| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
|  | 2 | /* | 
|  | 3 | * Slab allocator functions that are independent of the allocator strategy | 
|  | 4 | * | 
|  | 5 | * (C) 2012 Christoph Lameter <cl@linux.com> | 
|  | 6 | */ | 
|  | 7 | #include <linux/slab.h> | 
|  | 8 |  | 
|  | 9 | #include <linux/mm.h> | 
|  | 10 | #include <linux/poison.h> | 
|  | 11 | #include <linux/interrupt.h> | 
|  | 12 | #include <linux/memory.h> | 
|  | 13 | #include <linux/cache.h> | 
|  | 14 | #include <linux/compiler.h> | 
|  | 15 | #include <linux/module.h> | 
|  | 16 | #include <linux/cpu.h> | 
|  | 17 | #include <linux/uaccess.h> | 
|  | 18 | #include <linux/seq_file.h> | 
|  | 19 | #include <linux/proc_fs.h> | 
|  | 20 | #include <asm/cacheflush.h> | 
|  | 21 | #include <asm/tlbflush.h> | 
|  | 22 | #include <asm/page.h> | 
|  | 23 | #include <linux/memcontrol.h> | 
|  | 24 |  | 
|  | 25 | #define CREATE_TRACE_POINTS | 
|  | 26 | #include <trace/events/kmem.h> | 
|  | 27 |  | 
|  | 28 | #include "slab.h" | 
|  | 29 |  | 
|  | 30 | enum slab_state slab_state; | 
|  | 31 | LIST_HEAD(slab_caches); | 
|  | 32 | DEFINE_MUTEX(slab_mutex); | 
|  | 33 | struct kmem_cache *kmem_cache; | 
|  | 34 |  | 
|  | 35 | #ifdef CONFIG_HARDENED_USERCOPY | 
|  | 36 | bool usercopy_fallback __ro_after_init = | 
|  | 37 | IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK); | 
|  | 38 | module_param(usercopy_fallback, bool, 0400); | 
|  | 39 | MODULE_PARM_DESC(usercopy_fallback, | 
|  | 40 | "WARN instead of reject usercopy whitelist violations"); | 
|  | 41 | #endif | 
|  | 42 |  | 
|  | 43 | static LIST_HEAD(slab_caches_to_rcu_destroy); | 
|  | 44 | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); | 
|  | 45 | static DECLARE_WORK(slab_caches_to_rcu_destroy_work, | 
|  | 46 | slab_caches_to_rcu_destroy_workfn); | 
|  | 47 |  | 
|  | 48 | /* | 
|  | 49 | * Set of flags that will prevent slab merging | 
|  | 50 | */ | 
|  | 51 | #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | 
|  | 52 | SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ | 
|  | 53 | SLAB_FAILSLAB | SLAB_KASAN) | 
|  | 54 |  | 
|  | 55 | #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ | 
|  | 56 | SLAB_CACHE_DMA32 | SLAB_ACCOUNT) | 
|  | 57 |  | 
|  | 58 | /* | 
|  | 59 | * Merge control. If this is set then no merging of slab caches will occur. | 
|  | 60 | */ | 
|  | 61 | static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); | 
|  | 62 |  | 
|  | 63 | static int __init setup_slab_nomerge(char *str) | 
|  | 64 | { | 
|  | 65 | slab_nomerge = true; | 
|  | 66 | return 1; | 
|  | 67 | } | 
|  | 68 |  | 
|  | 69 | #ifdef CONFIG_SLUB | 
|  | 70 | __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); | 
|  | 71 | #endif | 
|  | 72 |  | 
|  | 73 | __setup("slab_nomerge", setup_slab_nomerge); | 
|  | 74 |  | 
|  | 75 | /* | 
|  | 76 | * Determine the size of a slab object | 
|  | 77 | */ | 
|  | 78 | unsigned int kmem_cache_size(struct kmem_cache *s) | 
|  | 79 | { | 
|  | 80 | return s->object_size; | 
|  | 81 | } | 
|  | 82 | EXPORT_SYMBOL(kmem_cache_size); | 
|  | 83 |  | 
|  | 84 | #ifdef CONFIG_DEBUG_VM | 
|  | 85 | static int kmem_cache_sanity_check(const char *name, unsigned int size) | 
|  | 86 | { | 
|  | 87 | if (!name || in_interrupt() || size < sizeof(void *) || | 
|  | 88 | size > KMALLOC_MAX_SIZE) { | 
|  | 89 | pr_err("kmem_cache_create(%s) integrity check failed\n", name); | 
|  | 90 | return -EINVAL; | 
|  | 91 | } | 
|  | 92 |  | 
|  | 93 | WARN_ON(strchr(name, ' '));	/* It confuses parsers */ | 
|  | 94 | return 0; | 
|  | 95 | } | 
|  | 96 | #else | 
|  | 97 | static inline int kmem_cache_sanity_check(const char *name, unsigned int size) | 
|  | 98 | { | 
|  | 99 | return 0; | 
|  | 100 | } | 
|  | 101 | #endif | 
|  | 102 |  | 
|  | 103 | void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p) | 
|  | 104 | { | 
|  | 105 | size_t i; | 
|  | 106 |  | 
|  | 107 | for (i = 0; i < nr; i++) { | 
|  | 108 | if (s) | 
|  | 109 | kmem_cache_free(s, p[i]); | 
|  | 110 | else | 
|  | 111 | kfree(p[i]); | 
|  | 112 | } | 
|  | 113 | } | 
|  | 114 |  | 
|  | 115 | int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr, | 
|  | 116 | void **p) | 
|  | 117 | { | 
|  | 118 | size_t i; | 
|  | 119 |  | 
|  | 120 | for (i = 0; i < nr; i++) { | 
|  | 121 | void *x = p[i] = kmem_cache_alloc(s, flags); | 
|  | 122 | if (!x) { | 
|  | 123 | __kmem_cache_free_bulk(s, i, p); | 
|  | 124 | return 0; | 
|  | 125 | } | 
|  | 126 | } | 
|  | 127 | return i; | 
|  | 128 | } | 
|  | 129 |  | 
|  | 130 | #ifdef CONFIG_MEMCG_KMEM | 
|  | 131 |  | 
|  | 132 | LIST_HEAD(slab_root_caches); | 
|  | 133 |  | 
|  | 134 | void slab_init_memcg_params(struct kmem_cache *s) | 
|  | 135 | { | 
|  | 136 | s->memcg_params.root_cache = NULL; | 
|  | 137 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL); | 
|  | 138 | INIT_LIST_HEAD(&s->memcg_params.children); | 
|  | 139 | s->memcg_params.dying = false; | 
|  | 140 | } | 
|  | 141 |  | 
|  | 142 | static int init_memcg_params(struct kmem_cache *s, | 
|  | 143 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | 
|  | 144 | { | 
|  | 145 | struct memcg_cache_array *arr; | 
|  | 146 |  | 
|  | 147 | if (root_cache) { | 
|  | 148 | s->memcg_params.root_cache = root_cache; | 
|  | 149 | s->memcg_params.memcg = memcg; | 
|  | 150 | INIT_LIST_HEAD(&s->memcg_params.children_node); | 
|  | 151 | INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node); | 
|  | 152 | return 0; | 
|  | 153 | } | 
|  | 154 |  | 
|  | 155 | slab_init_memcg_params(s); | 
|  | 156 |  | 
|  | 157 | if (!memcg_nr_cache_ids) | 
|  | 158 | return 0; | 
|  | 159 |  | 
|  | 160 | arr = kvzalloc(sizeof(struct memcg_cache_array) + | 
|  | 161 | memcg_nr_cache_ids * sizeof(void *), | 
|  | 162 | GFP_KERNEL); | 
|  | 163 | if (!arr) | 
|  | 164 | return -ENOMEM; | 
|  | 165 |  | 
|  | 166 | RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr); | 
|  | 167 | return 0; | 
|  | 168 | } | 
|  | 169 |  | 
|  | 170 | static void destroy_memcg_params(struct kmem_cache *s) | 
|  | 171 | { | 
|  | 172 | if (is_root_cache(s)) | 
|  | 173 | kvfree(rcu_access_pointer(s->memcg_params.memcg_caches)); | 
|  | 174 | } | 
|  | 175 |  | 
|  | 176 | static void free_memcg_params(struct rcu_head *rcu) | 
|  | 177 | { | 
|  | 178 | struct memcg_cache_array *old; | 
|  | 179 |  | 
|  | 180 | old = container_of(rcu, struct memcg_cache_array, rcu); | 
|  | 181 | kvfree(old); | 
|  | 182 | } | 
|  | 183 |  | 
|  | 184 | static int update_memcg_params(struct kmem_cache *s, int new_array_size) | 
|  | 185 | { | 
|  | 186 | struct memcg_cache_array *old, *new; | 
|  | 187 |  | 
|  | 188 | new = kvzalloc(sizeof(struct memcg_cache_array) + | 
|  | 189 | new_array_size * sizeof(void *), GFP_KERNEL); | 
|  | 190 | if (!new) | 
|  | 191 | return -ENOMEM; | 
|  | 192 |  | 
|  | 193 | old = rcu_dereference_protected(s->memcg_params.memcg_caches, | 
|  | 194 | lockdep_is_held(&slab_mutex)); | 
|  | 195 | if (old) | 
|  | 196 | memcpy(new->entries, old->entries, | 
|  | 197 | memcg_nr_cache_ids * sizeof(void *)); | 
|  | 198 |  | 
|  | 199 | rcu_assign_pointer(s->memcg_params.memcg_caches, new); | 
|  | 200 | if (old) | 
|  | 201 | call_rcu(&old->rcu, free_memcg_params); | 
|  | 202 | return 0; | 
|  | 203 | } | 
|  | 204 |  | 
|  | 205 | int memcg_update_all_caches(int num_memcgs) | 
|  | 206 | { | 
|  | 207 | struct kmem_cache *s; | 
|  | 208 | int ret = 0; | 
|  | 209 |  | 
|  | 210 | mutex_lock(&slab_mutex); | 
|  | 211 | list_for_each_entry(s, &slab_root_caches, root_caches_node) { | 
|  | 212 | ret = update_memcg_params(s, num_memcgs); | 
|  | 213 | /* | 
|  | 214 | * Instead of freeing the memory, we'll just leave the caches | 
|  | 215 | * up to this point in an updated state. | 
|  | 216 | */ | 
|  | 217 | if (ret) | 
|  | 218 | break; | 
|  | 219 | } | 
|  | 220 | mutex_unlock(&slab_mutex); | 
|  | 221 | return ret; | 
|  | 222 | } | 
|  | 223 |  | 
|  | 224 | void memcg_link_cache(struct kmem_cache *s) | 
|  | 225 | { | 
|  | 226 | if (is_root_cache(s)) { | 
|  | 227 | list_add(&s->root_caches_node, &slab_root_caches); | 
|  | 228 | } else { | 
|  | 229 | list_add(&s->memcg_params.children_node, | 
|  | 230 | &s->memcg_params.root_cache->memcg_params.children); | 
|  | 231 | list_add(&s->memcg_params.kmem_caches_node, | 
|  | 232 | &s->memcg_params.memcg->kmem_caches); | 
|  | 233 | } | 
|  | 234 | } | 
|  | 235 |  | 
|  | 236 | static void memcg_unlink_cache(struct kmem_cache *s) | 
|  | 237 | { | 
|  | 238 | if (is_root_cache(s)) { | 
|  | 239 | list_del(&s->root_caches_node); | 
|  | 240 | } else { | 
|  | 241 | list_del(&s->memcg_params.children_node); | 
|  | 242 | list_del(&s->memcg_params.kmem_caches_node); | 
|  | 243 | } | 
|  | 244 | } | 
|  | 245 | #else | 
|  | 246 | static inline int init_memcg_params(struct kmem_cache *s, | 
|  | 247 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | 
|  | 248 | { | 
|  | 249 | return 0; | 
|  | 250 | } | 
|  | 251 |  | 
|  | 252 | static inline void destroy_memcg_params(struct kmem_cache *s) | 
|  | 253 | { | 
|  | 254 | } | 
|  | 255 |  | 
|  | 256 | static inline void memcg_unlink_cache(struct kmem_cache *s) | 
|  | 257 | { | 
|  | 258 | } | 
|  | 259 | #endif /* CONFIG_MEMCG_KMEM */ | 
|  | 260 |  | 
|  | 261 | /* | 
|  | 262 | * Figure out what the alignment of the objects will be given a set of | 
|  | 263 | * flags, a user specified alignment and the size of the objects. | 
|  | 264 | */ | 
|  | 265 | static unsigned int calculate_alignment(slab_flags_t flags, | 
|  | 266 | unsigned int align, unsigned int size) | 
|  | 267 | { | 
|  | 268 | /* | 
|  | 269 | * If the user wants hardware cache aligned objects then follow that | 
|  | 270 | * suggestion if the object is sufficiently large. | 
|  | 271 | * | 
|  | 272 | * The hardware cache alignment cannot override the specified | 
|  | 273 | * alignment though. If that is greater then use it. | 
|  | 274 | */ | 
|  | 275 | if (flags & SLAB_HWCACHE_ALIGN) { | 
|  | 276 | unsigned int ralign; | 
|  | 277 |  | 
|  | 278 | ralign = cache_line_size(); | 
|  | 279 | while (size <= ralign / 2) | 
|  | 280 | ralign /= 2; | 
|  | 281 | align = max(align, ralign); | 
|  | 282 | } | 
|  | 283 |  | 
|  | 284 | if (align < ARCH_SLAB_MINALIGN) | 
|  | 285 | align = ARCH_SLAB_MINALIGN; | 
|  | 286 |  | 
|  | 287 | return ALIGN(align, sizeof(void *)); | 
|  | 288 | } | 
|  | 289 |  | 
|  | 290 | /* | 
|  | 291 | * Find a mergeable slab cache | 
|  | 292 | */ | 
|  | 293 | int slab_unmergeable(struct kmem_cache *s) | 
|  | 294 | { | 
|  | 295 | if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) | 
|  | 296 | return 1; | 
|  | 297 |  | 
|  | 298 | if (!is_root_cache(s)) | 
|  | 299 | return 1; | 
|  | 300 |  | 
|  | 301 | if (s->ctor) | 
|  | 302 | return 1; | 
|  | 303 |  | 
|  | 304 | if (s->usersize) | 
|  | 305 | return 1; | 
|  | 306 |  | 
|  | 307 | /* | 
|  | 308 | * We may have set a slab to be unmergeable during bootstrap. | 
|  | 309 | */ | 
|  | 310 | if (s->refcount < 0) | 
|  | 311 | return 1; | 
|  | 312 |  | 
|  | 313 | return 0; | 
|  | 314 | } | 
|  | 315 |  | 
|  | 316 | struct kmem_cache *find_mergeable(unsigned int size, unsigned int align, | 
|  | 317 | slab_flags_t flags, const char *name, void (*ctor)(void *)) | 
|  | 318 | { | 
|  | 319 | struct kmem_cache *s; | 
|  | 320 |  | 
|  | 321 | if (slab_nomerge) | 
|  | 322 | return NULL; | 
|  | 323 |  | 
|  | 324 | if (ctor) | 
|  | 325 | return NULL; | 
|  | 326 |  | 
|  | 327 | size = ALIGN(size, sizeof(void *)); | 
|  | 328 | align = calculate_alignment(flags, align, size); | 
|  | 329 | size = ALIGN(size, align); | 
|  | 330 | flags = kmem_cache_flags(size, flags, name, NULL); | 
|  | 331 |  | 
|  | 332 | if (flags & SLAB_NEVER_MERGE) | 
|  | 333 | return NULL; | 
|  | 334 |  | 
|  | 335 | list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) { | 
|  | 336 | if (slab_unmergeable(s)) | 
|  | 337 | continue; | 
|  | 338 |  | 
|  | 339 | if (size > s->size) | 
|  | 340 | continue; | 
|  | 341 |  | 
|  | 342 | if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) | 
|  | 343 | continue; | 
|  | 344 | /* | 
|  | 345 | * Check if alignment is compatible. | 
|  | 346 | * Courtesy of Adrian Drzewiecki | 
|  | 347 | */ | 
|  | 348 | if ((s->size & ~(align - 1)) != s->size) | 
|  | 349 | continue; | 
|  | 350 |  | 
|  | 351 | if (s->size - size >= sizeof(void *)) | 
|  | 352 | continue; | 
|  | 353 |  | 
|  | 354 | if (IS_ENABLED(CONFIG_SLAB) && align && | 
|  | 355 | (align > s->align || s->align % align)) | 
|  | 356 | continue; | 
|  | 357 |  | 
|  | 358 | return s; | 
|  | 359 | } | 
|  | 360 | return NULL; | 
|  | 361 | } | 
|  | 362 |  | 
|  | 363 | static struct kmem_cache *create_cache(const char *name, | 
|  | 364 | unsigned int object_size, unsigned int align, | 
|  | 365 | slab_flags_t flags, unsigned int useroffset, | 
|  | 366 | unsigned int usersize, void (*ctor)(void *), | 
|  | 367 | struct mem_cgroup *memcg, struct kmem_cache *root_cache) | 
|  | 368 | { | 
|  | 369 | struct kmem_cache *s; | 
|  | 370 | int err; | 
|  | 371 |  | 
|  | 372 | if (WARN_ON(useroffset + usersize > object_size)) | 
|  | 373 | useroffset = usersize = 0; | 
|  | 374 |  | 
|  | 375 | err = -ENOMEM; | 
|  | 376 | s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); | 
|  | 377 | if (!s) | 
|  | 378 | goto out; | 
|  | 379 |  | 
|  | 380 | s->name = name; | 
|  | 381 | s->size = s->object_size = object_size; | 
|  | 382 | s->align = align; | 
|  | 383 | s->ctor = ctor; | 
|  | 384 | s->useroffset = useroffset; | 
|  | 385 | s->usersize = usersize; | 
|  | 386 |  | 
|  | 387 | err = init_memcg_params(s, memcg, root_cache); | 
|  | 388 | if (err) | 
|  | 389 | goto out_free_cache; | 
|  | 390 |  | 
|  | 391 | err = __kmem_cache_create(s, flags); | 
|  | 392 | if (err) | 
|  | 393 | goto out_free_cache; | 
|  | 394 |  | 
|  | 395 | s->refcount = 1; | 
|  | 396 | list_add(&s->list, &slab_caches); | 
|  | 397 | memcg_link_cache(s); | 
|  | 398 | out: | 
|  | 399 | if (err) | 
|  | 400 | return ERR_PTR(err); | 
|  | 401 | return s; | 
|  | 402 |  | 
|  | 403 | out_free_cache: | 
|  | 404 | destroy_memcg_params(s); | 
|  | 405 | kmem_cache_free(kmem_cache, s); | 
|  | 406 | goto out; | 
|  | 407 | } | 
|  | 408 |  | 
|  | 409 | /* | 
|  | 410 | * kmem_cache_create_usercopy - Create a cache. | 
|  | 411 | * @name: A string which is used in /proc/slabinfo to identify this cache. | 
|  | 412 | * @size: The size of objects to be created in this cache. | 
|  | 413 | * @align: The required alignment for the objects. | 
|  | 414 | * @flags: SLAB flags | 
|  | 415 | * @useroffset: Usercopy region offset | 
|  | 416 | * @usersize: Usercopy region size | 
|  | 417 | * @ctor: A constructor for the objects. | 
|  | 418 | * | 
|  | 419 | * Returns a ptr to the cache on success, NULL on failure. | 
|  | 420 | * Cannot be called within a interrupt, but can be interrupted. | 
|  | 421 | * The @ctor is run when new pages are allocated by the cache. | 
|  | 422 | * | 
|  | 423 | * The flags are | 
|  | 424 | * | 
|  | 425 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | 
|  | 426 | * to catch references to uninitialised memory. | 
|  | 427 | * | 
|  | 428 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | 
|  | 429 | * for buffer overruns. | 
|  | 430 | * | 
|  | 431 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware | 
|  | 432 | * cacheline.  This can be beneficial if you're counting cycles as closely | 
|  | 433 | * as davem. | 
|  | 434 | */ | 
|  | 435 | struct kmem_cache * | 
|  | 436 | kmem_cache_create_usercopy(const char *name, | 
|  | 437 | unsigned int size, unsigned int align, | 
|  | 438 | slab_flags_t flags, | 
|  | 439 | unsigned int useroffset, unsigned int usersize, | 
|  | 440 | void (*ctor)(void *)) | 
|  | 441 | { | 
|  | 442 | struct kmem_cache *s = NULL; | 
|  | 443 | const char *cache_name; | 
|  | 444 | int err; | 
|  | 445 |  | 
|  | 446 | get_online_cpus(); | 
|  | 447 | get_online_mems(); | 
|  | 448 | memcg_get_cache_ids(); | 
|  | 449 |  | 
|  | 450 | mutex_lock(&slab_mutex); | 
|  | 451 |  | 
|  | 452 | err = kmem_cache_sanity_check(name, size); | 
|  | 453 | if (err) { | 
|  | 454 | goto out_unlock; | 
|  | 455 | } | 
|  | 456 |  | 
|  | 457 | /* Refuse requests with allocator specific flags */ | 
|  | 458 | if (flags & ~SLAB_FLAGS_PERMITTED) { | 
|  | 459 | err = -EINVAL; | 
|  | 460 | goto out_unlock; | 
|  | 461 | } | 
|  | 462 |  | 
|  | 463 | /* | 
|  | 464 | * Some allocators will constraint the set of valid flags to a subset | 
|  | 465 | * of all flags. We expect them to define CACHE_CREATE_MASK in this | 
|  | 466 | * case, and we'll just provide them with a sanitized version of the | 
|  | 467 | * passed flags. | 
|  | 468 | */ | 
|  | 469 | flags &= CACHE_CREATE_MASK; | 
|  | 470 |  | 
|  | 471 | /* Fail closed on bad usersize of useroffset values. */ | 
|  | 472 | if (WARN_ON(!usersize && useroffset) || | 
|  | 473 | WARN_ON(size < usersize || size - usersize < useroffset)) | 
|  | 474 | usersize = useroffset = 0; | 
|  | 475 |  | 
|  | 476 | if (!usersize) | 
|  | 477 | s = __kmem_cache_alias(name, size, align, flags, ctor); | 
|  | 478 | if (s) | 
|  | 479 | goto out_unlock; | 
|  | 480 |  | 
|  | 481 | cache_name = kstrdup_const(name, GFP_KERNEL); | 
|  | 482 | if (!cache_name) { | 
|  | 483 | err = -ENOMEM; | 
|  | 484 | goto out_unlock; | 
|  | 485 | } | 
|  | 486 |  | 
|  | 487 | s = create_cache(cache_name, size, | 
|  | 488 | calculate_alignment(flags, align, size), | 
|  | 489 | flags, useroffset, usersize, ctor, NULL, NULL); | 
|  | 490 | if (IS_ERR(s)) { | 
|  | 491 | err = PTR_ERR(s); | 
|  | 492 | kfree_const(cache_name); | 
|  | 493 | } | 
|  | 494 |  | 
|  | 495 | out_unlock: | 
|  | 496 | mutex_unlock(&slab_mutex); | 
|  | 497 |  | 
|  | 498 | memcg_put_cache_ids(); | 
|  | 499 | put_online_mems(); | 
|  | 500 | put_online_cpus(); | 
|  | 501 |  | 
|  | 502 | if (err) { | 
|  | 503 | if (flags & SLAB_PANIC) | 
|  | 504 | panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n", | 
|  | 505 | name, err); | 
|  | 506 | else { | 
|  | 507 | pr_warn("kmem_cache_create(%s) failed with error %d\n", | 
|  | 508 | name, err); | 
|  | 509 | dump_stack(); | 
|  | 510 | } | 
|  | 511 | return NULL; | 
|  | 512 | } | 
|  | 513 | return s; | 
|  | 514 | } | 
|  | 515 | EXPORT_SYMBOL(kmem_cache_create_usercopy); | 
|  | 516 |  | 
|  | 517 | struct kmem_cache * | 
|  | 518 | kmem_cache_create(const char *name, unsigned int size, unsigned int align, | 
|  | 519 | slab_flags_t flags, void (*ctor)(void *)) | 
|  | 520 | { | 
|  | 521 | return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, | 
|  | 522 | ctor); | 
|  | 523 | } | 
|  | 524 | EXPORT_SYMBOL(kmem_cache_create); | 
|  | 525 |  | 
|  | 526 | static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) | 
|  | 527 | { | 
|  | 528 | LIST_HEAD(to_destroy); | 
|  | 529 | struct kmem_cache *s, *s2; | 
|  | 530 |  | 
|  | 531 | /* | 
|  | 532 | * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the | 
|  | 533 | * @slab_caches_to_rcu_destroy list.  The slab pages are freed | 
|  | 534 | * through RCU and and the associated kmem_cache are dereferenced | 
|  | 535 | * while freeing the pages, so the kmem_caches should be freed only | 
|  | 536 | * after the pending RCU operations are finished.  As rcu_barrier() | 
|  | 537 | * is a pretty slow operation, we batch all pending destructions | 
|  | 538 | * asynchronously. | 
|  | 539 | */ | 
|  | 540 | mutex_lock(&slab_mutex); | 
|  | 541 | list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); | 
|  | 542 | mutex_unlock(&slab_mutex); | 
|  | 543 |  | 
|  | 544 | if (list_empty(&to_destroy)) | 
|  | 545 | return; | 
|  | 546 |  | 
|  | 547 | rcu_barrier(); | 
|  | 548 |  | 
|  | 549 | list_for_each_entry_safe(s, s2, &to_destroy, list) { | 
|  | 550 | #ifdef SLAB_SUPPORTS_SYSFS | 
|  | 551 | sysfs_slab_release(s); | 
|  | 552 | #else | 
|  | 553 | slab_kmem_cache_release(s); | 
|  | 554 | #endif | 
|  | 555 | } | 
|  | 556 | } | 
|  | 557 |  | 
|  | 558 | static int shutdown_cache(struct kmem_cache *s) | 
|  | 559 | { | 
|  | 560 | /* free asan quarantined objects */ | 
|  | 561 | kasan_cache_shutdown(s); | 
|  | 562 |  | 
|  | 563 | if (__kmem_cache_shutdown(s) != 0) | 
|  | 564 | return -EBUSY; | 
|  | 565 |  | 
|  | 566 | memcg_unlink_cache(s); | 
|  | 567 | list_del(&s->list); | 
|  | 568 |  | 
|  | 569 | if (s->flags & SLAB_TYPESAFE_BY_RCU) { | 
|  | 570 | #ifdef SLAB_SUPPORTS_SYSFS | 
|  | 571 | sysfs_slab_unlink(s); | 
|  | 572 | #endif | 
|  | 573 | list_add_tail(&s->list, &slab_caches_to_rcu_destroy); | 
|  | 574 | schedule_work(&slab_caches_to_rcu_destroy_work); | 
|  | 575 | } else { | 
|  | 576 | #ifdef SLAB_SUPPORTS_SYSFS | 
|  | 577 | sysfs_slab_unlink(s); | 
|  | 578 | sysfs_slab_release(s); | 
|  | 579 | #else | 
|  | 580 | slab_kmem_cache_release(s); | 
|  | 581 | #endif | 
|  | 582 | } | 
|  | 583 |  | 
|  | 584 | return 0; | 
|  | 585 | } | 
|  | 586 |  | 
|  | 587 | #ifdef CONFIG_MEMCG_KMEM | 
|  | 588 | /* | 
|  | 589 | * memcg_create_kmem_cache - Create a cache for a memory cgroup. | 
|  | 590 | * @memcg: The memory cgroup the new cache is for. | 
|  | 591 | * @root_cache: The parent of the new cache. | 
|  | 592 | * | 
|  | 593 | * This function attempts to create a kmem cache that will serve allocation | 
|  | 594 | * requests going from @memcg to @root_cache. The new cache inherits properties | 
|  | 595 | * from its parent. | 
|  | 596 | */ | 
|  | 597 | void memcg_create_kmem_cache(struct mem_cgroup *memcg, | 
|  | 598 | struct kmem_cache *root_cache) | 
|  | 599 | { | 
|  | 600 | static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */ | 
|  | 601 | struct cgroup_subsys_state *css = &memcg->css; | 
|  | 602 | struct memcg_cache_array *arr; | 
|  | 603 | struct kmem_cache *s = NULL; | 
|  | 604 | char *cache_name; | 
|  | 605 | int idx; | 
|  | 606 |  | 
|  | 607 | get_online_cpus(); | 
|  | 608 | get_online_mems(); | 
|  | 609 |  | 
|  | 610 | mutex_lock(&slab_mutex); | 
|  | 611 |  | 
|  | 612 | /* | 
|  | 613 | * The memory cgroup could have been offlined while the cache | 
|  | 614 | * creation work was pending. | 
|  | 615 | */ | 
|  | 616 | if (memcg->kmem_state != KMEM_ONLINE || root_cache->memcg_params.dying) | 
|  | 617 | goto out_unlock; | 
|  | 618 |  | 
|  | 619 | idx = memcg_cache_id(memcg); | 
|  | 620 | arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches, | 
|  | 621 | lockdep_is_held(&slab_mutex)); | 
|  | 622 |  | 
|  | 623 | /* | 
|  | 624 | * Since per-memcg caches are created asynchronously on first | 
|  | 625 | * allocation (see memcg_kmem_get_cache()), several threads can try to | 
|  | 626 | * create the same cache, but only one of them may succeed. | 
|  | 627 | */ | 
|  | 628 | if (arr->entries[idx]) | 
|  | 629 | goto out_unlock; | 
|  | 630 |  | 
|  | 631 | cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf)); | 
|  | 632 | cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name, | 
|  | 633 | css->serial_nr, memcg_name_buf); | 
|  | 634 | if (!cache_name) | 
|  | 635 | goto out_unlock; | 
|  | 636 |  | 
|  | 637 | s = create_cache(cache_name, root_cache->object_size, | 
|  | 638 | root_cache->align, | 
|  | 639 | root_cache->flags & CACHE_CREATE_MASK, | 
|  | 640 | root_cache->useroffset, root_cache->usersize, | 
|  | 641 | root_cache->ctor, memcg, root_cache); | 
|  | 642 | /* | 
|  | 643 | * If we could not create a memcg cache, do not complain, because | 
|  | 644 | * that's not critical at all as we can always proceed with the root | 
|  | 645 | * cache. | 
|  | 646 | */ | 
|  | 647 | if (IS_ERR(s)) { | 
|  | 648 | kfree(cache_name); | 
|  | 649 | goto out_unlock; | 
|  | 650 | } | 
|  | 651 |  | 
|  | 652 | /* | 
|  | 653 | * Since readers won't lock (see cache_from_memcg_idx()), we need a | 
|  | 654 | * barrier here to ensure nobody will see the kmem_cache partially | 
|  | 655 | * initialized. | 
|  | 656 | */ | 
|  | 657 | smp_wmb(); | 
|  | 658 | arr->entries[idx] = s; | 
|  | 659 |  | 
|  | 660 | out_unlock: | 
|  | 661 | mutex_unlock(&slab_mutex); | 
|  | 662 |  | 
|  | 663 | put_online_mems(); | 
|  | 664 | put_online_cpus(); | 
|  | 665 | } | 
|  | 666 |  | 
|  | 667 | static void kmemcg_deactivate_workfn(struct work_struct *work) | 
|  | 668 | { | 
|  | 669 | struct kmem_cache *s = container_of(work, struct kmem_cache, | 
|  | 670 | memcg_params.deact_work); | 
|  | 671 |  | 
|  | 672 | get_online_cpus(); | 
|  | 673 | get_online_mems(); | 
|  | 674 |  | 
|  | 675 | mutex_lock(&slab_mutex); | 
|  | 676 |  | 
|  | 677 | s->memcg_params.deact_fn(s); | 
|  | 678 |  | 
|  | 679 | mutex_unlock(&slab_mutex); | 
|  | 680 |  | 
|  | 681 | put_online_mems(); | 
|  | 682 | put_online_cpus(); | 
|  | 683 |  | 
|  | 684 | /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */ | 
|  | 685 | css_put(&s->memcg_params.memcg->css); | 
|  | 686 | } | 
|  | 687 |  | 
|  | 688 | static void kmemcg_deactivate_rcufn(struct rcu_head *head) | 
|  | 689 | { | 
|  | 690 | struct kmem_cache *s = container_of(head, struct kmem_cache, | 
|  | 691 | memcg_params.deact_rcu_head); | 
|  | 692 |  | 
|  | 693 | /* | 
|  | 694 | * We need to grab blocking locks.  Bounce to ->deact_work.  The | 
|  | 695 | * work item shares the space with the RCU head and can't be | 
|  | 696 | * initialized eariler. | 
|  | 697 | */ | 
|  | 698 | INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn); | 
|  | 699 | queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work); | 
|  | 700 | } | 
|  | 701 |  | 
|  | 702 | /** | 
|  | 703 | * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a | 
|  | 704 | *					   sched RCU grace period | 
|  | 705 | * @s: target kmem_cache | 
|  | 706 | * @deact_fn: deactivation function to call | 
|  | 707 | * | 
|  | 708 | * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex | 
|  | 709 | * held after a sched RCU grace period.  The slab is guaranteed to stay | 
|  | 710 | * alive until @deact_fn is finished.  This is to be used from | 
|  | 711 | * __kmemcg_cache_deactivate(). | 
|  | 712 | */ | 
|  | 713 | void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s, | 
|  | 714 | void (*deact_fn)(struct kmem_cache *)) | 
|  | 715 | { | 
|  | 716 | if (WARN_ON_ONCE(is_root_cache(s)) || | 
|  | 717 | WARN_ON_ONCE(s->memcg_params.deact_fn)) | 
|  | 718 | return; | 
|  | 719 |  | 
|  | 720 | if (s->memcg_params.root_cache->memcg_params.dying) | 
|  | 721 | return; | 
|  | 722 |  | 
|  | 723 | /* pin memcg so that @s doesn't get destroyed in the middle */ | 
|  | 724 | css_get(&s->memcg_params.memcg->css); | 
|  | 725 |  | 
|  | 726 | s->memcg_params.deact_fn = deact_fn; | 
|  | 727 | call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn); | 
|  | 728 | } | 
|  | 729 |  | 
|  | 730 | void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg) | 
|  | 731 | { | 
|  | 732 | int idx; | 
|  | 733 | struct memcg_cache_array *arr; | 
|  | 734 | struct kmem_cache *s, *c; | 
|  | 735 |  | 
|  | 736 | idx = memcg_cache_id(memcg); | 
|  | 737 |  | 
|  | 738 | get_online_cpus(); | 
|  | 739 | get_online_mems(); | 
|  | 740 |  | 
|  | 741 | mutex_lock(&slab_mutex); | 
|  | 742 | list_for_each_entry(s, &slab_root_caches, root_caches_node) { | 
|  | 743 | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, | 
|  | 744 | lockdep_is_held(&slab_mutex)); | 
|  | 745 | c = arr->entries[idx]; | 
|  | 746 | if (!c) | 
|  | 747 | continue; | 
|  | 748 |  | 
|  | 749 | __kmemcg_cache_deactivate(c); | 
|  | 750 | arr->entries[idx] = NULL; | 
|  | 751 | } | 
|  | 752 | mutex_unlock(&slab_mutex); | 
|  | 753 |  | 
|  | 754 | put_online_mems(); | 
|  | 755 | put_online_cpus(); | 
|  | 756 | } | 
|  | 757 |  | 
|  | 758 | void memcg_destroy_kmem_caches(struct mem_cgroup *memcg) | 
|  | 759 | { | 
|  | 760 | struct kmem_cache *s, *s2; | 
|  | 761 |  | 
|  | 762 | get_online_cpus(); | 
|  | 763 | get_online_mems(); | 
|  | 764 |  | 
|  | 765 | mutex_lock(&slab_mutex); | 
|  | 766 | list_for_each_entry_safe(s, s2, &memcg->kmem_caches, | 
|  | 767 | memcg_params.kmem_caches_node) { | 
|  | 768 | /* | 
|  | 769 | * The cgroup is about to be freed and therefore has no charges | 
|  | 770 | * left. Hence, all its caches must be empty by now. | 
|  | 771 | */ | 
|  | 772 | BUG_ON(shutdown_cache(s)); | 
|  | 773 | } | 
|  | 774 | mutex_unlock(&slab_mutex); | 
|  | 775 |  | 
|  | 776 | put_online_mems(); | 
|  | 777 | put_online_cpus(); | 
|  | 778 | } | 
|  | 779 |  | 
|  | 780 | static int shutdown_memcg_caches(struct kmem_cache *s) | 
|  | 781 | { | 
|  | 782 | struct memcg_cache_array *arr; | 
|  | 783 | struct kmem_cache *c, *c2; | 
|  | 784 | LIST_HEAD(busy); | 
|  | 785 | int i; | 
|  | 786 |  | 
|  | 787 | BUG_ON(!is_root_cache(s)); | 
|  | 788 |  | 
|  | 789 | /* | 
|  | 790 | * First, shutdown active caches, i.e. caches that belong to online | 
|  | 791 | * memory cgroups. | 
|  | 792 | */ | 
|  | 793 | arr = rcu_dereference_protected(s->memcg_params.memcg_caches, | 
|  | 794 | lockdep_is_held(&slab_mutex)); | 
|  | 795 | for_each_memcg_cache_index(i) { | 
|  | 796 | c = arr->entries[i]; | 
|  | 797 | if (!c) | 
|  | 798 | continue; | 
|  | 799 | if (shutdown_cache(c)) | 
|  | 800 | /* | 
|  | 801 | * The cache still has objects. Move it to a temporary | 
|  | 802 | * list so as not to try to destroy it for a second | 
|  | 803 | * time while iterating over inactive caches below. | 
|  | 804 | */ | 
|  | 805 | list_move(&c->memcg_params.children_node, &busy); | 
|  | 806 | else | 
|  | 807 | /* | 
|  | 808 | * The cache is empty and will be destroyed soon. Clear | 
|  | 809 | * the pointer to it in the memcg_caches array so that | 
|  | 810 | * it will never be accessed even if the root cache | 
|  | 811 | * stays alive. | 
|  | 812 | */ | 
|  | 813 | arr->entries[i] = NULL; | 
|  | 814 | } | 
|  | 815 |  | 
|  | 816 | /* | 
|  | 817 | * Second, shutdown all caches left from memory cgroups that are now | 
|  | 818 | * offline. | 
|  | 819 | */ | 
|  | 820 | list_for_each_entry_safe(c, c2, &s->memcg_params.children, | 
|  | 821 | memcg_params.children_node) | 
|  | 822 | shutdown_cache(c); | 
|  | 823 |  | 
|  | 824 | list_splice(&busy, &s->memcg_params.children); | 
|  | 825 |  | 
|  | 826 | /* | 
|  | 827 | * A cache being destroyed must be empty. In particular, this means | 
|  | 828 | * that all per memcg caches attached to it must be empty too. | 
|  | 829 | */ | 
|  | 830 | if (!list_empty(&s->memcg_params.children)) | 
|  | 831 | return -EBUSY; | 
|  | 832 | return 0; | 
|  | 833 | } | 
|  | 834 |  | 
|  | 835 | static void flush_memcg_workqueue(struct kmem_cache *s) | 
|  | 836 | { | 
|  | 837 | mutex_lock(&slab_mutex); | 
|  | 838 | s->memcg_params.dying = true; | 
|  | 839 | mutex_unlock(&slab_mutex); | 
|  | 840 |  | 
|  | 841 | /* | 
|  | 842 | * SLUB deactivates the kmem_caches through call_rcu_sched. Make | 
|  | 843 | * sure all registered rcu callbacks have been invoked. | 
|  | 844 | */ | 
|  | 845 | if (IS_ENABLED(CONFIG_SLUB)) | 
|  | 846 | rcu_barrier_sched(); | 
|  | 847 |  | 
|  | 848 | /* | 
|  | 849 | * SLAB and SLUB create memcg kmem_caches through workqueue and SLUB | 
|  | 850 | * deactivates the memcg kmem_caches through workqueue. Make sure all | 
|  | 851 | * previous workitems on workqueue are processed. | 
|  | 852 | */ | 
|  | 853 | if (likely(memcg_kmem_cache_wq)) | 
|  | 854 | flush_workqueue(memcg_kmem_cache_wq); | 
|  | 855 | } | 
|  | 856 | #else | 
|  | 857 | static inline int shutdown_memcg_caches(struct kmem_cache *s) | 
|  | 858 | { | 
|  | 859 | return 0; | 
|  | 860 | } | 
|  | 861 |  | 
|  | 862 | static inline void flush_memcg_workqueue(struct kmem_cache *s) | 
|  | 863 | { | 
|  | 864 | } | 
|  | 865 | #endif /* CONFIG_MEMCG_KMEM */ | 
|  | 866 |  | 
|  | 867 | void slab_kmem_cache_release(struct kmem_cache *s) | 
|  | 868 | { | 
|  | 869 | __kmem_cache_release(s); | 
|  | 870 | destroy_memcg_params(s); | 
|  | 871 | kfree_const(s->name); | 
|  | 872 | kmem_cache_free(kmem_cache, s); | 
|  | 873 | } | 
|  | 874 |  | 
|  | 875 | void kmem_cache_destroy(struct kmem_cache *s) | 
|  | 876 | { | 
|  | 877 | int err; | 
|  | 878 |  | 
|  | 879 | if (unlikely(!s)) | 
|  | 880 | return; | 
|  | 881 |  | 
|  | 882 | flush_memcg_workqueue(s); | 
|  | 883 |  | 
|  | 884 | get_online_cpus(); | 
|  | 885 | get_online_mems(); | 
|  | 886 |  | 
|  | 887 | mutex_lock(&slab_mutex); | 
|  | 888 |  | 
|  | 889 | s->refcount--; | 
|  | 890 | if (s->refcount) | 
|  | 891 | goto out_unlock; | 
|  | 892 |  | 
|  | 893 | err = shutdown_memcg_caches(s); | 
|  | 894 | if (!err) | 
|  | 895 | err = shutdown_cache(s); | 
|  | 896 |  | 
|  | 897 | if (err) { | 
|  | 898 | pr_err("kmem_cache_destroy %s: Slab cache still has objects\n", | 
|  | 899 | s->name); | 
|  | 900 | dump_stack(); | 
|  | 901 | } | 
|  | 902 | out_unlock: | 
|  | 903 | mutex_unlock(&slab_mutex); | 
|  | 904 |  | 
|  | 905 | put_online_mems(); | 
|  | 906 | put_online_cpus(); | 
|  | 907 | } | 
|  | 908 | EXPORT_SYMBOL(kmem_cache_destroy); | 
|  | 909 |  | 
|  | 910 | /** | 
|  | 911 | * kmem_cache_shrink - Shrink a cache. | 
|  | 912 | * @cachep: The cache to shrink. | 
|  | 913 | * | 
|  | 914 | * Releases as many slabs as possible for a cache. | 
|  | 915 | * To help debugging, a zero exit status indicates all slabs were released. | 
|  | 916 | */ | 
|  | 917 | int kmem_cache_shrink(struct kmem_cache *cachep) | 
|  | 918 | { | 
|  | 919 | int ret; | 
|  | 920 |  | 
|  | 921 | get_online_cpus(); | 
|  | 922 | get_online_mems(); | 
|  | 923 | kasan_cache_shrink(cachep); | 
|  | 924 | ret = __kmem_cache_shrink(cachep); | 
|  | 925 | put_online_mems(); | 
|  | 926 | put_online_cpus(); | 
|  | 927 | return ret; | 
|  | 928 | } | 
|  | 929 | EXPORT_SYMBOL(kmem_cache_shrink); | 
|  | 930 |  | 
|  | 931 | bool slab_is_available(void) | 
|  | 932 | { | 
|  | 933 | return slab_state >= UP; | 
|  | 934 | } | 
|  | 935 |  | 
|  | 936 | #ifndef CONFIG_SLOB | 
|  | 937 | /* Create a cache during boot when no slab services are available yet */ | 
|  | 938 | void __init create_boot_cache(struct kmem_cache *s, const char *name, | 
|  | 939 | unsigned int size, slab_flags_t flags, | 
|  | 940 | unsigned int useroffset, unsigned int usersize) | 
|  | 941 | { | 
|  | 942 | int err; | 
|  | 943 |  | 
|  | 944 | s->name = name; | 
|  | 945 | s->size = s->object_size = size; | 
|  | 946 | s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size); | 
|  | 947 | s->useroffset = useroffset; | 
|  | 948 | s->usersize = usersize; | 
|  | 949 |  | 
|  | 950 | slab_init_memcg_params(s); | 
|  | 951 |  | 
|  | 952 | err = __kmem_cache_create(s, flags); | 
|  | 953 |  | 
|  | 954 | if (err) | 
|  | 955 | panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", | 
|  | 956 | name, size, err); | 
|  | 957 |  | 
|  | 958 | s->refcount = -1;	/* Exempt from merging for now */ | 
|  | 959 | } | 
|  | 960 |  | 
|  | 961 | struct kmem_cache *__init create_kmalloc_cache(const char *name, | 
|  | 962 | unsigned int size, slab_flags_t flags, | 
|  | 963 | unsigned int useroffset, unsigned int usersize) | 
|  | 964 | { | 
|  | 965 | struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | 
|  | 966 |  | 
|  | 967 | if (!s) | 
|  | 968 | panic("Out of memory when creating slab %s\n", name); | 
|  | 969 |  | 
|  | 970 | create_boot_cache(s, name, size, flags, useroffset, usersize); | 
|  | 971 | list_add(&s->list, &slab_caches); | 
|  | 972 | memcg_link_cache(s); | 
|  | 973 | s->refcount = 1; | 
|  | 974 | return s; | 
|  | 975 | } | 
|  | 976 |  | 
|  | 977 | struct kmem_cache * | 
|  | 978 | kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init; | 
|  | 979 | EXPORT_SYMBOL(kmalloc_caches); | 
|  | 980 |  | 
|  | 981 | /* | 
|  | 982 | * Conversion table for small slabs sizes / 8 to the index in the | 
|  | 983 | * kmalloc array. This is necessary for slabs < 192 since we have non power | 
|  | 984 | * of two cache sizes there. The size of larger slabs can be determined using | 
|  | 985 | * fls. | 
|  | 986 | */ | 
|  | 987 | static u8 size_index[24] __ro_after_init = { | 
|  | 988 | 3,	/* 8 */ | 
|  | 989 | 4,	/* 16 */ | 
|  | 990 | 5,	/* 24 */ | 
|  | 991 | 5,	/* 32 */ | 
|  | 992 | 6,	/* 40 */ | 
|  | 993 | 6,	/* 48 */ | 
|  | 994 | 6,	/* 56 */ | 
|  | 995 | 6,	/* 64 */ | 
|  | 996 | 1,	/* 72 */ | 
|  | 997 | 1,	/* 80 */ | 
|  | 998 | 1,	/* 88 */ | 
|  | 999 | 1,	/* 96 */ | 
|  | 1000 | 7,	/* 104 */ | 
|  | 1001 | 7,	/* 112 */ | 
|  | 1002 | 7,	/* 120 */ | 
|  | 1003 | 7,	/* 128 */ | 
|  | 1004 | 2,	/* 136 */ | 
|  | 1005 | 2,	/* 144 */ | 
|  | 1006 | 2,	/* 152 */ | 
|  | 1007 | 2,	/* 160 */ | 
|  | 1008 | 2,	/* 168 */ | 
|  | 1009 | 2,	/* 176 */ | 
|  | 1010 | 2,	/* 184 */ | 
|  | 1011 | 2	/* 192 */ | 
|  | 1012 | }; | 
|  | 1013 |  | 
|  | 1014 | static inline unsigned int size_index_elem(unsigned int bytes) | 
|  | 1015 | { | 
|  | 1016 | return (bytes - 1) / 8; | 
|  | 1017 | } | 
|  | 1018 |  | 
|  | 1019 | /* | 
|  | 1020 | * Find the kmem_cache structure that serves a given size of | 
|  | 1021 | * allocation | 
|  | 1022 | */ | 
|  | 1023 | struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags) | 
|  | 1024 | { | 
|  | 1025 | unsigned int index; | 
|  | 1026 |  | 
|  | 1027 | if (size <= 192) { | 
|  | 1028 | if (!size) | 
|  | 1029 | return ZERO_SIZE_PTR; | 
|  | 1030 |  | 
|  | 1031 | index = size_index[size_index_elem(size)]; | 
|  | 1032 | } else { | 
|  | 1033 | if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { | 
|  | 1034 | WARN_ON(1); | 
|  | 1035 | return NULL; | 
|  | 1036 | } | 
|  | 1037 | index = fls(size - 1); | 
|  | 1038 | } | 
|  | 1039 |  | 
|  | 1040 | return kmalloc_caches[kmalloc_type(flags)][index]; | 
|  | 1041 | } | 
|  | 1042 |  | 
|  | 1043 | /* | 
|  | 1044 | * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. | 
|  | 1045 | * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is | 
|  | 1046 | * kmalloc-67108864. | 
|  | 1047 | */ | 
|  | 1048 | const struct kmalloc_info_struct kmalloc_info[] __initconst = { | 
|  | 1049 | {NULL,                      0},		{"kmalloc-96",             96}, | 
|  | 1050 | {"kmalloc-192",           192},		{"kmalloc-8",               8}, | 
|  | 1051 | {"kmalloc-16",             16},		{"kmalloc-32",             32}, | 
|  | 1052 | {"kmalloc-64",             64},		{"kmalloc-128",           128}, | 
|  | 1053 | {"kmalloc-256",           256},		{"kmalloc-512",           512}, | 
|  | 1054 | {"kmalloc-1k",           1024},		{"kmalloc-2k",           2048}, | 
|  | 1055 | {"kmalloc-4k",           4096},		{"kmalloc-8k",           8192}, | 
|  | 1056 | {"kmalloc-16k",         16384},		{"kmalloc-32k",         32768}, | 
|  | 1057 | {"kmalloc-64k",         65536},		{"kmalloc-128k",       131072}, | 
|  | 1058 | {"kmalloc-256k",       262144},		{"kmalloc-512k",       524288}, | 
|  | 1059 | {"kmalloc-1M",        1048576},		{"kmalloc-2M",        2097152}, | 
|  | 1060 | {"kmalloc-4M",        4194304},		{"kmalloc-8M",        8388608}, | 
|  | 1061 | {"kmalloc-16M",      16777216},		{"kmalloc-32M",      33554432}, | 
|  | 1062 | {"kmalloc-64M",      67108864} | 
|  | 1063 | }; | 
|  | 1064 |  | 
|  | 1065 | /* | 
|  | 1066 | * Patch up the size_index table if we have strange large alignment | 
|  | 1067 | * requirements for the kmalloc array. This is only the case for | 
|  | 1068 | * MIPS it seems. The standard arches will not generate any code here. | 
|  | 1069 | * | 
|  | 1070 | * Largest permitted alignment is 256 bytes due to the way we | 
|  | 1071 | * handle the index determination for the smaller caches. | 
|  | 1072 | * | 
|  | 1073 | * Make sure that nothing crazy happens if someone starts tinkering | 
|  | 1074 | * around with ARCH_KMALLOC_MINALIGN | 
|  | 1075 | */ | 
|  | 1076 | void __init setup_kmalloc_cache_index_table(void) | 
|  | 1077 | { | 
|  | 1078 | unsigned int i; | 
|  | 1079 |  | 
|  | 1080 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || | 
|  | 1081 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | 
|  | 1082 |  | 
|  | 1083 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { | 
|  | 1084 | unsigned int elem = size_index_elem(i); | 
|  | 1085 |  | 
|  | 1086 | if (elem >= ARRAY_SIZE(size_index)) | 
|  | 1087 | break; | 
|  | 1088 | size_index[elem] = KMALLOC_SHIFT_LOW; | 
|  | 1089 | } | 
|  | 1090 |  | 
|  | 1091 | if (KMALLOC_MIN_SIZE >= 64) { | 
|  | 1092 | /* | 
|  | 1093 | * The 96 byte size cache is not used if the alignment | 
|  | 1094 | * is 64 byte. | 
|  | 1095 | */ | 
|  | 1096 | for (i = 64 + 8; i <= 96; i += 8) | 
|  | 1097 | size_index[size_index_elem(i)] = 7; | 
|  | 1098 |  | 
|  | 1099 | } | 
|  | 1100 |  | 
|  | 1101 | if (KMALLOC_MIN_SIZE >= 128) { | 
|  | 1102 | /* | 
|  | 1103 | * The 192 byte sized cache is not used if the alignment | 
|  | 1104 | * is 128 byte. Redirect kmalloc to use the 256 byte cache | 
|  | 1105 | * instead. | 
|  | 1106 | */ | 
|  | 1107 | for (i = 128 + 8; i <= 192; i += 8) | 
|  | 1108 | size_index[size_index_elem(i)] = 8; | 
|  | 1109 | } | 
|  | 1110 | } | 
|  | 1111 |  | 
|  | 1112 | static const char * | 
|  | 1113 | kmalloc_cache_name(const char *prefix, unsigned int size) | 
|  | 1114 | { | 
|  | 1115 |  | 
|  | 1116 | static const char units[3] = "\0kM"; | 
|  | 1117 | int idx = 0; | 
|  | 1118 |  | 
|  | 1119 | while (size >= 1024 && (size % 1024 == 0)) { | 
|  | 1120 | size /= 1024; | 
|  | 1121 | idx++; | 
|  | 1122 | } | 
|  | 1123 |  | 
|  | 1124 | return kasprintf(GFP_NOWAIT, "%s-%u%c", prefix, size, units[idx]); | 
|  | 1125 | } | 
|  | 1126 |  | 
|  | 1127 | static void __init | 
|  | 1128 | new_kmalloc_cache(int idx, int type, slab_flags_t flags) | 
|  | 1129 | { | 
|  | 1130 | const char *name; | 
|  | 1131 |  | 
|  | 1132 | if (type == KMALLOC_RECLAIM) { | 
|  | 1133 | flags |= SLAB_RECLAIM_ACCOUNT; | 
|  | 1134 | name = kmalloc_cache_name("kmalloc-rcl", | 
|  | 1135 | kmalloc_info[idx].size); | 
|  | 1136 | BUG_ON(!name); | 
|  | 1137 | } else { | 
|  | 1138 | name = kmalloc_info[idx].name; | 
|  | 1139 | } | 
|  | 1140 |  | 
|  | 1141 | kmalloc_caches[type][idx] = create_kmalloc_cache(name, | 
|  | 1142 | kmalloc_info[idx].size, flags, 0, | 
|  | 1143 | kmalloc_info[idx].size); | 
|  | 1144 | } | 
|  | 1145 |  | 
|  | 1146 | /* | 
|  | 1147 | * Create the kmalloc array. Some of the regular kmalloc arrays | 
|  | 1148 | * may already have been created because they were needed to | 
|  | 1149 | * enable allocations for slab creation. | 
|  | 1150 | */ | 
|  | 1151 | void __init create_kmalloc_caches(slab_flags_t flags) | 
|  | 1152 | { | 
|  | 1153 | int i, type; | 
|  | 1154 |  | 
|  | 1155 | for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) { | 
|  | 1156 | for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { | 
|  | 1157 | if (!kmalloc_caches[type][i]) | 
|  | 1158 | new_kmalloc_cache(i, type, flags); | 
|  | 1159 |  | 
|  | 1160 | /* | 
|  | 1161 | * Caches that are not of the two-to-the-power-of size. | 
|  | 1162 | * These have to be created immediately after the | 
|  | 1163 | * earlier power of two caches | 
|  | 1164 | */ | 
|  | 1165 | if (KMALLOC_MIN_SIZE <= 32 && i == 6 && | 
|  | 1166 | !kmalloc_caches[type][1]) | 
|  | 1167 | new_kmalloc_cache(1, type, flags); | 
|  | 1168 | if (KMALLOC_MIN_SIZE <= 64 && i == 7 && | 
|  | 1169 | !kmalloc_caches[type][2]) | 
|  | 1170 | new_kmalloc_cache(2, type, flags); | 
|  | 1171 | } | 
|  | 1172 | } | 
|  | 1173 |  | 
|  | 1174 | /* Kmalloc array is now usable */ | 
|  | 1175 | slab_state = UP; | 
|  | 1176 |  | 
|  | 1177 | #ifdef CONFIG_ZONE_DMA | 
|  | 1178 | for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) { | 
|  | 1179 | struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i]; | 
|  | 1180 |  | 
|  | 1181 | if (s) { | 
|  | 1182 | unsigned int size = kmalloc_size(i); | 
|  | 1183 | const char *n = kmalloc_cache_name("dma-kmalloc", size); | 
|  | 1184 |  | 
|  | 1185 | BUG_ON(!n); | 
|  | 1186 | kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache( | 
|  | 1187 | n, size, SLAB_CACHE_DMA | flags, 0, 0); | 
|  | 1188 | } | 
|  | 1189 | } | 
|  | 1190 | #endif | 
|  | 1191 | } | 
|  | 1192 | #endif /* !CONFIG_SLOB */ | 
|  | 1193 |  | 
|  | 1194 | /* | 
|  | 1195 | * To avoid unnecessary overhead, we pass through large allocation requests | 
|  | 1196 | * directly to the page allocator. We use __GFP_COMP, because we will need to | 
|  | 1197 | * know the allocation order to free the pages properly in kfree. | 
|  | 1198 | */ | 
|  | 1199 | void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) | 
|  | 1200 | { | 
|  | 1201 | void *ret; | 
|  | 1202 | struct page *page; | 
|  | 1203 |  | 
|  | 1204 | flags |= __GFP_COMP; | 
|  | 1205 | page = alloc_pages(flags, order); | 
|  | 1206 | ret = page ? page_address(page) : NULL; | 
|  | 1207 | ret = kasan_kmalloc_large(ret, size, flags); | 
|  | 1208 | kmemleak_alloc(ret, size, 1, flags); | 
|  | 1209 | return ret; | 
|  | 1210 | } | 
|  | 1211 | EXPORT_SYMBOL(kmalloc_order); | 
|  | 1212 |  | 
|  | 1213 | #ifdef CONFIG_TRACING | 
|  | 1214 | void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) | 
|  | 1215 | { | 
|  | 1216 | void *ret = kmalloc_order(size, flags, order); | 
|  | 1217 | trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags); | 
|  | 1218 | return ret; | 
|  | 1219 | } | 
|  | 1220 | EXPORT_SYMBOL(kmalloc_order_trace); | 
|  | 1221 | #endif | 
|  | 1222 |  | 
|  | 1223 | #ifdef CONFIG_SLAB_FREELIST_RANDOM | 
|  | 1224 | /* Randomize a generic freelist */ | 
|  | 1225 | static void freelist_randomize(struct rnd_state *state, unsigned int *list, | 
|  | 1226 | unsigned int count) | 
|  | 1227 | { | 
|  | 1228 | unsigned int rand; | 
|  | 1229 | unsigned int i; | 
|  | 1230 |  | 
|  | 1231 | for (i = 0; i < count; i++) | 
|  | 1232 | list[i] = i; | 
|  | 1233 |  | 
|  | 1234 | /* Fisher-Yates shuffle */ | 
|  | 1235 | for (i = count - 1; i > 0; i--) { | 
|  | 1236 | rand = prandom_u32_state(state); | 
|  | 1237 | rand %= (i + 1); | 
|  | 1238 | swap(list[i], list[rand]); | 
|  | 1239 | } | 
|  | 1240 | } | 
|  | 1241 |  | 
|  | 1242 | /* Create a random sequence per cache */ | 
|  | 1243 | int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, | 
|  | 1244 | gfp_t gfp) | 
|  | 1245 | { | 
|  | 1246 | struct rnd_state state; | 
|  | 1247 |  | 
|  | 1248 | if (count < 2 || cachep->random_seq) | 
|  | 1249 | return 0; | 
|  | 1250 |  | 
|  | 1251 | cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); | 
|  | 1252 | if (!cachep->random_seq) | 
|  | 1253 | return -ENOMEM; | 
|  | 1254 |  | 
|  | 1255 | /* Get best entropy at this stage of boot */ | 
|  | 1256 | prandom_seed_state(&state, get_random_long()); | 
|  | 1257 |  | 
|  | 1258 | freelist_randomize(&state, cachep->random_seq, count); | 
|  | 1259 | return 0; | 
|  | 1260 | } | 
|  | 1261 |  | 
|  | 1262 | /* Destroy the per-cache random freelist sequence */ | 
|  | 1263 | void cache_random_seq_destroy(struct kmem_cache *cachep) | 
|  | 1264 | { | 
|  | 1265 | kfree(cachep->random_seq); | 
|  | 1266 | cachep->random_seq = NULL; | 
|  | 1267 | } | 
|  | 1268 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | 
|  | 1269 |  | 
|  | 1270 | #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) | 
|  | 1271 | #ifdef CONFIG_SLAB | 
|  | 1272 | #define SLABINFO_RIGHTS (0600) | 
|  | 1273 | #else | 
|  | 1274 | #define SLABINFO_RIGHTS (0400) | 
|  | 1275 | #endif | 
|  | 1276 |  | 
|  | 1277 | static void print_slabinfo_header(struct seq_file *m) | 
|  | 1278 | { | 
|  | 1279 | /* | 
|  | 1280 | * Output format version, so at least we can change it | 
|  | 1281 | * without _too_ many complaints. | 
|  | 1282 | */ | 
|  | 1283 | #ifdef CONFIG_DEBUG_SLAB | 
|  | 1284 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); | 
|  | 1285 | #else | 
|  | 1286 | seq_puts(m, "slabinfo - version: 2.1\n"); | 
|  | 1287 | #endif | 
|  | 1288 | seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); | 
|  | 1289 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | 
|  | 1290 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | 
|  | 1291 | #ifdef CONFIG_DEBUG_SLAB | 
|  | 1292 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); | 
|  | 1293 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); | 
|  | 1294 | #endif | 
|  | 1295 | seq_putc(m, '\n'); | 
|  | 1296 | } | 
|  | 1297 |  | 
|  | 1298 | void *slab_start(struct seq_file *m, loff_t *pos) | 
|  | 1299 | { | 
|  | 1300 | mutex_lock(&slab_mutex); | 
|  | 1301 | return seq_list_start(&slab_root_caches, *pos); | 
|  | 1302 | } | 
|  | 1303 |  | 
|  | 1304 | void *slab_next(struct seq_file *m, void *p, loff_t *pos) | 
|  | 1305 | { | 
|  | 1306 | return seq_list_next(p, &slab_root_caches, pos); | 
|  | 1307 | } | 
|  | 1308 |  | 
|  | 1309 | void slab_stop(struct seq_file *m, void *p) | 
|  | 1310 | { | 
|  | 1311 | mutex_unlock(&slab_mutex); | 
|  | 1312 | } | 
|  | 1313 |  | 
|  | 1314 | static void | 
|  | 1315 | memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info) | 
|  | 1316 | { | 
|  | 1317 | struct kmem_cache *c; | 
|  | 1318 | struct slabinfo sinfo; | 
|  | 1319 |  | 
|  | 1320 | if (!is_root_cache(s)) | 
|  | 1321 | return; | 
|  | 1322 |  | 
|  | 1323 | for_each_memcg_cache(c, s) { | 
|  | 1324 | memset(&sinfo, 0, sizeof(sinfo)); | 
|  | 1325 | get_slabinfo(c, &sinfo); | 
|  | 1326 |  | 
|  | 1327 | info->active_slabs += sinfo.active_slabs; | 
|  | 1328 | info->num_slabs += sinfo.num_slabs; | 
|  | 1329 | info->shared_avail += sinfo.shared_avail; | 
|  | 1330 | info->active_objs += sinfo.active_objs; | 
|  | 1331 | info->num_objs += sinfo.num_objs; | 
|  | 1332 | } | 
|  | 1333 | } | 
|  | 1334 |  | 
|  | 1335 | static void cache_show(struct kmem_cache *s, struct seq_file *m) | 
|  | 1336 | { | 
|  | 1337 | struct slabinfo sinfo; | 
|  | 1338 |  | 
|  | 1339 | memset(&sinfo, 0, sizeof(sinfo)); | 
|  | 1340 | get_slabinfo(s, &sinfo); | 
|  | 1341 |  | 
|  | 1342 | memcg_accumulate_slabinfo(s, &sinfo); | 
|  | 1343 |  | 
|  | 1344 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | 
|  | 1345 | cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size, | 
|  | 1346 | sinfo.objects_per_slab, (1 << sinfo.cache_order)); | 
|  | 1347 |  | 
|  | 1348 | seq_printf(m, " : tunables %4u %4u %4u", | 
|  | 1349 | sinfo.limit, sinfo.batchcount, sinfo.shared); | 
|  | 1350 | seq_printf(m, " : slabdata %6lu %6lu %6lu", | 
|  | 1351 | sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); | 
|  | 1352 | slabinfo_show_stats(m, s); | 
|  | 1353 | seq_putc(m, '\n'); | 
|  | 1354 | } | 
|  | 1355 |  | 
|  | 1356 | static int slab_show(struct seq_file *m, void *p) | 
|  | 1357 | { | 
|  | 1358 | struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node); | 
|  | 1359 |  | 
|  | 1360 | if (p == slab_root_caches.next) | 
|  | 1361 | print_slabinfo_header(m); | 
|  | 1362 | cache_show(s, m); | 
|  | 1363 | return 0; | 
|  | 1364 | } | 
|  | 1365 |  | 
|  | 1366 | void dump_unreclaimable_slab(void) | 
|  | 1367 | { | 
|  | 1368 | struct kmem_cache *s, *s2; | 
|  | 1369 | struct slabinfo sinfo; | 
|  | 1370 |  | 
|  | 1371 | /* | 
|  | 1372 | * Here acquiring slab_mutex is risky since we don't prefer to get | 
|  | 1373 | * sleep in oom path. But, without mutex hold, it may introduce a | 
|  | 1374 | * risk of crash. | 
|  | 1375 | * Use mutex_trylock to protect the list traverse, dump nothing | 
|  | 1376 | * without acquiring the mutex. | 
|  | 1377 | */ | 
|  | 1378 | if (!mutex_trylock(&slab_mutex)) { | 
|  | 1379 | pr_warn("excessive unreclaimable slab but cannot dump stats\n"); | 
|  | 1380 | return; | 
|  | 1381 | } | 
|  | 1382 |  | 
|  | 1383 | pr_info("Unreclaimable slab info:\n"); | 
|  | 1384 | pr_info("Name                      Used          Total\n"); | 
|  | 1385 |  | 
|  | 1386 | list_for_each_entry_safe(s, s2, &slab_caches, list) { | 
|  | 1387 | if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT)) | 
|  | 1388 | continue; | 
|  | 1389 |  | 
|  | 1390 | get_slabinfo(s, &sinfo); | 
|  | 1391 |  | 
|  | 1392 | if (sinfo.num_objs > 0) | 
|  | 1393 | pr_info("%-17s %10luKB %10luKB\n", cache_name(s), | 
|  | 1394 | (sinfo.active_objs * s->size) / 1024, | 
|  | 1395 | (sinfo.num_objs * s->size) / 1024); | 
|  | 1396 | } | 
|  | 1397 | mutex_unlock(&slab_mutex); | 
|  | 1398 | } | 
|  | 1399 |  | 
|  | 1400 | #if defined(CONFIG_MEMCG) | 
|  | 1401 | void *memcg_slab_start(struct seq_file *m, loff_t *pos) | 
|  | 1402 | { | 
|  | 1403 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | 1404 |  | 
|  | 1405 | mutex_lock(&slab_mutex); | 
|  | 1406 | return seq_list_start(&memcg->kmem_caches, *pos); | 
|  | 1407 | } | 
|  | 1408 |  | 
|  | 1409 | void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos) | 
|  | 1410 | { | 
|  | 1411 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | 1412 |  | 
|  | 1413 | return seq_list_next(p, &memcg->kmem_caches, pos); | 
|  | 1414 | } | 
|  | 1415 |  | 
|  | 1416 | void memcg_slab_stop(struct seq_file *m, void *p) | 
|  | 1417 | { | 
|  | 1418 | mutex_unlock(&slab_mutex); | 
|  | 1419 | } | 
|  | 1420 |  | 
|  | 1421 | int memcg_slab_show(struct seq_file *m, void *p) | 
|  | 1422 | { | 
|  | 1423 | struct kmem_cache *s = list_entry(p, struct kmem_cache, | 
|  | 1424 | memcg_params.kmem_caches_node); | 
|  | 1425 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | 1426 |  | 
|  | 1427 | if (p == memcg->kmem_caches.next) | 
|  | 1428 | print_slabinfo_header(m); | 
|  | 1429 | cache_show(s, m); | 
|  | 1430 | return 0; | 
|  | 1431 | } | 
|  | 1432 | #endif | 
|  | 1433 |  | 
|  | 1434 | /* | 
|  | 1435 | * slabinfo_op - iterator that generates /proc/slabinfo | 
|  | 1436 | * | 
|  | 1437 | * Output layout: | 
|  | 1438 | * cache-name | 
|  | 1439 | * num-active-objs | 
|  | 1440 | * total-objs | 
|  | 1441 | * object size | 
|  | 1442 | * num-active-slabs | 
|  | 1443 | * total-slabs | 
|  | 1444 | * num-pages-per-slab | 
|  | 1445 | * + further values on SMP and with statistics enabled | 
|  | 1446 | */ | 
|  | 1447 | static const struct seq_operations slabinfo_op = { | 
|  | 1448 | .start = slab_start, | 
|  | 1449 | .next = slab_next, | 
|  | 1450 | .stop = slab_stop, | 
|  | 1451 | .show = slab_show, | 
|  | 1452 | }; | 
|  | 1453 |  | 
|  | 1454 | static int slabinfo_open(struct inode *inode, struct file *file) | 
|  | 1455 | { | 
|  | 1456 | return seq_open(file, &slabinfo_op); | 
|  | 1457 | } | 
|  | 1458 |  | 
|  | 1459 | static const struct file_operations proc_slabinfo_operations = { | 
|  | 1460 | .open		= slabinfo_open, | 
|  | 1461 | .read		= seq_read, | 
|  | 1462 | .write          = slabinfo_write, | 
|  | 1463 | .llseek		= seq_lseek, | 
|  | 1464 | .release	= seq_release, | 
|  | 1465 | }; | 
|  | 1466 |  | 
|  | 1467 | static int __init slab_proc_init(void) | 
|  | 1468 | { | 
|  | 1469 | proc_create("slabinfo", SLABINFO_RIGHTS, NULL, | 
|  | 1470 | &proc_slabinfo_operations); | 
|  | 1471 | return 0; | 
|  | 1472 | } | 
|  | 1473 | module_init(slab_proc_init); | 
|  | 1474 | #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ | 
|  | 1475 |  | 
|  | 1476 | static __always_inline void *__do_krealloc(const void *p, size_t new_size, | 
|  | 1477 | gfp_t flags) | 
|  | 1478 | { | 
|  | 1479 | void *ret; | 
|  | 1480 | size_t ks = 0; | 
|  | 1481 |  | 
|  | 1482 | if (p) | 
|  | 1483 | ks = ksize(p); | 
|  | 1484 |  | 
|  | 1485 | if (ks >= new_size) { | 
|  | 1486 | p = kasan_krealloc((void *)p, new_size, flags); | 
|  | 1487 | return (void *)p; | 
|  | 1488 | } | 
|  | 1489 |  | 
|  | 1490 | ret = kmalloc_track_caller(new_size, flags); | 
|  | 1491 | if (ret && p) | 
|  | 1492 | memcpy(ret, p, ks); | 
|  | 1493 |  | 
|  | 1494 | return ret; | 
|  | 1495 | } | 
|  | 1496 |  | 
|  | 1497 | /** | 
|  | 1498 | * __krealloc - like krealloc() but don't free @p. | 
|  | 1499 | * @p: object to reallocate memory for. | 
|  | 1500 | * @new_size: how many bytes of memory are required. | 
|  | 1501 | * @flags: the type of memory to allocate. | 
|  | 1502 | * | 
|  | 1503 | * This function is like krealloc() except it never frees the originally | 
|  | 1504 | * allocated buffer. Use this if you don't want to free the buffer immediately | 
|  | 1505 | * like, for example, with RCU. | 
|  | 1506 | */ | 
|  | 1507 | void *__krealloc(const void *p, size_t new_size, gfp_t flags) | 
|  | 1508 | { | 
|  | 1509 | if (unlikely(!new_size)) | 
|  | 1510 | return ZERO_SIZE_PTR; | 
|  | 1511 |  | 
|  | 1512 | return __do_krealloc(p, new_size, flags); | 
|  | 1513 |  | 
|  | 1514 | } | 
|  | 1515 | EXPORT_SYMBOL(__krealloc); | 
|  | 1516 |  | 
|  | 1517 | /** | 
|  | 1518 | * krealloc - reallocate memory. The contents will remain unchanged. | 
|  | 1519 | * @p: object to reallocate memory for. | 
|  | 1520 | * @new_size: how many bytes of memory are required. | 
|  | 1521 | * @flags: the type of memory to allocate. | 
|  | 1522 | * | 
|  | 1523 | * The contents of the object pointed to are preserved up to the | 
|  | 1524 | * lesser of the new and old sizes.  If @p is %NULL, krealloc() | 
|  | 1525 | * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a | 
|  | 1526 | * %NULL pointer, the object pointed to is freed. | 
|  | 1527 | */ | 
|  | 1528 | void *krealloc(const void *p, size_t new_size, gfp_t flags) | 
|  | 1529 | { | 
|  | 1530 | void *ret; | 
|  | 1531 |  | 
|  | 1532 | if (unlikely(!new_size)) { | 
|  | 1533 | kfree(p); | 
|  | 1534 | return ZERO_SIZE_PTR; | 
|  | 1535 | } | 
|  | 1536 |  | 
|  | 1537 | ret = __do_krealloc(p, new_size, flags); | 
|  | 1538 | if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) | 
|  | 1539 | kfree(p); | 
|  | 1540 |  | 
|  | 1541 | return ret; | 
|  | 1542 | } | 
|  | 1543 | EXPORT_SYMBOL(krealloc); | 
|  | 1544 |  | 
|  | 1545 | /** | 
|  | 1546 | * kzfree - like kfree but zero memory | 
|  | 1547 | * @p: object to free memory of | 
|  | 1548 | * | 
|  | 1549 | * The memory of the object @p points to is zeroed before freed. | 
|  | 1550 | * If @p is %NULL, kzfree() does nothing. | 
|  | 1551 | * | 
|  | 1552 | * Note: this function zeroes the whole allocated buffer which can be a good | 
|  | 1553 | * deal bigger than the requested buffer size passed to kmalloc(). So be | 
|  | 1554 | * careful when using this function in performance sensitive code. | 
|  | 1555 | */ | 
|  | 1556 | void kzfree(const void *p) | 
|  | 1557 | { | 
|  | 1558 | size_t ks; | 
|  | 1559 | void *mem = (void *)p; | 
|  | 1560 |  | 
|  | 1561 | if (unlikely(ZERO_OR_NULL_PTR(mem))) | 
|  | 1562 | return; | 
|  | 1563 | ks = ksize(mem); | 
|  | 1564 | memset(mem, 0, ks); | 
|  | 1565 | kfree(mem); | 
|  | 1566 | } | 
|  | 1567 | EXPORT_SYMBOL(kzfree); | 
|  | 1568 |  | 
|  | 1569 | /* Tracepoints definitions. */ | 
|  | 1570 | EXPORT_TRACEPOINT_SYMBOL(kmalloc); | 
|  | 1571 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); | 
|  | 1572 | EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); | 
|  | 1573 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); | 
|  | 1574 | EXPORT_TRACEPOINT_SYMBOL(kfree); | 
|  | 1575 | EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); | 
|  | 1576 |  | 
|  | 1577 | int should_failslab(struct kmem_cache *s, gfp_t gfpflags) | 
|  | 1578 | { | 
|  | 1579 | if (__should_failslab(s, gfpflags)) | 
|  | 1580 | return -ENOMEM; | 
|  | 1581 | return 0; | 
|  | 1582 | } | 
|  | 1583 | ALLOW_ERROR_INJECTION(should_failslab, ERRNO); |