blob: e9d8b8e2216943cdc323992e2b9a8d1701cae6a2 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7#include <linux/slab.h>
8
9#include <linux/mm.h>
10#include <linux/poison.h>
11#include <linux/interrupt.h>
12#include <linux/memory.h>
13#include <linux/cache.h>
14#include <linux/compiler.h>
15#include <linux/module.h>
16#include <linux/cpu.h>
17#include <linux/uaccess.h>
18#include <linux/seq_file.h>
19#include <linux/proc_fs.h>
20#include <asm/cacheflush.h>
21#include <asm/tlbflush.h>
22#include <asm/page.h>
23#include <linux/memcontrol.h>
24
25#define CREATE_TRACE_POINTS
26#include <trace/events/kmem.h>
27
28#include "slab.h"
29
30enum slab_state slab_state;
31LIST_HEAD(slab_caches);
32DEFINE_MUTEX(slab_mutex);
33struct kmem_cache *kmem_cache;
34
35#ifdef CONFIG_HARDENED_USERCOPY
36bool usercopy_fallback __ro_after_init =
37 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
38module_param(usercopy_fallback, bool, 0400);
39MODULE_PARM_DESC(usercopy_fallback,
40 "WARN instead of reject usercopy whitelist violations");
41#endif
42
43static LIST_HEAD(slab_caches_to_rcu_destroy);
44static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
45static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
46 slab_caches_to_rcu_destroy_workfn);
47
48/*
49 * Set of flags that will prevent slab merging
50 */
51#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
52 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
53 SLAB_FAILSLAB | SLAB_KASAN)
54
55#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
56 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
57
58/*
59 * Merge control. If this is set then no merging of slab caches will occur.
60 */
61static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
62
63static int __init setup_slab_nomerge(char *str)
64{
65 slab_nomerge = true;
66 return 1;
67}
68
69#ifdef CONFIG_SLUB
70__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
71#endif
72
73__setup("slab_nomerge", setup_slab_nomerge);
74
75/*
76 * Determine the size of a slab object
77 */
78unsigned int kmem_cache_size(struct kmem_cache *s)
79{
80 return s->object_size;
81}
82EXPORT_SYMBOL(kmem_cache_size);
83
84#ifdef CONFIG_DEBUG_VM
85static int kmem_cache_sanity_check(const char *name, unsigned int size)
86{
87 if (!name || in_interrupt() || size < sizeof(void *) ||
88 size > KMALLOC_MAX_SIZE) {
89 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
90 return -EINVAL;
91 }
92
93 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
94 return 0;
95}
96#else
97static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
98{
99 return 0;
100}
101#endif
102
103void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
104{
105 size_t i;
106
107 for (i = 0; i < nr; i++) {
108 if (s)
109 kmem_cache_free(s, p[i]);
110 else
111 kfree(p[i]);
112 }
113}
114
115int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
116 void **p)
117{
118 size_t i;
119
120 for (i = 0; i < nr; i++) {
121 void *x = p[i] = kmem_cache_alloc(s, flags);
122 if (!x) {
123 __kmem_cache_free_bulk(s, i, p);
124 return 0;
125 }
126 }
127 return i;
128}
129
130#ifdef CONFIG_MEMCG_KMEM
131
132LIST_HEAD(slab_root_caches);
133
134void slab_init_memcg_params(struct kmem_cache *s)
135{
136 s->memcg_params.root_cache = NULL;
137 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
138 INIT_LIST_HEAD(&s->memcg_params.children);
139 s->memcg_params.dying = false;
140}
141
142static int init_memcg_params(struct kmem_cache *s,
143 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
144{
145 struct memcg_cache_array *arr;
146
147 if (root_cache) {
148 s->memcg_params.root_cache = root_cache;
149 s->memcg_params.memcg = memcg;
150 INIT_LIST_HEAD(&s->memcg_params.children_node);
151 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
152 return 0;
153 }
154
155 slab_init_memcg_params(s);
156
157 if (!memcg_nr_cache_ids)
158 return 0;
159
160 arr = kvzalloc(sizeof(struct memcg_cache_array) +
161 memcg_nr_cache_ids * sizeof(void *),
162 GFP_KERNEL);
163 if (!arr)
164 return -ENOMEM;
165
166 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
167 return 0;
168}
169
170static void destroy_memcg_params(struct kmem_cache *s)
171{
172 if (is_root_cache(s))
173 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
174}
175
176static void free_memcg_params(struct rcu_head *rcu)
177{
178 struct memcg_cache_array *old;
179
180 old = container_of(rcu, struct memcg_cache_array, rcu);
181 kvfree(old);
182}
183
184static int update_memcg_params(struct kmem_cache *s, int new_array_size)
185{
186 struct memcg_cache_array *old, *new;
187
188 new = kvzalloc(sizeof(struct memcg_cache_array) +
189 new_array_size * sizeof(void *), GFP_KERNEL);
190 if (!new)
191 return -ENOMEM;
192
193 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
194 lockdep_is_held(&slab_mutex));
195 if (old)
196 memcpy(new->entries, old->entries,
197 memcg_nr_cache_ids * sizeof(void *));
198
199 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
200 if (old)
201 call_rcu(&old->rcu, free_memcg_params);
202 return 0;
203}
204
205int memcg_update_all_caches(int num_memcgs)
206{
207 struct kmem_cache *s;
208 int ret = 0;
209
210 mutex_lock(&slab_mutex);
211 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
212 ret = update_memcg_params(s, num_memcgs);
213 /*
214 * Instead of freeing the memory, we'll just leave the caches
215 * up to this point in an updated state.
216 */
217 if (ret)
218 break;
219 }
220 mutex_unlock(&slab_mutex);
221 return ret;
222}
223
224void memcg_link_cache(struct kmem_cache *s)
225{
226 if (is_root_cache(s)) {
227 list_add(&s->root_caches_node, &slab_root_caches);
228 } else {
229 list_add(&s->memcg_params.children_node,
230 &s->memcg_params.root_cache->memcg_params.children);
231 list_add(&s->memcg_params.kmem_caches_node,
232 &s->memcg_params.memcg->kmem_caches);
233 }
234}
235
236static void memcg_unlink_cache(struct kmem_cache *s)
237{
238 if (is_root_cache(s)) {
239 list_del(&s->root_caches_node);
240 } else {
241 list_del(&s->memcg_params.children_node);
242 list_del(&s->memcg_params.kmem_caches_node);
243 }
244}
245#else
246static inline int init_memcg_params(struct kmem_cache *s,
247 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
248{
249 return 0;
250}
251
252static inline void destroy_memcg_params(struct kmem_cache *s)
253{
254}
255
256static inline void memcg_unlink_cache(struct kmem_cache *s)
257{
258}
259#endif /* CONFIG_MEMCG_KMEM */
260
261/*
262 * Figure out what the alignment of the objects will be given a set of
263 * flags, a user specified alignment and the size of the objects.
264 */
265static unsigned int calculate_alignment(slab_flags_t flags,
266 unsigned int align, unsigned int size)
267{
268 /*
269 * If the user wants hardware cache aligned objects then follow that
270 * suggestion if the object is sufficiently large.
271 *
272 * The hardware cache alignment cannot override the specified
273 * alignment though. If that is greater then use it.
274 */
275 if (flags & SLAB_HWCACHE_ALIGN) {
276 unsigned int ralign;
277
278 ralign = cache_line_size();
279 while (size <= ralign / 2)
280 ralign /= 2;
281 align = max(align, ralign);
282 }
283
284 if (align < ARCH_SLAB_MINALIGN)
285 align = ARCH_SLAB_MINALIGN;
286
287 return ALIGN(align, sizeof(void *));
288}
289
290/*
291 * Find a mergeable slab cache
292 */
293int slab_unmergeable(struct kmem_cache *s)
294{
295 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
296 return 1;
297
298 if (!is_root_cache(s))
299 return 1;
300
301 if (s->ctor)
302 return 1;
303
304 if (s->usersize)
305 return 1;
306
307 /*
308 * We may have set a slab to be unmergeable during bootstrap.
309 */
310 if (s->refcount < 0)
311 return 1;
312
313 return 0;
314}
315
316struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
317 slab_flags_t flags, const char *name, void (*ctor)(void *))
318{
319 struct kmem_cache *s;
320
321 if (slab_nomerge)
322 return NULL;
323
324 if (ctor)
325 return NULL;
326
327 size = ALIGN(size, sizeof(void *));
328 align = calculate_alignment(flags, align, size);
329 size = ALIGN(size, align);
330 flags = kmem_cache_flags(size, flags, name, NULL);
331
332 if (flags & SLAB_NEVER_MERGE)
333 return NULL;
334
335 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
336 if (slab_unmergeable(s))
337 continue;
338
339 if (size > s->size)
340 continue;
341
342 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
343 continue;
344 /*
345 * Check if alignment is compatible.
346 * Courtesy of Adrian Drzewiecki
347 */
348 if ((s->size & ~(align - 1)) != s->size)
349 continue;
350
351 if (s->size - size >= sizeof(void *))
352 continue;
353
354 if (IS_ENABLED(CONFIG_SLAB) && align &&
355 (align > s->align || s->align % align))
356 continue;
357
358 return s;
359 }
360 return NULL;
361}
362
363static struct kmem_cache *create_cache(const char *name,
364 unsigned int object_size, unsigned int align,
365 slab_flags_t flags, unsigned int useroffset,
366 unsigned int usersize, void (*ctor)(void *),
367 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
368{
369 struct kmem_cache *s;
370 int err;
371
372 if (WARN_ON(useroffset + usersize > object_size))
373 useroffset = usersize = 0;
374
375 err = -ENOMEM;
376 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
377 if (!s)
378 goto out;
379
380 s->name = name;
381 s->size = s->object_size = object_size;
382 s->align = align;
383 s->ctor = ctor;
384 s->useroffset = useroffset;
385 s->usersize = usersize;
386
387 err = init_memcg_params(s, memcg, root_cache);
388 if (err)
389 goto out_free_cache;
390
391 err = __kmem_cache_create(s, flags);
392 if (err)
393 goto out_free_cache;
394
395 s->refcount = 1;
396 list_add(&s->list, &slab_caches);
397 memcg_link_cache(s);
398out:
399 if (err)
400 return ERR_PTR(err);
401 return s;
402
403out_free_cache:
404 destroy_memcg_params(s);
405 kmem_cache_free(kmem_cache, s);
406 goto out;
407}
408
409/*
410 * kmem_cache_create_usercopy - Create a cache.
411 * @name: A string which is used in /proc/slabinfo to identify this cache.
412 * @size: The size of objects to be created in this cache.
413 * @align: The required alignment for the objects.
414 * @flags: SLAB flags
415 * @useroffset: Usercopy region offset
416 * @usersize: Usercopy region size
417 * @ctor: A constructor for the objects.
418 *
419 * Returns a ptr to the cache on success, NULL on failure.
420 * Cannot be called within a interrupt, but can be interrupted.
421 * The @ctor is run when new pages are allocated by the cache.
422 *
423 * The flags are
424 *
425 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
426 * to catch references to uninitialised memory.
427 *
428 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
429 * for buffer overruns.
430 *
431 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
432 * cacheline. This can be beneficial if you're counting cycles as closely
433 * as davem.
434 */
435struct kmem_cache *
436kmem_cache_create_usercopy(const char *name,
437 unsigned int size, unsigned int align,
438 slab_flags_t flags,
439 unsigned int useroffset, unsigned int usersize,
440 void (*ctor)(void *))
441{
442 struct kmem_cache *s = NULL;
443 const char *cache_name;
444 int err;
445
446 get_online_cpus();
447 get_online_mems();
448 memcg_get_cache_ids();
449
450 mutex_lock(&slab_mutex);
451
452 err = kmem_cache_sanity_check(name, size);
453 if (err) {
454 goto out_unlock;
455 }
456
457 /* Refuse requests with allocator specific flags */
458 if (flags & ~SLAB_FLAGS_PERMITTED) {
459 err = -EINVAL;
460 goto out_unlock;
461 }
462
463 /*
464 * Some allocators will constraint the set of valid flags to a subset
465 * of all flags. We expect them to define CACHE_CREATE_MASK in this
466 * case, and we'll just provide them with a sanitized version of the
467 * passed flags.
468 */
469 flags &= CACHE_CREATE_MASK;
470
471 /* Fail closed on bad usersize of useroffset values. */
472 if (WARN_ON(!usersize && useroffset) ||
473 WARN_ON(size < usersize || size - usersize < useroffset))
474 usersize = useroffset = 0;
475
476 if (!usersize)
477 s = __kmem_cache_alias(name, size, align, flags, ctor);
478 if (s)
479 goto out_unlock;
480
481 cache_name = kstrdup_const(name, GFP_KERNEL);
482 if (!cache_name) {
483 err = -ENOMEM;
484 goto out_unlock;
485 }
486
487 s = create_cache(cache_name, size,
488 calculate_alignment(flags, align, size),
489 flags, useroffset, usersize, ctor, NULL, NULL);
490 if (IS_ERR(s)) {
491 err = PTR_ERR(s);
492 kfree_const(cache_name);
493 }
494
495out_unlock:
496 mutex_unlock(&slab_mutex);
497
498 memcg_put_cache_ids();
499 put_online_mems();
500 put_online_cpus();
501
502 if (err) {
503 if (flags & SLAB_PANIC)
504 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
505 name, err);
506 else {
507 pr_warn("kmem_cache_create(%s) failed with error %d\n",
508 name, err);
509 dump_stack();
510 }
511 return NULL;
512 }
513 return s;
514}
515EXPORT_SYMBOL(kmem_cache_create_usercopy);
516
517struct kmem_cache *
518kmem_cache_create(const char *name, unsigned int size, unsigned int align,
519 slab_flags_t flags, void (*ctor)(void *))
520{
521 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
522 ctor);
523}
524EXPORT_SYMBOL(kmem_cache_create);
525
526static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
527{
528 LIST_HEAD(to_destroy);
529 struct kmem_cache *s, *s2;
530
531 /*
532 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
533 * @slab_caches_to_rcu_destroy list. The slab pages are freed
534 * through RCU and and the associated kmem_cache are dereferenced
535 * while freeing the pages, so the kmem_caches should be freed only
536 * after the pending RCU operations are finished. As rcu_barrier()
537 * is a pretty slow operation, we batch all pending destructions
538 * asynchronously.
539 */
540 mutex_lock(&slab_mutex);
541 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
542 mutex_unlock(&slab_mutex);
543
544 if (list_empty(&to_destroy))
545 return;
546
547 rcu_barrier();
548
549 list_for_each_entry_safe(s, s2, &to_destroy, list) {
550#ifdef SLAB_SUPPORTS_SYSFS
551 sysfs_slab_release(s);
552#else
553 slab_kmem_cache_release(s);
554#endif
555 }
556}
557
558static int shutdown_cache(struct kmem_cache *s)
559{
560 /* free asan quarantined objects */
561 kasan_cache_shutdown(s);
562
563 if (__kmem_cache_shutdown(s) != 0)
564 return -EBUSY;
565
566 memcg_unlink_cache(s);
567 list_del(&s->list);
568
569 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
570#ifdef SLAB_SUPPORTS_SYSFS
571 sysfs_slab_unlink(s);
572#endif
573 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
574 schedule_work(&slab_caches_to_rcu_destroy_work);
575 } else {
576#ifdef SLAB_SUPPORTS_SYSFS
577 sysfs_slab_unlink(s);
578 sysfs_slab_release(s);
579#else
580 slab_kmem_cache_release(s);
581#endif
582 }
583
584 return 0;
585}
586
587#ifdef CONFIG_MEMCG_KMEM
588/*
589 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
590 * @memcg: The memory cgroup the new cache is for.
591 * @root_cache: The parent of the new cache.
592 *
593 * This function attempts to create a kmem cache that will serve allocation
594 * requests going from @memcg to @root_cache. The new cache inherits properties
595 * from its parent.
596 */
597void memcg_create_kmem_cache(struct mem_cgroup *memcg,
598 struct kmem_cache *root_cache)
599{
600 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
601 struct cgroup_subsys_state *css = &memcg->css;
602 struct memcg_cache_array *arr;
603 struct kmem_cache *s = NULL;
604 char *cache_name;
605 int idx;
606
607 get_online_cpus();
608 get_online_mems();
609
610 mutex_lock(&slab_mutex);
611
612 /*
613 * The memory cgroup could have been offlined while the cache
614 * creation work was pending.
615 */
616 if (memcg->kmem_state != KMEM_ONLINE || root_cache->memcg_params.dying)
617 goto out_unlock;
618
619 idx = memcg_cache_id(memcg);
620 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
621 lockdep_is_held(&slab_mutex));
622
623 /*
624 * Since per-memcg caches are created asynchronously on first
625 * allocation (see memcg_kmem_get_cache()), several threads can try to
626 * create the same cache, but only one of them may succeed.
627 */
628 if (arr->entries[idx])
629 goto out_unlock;
630
631 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
632 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
633 css->serial_nr, memcg_name_buf);
634 if (!cache_name)
635 goto out_unlock;
636
637 s = create_cache(cache_name, root_cache->object_size,
638 root_cache->align,
639 root_cache->flags & CACHE_CREATE_MASK,
640 root_cache->useroffset, root_cache->usersize,
641 root_cache->ctor, memcg, root_cache);
642 /*
643 * If we could not create a memcg cache, do not complain, because
644 * that's not critical at all as we can always proceed with the root
645 * cache.
646 */
647 if (IS_ERR(s)) {
648 kfree(cache_name);
649 goto out_unlock;
650 }
651
652 /*
653 * Since readers won't lock (see cache_from_memcg_idx()), we need a
654 * barrier here to ensure nobody will see the kmem_cache partially
655 * initialized.
656 */
657 smp_wmb();
658 arr->entries[idx] = s;
659
660out_unlock:
661 mutex_unlock(&slab_mutex);
662
663 put_online_mems();
664 put_online_cpus();
665}
666
667static void kmemcg_deactivate_workfn(struct work_struct *work)
668{
669 struct kmem_cache *s = container_of(work, struct kmem_cache,
670 memcg_params.deact_work);
671
672 get_online_cpus();
673 get_online_mems();
674
675 mutex_lock(&slab_mutex);
676
677 s->memcg_params.deact_fn(s);
678
679 mutex_unlock(&slab_mutex);
680
681 put_online_mems();
682 put_online_cpus();
683
684 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
685 css_put(&s->memcg_params.memcg->css);
686}
687
688static void kmemcg_deactivate_rcufn(struct rcu_head *head)
689{
690 struct kmem_cache *s = container_of(head, struct kmem_cache,
691 memcg_params.deact_rcu_head);
692
693 /*
694 * We need to grab blocking locks. Bounce to ->deact_work. The
695 * work item shares the space with the RCU head and can't be
696 * initialized eariler.
697 */
698 INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
699 queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
700}
701
702/**
703 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
704 * sched RCU grace period
705 * @s: target kmem_cache
706 * @deact_fn: deactivation function to call
707 *
708 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
709 * held after a sched RCU grace period. The slab is guaranteed to stay
710 * alive until @deact_fn is finished. This is to be used from
711 * __kmemcg_cache_deactivate().
712 */
713void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
714 void (*deact_fn)(struct kmem_cache *))
715{
716 if (WARN_ON_ONCE(is_root_cache(s)) ||
717 WARN_ON_ONCE(s->memcg_params.deact_fn))
718 return;
719
720 if (s->memcg_params.root_cache->memcg_params.dying)
721 return;
722
723 /* pin memcg so that @s doesn't get destroyed in the middle */
724 css_get(&s->memcg_params.memcg->css);
725
726 s->memcg_params.deact_fn = deact_fn;
727 call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
728}
729
730void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
731{
732 int idx;
733 struct memcg_cache_array *arr;
734 struct kmem_cache *s, *c;
735
736 idx = memcg_cache_id(memcg);
737
738 get_online_cpus();
739 get_online_mems();
740
741 mutex_lock(&slab_mutex);
742 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
743 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
744 lockdep_is_held(&slab_mutex));
745 c = arr->entries[idx];
746 if (!c)
747 continue;
748
749 __kmemcg_cache_deactivate(c);
750 arr->entries[idx] = NULL;
751 }
752 mutex_unlock(&slab_mutex);
753
754 put_online_mems();
755 put_online_cpus();
756}
757
758void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
759{
760 struct kmem_cache *s, *s2;
761
762 get_online_cpus();
763 get_online_mems();
764
765 mutex_lock(&slab_mutex);
766 list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
767 memcg_params.kmem_caches_node) {
768 /*
769 * The cgroup is about to be freed and therefore has no charges
770 * left. Hence, all its caches must be empty by now.
771 */
772 BUG_ON(shutdown_cache(s));
773 }
774 mutex_unlock(&slab_mutex);
775
776 put_online_mems();
777 put_online_cpus();
778}
779
780static int shutdown_memcg_caches(struct kmem_cache *s)
781{
782 struct memcg_cache_array *arr;
783 struct kmem_cache *c, *c2;
784 LIST_HEAD(busy);
785 int i;
786
787 BUG_ON(!is_root_cache(s));
788
789 /*
790 * First, shutdown active caches, i.e. caches that belong to online
791 * memory cgroups.
792 */
793 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
794 lockdep_is_held(&slab_mutex));
795 for_each_memcg_cache_index(i) {
796 c = arr->entries[i];
797 if (!c)
798 continue;
799 if (shutdown_cache(c))
800 /*
801 * The cache still has objects. Move it to a temporary
802 * list so as not to try to destroy it for a second
803 * time while iterating over inactive caches below.
804 */
805 list_move(&c->memcg_params.children_node, &busy);
806 else
807 /*
808 * The cache is empty and will be destroyed soon. Clear
809 * the pointer to it in the memcg_caches array so that
810 * it will never be accessed even if the root cache
811 * stays alive.
812 */
813 arr->entries[i] = NULL;
814 }
815
816 /*
817 * Second, shutdown all caches left from memory cgroups that are now
818 * offline.
819 */
820 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
821 memcg_params.children_node)
822 shutdown_cache(c);
823
824 list_splice(&busy, &s->memcg_params.children);
825
826 /*
827 * A cache being destroyed must be empty. In particular, this means
828 * that all per memcg caches attached to it must be empty too.
829 */
830 if (!list_empty(&s->memcg_params.children))
831 return -EBUSY;
832 return 0;
833}
834
835static void flush_memcg_workqueue(struct kmem_cache *s)
836{
837 mutex_lock(&slab_mutex);
838 s->memcg_params.dying = true;
839 mutex_unlock(&slab_mutex);
840
841 /*
842 * SLUB deactivates the kmem_caches through call_rcu_sched. Make
843 * sure all registered rcu callbacks have been invoked.
844 */
845 if (IS_ENABLED(CONFIG_SLUB))
846 rcu_barrier_sched();
847
848 /*
849 * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB
850 * deactivates the memcg kmem_caches through workqueue. Make sure all
851 * previous workitems on workqueue are processed.
852 */
853 if (likely(memcg_kmem_cache_wq))
854 flush_workqueue(memcg_kmem_cache_wq);
855}
856#else
857static inline int shutdown_memcg_caches(struct kmem_cache *s)
858{
859 return 0;
860}
861
862static inline void flush_memcg_workqueue(struct kmem_cache *s)
863{
864}
865#endif /* CONFIG_MEMCG_KMEM */
866
867void slab_kmem_cache_release(struct kmem_cache *s)
868{
869 __kmem_cache_release(s);
870 destroy_memcg_params(s);
871 kfree_const(s->name);
872 kmem_cache_free(kmem_cache, s);
873}
874
875void kmem_cache_destroy(struct kmem_cache *s)
876{
877 int err;
878
879 if (unlikely(!s))
880 return;
881
882 flush_memcg_workqueue(s);
883
884 get_online_cpus();
885 get_online_mems();
886
887 mutex_lock(&slab_mutex);
888
889 s->refcount--;
890 if (s->refcount)
891 goto out_unlock;
892
893 err = shutdown_memcg_caches(s);
894 if (!err)
895 err = shutdown_cache(s);
896
897 if (err) {
898 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
899 s->name);
900 dump_stack();
901 }
902out_unlock:
903 mutex_unlock(&slab_mutex);
904
905 put_online_mems();
906 put_online_cpus();
907}
908EXPORT_SYMBOL(kmem_cache_destroy);
909
910/**
911 * kmem_cache_shrink - Shrink a cache.
912 * @cachep: The cache to shrink.
913 *
914 * Releases as many slabs as possible for a cache.
915 * To help debugging, a zero exit status indicates all slabs were released.
916 */
917int kmem_cache_shrink(struct kmem_cache *cachep)
918{
919 int ret;
920
921 get_online_cpus();
922 get_online_mems();
923 kasan_cache_shrink(cachep);
924 ret = __kmem_cache_shrink(cachep);
925 put_online_mems();
926 put_online_cpus();
927 return ret;
928}
929EXPORT_SYMBOL(kmem_cache_shrink);
930
931bool slab_is_available(void)
932{
933 return slab_state >= UP;
934}
935
936#ifndef CONFIG_SLOB
937/* Create a cache during boot when no slab services are available yet */
938void __init create_boot_cache(struct kmem_cache *s, const char *name,
939 unsigned int size, slab_flags_t flags,
940 unsigned int useroffset, unsigned int usersize)
941{
942 int err;
943
944 s->name = name;
945 s->size = s->object_size = size;
946 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
947 s->useroffset = useroffset;
948 s->usersize = usersize;
949
950 slab_init_memcg_params(s);
951
952 err = __kmem_cache_create(s, flags);
953
954 if (err)
955 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
956 name, size, err);
957
958 s->refcount = -1; /* Exempt from merging for now */
959}
960
961struct kmem_cache *__init create_kmalloc_cache(const char *name,
962 unsigned int size, slab_flags_t flags,
963 unsigned int useroffset, unsigned int usersize)
964{
965 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
966
967 if (!s)
968 panic("Out of memory when creating slab %s\n", name);
969
970 create_boot_cache(s, name, size, flags, useroffset, usersize);
971 list_add(&s->list, &slab_caches);
972 memcg_link_cache(s);
973 s->refcount = 1;
974 return s;
975}
976
977struct kmem_cache *
978kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
979EXPORT_SYMBOL(kmalloc_caches);
980
981/*
982 * Conversion table for small slabs sizes / 8 to the index in the
983 * kmalloc array. This is necessary for slabs < 192 since we have non power
984 * of two cache sizes there. The size of larger slabs can be determined using
985 * fls.
986 */
987static u8 size_index[24] __ro_after_init = {
988 3, /* 8 */
989 4, /* 16 */
990 5, /* 24 */
991 5, /* 32 */
992 6, /* 40 */
993 6, /* 48 */
994 6, /* 56 */
995 6, /* 64 */
996 1, /* 72 */
997 1, /* 80 */
998 1, /* 88 */
999 1, /* 96 */
1000 7, /* 104 */
1001 7, /* 112 */
1002 7, /* 120 */
1003 7, /* 128 */
1004 2, /* 136 */
1005 2, /* 144 */
1006 2, /* 152 */
1007 2, /* 160 */
1008 2, /* 168 */
1009 2, /* 176 */
1010 2, /* 184 */
1011 2 /* 192 */
1012};
1013
1014static inline unsigned int size_index_elem(unsigned int bytes)
1015{
1016 return (bytes - 1) / 8;
1017}
1018
1019/*
1020 * Find the kmem_cache structure that serves a given size of
1021 * allocation
1022 */
1023struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1024{
1025 unsigned int index;
1026
1027 if (size <= 192) {
1028 if (!size)
1029 return ZERO_SIZE_PTR;
1030
1031 index = size_index[size_index_elem(size)];
1032 } else {
1033 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
1034 WARN_ON(1);
1035 return NULL;
1036 }
1037 index = fls(size - 1);
1038 }
1039
1040 return kmalloc_caches[kmalloc_type(flags)][index];
1041}
1042
1043/*
1044 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1045 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1046 * kmalloc-67108864.
1047 */
1048const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1049 {NULL, 0}, {"kmalloc-96", 96},
1050 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1051 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1052 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1053 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1054 {"kmalloc-1k", 1024}, {"kmalloc-2k", 2048},
1055 {"kmalloc-4k", 4096}, {"kmalloc-8k", 8192},
1056 {"kmalloc-16k", 16384}, {"kmalloc-32k", 32768},
1057 {"kmalloc-64k", 65536}, {"kmalloc-128k", 131072},
1058 {"kmalloc-256k", 262144}, {"kmalloc-512k", 524288},
1059 {"kmalloc-1M", 1048576}, {"kmalloc-2M", 2097152},
1060 {"kmalloc-4M", 4194304}, {"kmalloc-8M", 8388608},
1061 {"kmalloc-16M", 16777216}, {"kmalloc-32M", 33554432},
1062 {"kmalloc-64M", 67108864}
1063};
1064
1065/*
1066 * Patch up the size_index table if we have strange large alignment
1067 * requirements for the kmalloc array. This is only the case for
1068 * MIPS it seems. The standard arches will not generate any code here.
1069 *
1070 * Largest permitted alignment is 256 bytes due to the way we
1071 * handle the index determination for the smaller caches.
1072 *
1073 * Make sure that nothing crazy happens if someone starts tinkering
1074 * around with ARCH_KMALLOC_MINALIGN
1075 */
1076void __init setup_kmalloc_cache_index_table(void)
1077{
1078 unsigned int i;
1079
1080 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1081 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1082
1083 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1084 unsigned int elem = size_index_elem(i);
1085
1086 if (elem >= ARRAY_SIZE(size_index))
1087 break;
1088 size_index[elem] = KMALLOC_SHIFT_LOW;
1089 }
1090
1091 if (KMALLOC_MIN_SIZE >= 64) {
1092 /*
1093 * The 96 byte size cache is not used if the alignment
1094 * is 64 byte.
1095 */
1096 for (i = 64 + 8; i <= 96; i += 8)
1097 size_index[size_index_elem(i)] = 7;
1098
1099 }
1100
1101 if (KMALLOC_MIN_SIZE >= 128) {
1102 /*
1103 * The 192 byte sized cache is not used if the alignment
1104 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1105 * instead.
1106 */
1107 for (i = 128 + 8; i <= 192; i += 8)
1108 size_index[size_index_elem(i)] = 8;
1109 }
1110}
1111
1112static const char *
1113kmalloc_cache_name(const char *prefix, unsigned int size)
1114{
1115
1116 static const char units[3] = "\0kM";
1117 int idx = 0;
1118
1119 while (size >= 1024 && (size % 1024 == 0)) {
1120 size /= 1024;
1121 idx++;
1122 }
1123
1124 return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]);
1125}
1126
1127static void __init
1128new_kmalloc_cache(int idx, int type, slab_flags_t flags)
1129{
1130 const char *name;
1131
1132 if (type == KMALLOC_RECLAIM) {
1133 flags |= SLAB_RECLAIM_ACCOUNT;
1134 name = kmalloc_cache_name("kmalloc-rcl",
1135 kmalloc_info[idx].size);
1136 BUG_ON(!name);
1137 } else {
1138 name = kmalloc_info[idx].name;
1139 }
1140
1141 kmalloc_caches[type][idx] = create_kmalloc_cache(name,
1142 kmalloc_info[idx].size, flags, 0,
1143 kmalloc_info[idx].size);
1144}
1145
1146/*
1147 * Create the kmalloc array. Some of the regular kmalloc arrays
1148 * may already have been created because they were needed to
1149 * enable allocations for slab creation.
1150 */
1151void __init create_kmalloc_caches(slab_flags_t flags)
1152{
1153 int i, type;
1154
1155 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
1156 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1157 if (!kmalloc_caches[type][i])
1158 new_kmalloc_cache(i, type, flags);
1159
1160 /*
1161 * Caches that are not of the two-to-the-power-of size.
1162 * These have to be created immediately after the
1163 * earlier power of two caches
1164 */
1165 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
1166 !kmalloc_caches[type][1])
1167 new_kmalloc_cache(1, type, flags);
1168 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
1169 !kmalloc_caches[type][2])
1170 new_kmalloc_cache(2, type, flags);
1171 }
1172 }
1173
1174 /* Kmalloc array is now usable */
1175 slab_state = UP;
1176
1177#ifdef CONFIG_ZONE_DMA
1178 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1179 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
1180
1181 if (s) {
1182 unsigned int size = kmalloc_size(i);
1183 const char *n = kmalloc_cache_name("dma-kmalloc", size);
1184
1185 BUG_ON(!n);
1186 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
1187 n, size, SLAB_CACHE_DMA | flags, 0, 0);
1188 }
1189 }
1190#endif
1191}
1192#endif /* !CONFIG_SLOB */
1193
1194/*
1195 * To avoid unnecessary overhead, we pass through large allocation requests
1196 * directly to the page allocator. We use __GFP_COMP, because we will need to
1197 * know the allocation order to free the pages properly in kfree.
1198 */
1199void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1200{
1201 void *ret;
1202 struct page *page;
1203
1204 flags |= __GFP_COMP;
1205 page = alloc_pages(flags, order);
1206 ret = page ? page_address(page) : NULL;
1207 ret = kasan_kmalloc_large(ret, size, flags);
1208 kmemleak_alloc(ret, size, 1, flags);
1209 return ret;
1210}
1211EXPORT_SYMBOL(kmalloc_order);
1212
1213#ifdef CONFIG_TRACING
1214void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1215{
1216 void *ret = kmalloc_order(size, flags, order);
1217 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1218 return ret;
1219}
1220EXPORT_SYMBOL(kmalloc_order_trace);
1221#endif
1222
1223#ifdef CONFIG_SLAB_FREELIST_RANDOM
1224/* Randomize a generic freelist */
1225static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1226 unsigned int count)
1227{
1228 unsigned int rand;
1229 unsigned int i;
1230
1231 for (i = 0; i < count; i++)
1232 list[i] = i;
1233
1234 /* Fisher-Yates shuffle */
1235 for (i = count - 1; i > 0; i--) {
1236 rand = prandom_u32_state(state);
1237 rand %= (i + 1);
1238 swap(list[i], list[rand]);
1239 }
1240}
1241
1242/* Create a random sequence per cache */
1243int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1244 gfp_t gfp)
1245{
1246 struct rnd_state state;
1247
1248 if (count < 2 || cachep->random_seq)
1249 return 0;
1250
1251 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1252 if (!cachep->random_seq)
1253 return -ENOMEM;
1254
1255 /* Get best entropy at this stage of boot */
1256 prandom_seed_state(&state, get_random_long());
1257
1258 freelist_randomize(&state, cachep->random_seq, count);
1259 return 0;
1260}
1261
1262/* Destroy the per-cache random freelist sequence */
1263void cache_random_seq_destroy(struct kmem_cache *cachep)
1264{
1265 kfree(cachep->random_seq);
1266 cachep->random_seq = NULL;
1267}
1268#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1269
1270#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1271#ifdef CONFIG_SLAB
1272#define SLABINFO_RIGHTS (0600)
1273#else
1274#define SLABINFO_RIGHTS (0400)
1275#endif
1276
1277static void print_slabinfo_header(struct seq_file *m)
1278{
1279 /*
1280 * Output format version, so at least we can change it
1281 * without _too_ many complaints.
1282 */
1283#ifdef CONFIG_DEBUG_SLAB
1284 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1285#else
1286 seq_puts(m, "slabinfo - version: 2.1\n");
1287#endif
1288 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1289 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1290 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1291#ifdef CONFIG_DEBUG_SLAB
1292 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1293 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1294#endif
1295 seq_putc(m, '\n');
1296}
1297
1298void *slab_start(struct seq_file *m, loff_t *pos)
1299{
1300 mutex_lock(&slab_mutex);
1301 return seq_list_start(&slab_root_caches, *pos);
1302}
1303
1304void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1305{
1306 return seq_list_next(p, &slab_root_caches, pos);
1307}
1308
1309void slab_stop(struct seq_file *m, void *p)
1310{
1311 mutex_unlock(&slab_mutex);
1312}
1313
1314static void
1315memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1316{
1317 struct kmem_cache *c;
1318 struct slabinfo sinfo;
1319
1320 if (!is_root_cache(s))
1321 return;
1322
1323 for_each_memcg_cache(c, s) {
1324 memset(&sinfo, 0, sizeof(sinfo));
1325 get_slabinfo(c, &sinfo);
1326
1327 info->active_slabs += sinfo.active_slabs;
1328 info->num_slabs += sinfo.num_slabs;
1329 info->shared_avail += sinfo.shared_avail;
1330 info->active_objs += sinfo.active_objs;
1331 info->num_objs += sinfo.num_objs;
1332 }
1333}
1334
1335static void cache_show(struct kmem_cache *s, struct seq_file *m)
1336{
1337 struct slabinfo sinfo;
1338
1339 memset(&sinfo, 0, sizeof(sinfo));
1340 get_slabinfo(s, &sinfo);
1341
1342 memcg_accumulate_slabinfo(s, &sinfo);
1343
1344 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1345 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1346 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1347
1348 seq_printf(m, " : tunables %4u %4u %4u",
1349 sinfo.limit, sinfo.batchcount, sinfo.shared);
1350 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1351 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1352 slabinfo_show_stats(m, s);
1353 seq_putc(m, '\n');
1354}
1355
1356static int slab_show(struct seq_file *m, void *p)
1357{
1358 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1359
1360 if (p == slab_root_caches.next)
1361 print_slabinfo_header(m);
1362 cache_show(s, m);
1363 return 0;
1364}
1365
1366void dump_unreclaimable_slab(void)
1367{
1368 struct kmem_cache *s, *s2;
1369 struct slabinfo sinfo;
1370
1371 /*
1372 * Here acquiring slab_mutex is risky since we don't prefer to get
1373 * sleep in oom path. But, without mutex hold, it may introduce a
1374 * risk of crash.
1375 * Use mutex_trylock to protect the list traverse, dump nothing
1376 * without acquiring the mutex.
1377 */
1378 if (!mutex_trylock(&slab_mutex)) {
1379 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1380 return;
1381 }
1382
1383 pr_info("Unreclaimable slab info:\n");
1384 pr_info("Name Used Total\n");
1385
1386 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1387 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1388 continue;
1389
1390 get_slabinfo(s, &sinfo);
1391
1392 if (sinfo.num_objs > 0)
1393 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1394 (sinfo.active_objs * s->size) / 1024,
1395 (sinfo.num_objs * s->size) / 1024);
1396 }
1397 mutex_unlock(&slab_mutex);
1398}
1399
1400#if defined(CONFIG_MEMCG)
1401void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1402{
1403 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1404
1405 mutex_lock(&slab_mutex);
1406 return seq_list_start(&memcg->kmem_caches, *pos);
1407}
1408
1409void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1410{
1411 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1412
1413 return seq_list_next(p, &memcg->kmem_caches, pos);
1414}
1415
1416void memcg_slab_stop(struct seq_file *m, void *p)
1417{
1418 mutex_unlock(&slab_mutex);
1419}
1420
1421int memcg_slab_show(struct seq_file *m, void *p)
1422{
1423 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1424 memcg_params.kmem_caches_node);
1425 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1426
1427 if (p == memcg->kmem_caches.next)
1428 print_slabinfo_header(m);
1429 cache_show(s, m);
1430 return 0;
1431}
1432#endif
1433
1434/*
1435 * slabinfo_op - iterator that generates /proc/slabinfo
1436 *
1437 * Output layout:
1438 * cache-name
1439 * num-active-objs
1440 * total-objs
1441 * object size
1442 * num-active-slabs
1443 * total-slabs
1444 * num-pages-per-slab
1445 * + further values on SMP and with statistics enabled
1446 */
1447static const struct seq_operations slabinfo_op = {
1448 .start = slab_start,
1449 .next = slab_next,
1450 .stop = slab_stop,
1451 .show = slab_show,
1452};
1453
1454static int slabinfo_open(struct inode *inode, struct file *file)
1455{
1456 return seq_open(file, &slabinfo_op);
1457}
1458
1459static const struct file_operations proc_slabinfo_operations = {
1460 .open = slabinfo_open,
1461 .read = seq_read,
1462 .write = slabinfo_write,
1463 .llseek = seq_lseek,
1464 .release = seq_release,
1465};
1466
1467static int __init slab_proc_init(void)
1468{
1469 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1470 &proc_slabinfo_operations);
1471 return 0;
1472}
1473module_init(slab_proc_init);
1474#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1475
1476static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1477 gfp_t flags)
1478{
1479 void *ret;
1480 size_t ks = 0;
1481
1482 if (p)
1483 ks = ksize(p);
1484
1485 if (ks >= new_size) {
1486 p = kasan_krealloc((void *)p, new_size, flags);
1487 return (void *)p;
1488 }
1489
1490 ret = kmalloc_track_caller(new_size, flags);
1491 if (ret && p)
1492 memcpy(ret, p, ks);
1493
1494 return ret;
1495}
1496
1497/**
1498 * __krealloc - like krealloc() but don't free @p.
1499 * @p: object to reallocate memory for.
1500 * @new_size: how many bytes of memory are required.
1501 * @flags: the type of memory to allocate.
1502 *
1503 * This function is like krealloc() except it never frees the originally
1504 * allocated buffer. Use this if you don't want to free the buffer immediately
1505 * like, for example, with RCU.
1506 */
1507void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1508{
1509 if (unlikely(!new_size))
1510 return ZERO_SIZE_PTR;
1511
1512 return __do_krealloc(p, new_size, flags);
1513
1514}
1515EXPORT_SYMBOL(__krealloc);
1516
1517/**
1518 * krealloc - reallocate memory. The contents will remain unchanged.
1519 * @p: object to reallocate memory for.
1520 * @new_size: how many bytes of memory are required.
1521 * @flags: the type of memory to allocate.
1522 *
1523 * The contents of the object pointed to are preserved up to the
1524 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1525 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1526 * %NULL pointer, the object pointed to is freed.
1527 */
1528void *krealloc(const void *p, size_t new_size, gfp_t flags)
1529{
1530 void *ret;
1531
1532 if (unlikely(!new_size)) {
1533 kfree(p);
1534 return ZERO_SIZE_PTR;
1535 }
1536
1537 ret = __do_krealloc(p, new_size, flags);
1538 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1539 kfree(p);
1540
1541 return ret;
1542}
1543EXPORT_SYMBOL(krealloc);
1544
1545/**
1546 * kzfree - like kfree but zero memory
1547 * @p: object to free memory of
1548 *
1549 * The memory of the object @p points to is zeroed before freed.
1550 * If @p is %NULL, kzfree() does nothing.
1551 *
1552 * Note: this function zeroes the whole allocated buffer which can be a good
1553 * deal bigger than the requested buffer size passed to kmalloc(). So be
1554 * careful when using this function in performance sensitive code.
1555 */
1556void kzfree(const void *p)
1557{
1558 size_t ks;
1559 void *mem = (void *)p;
1560
1561 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1562 return;
1563 ks = ksize(mem);
1564 memset(mem, 0, ks);
1565 kfree(mem);
1566}
1567EXPORT_SYMBOL(kzfree);
1568
1569/* Tracepoints definitions. */
1570EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1571EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1572EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1573EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1574EXPORT_TRACEPOINT_SYMBOL(kfree);
1575EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1576
1577int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1578{
1579 if (__should_failslab(s, gfpflags))
1580 return -ENOMEM;
1581 return 0;
1582}
1583ALLOW_ERROR_INJECTION(should_failslab, ERRNO);