blob: 5553226770748b0592083a2c5a62ae33bb9f2787 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * In-Memory Collection (IMC) Performance Monitor counter support.
3 *
4 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
5 * (C) 2017 Anju T Sudhakar, IBM Corporation.
6 * (C) 2017 Hemant K Shaw, IBM Corporation.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or later version.
12 */
13#include <linux/perf_event.h>
14#include <linux/slab.h>
15#include <asm/opal.h>
16#include <asm/imc-pmu.h>
17#include <asm/cputhreads.h>
18#include <asm/smp.h>
19#include <linux/string.h>
20
21/* Nest IMC data structures and variables */
22
23/*
24 * Used to avoid races in counting the nest-pmu units during hotplug
25 * register and unregister
26 */
27static DEFINE_MUTEX(nest_init_lock);
28static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
29static struct imc_pmu **per_nest_pmu_arr;
30static cpumask_t nest_imc_cpumask;
31struct imc_pmu_ref *nest_imc_refc;
32static int nest_pmus;
33
34/* Core IMC data structures and variables */
35
36static cpumask_t core_imc_cpumask;
37struct imc_pmu_ref *core_imc_refc;
38static struct imc_pmu *core_imc_pmu;
39
40/* Thread IMC data structures and variables */
41
42static DEFINE_PER_CPU(u64 *, thread_imc_mem);
43static struct imc_pmu *thread_imc_pmu;
44static int thread_imc_mem_size;
45
46struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
47{
48 return container_of(event->pmu, struct imc_pmu, pmu);
49}
50
51PMU_FORMAT_ATTR(event, "config:0-40");
52PMU_FORMAT_ATTR(offset, "config:0-31");
53PMU_FORMAT_ATTR(rvalue, "config:32");
54PMU_FORMAT_ATTR(mode, "config:33-40");
55static struct attribute *imc_format_attrs[] = {
56 &format_attr_event.attr,
57 &format_attr_offset.attr,
58 &format_attr_rvalue.attr,
59 &format_attr_mode.attr,
60 NULL,
61};
62
63static struct attribute_group imc_format_group = {
64 .name = "format",
65 .attrs = imc_format_attrs,
66};
67
68/* Get the cpumask printed to a buffer "buf" */
69static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
70 struct device_attribute *attr,
71 char *buf)
72{
73 struct pmu *pmu = dev_get_drvdata(dev);
74 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
75 cpumask_t *active_mask;
76
77 switch(imc_pmu->domain){
78 case IMC_DOMAIN_NEST:
79 active_mask = &nest_imc_cpumask;
80 break;
81 case IMC_DOMAIN_CORE:
82 active_mask = &core_imc_cpumask;
83 break;
84 default:
85 return 0;
86 }
87
88 return cpumap_print_to_pagebuf(true, buf, active_mask);
89}
90
91static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
92
93static struct attribute *imc_pmu_cpumask_attrs[] = {
94 &dev_attr_cpumask.attr,
95 NULL,
96};
97
98static struct attribute_group imc_pmu_cpumask_attr_group = {
99 .attrs = imc_pmu_cpumask_attrs,
100};
101
102/* device_str_attr_create : Populate event "name" and string "str" in attribute */
103static struct attribute *device_str_attr_create(const char *name, const char *str)
104{
105 struct perf_pmu_events_attr *attr;
106
107 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
108 if (!attr)
109 return NULL;
110 sysfs_attr_init(&attr->attr.attr);
111
112 attr->event_str = str;
113 attr->attr.attr.name = name;
114 attr->attr.attr.mode = 0444;
115 attr->attr.show = perf_event_sysfs_show;
116
117 return &attr->attr.attr;
118}
119
120static int imc_parse_event(struct device_node *np, const char *scale,
121 const char *unit, const char *prefix,
122 u32 base, struct imc_events *event)
123{
124 const char *s;
125 u32 reg;
126
127 if (of_property_read_u32(np, "reg", &reg))
128 goto error;
129 /* Add the base_reg value to the "reg" */
130 event->value = base + reg;
131
132 if (of_property_read_string(np, "event-name", &s))
133 goto error;
134
135 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
136 if (!event->name)
137 goto error;
138
139 if (of_property_read_string(np, "scale", &s))
140 s = scale;
141
142 if (s) {
143 event->scale = kstrdup(s, GFP_KERNEL);
144 if (!event->scale)
145 goto error;
146 }
147
148 if (of_property_read_string(np, "unit", &s))
149 s = unit;
150
151 if (s) {
152 event->unit = kstrdup(s, GFP_KERNEL);
153 if (!event->unit)
154 goto error;
155 }
156
157 return 0;
158error:
159 kfree(event->unit);
160 kfree(event->scale);
161 kfree(event->name);
162 return -EINVAL;
163}
164
165/*
166 * imc_free_events: Function to cleanup the events list, having
167 * "nr_entries".
168 */
169static void imc_free_events(struct imc_events *events, int nr_entries)
170{
171 int i;
172
173 /* Nothing to clean, return */
174 if (!events)
175 return;
176 for (i = 0; i < nr_entries; i++) {
177 kfree(events[i].unit);
178 kfree(events[i].scale);
179 kfree(events[i].name);
180 }
181
182 kfree(events);
183}
184
185/*
186 * update_events_in_group: Update the "events" information in an attr_group
187 * and assign the attr_group to the pmu "pmu".
188 */
189static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
190{
191 struct attribute_group *attr_group;
192 struct attribute **attrs, *dev_str;
193 struct device_node *np, *pmu_events;
194 u32 handle, base_reg;
195 int i = 0, j = 0, ct, ret;
196 const char *prefix, *g_scale, *g_unit;
197 const char *ev_val_str, *ev_scale_str, *ev_unit_str;
198
199 if (!of_property_read_u32(node, "events", &handle))
200 pmu_events = of_find_node_by_phandle(handle);
201 else
202 return 0;
203
204 /* Did not find any node with a given phandle */
205 if (!pmu_events)
206 return 0;
207
208 /* Get a count of number of child nodes */
209 ct = of_get_child_count(pmu_events);
210
211 /* Get the event prefix */
212 if (of_property_read_string(node, "events-prefix", &prefix))
213 return 0;
214
215 /* Get a global unit and scale data if available */
216 if (of_property_read_string(node, "scale", &g_scale))
217 g_scale = NULL;
218
219 if (of_property_read_string(node, "unit", &g_unit))
220 g_unit = NULL;
221
222 /* "reg" property gives out the base offset of the counters data */
223 of_property_read_u32(node, "reg", &base_reg);
224
225 /* Allocate memory for the events */
226 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
227 if (!pmu->events)
228 return -ENOMEM;
229
230 ct = 0;
231 /* Parse the events and update the struct */
232 for_each_child_of_node(pmu_events, np) {
233 ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
234 if (!ret)
235 ct++;
236 }
237
238 /* Allocate memory for attribute group */
239 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
240 if (!attr_group) {
241 imc_free_events(pmu->events, ct);
242 return -ENOMEM;
243 }
244
245 /*
246 * Allocate memory for attributes.
247 * Since we have count of events for this pmu, we also allocate
248 * memory for the scale and unit attribute for now.
249 * "ct" has the total event structs added from the events-parent node.
250 * So allocate three times the "ct" (this includes event, event_scale and
251 * event_unit).
252 */
253 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
254 if (!attrs) {
255 kfree(attr_group);
256 imc_free_events(pmu->events, ct);
257 return -ENOMEM;
258 }
259
260 attr_group->name = "events";
261 attr_group->attrs = attrs;
262 do {
263 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
264 dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
265 if (!dev_str)
266 continue;
267
268 attrs[j++] = dev_str;
269 if (pmu->events[i].scale) {
270 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
271 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
272 if (!dev_str)
273 continue;
274
275 attrs[j++] = dev_str;
276 }
277
278 if (pmu->events[i].unit) {
279 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
280 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
281 if (!dev_str)
282 continue;
283
284 attrs[j++] = dev_str;
285 }
286 } while (++i < ct);
287
288 /* Save the event attribute */
289 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
290
291 return 0;
292}
293
294/* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
295static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
296{
297 return per_cpu(local_nest_imc_refc, cpu);
298}
299
300static void nest_change_cpu_context(int old_cpu, int new_cpu)
301{
302 struct imc_pmu **pn = per_nest_pmu_arr;
303
304 if (old_cpu < 0 || new_cpu < 0)
305 return;
306
307 while (*pn) {
308 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
309 pn++;
310 }
311}
312
313static int ppc_nest_imc_cpu_offline(unsigned int cpu)
314{
315 int nid, target = -1;
316 const struct cpumask *l_cpumask;
317 struct imc_pmu_ref *ref;
318
319 /*
320 * Check in the designated list for this cpu. Dont bother
321 * if not one of them.
322 */
323 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
324 return 0;
325
326 /*
327 * Check whether nest_imc is registered. We could end up here if the
328 * cpuhotplug callback registration fails. i.e, callback invokes the
329 * offline path for all successfully registered nodes. At this stage,
330 * nest_imc pmu will not be registered and we should return here.
331 *
332 * We return with a zero since this is not an offline failure. And
333 * cpuhp_setup_state() returns the actual failure reason to the caller,
334 * which in turn will call the cleanup routine.
335 */
336 if (!nest_pmus)
337 return 0;
338
339 /*
340 * Now that this cpu is one of the designated,
341 * find a next cpu a) which is online and b) in same chip.
342 */
343 nid = cpu_to_node(cpu);
344 l_cpumask = cpumask_of_node(nid);
345 target = cpumask_any_but(l_cpumask, cpu);
346
347 /*
348 * Update the cpumask with the target cpu and
349 * migrate the context if needed
350 */
351 if (target >= 0 && target < nr_cpu_ids) {
352 cpumask_set_cpu(target, &nest_imc_cpumask);
353 nest_change_cpu_context(cpu, target);
354 } else {
355 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
356 get_hard_smp_processor_id(cpu));
357 /*
358 * If this is the last cpu in this chip then, skip the reference
359 * count mutex lock and make the reference count on this chip zero.
360 */
361 ref = get_nest_pmu_ref(cpu);
362 if (!ref)
363 return -EINVAL;
364
365 ref->refc = 0;
366 }
367 return 0;
368}
369
370static int ppc_nest_imc_cpu_online(unsigned int cpu)
371{
372 const struct cpumask *l_cpumask;
373 static struct cpumask tmp_mask;
374 int res;
375
376 /* Get the cpumask of this node */
377 l_cpumask = cpumask_of_node(cpu_to_node(cpu));
378
379 /*
380 * If this is not the first online CPU on this node, then
381 * just return.
382 */
383 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
384 return 0;
385
386 /*
387 * If this is the first online cpu on this node
388 * disable the nest counters by making an OPAL call.
389 */
390 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
391 get_hard_smp_processor_id(cpu));
392 if (res)
393 return res;
394
395 /* Make this CPU the designated target for counter collection */
396 cpumask_set_cpu(cpu, &nest_imc_cpumask);
397 return 0;
398}
399
400static int nest_pmu_cpumask_init(void)
401{
402 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
403 "perf/powerpc/imc:online",
404 ppc_nest_imc_cpu_online,
405 ppc_nest_imc_cpu_offline);
406}
407
408static void nest_imc_counters_release(struct perf_event *event)
409{
410 int rc, node_id;
411 struct imc_pmu_ref *ref;
412
413 if (event->cpu < 0)
414 return;
415
416 node_id = cpu_to_node(event->cpu);
417
418 /*
419 * See if we need to disable the nest PMU.
420 * If no events are currently in use, then we have to take a
421 * mutex to ensure that we don't race with another task doing
422 * enable or disable the nest counters.
423 */
424 ref = get_nest_pmu_ref(event->cpu);
425 if (!ref)
426 return;
427
428 /* Take the mutex lock for this node and then decrement the reference count */
429 mutex_lock(&ref->lock);
430 if (ref->refc == 0) {
431 /*
432 * The scenario where this is true is, when perf session is
433 * started, followed by offlining of all cpus in a given node.
434 *
435 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
436 * function set the ref->count to zero, if the cpu which is
437 * about to offline is the last cpu in a given node and make
438 * an OPAL call to disable the engine in that node.
439 *
440 */
441 mutex_unlock(&ref->lock);
442 return;
443 }
444 ref->refc--;
445 if (ref->refc == 0) {
446 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
447 get_hard_smp_processor_id(event->cpu));
448 if (rc) {
449 mutex_unlock(&ref->lock);
450 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
451 return;
452 }
453 } else if (ref->refc < 0) {
454 WARN(1, "nest-imc: Invalid event reference count\n");
455 ref->refc = 0;
456 }
457 mutex_unlock(&ref->lock);
458}
459
460static int nest_imc_event_init(struct perf_event *event)
461{
462 int chip_id, rc, node_id;
463 u32 l_config, config = event->attr.config;
464 struct imc_mem_info *pcni;
465 struct imc_pmu *pmu;
466 struct imc_pmu_ref *ref;
467 bool flag = false;
468
469 if (event->attr.type != event->pmu->type)
470 return -ENOENT;
471
472 /* Sampling not supported */
473 if (event->hw.sample_period)
474 return -EINVAL;
475
476 /* unsupported modes and filters */
477 if (event->attr.exclude_user ||
478 event->attr.exclude_kernel ||
479 event->attr.exclude_hv ||
480 event->attr.exclude_idle ||
481 event->attr.exclude_host ||
482 event->attr.exclude_guest)
483 return -EINVAL;
484
485 if (event->cpu < 0)
486 return -EINVAL;
487
488 pmu = imc_event_to_pmu(event);
489
490 /* Sanity check for config (event offset) */
491 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
492 return -EINVAL;
493
494 /*
495 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
496 * Get the base memory addresss for this cpu.
497 */
498 chip_id = cpu_to_chip_id(event->cpu);
499
500 /* Return, if chip_id is not valid */
501 if (chip_id < 0)
502 return -ENODEV;
503
504 pcni = pmu->mem_info;
505 do {
506 if (pcni->id == chip_id) {
507 flag = true;
508 break;
509 }
510 pcni++;
511 } while (pcni->vbase != 0);
512
513 if (!flag)
514 return -ENODEV;
515
516 /*
517 * Add the event offset to the base address.
518 */
519 l_config = config & IMC_EVENT_OFFSET_MASK;
520 event->hw.event_base = (u64)pcni->vbase + l_config;
521 node_id = cpu_to_node(event->cpu);
522
523 /*
524 * Get the imc_pmu_ref struct for this node.
525 * Take the mutex lock and then increment the count of nest pmu events
526 * inited.
527 */
528 ref = get_nest_pmu_ref(event->cpu);
529 if (!ref)
530 return -EINVAL;
531
532 mutex_lock(&ref->lock);
533 if (ref->refc == 0) {
534 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
535 get_hard_smp_processor_id(event->cpu));
536 if (rc) {
537 mutex_unlock(&ref->lock);
538 pr_err("nest-imc: Unable to start the counters for node %d\n",
539 node_id);
540 return rc;
541 }
542 }
543 ++ref->refc;
544 mutex_unlock(&ref->lock);
545
546 event->destroy = nest_imc_counters_release;
547 return 0;
548}
549
550/*
551 * core_imc_mem_init : Initializes memory for the current core.
552 *
553 * Uses alloc_pages_node() and uses the returned address as an argument to
554 * an opal call to configure the pdbar. The address sent as an argument is
555 * converted to physical address before the opal call is made. This is the
556 * base address at which the core imc counters are populated.
557 */
558static int core_imc_mem_init(int cpu, int size)
559{
560 int nid, rc = 0, core_id = (cpu / threads_per_core);
561 struct imc_mem_info *mem_info;
562
563 /*
564 * alloc_pages_node() will allocate memory for core in the
565 * local node only.
566 */
567 nid = cpu_to_node(cpu);
568 mem_info = &core_imc_pmu->mem_info[core_id];
569 mem_info->id = core_id;
570
571 /* We need only vbase for core counters */
572 mem_info->vbase = page_address(alloc_pages_node(nid,
573 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
574 __GFP_NOWARN, get_order(size)));
575 if (!mem_info->vbase)
576 return -ENOMEM;
577
578 /* Init the mutex */
579 core_imc_refc[core_id].id = core_id;
580 mutex_init(&core_imc_refc[core_id].lock);
581
582 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
583 __pa((void *)mem_info->vbase),
584 get_hard_smp_processor_id(cpu));
585 if (rc) {
586 free_pages((u64)mem_info->vbase, get_order(size));
587 mem_info->vbase = NULL;
588 }
589
590 return rc;
591}
592
593static bool is_core_imc_mem_inited(int cpu)
594{
595 struct imc_mem_info *mem_info;
596 int core_id = (cpu / threads_per_core);
597
598 mem_info = &core_imc_pmu->mem_info[core_id];
599 if (!mem_info->vbase)
600 return false;
601
602 return true;
603}
604
605static int ppc_core_imc_cpu_online(unsigned int cpu)
606{
607 const struct cpumask *l_cpumask;
608 static struct cpumask tmp_mask;
609 int ret = 0;
610
611 /* Get the cpumask for this core */
612 l_cpumask = cpu_sibling_mask(cpu);
613
614 /* If a cpu for this core is already set, then, don't do anything */
615 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
616 return 0;
617
618 if (!is_core_imc_mem_inited(cpu)) {
619 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
620 if (ret) {
621 pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
622 return ret;
623 }
624 }
625
626 /* set the cpu in the mask */
627 cpumask_set_cpu(cpu, &core_imc_cpumask);
628 return 0;
629}
630
631static int ppc_core_imc_cpu_offline(unsigned int cpu)
632{
633 unsigned int core_id;
634 int ncpu;
635 struct imc_pmu_ref *ref;
636
637 /*
638 * clear this cpu out of the mask, if not present in the mask,
639 * don't bother doing anything.
640 */
641 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
642 return 0;
643
644 /*
645 * Check whether core_imc is registered. We could end up here
646 * if the cpuhotplug callback registration fails. i.e, callback
647 * invokes the offline path for all sucessfully registered cpus.
648 * At this stage, core_imc pmu will not be registered and we
649 * should return here.
650 *
651 * We return with a zero since this is not an offline failure.
652 * And cpuhp_setup_state() returns the actual failure reason
653 * to the caller, which inturn will call the cleanup routine.
654 */
655 if (!core_imc_pmu->pmu.event_init)
656 return 0;
657
658 /* Find any online cpu in that core except the current "cpu" */
659 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
660
661 if (ncpu >= 0 && ncpu < nr_cpu_ids) {
662 cpumask_set_cpu(ncpu, &core_imc_cpumask);
663 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
664 } else {
665 /*
666 * If this is the last cpu in this core then, skip taking refernce
667 * count mutex lock for this core and directly zero "refc" for
668 * this core.
669 */
670 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
671 get_hard_smp_processor_id(cpu));
672 core_id = cpu / threads_per_core;
673 ref = &core_imc_refc[core_id];
674 if (!ref)
675 return -EINVAL;
676
677 ref->refc = 0;
678 }
679 return 0;
680}
681
682static int core_imc_pmu_cpumask_init(void)
683{
684 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
685 "perf/powerpc/imc_core:online",
686 ppc_core_imc_cpu_online,
687 ppc_core_imc_cpu_offline);
688}
689
690static void core_imc_counters_release(struct perf_event *event)
691{
692 int rc, core_id;
693 struct imc_pmu_ref *ref;
694
695 if (event->cpu < 0)
696 return;
697 /*
698 * See if we need to disable the IMC PMU.
699 * If no events are currently in use, then we have to take a
700 * mutex to ensure that we don't race with another task doing
701 * enable or disable the core counters.
702 */
703 core_id = event->cpu / threads_per_core;
704
705 /* Take the mutex lock and decrement the refernce count for this core */
706 ref = &core_imc_refc[core_id];
707 if (!ref)
708 return;
709
710 mutex_lock(&ref->lock);
711 if (ref->refc == 0) {
712 /*
713 * The scenario where this is true is, when perf session is
714 * started, followed by offlining of all cpus in a given core.
715 *
716 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
717 * function set the ref->count to zero, if the cpu which is
718 * about to offline is the last cpu in a given core and make
719 * an OPAL call to disable the engine in that core.
720 *
721 */
722 mutex_unlock(&ref->lock);
723 return;
724 }
725 ref->refc--;
726 if (ref->refc == 0) {
727 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
728 get_hard_smp_processor_id(event->cpu));
729 if (rc) {
730 mutex_unlock(&ref->lock);
731 pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
732 return;
733 }
734 } else if (ref->refc < 0) {
735 WARN(1, "core-imc: Invalid event reference count\n");
736 ref->refc = 0;
737 }
738 mutex_unlock(&ref->lock);
739}
740
741static int core_imc_event_init(struct perf_event *event)
742{
743 int core_id, rc;
744 u64 config = event->attr.config;
745 struct imc_mem_info *pcmi;
746 struct imc_pmu *pmu;
747 struct imc_pmu_ref *ref;
748
749 if (event->attr.type != event->pmu->type)
750 return -ENOENT;
751
752 /* Sampling not supported */
753 if (event->hw.sample_period)
754 return -EINVAL;
755
756 /* unsupported modes and filters */
757 if (event->attr.exclude_user ||
758 event->attr.exclude_kernel ||
759 event->attr.exclude_hv ||
760 event->attr.exclude_idle ||
761 event->attr.exclude_host ||
762 event->attr.exclude_guest)
763 return -EINVAL;
764
765 if (event->cpu < 0)
766 return -EINVAL;
767
768 event->hw.idx = -1;
769 pmu = imc_event_to_pmu(event);
770
771 /* Sanity check for config (event offset) */
772 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
773 return -EINVAL;
774
775 if (!is_core_imc_mem_inited(event->cpu))
776 return -ENODEV;
777
778 core_id = event->cpu / threads_per_core;
779 pcmi = &core_imc_pmu->mem_info[core_id];
780 if ((!pcmi->vbase))
781 return -ENODEV;
782
783 /* Get the core_imc mutex for this core */
784 ref = &core_imc_refc[core_id];
785 if (!ref)
786 return -EINVAL;
787
788 /*
789 * Core pmu units are enabled only when it is used.
790 * See if this is triggered for the first time.
791 * If yes, take the mutex lock and enable the core counters.
792 * If not, just increment the count in core_imc_refc struct.
793 */
794 mutex_lock(&ref->lock);
795 if (ref->refc == 0) {
796 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
797 get_hard_smp_processor_id(event->cpu));
798 if (rc) {
799 mutex_unlock(&ref->lock);
800 pr_err("core-imc: Unable to start the counters for core %d\n",
801 core_id);
802 return rc;
803 }
804 }
805 ++ref->refc;
806 mutex_unlock(&ref->lock);
807
808 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
809 event->destroy = core_imc_counters_release;
810 return 0;
811}
812
813/*
814 * Allocates a page of memory for each of the online cpus, and write the
815 * physical base address of that page to the LDBAR for that cpu.
816 *
817 * LDBAR Register Layout:
818 *
819 * 0 4 8 12 16 20 24 28
820 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
821 * | | [ ] [ Counter Address [8:50]
822 * | * Mode |
823 * | * PB Scope
824 * * Enable/Disable
825 *
826 * 32 36 40 44 48 52 56 60
827 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
828 * Counter Address [8:50] ]
829 *
830 */
831static int thread_imc_mem_alloc(int cpu_id, int size)
832{
833 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, cpu_id);
834 int nid = cpu_to_node(cpu_id);
835
836 if (!local_mem) {
837 /*
838 * This case could happen only once at start, since we dont
839 * free the memory in cpu offline path.
840 */
841 local_mem = page_address(alloc_pages_node(nid,
842 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
843 __GFP_NOWARN, get_order(size)));
844 if (!local_mem)
845 return -ENOMEM;
846
847 per_cpu(thread_imc_mem, cpu_id) = local_mem;
848 }
849
850 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
851
852 mtspr(SPRN_LDBAR, ldbar_value);
853 return 0;
854}
855
856static int ppc_thread_imc_cpu_online(unsigned int cpu)
857{
858 return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
859}
860
861static int ppc_thread_imc_cpu_offline(unsigned int cpu)
862{
863 mtspr(SPRN_LDBAR, 0);
864 return 0;
865}
866
867static int thread_imc_cpu_init(void)
868{
869 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
870 "perf/powerpc/imc_thread:online",
871 ppc_thread_imc_cpu_online,
872 ppc_thread_imc_cpu_offline);
873}
874
875static int thread_imc_event_init(struct perf_event *event)
876{
877 u32 config = event->attr.config;
878 struct task_struct *target;
879 struct imc_pmu *pmu;
880
881 if (event->attr.type != event->pmu->type)
882 return -ENOENT;
883
884 /* Sampling not supported */
885 if (event->hw.sample_period)
886 return -EINVAL;
887
888 event->hw.idx = -1;
889 pmu = imc_event_to_pmu(event);
890
891 /* Sanity check for config offset */
892 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
893 return -EINVAL;
894
895 target = event->hw.target;
896 if (!target)
897 return -EINVAL;
898
899 event->pmu->task_ctx_nr = perf_sw_context;
900 return 0;
901}
902
903static bool is_thread_imc_pmu(struct perf_event *event)
904{
905 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
906 return true;
907
908 return false;
909}
910
911static u64 * get_event_base_addr(struct perf_event *event)
912{
913 u64 addr;
914
915 if (is_thread_imc_pmu(event)) {
916 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
917 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
918 }
919
920 return (u64 *)event->hw.event_base;
921}
922
923static void thread_imc_pmu_start_txn(struct pmu *pmu,
924 unsigned int txn_flags)
925{
926 if (txn_flags & ~PERF_PMU_TXN_ADD)
927 return;
928 perf_pmu_disable(pmu);
929}
930
931static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
932{
933 perf_pmu_enable(pmu);
934}
935
936static int thread_imc_pmu_commit_txn(struct pmu *pmu)
937{
938 perf_pmu_enable(pmu);
939 return 0;
940}
941
942static u64 imc_read_counter(struct perf_event *event)
943{
944 u64 *addr, data;
945
946 /*
947 * In-Memory Collection (IMC) counters are free flowing counters.
948 * So we take a snapshot of the counter value on enable and save it
949 * to calculate the delta at later stage to present the event counter
950 * value.
951 */
952 addr = get_event_base_addr(event);
953 data = be64_to_cpu(READ_ONCE(*addr));
954 local64_set(&event->hw.prev_count, data);
955
956 return data;
957}
958
959static void imc_event_update(struct perf_event *event)
960{
961 u64 counter_prev, counter_new, final_count;
962
963 counter_prev = local64_read(&event->hw.prev_count);
964 counter_new = imc_read_counter(event);
965 final_count = counter_new - counter_prev;
966
967 /* Update the delta to the event count */
968 local64_add(final_count, &event->count);
969}
970
971static void imc_event_start(struct perf_event *event, int flags)
972{
973 /*
974 * In Memory Counters are free flowing counters. HW or the microcode
975 * keeps adding to the counter offset in memory. To get event
976 * counter value, we snapshot the value here and we calculate
977 * delta at later point.
978 */
979 imc_read_counter(event);
980}
981
982static void imc_event_stop(struct perf_event *event, int flags)
983{
984 /*
985 * Take a snapshot and calculate the delta and update
986 * the event counter values.
987 */
988 imc_event_update(event);
989}
990
991static int imc_event_add(struct perf_event *event, int flags)
992{
993 if (flags & PERF_EF_START)
994 imc_event_start(event, flags);
995
996 return 0;
997}
998
999static int thread_imc_event_add(struct perf_event *event, int flags)
1000{
1001 int core_id;
1002 struct imc_pmu_ref *ref;
1003
1004 if (flags & PERF_EF_START)
1005 imc_event_start(event, flags);
1006
1007 if (!is_core_imc_mem_inited(smp_processor_id()))
1008 return -EINVAL;
1009
1010 core_id = smp_processor_id() / threads_per_core;
1011 /*
1012 * imc pmus are enabled only when it is used.
1013 * See if this is triggered for the first time.
1014 * If yes, take the mutex lock and enable the counters.
1015 * If not, just increment the count in ref count struct.
1016 */
1017 ref = &core_imc_refc[core_id];
1018 if (!ref)
1019 return -EINVAL;
1020
1021 mutex_lock(&ref->lock);
1022 if (ref->refc == 0) {
1023 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1024 get_hard_smp_processor_id(smp_processor_id()))) {
1025 mutex_unlock(&ref->lock);
1026 pr_err("thread-imc: Unable to start the counter\
1027 for core %d\n", core_id);
1028 return -EINVAL;
1029 }
1030 }
1031 ++ref->refc;
1032 mutex_unlock(&ref->lock);
1033 return 0;
1034}
1035
1036static void thread_imc_event_del(struct perf_event *event, int flags)
1037{
1038
1039 int core_id;
1040 struct imc_pmu_ref *ref;
1041
1042 /*
1043 * Take a snapshot and calculate the delta and update
1044 * the event counter values.
1045 */
1046 imc_event_update(event);
1047
1048 core_id = smp_processor_id() / threads_per_core;
1049 ref = &core_imc_refc[core_id];
1050
1051 mutex_lock(&ref->lock);
1052 ref->refc--;
1053 if (ref->refc == 0) {
1054 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1055 get_hard_smp_processor_id(smp_processor_id()))) {
1056 mutex_unlock(&ref->lock);
1057 pr_err("thread-imc: Unable to stop the counters\
1058 for core %d\n", core_id);
1059 return;
1060 }
1061 } else if (ref->refc < 0) {
1062 ref->refc = 0;
1063 }
1064 mutex_unlock(&ref->lock);
1065}
1066
1067/* update_pmu_ops : Populate the appropriate operations for "pmu" */
1068static int update_pmu_ops(struct imc_pmu *pmu)
1069{
1070 pmu->pmu.task_ctx_nr = perf_invalid_context;
1071 pmu->pmu.add = imc_event_add;
1072 pmu->pmu.del = imc_event_stop;
1073 pmu->pmu.start = imc_event_start;
1074 pmu->pmu.stop = imc_event_stop;
1075 pmu->pmu.read = imc_event_update;
1076 pmu->pmu.attr_groups = pmu->attr_groups;
1077 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1078
1079 switch (pmu->domain) {
1080 case IMC_DOMAIN_NEST:
1081 pmu->pmu.event_init = nest_imc_event_init;
1082 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1083 break;
1084 case IMC_DOMAIN_CORE:
1085 pmu->pmu.event_init = core_imc_event_init;
1086 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1087 break;
1088 case IMC_DOMAIN_THREAD:
1089 pmu->pmu.event_init = thread_imc_event_init;
1090 pmu->pmu.add = thread_imc_event_add;
1091 pmu->pmu.del = thread_imc_event_del;
1092 pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1093 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1094 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1095 break;
1096 default:
1097 break;
1098 }
1099
1100 return 0;
1101}
1102
1103/* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1104static int init_nest_pmu_ref(void)
1105{
1106 int nid, i, cpu;
1107
1108 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1109 GFP_KERNEL);
1110
1111 if (!nest_imc_refc)
1112 return -ENOMEM;
1113
1114 i = 0;
1115 for_each_node(nid) {
1116 /*
1117 * Mutex lock to avoid races while tracking the number of
1118 * sessions using the chip's nest pmu units.
1119 */
1120 mutex_init(&nest_imc_refc[i].lock);
1121
1122 /*
1123 * Loop to init the "id" with the node_id. Variable "i" initialized to
1124 * 0 and will be used as index to the array. "i" will not go off the
1125 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1126 * nodes only.
1127 */
1128 nest_imc_refc[i++].id = nid;
1129 }
1130
1131 /*
1132 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1133 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1134 */
1135 for_each_possible_cpu(cpu) {
1136 nid = cpu_to_node(cpu);
1137 for (i = 0; i < num_possible_nodes(); i++) {
1138 if (nest_imc_refc[i].id == nid) {
1139 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1140 break;
1141 }
1142 }
1143 }
1144 return 0;
1145}
1146
1147static void cleanup_all_core_imc_memory(void)
1148{
1149 int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1150 struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1151 int size = core_imc_pmu->counter_mem_size;
1152
1153 /* mem_info will never be NULL */
1154 for (i = 0; i < nr_cores; i++) {
1155 if (ptr[i].vbase)
1156 free_pages((u64)ptr[i].vbase, get_order(size));
1157 }
1158
1159 kfree(ptr);
1160 kfree(core_imc_refc);
1161}
1162
1163static void thread_imc_ldbar_disable(void *dummy)
1164{
1165 /*
1166 * By Zeroing LDBAR, we disable thread-imc
1167 * updates.
1168 */
1169 mtspr(SPRN_LDBAR, 0);
1170}
1171
1172void thread_imc_disable(void)
1173{
1174 on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1175}
1176
1177static void cleanup_all_thread_imc_memory(void)
1178{
1179 int i, order = get_order(thread_imc_mem_size);
1180
1181 for_each_online_cpu(i) {
1182 if (per_cpu(thread_imc_mem, i))
1183 free_pages((u64)per_cpu(thread_imc_mem, i), order);
1184
1185 }
1186}
1187
1188/* Function to free the attr_groups which are dynamically allocated */
1189static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1190{
1191 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1192 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1193 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1194}
1195
1196/*
1197 * Common function to unregister cpu hotplug callback and
1198 * free the memory.
1199 * TODO: Need to handle pmu unregistering, which will be
1200 * done in followup series.
1201 */
1202static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1203{
1204 if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1205 mutex_lock(&nest_init_lock);
1206 if (nest_pmus == 1) {
1207 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1208 kfree(nest_imc_refc);
1209 kfree(per_nest_pmu_arr);
1210 per_nest_pmu_arr = NULL;
1211 }
1212
1213 if (nest_pmus > 0)
1214 nest_pmus--;
1215 mutex_unlock(&nest_init_lock);
1216 }
1217
1218 /* Free core_imc memory */
1219 if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1220 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1221 cleanup_all_core_imc_memory();
1222 }
1223
1224 /* Free thread_imc memory */
1225 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1226 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1227 cleanup_all_thread_imc_memory();
1228 }
1229}
1230
1231/*
1232 * Function to unregister thread-imc if core-imc
1233 * is not registered.
1234 */
1235void unregister_thread_imc(void)
1236{
1237 imc_common_cpuhp_mem_free(thread_imc_pmu);
1238 imc_common_mem_free(thread_imc_pmu);
1239 perf_pmu_unregister(&thread_imc_pmu->pmu);
1240}
1241
1242/*
1243 * imc_mem_init : Function to support memory allocation for core imc.
1244 */
1245static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1246 int pmu_index)
1247{
1248 const char *s;
1249 int nr_cores, cpu, res = -ENOMEM;
1250
1251 if (of_property_read_string(parent, "name", &s))
1252 return -ENODEV;
1253
1254 switch (pmu_ptr->domain) {
1255 case IMC_DOMAIN_NEST:
1256 /* Update the pmu name */
1257 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1258 if (!pmu_ptr->pmu.name)
1259 goto err;
1260
1261 /* Needed for hotplug/migration */
1262 if (!per_nest_pmu_arr) {
1263 per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1264 sizeof(struct imc_pmu *),
1265 GFP_KERNEL);
1266 if (!per_nest_pmu_arr)
1267 goto err;
1268 }
1269 per_nest_pmu_arr[pmu_index] = pmu_ptr;
1270 break;
1271 case IMC_DOMAIN_CORE:
1272 /* Update the pmu name */
1273 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1274 if (!pmu_ptr->pmu.name)
1275 goto err;
1276
1277 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1278 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1279 GFP_KERNEL);
1280
1281 if (!pmu_ptr->mem_info)
1282 goto err;
1283
1284 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1285 GFP_KERNEL);
1286
1287 if (!core_imc_refc) {
1288 kfree(pmu_ptr->mem_info);
1289 goto err;
1290 }
1291
1292 core_imc_pmu = pmu_ptr;
1293 break;
1294 case IMC_DOMAIN_THREAD:
1295 /* Update the pmu name */
1296 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1297 if (!pmu_ptr->pmu.name)
1298 goto err;
1299
1300 thread_imc_mem_size = pmu_ptr->counter_mem_size;
1301 for_each_online_cpu(cpu) {
1302 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1303 if (res) {
1304 cleanup_all_thread_imc_memory();
1305 goto err;
1306 }
1307 }
1308
1309 thread_imc_pmu = pmu_ptr;
1310 break;
1311 default:
1312 return -EINVAL;
1313 }
1314
1315 return 0;
1316err:
1317 return res;
1318}
1319
1320/*
1321 * init_imc_pmu : Setup and register the IMC pmu device.
1322 *
1323 * @parent: Device tree unit node
1324 * @pmu_ptr: memory allocated for this pmu
1325 * @pmu_idx: Count of nest pmc registered
1326 *
1327 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1328 * Handles failure cases and accordingly frees memory.
1329 */
1330int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1331{
1332 int ret;
1333
1334 ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1335 if (ret)
1336 goto err_free_mem;
1337
1338 switch (pmu_ptr->domain) {
1339 case IMC_DOMAIN_NEST:
1340 /*
1341 * Nest imc pmu need only one cpu per chip, we initialize the
1342 * cpumask for the first nest imc pmu and use the same for the
1343 * rest. To handle the cpuhotplug callback unregister, we track
1344 * the number of nest pmus in "nest_pmus".
1345 */
1346 mutex_lock(&nest_init_lock);
1347 if (nest_pmus == 0) {
1348 ret = init_nest_pmu_ref();
1349 if (ret) {
1350 mutex_unlock(&nest_init_lock);
1351 kfree(per_nest_pmu_arr);
1352 per_nest_pmu_arr = NULL;
1353 goto err_free_mem;
1354 }
1355 /* Register for cpu hotplug notification. */
1356 ret = nest_pmu_cpumask_init();
1357 if (ret) {
1358 mutex_unlock(&nest_init_lock);
1359 kfree(nest_imc_refc);
1360 kfree(per_nest_pmu_arr);
1361 per_nest_pmu_arr = NULL;
1362 goto err_free_mem;
1363 }
1364 }
1365 nest_pmus++;
1366 mutex_unlock(&nest_init_lock);
1367 break;
1368 case IMC_DOMAIN_CORE:
1369 ret = core_imc_pmu_cpumask_init();
1370 if (ret) {
1371 cleanup_all_core_imc_memory();
1372 goto err_free_mem;
1373 }
1374
1375 break;
1376 case IMC_DOMAIN_THREAD:
1377 ret = thread_imc_cpu_init();
1378 if (ret) {
1379 cleanup_all_thread_imc_memory();
1380 goto err_free_mem;
1381 }
1382
1383 break;
1384 default:
1385 return -EINVAL; /* Unknown domain */
1386 }
1387
1388 ret = update_events_in_group(parent, pmu_ptr);
1389 if (ret)
1390 goto err_free_cpuhp_mem;
1391
1392 ret = update_pmu_ops(pmu_ptr);
1393 if (ret)
1394 goto err_free_cpuhp_mem;
1395
1396 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1397 if (ret)
1398 goto err_free_cpuhp_mem;
1399
1400 pr_info("%s performance monitor hardware support registered\n",
1401 pmu_ptr->pmu.name);
1402
1403 return 0;
1404
1405err_free_cpuhp_mem:
1406 imc_common_cpuhp_mem_free(pmu_ptr);
1407err_free_mem:
1408 imc_common_mem_free(pmu_ptr);
1409 return ret;
1410}