| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
 | 2 |  * Driver for the Analog Devices AXI-DMAC core | 
 | 3 |  * | 
 | 4 |  * Copyright 2013-2015 Analog Devices Inc. | 
 | 5 |  *  Author: Lars-Peter Clausen <lars@metafoo.de> | 
 | 6 |  * | 
 | 7 |  * Licensed under the GPL-2. | 
 | 8 |  */ | 
 | 9 |  | 
 | 10 | #include <linux/clk.h> | 
 | 11 | #include <linux/device.h> | 
 | 12 | #include <linux/dma-mapping.h> | 
 | 13 | #include <linux/dmaengine.h> | 
 | 14 | #include <linux/err.h> | 
 | 15 | #include <linux/interrupt.h> | 
 | 16 | #include <linux/io.h> | 
 | 17 | #include <linux/kernel.h> | 
 | 18 | #include <linux/module.h> | 
 | 19 | #include <linux/of.h> | 
 | 20 | #include <linux/of_dma.h> | 
 | 21 | #include <linux/platform_device.h> | 
 | 22 | #include <linux/slab.h> | 
 | 23 |  | 
 | 24 | #include <dt-bindings/dma/axi-dmac.h> | 
 | 25 |  | 
 | 26 | #include "dmaengine.h" | 
 | 27 | #include "virt-dma.h" | 
 | 28 |  | 
 | 29 | /* | 
 | 30 |  * The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has | 
 | 31 |  * various instantiation parameters which decided the exact feature set support | 
 | 32 |  * by the core. | 
 | 33 |  * | 
 | 34 |  * Each channel of the core has a source interface and a destination interface. | 
 | 35 |  * The number of channels and the type of the channel interfaces is selected at | 
 | 36 |  * configuration time. A interface can either be a connected to a central memory | 
 | 37 |  * interconnect, which allows access to system memory, or it can be connected to | 
 | 38 |  * a dedicated bus which is directly connected to a data port on a peripheral. | 
 | 39 |  * Given that those are configuration options of the core that are selected when | 
 | 40 |  * it is instantiated this means that they can not be changed by software at | 
 | 41 |  * runtime. By extension this means that each channel is uni-directional. It can | 
 | 42 |  * either be device to memory or memory to device, but not both. Also since the | 
 | 43 |  * device side is a dedicated data bus only connected to a single peripheral | 
 | 44 |  * there is no address than can or needs to be configured for the device side. | 
 | 45 |  */ | 
 | 46 |  | 
 | 47 | #define AXI_DMAC_REG_IRQ_MASK		0x80 | 
 | 48 | #define AXI_DMAC_REG_IRQ_PENDING	0x84 | 
 | 49 | #define AXI_DMAC_REG_IRQ_SOURCE		0x88 | 
 | 50 |  | 
 | 51 | #define AXI_DMAC_REG_CTRL		0x400 | 
 | 52 | #define AXI_DMAC_REG_TRANSFER_ID	0x404 | 
 | 53 | #define AXI_DMAC_REG_START_TRANSFER	0x408 | 
 | 54 | #define AXI_DMAC_REG_FLAGS		0x40c | 
 | 55 | #define AXI_DMAC_REG_DEST_ADDRESS	0x410 | 
 | 56 | #define AXI_DMAC_REG_SRC_ADDRESS	0x414 | 
 | 57 | #define AXI_DMAC_REG_X_LENGTH		0x418 | 
 | 58 | #define AXI_DMAC_REG_Y_LENGTH		0x41c | 
 | 59 | #define AXI_DMAC_REG_DEST_STRIDE	0x420 | 
 | 60 | #define AXI_DMAC_REG_SRC_STRIDE		0x424 | 
 | 61 | #define AXI_DMAC_REG_TRANSFER_DONE	0x428 | 
 | 62 | #define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c | 
 | 63 | #define AXI_DMAC_REG_STATUS		0x430 | 
 | 64 | #define AXI_DMAC_REG_CURRENT_SRC_ADDR	0x434 | 
 | 65 | #define AXI_DMAC_REG_CURRENT_DEST_ADDR	0x438 | 
 | 66 |  | 
 | 67 | #define AXI_DMAC_CTRL_ENABLE		BIT(0) | 
 | 68 | #define AXI_DMAC_CTRL_PAUSE		BIT(1) | 
 | 69 |  | 
 | 70 | #define AXI_DMAC_IRQ_SOT		BIT(0) | 
 | 71 | #define AXI_DMAC_IRQ_EOT		BIT(1) | 
 | 72 |  | 
 | 73 | #define AXI_DMAC_FLAG_CYCLIC		BIT(0) | 
 | 74 |  | 
 | 75 | /* The maximum ID allocated by the hardware is 31 */ | 
 | 76 | #define AXI_DMAC_SG_UNUSED 32U | 
 | 77 |  | 
 | 78 | struct axi_dmac_sg { | 
 | 79 | 	dma_addr_t src_addr; | 
 | 80 | 	dma_addr_t dest_addr; | 
 | 81 | 	unsigned int x_len; | 
 | 82 | 	unsigned int y_len; | 
 | 83 | 	unsigned int dest_stride; | 
 | 84 | 	unsigned int src_stride; | 
 | 85 | 	unsigned int id; | 
 | 86 | 	bool schedule_when_free; | 
 | 87 | }; | 
 | 88 |  | 
 | 89 | struct axi_dmac_desc { | 
 | 90 | 	struct virt_dma_desc vdesc; | 
 | 91 | 	bool cyclic; | 
 | 92 |  | 
 | 93 | 	unsigned int num_submitted; | 
 | 94 | 	unsigned int num_completed; | 
 | 95 | 	unsigned int num_sgs; | 
 | 96 | 	struct axi_dmac_sg sg[]; | 
 | 97 | }; | 
 | 98 |  | 
 | 99 | struct axi_dmac_chan { | 
 | 100 | 	struct virt_dma_chan vchan; | 
 | 101 |  | 
 | 102 | 	struct axi_dmac_desc *next_desc; | 
 | 103 | 	struct list_head active_descs; | 
 | 104 | 	enum dma_transfer_direction direction; | 
 | 105 |  | 
 | 106 | 	unsigned int src_width; | 
 | 107 | 	unsigned int dest_width; | 
 | 108 | 	unsigned int src_type; | 
 | 109 | 	unsigned int dest_type; | 
 | 110 |  | 
 | 111 | 	unsigned int max_length; | 
 | 112 | 	unsigned int align_mask; | 
 | 113 |  | 
 | 114 | 	bool hw_cyclic; | 
 | 115 | 	bool hw_2d; | 
 | 116 | }; | 
 | 117 |  | 
 | 118 | struct axi_dmac { | 
 | 119 | 	void __iomem *base; | 
 | 120 | 	int irq; | 
 | 121 |  | 
 | 122 | 	struct clk *clk; | 
 | 123 |  | 
 | 124 | 	struct dma_device dma_dev; | 
 | 125 | 	struct axi_dmac_chan chan; | 
 | 126 |  | 
 | 127 | 	struct device_dma_parameters dma_parms; | 
 | 128 | }; | 
 | 129 |  | 
 | 130 | static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan) | 
 | 131 | { | 
 | 132 | 	return container_of(chan->vchan.chan.device, struct axi_dmac, | 
 | 133 | 		dma_dev); | 
 | 134 | } | 
 | 135 |  | 
 | 136 | static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c) | 
 | 137 | { | 
 | 138 | 	return container_of(c, struct axi_dmac_chan, vchan.chan); | 
 | 139 | } | 
 | 140 |  | 
 | 141 | static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc) | 
 | 142 | { | 
 | 143 | 	return container_of(vdesc, struct axi_dmac_desc, vdesc); | 
 | 144 | } | 
 | 145 |  | 
 | 146 | static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg, | 
 | 147 | 	unsigned int val) | 
 | 148 | { | 
 | 149 | 	writel(val, axi_dmac->base + reg); | 
 | 150 | } | 
 | 151 |  | 
 | 152 | static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg) | 
 | 153 | { | 
 | 154 | 	return readl(axi_dmac->base + reg); | 
 | 155 | } | 
 | 156 |  | 
 | 157 | static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan) | 
 | 158 | { | 
 | 159 | 	return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM; | 
 | 160 | } | 
 | 161 |  | 
 | 162 | static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan) | 
 | 163 | { | 
 | 164 | 	return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM; | 
 | 165 | } | 
 | 166 |  | 
 | 167 | static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len) | 
 | 168 | { | 
 | 169 | 	if (len == 0 || len > chan->max_length) | 
 | 170 | 		return false; | 
 | 171 | 	if ((len & chan->align_mask) != 0) /* Not aligned */ | 
 | 172 | 		return false; | 
 | 173 | 	return true; | 
 | 174 | } | 
 | 175 |  | 
 | 176 | static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr) | 
 | 177 | { | 
 | 178 | 	if ((addr & chan->align_mask) != 0) /* Not aligned */ | 
 | 179 | 		return false; | 
 | 180 | 	return true; | 
 | 181 | } | 
 | 182 |  | 
 | 183 | static void axi_dmac_start_transfer(struct axi_dmac_chan *chan) | 
 | 184 | { | 
 | 185 | 	struct axi_dmac *dmac = chan_to_axi_dmac(chan); | 
 | 186 | 	struct virt_dma_desc *vdesc; | 
 | 187 | 	struct axi_dmac_desc *desc; | 
 | 188 | 	struct axi_dmac_sg *sg; | 
 | 189 | 	unsigned int flags = 0; | 
 | 190 | 	unsigned int val; | 
 | 191 |  | 
 | 192 | 	val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER); | 
 | 193 | 	if (val) /* Queue is full, wait for the next SOT IRQ */ | 
 | 194 | 		return; | 
 | 195 |  | 
 | 196 | 	desc = chan->next_desc; | 
 | 197 |  | 
 | 198 | 	if (!desc) { | 
 | 199 | 		vdesc = vchan_next_desc(&chan->vchan); | 
 | 200 | 		if (!vdesc) | 
 | 201 | 			return; | 
 | 202 | 		list_move_tail(&vdesc->node, &chan->active_descs); | 
 | 203 | 		desc = to_axi_dmac_desc(vdesc); | 
 | 204 | 	} | 
 | 205 | 	sg = &desc->sg[desc->num_submitted]; | 
 | 206 |  | 
 | 207 | 	/* Already queued in cyclic mode. Wait for it to finish */ | 
 | 208 | 	if (sg->id != AXI_DMAC_SG_UNUSED) { | 
 | 209 | 		sg->schedule_when_free = true; | 
 | 210 | 		return; | 
 | 211 | 	} | 
 | 212 |  | 
 | 213 | 	desc->num_submitted++; | 
 | 214 | 	if (desc->num_submitted == desc->num_sgs) { | 
 | 215 | 		if (desc->cyclic) | 
 | 216 | 			desc->num_submitted = 0; /* Start again */ | 
 | 217 | 		else | 
 | 218 | 			chan->next_desc = NULL; | 
 | 219 | 	} else { | 
 | 220 | 		chan->next_desc = desc; | 
 | 221 | 	} | 
 | 222 |  | 
 | 223 | 	sg->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID); | 
 | 224 |  | 
 | 225 | 	if (axi_dmac_dest_is_mem(chan)) { | 
 | 226 | 		axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->dest_addr); | 
 | 227 | 		axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->dest_stride); | 
 | 228 | 	} | 
 | 229 |  | 
 | 230 | 	if (axi_dmac_src_is_mem(chan)) { | 
 | 231 | 		axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->src_addr); | 
 | 232 | 		axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->src_stride); | 
 | 233 | 	} | 
 | 234 |  | 
 | 235 | 	/* | 
 | 236 | 	 * If the hardware supports cyclic transfers and there is no callback to | 
 | 237 | 	 * call and only a single segment, enable hw cyclic mode to avoid | 
 | 238 | 	 * unnecessary interrupts. | 
 | 239 | 	 */ | 
 | 240 | 	if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback && | 
 | 241 | 		desc->num_sgs == 1) | 
 | 242 | 		flags |= AXI_DMAC_FLAG_CYCLIC; | 
 | 243 |  | 
 | 244 | 	axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->x_len - 1); | 
 | 245 | 	axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->y_len - 1); | 
 | 246 | 	axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags); | 
 | 247 | 	axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1); | 
 | 248 | } | 
 | 249 |  | 
 | 250 | static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan) | 
 | 251 | { | 
 | 252 | 	return list_first_entry_or_null(&chan->active_descs, | 
 | 253 | 		struct axi_dmac_desc, vdesc.node); | 
 | 254 | } | 
 | 255 |  | 
 | 256 | static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan, | 
 | 257 | 	unsigned int completed_transfers) | 
 | 258 | { | 
 | 259 | 	struct axi_dmac_desc *active; | 
 | 260 | 	struct axi_dmac_sg *sg; | 
 | 261 | 	bool start_next = false; | 
 | 262 |  | 
 | 263 | 	active = axi_dmac_active_desc(chan); | 
 | 264 | 	if (!active) | 
 | 265 | 		return false; | 
 | 266 |  | 
 | 267 | 	do { | 
 | 268 | 		sg = &active->sg[active->num_completed]; | 
 | 269 | 		if (sg->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */ | 
 | 270 | 			break; | 
 | 271 | 		if (!(BIT(sg->id) & completed_transfers)) | 
 | 272 | 			break; | 
 | 273 | 		active->num_completed++; | 
 | 274 | 		sg->id = AXI_DMAC_SG_UNUSED; | 
 | 275 | 		if (sg->schedule_when_free) { | 
 | 276 | 			sg->schedule_when_free = false; | 
 | 277 | 			start_next = true; | 
 | 278 | 		} | 
 | 279 |  | 
 | 280 | 		if (active->cyclic) | 
 | 281 | 			vchan_cyclic_callback(&active->vdesc); | 
 | 282 |  | 
 | 283 | 		if (active->num_completed == active->num_sgs) { | 
 | 284 | 			if (active->cyclic) { | 
 | 285 | 				active->num_completed = 0; /* wrap around */ | 
 | 286 | 			} else { | 
 | 287 | 				list_del(&active->vdesc.node); | 
 | 288 | 				vchan_cookie_complete(&active->vdesc); | 
 | 289 | 				active = axi_dmac_active_desc(chan); | 
 | 290 | 			} | 
 | 291 | 		} | 
 | 292 | 	} while (active); | 
 | 293 |  | 
 | 294 | 	return start_next; | 
 | 295 | } | 
 | 296 |  | 
 | 297 | static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid) | 
 | 298 | { | 
 | 299 | 	struct axi_dmac *dmac = devid; | 
 | 300 | 	unsigned int pending; | 
 | 301 | 	bool start_next = false; | 
 | 302 |  | 
 | 303 | 	pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING); | 
 | 304 | 	if (!pending) | 
 | 305 | 		return IRQ_NONE; | 
 | 306 |  | 
 | 307 | 	axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending); | 
 | 308 |  | 
 | 309 | 	spin_lock(&dmac->chan.vchan.lock); | 
 | 310 | 	/* One or more transfers have finished */ | 
 | 311 | 	if (pending & AXI_DMAC_IRQ_EOT) { | 
 | 312 | 		unsigned int completed; | 
 | 313 |  | 
 | 314 | 		completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE); | 
 | 315 | 		start_next = axi_dmac_transfer_done(&dmac->chan, completed); | 
 | 316 | 	} | 
 | 317 | 	/* Space has become available in the descriptor queue */ | 
 | 318 | 	if ((pending & AXI_DMAC_IRQ_SOT) || start_next) | 
 | 319 | 		axi_dmac_start_transfer(&dmac->chan); | 
 | 320 | 	spin_unlock(&dmac->chan.vchan.lock); | 
 | 321 |  | 
 | 322 | 	return IRQ_HANDLED; | 
 | 323 | } | 
 | 324 |  | 
 | 325 | static int axi_dmac_terminate_all(struct dma_chan *c) | 
 | 326 | { | 
 | 327 | 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c); | 
 | 328 | 	struct axi_dmac *dmac = chan_to_axi_dmac(chan); | 
 | 329 | 	unsigned long flags; | 
 | 330 | 	LIST_HEAD(head); | 
 | 331 |  | 
 | 332 | 	spin_lock_irqsave(&chan->vchan.lock, flags); | 
 | 333 | 	axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0); | 
 | 334 | 	chan->next_desc = NULL; | 
 | 335 | 	vchan_get_all_descriptors(&chan->vchan, &head); | 
 | 336 | 	list_splice_tail_init(&chan->active_descs, &head); | 
 | 337 | 	spin_unlock_irqrestore(&chan->vchan.lock, flags); | 
 | 338 |  | 
 | 339 | 	vchan_dma_desc_free_list(&chan->vchan, &head); | 
 | 340 |  | 
 | 341 | 	return 0; | 
 | 342 | } | 
 | 343 |  | 
 | 344 | static void axi_dmac_synchronize(struct dma_chan *c) | 
 | 345 | { | 
 | 346 | 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c); | 
 | 347 |  | 
 | 348 | 	vchan_synchronize(&chan->vchan); | 
 | 349 | } | 
 | 350 |  | 
 | 351 | static void axi_dmac_issue_pending(struct dma_chan *c) | 
 | 352 | { | 
 | 353 | 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c); | 
 | 354 | 	struct axi_dmac *dmac = chan_to_axi_dmac(chan); | 
 | 355 | 	unsigned long flags; | 
 | 356 |  | 
 | 357 | 	axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, AXI_DMAC_CTRL_ENABLE); | 
 | 358 |  | 
 | 359 | 	spin_lock_irqsave(&chan->vchan.lock, flags); | 
 | 360 | 	if (vchan_issue_pending(&chan->vchan)) | 
 | 361 | 		axi_dmac_start_transfer(chan); | 
 | 362 | 	spin_unlock_irqrestore(&chan->vchan.lock, flags); | 
 | 363 | } | 
 | 364 |  | 
 | 365 | static struct axi_dmac_desc *axi_dmac_alloc_desc(unsigned int num_sgs) | 
 | 366 | { | 
 | 367 | 	struct axi_dmac_desc *desc; | 
 | 368 | 	unsigned int i; | 
 | 369 |  | 
 | 370 | 	desc = kzalloc(sizeof(struct axi_dmac_desc) + | 
 | 371 | 		sizeof(struct axi_dmac_sg) * num_sgs, GFP_NOWAIT); | 
 | 372 | 	if (!desc) | 
 | 373 | 		return NULL; | 
 | 374 |  | 
 | 375 | 	for (i = 0; i < num_sgs; i++) | 
 | 376 | 		desc->sg[i].id = AXI_DMAC_SG_UNUSED; | 
 | 377 |  | 
 | 378 | 	desc->num_sgs = num_sgs; | 
 | 379 |  | 
 | 380 | 	return desc; | 
 | 381 | } | 
 | 382 |  | 
 | 383 | static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg( | 
 | 384 | 	struct dma_chan *c, struct scatterlist *sgl, | 
 | 385 | 	unsigned int sg_len, enum dma_transfer_direction direction, | 
 | 386 | 	unsigned long flags, void *context) | 
 | 387 | { | 
 | 388 | 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c); | 
 | 389 | 	struct axi_dmac_desc *desc; | 
 | 390 | 	struct scatterlist *sg; | 
 | 391 | 	unsigned int i; | 
 | 392 |  | 
 | 393 | 	if (direction != chan->direction) | 
 | 394 | 		return NULL; | 
 | 395 |  | 
 | 396 | 	desc = axi_dmac_alloc_desc(sg_len); | 
 | 397 | 	if (!desc) | 
 | 398 | 		return NULL; | 
 | 399 |  | 
 | 400 | 	for_each_sg(sgl, sg, sg_len, i) { | 
 | 401 | 		if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) || | 
 | 402 | 		    !axi_dmac_check_len(chan, sg_dma_len(sg))) { | 
 | 403 | 			kfree(desc); | 
 | 404 | 			return NULL; | 
 | 405 | 		} | 
 | 406 |  | 
 | 407 | 		if (direction == DMA_DEV_TO_MEM) | 
 | 408 | 			desc->sg[i].dest_addr = sg_dma_address(sg); | 
 | 409 | 		else | 
 | 410 | 			desc->sg[i].src_addr = sg_dma_address(sg); | 
 | 411 | 		desc->sg[i].x_len = sg_dma_len(sg); | 
 | 412 | 		desc->sg[i].y_len = 1; | 
 | 413 | 	} | 
 | 414 |  | 
 | 415 | 	desc->cyclic = false; | 
 | 416 |  | 
 | 417 | 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); | 
 | 418 | } | 
 | 419 |  | 
 | 420 | static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic( | 
 | 421 | 	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len, | 
 | 422 | 	size_t period_len, enum dma_transfer_direction direction, | 
 | 423 | 	unsigned long flags) | 
 | 424 | { | 
 | 425 | 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c); | 
 | 426 | 	struct axi_dmac_desc *desc; | 
 | 427 | 	unsigned int num_periods, i; | 
 | 428 |  | 
 | 429 | 	if (direction != chan->direction) | 
 | 430 | 		return NULL; | 
 | 431 |  | 
 | 432 | 	if (!axi_dmac_check_len(chan, buf_len) || | 
 | 433 | 	    !axi_dmac_check_addr(chan, buf_addr)) | 
 | 434 | 		return NULL; | 
 | 435 |  | 
 | 436 | 	if (period_len == 0 || buf_len % period_len) | 
 | 437 | 		return NULL; | 
 | 438 |  | 
 | 439 | 	num_periods = buf_len / period_len; | 
 | 440 |  | 
 | 441 | 	desc = axi_dmac_alloc_desc(num_periods); | 
 | 442 | 	if (!desc) | 
 | 443 | 		return NULL; | 
 | 444 |  | 
 | 445 | 	for (i = 0; i < num_periods; i++) { | 
 | 446 | 		if (direction == DMA_DEV_TO_MEM) | 
 | 447 | 			desc->sg[i].dest_addr = buf_addr; | 
 | 448 | 		else | 
 | 449 | 			desc->sg[i].src_addr = buf_addr; | 
 | 450 | 		desc->sg[i].x_len = period_len; | 
 | 451 | 		desc->sg[i].y_len = 1; | 
 | 452 | 		buf_addr += period_len; | 
 | 453 | 	} | 
 | 454 |  | 
 | 455 | 	desc->cyclic = true; | 
 | 456 |  | 
 | 457 | 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); | 
 | 458 | } | 
 | 459 |  | 
 | 460 | static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved( | 
 | 461 | 	struct dma_chan *c, struct dma_interleaved_template *xt, | 
 | 462 | 	unsigned long flags) | 
 | 463 | { | 
 | 464 | 	struct axi_dmac_chan *chan = to_axi_dmac_chan(c); | 
 | 465 | 	struct axi_dmac_desc *desc; | 
 | 466 | 	size_t dst_icg, src_icg; | 
 | 467 |  | 
 | 468 | 	if (xt->frame_size != 1) | 
 | 469 | 		return NULL; | 
 | 470 |  | 
 | 471 | 	if (xt->dir != chan->direction) | 
 | 472 | 		return NULL; | 
 | 473 |  | 
 | 474 | 	if (axi_dmac_src_is_mem(chan)) { | 
 | 475 | 		if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start)) | 
 | 476 | 			return NULL; | 
 | 477 | 	} | 
 | 478 |  | 
 | 479 | 	if (axi_dmac_dest_is_mem(chan)) { | 
 | 480 | 		if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start)) | 
 | 481 | 			return NULL; | 
 | 482 | 	} | 
 | 483 |  | 
 | 484 | 	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]); | 
 | 485 | 	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]); | 
 | 486 |  | 
 | 487 | 	if (chan->hw_2d) { | 
 | 488 | 		if (!axi_dmac_check_len(chan, xt->sgl[0].size) || | 
 | 489 | 		    !axi_dmac_check_len(chan, xt->numf)) | 
 | 490 | 			return NULL; | 
 | 491 | 		if (xt->sgl[0].size + dst_icg > chan->max_length || | 
 | 492 | 		    xt->sgl[0].size + src_icg > chan->max_length) | 
 | 493 | 			return NULL; | 
 | 494 | 	} else { | 
 | 495 | 		if (dst_icg != 0 || src_icg != 0) | 
 | 496 | 			return NULL; | 
 | 497 | 		if (chan->max_length / xt->sgl[0].size < xt->numf) | 
 | 498 | 			return NULL; | 
 | 499 | 		if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf)) | 
 | 500 | 			return NULL; | 
 | 501 | 	} | 
 | 502 |  | 
 | 503 | 	desc = axi_dmac_alloc_desc(1); | 
 | 504 | 	if (!desc) | 
 | 505 | 		return NULL; | 
 | 506 |  | 
 | 507 | 	if (axi_dmac_src_is_mem(chan)) { | 
 | 508 | 		desc->sg[0].src_addr = xt->src_start; | 
 | 509 | 		desc->sg[0].src_stride = xt->sgl[0].size + src_icg; | 
 | 510 | 	} | 
 | 511 |  | 
 | 512 | 	if (axi_dmac_dest_is_mem(chan)) { | 
 | 513 | 		desc->sg[0].dest_addr = xt->dst_start; | 
 | 514 | 		desc->sg[0].dest_stride = xt->sgl[0].size + dst_icg; | 
 | 515 | 	} | 
 | 516 |  | 
 | 517 | 	if (chan->hw_2d) { | 
 | 518 | 		desc->sg[0].x_len = xt->sgl[0].size; | 
 | 519 | 		desc->sg[0].y_len = xt->numf; | 
 | 520 | 	} else { | 
 | 521 | 		desc->sg[0].x_len = xt->sgl[0].size * xt->numf; | 
 | 522 | 		desc->sg[0].y_len = 1; | 
 | 523 | 	} | 
 | 524 |  | 
 | 525 | 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); | 
 | 526 | } | 
 | 527 |  | 
 | 528 | static void axi_dmac_free_chan_resources(struct dma_chan *c) | 
 | 529 | { | 
 | 530 | 	vchan_free_chan_resources(to_virt_chan(c)); | 
 | 531 | } | 
 | 532 |  | 
 | 533 | static void axi_dmac_desc_free(struct virt_dma_desc *vdesc) | 
 | 534 | { | 
 | 535 | 	kfree(container_of(vdesc, struct axi_dmac_desc, vdesc)); | 
 | 536 | } | 
 | 537 |  | 
 | 538 | /* | 
 | 539 |  * The configuration stored in the devicetree matches the configuration | 
 | 540 |  * parameters of the peripheral instance and allows the driver to know which | 
 | 541 |  * features are implemented and how it should behave. | 
 | 542 |  */ | 
 | 543 | static int axi_dmac_parse_chan_dt(struct device_node *of_chan, | 
 | 544 | 	struct axi_dmac_chan *chan) | 
 | 545 | { | 
 | 546 | 	u32 val; | 
 | 547 | 	int ret; | 
 | 548 |  | 
 | 549 | 	ret = of_property_read_u32(of_chan, "reg", &val); | 
 | 550 | 	if (ret) | 
 | 551 | 		return ret; | 
 | 552 |  | 
 | 553 | 	/* We only support 1 channel for now */ | 
 | 554 | 	if (val != 0) | 
 | 555 | 		return -EINVAL; | 
 | 556 |  | 
 | 557 | 	ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val); | 
 | 558 | 	if (ret) | 
 | 559 | 		return ret; | 
 | 560 | 	if (val > AXI_DMAC_BUS_TYPE_FIFO) | 
 | 561 | 		return -EINVAL; | 
 | 562 | 	chan->src_type = val; | 
 | 563 |  | 
 | 564 | 	ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val); | 
 | 565 | 	if (ret) | 
 | 566 | 		return ret; | 
 | 567 | 	if (val > AXI_DMAC_BUS_TYPE_FIFO) | 
 | 568 | 		return -EINVAL; | 
 | 569 | 	chan->dest_type = val; | 
 | 570 |  | 
 | 571 | 	ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val); | 
 | 572 | 	if (ret) | 
 | 573 | 		return ret; | 
 | 574 | 	chan->src_width = val / 8; | 
 | 575 |  | 
 | 576 | 	ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val); | 
 | 577 | 	if (ret) | 
 | 578 | 		return ret; | 
 | 579 | 	chan->dest_width = val / 8; | 
 | 580 |  | 
 | 581 | 	ret = of_property_read_u32(of_chan, "adi,length-width", &val); | 
 | 582 | 	if (ret) | 
 | 583 | 		return ret; | 
 | 584 |  | 
 | 585 | 	if (val >= 32) | 
 | 586 | 		chan->max_length = UINT_MAX; | 
 | 587 | 	else | 
 | 588 | 		chan->max_length = (1ULL << val) - 1; | 
 | 589 |  | 
 | 590 | 	chan->align_mask = max(chan->dest_width, chan->src_width) - 1; | 
 | 591 |  | 
 | 592 | 	if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan)) | 
 | 593 | 		chan->direction = DMA_MEM_TO_MEM; | 
 | 594 | 	else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan)) | 
 | 595 | 		chan->direction = DMA_MEM_TO_DEV; | 
 | 596 | 	else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan)) | 
 | 597 | 		chan->direction = DMA_DEV_TO_MEM; | 
 | 598 | 	else | 
 | 599 | 		chan->direction = DMA_DEV_TO_DEV; | 
 | 600 |  | 
 | 601 | 	chan->hw_cyclic = of_property_read_bool(of_chan, "adi,cyclic"); | 
 | 602 | 	chan->hw_2d = of_property_read_bool(of_chan, "adi,2d"); | 
 | 603 |  | 
 | 604 | 	return 0; | 
 | 605 | } | 
 | 606 |  | 
 | 607 | static int axi_dmac_probe(struct platform_device *pdev) | 
 | 608 | { | 
 | 609 | 	struct device_node *of_channels, *of_chan; | 
 | 610 | 	struct dma_device *dma_dev; | 
 | 611 | 	struct axi_dmac *dmac; | 
 | 612 | 	struct resource *res; | 
 | 613 | 	int ret; | 
 | 614 |  | 
 | 615 | 	dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL); | 
 | 616 | 	if (!dmac) | 
 | 617 | 		return -ENOMEM; | 
 | 618 |  | 
 | 619 | 	dmac->irq = platform_get_irq(pdev, 0); | 
 | 620 | 	if (dmac->irq < 0) | 
 | 621 | 		return dmac->irq; | 
 | 622 | 	if (dmac->irq == 0) | 
 | 623 | 		return -EINVAL; | 
 | 624 |  | 
 | 625 | 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
 | 626 | 	dmac->base = devm_ioremap_resource(&pdev->dev, res); | 
 | 627 | 	if (IS_ERR(dmac->base)) | 
 | 628 | 		return PTR_ERR(dmac->base); | 
 | 629 |  | 
 | 630 | 	dmac->clk = devm_clk_get(&pdev->dev, NULL); | 
 | 631 | 	if (IS_ERR(dmac->clk)) | 
 | 632 | 		return PTR_ERR(dmac->clk); | 
 | 633 |  | 
 | 634 | 	INIT_LIST_HEAD(&dmac->chan.active_descs); | 
 | 635 |  | 
 | 636 | 	of_channels = of_get_child_by_name(pdev->dev.of_node, "adi,channels"); | 
 | 637 | 	if (of_channels == NULL) | 
 | 638 | 		return -ENODEV; | 
 | 639 |  | 
 | 640 | 	for_each_child_of_node(of_channels, of_chan) { | 
 | 641 | 		ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan); | 
 | 642 | 		if (ret) { | 
 | 643 | 			of_node_put(of_chan); | 
 | 644 | 			of_node_put(of_channels); | 
 | 645 | 			return -EINVAL; | 
 | 646 | 		} | 
 | 647 | 	} | 
 | 648 | 	of_node_put(of_channels); | 
 | 649 |  | 
 | 650 | 	pdev->dev.dma_parms = &dmac->dma_parms; | 
 | 651 | 	dma_set_max_seg_size(&pdev->dev, dmac->chan.max_length); | 
 | 652 |  | 
 | 653 | 	dma_dev = &dmac->dma_dev; | 
 | 654 | 	dma_cap_set(DMA_SLAVE, dma_dev->cap_mask); | 
 | 655 | 	dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask); | 
 | 656 | 	dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources; | 
 | 657 | 	dma_dev->device_tx_status = dma_cookie_status; | 
 | 658 | 	dma_dev->device_issue_pending = axi_dmac_issue_pending; | 
 | 659 | 	dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg; | 
 | 660 | 	dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic; | 
 | 661 | 	dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved; | 
 | 662 | 	dma_dev->device_terminate_all = axi_dmac_terminate_all; | 
 | 663 | 	dma_dev->device_synchronize = axi_dmac_synchronize; | 
 | 664 | 	dma_dev->dev = &pdev->dev; | 
 | 665 | 	dma_dev->chancnt = 1; | 
 | 666 | 	dma_dev->src_addr_widths = BIT(dmac->chan.src_width); | 
 | 667 | 	dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width); | 
 | 668 | 	dma_dev->directions = BIT(dmac->chan.direction); | 
 | 669 | 	dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; | 
 | 670 | 	INIT_LIST_HEAD(&dma_dev->channels); | 
 | 671 |  | 
 | 672 | 	dmac->chan.vchan.desc_free = axi_dmac_desc_free; | 
 | 673 | 	vchan_init(&dmac->chan.vchan, dma_dev); | 
 | 674 |  | 
 | 675 | 	ret = clk_prepare_enable(dmac->clk); | 
 | 676 | 	if (ret < 0) | 
 | 677 | 		return ret; | 
 | 678 |  | 
 | 679 | 	axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, 0x00); | 
 | 680 |  | 
 | 681 | 	ret = dma_async_device_register(dma_dev); | 
 | 682 | 	if (ret) | 
 | 683 | 		goto err_clk_disable; | 
 | 684 |  | 
 | 685 | 	ret = of_dma_controller_register(pdev->dev.of_node, | 
 | 686 | 		of_dma_xlate_by_chan_id, dma_dev); | 
 | 687 | 	if (ret) | 
 | 688 | 		goto err_unregister_device; | 
 | 689 |  | 
 | 690 | 	ret = request_irq(dmac->irq, axi_dmac_interrupt_handler, IRQF_SHARED, | 
 | 691 | 		dev_name(&pdev->dev), dmac); | 
 | 692 | 	if (ret) | 
 | 693 | 		goto err_unregister_of; | 
 | 694 |  | 
 | 695 | 	platform_set_drvdata(pdev, dmac); | 
 | 696 |  | 
 | 697 | 	return 0; | 
 | 698 |  | 
 | 699 | err_unregister_of: | 
 | 700 | 	of_dma_controller_free(pdev->dev.of_node); | 
 | 701 | err_unregister_device: | 
 | 702 | 	dma_async_device_unregister(&dmac->dma_dev); | 
 | 703 | err_clk_disable: | 
 | 704 | 	clk_disable_unprepare(dmac->clk); | 
 | 705 |  | 
 | 706 | 	return ret; | 
 | 707 | } | 
 | 708 |  | 
 | 709 | static int axi_dmac_remove(struct platform_device *pdev) | 
 | 710 | { | 
 | 711 | 	struct axi_dmac *dmac = platform_get_drvdata(pdev); | 
 | 712 |  | 
 | 713 | 	of_dma_controller_free(pdev->dev.of_node); | 
 | 714 | 	free_irq(dmac->irq, dmac); | 
 | 715 | 	tasklet_kill(&dmac->chan.vchan.task); | 
 | 716 | 	dma_async_device_unregister(&dmac->dma_dev); | 
 | 717 | 	clk_disable_unprepare(dmac->clk); | 
 | 718 |  | 
 | 719 | 	return 0; | 
 | 720 | } | 
 | 721 |  | 
 | 722 | static const struct of_device_id axi_dmac_of_match_table[] = { | 
 | 723 | 	{ .compatible = "adi,axi-dmac-1.00.a" }, | 
 | 724 | 	{ }, | 
 | 725 | }; | 
 | 726 | MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table); | 
 | 727 |  | 
 | 728 | static struct platform_driver axi_dmac_driver = { | 
 | 729 | 	.driver = { | 
 | 730 | 		.name = "dma-axi-dmac", | 
 | 731 | 		.of_match_table = axi_dmac_of_match_table, | 
 | 732 | 	}, | 
 | 733 | 	.probe = axi_dmac_probe, | 
 | 734 | 	.remove = axi_dmac_remove, | 
 | 735 | }; | 
 | 736 | module_platform_driver(axi_dmac_driver); | 
 | 737 |  | 
 | 738 | MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>"); | 
 | 739 | MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller"); | 
 | 740 | MODULE_LICENSE("GPL v2"); |