blob: 6dcb59f272e16d9bf486cf9909f488dcf2fe4677 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Copyright (c) 2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13
14#include <linux/module.h>
15#include <linux/openvswitch.h>
16#include <linux/tcp.h>
17#include <linux/udp.h>
18#include <linux/sctp.h>
19#include <linux/static_key.h>
20#include <net/ip.h>
21#include <net/genetlink.h>
22#include <net/netfilter/nf_conntrack_core.h>
23#include <net/netfilter/nf_conntrack_count.h>
24#include <net/netfilter/nf_conntrack_helper.h>
25#include <net/netfilter/nf_conntrack_labels.h>
26#include <net/netfilter/nf_conntrack_seqadj.h>
27#include <net/netfilter/nf_conntrack_zones.h>
28#include <net/netfilter/ipv6/nf_defrag_ipv6.h>
29#include <net/ipv6_frag.h>
30
31#ifdef CONFIG_NF_NAT_NEEDED
32#include <linux/netfilter/nf_nat.h>
33#include <net/netfilter/nf_nat_core.h>
34#include <net/netfilter/nf_nat_l3proto.h>
35#endif
36
37#include "datapath.h"
38#include "conntrack.h"
39#include "flow.h"
40#include "flow_netlink.h"
41
42struct ovs_ct_len_tbl {
43 int maxlen;
44 int minlen;
45};
46
47/* Metadata mark for masked write to conntrack mark */
48struct md_mark {
49 u32 value;
50 u32 mask;
51};
52
53/* Metadata label for masked write to conntrack label. */
54struct md_labels {
55 struct ovs_key_ct_labels value;
56 struct ovs_key_ct_labels mask;
57};
58
59enum ovs_ct_nat {
60 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
61 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
62 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
63};
64
65/* Conntrack action context for execution. */
66struct ovs_conntrack_info {
67 struct nf_conntrack_helper *helper;
68 struct nf_conntrack_zone zone;
69 struct nf_conn *ct;
70 u8 commit : 1;
71 u8 nat : 3; /* enum ovs_ct_nat */
72 u8 force : 1;
73 u8 have_eventmask : 1;
74 u16 family;
75 u32 eventmask; /* Mask of 1 << IPCT_*. */
76 struct md_mark mark;
77 struct md_labels labels;
78#ifdef CONFIG_NF_NAT_NEEDED
79 struct nf_nat_range2 range; /* Only present for SRC NAT and DST NAT. */
80#endif
81};
82
83#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
84#define OVS_CT_LIMIT_UNLIMITED 0
85#define OVS_CT_LIMIT_DEFAULT OVS_CT_LIMIT_UNLIMITED
86#define CT_LIMIT_HASH_BUCKETS 512
87static DEFINE_STATIC_KEY_FALSE(ovs_ct_limit_enabled);
88
89struct ovs_ct_limit {
90 /* Elements in ovs_ct_limit_info->limits hash table */
91 struct hlist_node hlist_node;
92 struct rcu_head rcu;
93 u16 zone;
94 u32 limit;
95};
96
97struct ovs_ct_limit_info {
98 u32 default_limit;
99 struct hlist_head *limits;
100 struct nf_conncount_data *data;
101};
102
103static const struct nla_policy ct_limit_policy[OVS_CT_LIMIT_ATTR_MAX + 1] = {
104 [OVS_CT_LIMIT_ATTR_ZONE_LIMIT] = { .type = NLA_NESTED, },
105};
106#endif
107
108static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
109
110static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
111
112static u16 key_to_nfproto(const struct sw_flow_key *key)
113{
114 switch (ntohs(key->eth.type)) {
115 case ETH_P_IP:
116 return NFPROTO_IPV4;
117 case ETH_P_IPV6:
118 return NFPROTO_IPV6;
119 default:
120 return NFPROTO_UNSPEC;
121 }
122}
123
124/* Map SKB connection state into the values used by flow definition. */
125static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
126{
127 u8 ct_state = OVS_CS_F_TRACKED;
128
129 switch (ctinfo) {
130 case IP_CT_ESTABLISHED_REPLY:
131 case IP_CT_RELATED_REPLY:
132 ct_state |= OVS_CS_F_REPLY_DIR;
133 break;
134 default:
135 break;
136 }
137
138 switch (ctinfo) {
139 case IP_CT_ESTABLISHED:
140 case IP_CT_ESTABLISHED_REPLY:
141 ct_state |= OVS_CS_F_ESTABLISHED;
142 break;
143 case IP_CT_RELATED:
144 case IP_CT_RELATED_REPLY:
145 ct_state |= OVS_CS_F_RELATED;
146 break;
147 case IP_CT_NEW:
148 ct_state |= OVS_CS_F_NEW;
149 break;
150 default:
151 break;
152 }
153
154 return ct_state;
155}
156
157static u32 ovs_ct_get_mark(const struct nf_conn *ct)
158{
159#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
160 return ct ? ct->mark : 0;
161#else
162 return 0;
163#endif
164}
165
166/* Guard against conntrack labels max size shrinking below 128 bits. */
167#if NF_CT_LABELS_MAX_SIZE < 16
168#error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
169#endif
170
171static void ovs_ct_get_labels(const struct nf_conn *ct,
172 struct ovs_key_ct_labels *labels)
173{
174 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
175
176 if (cl)
177 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
178 else
179 memset(labels, 0, OVS_CT_LABELS_LEN);
180}
181
182static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
183 const struct nf_conntrack_tuple *orig,
184 u8 icmp_proto)
185{
186 key->ct_orig_proto = orig->dst.protonum;
187 if (orig->dst.protonum == icmp_proto) {
188 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
189 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
190 } else {
191 key->ct.orig_tp.src = orig->src.u.all;
192 key->ct.orig_tp.dst = orig->dst.u.all;
193 }
194}
195
196static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
197 const struct nf_conntrack_zone *zone,
198 const struct nf_conn *ct)
199{
200 key->ct_state = state;
201 key->ct_zone = zone->id;
202 key->ct.mark = ovs_ct_get_mark(ct);
203 ovs_ct_get_labels(ct, &key->ct.labels);
204
205 if (ct) {
206 const struct nf_conntrack_tuple *orig;
207
208 /* Use the master if we have one. */
209 if (ct->master)
210 ct = ct->master;
211 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
212
213 /* IP version must match with the master connection. */
214 if (key->eth.type == htons(ETH_P_IP) &&
215 nf_ct_l3num(ct) == NFPROTO_IPV4) {
216 key->ipv4.ct_orig.src = orig->src.u3.ip;
217 key->ipv4.ct_orig.dst = orig->dst.u3.ip;
218 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
219 return;
220 } else if (key->eth.type == htons(ETH_P_IPV6) &&
221 !sw_flow_key_is_nd(key) &&
222 nf_ct_l3num(ct) == NFPROTO_IPV6) {
223 key->ipv6.ct_orig.src = orig->src.u3.in6;
224 key->ipv6.ct_orig.dst = orig->dst.u3.in6;
225 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
226 return;
227 }
228 }
229 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack
230 * original direction key fields.
231 */
232 key->ct_orig_proto = 0;
233}
234
235/* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has
236 * previously sent the packet to conntrack via the ct action. If
237 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
238 * initialized from the connection status.
239 */
240static void ovs_ct_update_key(const struct sk_buff *skb,
241 const struct ovs_conntrack_info *info,
242 struct sw_flow_key *key, bool post_ct,
243 bool keep_nat_flags)
244{
245 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
246 enum ip_conntrack_info ctinfo;
247 struct nf_conn *ct;
248 u8 state = 0;
249
250 ct = nf_ct_get(skb, &ctinfo);
251 if (ct) {
252 state = ovs_ct_get_state(ctinfo);
253 /* All unconfirmed entries are NEW connections. */
254 if (!nf_ct_is_confirmed(ct))
255 state |= OVS_CS_F_NEW;
256 /* OVS persists the related flag for the duration of the
257 * connection.
258 */
259 if (ct->master)
260 state |= OVS_CS_F_RELATED;
261 if (keep_nat_flags) {
262 state |= key->ct_state & OVS_CS_F_NAT_MASK;
263 } else {
264 if (ct->status & IPS_SRC_NAT)
265 state |= OVS_CS_F_SRC_NAT;
266 if (ct->status & IPS_DST_NAT)
267 state |= OVS_CS_F_DST_NAT;
268 }
269 zone = nf_ct_zone(ct);
270 } else if (post_ct) {
271 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
272 if (info)
273 zone = &info->zone;
274 }
275 __ovs_ct_update_key(key, state, zone, ct);
276}
277
278/* This is called to initialize CT key fields possibly coming in from the local
279 * stack.
280 */
281void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
282{
283 ovs_ct_update_key(skb, NULL, key, false, false);
284}
285
286#define IN6_ADDR_INITIALIZER(ADDR) \
287 { (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \
288 (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] }
289
290int ovs_ct_put_key(const struct sw_flow_key *swkey,
291 const struct sw_flow_key *output, struct sk_buff *skb)
292{
293 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
294 return -EMSGSIZE;
295
296 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
297 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
298 return -EMSGSIZE;
299
300 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
301 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
302 return -EMSGSIZE;
303
304 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
305 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
306 &output->ct.labels))
307 return -EMSGSIZE;
308
309 if (swkey->ct_orig_proto) {
310 if (swkey->eth.type == htons(ETH_P_IP)) {
311 struct ovs_key_ct_tuple_ipv4 orig = {
312 output->ipv4.ct_orig.src,
313 output->ipv4.ct_orig.dst,
314 output->ct.orig_tp.src,
315 output->ct.orig_tp.dst,
316 output->ct_orig_proto,
317 };
318 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
319 sizeof(orig), &orig))
320 return -EMSGSIZE;
321 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
322 struct ovs_key_ct_tuple_ipv6 orig = {
323 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src),
324 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst),
325 output->ct.orig_tp.src,
326 output->ct.orig_tp.dst,
327 output->ct_orig_proto,
328 };
329 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
330 sizeof(orig), &orig))
331 return -EMSGSIZE;
332 }
333 }
334
335 return 0;
336}
337
338static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
339 u32 ct_mark, u32 mask)
340{
341#if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
342 u32 new_mark;
343
344 new_mark = ct_mark | (ct->mark & ~(mask));
345 if (ct->mark != new_mark) {
346 ct->mark = new_mark;
347 if (nf_ct_is_confirmed(ct))
348 nf_conntrack_event_cache(IPCT_MARK, ct);
349 key->ct.mark = new_mark;
350 }
351
352 return 0;
353#else
354 return -ENOTSUPP;
355#endif
356}
357
358static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
359{
360 struct nf_conn_labels *cl;
361
362 cl = nf_ct_labels_find(ct);
363 if (!cl) {
364 nf_ct_labels_ext_add(ct);
365 cl = nf_ct_labels_find(ct);
366 }
367
368 return cl;
369}
370
371/* Initialize labels for a new, yet to be committed conntrack entry. Note that
372 * since the new connection is not yet confirmed, and thus no-one else has
373 * access to it's labels, we simply write them over.
374 */
375static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
376 const struct ovs_key_ct_labels *labels,
377 const struct ovs_key_ct_labels *mask)
378{
379 struct nf_conn_labels *cl, *master_cl;
380 bool have_mask = labels_nonzero(mask);
381
382 /* Inherit master's labels to the related connection? */
383 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
384
385 if (!master_cl && !have_mask)
386 return 0; /* Nothing to do. */
387
388 cl = ovs_ct_get_conn_labels(ct);
389 if (!cl)
390 return -ENOSPC;
391
392 /* Inherit the master's labels, if any. */
393 if (master_cl)
394 *cl = *master_cl;
395
396 if (have_mask) {
397 u32 *dst = (u32 *)cl->bits;
398 int i;
399
400 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
401 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
402 (labels->ct_labels_32[i]
403 & mask->ct_labels_32[i]);
404 }
405
406 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
407 * IPCT_LABEL bit is set in the event cache.
408 */
409 nf_conntrack_event_cache(IPCT_LABEL, ct);
410
411 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
412
413 return 0;
414}
415
416static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
417 const struct ovs_key_ct_labels *labels,
418 const struct ovs_key_ct_labels *mask)
419{
420 struct nf_conn_labels *cl;
421 int err;
422
423 cl = ovs_ct_get_conn_labels(ct);
424 if (!cl)
425 return -ENOSPC;
426
427 err = nf_connlabels_replace(ct, labels->ct_labels_32,
428 mask->ct_labels_32,
429 OVS_CT_LABELS_LEN_32);
430 if (err)
431 return err;
432
433 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
434
435 return 0;
436}
437
438/* 'skb' should already be pulled to nh_ofs. */
439static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
440{
441 const struct nf_conntrack_helper *helper;
442 const struct nf_conn_help *help;
443 enum ip_conntrack_info ctinfo;
444 unsigned int protoff;
445 struct nf_conn *ct;
446 int err;
447
448 ct = nf_ct_get(skb, &ctinfo);
449 if (!ct || ctinfo == IP_CT_RELATED_REPLY)
450 return NF_ACCEPT;
451
452 help = nfct_help(ct);
453 if (!help)
454 return NF_ACCEPT;
455
456 helper = rcu_dereference(help->helper);
457 if (!helper)
458 return NF_ACCEPT;
459
460 switch (proto) {
461 case NFPROTO_IPV4:
462 protoff = ip_hdrlen(skb);
463 break;
464 case NFPROTO_IPV6: {
465 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
466 __be16 frag_off;
467 int ofs;
468
469 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
470 &frag_off);
471 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
472 pr_debug("proto header not found\n");
473 return NF_ACCEPT;
474 }
475 protoff = ofs;
476 break;
477 }
478 default:
479 WARN_ONCE(1, "helper invoked on non-IP family!");
480 return NF_DROP;
481 }
482
483 err = helper->help(skb, protoff, ct, ctinfo);
484 if (err != NF_ACCEPT)
485 return err;
486
487 /* Adjust seqs after helper. This is needed due to some helpers (e.g.,
488 * FTP with NAT) adusting the TCP payload size when mangling IP
489 * addresses and/or port numbers in the text-based control connection.
490 */
491 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
492 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
493 return NF_DROP;
494 return NF_ACCEPT;
495}
496
497/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
498 * value if 'skb' is freed.
499 */
500static int handle_fragments(struct net *net, struct sw_flow_key *key,
501 u16 zone, struct sk_buff *skb)
502{
503 struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
504 int err;
505
506 if (key->eth.type == htons(ETH_P_IP)) {
507 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
508
509 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
510 err = ip_defrag(net, skb, user);
511 if (err)
512 return err;
513
514 ovs_cb.mru = IPCB(skb)->frag_max_size;
515#if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
516 } else if (key->eth.type == htons(ETH_P_IPV6)) {
517 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
518
519 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
520 err = nf_ct_frag6_gather(net, skb, user);
521 if (err) {
522 if (err != -EINPROGRESS)
523 kfree_skb(skb);
524 return err;
525 }
526
527 key->ip.proto = ipv6_hdr(skb)->nexthdr;
528 ovs_cb.mru = IP6CB(skb)->frag_max_size;
529#endif
530 } else {
531 kfree_skb(skb);
532 return -EPFNOSUPPORT;
533 }
534
535 key->ip.frag = OVS_FRAG_TYPE_NONE;
536 skb_clear_hash(skb);
537 skb->ignore_df = 1;
538 *OVS_CB(skb) = ovs_cb;
539
540 return 0;
541}
542
543static struct nf_conntrack_expect *
544ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
545 u16 proto, const struct sk_buff *skb)
546{
547 struct nf_conntrack_tuple tuple;
548 struct nf_conntrack_expect *exp;
549
550 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
551 return NULL;
552
553 exp = __nf_ct_expect_find(net, zone, &tuple);
554 if (exp) {
555 struct nf_conntrack_tuple_hash *h;
556
557 /* Delete existing conntrack entry, if it clashes with the
558 * expectation. This can happen since conntrack ALGs do not
559 * check for clashes between (new) expectations and existing
560 * conntrack entries. nf_conntrack_in() will check the
561 * expectations only if a conntrack entry can not be found,
562 * which can lead to OVS finding the expectation (here) in the
563 * init direction, but which will not be removed by the
564 * nf_conntrack_in() call, if a matching conntrack entry is
565 * found instead. In this case all init direction packets
566 * would be reported as new related packets, while reply
567 * direction packets would be reported as un-related
568 * established packets.
569 */
570 h = nf_conntrack_find_get(net, zone, &tuple);
571 if (h) {
572 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
573
574 nf_ct_delete(ct, 0, 0);
575 nf_conntrack_put(&ct->ct_general);
576 }
577 }
578
579 return exp;
580}
581
582/* This replicates logic from nf_conntrack_core.c that is not exported. */
583static enum ip_conntrack_info
584ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
585{
586 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
587
588 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
589 return IP_CT_ESTABLISHED_REPLY;
590 /* Once we've had two way comms, always ESTABLISHED. */
591 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
592 return IP_CT_ESTABLISHED;
593 if (test_bit(IPS_EXPECTED_BIT, &ct->status))
594 return IP_CT_RELATED;
595 return IP_CT_NEW;
596}
597
598/* Find an existing connection which this packet belongs to without
599 * re-attributing statistics or modifying the connection state. This allows an
600 * skb->_nfct lost due to an upcall to be recovered during actions execution.
601 *
602 * Must be called with rcu_read_lock.
603 *
604 * On success, populates skb->_nfct and returns the connection. Returns NULL
605 * if there is no existing entry.
606 */
607static struct nf_conn *
608ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
609 u8 l3num, struct sk_buff *skb, bool natted)
610{
611 struct nf_conntrack_tuple tuple;
612 struct nf_conntrack_tuple_hash *h;
613 struct nf_conn *ct;
614
615 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), l3num,
616 net, &tuple)) {
617 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
618 return NULL;
619 }
620
621 /* Must invert the tuple if skb has been transformed by NAT. */
622 if (natted) {
623 struct nf_conntrack_tuple inverse;
624
625 if (!nf_ct_invert_tuplepr(&inverse, &tuple)) {
626 pr_debug("ovs_ct_find_existing: Inversion failed!\n");
627 return NULL;
628 }
629 tuple = inverse;
630 }
631
632 /* look for tuple match */
633 h = nf_conntrack_find_get(net, zone, &tuple);
634 if (!h)
635 return NULL; /* Not found. */
636
637 ct = nf_ct_tuplehash_to_ctrack(h);
638
639 /* Inverted packet tuple matches the reverse direction conntrack tuple,
640 * select the other tuplehash to get the right 'ctinfo' bits for this
641 * packet.
642 */
643 if (natted)
644 h = &ct->tuplehash[!h->tuple.dst.dir];
645
646 nf_ct_set(skb, ct, ovs_ct_get_info(h));
647 return ct;
648}
649
650static
651struct nf_conn *ovs_ct_executed(struct net *net,
652 const struct sw_flow_key *key,
653 const struct ovs_conntrack_info *info,
654 struct sk_buff *skb,
655 bool *ct_executed)
656{
657 struct nf_conn *ct = NULL;
658
659 /* If no ct, check if we have evidence that an existing conntrack entry
660 * might be found for this skb. This happens when we lose a skb->_nfct
661 * due to an upcall, or if the direction is being forced. If the
662 * connection was not confirmed, it is not cached and needs to be run
663 * through conntrack again.
664 */
665 *ct_executed = (key->ct_state & OVS_CS_F_TRACKED) &&
666 !(key->ct_state & OVS_CS_F_INVALID) &&
667 (key->ct_zone == info->zone.id);
668
669 if (*ct_executed || (!key->ct_state && info->force)) {
670 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
671 !!(key->ct_state &
672 OVS_CS_F_NAT_MASK));
673 }
674
675 return ct;
676}
677
678/* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
679static bool skb_nfct_cached(struct net *net,
680 const struct sw_flow_key *key,
681 const struct ovs_conntrack_info *info,
682 struct sk_buff *skb)
683{
684 enum ip_conntrack_info ctinfo;
685 struct nf_conn *ct;
686 bool ct_executed = true;
687
688 ct = nf_ct_get(skb, &ctinfo);
689 if (!ct)
690 ct = ovs_ct_executed(net, key, info, skb, &ct_executed);
691
692 if (ct)
693 nf_ct_get(skb, &ctinfo);
694 else
695 return false;
696
697 if (!net_eq(net, read_pnet(&ct->ct_net)))
698 return false;
699 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
700 return false;
701 if (info->helper) {
702 struct nf_conn_help *help;
703
704 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
705 if (help && rcu_access_pointer(help->helper) != info->helper)
706 return false;
707 }
708 /* Force conntrack entry direction to the current packet? */
709 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
710 /* Delete the conntrack entry if confirmed, else just release
711 * the reference.
712 */
713 if (nf_ct_is_confirmed(ct))
714 nf_ct_delete(ct, 0, 0);
715
716 nf_conntrack_put(&ct->ct_general);
717 nf_ct_set(skb, NULL, 0);
718 return false;
719 }
720
721 return ct_executed;
722}
723
724#ifdef CONFIG_NF_NAT_NEEDED
725/* Modelled after nf_nat_ipv[46]_fn().
726 * range is only used for new, uninitialized NAT state.
727 * Returns either NF_ACCEPT or NF_DROP.
728 */
729static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
730 enum ip_conntrack_info ctinfo,
731 const struct nf_nat_range2 *range,
732 enum nf_nat_manip_type maniptype)
733{
734 int hooknum, nh_off, err = NF_ACCEPT;
735
736 nh_off = skb_network_offset(skb);
737 skb_pull_rcsum(skb, nh_off);
738
739 /* See HOOK2MANIP(). */
740 if (maniptype == NF_NAT_MANIP_SRC)
741 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
742 else
743 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
744
745 switch (ctinfo) {
746 case IP_CT_RELATED:
747 case IP_CT_RELATED_REPLY:
748 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
749 skb->protocol == htons(ETH_P_IP) &&
750 ip_hdr(skb)->protocol == IPPROTO_ICMP) {
751 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
752 hooknum))
753 err = NF_DROP;
754 goto push;
755 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
756 skb->protocol == htons(ETH_P_IPV6)) {
757 __be16 frag_off;
758 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
759 int hdrlen = ipv6_skip_exthdr(skb,
760 sizeof(struct ipv6hdr),
761 &nexthdr, &frag_off);
762
763 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
764 if (!nf_nat_icmpv6_reply_translation(skb, ct,
765 ctinfo,
766 hooknum,
767 hdrlen))
768 err = NF_DROP;
769 goto push;
770 }
771 }
772 /* Non-ICMP, fall thru to initialize if needed. */
773 /* fall through */
774 case IP_CT_NEW:
775 /* Seen it before? This can happen for loopback, retrans,
776 * or local packets.
777 */
778 if (!nf_nat_initialized(ct, maniptype)) {
779 /* Initialize according to the NAT action. */
780 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
781 /* Action is set up to establish a new
782 * mapping.
783 */
784 ? nf_nat_setup_info(ct, range, maniptype)
785 : nf_nat_alloc_null_binding(ct, hooknum);
786 if (err != NF_ACCEPT)
787 goto push;
788 }
789 break;
790
791 case IP_CT_ESTABLISHED:
792 case IP_CT_ESTABLISHED_REPLY:
793 break;
794
795 default:
796 err = NF_DROP;
797 goto push;
798 }
799
800 err = nf_nat_packet(ct, ctinfo, hooknum, skb);
801push:
802 skb_push(skb, nh_off);
803 skb_postpush_rcsum(skb, skb->data, nh_off);
804
805 return err;
806}
807
808static void ovs_nat_update_key(struct sw_flow_key *key,
809 const struct sk_buff *skb,
810 enum nf_nat_manip_type maniptype)
811{
812 if (maniptype == NF_NAT_MANIP_SRC) {
813 __be16 src;
814
815 key->ct_state |= OVS_CS_F_SRC_NAT;
816 if (key->eth.type == htons(ETH_P_IP))
817 key->ipv4.addr.src = ip_hdr(skb)->saddr;
818 else if (key->eth.type == htons(ETH_P_IPV6))
819 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
820 sizeof(key->ipv6.addr.src));
821 else
822 return;
823
824 if (key->ip.proto == IPPROTO_UDP)
825 src = udp_hdr(skb)->source;
826 else if (key->ip.proto == IPPROTO_TCP)
827 src = tcp_hdr(skb)->source;
828 else if (key->ip.proto == IPPROTO_SCTP)
829 src = sctp_hdr(skb)->source;
830 else
831 return;
832
833 key->tp.src = src;
834 } else {
835 __be16 dst;
836
837 key->ct_state |= OVS_CS_F_DST_NAT;
838 if (key->eth.type == htons(ETH_P_IP))
839 key->ipv4.addr.dst = ip_hdr(skb)->daddr;
840 else if (key->eth.type == htons(ETH_P_IPV6))
841 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
842 sizeof(key->ipv6.addr.dst));
843 else
844 return;
845
846 if (key->ip.proto == IPPROTO_UDP)
847 dst = udp_hdr(skb)->dest;
848 else if (key->ip.proto == IPPROTO_TCP)
849 dst = tcp_hdr(skb)->dest;
850 else if (key->ip.proto == IPPROTO_SCTP)
851 dst = sctp_hdr(skb)->dest;
852 else
853 return;
854
855 key->tp.dst = dst;
856 }
857}
858
859/* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
860static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
861 const struct ovs_conntrack_info *info,
862 struct sk_buff *skb, struct nf_conn *ct,
863 enum ip_conntrack_info ctinfo)
864{
865 enum nf_nat_manip_type maniptype;
866 int err;
867
868 /* Add NAT extension if not confirmed yet. */
869 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
870 return NF_ACCEPT; /* Can't NAT. */
871
872 /* Determine NAT type.
873 * Check if the NAT type can be deduced from the tracked connection.
874 * Make sure new expected connections (IP_CT_RELATED) are NATted only
875 * when committing.
876 */
877 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
878 ct->status & IPS_NAT_MASK &&
879 (ctinfo != IP_CT_RELATED || info->commit)) {
880 /* NAT an established or related connection like before. */
881 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
882 /* This is the REPLY direction for a connection
883 * for which NAT was applied in the forward
884 * direction. Do the reverse NAT.
885 */
886 maniptype = ct->status & IPS_SRC_NAT
887 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
888 else
889 maniptype = ct->status & IPS_SRC_NAT
890 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
891 } else if (info->nat & OVS_CT_SRC_NAT) {
892 maniptype = NF_NAT_MANIP_SRC;
893 } else if (info->nat & OVS_CT_DST_NAT) {
894 maniptype = NF_NAT_MANIP_DST;
895 } else {
896 return NF_ACCEPT; /* Connection is not NATed. */
897 }
898 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
899
900 if (err == NF_ACCEPT &&
901 ct->status & IPS_SRC_NAT && ct->status & IPS_DST_NAT) {
902 if (maniptype == NF_NAT_MANIP_SRC)
903 maniptype = NF_NAT_MANIP_DST;
904 else
905 maniptype = NF_NAT_MANIP_SRC;
906
907 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range,
908 maniptype);
909 }
910
911 /* Mark NAT done if successful and update the flow key. */
912 if (err == NF_ACCEPT)
913 ovs_nat_update_key(key, skb, maniptype);
914
915 return err;
916}
917#else /* !CONFIG_NF_NAT_NEEDED */
918static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
919 const struct ovs_conntrack_info *info,
920 struct sk_buff *skb, struct nf_conn *ct,
921 enum ip_conntrack_info ctinfo)
922{
923 return NF_ACCEPT;
924}
925#endif
926
927/* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
928 * not done already. Update key with new CT state after passing the packet
929 * through conntrack.
930 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
931 * set to NULL and 0 will be returned.
932 */
933static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
934 const struct ovs_conntrack_info *info,
935 struct sk_buff *skb)
936{
937 /* If we are recirculating packets to match on conntrack fields and
938 * committing with a separate conntrack action, then we don't need to
939 * actually run the packet through conntrack twice unless it's for a
940 * different zone.
941 */
942 bool cached = skb_nfct_cached(net, key, info, skb);
943 enum ip_conntrack_info ctinfo;
944 struct nf_conn *ct;
945
946 if (!cached) {
947 struct nf_conn *tmpl = info->ct;
948 int err;
949
950 /* Associate skb with specified zone. */
951 if (tmpl) {
952 if (skb_nfct(skb))
953 nf_conntrack_put(skb_nfct(skb));
954 nf_conntrack_get(&tmpl->ct_general);
955 nf_ct_set(skb, tmpl, IP_CT_NEW);
956 }
957
958 err = nf_conntrack_in(net, info->family,
959 NF_INET_PRE_ROUTING, skb);
960 if (err != NF_ACCEPT)
961 return -ENOENT;
962
963 /* Clear CT state NAT flags to mark that we have not yet done
964 * NAT after the nf_conntrack_in() call. We can actually clear
965 * the whole state, as it will be re-initialized below.
966 */
967 key->ct_state = 0;
968
969 /* Update the key, but keep the NAT flags. */
970 ovs_ct_update_key(skb, info, key, true, true);
971 }
972
973 ct = nf_ct_get(skb, &ctinfo);
974 if (ct) {
975 /* Packets starting a new connection must be NATted before the
976 * helper, so that the helper knows about the NAT. We enforce
977 * this by delaying both NAT and helper calls for unconfirmed
978 * connections until the committing CT action. For later
979 * packets NAT and Helper may be called in either order.
980 *
981 * NAT will be done only if the CT action has NAT, and only
982 * once per packet (per zone), as guarded by the NAT bits in
983 * the key->ct_state.
984 */
985 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
986 (nf_ct_is_confirmed(ct) || info->commit) &&
987 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
988 return -EINVAL;
989 }
990
991 /* Userspace may decide to perform a ct lookup without a helper
992 * specified followed by a (recirculate and) commit with one.
993 * Therefore, for unconfirmed connections which we will commit,
994 * we need to attach the helper here.
995 */
996 if (!nf_ct_is_confirmed(ct) && info->commit &&
997 info->helper && !nfct_help(ct)) {
998 int err = __nf_ct_try_assign_helper(ct, info->ct,
999 GFP_ATOMIC);
1000 if (err)
1001 return err;
1002 }
1003
1004 /* Call the helper only if:
1005 * - nf_conntrack_in() was executed above ("!cached") for a
1006 * confirmed connection, or
1007 * - When committing an unconfirmed connection.
1008 */
1009 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
1010 ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
1011 return -EINVAL;
1012 }
1013 }
1014
1015 return 0;
1016}
1017
1018/* Lookup connection and read fields into key. */
1019static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
1020 const struct ovs_conntrack_info *info,
1021 struct sk_buff *skb)
1022{
1023 struct nf_conntrack_expect *exp;
1024
1025 /* If we pass an expected packet through nf_conntrack_in() the
1026 * expectation is typically removed, but the packet could still be
1027 * lost in upcall processing. To prevent this from happening we
1028 * perform an explicit expectation lookup. Expected connections are
1029 * always new, and will be passed through conntrack only when they are
1030 * committed, as it is OK to remove the expectation at that time.
1031 */
1032 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
1033 if (exp) {
1034 u8 state;
1035
1036 /* NOTE: New connections are NATted and Helped only when
1037 * committed, so we are not calling into NAT here.
1038 */
1039 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
1040 __ovs_ct_update_key(key, state, &info->zone, exp->master);
1041 } else {
1042 struct nf_conn *ct;
1043 int err;
1044
1045 err = __ovs_ct_lookup(net, key, info, skb);
1046 if (err)
1047 return err;
1048
1049 ct = (struct nf_conn *)skb_nfct(skb);
1050 if (ct)
1051 nf_ct_deliver_cached_events(ct);
1052 }
1053
1054 return 0;
1055}
1056
1057static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1058{
1059 size_t i;
1060
1061 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1062 if (labels->ct_labels_32[i])
1063 return true;
1064
1065 return false;
1066}
1067
1068#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1069static struct hlist_head *ct_limit_hash_bucket(
1070 const struct ovs_ct_limit_info *info, u16 zone)
1071{
1072 return &info->limits[zone & (CT_LIMIT_HASH_BUCKETS - 1)];
1073}
1074
1075/* Call with ovs_mutex */
1076static void ct_limit_set(const struct ovs_ct_limit_info *info,
1077 struct ovs_ct_limit *new_ct_limit)
1078{
1079 struct ovs_ct_limit *ct_limit;
1080 struct hlist_head *head;
1081
1082 head = ct_limit_hash_bucket(info, new_ct_limit->zone);
1083 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1084 if (ct_limit->zone == new_ct_limit->zone) {
1085 hlist_replace_rcu(&ct_limit->hlist_node,
1086 &new_ct_limit->hlist_node);
1087 kfree_rcu(ct_limit, rcu);
1088 return;
1089 }
1090 }
1091
1092 hlist_add_head_rcu(&new_ct_limit->hlist_node, head);
1093}
1094
1095/* Call with ovs_mutex */
1096static void ct_limit_del(const struct ovs_ct_limit_info *info, u16 zone)
1097{
1098 struct ovs_ct_limit *ct_limit;
1099 struct hlist_head *head;
1100 struct hlist_node *n;
1101
1102 head = ct_limit_hash_bucket(info, zone);
1103 hlist_for_each_entry_safe(ct_limit, n, head, hlist_node) {
1104 if (ct_limit->zone == zone) {
1105 hlist_del_rcu(&ct_limit->hlist_node);
1106 kfree_rcu(ct_limit, rcu);
1107 return;
1108 }
1109 }
1110}
1111
1112/* Call with RCU read lock */
1113static u32 ct_limit_get(const struct ovs_ct_limit_info *info, u16 zone)
1114{
1115 struct ovs_ct_limit *ct_limit;
1116 struct hlist_head *head;
1117
1118 head = ct_limit_hash_bucket(info, zone);
1119 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
1120 if (ct_limit->zone == zone)
1121 return ct_limit->limit;
1122 }
1123
1124 return info->default_limit;
1125}
1126
1127static int ovs_ct_check_limit(struct net *net,
1128 const struct ovs_conntrack_info *info,
1129 const struct nf_conntrack_tuple *tuple)
1130{
1131 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1132 const struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
1133 u32 per_zone_limit, connections;
1134 u32 conncount_key;
1135
1136 conncount_key = info->zone.id;
1137
1138 per_zone_limit = ct_limit_get(ct_limit_info, info->zone.id);
1139 if (per_zone_limit == OVS_CT_LIMIT_UNLIMITED)
1140 return 0;
1141
1142 connections = nf_conncount_count(net, ct_limit_info->data,
1143 &conncount_key, tuple, &info->zone);
1144 if (connections > per_zone_limit)
1145 return -ENOMEM;
1146
1147 return 0;
1148}
1149#endif
1150
1151/* Lookup connection and confirm if unconfirmed. */
1152static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1153 const struct ovs_conntrack_info *info,
1154 struct sk_buff *skb)
1155{
1156 enum ip_conntrack_info ctinfo;
1157 struct nf_conn *ct;
1158 int err;
1159
1160 err = __ovs_ct_lookup(net, key, info, skb);
1161 if (err)
1162 return err;
1163
1164 /* The connection could be invalid, in which case this is a no-op.*/
1165 ct = nf_ct_get(skb, &ctinfo);
1166 if (!ct)
1167 return 0;
1168
1169#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1170 if (static_branch_unlikely(&ovs_ct_limit_enabled)) {
1171 if (!nf_ct_is_confirmed(ct)) {
1172 err = ovs_ct_check_limit(net, info,
1173 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1174 if (err) {
1175 net_warn_ratelimited("openvswitch: zone: %u "
1176 "execeeds conntrack limit\n",
1177 info->zone.id);
1178 return err;
1179 }
1180 }
1181 }
1182#endif
1183
1184 /* Set the conntrack event mask if given. NEW and DELETE events have
1185 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1186 * typically would receive many kinds of updates. Setting the event
1187 * mask allows those events to be filtered. The set event mask will
1188 * remain in effect for the lifetime of the connection unless changed
1189 * by a further CT action with both the commit flag and the eventmask
1190 * option. */
1191 if (info->have_eventmask) {
1192 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1193
1194 if (cache)
1195 cache->ctmask = info->eventmask;
1196 }
1197
1198 /* Apply changes before confirming the connection so that the initial
1199 * conntrack NEW netlink event carries the values given in the CT
1200 * action.
1201 */
1202 if (info->mark.mask) {
1203 err = ovs_ct_set_mark(ct, key, info->mark.value,
1204 info->mark.mask);
1205 if (err)
1206 return err;
1207 }
1208 if (!nf_ct_is_confirmed(ct)) {
1209 err = ovs_ct_init_labels(ct, key, &info->labels.value,
1210 &info->labels.mask);
1211 if (err)
1212 return err;
1213 } else if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1214 labels_nonzero(&info->labels.mask)) {
1215 err = ovs_ct_set_labels(ct, key, &info->labels.value,
1216 &info->labels.mask);
1217 if (err)
1218 return err;
1219 }
1220 /* This will take care of sending queued events even if the connection
1221 * is already confirmed.
1222 */
1223 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1224 return -EINVAL;
1225
1226 return 0;
1227}
1228
1229/* Trim the skb to the length specified by the IP/IPv6 header,
1230 * removing any trailing lower-layer padding. This prepares the skb
1231 * for higher-layer processing that assumes skb->len excludes padding
1232 * (such as nf_ip_checksum). The caller needs to pull the skb to the
1233 * network header, and ensure ip_hdr/ipv6_hdr points to valid data.
1234 */
1235static int ovs_skb_network_trim(struct sk_buff *skb)
1236{
1237 unsigned int len;
1238 int err;
1239
1240 switch (skb->protocol) {
1241 case htons(ETH_P_IP):
1242 len = ntohs(ip_hdr(skb)->tot_len);
1243 break;
1244 case htons(ETH_P_IPV6):
1245 len = sizeof(struct ipv6hdr)
1246 + ntohs(ipv6_hdr(skb)->payload_len);
1247 break;
1248 default:
1249 len = skb->len;
1250 }
1251
1252 err = pskb_trim_rcsum(skb, len);
1253 if (err)
1254 kfree_skb(skb);
1255
1256 return err;
1257}
1258
1259/* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1260 * value if 'skb' is freed.
1261 */
1262int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1263 struct sw_flow_key *key,
1264 const struct ovs_conntrack_info *info)
1265{
1266 int nh_ofs;
1267 int err;
1268
1269 /* The conntrack module expects to be working at L3. */
1270 nh_ofs = skb_network_offset(skb);
1271 skb_pull_rcsum(skb, nh_ofs);
1272
1273 err = ovs_skb_network_trim(skb);
1274 if (err)
1275 return err;
1276
1277 if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1278 err = handle_fragments(net, key, info->zone.id, skb);
1279 if (err)
1280 return err;
1281 }
1282
1283 if (info->commit)
1284 err = ovs_ct_commit(net, key, info, skb);
1285 else
1286 err = ovs_ct_lookup(net, key, info, skb);
1287
1288 skb_push(skb, nh_ofs);
1289 skb_postpush_rcsum(skb, skb->data, nh_ofs);
1290 if (err)
1291 kfree_skb(skb);
1292 return err;
1293}
1294
1295int ovs_ct_clear(struct sk_buff *skb, struct sw_flow_key *key)
1296{
1297 if (skb_nfct(skb)) {
1298 nf_conntrack_put(skb_nfct(skb));
1299 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
1300 ovs_ct_fill_key(skb, key);
1301 }
1302
1303 return 0;
1304}
1305
1306static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1307 const struct sw_flow_key *key, bool log)
1308{
1309 struct nf_conntrack_helper *helper;
1310 struct nf_conn_help *help;
1311
1312 helper = nf_conntrack_helper_try_module_get(name, info->family,
1313 key->ip.proto);
1314 if (!helper) {
1315 OVS_NLERR(log, "Unknown helper \"%s\"", name);
1316 return -EINVAL;
1317 }
1318
1319 help = nf_ct_helper_ext_add(info->ct, GFP_KERNEL);
1320 if (!help) {
1321 nf_conntrack_helper_put(helper);
1322 return -ENOMEM;
1323 }
1324
1325 rcu_assign_pointer(help->helper, helper);
1326 info->helper = helper;
1327
1328 if (info->nat)
1329 request_module("ip_nat_%s", name);
1330
1331 return 0;
1332}
1333
1334#ifdef CONFIG_NF_NAT_NEEDED
1335static int parse_nat(const struct nlattr *attr,
1336 struct ovs_conntrack_info *info, bool log)
1337{
1338 struct nlattr *a;
1339 int rem;
1340 bool have_ip_max = false;
1341 bool have_proto_max = false;
1342 bool ip_vers = (info->family == NFPROTO_IPV6);
1343
1344 nla_for_each_nested(a, attr, rem) {
1345 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1346 [OVS_NAT_ATTR_SRC] = {0, 0},
1347 [OVS_NAT_ATTR_DST] = {0, 0},
1348 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1349 sizeof(struct in6_addr)},
1350 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1351 sizeof(struct in6_addr)},
1352 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1353 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1354 [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1355 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1356 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1357 };
1358 int type = nla_type(a);
1359
1360 if (type > OVS_NAT_ATTR_MAX) {
1361 OVS_NLERR(log, "Unknown NAT attribute (type=%d, max=%d)",
1362 type, OVS_NAT_ATTR_MAX);
1363 return -EINVAL;
1364 }
1365
1366 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1367 OVS_NLERR(log, "NAT attribute type %d has unexpected length (%d != %d)",
1368 type, nla_len(a),
1369 ovs_nat_attr_lens[type][ip_vers]);
1370 return -EINVAL;
1371 }
1372
1373 switch (type) {
1374 case OVS_NAT_ATTR_SRC:
1375 case OVS_NAT_ATTR_DST:
1376 if (info->nat) {
1377 OVS_NLERR(log, "Only one type of NAT may be specified");
1378 return -ERANGE;
1379 }
1380 info->nat |= OVS_CT_NAT;
1381 info->nat |= ((type == OVS_NAT_ATTR_SRC)
1382 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1383 break;
1384
1385 case OVS_NAT_ATTR_IP_MIN:
1386 nla_memcpy(&info->range.min_addr, a,
1387 sizeof(info->range.min_addr));
1388 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1389 break;
1390
1391 case OVS_NAT_ATTR_IP_MAX:
1392 have_ip_max = true;
1393 nla_memcpy(&info->range.max_addr, a,
1394 sizeof(info->range.max_addr));
1395 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1396 break;
1397
1398 case OVS_NAT_ATTR_PROTO_MIN:
1399 info->range.min_proto.all = htons(nla_get_u16(a));
1400 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1401 break;
1402
1403 case OVS_NAT_ATTR_PROTO_MAX:
1404 have_proto_max = true;
1405 info->range.max_proto.all = htons(nla_get_u16(a));
1406 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1407 break;
1408
1409 case OVS_NAT_ATTR_PERSISTENT:
1410 info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1411 break;
1412
1413 case OVS_NAT_ATTR_PROTO_HASH:
1414 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1415 break;
1416
1417 case OVS_NAT_ATTR_PROTO_RANDOM:
1418 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1419 break;
1420
1421 default:
1422 OVS_NLERR(log, "Unknown nat attribute (%d)", type);
1423 return -EINVAL;
1424 }
1425 }
1426
1427 if (rem > 0) {
1428 OVS_NLERR(log, "NAT attribute has %d unknown bytes", rem);
1429 return -EINVAL;
1430 }
1431 if (!info->nat) {
1432 /* Do not allow flags if no type is given. */
1433 if (info->range.flags) {
1434 OVS_NLERR(log,
1435 "NAT flags may be given only when NAT range (SRC or DST) is also specified."
1436 );
1437 return -EINVAL;
1438 }
1439 info->nat = OVS_CT_NAT; /* NAT existing connections. */
1440 } else if (!info->commit) {
1441 OVS_NLERR(log,
1442 "NAT attributes may be specified only when CT COMMIT flag is also specified."
1443 );
1444 return -EINVAL;
1445 }
1446 /* Allow missing IP_MAX. */
1447 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1448 memcpy(&info->range.max_addr, &info->range.min_addr,
1449 sizeof(info->range.max_addr));
1450 }
1451 /* Allow missing PROTO_MAX. */
1452 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1453 !have_proto_max) {
1454 info->range.max_proto.all = info->range.min_proto.all;
1455 }
1456 return 0;
1457}
1458#endif
1459
1460static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1461 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
1462 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 },
1463 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
1464 .maxlen = sizeof(u16) },
1465 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
1466 .maxlen = sizeof(struct md_mark) },
1467 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
1468 .maxlen = sizeof(struct md_labels) },
1469 [OVS_CT_ATTR_HELPER] = { .minlen = 1,
1470 .maxlen = NF_CT_HELPER_NAME_LEN },
1471#ifdef CONFIG_NF_NAT_NEEDED
1472 /* NAT length is checked when parsing the nested attributes. */
1473 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
1474#endif
1475 [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32),
1476 .maxlen = sizeof(u32) },
1477};
1478
1479static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1480 const char **helper, bool log)
1481{
1482 struct nlattr *a;
1483 int rem;
1484
1485 nla_for_each_nested(a, attr, rem) {
1486 int type = nla_type(a);
1487 int maxlen;
1488 int minlen;
1489
1490 if (type > OVS_CT_ATTR_MAX) {
1491 OVS_NLERR(log,
1492 "Unknown conntrack attr (type=%d, max=%d)",
1493 type, OVS_CT_ATTR_MAX);
1494 return -EINVAL;
1495 }
1496
1497 maxlen = ovs_ct_attr_lens[type].maxlen;
1498 minlen = ovs_ct_attr_lens[type].minlen;
1499 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1500 OVS_NLERR(log,
1501 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1502 type, nla_len(a), maxlen);
1503 return -EINVAL;
1504 }
1505
1506 switch (type) {
1507 case OVS_CT_ATTR_FORCE_COMMIT:
1508 info->force = true;
1509 /* fall through. */
1510 case OVS_CT_ATTR_COMMIT:
1511 info->commit = true;
1512 break;
1513#ifdef CONFIG_NF_CONNTRACK_ZONES
1514 case OVS_CT_ATTR_ZONE:
1515 info->zone.id = nla_get_u16(a);
1516 break;
1517#endif
1518#ifdef CONFIG_NF_CONNTRACK_MARK
1519 case OVS_CT_ATTR_MARK: {
1520 struct md_mark *mark = nla_data(a);
1521
1522 if (!mark->mask) {
1523 OVS_NLERR(log, "ct_mark mask cannot be 0");
1524 return -EINVAL;
1525 }
1526 info->mark = *mark;
1527 break;
1528 }
1529#endif
1530#ifdef CONFIG_NF_CONNTRACK_LABELS
1531 case OVS_CT_ATTR_LABELS: {
1532 struct md_labels *labels = nla_data(a);
1533
1534 if (!labels_nonzero(&labels->mask)) {
1535 OVS_NLERR(log, "ct_labels mask cannot be 0");
1536 return -EINVAL;
1537 }
1538 info->labels = *labels;
1539 break;
1540 }
1541#endif
1542 case OVS_CT_ATTR_HELPER:
1543 *helper = nla_data(a);
1544 if (!memchr(*helper, '\0', nla_len(a))) {
1545 OVS_NLERR(log, "Invalid conntrack helper");
1546 return -EINVAL;
1547 }
1548 break;
1549#ifdef CONFIG_NF_NAT_NEEDED
1550 case OVS_CT_ATTR_NAT: {
1551 int err = parse_nat(a, info, log);
1552
1553 if (err)
1554 return err;
1555 break;
1556 }
1557#endif
1558 case OVS_CT_ATTR_EVENTMASK:
1559 info->have_eventmask = true;
1560 info->eventmask = nla_get_u32(a);
1561 break;
1562
1563 default:
1564 OVS_NLERR(log, "Unknown conntrack attr (%d)",
1565 type);
1566 return -EINVAL;
1567 }
1568 }
1569
1570#ifdef CONFIG_NF_CONNTRACK_MARK
1571 if (!info->commit && info->mark.mask) {
1572 OVS_NLERR(log,
1573 "Setting conntrack mark requires 'commit' flag.");
1574 return -EINVAL;
1575 }
1576#endif
1577#ifdef CONFIG_NF_CONNTRACK_LABELS
1578 if (!info->commit && labels_nonzero(&info->labels.mask)) {
1579 OVS_NLERR(log,
1580 "Setting conntrack labels requires 'commit' flag.");
1581 return -EINVAL;
1582 }
1583#endif
1584 if (rem > 0) {
1585 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1586 return -EINVAL;
1587 }
1588
1589 return 0;
1590}
1591
1592bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1593{
1594 if (attr == OVS_KEY_ATTR_CT_STATE)
1595 return true;
1596 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1597 attr == OVS_KEY_ATTR_CT_ZONE)
1598 return true;
1599 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1600 attr == OVS_KEY_ATTR_CT_MARK)
1601 return true;
1602 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1603 attr == OVS_KEY_ATTR_CT_LABELS) {
1604 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1605
1606 return ovs_net->xt_label;
1607 }
1608
1609 return false;
1610}
1611
1612int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1613 const struct sw_flow_key *key,
1614 struct sw_flow_actions **sfa, bool log)
1615{
1616 struct ovs_conntrack_info ct_info;
1617 const char *helper = NULL;
1618 u16 family;
1619 int err;
1620
1621 family = key_to_nfproto(key);
1622 if (family == NFPROTO_UNSPEC) {
1623 OVS_NLERR(log, "ct family unspecified");
1624 return -EINVAL;
1625 }
1626
1627 memset(&ct_info, 0, sizeof(ct_info));
1628 ct_info.family = family;
1629
1630 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1631 NF_CT_DEFAULT_ZONE_DIR, 0);
1632
1633 err = parse_ct(attr, &ct_info, &helper, log);
1634 if (err)
1635 return err;
1636
1637 /* Set up template for tracking connections in specific zones. */
1638 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1639 if (!ct_info.ct) {
1640 OVS_NLERR(log, "Failed to allocate conntrack template");
1641 return -ENOMEM;
1642 }
1643 if (helper) {
1644 err = ovs_ct_add_helper(&ct_info, helper, key, log);
1645 if (err)
1646 goto err_free_ct;
1647 }
1648
1649 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1650 sizeof(ct_info), log);
1651 if (err)
1652 goto err_free_ct;
1653
1654 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1655 nf_conntrack_get(&ct_info.ct->ct_general);
1656 return 0;
1657err_free_ct:
1658 __ovs_ct_free_action(&ct_info);
1659 return err;
1660}
1661
1662#ifdef CONFIG_NF_NAT_NEEDED
1663static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1664 struct sk_buff *skb)
1665{
1666 struct nlattr *start;
1667
1668 start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1669 if (!start)
1670 return false;
1671
1672 if (info->nat & OVS_CT_SRC_NAT) {
1673 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1674 return false;
1675 } else if (info->nat & OVS_CT_DST_NAT) {
1676 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1677 return false;
1678 } else {
1679 goto out;
1680 }
1681
1682 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1683 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1684 info->family == NFPROTO_IPV4) {
1685 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1686 info->range.min_addr.ip) ||
1687 (info->range.max_addr.ip
1688 != info->range.min_addr.ip &&
1689 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1690 info->range.max_addr.ip))))
1691 return false;
1692 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1693 info->family == NFPROTO_IPV6) {
1694 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1695 &info->range.min_addr.in6) ||
1696 (memcmp(&info->range.max_addr.in6,
1697 &info->range.min_addr.in6,
1698 sizeof(info->range.max_addr.in6)) &&
1699 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1700 &info->range.max_addr.in6))))
1701 return false;
1702 } else {
1703 return false;
1704 }
1705 }
1706 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1707 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1708 ntohs(info->range.min_proto.all)) ||
1709 (info->range.max_proto.all != info->range.min_proto.all &&
1710 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1711 ntohs(info->range.max_proto.all)))))
1712 return false;
1713
1714 if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1715 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1716 return false;
1717 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1718 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1719 return false;
1720 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1721 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1722 return false;
1723out:
1724 nla_nest_end(skb, start);
1725
1726 return true;
1727}
1728#endif
1729
1730int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1731 struct sk_buff *skb)
1732{
1733 struct nlattr *start;
1734
1735 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1736 if (!start)
1737 return -EMSGSIZE;
1738
1739 if (ct_info->commit && nla_put_flag(skb, ct_info->force
1740 ? OVS_CT_ATTR_FORCE_COMMIT
1741 : OVS_CT_ATTR_COMMIT))
1742 return -EMSGSIZE;
1743 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1744 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1745 return -EMSGSIZE;
1746 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1747 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1748 &ct_info->mark))
1749 return -EMSGSIZE;
1750 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1751 labels_nonzero(&ct_info->labels.mask) &&
1752 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1753 &ct_info->labels))
1754 return -EMSGSIZE;
1755 if (ct_info->helper) {
1756 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1757 ct_info->helper->name))
1758 return -EMSGSIZE;
1759 }
1760 if (ct_info->have_eventmask &&
1761 nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1762 return -EMSGSIZE;
1763
1764#ifdef CONFIG_NF_NAT_NEEDED
1765 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1766 return -EMSGSIZE;
1767#endif
1768 nla_nest_end(skb, start);
1769
1770 return 0;
1771}
1772
1773void ovs_ct_free_action(const struct nlattr *a)
1774{
1775 struct ovs_conntrack_info *ct_info = nla_data(a);
1776
1777 __ovs_ct_free_action(ct_info);
1778}
1779
1780static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1781{
1782 if (ct_info->helper)
1783 nf_conntrack_helper_put(ct_info->helper);
1784 if (ct_info->ct)
1785 nf_ct_tmpl_free(ct_info->ct);
1786}
1787
1788#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
1789static int ovs_ct_limit_init(struct net *net, struct ovs_net *ovs_net)
1790{
1791 int i, err;
1792
1793 ovs_net->ct_limit_info = kmalloc(sizeof(*ovs_net->ct_limit_info),
1794 GFP_KERNEL);
1795 if (!ovs_net->ct_limit_info)
1796 return -ENOMEM;
1797
1798 ovs_net->ct_limit_info->default_limit = OVS_CT_LIMIT_DEFAULT;
1799 ovs_net->ct_limit_info->limits =
1800 kmalloc_array(CT_LIMIT_HASH_BUCKETS, sizeof(struct hlist_head),
1801 GFP_KERNEL);
1802 if (!ovs_net->ct_limit_info->limits) {
1803 kfree(ovs_net->ct_limit_info);
1804 return -ENOMEM;
1805 }
1806
1807 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; i++)
1808 INIT_HLIST_HEAD(&ovs_net->ct_limit_info->limits[i]);
1809
1810 ovs_net->ct_limit_info->data =
1811 nf_conncount_init(net, NFPROTO_INET, sizeof(u32));
1812
1813 if (IS_ERR(ovs_net->ct_limit_info->data)) {
1814 err = PTR_ERR(ovs_net->ct_limit_info->data);
1815 kfree(ovs_net->ct_limit_info->limits);
1816 kfree(ovs_net->ct_limit_info);
1817 pr_err("openvswitch: failed to init nf_conncount %d\n", err);
1818 return err;
1819 }
1820 return 0;
1821}
1822
1823static void ovs_ct_limit_exit(struct net *net, struct ovs_net *ovs_net)
1824{
1825 const struct ovs_ct_limit_info *info = ovs_net->ct_limit_info;
1826 int i;
1827
1828 nf_conncount_destroy(net, NFPROTO_INET, info->data);
1829 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
1830 struct hlist_head *head = &info->limits[i];
1831 struct ovs_ct_limit *ct_limit;
1832
1833 hlist_for_each_entry_rcu(ct_limit, head, hlist_node)
1834 kfree_rcu(ct_limit, rcu);
1835 }
1836 kfree(ovs_net->ct_limit_info->limits);
1837 kfree(ovs_net->ct_limit_info);
1838}
1839
1840static struct sk_buff *
1841ovs_ct_limit_cmd_reply_start(struct genl_info *info, u8 cmd,
1842 struct ovs_header **ovs_reply_header)
1843{
1844 struct ovs_header *ovs_header = info->userhdr;
1845 struct sk_buff *skb;
1846
1847 skb = genlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
1848 if (!skb)
1849 return ERR_PTR(-ENOMEM);
1850
1851 *ovs_reply_header = genlmsg_put(skb, info->snd_portid,
1852 info->snd_seq,
1853 &dp_ct_limit_genl_family, 0, cmd);
1854
1855 if (!*ovs_reply_header) {
1856 nlmsg_free(skb);
1857 return ERR_PTR(-EMSGSIZE);
1858 }
1859 (*ovs_reply_header)->dp_ifindex = ovs_header->dp_ifindex;
1860
1861 return skb;
1862}
1863
1864static bool check_zone_id(int zone_id, u16 *pzone)
1865{
1866 if (zone_id >= 0 && zone_id <= 65535) {
1867 *pzone = (u16)zone_id;
1868 return true;
1869 }
1870 return false;
1871}
1872
1873static int ovs_ct_limit_set_zone_limit(struct nlattr *nla_zone_limit,
1874 struct ovs_ct_limit_info *info)
1875{
1876 struct ovs_zone_limit *zone_limit;
1877 int rem;
1878 u16 zone;
1879
1880 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1881 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1882
1883 while (rem >= sizeof(*zone_limit)) {
1884 if (unlikely(zone_limit->zone_id ==
1885 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1886 ovs_lock();
1887 info->default_limit = zone_limit->limit;
1888 ovs_unlock();
1889 } else if (unlikely(!check_zone_id(
1890 zone_limit->zone_id, &zone))) {
1891 OVS_NLERR(true, "zone id is out of range");
1892 } else {
1893 struct ovs_ct_limit *ct_limit;
1894
1895 ct_limit = kmalloc(sizeof(*ct_limit), GFP_KERNEL);
1896 if (!ct_limit)
1897 return -ENOMEM;
1898
1899 ct_limit->zone = zone;
1900 ct_limit->limit = zone_limit->limit;
1901
1902 ovs_lock();
1903 ct_limit_set(info, ct_limit);
1904 ovs_unlock();
1905 }
1906 rem -= NLA_ALIGN(sizeof(*zone_limit));
1907 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1908 NLA_ALIGN(sizeof(*zone_limit)));
1909 }
1910
1911 if (rem)
1912 OVS_NLERR(true, "set zone limit has %d unknown bytes", rem);
1913
1914 return 0;
1915}
1916
1917static int ovs_ct_limit_del_zone_limit(struct nlattr *nla_zone_limit,
1918 struct ovs_ct_limit_info *info)
1919{
1920 struct ovs_zone_limit *zone_limit;
1921 int rem;
1922 u16 zone;
1923
1924 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1925 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1926
1927 while (rem >= sizeof(*zone_limit)) {
1928 if (unlikely(zone_limit->zone_id ==
1929 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
1930 ovs_lock();
1931 info->default_limit = OVS_CT_LIMIT_DEFAULT;
1932 ovs_unlock();
1933 } else if (unlikely(!check_zone_id(
1934 zone_limit->zone_id, &zone))) {
1935 OVS_NLERR(true, "zone id is out of range");
1936 } else {
1937 ovs_lock();
1938 ct_limit_del(info, zone);
1939 ovs_unlock();
1940 }
1941 rem -= NLA_ALIGN(sizeof(*zone_limit));
1942 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
1943 NLA_ALIGN(sizeof(*zone_limit)));
1944 }
1945
1946 if (rem)
1947 OVS_NLERR(true, "del zone limit has %d unknown bytes", rem);
1948
1949 return 0;
1950}
1951
1952static int ovs_ct_limit_get_default_limit(struct ovs_ct_limit_info *info,
1953 struct sk_buff *reply)
1954{
1955 struct ovs_zone_limit zone_limit;
1956 int err;
1957
1958 zone_limit.zone_id = OVS_ZONE_LIMIT_DEFAULT_ZONE;
1959 zone_limit.limit = info->default_limit;
1960 err = nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1961 if (err)
1962 return err;
1963
1964 return 0;
1965}
1966
1967static int __ovs_ct_limit_get_zone_limit(struct net *net,
1968 struct nf_conncount_data *data,
1969 u16 zone_id, u32 limit,
1970 struct sk_buff *reply)
1971{
1972 struct nf_conntrack_zone ct_zone;
1973 struct ovs_zone_limit zone_limit;
1974 u32 conncount_key = zone_id;
1975
1976 zone_limit.zone_id = zone_id;
1977 zone_limit.limit = limit;
1978 nf_ct_zone_init(&ct_zone, zone_id, NF_CT_DEFAULT_ZONE_DIR, 0);
1979
1980 zone_limit.count = nf_conncount_count(net, data, &conncount_key, NULL,
1981 &ct_zone);
1982 return nla_put_nohdr(reply, sizeof(zone_limit), &zone_limit);
1983}
1984
1985static int ovs_ct_limit_get_zone_limit(struct net *net,
1986 struct nlattr *nla_zone_limit,
1987 struct ovs_ct_limit_info *info,
1988 struct sk_buff *reply)
1989{
1990 struct ovs_zone_limit *zone_limit;
1991 int rem, err;
1992 u32 limit;
1993 u16 zone;
1994
1995 rem = NLA_ALIGN(nla_len(nla_zone_limit));
1996 zone_limit = (struct ovs_zone_limit *)nla_data(nla_zone_limit);
1997
1998 while (rem >= sizeof(*zone_limit)) {
1999 if (unlikely(zone_limit->zone_id ==
2000 OVS_ZONE_LIMIT_DEFAULT_ZONE)) {
2001 err = ovs_ct_limit_get_default_limit(info, reply);
2002 if (err)
2003 return err;
2004 } else if (unlikely(!check_zone_id(zone_limit->zone_id,
2005 &zone))) {
2006 OVS_NLERR(true, "zone id is out of range");
2007 } else {
2008 rcu_read_lock();
2009 limit = ct_limit_get(info, zone);
2010 rcu_read_unlock();
2011
2012 err = __ovs_ct_limit_get_zone_limit(
2013 net, info->data, zone, limit, reply);
2014 if (err)
2015 return err;
2016 }
2017 rem -= NLA_ALIGN(sizeof(*zone_limit));
2018 zone_limit = (struct ovs_zone_limit *)((u8 *)zone_limit +
2019 NLA_ALIGN(sizeof(*zone_limit)));
2020 }
2021
2022 if (rem)
2023 OVS_NLERR(true, "get zone limit has %d unknown bytes", rem);
2024
2025 return 0;
2026}
2027
2028static int ovs_ct_limit_get_all_zone_limit(struct net *net,
2029 struct ovs_ct_limit_info *info,
2030 struct sk_buff *reply)
2031{
2032 struct ovs_ct_limit *ct_limit;
2033 struct hlist_head *head;
2034 int i, err = 0;
2035
2036 err = ovs_ct_limit_get_default_limit(info, reply);
2037 if (err)
2038 return err;
2039
2040 rcu_read_lock();
2041 for (i = 0; i < CT_LIMIT_HASH_BUCKETS; ++i) {
2042 head = &info->limits[i];
2043 hlist_for_each_entry_rcu(ct_limit, head, hlist_node) {
2044 err = __ovs_ct_limit_get_zone_limit(net, info->data,
2045 ct_limit->zone, ct_limit->limit, reply);
2046 if (err)
2047 goto exit_err;
2048 }
2049 }
2050
2051exit_err:
2052 rcu_read_unlock();
2053 return err;
2054}
2055
2056static int ovs_ct_limit_cmd_set(struct sk_buff *skb, struct genl_info *info)
2057{
2058 struct nlattr **a = info->attrs;
2059 struct sk_buff *reply;
2060 struct ovs_header *ovs_reply_header;
2061 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2062 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2063 int err;
2064
2065 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_SET,
2066 &ovs_reply_header);
2067 if (IS_ERR(reply))
2068 return PTR_ERR(reply);
2069
2070 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2071 err = -EINVAL;
2072 goto exit_err;
2073 }
2074
2075 err = ovs_ct_limit_set_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2076 ct_limit_info);
2077 if (err)
2078 goto exit_err;
2079
2080 static_branch_enable(&ovs_ct_limit_enabled);
2081
2082 genlmsg_end(reply, ovs_reply_header);
2083 return genlmsg_reply(reply, info);
2084
2085exit_err:
2086 nlmsg_free(reply);
2087 return err;
2088}
2089
2090static int ovs_ct_limit_cmd_del(struct sk_buff *skb, struct genl_info *info)
2091{
2092 struct nlattr **a = info->attrs;
2093 struct sk_buff *reply;
2094 struct ovs_header *ovs_reply_header;
2095 struct ovs_net *ovs_net = net_generic(sock_net(skb->sk), ovs_net_id);
2096 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2097 int err;
2098
2099 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_DEL,
2100 &ovs_reply_header);
2101 if (IS_ERR(reply))
2102 return PTR_ERR(reply);
2103
2104 if (!a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2105 err = -EINVAL;
2106 goto exit_err;
2107 }
2108
2109 err = ovs_ct_limit_del_zone_limit(a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT],
2110 ct_limit_info);
2111 if (err)
2112 goto exit_err;
2113
2114 genlmsg_end(reply, ovs_reply_header);
2115 return genlmsg_reply(reply, info);
2116
2117exit_err:
2118 nlmsg_free(reply);
2119 return err;
2120}
2121
2122static int ovs_ct_limit_cmd_get(struct sk_buff *skb, struct genl_info *info)
2123{
2124 struct nlattr **a = info->attrs;
2125 struct nlattr *nla_reply;
2126 struct sk_buff *reply;
2127 struct ovs_header *ovs_reply_header;
2128 struct net *net = sock_net(skb->sk);
2129 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2130 struct ovs_ct_limit_info *ct_limit_info = ovs_net->ct_limit_info;
2131 int err;
2132
2133 reply = ovs_ct_limit_cmd_reply_start(info, OVS_CT_LIMIT_CMD_GET,
2134 &ovs_reply_header);
2135 if (IS_ERR(reply))
2136 return PTR_ERR(reply);
2137
2138 nla_reply = nla_nest_start(reply, OVS_CT_LIMIT_ATTR_ZONE_LIMIT);
2139
2140 if (a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT]) {
2141 err = ovs_ct_limit_get_zone_limit(
2142 net, a[OVS_CT_LIMIT_ATTR_ZONE_LIMIT], ct_limit_info,
2143 reply);
2144 if (err)
2145 goto exit_err;
2146 } else {
2147 err = ovs_ct_limit_get_all_zone_limit(net, ct_limit_info,
2148 reply);
2149 if (err)
2150 goto exit_err;
2151 }
2152
2153 nla_nest_end(reply, nla_reply);
2154 genlmsg_end(reply, ovs_reply_header);
2155 return genlmsg_reply(reply, info);
2156
2157exit_err:
2158 nlmsg_free(reply);
2159 return err;
2160}
2161
2162static struct genl_ops ct_limit_genl_ops[] = {
2163 { .cmd = OVS_CT_LIMIT_CMD_SET,
2164 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2165 * privilege. */
2166 .policy = ct_limit_policy,
2167 .doit = ovs_ct_limit_cmd_set,
2168 },
2169 { .cmd = OVS_CT_LIMIT_CMD_DEL,
2170 .flags = GENL_ADMIN_PERM, /* Requires CAP_NET_ADMIN
2171 * privilege. */
2172 .policy = ct_limit_policy,
2173 .doit = ovs_ct_limit_cmd_del,
2174 },
2175 { .cmd = OVS_CT_LIMIT_CMD_GET,
2176 .flags = 0, /* OK for unprivileged users. */
2177 .policy = ct_limit_policy,
2178 .doit = ovs_ct_limit_cmd_get,
2179 },
2180};
2181
2182static const struct genl_multicast_group ovs_ct_limit_multicast_group = {
2183 .name = OVS_CT_LIMIT_MCGROUP,
2184};
2185
2186struct genl_family dp_ct_limit_genl_family __ro_after_init = {
2187 .hdrsize = sizeof(struct ovs_header),
2188 .name = OVS_CT_LIMIT_FAMILY,
2189 .version = OVS_CT_LIMIT_VERSION,
2190 .maxattr = OVS_CT_LIMIT_ATTR_MAX,
2191 .netnsok = true,
2192 .parallel_ops = true,
2193 .ops = ct_limit_genl_ops,
2194 .n_ops = ARRAY_SIZE(ct_limit_genl_ops),
2195 .mcgrps = &ovs_ct_limit_multicast_group,
2196 .n_mcgrps = 1,
2197 .module = THIS_MODULE,
2198};
2199#endif
2200
2201int ovs_ct_init(struct net *net)
2202{
2203 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
2204 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2205
2206 if (nf_connlabels_get(net, n_bits - 1)) {
2207 ovs_net->xt_label = false;
2208 OVS_NLERR(true, "Failed to set connlabel length");
2209 } else {
2210 ovs_net->xt_label = true;
2211 }
2212
2213#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2214 return ovs_ct_limit_init(net, ovs_net);
2215#else
2216 return 0;
2217#endif
2218}
2219
2220void ovs_ct_exit(struct net *net)
2221{
2222 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
2223
2224#if IS_ENABLED(CONFIG_NETFILTER_CONNCOUNT)
2225 ovs_ct_limit_exit(net, ovs_net);
2226#endif
2227
2228 if (ovs_net->xt_label)
2229 nf_connlabels_put(net);
2230}