blob: 120e5559e6b4494eeecfc996643e93f90a992f4e [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11#include <linux/cpu.h>
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
16#include <linux/sched/signal.h>
17#include <linux/backing-dev.h>
18#include <linux/sysctl.h>
19#include <linux/sysfs.h>
20#include <linux/page-isolation.h>
21#include <linux/kasan.h>
22#include <linux/kthread.h>
23#include <linux/freezer.h>
24#include <linux/page_owner.h>
25#include <linux/psi.h>
26#include "internal.h"
27
28#ifdef CONFIG_COMPACTION
29static inline void count_compact_event(enum vm_event_item item)
30{
31 count_vm_event(item);
32}
33
34static inline void count_compact_events(enum vm_event_item item, long delta)
35{
36 count_vm_events(item, delta);
37}
38#else
39#define count_compact_event(item) do { } while (0)
40#define count_compact_events(item, delta) do { } while (0)
41#endif
42
43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45#define CREATE_TRACE_POINTS
46#include <trace/events/compaction.h>
47
48#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
53static unsigned long release_freepages(struct list_head *freelist)
54{
55 struct page *page, *next;
56 unsigned long high_pfn = 0;
57
58 list_for_each_entry_safe(page, next, freelist, lru) {
59 unsigned long pfn = page_to_pfn(page);
60 list_del(&page->lru);
61 __free_page(page);
62 if (pfn > high_pfn)
63 high_pfn = pfn;
64 }
65
66 return high_pfn;
67}
68
69static void map_pages(struct list_head *list)
70{
71 unsigned int i, order, nr_pages;
72 struct page *page, *next;
73 LIST_HEAD(tmp_list);
74
75 list_for_each_entry_safe(page, next, list, lru) {
76 list_del(&page->lru);
77
78 order = page_private(page);
79 nr_pages = 1 << order;
80
81 post_alloc_hook(page, order, __GFP_MOVABLE);
82 if (order)
83 split_page(page, order);
84
85 for (i = 0; i < nr_pages; i++) {
86 list_add(&page->lru, &tmp_list);
87 page++;
88 }
89 }
90
91 list_splice(&tmp_list, list);
92}
93
94#ifdef CONFIG_COMPACTION
95
96int PageMovable(struct page *page)
97{
98 struct address_space *mapping;
99
100 VM_BUG_ON_PAGE(!PageLocked(page), page);
101 if (!__PageMovable(page))
102 return 0;
103
104 mapping = page_mapping(page);
105 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106 return 1;
107
108 return 0;
109}
110EXPORT_SYMBOL(PageMovable);
111
112void __SetPageMovable(struct page *page, struct address_space *mapping)
113{
114 VM_BUG_ON_PAGE(!PageLocked(page), page);
115 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117}
118EXPORT_SYMBOL(__SetPageMovable);
119
120void __ClearPageMovable(struct page *page)
121{
122 VM_BUG_ON_PAGE(!PageLocked(page), page);
123 VM_BUG_ON_PAGE(!PageMovable(page), page);
124 /*
125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126 * flag so that VM can catch up released page by driver after isolation.
127 * With it, VM migration doesn't try to put it back.
128 */
129 page->mapping = (void *)((unsigned long)page->mapping &
130 PAGE_MAPPING_MOVABLE);
131}
132EXPORT_SYMBOL(__ClearPageMovable);
133
134/* Do not skip compaction more than 64 times */
135#define COMPACT_MAX_DEFER_SHIFT 6
136
137/*
138 * Compaction is deferred when compaction fails to result in a page
139 * allocation success. 1 << compact_defer_limit compactions are skipped up
140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141 */
142void defer_compaction(struct zone *zone, int order)
143{
144 zone->compact_considered = 0;
145 zone->compact_defer_shift++;
146
147 if (order < zone->compact_order_failed)
148 zone->compact_order_failed = order;
149
150 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152
153 trace_mm_compaction_defer_compaction(zone, order);
154}
155
156/* Returns true if compaction should be skipped this time */
157bool compaction_deferred(struct zone *zone, int order)
158{
159 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160
161 if (order < zone->compact_order_failed)
162 return false;
163
164 /* Avoid possible overflow */
165 if (++zone->compact_considered > defer_limit)
166 zone->compact_considered = defer_limit;
167
168 if (zone->compact_considered >= defer_limit)
169 return false;
170
171 trace_mm_compaction_deferred(zone, order);
172
173 return true;
174}
175
176/*
177 * Update defer tracking counters after successful compaction of given order,
178 * which means an allocation either succeeded (alloc_success == true) or is
179 * expected to succeed.
180 */
181void compaction_defer_reset(struct zone *zone, int order,
182 bool alloc_success)
183{
184 if (alloc_success) {
185 zone->compact_considered = 0;
186 zone->compact_defer_shift = 0;
187 }
188 if (order >= zone->compact_order_failed)
189 zone->compact_order_failed = order + 1;
190
191 trace_mm_compaction_defer_reset(zone, order);
192}
193
194/* Returns true if restarting compaction after many failures */
195bool compaction_restarting(struct zone *zone, int order)
196{
197 if (order < zone->compact_order_failed)
198 return false;
199
200 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201 zone->compact_considered >= 1UL << zone->compact_defer_shift;
202}
203
204/* Returns true if the pageblock should be scanned for pages to isolate. */
205static inline bool isolation_suitable(struct compact_control *cc,
206 struct page *page)
207{
208 if (cc->ignore_skip_hint)
209 return true;
210
211 return !get_pageblock_skip(page);
212}
213
214static void reset_cached_positions(struct zone *zone)
215{
216 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218 zone->compact_cached_free_pfn =
219 pageblock_start_pfn(zone_end_pfn(zone) - 1);
220}
221
222/*
223 * Compound pages of >= pageblock_order should consistenly be skipped until
224 * released. It is always pointless to compact pages of such order (if they are
225 * migratable), and the pageblocks they occupy cannot contain any free pages.
226 */
227static bool pageblock_skip_persistent(struct page *page)
228{
229 if (!PageCompound(page))
230 return false;
231
232 page = compound_head(page);
233
234 if (compound_order(page) >= pageblock_order)
235 return true;
236
237 return false;
238}
239
240/*
241 * This function is called to clear all cached information on pageblocks that
242 * should be skipped for page isolation when the migrate and free page scanner
243 * meet.
244 */
245static void __reset_isolation_suitable(struct zone *zone)
246{
247 unsigned long start_pfn = zone->zone_start_pfn;
248 unsigned long end_pfn = zone_end_pfn(zone);
249 unsigned long pfn;
250
251 zone->compact_blockskip_flush = false;
252
253 /* Walk the zone and mark every pageblock as suitable for isolation */
254 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
255 struct page *page;
256
257 cond_resched();
258
259 page = pfn_to_online_page(pfn);
260 if (!page)
261 continue;
262 if (zone != page_zone(page))
263 continue;
264 if (pageblock_skip_persistent(page))
265 continue;
266
267 clear_pageblock_skip(page);
268 }
269
270 reset_cached_positions(zone);
271}
272
273void reset_isolation_suitable(pg_data_t *pgdat)
274{
275 int zoneid;
276
277 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
278 struct zone *zone = &pgdat->node_zones[zoneid];
279 if (!populated_zone(zone))
280 continue;
281
282 /* Only flush if a full compaction finished recently */
283 if (zone->compact_blockskip_flush)
284 __reset_isolation_suitable(zone);
285 }
286}
287
288/*
289 * If no pages were isolated then mark this pageblock to be skipped in the
290 * future. The information is later cleared by __reset_isolation_suitable().
291 */
292static void update_pageblock_skip(struct compact_control *cc,
293 struct page *page, unsigned long nr_isolated,
294 bool migrate_scanner)
295{
296 struct zone *zone = cc->zone;
297 unsigned long pfn;
298
299 if (cc->no_set_skip_hint)
300 return;
301
302 if (!page)
303 return;
304
305 if (nr_isolated)
306 return;
307
308 set_pageblock_skip(page);
309
310 pfn = page_to_pfn(page);
311
312 /* Update where async and sync compaction should restart */
313 if (migrate_scanner) {
314 if (pfn > zone->compact_cached_migrate_pfn[0])
315 zone->compact_cached_migrate_pfn[0] = pfn;
316 if (cc->mode != MIGRATE_ASYNC &&
317 pfn > zone->compact_cached_migrate_pfn[1])
318 zone->compact_cached_migrate_pfn[1] = pfn;
319 } else {
320 if (pfn < zone->compact_cached_free_pfn)
321 zone->compact_cached_free_pfn = pfn;
322 }
323}
324#else
325static inline bool isolation_suitable(struct compact_control *cc,
326 struct page *page)
327{
328 return true;
329}
330
331static inline bool pageblock_skip_persistent(struct page *page)
332{
333 return false;
334}
335
336static inline void update_pageblock_skip(struct compact_control *cc,
337 struct page *page, unsigned long nr_isolated,
338 bool migrate_scanner)
339{
340}
341#endif /* CONFIG_COMPACTION */
342
343/*
344 * Compaction requires the taking of some coarse locks that are potentially
345 * very heavily contended. For async compaction, back out if the lock cannot
346 * be taken immediately. For sync compaction, spin on the lock if needed.
347 *
348 * Returns true if the lock is held
349 * Returns false if the lock is not held and compaction should abort
350 */
351static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
352 struct compact_control *cc)
353{
354 if (cc->mode == MIGRATE_ASYNC) {
355 if (!spin_trylock_irqsave(lock, *flags)) {
356 cc->contended = true;
357 return false;
358 }
359 } else {
360 spin_lock_irqsave(lock, *flags);
361 }
362
363 return true;
364}
365
366/*
367 * Compaction requires the taking of some coarse locks that are potentially
368 * very heavily contended. The lock should be periodically unlocked to avoid
369 * having disabled IRQs for a long time, even when there is nobody waiting on
370 * the lock. It might also be that allowing the IRQs will result in
371 * need_resched() becoming true. If scheduling is needed, async compaction
372 * aborts. Sync compaction schedules.
373 * Either compaction type will also abort if a fatal signal is pending.
374 * In either case if the lock was locked, it is dropped and not regained.
375 *
376 * Returns true if compaction should abort due to fatal signal pending, or
377 * async compaction due to need_resched()
378 * Returns false when compaction can continue (sync compaction might have
379 * scheduled)
380 */
381static bool compact_unlock_should_abort(spinlock_t *lock,
382 unsigned long flags, bool *locked, struct compact_control *cc)
383{
384 if (*locked) {
385 spin_unlock_irqrestore(lock, flags);
386 *locked = false;
387 }
388
389 if (fatal_signal_pending(current)) {
390 cc->contended = true;
391 return true;
392 }
393
394 if (need_resched()) {
395 if (cc->mode == MIGRATE_ASYNC) {
396 cc->contended = true;
397 return true;
398 }
399 cond_resched();
400 }
401
402 return false;
403}
404
405/*
406 * Aside from avoiding lock contention, compaction also periodically checks
407 * need_resched() and either schedules in sync compaction or aborts async
408 * compaction. This is similar to what compact_unlock_should_abort() does, but
409 * is used where no lock is concerned.
410 *
411 * Returns false when no scheduling was needed, or sync compaction scheduled.
412 * Returns true when async compaction should abort.
413 */
414static inline bool compact_should_abort(struct compact_control *cc)
415{
416 /* async compaction aborts if contended */
417 if (need_resched()) {
418 if (cc->mode == MIGRATE_ASYNC) {
419 cc->contended = true;
420 return true;
421 }
422
423 cond_resched();
424 }
425
426 return false;
427}
428
429/*
430 * Isolate free pages onto a private freelist. If @strict is true, will abort
431 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
432 * (even though it may still end up isolating some pages).
433 */
434static unsigned long isolate_freepages_block(struct compact_control *cc,
435 unsigned long *start_pfn,
436 unsigned long end_pfn,
437 struct list_head *freelist,
438 bool strict)
439{
440 int nr_scanned = 0, total_isolated = 0;
441 struct page *cursor, *valid_page = NULL;
442 unsigned long flags = 0;
443 bool locked = false;
444 unsigned long blockpfn = *start_pfn;
445 unsigned int order;
446
447 cursor = pfn_to_page(blockpfn);
448
449 /* Isolate free pages. */
450 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
451 int isolated;
452 struct page *page = cursor;
453
454 /*
455 * Periodically drop the lock (if held) regardless of its
456 * contention, to give chance to IRQs. Abort if fatal signal
457 * pending or async compaction detects need_resched()
458 */
459 if (!(blockpfn % SWAP_CLUSTER_MAX)
460 && compact_unlock_should_abort(&cc->zone->lock, flags,
461 &locked, cc))
462 break;
463
464 nr_scanned++;
465 if (!pfn_valid_within(blockpfn))
466 goto isolate_fail;
467
468 if (!valid_page)
469 valid_page = page;
470
471 /*
472 * For compound pages such as THP and hugetlbfs, we can save
473 * potentially a lot of iterations if we skip them at once.
474 * The check is racy, but we can consider only valid values
475 * and the only danger is skipping too much.
476 */
477 if (PageCompound(page)) {
478 const unsigned int order = compound_order(page);
479
480 if (likely(order < MAX_ORDER)) {
481 blockpfn += (1UL << order) - 1;
482 cursor += (1UL << order) - 1;
483 }
484 goto isolate_fail;
485 }
486
487 if (!PageBuddy(page))
488 goto isolate_fail;
489
490 /*
491 * If we already hold the lock, we can skip some rechecking.
492 * Note that if we hold the lock now, checked_pageblock was
493 * already set in some previous iteration (or strict is true),
494 * so it is correct to skip the suitable migration target
495 * recheck as well.
496 */
497 if (!locked) {
498 /*
499 * The zone lock must be held to isolate freepages.
500 * Unfortunately this is a very coarse lock and can be
501 * heavily contended if there are parallel allocations
502 * or parallel compactions. For async compaction do not
503 * spin on the lock and we acquire the lock as late as
504 * possible.
505 */
506 locked = compact_trylock_irqsave(&cc->zone->lock,
507 &flags, cc);
508 if (!locked)
509 break;
510
511 /* Recheck this is a buddy page under lock */
512 if (!PageBuddy(page))
513 goto isolate_fail;
514 }
515
516 /* Found a free page, will break it into order-0 pages */
517 order = page_order(page);
518 isolated = __isolate_free_page(page, order);
519 if (!isolated)
520 break;
521 set_page_private(page, order);
522
523 total_isolated += isolated;
524 cc->nr_freepages += isolated;
525 list_add_tail(&page->lru, freelist);
526
527 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
528 blockpfn += isolated;
529 break;
530 }
531 /* Advance to the end of split page */
532 blockpfn += isolated - 1;
533 cursor += isolated - 1;
534 continue;
535
536isolate_fail:
537 if (strict)
538 break;
539 else
540 continue;
541
542 }
543
544 if (locked)
545 spin_unlock_irqrestore(&cc->zone->lock, flags);
546
547 /*
548 * There is a tiny chance that we have read bogus compound_order(),
549 * so be careful to not go outside of the pageblock.
550 */
551 if (unlikely(blockpfn > end_pfn))
552 blockpfn = end_pfn;
553
554 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
555 nr_scanned, total_isolated);
556
557 /* Record how far we have got within the block */
558 *start_pfn = blockpfn;
559
560 /*
561 * If strict isolation is requested by CMA then check that all the
562 * pages requested were isolated. If there were any failures, 0 is
563 * returned and CMA will fail.
564 */
565 if (strict && blockpfn < end_pfn)
566 total_isolated = 0;
567
568 /* Update the pageblock-skip if the whole pageblock was scanned */
569 if (blockpfn == end_pfn)
570 update_pageblock_skip(cc, valid_page, total_isolated, false);
571
572 cc->total_free_scanned += nr_scanned;
573 if (total_isolated)
574 count_compact_events(COMPACTISOLATED, total_isolated);
575 return total_isolated;
576}
577
578/**
579 * isolate_freepages_range() - isolate free pages.
580 * @cc: Compaction control structure.
581 * @start_pfn: The first PFN to start isolating.
582 * @end_pfn: The one-past-last PFN.
583 *
584 * Non-free pages, invalid PFNs, or zone boundaries within the
585 * [start_pfn, end_pfn) range are considered errors, cause function to
586 * undo its actions and return zero.
587 *
588 * Otherwise, function returns one-past-the-last PFN of isolated page
589 * (which may be greater then end_pfn if end fell in a middle of
590 * a free page).
591 */
592unsigned long
593isolate_freepages_range(struct compact_control *cc,
594 unsigned long start_pfn, unsigned long end_pfn)
595{
596 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
597 LIST_HEAD(freelist);
598
599 pfn = start_pfn;
600 block_start_pfn = pageblock_start_pfn(pfn);
601 if (block_start_pfn < cc->zone->zone_start_pfn)
602 block_start_pfn = cc->zone->zone_start_pfn;
603 block_end_pfn = pageblock_end_pfn(pfn);
604
605 for (; pfn < end_pfn; pfn += isolated,
606 block_start_pfn = block_end_pfn,
607 block_end_pfn += pageblock_nr_pages) {
608 /* Protect pfn from changing by isolate_freepages_block */
609 unsigned long isolate_start_pfn = pfn;
610
611 block_end_pfn = min(block_end_pfn, end_pfn);
612
613 /*
614 * pfn could pass the block_end_pfn if isolated freepage
615 * is more than pageblock order. In this case, we adjust
616 * scanning range to right one.
617 */
618 if (pfn >= block_end_pfn) {
619 block_start_pfn = pageblock_start_pfn(pfn);
620 block_end_pfn = pageblock_end_pfn(pfn);
621 block_end_pfn = min(block_end_pfn, end_pfn);
622 }
623
624 if (!pageblock_pfn_to_page(block_start_pfn,
625 block_end_pfn, cc->zone))
626 break;
627
628 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
629 block_end_pfn, &freelist, true);
630
631 /*
632 * In strict mode, isolate_freepages_block() returns 0 if
633 * there are any holes in the block (ie. invalid PFNs or
634 * non-free pages).
635 */
636 if (!isolated)
637 break;
638
639 /*
640 * If we managed to isolate pages, it is always (1 << n) *
641 * pageblock_nr_pages for some non-negative n. (Max order
642 * page may span two pageblocks).
643 */
644 }
645
646 /* __isolate_free_page() does not map the pages */
647 map_pages(&freelist);
648
649 if (pfn < end_pfn) {
650 /* Loop terminated early, cleanup. */
651 release_freepages(&freelist);
652 return 0;
653 }
654
655 /* We don't use freelists for anything. */
656 return pfn;
657}
658
659/* Similar to reclaim, but different enough that they don't share logic */
660static bool too_many_isolated(struct zone *zone)
661{
662 unsigned long active, inactive, isolated;
663
664 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
665 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
666 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
667 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
668 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
669 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
670
671 return isolated > (inactive + active) / 2;
672}
673
674/**
675 * isolate_migratepages_block() - isolate all migrate-able pages within
676 * a single pageblock
677 * @cc: Compaction control structure.
678 * @low_pfn: The first PFN to isolate
679 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
680 * @isolate_mode: Isolation mode to be used.
681 *
682 * Isolate all pages that can be migrated from the range specified by
683 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
684 * Returns zero if there is a fatal signal pending, otherwise PFN of the
685 * first page that was not scanned (which may be both less, equal to or more
686 * than end_pfn).
687 *
688 * The pages are isolated on cc->migratepages list (not required to be empty),
689 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
690 * is neither read nor updated.
691 */
692static unsigned long
693isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
694 unsigned long end_pfn, isolate_mode_t isolate_mode)
695{
696 struct zone *zone = cc->zone;
697 unsigned long nr_scanned = 0, nr_isolated = 0;
698 struct lruvec *lruvec;
699 unsigned long flags = 0;
700 bool locked = false;
701 struct page *page = NULL, *valid_page = NULL;
702 unsigned long start_pfn = low_pfn;
703 bool skip_on_failure = false;
704 unsigned long next_skip_pfn = 0;
705
706 /*
707 * Ensure that there are not too many pages isolated from the LRU
708 * list by either parallel reclaimers or compaction. If there are,
709 * delay for some time until fewer pages are isolated
710 */
711 while (unlikely(too_many_isolated(zone))) {
712 /* async migration should just abort */
713 if (cc->mode == MIGRATE_ASYNC)
714 return 0;
715
716 congestion_wait(BLK_RW_ASYNC, HZ/10);
717
718 if (fatal_signal_pending(current))
719 return 0;
720 }
721
722 if (compact_should_abort(cc))
723 return 0;
724
725 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
726 skip_on_failure = true;
727 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
728 }
729
730 /* Time to isolate some pages for migration */
731 for (; low_pfn < end_pfn; low_pfn++) {
732
733 if (skip_on_failure && low_pfn >= next_skip_pfn) {
734 /*
735 * We have isolated all migration candidates in the
736 * previous order-aligned block, and did not skip it due
737 * to failure. We should migrate the pages now and
738 * hopefully succeed compaction.
739 */
740 if (nr_isolated)
741 break;
742
743 /*
744 * We failed to isolate in the previous order-aligned
745 * block. Set the new boundary to the end of the
746 * current block. Note we can't simply increase
747 * next_skip_pfn by 1 << order, as low_pfn might have
748 * been incremented by a higher number due to skipping
749 * a compound or a high-order buddy page in the
750 * previous loop iteration.
751 */
752 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
753 }
754
755 /*
756 * Periodically drop the lock (if held) regardless of its
757 * contention, to give chance to IRQs. Abort async compaction
758 * if contended.
759 */
760 if (!(low_pfn % SWAP_CLUSTER_MAX)
761 && compact_unlock_should_abort(zone_lru_lock(zone), flags,
762 &locked, cc))
763 break;
764
765 if (!pfn_valid_within(low_pfn))
766 goto isolate_fail;
767 nr_scanned++;
768
769 page = pfn_to_page(low_pfn);
770
771 if (!valid_page)
772 valid_page = page;
773
774 /*
775 * Skip if free. We read page order here without zone lock
776 * which is generally unsafe, but the race window is small and
777 * the worst thing that can happen is that we skip some
778 * potential isolation targets.
779 */
780 if (PageBuddy(page)) {
781 unsigned long freepage_order = page_order_unsafe(page);
782
783 /*
784 * Without lock, we cannot be sure that what we got is
785 * a valid page order. Consider only values in the
786 * valid order range to prevent low_pfn overflow.
787 */
788 if (freepage_order > 0 && freepage_order < MAX_ORDER)
789 low_pfn += (1UL << freepage_order) - 1;
790 continue;
791 }
792
793 /*
794 * Regardless of being on LRU, compound pages such as THP and
795 * hugetlbfs are not to be compacted. We can potentially save
796 * a lot of iterations if we skip them at once. The check is
797 * racy, but we can consider only valid values and the only
798 * danger is skipping too much.
799 */
800 if (PageCompound(page)) {
801 const unsigned int order = compound_order(page);
802
803 if (likely(order < MAX_ORDER))
804 low_pfn += (1UL << order) - 1;
805 goto isolate_fail;
806 }
807
808 /*
809 * Check may be lockless but that's ok as we recheck later.
810 * It's possible to migrate LRU and non-lru movable pages.
811 * Skip any other type of page
812 */
813 if (!PageLRU(page)) {
814 /*
815 * __PageMovable can return false positive so we need
816 * to verify it under page_lock.
817 */
818 if (unlikely(__PageMovable(page)) &&
819 !PageIsolated(page)) {
820 if (locked) {
821 spin_unlock_irqrestore(zone_lru_lock(zone),
822 flags);
823 locked = false;
824 }
825
826 if (!isolate_movable_page(page, isolate_mode))
827 goto isolate_success;
828 }
829
830 goto isolate_fail;
831 }
832
833 /*
834 * Migration will fail if an anonymous page is pinned in memory,
835 * so avoid taking lru_lock and isolating it unnecessarily in an
836 * admittedly racy check.
837 */
838 if (!page_mapping(page) &&
839 page_count(page) > page_mapcount(page))
840 goto isolate_fail;
841
842 /*
843 * Only allow to migrate anonymous pages in GFP_NOFS context
844 * because those do not depend on fs locks.
845 */
846 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
847 goto isolate_fail;
848
849 /* If we already hold the lock, we can skip some rechecking */
850 if (!locked) {
851 locked = compact_trylock_irqsave(zone_lru_lock(zone),
852 &flags, cc);
853 if (!locked)
854 break;
855
856 /* Recheck PageLRU and PageCompound under lock */
857 if (!PageLRU(page))
858 goto isolate_fail;
859
860 /*
861 * Page become compound since the non-locked check,
862 * and it's on LRU. It can only be a THP so the order
863 * is safe to read and it's 0 for tail pages.
864 */
865 if (unlikely(PageCompound(page))) {
866 low_pfn += (1UL << compound_order(page)) - 1;
867 goto isolate_fail;
868 }
869 }
870
871 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
872
873 /* Try isolate the page */
874 if (__isolate_lru_page(page, isolate_mode) != 0)
875 goto isolate_fail;
876
877 VM_BUG_ON_PAGE(PageCompound(page), page);
878
879 /* Successfully isolated */
880 del_page_from_lru_list(page, lruvec, page_lru(page));
881 inc_node_page_state(page,
882 NR_ISOLATED_ANON + page_is_file_cache(page));
883
884isolate_success:
885 list_add(&page->lru, &cc->migratepages);
886 cc->nr_migratepages++;
887 nr_isolated++;
888
889 /*
890 * Record where we could have freed pages by migration and not
891 * yet flushed them to buddy allocator.
892 * - this is the lowest page that was isolated and likely be
893 * then freed by migration.
894 */
895 if (!cc->last_migrated_pfn)
896 cc->last_migrated_pfn = low_pfn;
897
898 /* Avoid isolating too much */
899 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
900 ++low_pfn;
901 break;
902 }
903
904 continue;
905isolate_fail:
906 if (!skip_on_failure)
907 continue;
908
909 /*
910 * We have isolated some pages, but then failed. Release them
911 * instead of migrating, as we cannot form the cc->order buddy
912 * page anyway.
913 */
914 if (nr_isolated) {
915 if (locked) {
916 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
917 locked = false;
918 }
919 putback_movable_pages(&cc->migratepages);
920 cc->nr_migratepages = 0;
921 cc->last_migrated_pfn = 0;
922 nr_isolated = 0;
923 }
924
925 if (low_pfn < next_skip_pfn) {
926 low_pfn = next_skip_pfn - 1;
927 /*
928 * The check near the loop beginning would have updated
929 * next_skip_pfn too, but this is a bit simpler.
930 */
931 next_skip_pfn += 1UL << cc->order;
932 }
933 }
934
935 /*
936 * The PageBuddy() check could have potentially brought us outside
937 * the range to be scanned.
938 */
939 if (unlikely(low_pfn > end_pfn))
940 low_pfn = end_pfn;
941
942 if (locked)
943 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
944
945 /*
946 * Update the pageblock-skip information and cached scanner pfn,
947 * if the whole pageblock was scanned without isolating any page.
948 */
949 if (low_pfn == end_pfn)
950 update_pageblock_skip(cc, valid_page, nr_isolated, true);
951
952 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
953 nr_scanned, nr_isolated);
954
955 cc->total_migrate_scanned += nr_scanned;
956 if (nr_isolated)
957 count_compact_events(COMPACTISOLATED, nr_isolated);
958
959 return low_pfn;
960}
961
962/**
963 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
964 * @cc: Compaction control structure.
965 * @start_pfn: The first PFN to start isolating.
966 * @end_pfn: The one-past-last PFN.
967 *
968 * Returns zero if isolation fails fatally due to e.g. pending signal.
969 * Otherwise, function returns one-past-the-last PFN of isolated page
970 * (which may be greater than end_pfn if end fell in a middle of a THP page).
971 */
972unsigned long
973isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
974 unsigned long end_pfn)
975{
976 unsigned long pfn, block_start_pfn, block_end_pfn;
977
978 /* Scan block by block. First and last block may be incomplete */
979 pfn = start_pfn;
980 block_start_pfn = pageblock_start_pfn(pfn);
981 if (block_start_pfn < cc->zone->zone_start_pfn)
982 block_start_pfn = cc->zone->zone_start_pfn;
983 block_end_pfn = pageblock_end_pfn(pfn);
984
985 for (; pfn < end_pfn; pfn = block_end_pfn,
986 block_start_pfn = block_end_pfn,
987 block_end_pfn += pageblock_nr_pages) {
988
989 block_end_pfn = min(block_end_pfn, end_pfn);
990
991 if (!pageblock_pfn_to_page(block_start_pfn,
992 block_end_pfn, cc->zone))
993 continue;
994
995 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
996 ISOLATE_UNEVICTABLE);
997
998 if (!pfn)
999 break;
1000
1001 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1002 break;
1003 }
1004
1005 return pfn;
1006}
1007
1008#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1009#ifdef CONFIG_COMPACTION
1010
1011static bool suitable_migration_source(struct compact_control *cc,
1012 struct page *page)
1013{
1014 int block_mt;
1015
1016 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1017 return true;
1018
1019 block_mt = get_pageblock_migratetype(page);
1020
1021 if (cc->migratetype == MIGRATE_MOVABLE)
1022 return is_migrate_movable(block_mt);
1023 else
1024 return block_mt == cc->migratetype;
1025}
1026
1027/* Returns true if the page is within a block suitable for migration to */
1028static bool suitable_migration_target(struct compact_control *cc,
1029 struct page *page)
1030{
1031 /* If the page is a large free page, then disallow migration */
1032 if (PageBuddy(page)) {
1033 /*
1034 * We are checking page_order without zone->lock taken. But
1035 * the only small danger is that we skip a potentially suitable
1036 * pageblock, so it's not worth to check order for valid range.
1037 */
1038 if (page_order_unsafe(page) >= pageblock_order)
1039 return false;
1040 }
1041
1042 if (cc->ignore_block_suitable)
1043 return true;
1044
1045 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1046 if (is_migrate_movable(get_pageblock_migratetype(page)))
1047 return true;
1048
1049 /* Otherwise skip the block */
1050 return false;
1051}
1052
1053/*
1054 * Test whether the free scanner has reached the same or lower pageblock than
1055 * the migration scanner, and compaction should thus terminate.
1056 */
1057static inline bool compact_scanners_met(struct compact_control *cc)
1058{
1059 return (cc->free_pfn >> pageblock_order)
1060 <= (cc->migrate_pfn >> pageblock_order);
1061}
1062
1063/*
1064 * Based on information in the current compact_control, find blocks
1065 * suitable for isolating free pages from and then isolate them.
1066 */
1067static void isolate_freepages(struct compact_control *cc)
1068{
1069 struct zone *zone = cc->zone;
1070 struct page *page;
1071 unsigned long block_start_pfn; /* start of current pageblock */
1072 unsigned long isolate_start_pfn; /* exact pfn we start at */
1073 unsigned long block_end_pfn; /* end of current pageblock */
1074 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1075 struct list_head *freelist = &cc->freepages;
1076
1077 /*
1078 * Initialise the free scanner. The starting point is where we last
1079 * successfully isolated from, zone-cached value, or the end of the
1080 * zone when isolating for the first time. For looping we also need
1081 * this pfn aligned down to the pageblock boundary, because we do
1082 * block_start_pfn -= pageblock_nr_pages in the for loop.
1083 * For ending point, take care when isolating in last pageblock of a
1084 * a zone which ends in the middle of a pageblock.
1085 * The low boundary is the end of the pageblock the migration scanner
1086 * is using.
1087 */
1088 isolate_start_pfn = cc->free_pfn;
1089 block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1090 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1091 zone_end_pfn(zone));
1092 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1093
1094 /*
1095 * Isolate free pages until enough are available to migrate the
1096 * pages on cc->migratepages. We stop searching if the migrate
1097 * and free page scanners meet or enough free pages are isolated.
1098 */
1099 for (; block_start_pfn >= low_pfn;
1100 block_end_pfn = block_start_pfn,
1101 block_start_pfn -= pageblock_nr_pages,
1102 isolate_start_pfn = block_start_pfn) {
1103 /*
1104 * This can iterate a massively long zone without finding any
1105 * suitable migration targets, so periodically check if we need
1106 * to schedule, or even abort async compaction.
1107 */
1108 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1109 && compact_should_abort(cc))
1110 break;
1111
1112 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1113 zone);
1114 if (!page)
1115 continue;
1116
1117 /* Check the block is suitable for migration */
1118 if (!suitable_migration_target(cc, page))
1119 continue;
1120
1121 /* If isolation recently failed, do not retry */
1122 if (!isolation_suitable(cc, page))
1123 continue;
1124
1125 /* Found a block suitable for isolating free pages from. */
1126 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1127 freelist, false);
1128
1129 /*
1130 * If we isolated enough freepages, or aborted due to lock
1131 * contention, terminate.
1132 */
1133 if ((cc->nr_freepages >= cc->nr_migratepages)
1134 || cc->contended) {
1135 if (isolate_start_pfn >= block_end_pfn) {
1136 /*
1137 * Restart at previous pageblock if more
1138 * freepages can be isolated next time.
1139 */
1140 isolate_start_pfn =
1141 block_start_pfn - pageblock_nr_pages;
1142 }
1143 break;
1144 } else if (isolate_start_pfn < block_end_pfn) {
1145 /*
1146 * If isolation failed early, do not continue
1147 * needlessly.
1148 */
1149 break;
1150 }
1151 }
1152
1153 /* __isolate_free_page() does not map the pages */
1154 map_pages(freelist);
1155
1156 /*
1157 * Record where the free scanner will restart next time. Either we
1158 * broke from the loop and set isolate_start_pfn based on the last
1159 * call to isolate_freepages_block(), or we met the migration scanner
1160 * and the loop terminated due to isolate_start_pfn < low_pfn
1161 */
1162 cc->free_pfn = isolate_start_pfn;
1163}
1164
1165/*
1166 * This is a migrate-callback that "allocates" freepages by taking pages
1167 * from the isolated freelists in the block we are migrating to.
1168 */
1169static struct page *compaction_alloc(struct page *migratepage,
1170 unsigned long data)
1171{
1172 struct compact_control *cc = (struct compact_control *)data;
1173 struct page *freepage;
1174
1175 /*
1176 * Isolate free pages if necessary, and if we are not aborting due to
1177 * contention.
1178 */
1179 if (list_empty(&cc->freepages)) {
1180 if (!cc->contended)
1181 isolate_freepages(cc);
1182
1183 if (list_empty(&cc->freepages))
1184 return NULL;
1185 }
1186
1187 freepage = list_entry(cc->freepages.next, struct page, lru);
1188 list_del(&freepage->lru);
1189 cc->nr_freepages--;
1190
1191 return freepage;
1192}
1193
1194/*
1195 * This is a migrate-callback that "frees" freepages back to the isolated
1196 * freelist. All pages on the freelist are from the same zone, so there is no
1197 * special handling needed for NUMA.
1198 */
1199static void compaction_free(struct page *page, unsigned long data)
1200{
1201 struct compact_control *cc = (struct compact_control *)data;
1202
1203 list_add(&page->lru, &cc->freepages);
1204 cc->nr_freepages++;
1205}
1206
1207/* possible outcome of isolate_migratepages */
1208typedef enum {
1209 ISOLATE_ABORT, /* Abort compaction now */
1210 ISOLATE_NONE, /* No pages isolated, continue scanning */
1211 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1212} isolate_migrate_t;
1213
1214/*
1215 * Allow userspace to control policy on scanning the unevictable LRU for
1216 * compactable pages.
1217 */
1218int sysctl_compact_unevictable_allowed __read_mostly = 1;
1219
1220/*
1221 * Isolate all pages that can be migrated from the first suitable block,
1222 * starting at the block pointed to by the migrate scanner pfn within
1223 * compact_control.
1224 */
1225static isolate_migrate_t isolate_migratepages(struct zone *zone,
1226 struct compact_control *cc)
1227{
1228 unsigned long block_start_pfn;
1229 unsigned long block_end_pfn;
1230 unsigned long low_pfn;
1231 struct page *page;
1232 const isolate_mode_t isolate_mode =
1233 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1234 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1235
1236 /*
1237 * Start at where we last stopped, or beginning of the zone as
1238 * initialized by compact_zone()
1239 */
1240 low_pfn = cc->migrate_pfn;
1241 block_start_pfn = pageblock_start_pfn(low_pfn);
1242 if (block_start_pfn < zone->zone_start_pfn)
1243 block_start_pfn = zone->zone_start_pfn;
1244
1245 /* Only scan within a pageblock boundary */
1246 block_end_pfn = pageblock_end_pfn(low_pfn);
1247
1248 /*
1249 * Iterate over whole pageblocks until we find the first suitable.
1250 * Do not cross the free scanner.
1251 */
1252 for (; block_end_pfn <= cc->free_pfn;
1253 low_pfn = block_end_pfn,
1254 block_start_pfn = block_end_pfn,
1255 block_end_pfn += pageblock_nr_pages) {
1256
1257 /*
1258 * This can potentially iterate a massively long zone with
1259 * many pageblocks unsuitable, so periodically check if we
1260 * need to schedule, or even abort async compaction.
1261 */
1262 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1263 && compact_should_abort(cc))
1264 break;
1265
1266 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1267 zone);
1268 if (!page)
1269 continue;
1270
1271 /* If isolation recently failed, do not retry */
1272 if (!isolation_suitable(cc, page))
1273 continue;
1274
1275 /*
1276 * For async compaction, also only scan in MOVABLE blocks.
1277 * Async compaction is optimistic to see if the minimum amount
1278 * of work satisfies the allocation.
1279 */
1280 if (!suitable_migration_source(cc, page))
1281 continue;
1282
1283 /* Perform the isolation */
1284 low_pfn = isolate_migratepages_block(cc, low_pfn,
1285 block_end_pfn, isolate_mode);
1286
1287 if (!low_pfn || cc->contended)
1288 return ISOLATE_ABORT;
1289
1290 /*
1291 * Either we isolated something and proceed with migration. Or
1292 * we failed and compact_zone should decide if we should
1293 * continue or not.
1294 */
1295 break;
1296 }
1297
1298 /* Record where migration scanner will be restarted. */
1299 cc->migrate_pfn = low_pfn;
1300
1301 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1302}
1303
1304/*
1305 * order == -1 is expected when compacting via
1306 * /proc/sys/vm/compact_memory
1307 */
1308static inline bool is_via_compact_memory(int order)
1309{
1310 return order == -1;
1311}
1312
1313static enum compact_result __compact_finished(struct zone *zone,
1314 struct compact_control *cc)
1315{
1316 unsigned int order;
1317 const int migratetype = cc->migratetype;
1318
1319 if (cc->contended || fatal_signal_pending(current))
1320 return COMPACT_CONTENDED;
1321
1322 /* Compaction run completes if the migrate and free scanner meet */
1323 if (compact_scanners_met(cc)) {
1324 /* Let the next compaction start anew. */
1325 reset_cached_positions(zone);
1326
1327 /*
1328 * Mark that the PG_migrate_skip information should be cleared
1329 * by kswapd when it goes to sleep. kcompactd does not set the
1330 * flag itself as the decision to be clear should be directly
1331 * based on an allocation request.
1332 */
1333 if (cc->direct_compaction)
1334 zone->compact_blockskip_flush = true;
1335
1336 if (cc->whole_zone)
1337 return COMPACT_COMPLETE;
1338 else
1339 return COMPACT_PARTIAL_SKIPPED;
1340 }
1341
1342 if (is_via_compact_memory(cc->order))
1343 return COMPACT_CONTINUE;
1344
1345 if (cc->finishing_block) {
1346 /*
1347 * We have finished the pageblock, but better check again that
1348 * we really succeeded.
1349 */
1350 if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1351 cc->finishing_block = false;
1352 else
1353 return COMPACT_CONTINUE;
1354 }
1355
1356 /* Direct compactor: Is a suitable page free? */
1357 for (order = cc->order; order < MAX_ORDER; order++) {
1358 struct free_area *area = &zone->free_area[order];
1359 bool can_steal;
1360
1361 /* Job done if page is free of the right migratetype */
1362 if (!list_empty(&area->free_list[migratetype]))
1363 return COMPACT_SUCCESS;
1364
1365#ifdef CONFIG_CMA
1366 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1367 if (migratetype == MIGRATE_MOVABLE &&
1368 !list_empty(&area->free_list[MIGRATE_CMA]))
1369 return COMPACT_SUCCESS;
1370#endif
1371 /*
1372 * Job done if allocation would steal freepages from
1373 * other migratetype buddy lists.
1374 */
1375 if (find_suitable_fallback(area, order, migratetype,
1376 true, &can_steal) != -1) {
1377
1378 /* movable pages are OK in any pageblock */
1379 if (migratetype == MIGRATE_MOVABLE)
1380 return COMPACT_SUCCESS;
1381
1382 /*
1383 * We are stealing for a non-movable allocation. Make
1384 * sure we finish compacting the current pageblock
1385 * first so it is as free as possible and we won't
1386 * have to steal another one soon. This only applies
1387 * to sync compaction, as async compaction operates
1388 * on pageblocks of the same migratetype.
1389 */
1390 if (cc->mode == MIGRATE_ASYNC ||
1391 IS_ALIGNED(cc->migrate_pfn,
1392 pageblock_nr_pages)) {
1393 return COMPACT_SUCCESS;
1394 }
1395
1396 cc->finishing_block = true;
1397 return COMPACT_CONTINUE;
1398 }
1399 }
1400
1401 return COMPACT_NO_SUITABLE_PAGE;
1402}
1403
1404static enum compact_result compact_finished(struct zone *zone,
1405 struct compact_control *cc)
1406{
1407 int ret;
1408
1409 ret = __compact_finished(zone, cc);
1410 trace_mm_compaction_finished(zone, cc->order, ret);
1411 if (ret == COMPACT_NO_SUITABLE_PAGE)
1412 ret = COMPACT_CONTINUE;
1413
1414 return ret;
1415}
1416
1417/*
1418 * compaction_suitable: Is this suitable to run compaction on this zone now?
1419 * Returns
1420 * COMPACT_SKIPPED - If there are too few free pages for compaction
1421 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1422 * COMPACT_CONTINUE - If compaction should run now
1423 */
1424static enum compact_result __compaction_suitable(struct zone *zone, int order,
1425 unsigned int alloc_flags,
1426 int classzone_idx,
1427 unsigned long wmark_target)
1428{
1429 unsigned long watermark;
1430
1431 if (is_via_compact_memory(order))
1432 return COMPACT_CONTINUE;
1433
1434 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1435 /*
1436 * If watermarks for high-order allocation are already met, there
1437 * should be no need for compaction at all.
1438 */
1439 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1440 alloc_flags))
1441 return COMPACT_SUCCESS;
1442
1443 /*
1444 * Watermarks for order-0 must be met for compaction to be able to
1445 * isolate free pages for migration targets. This means that the
1446 * watermark and alloc_flags have to match, or be more pessimistic than
1447 * the check in __isolate_free_page(). We don't use the direct
1448 * compactor's alloc_flags, as they are not relevant for freepage
1449 * isolation. We however do use the direct compactor's classzone_idx to
1450 * skip over zones where lowmem reserves would prevent allocation even
1451 * if compaction succeeds.
1452 * For costly orders, we require low watermark instead of min for
1453 * compaction to proceed to increase its chances.
1454 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1455 * suitable migration targets
1456 */
1457 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1458 low_wmark_pages(zone) : min_wmark_pages(zone);
1459 watermark += compact_gap(order);
1460 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1461 ALLOC_CMA, wmark_target))
1462 return COMPACT_SKIPPED;
1463
1464 return COMPACT_CONTINUE;
1465}
1466
1467enum compact_result compaction_suitable(struct zone *zone, int order,
1468 unsigned int alloc_flags,
1469 int classzone_idx)
1470{
1471 enum compact_result ret;
1472 int fragindex;
1473
1474 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1475 zone_page_state(zone, NR_FREE_PAGES));
1476 /*
1477 * fragmentation index determines if allocation failures are due to
1478 * low memory or external fragmentation
1479 *
1480 * index of -1000 would imply allocations might succeed depending on
1481 * watermarks, but we already failed the high-order watermark check
1482 * index towards 0 implies failure is due to lack of memory
1483 * index towards 1000 implies failure is due to fragmentation
1484 *
1485 * Only compact if a failure would be due to fragmentation. Also
1486 * ignore fragindex for non-costly orders where the alternative to
1487 * a successful reclaim/compaction is OOM. Fragindex and the
1488 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1489 * excessive compaction for costly orders, but it should not be at the
1490 * expense of system stability.
1491 */
1492 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1493 fragindex = fragmentation_index(zone, order);
1494 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1495 ret = COMPACT_NOT_SUITABLE_ZONE;
1496 }
1497
1498 trace_mm_compaction_suitable(zone, order, ret);
1499 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1500 ret = COMPACT_SKIPPED;
1501
1502 return ret;
1503}
1504
1505bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1506 int alloc_flags)
1507{
1508 struct zone *zone;
1509 struct zoneref *z;
1510
1511 /*
1512 * Make sure at least one zone would pass __compaction_suitable if we continue
1513 * retrying the reclaim.
1514 */
1515 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1516 ac->nodemask) {
1517 unsigned long available;
1518 enum compact_result compact_result;
1519
1520 /*
1521 * Do not consider all the reclaimable memory because we do not
1522 * want to trash just for a single high order allocation which
1523 * is even not guaranteed to appear even if __compaction_suitable
1524 * is happy about the watermark check.
1525 */
1526 available = zone_reclaimable_pages(zone) / order;
1527 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1528 compact_result = __compaction_suitable(zone, order, alloc_flags,
1529 ac_classzone_idx(ac), available);
1530 if (compact_result != COMPACT_SKIPPED)
1531 return true;
1532 }
1533
1534 return false;
1535}
1536
1537static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1538{
1539 enum compact_result ret;
1540 unsigned long start_pfn = zone->zone_start_pfn;
1541 unsigned long end_pfn = zone_end_pfn(zone);
1542 const bool sync = cc->mode != MIGRATE_ASYNC;
1543
1544 /*
1545 * These counters track activities during zone compaction. Initialize
1546 * them before compacting a new zone.
1547 */
1548 cc->total_migrate_scanned = 0;
1549 cc->total_free_scanned = 0;
1550 cc->nr_migratepages = 0;
1551 cc->nr_freepages = 0;
1552 INIT_LIST_HEAD(&cc->freepages);
1553 INIT_LIST_HEAD(&cc->migratepages);
1554
1555 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1556 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1557 cc->classzone_idx);
1558 /* Compaction is likely to fail */
1559 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1560 return ret;
1561
1562 /* huh, compaction_suitable is returning something unexpected */
1563 VM_BUG_ON(ret != COMPACT_CONTINUE);
1564
1565 /*
1566 * Clear pageblock skip if there were failures recently and compaction
1567 * is about to be retried after being deferred.
1568 */
1569 if (compaction_restarting(zone, cc->order))
1570 __reset_isolation_suitable(zone);
1571
1572 /*
1573 * Setup to move all movable pages to the end of the zone. Used cached
1574 * information on where the scanners should start (unless we explicitly
1575 * want to compact the whole zone), but check that it is initialised
1576 * by ensuring the values are within zone boundaries.
1577 */
1578 if (cc->whole_zone) {
1579 cc->migrate_pfn = start_pfn;
1580 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1581 } else {
1582 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1583 cc->free_pfn = zone->compact_cached_free_pfn;
1584 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1585 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1586 zone->compact_cached_free_pfn = cc->free_pfn;
1587 }
1588 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1589 cc->migrate_pfn = start_pfn;
1590 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1591 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1592 }
1593
1594 if (cc->migrate_pfn == start_pfn)
1595 cc->whole_zone = true;
1596 }
1597
1598 cc->last_migrated_pfn = 0;
1599
1600 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1601 cc->free_pfn, end_pfn, sync);
1602
1603 migrate_prep_local();
1604
1605 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1606 int err;
1607
1608 switch (isolate_migratepages(zone, cc)) {
1609 case ISOLATE_ABORT:
1610 ret = COMPACT_CONTENDED;
1611 putback_movable_pages(&cc->migratepages);
1612 cc->nr_migratepages = 0;
1613 goto out;
1614 case ISOLATE_NONE:
1615 /*
1616 * We haven't isolated and migrated anything, but
1617 * there might still be unflushed migrations from
1618 * previous cc->order aligned block.
1619 */
1620 goto check_drain;
1621 case ISOLATE_SUCCESS:
1622 ;
1623 }
1624
1625 err = migrate_pages(&cc->migratepages, compaction_alloc,
1626 compaction_free, (unsigned long)cc, cc->mode,
1627 MR_COMPACTION);
1628
1629 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1630 &cc->migratepages);
1631
1632 /* All pages were either migrated or will be released */
1633 cc->nr_migratepages = 0;
1634 if (err) {
1635 putback_movable_pages(&cc->migratepages);
1636 /*
1637 * migrate_pages() may return -ENOMEM when scanners meet
1638 * and we want compact_finished() to detect it
1639 */
1640 if (err == -ENOMEM && !compact_scanners_met(cc)) {
1641 ret = COMPACT_CONTENDED;
1642 goto out;
1643 }
1644 /*
1645 * We failed to migrate at least one page in the current
1646 * order-aligned block, so skip the rest of it.
1647 */
1648 if (cc->direct_compaction &&
1649 (cc->mode == MIGRATE_ASYNC)) {
1650 cc->migrate_pfn = block_end_pfn(
1651 cc->migrate_pfn - 1, cc->order);
1652 /* Draining pcplists is useless in this case */
1653 cc->last_migrated_pfn = 0;
1654
1655 }
1656 }
1657
1658check_drain:
1659 /*
1660 * Has the migration scanner moved away from the previous
1661 * cc->order aligned block where we migrated from? If yes,
1662 * flush the pages that were freed, so that they can merge and
1663 * compact_finished() can detect immediately if allocation
1664 * would succeed.
1665 */
1666 if (cc->order > 0 && cc->last_migrated_pfn) {
1667 int cpu;
1668 unsigned long current_block_start =
1669 block_start_pfn(cc->migrate_pfn, cc->order);
1670
1671 if (cc->last_migrated_pfn < current_block_start) {
1672 cpu = get_cpu();
1673 lru_add_drain_cpu(cpu);
1674 drain_local_pages(zone);
1675 put_cpu();
1676 /* No more flushing until we migrate again */
1677 cc->last_migrated_pfn = 0;
1678 }
1679 }
1680
1681 }
1682
1683out:
1684 /*
1685 * Release free pages and update where the free scanner should restart,
1686 * so we don't leave any returned pages behind in the next attempt.
1687 */
1688 if (cc->nr_freepages > 0) {
1689 unsigned long free_pfn = release_freepages(&cc->freepages);
1690
1691 cc->nr_freepages = 0;
1692 VM_BUG_ON(free_pfn == 0);
1693 /* The cached pfn is always the first in a pageblock */
1694 free_pfn = pageblock_start_pfn(free_pfn);
1695 /*
1696 * Only go back, not forward. The cached pfn might have been
1697 * already reset to zone end in compact_finished()
1698 */
1699 if (free_pfn > zone->compact_cached_free_pfn)
1700 zone->compact_cached_free_pfn = free_pfn;
1701 }
1702
1703 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1704 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1705
1706 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1707 cc->free_pfn, end_pfn, sync, ret);
1708
1709 return ret;
1710}
1711
1712static enum compact_result compact_zone_order(struct zone *zone, int order,
1713 gfp_t gfp_mask, enum compact_priority prio,
1714 unsigned int alloc_flags, int classzone_idx)
1715{
1716 enum compact_result ret;
1717 struct compact_control cc = {
1718 .order = order,
1719 .gfp_mask = gfp_mask,
1720 .zone = zone,
1721 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1722 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
1723 .alloc_flags = alloc_flags,
1724 .classzone_idx = classzone_idx,
1725 .direct_compaction = true,
1726 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
1727 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1728 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1729 };
1730
1731 ret = compact_zone(zone, &cc);
1732
1733 VM_BUG_ON(!list_empty(&cc.freepages));
1734 VM_BUG_ON(!list_empty(&cc.migratepages));
1735
1736 return ret;
1737}
1738
1739int sysctl_extfrag_threshold = 500;
1740
1741/**
1742 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1743 * @gfp_mask: The GFP mask of the current allocation
1744 * @order: The order of the current allocation
1745 * @alloc_flags: The allocation flags of the current allocation
1746 * @ac: The context of current allocation
1747 * @prio: Determines how hard direct compaction should try to succeed
1748 *
1749 * This is the main entry point for direct page compaction.
1750 */
1751enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1752 unsigned int alloc_flags, const struct alloc_context *ac,
1753 enum compact_priority prio)
1754{
1755 int may_perform_io = gfp_mask & __GFP_IO;
1756 struct zoneref *z;
1757 struct zone *zone;
1758 enum compact_result rc = COMPACT_SKIPPED;
1759
1760 /*
1761 * Check if the GFP flags allow compaction - GFP_NOIO is really
1762 * tricky context because the migration might require IO
1763 */
1764 if (!may_perform_io)
1765 return COMPACT_SKIPPED;
1766
1767 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1768
1769 /* Compact each zone in the list */
1770 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1771 ac->nodemask) {
1772 enum compact_result status;
1773
1774 if (prio > MIN_COMPACT_PRIORITY
1775 && compaction_deferred(zone, order)) {
1776 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1777 continue;
1778 }
1779
1780 status = compact_zone_order(zone, order, gfp_mask, prio,
1781 alloc_flags, ac_classzone_idx(ac));
1782 rc = max(status, rc);
1783
1784 /* The allocation should succeed, stop compacting */
1785 if (status == COMPACT_SUCCESS) {
1786 /*
1787 * We think the allocation will succeed in this zone,
1788 * but it is not certain, hence the false. The caller
1789 * will repeat this with true if allocation indeed
1790 * succeeds in this zone.
1791 */
1792 compaction_defer_reset(zone, order, false);
1793
1794 break;
1795 }
1796
1797 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1798 status == COMPACT_PARTIAL_SKIPPED))
1799 /*
1800 * We think that allocation won't succeed in this zone
1801 * so we defer compaction there. If it ends up
1802 * succeeding after all, it will be reset.
1803 */
1804 defer_compaction(zone, order);
1805
1806 /*
1807 * We might have stopped compacting due to need_resched() in
1808 * async compaction, or due to a fatal signal detected. In that
1809 * case do not try further zones
1810 */
1811 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1812 || fatal_signal_pending(current))
1813 break;
1814 }
1815
1816 return rc;
1817}
1818
1819
1820/* Compact all zones within a node */
1821static void compact_node(int nid)
1822{
1823 pg_data_t *pgdat = NODE_DATA(nid);
1824 int zoneid;
1825 struct zone *zone;
1826 struct compact_control cc = {
1827 .order = -1,
1828 .mode = MIGRATE_SYNC,
1829 .ignore_skip_hint = true,
1830 .whole_zone = true,
1831 .gfp_mask = GFP_KERNEL,
1832 };
1833
1834
1835 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1836
1837 zone = &pgdat->node_zones[zoneid];
1838 if (!populated_zone(zone))
1839 continue;
1840
1841 cc.zone = zone;
1842
1843 compact_zone(zone, &cc);
1844
1845 VM_BUG_ON(!list_empty(&cc.freepages));
1846 VM_BUG_ON(!list_empty(&cc.migratepages));
1847 }
1848}
1849
1850/* Compact all nodes in the system */
1851static void compact_nodes(void)
1852{
1853 int nid;
1854
1855 /* Flush pending updates to the LRU lists */
1856 lru_add_drain_all();
1857
1858 for_each_online_node(nid)
1859 compact_node(nid);
1860}
1861
1862/* The written value is actually unused, all memory is compacted */
1863int sysctl_compact_memory;
1864
1865/*
1866 * This is the entry point for compacting all nodes via
1867 * /proc/sys/vm/compact_memory
1868 */
1869int sysctl_compaction_handler(struct ctl_table *table, int write,
1870 void __user *buffer, size_t *length, loff_t *ppos)
1871{
1872 if (write)
1873 compact_nodes();
1874
1875 return 0;
1876}
1877
1878int sysctl_extfrag_handler(struct ctl_table *table, int write,
1879 void __user *buffer, size_t *length, loff_t *ppos)
1880{
1881 proc_dointvec_minmax(table, write, buffer, length, ppos);
1882
1883 return 0;
1884}
1885
1886#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1887static ssize_t sysfs_compact_node(struct device *dev,
1888 struct device_attribute *attr,
1889 const char *buf, size_t count)
1890{
1891 int nid = dev->id;
1892
1893 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1894 /* Flush pending updates to the LRU lists */
1895 lru_add_drain_all();
1896
1897 compact_node(nid);
1898 }
1899
1900 return count;
1901}
1902static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
1903
1904int compaction_register_node(struct node *node)
1905{
1906 return device_create_file(&node->dev, &dev_attr_compact);
1907}
1908
1909void compaction_unregister_node(struct node *node)
1910{
1911 return device_remove_file(&node->dev, &dev_attr_compact);
1912}
1913#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1914
1915static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1916{
1917 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1918}
1919
1920static bool kcompactd_node_suitable(pg_data_t *pgdat)
1921{
1922 int zoneid;
1923 struct zone *zone;
1924 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1925
1926 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1927 zone = &pgdat->node_zones[zoneid];
1928
1929 if (!populated_zone(zone))
1930 continue;
1931
1932 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1933 classzone_idx) == COMPACT_CONTINUE)
1934 return true;
1935 }
1936
1937 return false;
1938}
1939
1940static void kcompactd_do_work(pg_data_t *pgdat)
1941{
1942 /*
1943 * With no special task, compact all zones so that a page of requested
1944 * order is allocatable.
1945 */
1946 int zoneid;
1947 struct zone *zone;
1948 struct compact_control cc = {
1949 .order = pgdat->kcompactd_max_order,
1950 .classzone_idx = pgdat->kcompactd_classzone_idx,
1951 .mode = MIGRATE_SYNC_LIGHT,
1952 .ignore_skip_hint = false,
1953 .gfp_mask = GFP_KERNEL,
1954 };
1955 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1956 cc.classzone_idx);
1957 count_compact_event(KCOMPACTD_WAKE);
1958
1959 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1960 int status;
1961
1962 zone = &pgdat->node_zones[zoneid];
1963 if (!populated_zone(zone))
1964 continue;
1965
1966 if (compaction_deferred(zone, cc.order))
1967 continue;
1968
1969 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1970 COMPACT_CONTINUE)
1971 continue;
1972
1973 if (kthread_should_stop())
1974 return;
1975
1976 cc.zone = zone;
1977 status = compact_zone(zone, &cc);
1978
1979 if (status == COMPACT_SUCCESS) {
1980 compaction_defer_reset(zone, cc.order, false);
1981 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1982 /*
1983 * Buddy pages may become stranded on pcps that could
1984 * otherwise coalesce on the zone's free area for
1985 * order >= cc.order. This is ratelimited by the
1986 * upcoming deferral.
1987 */
1988 drain_all_pages(zone);
1989
1990 /*
1991 * We use sync migration mode here, so we defer like
1992 * sync direct compaction does.
1993 */
1994 defer_compaction(zone, cc.order);
1995 }
1996
1997 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
1998 cc.total_migrate_scanned);
1999 count_compact_events(KCOMPACTD_FREE_SCANNED,
2000 cc.total_free_scanned);
2001
2002 VM_BUG_ON(!list_empty(&cc.freepages));
2003 VM_BUG_ON(!list_empty(&cc.migratepages));
2004 }
2005
2006 /*
2007 * Regardless of success, we are done until woken up next. But remember
2008 * the requested order/classzone_idx in case it was higher/tighter than
2009 * our current ones
2010 */
2011 if (pgdat->kcompactd_max_order <= cc.order)
2012 pgdat->kcompactd_max_order = 0;
2013 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2014 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2015}
2016
2017void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2018{
2019 if (!order)
2020 return;
2021
2022 if (pgdat->kcompactd_max_order < order)
2023 pgdat->kcompactd_max_order = order;
2024
2025 if (pgdat->kcompactd_classzone_idx > classzone_idx)
2026 pgdat->kcompactd_classzone_idx = classzone_idx;
2027
2028 /*
2029 * Pairs with implicit barrier in wait_event_freezable()
2030 * such that wakeups are not missed.
2031 */
2032 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2033 return;
2034
2035 if (!kcompactd_node_suitable(pgdat))
2036 return;
2037
2038 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2039 classzone_idx);
2040 wake_up_interruptible(&pgdat->kcompactd_wait);
2041}
2042
2043/*
2044 * The background compaction daemon, started as a kernel thread
2045 * from the init process.
2046 */
2047static int kcompactd(void *p)
2048{
2049 pg_data_t *pgdat = (pg_data_t*)p;
2050 struct task_struct *tsk = current;
2051
2052 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2053
2054 if (!cpumask_empty(cpumask))
2055 set_cpus_allowed_ptr(tsk, cpumask);
2056
2057 set_freezable();
2058
2059 pgdat->kcompactd_max_order = 0;
2060 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2061
2062 while (!kthread_should_stop()) {
2063 unsigned long pflags;
2064
2065 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2066 wait_event_freezable(pgdat->kcompactd_wait,
2067 kcompactd_work_requested(pgdat));
2068
2069 psi_memstall_enter(&pflags);
2070 kcompactd_do_work(pgdat);
2071 psi_memstall_leave(&pflags);
2072 }
2073
2074 return 0;
2075}
2076
2077/*
2078 * This kcompactd start function will be called by init and node-hot-add.
2079 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2080 */
2081int kcompactd_run(int nid)
2082{
2083 pg_data_t *pgdat = NODE_DATA(nid);
2084 int ret = 0;
2085
2086 if (pgdat->kcompactd)
2087 return 0;
2088
2089 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2090 if (IS_ERR(pgdat->kcompactd)) {
2091 pr_err("Failed to start kcompactd on node %d\n", nid);
2092 ret = PTR_ERR(pgdat->kcompactd);
2093 pgdat->kcompactd = NULL;
2094 }
2095 return ret;
2096}
2097
2098/*
2099 * Called by memory hotplug when all memory in a node is offlined. Caller must
2100 * hold mem_hotplug_begin/end().
2101 */
2102void kcompactd_stop(int nid)
2103{
2104 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2105
2106 if (kcompactd) {
2107 kthread_stop(kcompactd);
2108 NODE_DATA(nid)->kcompactd = NULL;
2109 }
2110}
2111
2112/*
2113 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2114 * not required for correctness. So if the last cpu in a node goes
2115 * away, we get changed to run anywhere: as the first one comes back,
2116 * restore their cpu bindings.
2117 */
2118static int kcompactd_cpu_online(unsigned int cpu)
2119{
2120 int nid;
2121
2122 for_each_node_state(nid, N_MEMORY) {
2123 pg_data_t *pgdat = NODE_DATA(nid);
2124 const struct cpumask *mask;
2125
2126 mask = cpumask_of_node(pgdat->node_id);
2127
2128 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2129 /* One of our CPUs online: restore mask */
2130 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2131 }
2132 return 0;
2133}
2134
2135static int __init kcompactd_init(void)
2136{
2137 int nid;
2138 int ret;
2139
2140 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2141 "mm/compaction:online",
2142 kcompactd_cpu_online, NULL);
2143 if (ret < 0) {
2144 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2145 return ret;
2146 }
2147
2148 for_each_node_state(nid, N_MEMORY)
2149 kcompactd_run(nid);
2150 return 0;
2151}
2152subsys_initcall(kcompactd_init)
2153
2154#endif /* CONFIG_COMPACTION */