
1005
1006 if (X86_MODRM_MOD(insn->modrm.value) > 2)
1007 return -EINVAL;
1008
1009 ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1010 if (ret < 0)
1011 return -EINVAL;
1012
1013 /*
1014 * Don't fail on invalid offset values. They might be invalid because
1015 * they cannot be used for this particular value of ModRM. Instead, use
1016 * them in the computation only if they contain a valid value.
1017 */
1018 if (addr_offset1 != -EDOM)
1019 addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1020
1021 if (addr_offset2 != -EDOM)
1022 addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1023
1024 displacement = insn->displacement.value & 0xffff;
1025 *eff_addr = addr1 + addr2 + displacement;
1026
1027 /*
1028 * The first operand register could indicate to use of either SS or DS
1029 * registers to obtain the segment selector. The second operand
1030 * register can only indicate the use of DS. Thus, the first operand
1031 * will be used to obtain the segment selector.
1032 */
1033 *regoff = addr_offset1;
1034
1035 return 0;
1036}
1037
1038/**
1039 * get_eff_addr_sib() - Obtain referenced effective address via SIB
1040 * @insn: Instruction. Must be valid.
1041 * @regs: Register values as seen when entering kernel mode
1042 * @regoff: Obtained operand offset, in pt_regs, associated with segment
1043 * @eff_addr: Obtained effective address
1044 *
1045 * Obtain the effective address referenced by the SIB byte of @insn. After
1046 * identifying the registers involved in the indexed, register-indirect memory
1047 * reference, its value is obtained from the operands in @regs. The computed
1048 * address is stored @eff_addr. Also, the register operand that indicates the
1049 * associated segment is stored in @regoff, this parameter can later be used to
1050 * determine such segment.
1051 *
1052 * Returns:
1053 *
1054 * 0 on success. @eff_addr will have the referenced effective address.
1055 * @base_offset will have a register, as an offset from the base of pt_regs,
1056 * that can be used to resolve the associated segment.
1057 *
1058 * -EINVAL on error.
1059 */
1060static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1061 int *base_offset, long *eff_addr)
1062{
1063 long base, indx;
1064 int indx_offset;
1065
1066 if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1067 return -EINVAL;
1068
1069 insn_get_modrm(insn);
1070
1071 if (!insn->modrm.nbytes)
1072 return -EINVAL;
1073
1074 if (X86_MODRM_MOD(insn->modrm.value) > 2)
1075 return -EINVAL;
1076
1077 insn_get_sib(insn);
1078
1079 if (!insn->sib.nbytes)
1080 return -EINVAL;
1081
1082 *base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1083 indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1084
1085 /*
1086 * Negative values in the base and index offset means an error when
1087 * decoding the SIB byte. Except -EDOM, which means that the registers
1088 * should not be used in the address computation.
1089 */
1090 if (*base_offset == -EDOM)
1091 base = 0;
1092 else if (*base_offset < 0)
1093 return -EINVAL;
1094 else
1095 base = regs_get_register(regs, *base_offset);
1096
1097 if (indx_offset == -EDOM)
1098 indx = 0;
1099 else if (indx_offset < 0)
1100 return -EINVAL;
1101 else
1102 indx = regs_get_register(regs, indx_offset);
1103
1104 if (insn->addr_bytes == 4) {
1105 int addr32, base32, idx32;
1106
1107 base32 = base & 0xffffffff;
1108 idx32 = indx & 0xffffffff;
1109
1110 addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1111 addr32 += insn->displacement.value;
1112
1113 *eff_addr = addr32 & 0xffffffff;
1114 } else {
1115 *eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1116 *eff_addr += insn->displacement.value;
1117 }
1118
1119 return 0;
1120}
1121
1122/**
1123 * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1124 * @insn: Instruction containing ModRM byte and displacement
1125 * @regs: Register values as seen when entering kernel mode
1126 *
1127 * This function is to be used with 16-bit address encodings. Obtain the memory
1128 * address referred by the instruction's ModRM and displacement bytes. Also, the
1129 * segment used as base is determined by either any segment override prefixes in
1130 * @insn or the default segment of the registers involved in the address
1131 * computation. In protected mode, segment limits are enforced.
1132 *
1133 * Returns:
1134 *
1135 * Linear address referenced by the instruction operands on success.
1136 *
1137 * -1L on error.
1138 */
1139static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1140{
1141 unsigned long linear_addr = -1L, seg_base, seg_limit;
1142 int ret, regoff;
1143 short eff_addr;
1144 long tmp;
1145
1146 insn_get_modrm(insn);
1147 insn_get_displacement(insn);
1148
1149 if (insn->addr_bytes != 2)
1150 goto out;
1151
1152 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1153 ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1154 if (ret)
1155 goto out;
1156
1157 eff_addr = tmp;
1158 } else {
1159 ret = get_eff_addr_modrm_16(insn, regs, &regoff, &eff_addr);
1160 if (ret)
1161 goto out;
1162 }
1163
1164 ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1165 if (ret)
1166 goto out;
1167
1168 /*
1169 * Before computing the linear address, make sure the effective address
1170 * is within the limits of the segment. In virtual-8086 mode, segment
1171 * limits are not enforced. In such a case, the segment limit is -1L to
1172 * reflect this fact.
1173 */
1174 if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1175 goto out;
1176
1177 linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1178
1179 /* Limit linear address to 20 bits */
1180 if (v8086_mode(regs))
1181 linear_addr &= 0xfffff;
1182
1183out:
1184 return (void __user *)linear_addr;
1185}
1186
1187/**
1188 * get_addr_ref_32() - Obtain a 32-bit linear address
1189 * @insn: Instruction with ModRM, SIB bytes and displacement
1190 * @regs: Register values as seen when entering kernel mode
1191 *
1192 * This function is to be used with 32-bit address encodings to obtain the
1193 * linear memory address referred by the instruction's ModRM, SIB,
1194 * displacement bytes and segment base address, as applicable. If in protected
1195 * mode, segment limits are enforced.
1196 *
1197 * Returns:
1198 *
1199 * Linear address referenced by instruction and registers on success.
1200 *
1201 * -1L on error.
1202 */
1203static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1204{
1205 unsigned long linear_addr = -1L, seg_base, seg_limit;
1206 int eff_addr, regoff;
1207 long tmp;
1208 int ret;
1209
1210 if (insn->addr_bytes != 4)
1211 goto out;
1212
1213 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1214 ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1215 if (ret)
1216 goto out;
1217
1218 eff_addr = tmp;
1219
1220 } else {
1221 if (insn->sib.nbytes) {
1222 ret = get_eff_addr_sib(insn, regs, &regoff, &tmp);
1223 if (ret)
1224 goto out;
1225
1226 eff_addr = tmp;
1227 } else {
1228 ret = get_eff_addr_modrm(insn, regs, &regoff, &tmp);
1229 if (ret)
1230 goto out;
1231
1232 eff_addr = tmp;
1233 }
1234 }
1235
1236 ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1237 if (ret)
1238 goto out;
1239
1240 /*
1241 * In protected mode, before computing the linear address, make sure
1242 * the effective address is within the limits of the segment.
1243 * 32-bit addresses can be used in long and virtual-8086 modes if an
1244 * address override prefix is used. In such cases, segment limits are
1245 * not enforced. When in virtual-8086 mode, the segment limit is -1L
1246 * to reflect this situation.
1247 *
1248 * After computed, the effective address is treated as an unsigned
1249 * quantity.
1250 */
1251 if (!user_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
1252 goto out;
1253
1254 /*
1255 * Even though 32-bit address encodings are allowed in virtual-8086
1256 * mode, the address range is still limited to [0x-0xffff].
1257 */
1258 if (v8086_mode(regs) && (eff_addr & ~0xffff))
1259 goto out;
1260
1261 /*
1262 * Data type long could be 64 bits in size. Ensure that our 32-bit
1263 * effective address is not sign-extended when computing the linear
1264 * address.
1265 */
1266 linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1267
1268 /* Limit linear address to 20 bits */
1269 if (v8086_mode(regs))
1270 linear_addr &= 0xfffff;
1271
1272out:
1273 return (void __user *)linear_addr;
1274}
1275
1276/**
1277 * get_addr_ref_64() - Obtain a 64-bit linear address
1278 * @insn: Instruction struct with ModRM and SIB bytes and displacement
1279 * @regs: Structure with register values as seen when entering kernel mode
1280 *
1281 * This function is to be used with 64-bit address encodings to obtain the
1282 * linear memory address referred by the instruction's ModRM, SIB,
1283 * displacement bytes and segment base address, as applicable.
1284 *
1285 * Returns:
1286 *
1287 * Linear address referenced by instruction and registers on success.
1288 *
1289 * -1L on error.
1290 */
1291#ifndef CONFIG_X86_64
1292static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1293{
1294 return (void __user *)-1L;
1295}
1296#else
1297static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1298{
1299 unsigned long linear_addr = -1L, seg_base;
1300 int regoff, ret;
1301 long eff_addr;
1302
1303 if (insn->addr_bytes != 8)
1304 goto out;
1305
1306 if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1307 ret = get_eff_addr_reg(insn, regs, &regoff, &eff_addr);
1308 if (ret)
1309 goto out;
1310
1311 } else {
1312 if (insn->sib.nbytes) {
1313 ret = get_eff_addr_sib(insn, regs, &regoff, &eff_addr);
1314 if (ret)
1315 goto out;
1316 } else {
1317 ret = get_eff_addr_modrm(insn, regs, &regoff, &eff_addr);
1318 if (ret)
1319 goto out;
1320 }
1321
1322 }
1323
1324 ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
1325 if (ret)
1326 goto out;
1327
1328 linear_addr = (unsigned long)eff_addr + seg_base;
1329
1330out:
1331 return (void __user *)linear_addr;
1332}
1333#endif /* CONFIG_X86_64 */
1334
1335/**
1336 * insn_get_addr_ref() - Obtain the linear address referred by instruction
1337 * @insn: Instruction structure containing ModRM byte and displacement
1338 * @regs: Structure with register values as seen when entering kernel mode
1339 *
1340 * Obtain the linear address referred by the instruction's ModRM, SIB and
1341 * displacement bytes, and segment base, as applicable. In protected mode,
1342 * segment limits are enforced.
1343 *
1344 * Returns:
1345 *
1346 * Linear address referenced by instruction and registers on success.
1347 *
1348 * -1L on error.
1349 */
1350void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1351{
1352 if (!insn || !regs)
1353 return (void __user *)-1L;
1354
1355 switch (insn->addr_bytes) {
1356 case 2:
1357 return get_addr_ref_16(insn, regs);
1358 case 4:
1359 return get_addr_ref_32(insn, regs);
1360 case 8:
1361 return get_addr_ref_64(insn, regs);
1362 default:
1363 return (void __user *)-1L;
1364 }
1365}