xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* |
| 2 | * Kernel-based Virtual Machine driver for Linux |
| 3 | * |
| 4 | * This module enables machines with Intel VT-x extensions to run virtual |
| 5 | * machines without emulation or binary translation. |
| 6 | * |
| 7 | * MMU support |
| 8 | * |
| 9 | * Copyright (C) 2006 Qumranet, Inc. |
| 10 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| 11 | * |
| 12 | * Authors: |
| 13 | * Yaniv Kamay <yaniv@qumranet.com> |
| 14 | * Avi Kivity <avi@qumranet.com> |
| 15 | * |
| 16 | * This work is licensed under the terms of the GNU GPL, version 2. See |
| 17 | * the COPYING file in the top-level directory. |
| 18 | * |
| 19 | */ |
| 20 | |
| 21 | #include "irq.h" |
| 22 | #include "mmu.h" |
| 23 | #include "x86.h" |
| 24 | #include "kvm_cache_regs.h" |
| 25 | #include "cpuid.h" |
| 26 | |
| 27 | #include <linux/kvm_host.h> |
| 28 | #include <linux/types.h> |
| 29 | #include <linux/string.h> |
| 30 | #include <linux/mm.h> |
| 31 | #include <linux/highmem.h> |
| 32 | #include <linux/moduleparam.h> |
| 33 | #include <linux/export.h> |
| 34 | #include <linux/swap.h> |
| 35 | #include <linux/hugetlb.h> |
| 36 | #include <linux/compiler.h> |
| 37 | #include <linux/srcu.h> |
| 38 | #include <linux/slab.h> |
| 39 | #include <linux/sched/signal.h> |
| 40 | #include <linux/uaccess.h> |
| 41 | #include <linux/hash.h> |
| 42 | #include <linux/kern_levels.h> |
| 43 | #include <linux/kthread.h> |
| 44 | |
| 45 | #include <asm/page.h> |
| 46 | #include <asm/pat.h> |
| 47 | #include <asm/cmpxchg.h> |
| 48 | #include <asm/io.h> |
| 49 | #include <asm/vmx.h> |
| 50 | #include <asm/kvm_page_track.h> |
| 51 | #include "trace.h" |
| 52 | |
| 53 | extern bool itlb_multihit_kvm_mitigation; |
| 54 | |
| 55 | static int __read_mostly nx_huge_pages = -1; |
| 56 | static uint __read_mostly nx_huge_pages_recovery_ratio = 60; |
| 57 | |
| 58 | static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); |
| 59 | static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp); |
| 60 | |
| 61 | static struct kernel_param_ops nx_huge_pages_ops = { |
| 62 | .set = set_nx_huge_pages, |
| 63 | .get = param_get_bool, |
| 64 | }; |
| 65 | |
| 66 | static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = { |
| 67 | .set = set_nx_huge_pages_recovery_ratio, |
| 68 | .get = param_get_uint, |
| 69 | }; |
| 70 | |
| 71 | module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); |
| 72 | __MODULE_PARM_TYPE(nx_huge_pages, "bool"); |
| 73 | module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops, |
| 74 | &nx_huge_pages_recovery_ratio, 0644); |
| 75 | __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); |
| 76 | |
| 77 | /* |
| 78 | * When setting this variable to true it enables Two-Dimensional-Paging |
| 79 | * where the hardware walks 2 page tables: |
| 80 | * 1. the guest-virtual to guest-physical |
| 81 | * 2. while doing 1. it walks guest-physical to host-physical |
| 82 | * If the hardware supports that we don't need to do shadow paging. |
| 83 | */ |
| 84 | bool tdp_enabled = false; |
| 85 | |
| 86 | enum { |
| 87 | AUDIT_PRE_PAGE_FAULT, |
| 88 | AUDIT_POST_PAGE_FAULT, |
| 89 | AUDIT_PRE_PTE_WRITE, |
| 90 | AUDIT_POST_PTE_WRITE, |
| 91 | AUDIT_PRE_SYNC, |
| 92 | AUDIT_POST_SYNC |
| 93 | }; |
| 94 | |
| 95 | #undef MMU_DEBUG |
| 96 | |
| 97 | #ifdef MMU_DEBUG |
| 98 | static bool dbg = 0; |
| 99 | module_param(dbg, bool, 0644); |
| 100 | |
| 101 | #define pgprintk(x...) do { if (dbg) printk(x); } while (0) |
| 102 | #define rmap_printk(x...) do { if (dbg) printk(x); } while (0) |
| 103 | #define MMU_WARN_ON(x) WARN_ON(x) |
| 104 | #else |
| 105 | #define pgprintk(x...) do { } while (0) |
| 106 | #define rmap_printk(x...) do { } while (0) |
| 107 | #define MMU_WARN_ON(x) do { } while (0) |
| 108 | #endif |
| 109 | |
| 110 | #define PTE_PREFETCH_NUM 8 |
| 111 | |
| 112 | #define PT_FIRST_AVAIL_BITS_SHIFT 10 |
| 113 | #define PT64_SECOND_AVAIL_BITS_SHIFT 52 |
| 114 | |
| 115 | #define PT64_LEVEL_BITS 9 |
| 116 | |
| 117 | #define PT64_LEVEL_SHIFT(level) \ |
| 118 | (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS) |
| 119 | |
| 120 | #define PT64_INDEX(address, level)\ |
| 121 | (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) |
| 122 | |
| 123 | |
| 124 | #define PT32_LEVEL_BITS 10 |
| 125 | |
| 126 | #define PT32_LEVEL_SHIFT(level) \ |
| 127 | (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) |
| 128 | |
| 129 | #define PT32_LVL_OFFSET_MASK(level) \ |
| 130 | (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ |
| 131 | * PT32_LEVEL_BITS))) - 1)) |
| 132 | |
| 133 | #define PT32_INDEX(address, level)\ |
| 134 | (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) |
| 135 | |
| 136 | |
| 137 | #define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))) |
| 138 | #define PT64_DIR_BASE_ADDR_MASK \ |
| 139 | (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1)) |
| 140 | #define PT64_LVL_ADDR_MASK(level) \ |
| 141 | (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ |
| 142 | * PT64_LEVEL_BITS))) - 1)) |
| 143 | #define PT64_LVL_OFFSET_MASK(level) \ |
| 144 | (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ |
| 145 | * PT64_LEVEL_BITS))) - 1)) |
| 146 | |
| 147 | #define PT32_BASE_ADDR_MASK PAGE_MASK |
| 148 | #define PT32_DIR_BASE_ADDR_MASK \ |
| 149 | (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) |
| 150 | #define PT32_LVL_ADDR_MASK(level) \ |
| 151 | (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ |
| 152 | * PT32_LEVEL_BITS))) - 1)) |
| 153 | |
| 154 | #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \ |
| 155 | | shadow_x_mask | shadow_nx_mask | shadow_me_mask) |
| 156 | |
| 157 | #define ACC_EXEC_MASK 1 |
| 158 | #define ACC_WRITE_MASK PT_WRITABLE_MASK |
| 159 | #define ACC_USER_MASK PT_USER_MASK |
| 160 | #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK) |
| 161 | |
| 162 | /* The mask for the R/X bits in EPT PTEs */ |
| 163 | #define PT64_EPT_READABLE_MASK 0x1ull |
| 164 | #define PT64_EPT_EXECUTABLE_MASK 0x4ull |
| 165 | |
| 166 | #include <trace/events/kvm.h> |
| 167 | |
| 168 | #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) |
| 169 | #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1)) |
| 170 | |
| 171 | #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level) |
| 172 | |
| 173 | /* make pte_list_desc fit well in cache line */ |
| 174 | #define PTE_LIST_EXT 3 |
| 175 | |
| 176 | /* |
| 177 | * Return values of handle_mmio_page_fault and mmu.page_fault: |
| 178 | * RET_PF_RETRY: let CPU fault again on the address. |
| 179 | * RET_PF_EMULATE: mmio page fault, emulate the instruction directly. |
| 180 | * |
| 181 | * For handle_mmio_page_fault only: |
| 182 | * RET_PF_INVALID: the spte is invalid, let the real page fault path update it. |
| 183 | */ |
| 184 | enum { |
| 185 | RET_PF_RETRY = 0, |
| 186 | RET_PF_EMULATE = 1, |
| 187 | RET_PF_INVALID = 2, |
| 188 | }; |
| 189 | |
| 190 | struct pte_list_desc { |
| 191 | u64 *sptes[PTE_LIST_EXT]; |
| 192 | struct pte_list_desc *more; |
| 193 | }; |
| 194 | |
| 195 | struct kvm_shadow_walk_iterator { |
| 196 | u64 addr; |
| 197 | hpa_t shadow_addr; |
| 198 | u64 *sptep; |
| 199 | int level; |
| 200 | unsigned index; |
| 201 | }; |
| 202 | |
| 203 | static const union kvm_mmu_page_role mmu_base_role_mask = { |
| 204 | .cr0_wp = 1, |
| 205 | .cr4_pae = 1, |
| 206 | .nxe = 1, |
| 207 | .smep_andnot_wp = 1, |
| 208 | .smap_andnot_wp = 1, |
| 209 | .smm = 1, |
| 210 | .guest_mode = 1, |
| 211 | .ad_disabled = 1, |
| 212 | }; |
| 213 | |
| 214 | #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ |
| 215 | for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ |
| 216 | (_root), (_addr)); \ |
| 217 | shadow_walk_okay(&(_walker)); \ |
| 218 | shadow_walk_next(&(_walker))) |
| 219 | |
| 220 | #define for_each_shadow_entry(_vcpu, _addr, _walker) \ |
| 221 | for (shadow_walk_init(&(_walker), _vcpu, _addr); \ |
| 222 | shadow_walk_okay(&(_walker)); \ |
| 223 | shadow_walk_next(&(_walker))) |
| 224 | |
| 225 | #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ |
| 226 | for (shadow_walk_init(&(_walker), _vcpu, _addr); \ |
| 227 | shadow_walk_okay(&(_walker)) && \ |
| 228 | ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ |
| 229 | __shadow_walk_next(&(_walker), spte)) |
| 230 | |
| 231 | static struct kmem_cache *pte_list_desc_cache; |
| 232 | static struct kmem_cache *mmu_page_header_cache; |
| 233 | static struct percpu_counter kvm_total_used_mmu_pages; |
| 234 | |
| 235 | static u64 __read_mostly shadow_nx_mask; |
| 236 | static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */ |
| 237 | static u64 __read_mostly shadow_user_mask; |
| 238 | static u64 __read_mostly shadow_accessed_mask; |
| 239 | static u64 __read_mostly shadow_dirty_mask; |
| 240 | static u64 __read_mostly shadow_mmio_mask; |
| 241 | static u64 __read_mostly shadow_mmio_value; |
| 242 | static u64 __read_mostly shadow_present_mask; |
| 243 | static u64 __read_mostly shadow_me_mask; |
| 244 | |
| 245 | /* |
| 246 | * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value. |
| 247 | * Non-present SPTEs with shadow_acc_track_value set are in place for access |
| 248 | * tracking. |
| 249 | */ |
| 250 | static u64 __read_mostly shadow_acc_track_mask; |
| 251 | static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK; |
| 252 | |
| 253 | /* |
| 254 | * The mask/shift to use for saving the original R/X bits when marking the PTE |
| 255 | * as not-present for access tracking purposes. We do not save the W bit as the |
| 256 | * PTEs being access tracked also need to be dirty tracked, so the W bit will be |
| 257 | * restored only when a write is attempted to the page. |
| 258 | */ |
| 259 | static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK | |
| 260 | PT64_EPT_EXECUTABLE_MASK; |
| 261 | static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT; |
| 262 | |
| 263 | /* |
| 264 | * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order |
| 265 | * to guard against L1TF attacks. |
| 266 | */ |
| 267 | static u64 __read_mostly shadow_nonpresent_or_rsvd_mask; |
| 268 | |
| 269 | /* |
| 270 | * The number of high-order 1 bits to use in the mask above. |
| 271 | */ |
| 272 | static const u64 shadow_nonpresent_or_rsvd_mask_len = 5; |
| 273 | |
| 274 | /* |
| 275 | * In some cases, we need to preserve the GFN of a non-present or reserved |
| 276 | * SPTE when we usurp the upper five bits of the physical address space to |
| 277 | * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll |
| 278 | * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask |
| 279 | * left into the reserved bits, i.e. the GFN in the SPTE will be split into |
| 280 | * high and low parts. This mask covers the lower bits of the GFN. |
| 281 | */ |
| 282 | static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask; |
| 283 | |
| 284 | |
| 285 | static void mmu_spte_set(u64 *sptep, u64 spte); |
| 286 | static bool is_executable_pte(u64 spte); |
| 287 | static union kvm_mmu_page_role |
| 288 | kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); |
| 289 | |
| 290 | #define CREATE_TRACE_POINTS |
| 291 | #include "mmutrace.h" |
| 292 | |
| 293 | |
| 294 | void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value) |
| 295 | { |
| 296 | BUG_ON((mmio_mask & mmio_value) != mmio_value); |
| 297 | shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK; |
| 298 | shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK; |
| 299 | } |
| 300 | EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask); |
| 301 | |
| 302 | static inline bool sp_ad_disabled(struct kvm_mmu_page *sp) |
| 303 | { |
| 304 | return sp->role.ad_disabled; |
| 305 | } |
| 306 | |
| 307 | static inline bool spte_ad_enabled(u64 spte) |
| 308 | { |
| 309 | MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value); |
| 310 | return !(spte & shadow_acc_track_value); |
| 311 | } |
| 312 | |
| 313 | static bool is_nx_huge_page_enabled(void) |
| 314 | { |
| 315 | return READ_ONCE(nx_huge_pages); |
| 316 | } |
| 317 | |
| 318 | static inline u64 spte_shadow_accessed_mask(u64 spte) |
| 319 | { |
| 320 | MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value); |
| 321 | return spte_ad_enabled(spte) ? shadow_accessed_mask : 0; |
| 322 | } |
| 323 | |
| 324 | static inline u64 spte_shadow_dirty_mask(u64 spte) |
| 325 | { |
| 326 | MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value); |
| 327 | return spte_ad_enabled(spte) ? shadow_dirty_mask : 0; |
| 328 | } |
| 329 | |
| 330 | static inline bool is_access_track_spte(u64 spte) |
| 331 | { |
| 332 | return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0; |
| 333 | } |
| 334 | |
| 335 | /* |
| 336 | * the low bit of the generation number is always presumed to be zero. |
| 337 | * This disables mmio caching during memslot updates. The concept is |
| 338 | * similar to a seqcount but instead of retrying the access we just punt |
| 339 | * and ignore the cache. |
| 340 | * |
| 341 | * spte bits 3-11 are used as bits 1-9 of the generation number, |
| 342 | * the bits 52-61 are used as bits 10-19 of the generation number. |
| 343 | */ |
| 344 | #define MMIO_SPTE_GEN_LOW_SHIFT 2 |
| 345 | #define MMIO_SPTE_GEN_HIGH_SHIFT 52 |
| 346 | |
| 347 | #define MMIO_GEN_SHIFT 20 |
| 348 | #define MMIO_GEN_LOW_SHIFT 10 |
| 349 | #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2) |
| 350 | #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1) |
| 351 | |
| 352 | static u64 generation_mmio_spte_mask(unsigned int gen) |
| 353 | { |
| 354 | u64 mask; |
| 355 | |
| 356 | WARN_ON(gen & ~MMIO_GEN_MASK); |
| 357 | |
| 358 | mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT; |
| 359 | mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT; |
| 360 | return mask; |
| 361 | } |
| 362 | |
| 363 | static unsigned int get_mmio_spte_generation(u64 spte) |
| 364 | { |
| 365 | unsigned int gen; |
| 366 | |
| 367 | spte &= ~shadow_mmio_mask; |
| 368 | |
| 369 | gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK; |
| 370 | gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT; |
| 371 | return gen; |
| 372 | } |
| 373 | |
| 374 | static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu) |
| 375 | { |
| 376 | return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK; |
| 377 | } |
| 378 | |
| 379 | static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, |
| 380 | unsigned access) |
| 381 | { |
| 382 | unsigned int gen = kvm_current_mmio_generation(vcpu); |
| 383 | u64 mask = generation_mmio_spte_mask(gen); |
| 384 | u64 gpa = gfn << PAGE_SHIFT; |
| 385 | |
| 386 | access &= ACC_WRITE_MASK | ACC_USER_MASK; |
| 387 | mask |= shadow_mmio_value | access; |
| 388 | mask |= gpa | shadow_nonpresent_or_rsvd_mask; |
| 389 | mask |= (gpa & shadow_nonpresent_or_rsvd_mask) |
| 390 | << shadow_nonpresent_or_rsvd_mask_len; |
| 391 | |
| 392 | trace_mark_mmio_spte(sptep, gfn, access, gen); |
| 393 | mmu_spte_set(sptep, mask); |
| 394 | } |
| 395 | |
| 396 | static bool is_mmio_spte(u64 spte) |
| 397 | { |
| 398 | return (spte & shadow_mmio_mask) == shadow_mmio_value; |
| 399 | } |
| 400 | |
| 401 | static gfn_t get_mmio_spte_gfn(u64 spte) |
| 402 | { |
| 403 | u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; |
| 404 | |
| 405 | gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len) |
| 406 | & shadow_nonpresent_or_rsvd_mask; |
| 407 | |
| 408 | return gpa >> PAGE_SHIFT; |
| 409 | } |
| 410 | |
| 411 | static unsigned get_mmio_spte_access(u64 spte) |
| 412 | { |
| 413 | u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask; |
| 414 | return (spte & ~mask) & ~PAGE_MASK; |
| 415 | } |
| 416 | |
| 417 | static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, |
| 418 | kvm_pfn_t pfn, unsigned access) |
| 419 | { |
| 420 | if (unlikely(is_noslot_pfn(pfn))) { |
| 421 | mark_mmio_spte(vcpu, sptep, gfn, access); |
| 422 | return true; |
| 423 | } |
| 424 | |
| 425 | return false; |
| 426 | } |
| 427 | |
| 428 | static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) |
| 429 | { |
| 430 | unsigned int kvm_gen, spte_gen; |
| 431 | |
| 432 | kvm_gen = kvm_current_mmio_generation(vcpu); |
| 433 | spte_gen = get_mmio_spte_generation(spte); |
| 434 | |
| 435 | trace_check_mmio_spte(spte, kvm_gen, spte_gen); |
| 436 | return likely(kvm_gen == spte_gen); |
| 437 | } |
| 438 | |
| 439 | /* |
| 440 | * Sets the shadow PTE masks used by the MMU. |
| 441 | * |
| 442 | * Assumptions: |
| 443 | * - Setting either @accessed_mask or @dirty_mask requires setting both |
| 444 | * - At least one of @accessed_mask or @acc_track_mask must be set |
| 445 | */ |
| 446 | void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, |
| 447 | u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask, |
| 448 | u64 acc_track_mask, u64 me_mask) |
| 449 | { |
| 450 | BUG_ON(!dirty_mask != !accessed_mask); |
| 451 | BUG_ON(!accessed_mask && !acc_track_mask); |
| 452 | BUG_ON(acc_track_mask & shadow_acc_track_value); |
| 453 | |
| 454 | shadow_user_mask = user_mask; |
| 455 | shadow_accessed_mask = accessed_mask; |
| 456 | shadow_dirty_mask = dirty_mask; |
| 457 | shadow_nx_mask = nx_mask; |
| 458 | shadow_x_mask = x_mask; |
| 459 | shadow_present_mask = p_mask; |
| 460 | shadow_acc_track_mask = acc_track_mask; |
| 461 | shadow_me_mask = me_mask; |
| 462 | } |
| 463 | EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes); |
| 464 | |
| 465 | static void kvm_mmu_reset_all_pte_masks(void) |
| 466 | { |
| 467 | u8 low_phys_bits; |
| 468 | |
| 469 | shadow_user_mask = 0; |
| 470 | shadow_accessed_mask = 0; |
| 471 | shadow_dirty_mask = 0; |
| 472 | shadow_nx_mask = 0; |
| 473 | shadow_x_mask = 0; |
| 474 | shadow_mmio_mask = 0; |
| 475 | shadow_present_mask = 0; |
| 476 | shadow_acc_track_mask = 0; |
| 477 | |
| 478 | /* |
| 479 | * If the CPU has 46 or less physical address bits, then set an |
| 480 | * appropriate mask to guard against L1TF attacks. Otherwise, it is |
| 481 | * assumed that the CPU is not vulnerable to L1TF. |
| 482 | */ |
| 483 | low_phys_bits = boot_cpu_data.x86_phys_bits; |
| 484 | if (boot_cpu_data.x86_phys_bits < |
| 485 | 52 - shadow_nonpresent_or_rsvd_mask_len) { |
| 486 | shadow_nonpresent_or_rsvd_mask = |
| 487 | rsvd_bits(boot_cpu_data.x86_phys_bits - |
| 488 | shadow_nonpresent_or_rsvd_mask_len, |
| 489 | boot_cpu_data.x86_phys_bits - 1); |
| 490 | low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len; |
| 491 | } |
| 492 | shadow_nonpresent_or_rsvd_lower_gfn_mask = |
| 493 | GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT); |
| 494 | } |
| 495 | |
| 496 | static int is_cpuid_PSE36(void) |
| 497 | { |
| 498 | return 1; |
| 499 | } |
| 500 | |
| 501 | static int is_nx(struct kvm_vcpu *vcpu) |
| 502 | { |
| 503 | return vcpu->arch.efer & EFER_NX; |
| 504 | } |
| 505 | |
| 506 | static int is_shadow_present_pte(u64 pte) |
| 507 | { |
| 508 | return (pte != 0) && !is_mmio_spte(pte); |
| 509 | } |
| 510 | |
| 511 | static int is_large_pte(u64 pte) |
| 512 | { |
| 513 | return pte & PT_PAGE_SIZE_MASK; |
| 514 | } |
| 515 | |
| 516 | static int is_last_spte(u64 pte, int level) |
| 517 | { |
| 518 | if (level == PT_PAGE_TABLE_LEVEL) |
| 519 | return 1; |
| 520 | if (is_large_pte(pte)) |
| 521 | return 1; |
| 522 | return 0; |
| 523 | } |
| 524 | |
| 525 | static bool is_executable_pte(u64 spte) |
| 526 | { |
| 527 | return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask; |
| 528 | } |
| 529 | |
| 530 | static kvm_pfn_t spte_to_pfn(u64 pte) |
| 531 | { |
| 532 | return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT; |
| 533 | } |
| 534 | |
| 535 | static gfn_t pse36_gfn_delta(u32 gpte) |
| 536 | { |
| 537 | int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; |
| 538 | |
| 539 | return (gpte & PT32_DIR_PSE36_MASK) << shift; |
| 540 | } |
| 541 | |
| 542 | #ifdef CONFIG_X86_64 |
| 543 | static void __set_spte(u64 *sptep, u64 spte) |
| 544 | { |
| 545 | WRITE_ONCE(*sptep, spte); |
| 546 | } |
| 547 | |
| 548 | static void __update_clear_spte_fast(u64 *sptep, u64 spte) |
| 549 | { |
| 550 | WRITE_ONCE(*sptep, spte); |
| 551 | } |
| 552 | |
| 553 | static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) |
| 554 | { |
| 555 | return xchg(sptep, spte); |
| 556 | } |
| 557 | |
| 558 | static u64 __get_spte_lockless(u64 *sptep) |
| 559 | { |
| 560 | return READ_ONCE(*sptep); |
| 561 | } |
| 562 | #else |
| 563 | union split_spte { |
| 564 | struct { |
| 565 | u32 spte_low; |
| 566 | u32 spte_high; |
| 567 | }; |
| 568 | u64 spte; |
| 569 | }; |
| 570 | |
| 571 | static void count_spte_clear(u64 *sptep, u64 spte) |
| 572 | { |
| 573 | struct kvm_mmu_page *sp = page_header(__pa(sptep)); |
| 574 | |
| 575 | if (is_shadow_present_pte(spte)) |
| 576 | return; |
| 577 | |
| 578 | /* Ensure the spte is completely set before we increase the count */ |
| 579 | smp_wmb(); |
| 580 | sp->clear_spte_count++; |
| 581 | } |
| 582 | |
| 583 | static void __set_spte(u64 *sptep, u64 spte) |
| 584 | { |
| 585 | union split_spte *ssptep, sspte; |
| 586 | |
| 587 | ssptep = (union split_spte *)sptep; |
| 588 | sspte = (union split_spte)spte; |
| 589 | |
| 590 | ssptep->spte_high = sspte.spte_high; |
| 591 | |
| 592 | /* |
| 593 | * If we map the spte from nonpresent to present, We should store |
| 594 | * the high bits firstly, then set present bit, so cpu can not |
| 595 | * fetch this spte while we are setting the spte. |
| 596 | */ |
| 597 | smp_wmb(); |
| 598 | |
| 599 | WRITE_ONCE(ssptep->spte_low, sspte.spte_low); |
| 600 | } |
| 601 | |
| 602 | static void __update_clear_spte_fast(u64 *sptep, u64 spte) |
| 603 | { |
| 604 | union split_spte *ssptep, sspte; |
| 605 | |
| 606 | ssptep = (union split_spte *)sptep; |
| 607 | sspte = (union split_spte)spte; |
| 608 | |
| 609 | WRITE_ONCE(ssptep->spte_low, sspte.spte_low); |
| 610 | |
| 611 | /* |
| 612 | * If we map the spte from present to nonpresent, we should clear |
| 613 | * present bit firstly to avoid vcpu fetch the old high bits. |
| 614 | */ |
| 615 | smp_wmb(); |
| 616 | |
| 617 | ssptep->spte_high = sspte.spte_high; |
| 618 | count_spte_clear(sptep, spte); |
| 619 | } |
| 620 | |
| 621 | static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) |
| 622 | { |
| 623 | union split_spte *ssptep, sspte, orig; |
| 624 | |
| 625 | ssptep = (union split_spte *)sptep; |
| 626 | sspte = (union split_spte)spte; |
| 627 | |
| 628 | /* xchg acts as a barrier before the setting of the high bits */ |
| 629 | orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); |
| 630 | orig.spte_high = ssptep->spte_high; |
| 631 | ssptep->spte_high = sspte.spte_high; |
| 632 | count_spte_clear(sptep, spte); |
| 633 | |
| 634 | return orig.spte; |
| 635 | } |
| 636 | |
| 637 | /* |
| 638 | * The idea using the light way get the spte on x86_32 guest is from |
| 639 | * gup_get_pte(arch/x86/mm/gup.c). |
| 640 | * |
| 641 | * An spte tlb flush may be pending, because kvm_set_pte_rmapp |
| 642 | * coalesces them and we are running out of the MMU lock. Therefore |
| 643 | * we need to protect against in-progress updates of the spte. |
| 644 | * |
| 645 | * Reading the spte while an update is in progress may get the old value |
| 646 | * for the high part of the spte. The race is fine for a present->non-present |
| 647 | * change (because the high part of the spte is ignored for non-present spte), |
| 648 | * but for a present->present change we must reread the spte. |
| 649 | * |
| 650 | * All such changes are done in two steps (present->non-present and |
| 651 | * non-present->present), hence it is enough to count the number of |
| 652 | * present->non-present updates: if it changed while reading the spte, |
| 653 | * we might have hit the race. This is done using clear_spte_count. |
| 654 | */ |
| 655 | static u64 __get_spte_lockless(u64 *sptep) |
| 656 | { |
| 657 | struct kvm_mmu_page *sp = page_header(__pa(sptep)); |
| 658 | union split_spte spte, *orig = (union split_spte *)sptep; |
| 659 | int count; |
| 660 | |
| 661 | retry: |
| 662 | count = sp->clear_spte_count; |
| 663 | smp_rmb(); |
| 664 | |
| 665 | spte.spte_low = orig->spte_low; |
| 666 | smp_rmb(); |
| 667 | |
| 668 | spte.spte_high = orig->spte_high; |
| 669 | smp_rmb(); |
| 670 | |
| 671 | if (unlikely(spte.spte_low != orig->spte_low || |
| 672 | count != sp->clear_spte_count)) |
| 673 | goto retry; |
| 674 | |
| 675 | return spte.spte; |
| 676 | } |
| 677 | #endif |
| 678 | |
| 679 | static bool spte_can_locklessly_be_made_writable(u64 spte) |
| 680 | { |
| 681 | return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) == |
| 682 | (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE); |
| 683 | } |
| 684 | |
| 685 | static bool spte_has_volatile_bits(u64 spte) |
| 686 | { |
| 687 | if (!is_shadow_present_pte(spte)) |
| 688 | return false; |
| 689 | |
| 690 | /* |
| 691 | * Always atomically update spte if it can be updated |
| 692 | * out of mmu-lock, it can ensure dirty bit is not lost, |
| 693 | * also, it can help us to get a stable is_writable_pte() |
| 694 | * to ensure tlb flush is not missed. |
| 695 | */ |
| 696 | if (spte_can_locklessly_be_made_writable(spte) || |
| 697 | is_access_track_spte(spte)) |
| 698 | return true; |
| 699 | |
| 700 | if (spte_ad_enabled(spte)) { |
| 701 | if ((spte & shadow_accessed_mask) == 0 || |
| 702 | (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) |
| 703 | return true; |
| 704 | } |
| 705 | |
| 706 | return false; |
| 707 | } |
| 708 | |
| 709 | static bool is_accessed_spte(u64 spte) |
| 710 | { |
| 711 | u64 accessed_mask = spte_shadow_accessed_mask(spte); |
| 712 | |
| 713 | return accessed_mask ? spte & accessed_mask |
| 714 | : !is_access_track_spte(spte); |
| 715 | } |
| 716 | |
| 717 | static bool is_dirty_spte(u64 spte) |
| 718 | { |
| 719 | u64 dirty_mask = spte_shadow_dirty_mask(spte); |
| 720 | |
| 721 | return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK; |
| 722 | } |
| 723 | |
| 724 | /* Rules for using mmu_spte_set: |
| 725 | * Set the sptep from nonpresent to present. |
| 726 | * Note: the sptep being assigned *must* be either not present |
| 727 | * or in a state where the hardware will not attempt to update |
| 728 | * the spte. |
| 729 | */ |
| 730 | static void mmu_spte_set(u64 *sptep, u64 new_spte) |
| 731 | { |
| 732 | WARN_ON(is_shadow_present_pte(*sptep)); |
| 733 | __set_spte(sptep, new_spte); |
| 734 | } |
| 735 | |
| 736 | /* |
| 737 | * Update the SPTE (excluding the PFN), but do not track changes in its |
| 738 | * accessed/dirty status. |
| 739 | */ |
| 740 | static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) |
| 741 | { |
| 742 | u64 old_spte = *sptep; |
| 743 | |
| 744 | WARN_ON(!is_shadow_present_pte(new_spte)); |
| 745 | |
| 746 | if (!is_shadow_present_pte(old_spte)) { |
| 747 | mmu_spte_set(sptep, new_spte); |
| 748 | return old_spte; |
| 749 | } |
| 750 | |
| 751 | if (!spte_has_volatile_bits(old_spte)) |
| 752 | __update_clear_spte_fast(sptep, new_spte); |
| 753 | else |
| 754 | old_spte = __update_clear_spte_slow(sptep, new_spte); |
| 755 | |
| 756 | WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); |
| 757 | |
| 758 | return old_spte; |
| 759 | } |
| 760 | |
| 761 | /* Rules for using mmu_spte_update: |
| 762 | * Update the state bits, it means the mapped pfn is not changed. |
| 763 | * |
| 764 | * Whenever we overwrite a writable spte with a read-only one we |
| 765 | * should flush remote TLBs. Otherwise rmap_write_protect |
| 766 | * will find a read-only spte, even though the writable spte |
| 767 | * might be cached on a CPU's TLB, the return value indicates this |
| 768 | * case. |
| 769 | * |
| 770 | * Returns true if the TLB needs to be flushed |
| 771 | */ |
| 772 | static bool mmu_spte_update(u64 *sptep, u64 new_spte) |
| 773 | { |
| 774 | bool flush = false; |
| 775 | u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); |
| 776 | |
| 777 | if (!is_shadow_present_pte(old_spte)) |
| 778 | return false; |
| 779 | |
| 780 | /* |
| 781 | * For the spte updated out of mmu-lock is safe, since |
| 782 | * we always atomically update it, see the comments in |
| 783 | * spte_has_volatile_bits(). |
| 784 | */ |
| 785 | if (spte_can_locklessly_be_made_writable(old_spte) && |
| 786 | !is_writable_pte(new_spte)) |
| 787 | flush = true; |
| 788 | |
| 789 | /* |
| 790 | * Flush TLB when accessed/dirty states are changed in the page tables, |
| 791 | * to guarantee consistency between TLB and page tables. |
| 792 | */ |
| 793 | |
| 794 | if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { |
| 795 | flush = true; |
| 796 | kvm_set_pfn_accessed(spte_to_pfn(old_spte)); |
| 797 | } |
| 798 | |
| 799 | if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { |
| 800 | flush = true; |
| 801 | kvm_set_pfn_dirty(spte_to_pfn(old_spte)); |
| 802 | } |
| 803 | |
| 804 | return flush; |
| 805 | } |
| 806 | |
| 807 | /* |
| 808 | * Rules for using mmu_spte_clear_track_bits: |
| 809 | * It sets the sptep from present to nonpresent, and track the |
| 810 | * state bits, it is used to clear the last level sptep. |
| 811 | * Returns non-zero if the PTE was previously valid. |
| 812 | */ |
| 813 | static int mmu_spte_clear_track_bits(u64 *sptep) |
| 814 | { |
| 815 | kvm_pfn_t pfn; |
| 816 | u64 old_spte = *sptep; |
| 817 | |
| 818 | if (!spte_has_volatile_bits(old_spte)) |
| 819 | __update_clear_spte_fast(sptep, 0ull); |
| 820 | else |
| 821 | old_spte = __update_clear_spte_slow(sptep, 0ull); |
| 822 | |
| 823 | if (!is_shadow_present_pte(old_spte)) |
| 824 | return 0; |
| 825 | |
| 826 | pfn = spte_to_pfn(old_spte); |
| 827 | |
| 828 | /* |
| 829 | * KVM does not hold the refcount of the page used by |
| 830 | * kvm mmu, before reclaiming the page, we should |
| 831 | * unmap it from mmu first. |
| 832 | */ |
| 833 | WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); |
| 834 | |
| 835 | if (is_accessed_spte(old_spte)) |
| 836 | kvm_set_pfn_accessed(pfn); |
| 837 | |
| 838 | if (is_dirty_spte(old_spte)) |
| 839 | kvm_set_pfn_dirty(pfn); |
| 840 | |
| 841 | return 1; |
| 842 | } |
| 843 | |
| 844 | /* |
| 845 | * Rules for using mmu_spte_clear_no_track: |
| 846 | * Directly clear spte without caring the state bits of sptep, |
| 847 | * it is used to set the upper level spte. |
| 848 | */ |
| 849 | static void mmu_spte_clear_no_track(u64 *sptep) |
| 850 | { |
| 851 | __update_clear_spte_fast(sptep, 0ull); |
| 852 | } |
| 853 | |
| 854 | static u64 mmu_spte_get_lockless(u64 *sptep) |
| 855 | { |
| 856 | return __get_spte_lockless(sptep); |
| 857 | } |
| 858 | |
| 859 | static u64 mark_spte_for_access_track(u64 spte) |
| 860 | { |
| 861 | if (spte_ad_enabled(spte)) |
| 862 | return spte & ~shadow_accessed_mask; |
| 863 | |
| 864 | if (is_access_track_spte(spte)) |
| 865 | return spte; |
| 866 | |
| 867 | /* |
| 868 | * Making an Access Tracking PTE will result in removal of write access |
| 869 | * from the PTE. So, verify that we will be able to restore the write |
| 870 | * access in the fast page fault path later on. |
| 871 | */ |
| 872 | WARN_ONCE((spte & PT_WRITABLE_MASK) && |
| 873 | !spte_can_locklessly_be_made_writable(spte), |
| 874 | "kvm: Writable SPTE is not locklessly dirty-trackable\n"); |
| 875 | |
| 876 | WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask << |
| 877 | shadow_acc_track_saved_bits_shift), |
| 878 | "kvm: Access Tracking saved bit locations are not zero\n"); |
| 879 | |
| 880 | spte |= (spte & shadow_acc_track_saved_bits_mask) << |
| 881 | shadow_acc_track_saved_bits_shift; |
| 882 | spte &= ~shadow_acc_track_mask; |
| 883 | |
| 884 | return spte; |
| 885 | } |
| 886 | |
| 887 | /* Restore an acc-track PTE back to a regular PTE */ |
| 888 | static u64 restore_acc_track_spte(u64 spte) |
| 889 | { |
| 890 | u64 new_spte = spte; |
| 891 | u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift) |
| 892 | & shadow_acc_track_saved_bits_mask; |
| 893 | |
| 894 | WARN_ON_ONCE(spte_ad_enabled(spte)); |
| 895 | WARN_ON_ONCE(!is_access_track_spte(spte)); |
| 896 | |
| 897 | new_spte &= ~shadow_acc_track_mask; |
| 898 | new_spte &= ~(shadow_acc_track_saved_bits_mask << |
| 899 | shadow_acc_track_saved_bits_shift); |
| 900 | new_spte |= saved_bits; |
| 901 | |
| 902 | return new_spte; |
| 903 | } |
| 904 | |
| 905 | /* Returns the Accessed status of the PTE and resets it at the same time. */ |
| 906 | static bool mmu_spte_age(u64 *sptep) |
| 907 | { |
| 908 | u64 spte = mmu_spte_get_lockless(sptep); |
| 909 | |
| 910 | if (!is_accessed_spte(spte)) |
| 911 | return false; |
| 912 | |
| 913 | if (spte_ad_enabled(spte)) { |
| 914 | clear_bit((ffs(shadow_accessed_mask) - 1), |
| 915 | (unsigned long *)sptep); |
| 916 | } else { |
| 917 | /* |
| 918 | * Capture the dirty status of the page, so that it doesn't get |
| 919 | * lost when the SPTE is marked for access tracking. |
| 920 | */ |
| 921 | if (is_writable_pte(spte)) |
| 922 | kvm_set_pfn_dirty(spte_to_pfn(spte)); |
| 923 | |
| 924 | spte = mark_spte_for_access_track(spte); |
| 925 | mmu_spte_update_no_track(sptep, spte); |
| 926 | } |
| 927 | |
| 928 | return true; |
| 929 | } |
| 930 | |
| 931 | static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) |
| 932 | { |
| 933 | /* |
| 934 | * Prevent page table teardown by making any free-er wait during |
| 935 | * kvm_flush_remote_tlbs() IPI to all active vcpus. |
| 936 | */ |
| 937 | local_irq_disable(); |
| 938 | |
| 939 | /* |
| 940 | * Make sure a following spte read is not reordered ahead of the write |
| 941 | * to vcpu->mode. |
| 942 | */ |
| 943 | smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); |
| 944 | } |
| 945 | |
| 946 | static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) |
| 947 | { |
| 948 | /* |
| 949 | * Make sure the write to vcpu->mode is not reordered in front of |
| 950 | * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us |
| 951 | * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. |
| 952 | */ |
| 953 | smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); |
| 954 | local_irq_enable(); |
| 955 | } |
| 956 | |
| 957 | static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, |
| 958 | struct kmem_cache *base_cache, int min) |
| 959 | { |
| 960 | void *obj; |
| 961 | |
| 962 | if (cache->nobjs >= min) |
| 963 | return 0; |
| 964 | while (cache->nobjs < ARRAY_SIZE(cache->objects)) { |
| 965 | obj = kmem_cache_zalloc(base_cache, GFP_KERNEL); |
| 966 | if (!obj) |
| 967 | return -ENOMEM; |
| 968 | cache->objects[cache->nobjs++] = obj; |
| 969 | } |
| 970 | return 0; |
| 971 | } |
| 972 | |
| 973 | static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache) |
| 974 | { |
| 975 | return cache->nobjs; |
| 976 | } |
| 977 | |
| 978 | static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc, |
| 979 | struct kmem_cache *cache) |
| 980 | { |
| 981 | while (mc->nobjs) |
| 982 | kmem_cache_free(cache, mc->objects[--mc->nobjs]); |
| 983 | } |
| 984 | |
| 985 | static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache, |
| 986 | int min) |
| 987 | { |
| 988 | void *page; |
| 989 | |
| 990 | if (cache->nobjs >= min) |
| 991 | return 0; |
| 992 | while (cache->nobjs < ARRAY_SIZE(cache->objects)) { |
| 993 | page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT); |
| 994 | if (!page) |
| 995 | return -ENOMEM; |
| 996 | cache->objects[cache->nobjs++] = page; |
| 997 | } |
| 998 | return 0; |
| 999 | } |
| 1000 | |
| 1001 | static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc) |
| 1002 | { |
| 1003 | while (mc->nobjs) |
| 1004 | free_page((unsigned long)mc->objects[--mc->nobjs]); |
| 1005 | } |
| 1006 | |
| 1007 | static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu) |
| 1008 | { |
| 1009 | int r; |
| 1010 | |
| 1011 | r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, |
| 1012 | pte_list_desc_cache, 8 + PTE_PREFETCH_NUM); |
| 1013 | if (r) |
| 1014 | goto out; |
| 1015 | r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8); |
| 1016 | if (r) |
| 1017 | goto out; |
| 1018 | r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, |
| 1019 | mmu_page_header_cache, 4); |
| 1020 | out: |
| 1021 | return r; |
| 1022 | } |
| 1023 | |
| 1024 | static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) |
| 1025 | { |
| 1026 | mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, |
| 1027 | pte_list_desc_cache); |
| 1028 | mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache); |
| 1029 | mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache, |
| 1030 | mmu_page_header_cache); |
| 1031 | } |
| 1032 | |
| 1033 | static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) |
| 1034 | { |
| 1035 | void *p; |
| 1036 | |
| 1037 | BUG_ON(!mc->nobjs); |
| 1038 | p = mc->objects[--mc->nobjs]; |
| 1039 | return p; |
| 1040 | } |
| 1041 | |
| 1042 | static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) |
| 1043 | { |
| 1044 | return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); |
| 1045 | } |
| 1046 | |
| 1047 | static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) |
| 1048 | { |
| 1049 | kmem_cache_free(pte_list_desc_cache, pte_list_desc); |
| 1050 | } |
| 1051 | |
| 1052 | static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) |
| 1053 | { |
| 1054 | if (!sp->role.direct) |
| 1055 | return sp->gfns[index]; |
| 1056 | |
| 1057 | return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); |
| 1058 | } |
| 1059 | |
| 1060 | static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) |
| 1061 | { |
| 1062 | if (!sp->role.direct) { |
| 1063 | sp->gfns[index] = gfn; |
| 1064 | return; |
| 1065 | } |
| 1066 | |
| 1067 | if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) |
| 1068 | pr_err_ratelimited("gfn mismatch under direct page %llx " |
| 1069 | "(expected %llx, got %llx)\n", |
| 1070 | sp->gfn, |
| 1071 | kvm_mmu_page_get_gfn(sp, index), gfn); |
| 1072 | } |
| 1073 | |
| 1074 | /* |
| 1075 | * Return the pointer to the large page information for a given gfn, |
| 1076 | * handling slots that are not large page aligned. |
| 1077 | */ |
| 1078 | static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, |
| 1079 | struct kvm_memory_slot *slot, |
| 1080 | int level) |
| 1081 | { |
| 1082 | unsigned long idx; |
| 1083 | |
| 1084 | idx = gfn_to_index(gfn, slot->base_gfn, level); |
| 1085 | return &slot->arch.lpage_info[level - 2][idx]; |
| 1086 | } |
| 1087 | |
| 1088 | static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot, |
| 1089 | gfn_t gfn, int count) |
| 1090 | { |
| 1091 | struct kvm_lpage_info *linfo; |
| 1092 | int i; |
| 1093 | |
| 1094 | for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) { |
| 1095 | linfo = lpage_info_slot(gfn, slot, i); |
| 1096 | linfo->disallow_lpage += count; |
| 1097 | WARN_ON(linfo->disallow_lpage < 0); |
| 1098 | } |
| 1099 | } |
| 1100 | |
| 1101 | void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) |
| 1102 | { |
| 1103 | update_gfn_disallow_lpage_count(slot, gfn, 1); |
| 1104 | } |
| 1105 | |
| 1106 | void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) |
| 1107 | { |
| 1108 | update_gfn_disallow_lpage_count(slot, gfn, -1); |
| 1109 | } |
| 1110 | |
| 1111 | static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) |
| 1112 | { |
| 1113 | struct kvm_memslots *slots; |
| 1114 | struct kvm_memory_slot *slot; |
| 1115 | gfn_t gfn; |
| 1116 | |
| 1117 | kvm->arch.indirect_shadow_pages++; |
| 1118 | gfn = sp->gfn; |
| 1119 | slots = kvm_memslots_for_spte_role(kvm, sp->role); |
| 1120 | slot = __gfn_to_memslot(slots, gfn); |
| 1121 | |
| 1122 | /* the non-leaf shadow pages are keeping readonly. */ |
| 1123 | if (sp->role.level > PT_PAGE_TABLE_LEVEL) |
| 1124 | return kvm_slot_page_track_add_page(kvm, slot, gfn, |
| 1125 | KVM_PAGE_TRACK_WRITE); |
| 1126 | |
| 1127 | kvm_mmu_gfn_disallow_lpage(slot, gfn); |
| 1128 | } |
| 1129 | |
| 1130 | static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) |
| 1131 | { |
| 1132 | if (sp->lpage_disallowed) |
| 1133 | return; |
| 1134 | |
| 1135 | ++kvm->stat.nx_lpage_splits; |
| 1136 | list_add_tail(&sp->lpage_disallowed_link, |
| 1137 | &kvm->arch.lpage_disallowed_mmu_pages); |
| 1138 | sp->lpage_disallowed = true; |
| 1139 | } |
| 1140 | |
| 1141 | static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) |
| 1142 | { |
| 1143 | struct kvm_memslots *slots; |
| 1144 | struct kvm_memory_slot *slot; |
| 1145 | gfn_t gfn; |
| 1146 | |
| 1147 | kvm->arch.indirect_shadow_pages--; |
| 1148 | gfn = sp->gfn; |
| 1149 | slots = kvm_memslots_for_spte_role(kvm, sp->role); |
| 1150 | slot = __gfn_to_memslot(slots, gfn); |
| 1151 | if (sp->role.level > PT_PAGE_TABLE_LEVEL) |
| 1152 | return kvm_slot_page_track_remove_page(kvm, slot, gfn, |
| 1153 | KVM_PAGE_TRACK_WRITE); |
| 1154 | |
| 1155 | kvm_mmu_gfn_allow_lpage(slot, gfn); |
| 1156 | } |
| 1157 | |
| 1158 | static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) |
| 1159 | { |
| 1160 | --kvm->stat.nx_lpage_splits; |
| 1161 | sp->lpage_disallowed = false; |
| 1162 | list_del(&sp->lpage_disallowed_link); |
| 1163 | } |
| 1164 | |
| 1165 | static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level, |
| 1166 | struct kvm_memory_slot *slot) |
| 1167 | { |
| 1168 | struct kvm_lpage_info *linfo; |
| 1169 | |
| 1170 | if (slot) { |
| 1171 | linfo = lpage_info_slot(gfn, slot, level); |
| 1172 | return !!linfo->disallow_lpage; |
| 1173 | } |
| 1174 | |
| 1175 | return true; |
| 1176 | } |
| 1177 | |
| 1178 | static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn, |
| 1179 | int level) |
| 1180 | { |
| 1181 | struct kvm_memory_slot *slot; |
| 1182 | |
| 1183 | slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); |
| 1184 | return __mmu_gfn_lpage_is_disallowed(gfn, level, slot); |
| 1185 | } |
| 1186 | |
| 1187 | static int host_mapping_level(struct kvm *kvm, gfn_t gfn) |
| 1188 | { |
| 1189 | unsigned long page_size; |
| 1190 | int i, ret = 0; |
| 1191 | |
| 1192 | page_size = kvm_host_page_size(kvm, gfn); |
| 1193 | |
| 1194 | for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) { |
| 1195 | if (page_size >= KVM_HPAGE_SIZE(i)) |
| 1196 | ret = i; |
| 1197 | else |
| 1198 | break; |
| 1199 | } |
| 1200 | |
| 1201 | return ret; |
| 1202 | } |
| 1203 | |
| 1204 | static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot, |
| 1205 | bool no_dirty_log) |
| 1206 | { |
| 1207 | if (!slot || slot->flags & KVM_MEMSLOT_INVALID) |
| 1208 | return false; |
| 1209 | if (no_dirty_log && slot->dirty_bitmap) |
| 1210 | return false; |
| 1211 | |
| 1212 | return true; |
| 1213 | } |
| 1214 | |
| 1215 | static struct kvm_memory_slot * |
| 1216 | gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, |
| 1217 | bool no_dirty_log) |
| 1218 | { |
| 1219 | struct kvm_memory_slot *slot; |
| 1220 | |
| 1221 | slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); |
| 1222 | if (!memslot_valid_for_gpte(slot, no_dirty_log)) |
| 1223 | slot = NULL; |
| 1224 | |
| 1225 | return slot; |
| 1226 | } |
| 1227 | |
| 1228 | static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn, |
| 1229 | bool *force_pt_level) |
| 1230 | { |
| 1231 | int host_level, level, max_level; |
| 1232 | struct kvm_memory_slot *slot; |
| 1233 | |
| 1234 | if (unlikely(*force_pt_level)) |
| 1235 | return PT_PAGE_TABLE_LEVEL; |
| 1236 | |
| 1237 | slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn); |
| 1238 | *force_pt_level = !memslot_valid_for_gpte(slot, true); |
| 1239 | if (unlikely(*force_pt_level)) |
| 1240 | return PT_PAGE_TABLE_LEVEL; |
| 1241 | |
| 1242 | host_level = host_mapping_level(vcpu->kvm, large_gfn); |
| 1243 | |
| 1244 | if (host_level == PT_PAGE_TABLE_LEVEL) |
| 1245 | return host_level; |
| 1246 | |
| 1247 | max_level = min(kvm_x86_ops->get_lpage_level(), host_level); |
| 1248 | |
| 1249 | for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level) |
| 1250 | if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot)) |
| 1251 | break; |
| 1252 | |
| 1253 | return level - 1; |
| 1254 | } |
| 1255 | |
| 1256 | /* |
| 1257 | * About rmap_head encoding: |
| 1258 | * |
| 1259 | * If the bit zero of rmap_head->val is clear, then it points to the only spte |
| 1260 | * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct |
| 1261 | * pte_list_desc containing more mappings. |
| 1262 | */ |
| 1263 | |
| 1264 | /* |
| 1265 | * Returns the number of pointers in the rmap chain, not counting the new one. |
| 1266 | */ |
| 1267 | static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, |
| 1268 | struct kvm_rmap_head *rmap_head) |
| 1269 | { |
| 1270 | struct pte_list_desc *desc; |
| 1271 | int i, count = 0; |
| 1272 | |
| 1273 | if (!rmap_head->val) { |
| 1274 | rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte); |
| 1275 | rmap_head->val = (unsigned long)spte; |
| 1276 | } else if (!(rmap_head->val & 1)) { |
| 1277 | rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte); |
| 1278 | desc = mmu_alloc_pte_list_desc(vcpu); |
| 1279 | desc->sptes[0] = (u64 *)rmap_head->val; |
| 1280 | desc->sptes[1] = spte; |
| 1281 | rmap_head->val = (unsigned long)desc | 1; |
| 1282 | ++count; |
| 1283 | } else { |
| 1284 | rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte); |
| 1285 | desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); |
| 1286 | while (desc->sptes[PTE_LIST_EXT-1] && desc->more) { |
| 1287 | desc = desc->more; |
| 1288 | count += PTE_LIST_EXT; |
| 1289 | } |
| 1290 | if (desc->sptes[PTE_LIST_EXT-1]) { |
| 1291 | desc->more = mmu_alloc_pte_list_desc(vcpu); |
| 1292 | desc = desc->more; |
| 1293 | } |
| 1294 | for (i = 0; desc->sptes[i]; ++i) |
| 1295 | ++count; |
| 1296 | desc->sptes[i] = spte; |
| 1297 | } |
| 1298 | return count; |
| 1299 | } |
| 1300 | |
| 1301 | static void |
| 1302 | pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, |
| 1303 | struct pte_list_desc *desc, int i, |
| 1304 | struct pte_list_desc *prev_desc) |
| 1305 | { |
| 1306 | int j; |
| 1307 | |
| 1308 | for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) |
| 1309 | ; |
| 1310 | desc->sptes[i] = desc->sptes[j]; |
| 1311 | desc->sptes[j] = NULL; |
| 1312 | if (j != 0) |
| 1313 | return; |
| 1314 | if (!prev_desc && !desc->more) |
| 1315 | rmap_head->val = (unsigned long)desc->sptes[0]; |
| 1316 | else |
| 1317 | if (prev_desc) |
| 1318 | prev_desc->more = desc->more; |
| 1319 | else |
| 1320 | rmap_head->val = (unsigned long)desc->more | 1; |
| 1321 | mmu_free_pte_list_desc(desc); |
| 1322 | } |
| 1323 | |
| 1324 | static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) |
| 1325 | { |
| 1326 | struct pte_list_desc *desc; |
| 1327 | struct pte_list_desc *prev_desc; |
| 1328 | int i; |
| 1329 | |
| 1330 | if (!rmap_head->val) { |
| 1331 | printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte); |
| 1332 | BUG(); |
| 1333 | } else if (!(rmap_head->val & 1)) { |
| 1334 | rmap_printk("pte_list_remove: %p 1->0\n", spte); |
| 1335 | if ((u64 *)rmap_head->val != spte) { |
| 1336 | printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte); |
| 1337 | BUG(); |
| 1338 | } |
| 1339 | rmap_head->val = 0; |
| 1340 | } else { |
| 1341 | rmap_printk("pte_list_remove: %p many->many\n", spte); |
| 1342 | desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); |
| 1343 | prev_desc = NULL; |
| 1344 | while (desc) { |
| 1345 | for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) { |
| 1346 | if (desc->sptes[i] == spte) { |
| 1347 | pte_list_desc_remove_entry(rmap_head, |
| 1348 | desc, i, prev_desc); |
| 1349 | return; |
| 1350 | } |
| 1351 | } |
| 1352 | prev_desc = desc; |
| 1353 | desc = desc->more; |
| 1354 | } |
| 1355 | pr_err("pte_list_remove: %p many->many\n", spte); |
| 1356 | BUG(); |
| 1357 | } |
| 1358 | } |
| 1359 | |
| 1360 | static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level, |
| 1361 | struct kvm_memory_slot *slot) |
| 1362 | { |
| 1363 | unsigned long idx; |
| 1364 | |
| 1365 | idx = gfn_to_index(gfn, slot->base_gfn, level); |
| 1366 | return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx]; |
| 1367 | } |
| 1368 | |
| 1369 | static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, |
| 1370 | struct kvm_mmu_page *sp) |
| 1371 | { |
| 1372 | struct kvm_memslots *slots; |
| 1373 | struct kvm_memory_slot *slot; |
| 1374 | |
| 1375 | slots = kvm_memslots_for_spte_role(kvm, sp->role); |
| 1376 | slot = __gfn_to_memslot(slots, gfn); |
| 1377 | return __gfn_to_rmap(gfn, sp->role.level, slot); |
| 1378 | } |
| 1379 | |
| 1380 | static bool rmap_can_add(struct kvm_vcpu *vcpu) |
| 1381 | { |
| 1382 | struct kvm_mmu_memory_cache *cache; |
| 1383 | |
| 1384 | cache = &vcpu->arch.mmu_pte_list_desc_cache; |
| 1385 | return mmu_memory_cache_free_objects(cache); |
| 1386 | } |
| 1387 | |
| 1388 | static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) |
| 1389 | { |
| 1390 | struct kvm_mmu_page *sp; |
| 1391 | struct kvm_rmap_head *rmap_head; |
| 1392 | |
| 1393 | sp = page_header(__pa(spte)); |
| 1394 | kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); |
| 1395 | rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); |
| 1396 | return pte_list_add(vcpu, spte, rmap_head); |
| 1397 | } |
| 1398 | |
| 1399 | static void rmap_remove(struct kvm *kvm, u64 *spte) |
| 1400 | { |
| 1401 | struct kvm_mmu_page *sp; |
| 1402 | gfn_t gfn; |
| 1403 | struct kvm_rmap_head *rmap_head; |
| 1404 | |
| 1405 | sp = page_header(__pa(spte)); |
| 1406 | gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); |
| 1407 | rmap_head = gfn_to_rmap(kvm, gfn, sp); |
| 1408 | pte_list_remove(spte, rmap_head); |
| 1409 | } |
| 1410 | |
| 1411 | /* |
| 1412 | * Used by the following functions to iterate through the sptes linked by a |
| 1413 | * rmap. All fields are private and not assumed to be used outside. |
| 1414 | */ |
| 1415 | struct rmap_iterator { |
| 1416 | /* private fields */ |
| 1417 | struct pte_list_desc *desc; /* holds the sptep if not NULL */ |
| 1418 | int pos; /* index of the sptep */ |
| 1419 | }; |
| 1420 | |
| 1421 | /* |
| 1422 | * Iteration must be started by this function. This should also be used after |
| 1423 | * removing/dropping sptes from the rmap link because in such cases the |
| 1424 | * information in the itererator may not be valid. |
| 1425 | * |
| 1426 | * Returns sptep if found, NULL otherwise. |
| 1427 | */ |
| 1428 | static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, |
| 1429 | struct rmap_iterator *iter) |
| 1430 | { |
| 1431 | u64 *sptep; |
| 1432 | |
| 1433 | if (!rmap_head->val) |
| 1434 | return NULL; |
| 1435 | |
| 1436 | if (!(rmap_head->val & 1)) { |
| 1437 | iter->desc = NULL; |
| 1438 | sptep = (u64 *)rmap_head->val; |
| 1439 | goto out; |
| 1440 | } |
| 1441 | |
| 1442 | iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); |
| 1443 | iter->pos = 0; |
| 1444 | sptep = iter->desc->sptes[iter->pos]; |
| 1445 | out: |
| 1446 | BUG_ON(!is_shadow_present_pte(*sptep)); |
| 1447 | return sptep; |
| 1448 | } |
| 1449 | |
| 1450 | /* |
| 1451 | * Must be used with a valid iterator: e.g. after rmap_get_first(). |
| 1452 | * |
| 1453 | * Returns sptep if found, NULL otherwise. |
| 1454 | */ |
| 1455 | static u64 *rmap_get_next(struct rmap_iterator *iter) |
| 1456 | { |
| 1457 | u64 *sptep; |
| 1458 | |
| 1459 | if (iter->desc) { |
| 1460 | if (iter->pos < PTE_LIST_EXT - 1) { |
| 1461 | ++iter->pos; |
| 1462 | sptep = iter->desc->sptes[iter->pos]; |
| 1463 | if (sptep) |
| 1464 | goto out; |
| 1465 | } |
| 1466 | |
| 1467 | iter->desc = iter->desc->more; |
| 1468 | |
| 1469 | if (iter->desc) { |
| 1470 | iter->pos = 0; |
| 1471 | /* desc->sptes[0] cannot be NULL */ |
| 1472 | sptep = iter->desc->sptes[iter->pos]; |
| 1473 | goto out; |
| 1474 | } |
| 1475 | } |
| 1476 | |
| 1477 | return NULL; |
| 1478 | out: |
| 1479 | BUG_ON(!is_shadow_present_pte(*sptep)); |
| 1480 | return sptep; |
| 1481 | } |
| 1482 | |
| 1483 | #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ |
| 1484 | for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ |
| 1485 | _spte_; _spte_ = rmap_get_next(_iter_)) |
| 1486 | |
| 1487 | static void drop_spte(struct kvm *kvm, u64 *sptep) |
| 1488 | { |
| 1489 | if (mmu_spte_clear_track_bits(sptep)) |
| 1490 | rmap_remove(kvm, sptep); |
| 1491 | } |
| 1492 | |
| 1493 | |
| 1494 | static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) |
| 1495 | { |
| 1496 | if (is_large_pte(*sptep)) { |
| 1497 | WARN_ON(page_header(__pa(sptep))->role.level == |
| 1498 | PT_PAGE_TABLE_LEVEL); |
| 1499 | drop_spte(kvm, sptep); |
| 1500 | --kvm->stat.lpages; |
| 1501 | return true; |
| 1502 | } |
| 1503 | |
| 1504 | return false; |
| 1505 | } |
| 1506 | |
| 1507 | static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) |
| 1508 | { |
| 1509 | if (__drop_large_spte(vcpu->kvm, sptep)) |
| 1510 | kvm_flush_remote_tlbs(vcpu->kvm); |
| 1511 | } |
| 1512 | |
| 1513 | /* |
| 1514 | * Write-protect on the specified @sptep, @pt_protect indicates whether |
| 1515 | * spte write-protection is caused by protecting shadow page table. |
| 1516 | * |
| 1517 | * Note: write protection is difference between dirty logging and spte |
| 1518 | * protection: |
| 1519 | * - for dirty logging, the spte can be set to writable at anytime if |
| 1520 | * its dirty bitmap is properly set. |
| 1521 | * - for spte protection, the spte can be writable only after unsync-ing |
| 1522 | * shadow page. |
| 1523 | * |
| 1524 | * Return true if tlb need be flushed. |
| 1525 | */ |
| 1526 | static bool spte_write_protect(u64 *sptep, bool pt_protect) |
| 1527 | { |
| 1528 | u64 spte = *sptep; |
| 1529 | |
| 1530 | if (!is_writable_pte(spte) && |
| 1531 | !(pt_protect && spte_can_locklessly_be_made_writable(spte))) |
| 1532 | return false; |
| 1533 | |
| 1534 | rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep); |
| 1535 | |
| 1536 | if (pt_protect) |
| 1537 | spte &= ~SPTE_MMU_WRITEABLE; |
| 1538 | spte = spte & ~PT_WRITABLE_MASK; |
| 1539 | |
| 1540 | return mmu_spte_update(sptep, spte); |
| 1541 | } |
| 1542 | |
| 1543 | static bool __rmap_write_protect(struct kvm *kvm, |
| 1544 | struct kvm_rmap_head *rmap_head, |
| 1545 | bool pt_protect) |
| 1546 | { |
| 1547 | u64 *sptep; |
| 1548 | struct rmap_iterator iter; |
| 1549 | bool flush = false; |
| 1550 | |
| 1551 | for_each_rmap_spte(rmap_head, &iter, sptep) |
| 1552 | flush |= spte_write_protect(sptep, pt_protect); |
| 1553 | |
| 1554 | return flush; |
| 1555 | } |
| 1556 | |
| 1557 | static bool spte_clear_dirty(u64 *sptep) |
| 1558 | { |
| 1559 | u64 spte = *sptep; |
| 1560 | |
| 1561 | rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep); |
| 1562 | |
| 1563 | spte &= ~shadow_dirty_mask; |
| 1564 | |
| 1565 | return mmu_spte_update(sptep, spte); |
| 1566 | } |
| 1567 | |
| 1568 | static bool wrprot_ad_disabled_spte(u64 *sptep) |
| 1569 | { |
| 1570 | bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, |
| 1571 | (unsigned long *)sptep); |
| 1572 | if (was_writable) |
| 1573 | kvm_set_pfn_dirty(spte_to_pfn(*sptep)); |
| 1574 | |
| 1575 | return was_writable; |
| 1576 | } |
| 1577 | |
| 1578 | /* |
| 1579 | * Gets the GFN ready for another round of dirty logging by clearing the |
| 1580 | * - D bit on ad-enabled SPTEs, and |
| 1581 | * - W bit on ad-disabled SPTEs. |
| 1582 | * Returns true iff any D or W bits were cleared. |
| 1583 | */ |
| 1584 | static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) |
| 1585 | { |
| 1586 | u64 *sptep; |
| 1587 | struct rmap_iterator iter; |
| 1588 | bool flush = false; |
| 1589 | |
| 1590 | for_each_rmap_spte(rmap_head, &iter, sptep) |
| 1591 | if (spte_ad_enabled(*sptep)) |
| 1592 | flush |= spte_clear_dirty(sptep); |
| 1593 | else |
| 1594 | flush |= wrprot_ad_disabled_spte(sptep); |
| 1595 | |
| 1596 | return flush; |
| 1597 | } |
| 1598 | |
| 1599 | static bool spte_set_dirty(u64 *sptep) |
| 1600 | { |
| 1601 | u64 spte = *sptep; |
| 1602 | |
| 1603 | rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep); |
| 1604 | |
| 1605 | spte |= shadow_dirty_mask; |
| 1606 | |
| 1607 | return mmu_spte_update(sptep, spte); |
| 1608 | } |
| 1609 | |
| 1610 | static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head) |
| 1611 | { |
| 1612 | u64 *sptep; |
| 1613 | struct rmap_iterator iter; |
| 1614 | bool flush = false; |
| 1615 | |
| 1616 | for_each_rmap_spte(rmap_head, &iter, sptep) |
| 1617 | if (spte_ad_enabled(*sptep)) |
| 1618 | flush |= spte_set_dirty(sptep); |
| 1619 | |
| 1620 | return flush; |
| 1621 | } |
| 1622 | |
| 1623 | /** |
| 1624 | * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages |
| 1625 | * @kvm: kvm instance |
| 1626 | * @slot: slot to protect |
| 1627 | * @gfn_offset: start of the BITS_PER_LONG pages we care about |
| 1628 | * @mask: indicates which pages we should protect |
| 1629 | * |
| 1630 | * Used when we do not need to care about huge page mappings: e.g. during dirty |
| 1631 | * logging we do not have any such mappings. |
| 1632 | */ |
| 1633 | static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, |
| 1634 | struct kvm_memory_slot *slot, |
| 1635 | gfn_t gfn_offset, unsigned long mask) |
| 1636 | { |
| 1637 | struct kvm_rmap_head *rmap_head; |
| 1638 | |
| 1639 | while (mask) { |
| 1640 | rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), |
| 1641 | PT_PAGE_TABLE_LEVEL, slot); |
| 1642 | __rmap_write_protect(kvm, rmap_head, false); |
| 1643 | |
| 1644 | /* clear the first set bit */ |
| 1645 | mask &= mask - 1; |
| 1646 | } |
| 1647 | } |
| 1648 | |
| 1649 | /** |
| 1650 | * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write |
| 1651 | * protect the page if the D-bit isn't supported. |
| 1652 | * @kvm: kvm instance |
| 1653 | * @slot: slot to clear D-bit |
| 1654 | * @gfn_offset: start of the BITS_PER_LONG pages we care about |
| 1655 | * @mask: indicates which pages we should clear D-bit |
| 1656 | * |
| 1657 | * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. |
| 1658 | */ |
| 1659 | void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, |
| 1660 | struct kvm_memory_slot *slot, |
| 1661 | gfn_t gfn_offset, unsigned long mask) |
| 1662 | { |
| 1663 | struct kvm_rmap_head *rmap_head; |
| 1664 | |
| 1665 | while (mask) { |
| 1666 | rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), |
| 1667 | PT_PAGE_TABLE_LEVEL, slot); |
| 1668 | __rmap_clear_dirty(kvm, rmap_head); |
| 1669 | |
| 1670 | /* clear the first set bit */ |
| 1671 | mask &= mask - 1; |
| 1672 | } |
| 1673 | } |
| 1674 | EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked); |
| 1675 | |
| 1676 | /** |
| 1677 | * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected |
| 1678 | * PT level pages. |
| 1679 | * |
| 1680 | * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to |
| 1681 | * enable dirty logging for them. |
| 1682 | * |
| 1683 | * Used when we do not need to care about huge page mappings: e.g. during dirty |
| 1684 | * logging we do not have any such mappings. |
| 1685 | */ |
| 1686 | void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, |
| 1687 | struct kvm_memory_slot *slot, |
| 1688 | gfn_t gfn_offset, unsigned long mask) |
| 1689 | { |
| 1690 | if (kvm_x86_ops->enable_log_dirty_pt_masked) |
| 1691 | kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset, |
| 1692 | mask); |
| 1693 | else |
| 1694 | kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); |
| 1695 | } |
| 1696 | |
| 1697 | /** |
| 1698 | * kvm_arch_write_log_dirty - emulate dirty page logging |
| 1699 | * @vcpu: Guest mode vcpu |
| 1700 | * |
| 1701 | * Emulate arch specific page modification logging for the |
| 1702 | * nested hypervisor |
| 1703 | */ |
| 1704 | int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu) |
| 1705 | { |
| 1706 | if (kvm_x86_ops->write_log_dirty) |
| 1707 | return kvm_x86_ops->write_log_dirty(vcpu); |
| 1708 | |
| 1709 | return 0; |
| 1710 | } |
| 1711 | |
| 1712 | bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, |
| 1713 | struct kvm_memory_slot *slot, u64 gfn) |
| 1714 | { |
| 1715 | struct kvm_rmap_head *rmap_head; |
| 1716 | int i; |
| 1717 | bool write_protected = false; |
| 1718 | |
| 1719 | for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) { |
| 1720 | rmap_head = __gfn_to_rmap(gfn, i, slot); |
| 1721 | write_protected |= __rmap_write_protect(kvm, rmap_head, true); |
| 1722 | } |
| 1723 | |
| 1724 | return write_protected; |
| 1725 | } |
| 1726 | |
| 1727 | static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) |
| 1728 | { |
| 1729 | struct kvm_memory_slot *slot; |
| 1730 | |
| 1731 | slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); |
| 1732 | return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn); |
| 1733 | } |
| 1734 | |
| 1735 | static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head) |
| 1736 | { |
| 1737 | u64 *sptep; |
| 1738 | struct rmap_iterator iter; |
| 1739 | bool flush = false; |
| 1740 | |
| 1741 | while ((sptep = rmap_get_first(rmap_head, &iter))) { |
| 1742 | rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep); |
| 1743 | |
| 1744 | drop_spte(kvm, sptep); |
| 1745 | flush = true; |
| 1746 | } |
| 1747 | |
| 1748 | return flush; |
| 1749 | } |
| 1750 | |
| 1751 | static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
| 1752 | struct kvm_memory_slot *slot, gfn_t gfn, int level, |
| 1753 | unsigned long data) |
| 1754 | { |
| 1755 | return kvm_zap_rmapp(kvm, rmap_head); |
| 1756 | } |
| 1757 | |
| 1758 | static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
| 1759 | struct kvm_memory_slot *slot, gfn_t gfn, int level, |
| 1760 | unsigned long data) |
| 1761 | { |
| 1762 | u64 *sptep; |
| 1763 | struct rmap_iterator iter; |
| 1764 | int need_flush = 0; |
| 1765 | u64 new_spte; |
| 1766 | pte_t *ptep = (pte_t *)data; |
| 1767 | kvm_pfn_t new_pfn; |
| 1768 | |
| 1769 | WARN_ON(pte_huge(*ptep)); |
| 1770 | new_pfn = pte_pfn(*ptep); |
| 1771 | |
| 1772 | restart: |
| 1773 | for_each_rmap_spte(rmap_head, &iter, sptep) { |
| 1774 | rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n", |
| 1775 | sptep, *sptep, gfn, level); |
| 1776 | |
| 1777 | need_flush = 1; |
| 1778 | |
| 1779 | if (pte_write(*ptep)) { |
| 1780 | drop_spte(kvm, sptep); |
| 1781 | goto restart; |
| 1782 | } else { |
| 1783 | new_spte = *sptep & ~PT64_BASE_ADDR_MASK; |
| 1784 | new_spte |= (u64)new_pfn << PAGE_SHIFT; |
| 1785 | |
| 1786 | new_spte &= ~PT_WRITABLE_MASK; |
| 1787 | new_spte &= ~SPTE_HOST_WRITEABLE; |
| 1788 | |
| 1789 | new_spte = mark_spte_for_access_track(new_spte); |
| 1790 | |
| 1791 | mmu_spte_clear_track_bits(sptep); |
| 1792 | mmu_spte_set(sptep, new_spte); |
| 1793 | } |
| 1794 | } |
| 1795 | |
| 1796 | if (need_flush) |
| 1797 | kvm_flush_remote_tlbs(kvm); |
| 1798 | |
| 1799 | return 0; |
| 1800 | } |
| 1801 | |
| 1802 | struct slot_rmap_walk_iterator { |
| 1803 | /* input fields. */ |
| 1804 | struct kvm_memory_slot *slot; |
| 1805 | gfn_t start_gfn; |
| 1806 | gfn_t end_gfn; |
| 1807 | int start_level; |
| 1808 | int end_level; |
| 1809 | |
| 1810 | /* output fields. */ |
| 1811 | gfn_t gfn; |
| 1812 | struct kvm_rmap_head *rmap; |
| 1813 | int level; |
| 1814 | |
| 1815 | /* private field. */ |
| 1816 | struct kvm_rmap_head *end_rmap; |
| 1817 | }; |
| 1818 | |
| 1819 | static void |
| 1820 | rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) |
| 1821 | { |
| 1822 | iterator->level = level; |
| 1823 | iterator->gfn = iterator->start_gfn; |
| 1824 | iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot); |
| 1825 | iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level, |
| 1826 | iterator->slot); |
| 1827 | } |
| 1828 | |
| 1829 | static void |
| 1830 | slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, |
| 1831 | struct kvm_memory_slot *slot, int start_level, |
| 1832 | int end_level, gfn_t start_gfn, gfn_t end_gfn) |
| 1833 | { |
| 1834 | iterator->slot = slot; |
| 1835 | iterator->start_level = start_level; |
| 1836 | iterator->end_level = end_level; |
| 1837 | iterator->start_gfn = start_gfn; |
| 1838 | iterator->end_gfn = end_gfn; |
| 1839 | |
| 1840 | rmap_walk_init_level(iterator, iterator->start_level); |
| 1841 | } |
| 1842 | |
| 1843 | static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) |
| 1844 | { |
| 1845 | return !!iterator->rmap; |
| 1846 | } |
| 1847 | |
| 1848 | static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) |
| 1849 | { |
| 1850 | if (++iterator->rmap <= iterator->end_rmap) { |
| 1851 | iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); |
| 1852 | return; |
| 1853 | } |
| 1854 | |
| 1855 | if (++iterator->level > iterator->end_level) { |
| 1856 | iterator->rmap = NULL; |
| 1857 | return; |
| 1858 | } |
| 1859 | |
| 1860 | rmap_walk_init_level(iterator, iterator->level); |
| 1861 | } |
| 1862 | |
| 1863 | #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ |
| 1864 | _start_gfn, _end_gfn, _iter_) \ |
| 1865 | for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ |
| 1866 | _end_level_, _start_gfn, _end_gfn); \ |
| 1867 | slot_rmap_walk_okay(_iter_); \ |
| 1868 | slot_rmap_walk_next(_iter_)) |
| 1869 | |
| 1870 | static int kvm_handle_hva_range(struct kvm *kvm, |
| 1871 | unsigned long start, |
| 1872 | unsigned long end, |
| 1873 | unsigned long data, |
| 1874 | int (*handler)(struct kvm *kvm, |
| 1875 | struct kvm_rmap_head *rmap_head, |
| 1876 | struct kvm_memory_slot *slot, |
| 1877 | gfn_t gfn, |
| 1878 | int level, |
| 1879 | unsigned long data)) |
| 1880 | { |
| 1881 | struct kvm_memslots *slots; |
| 1882 | struct kvm_memory_slot *memslot; |
| 1883 | struct slot_rmap_walk_iterator iterator; |
| 1884 | int ret = 0; |
| 1885 | int i; |
| 1886 | |
| 1887 | for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { |
| 1888 | slots = __kvm_memslots(kvm, i); |
| 1889 | kvm_for_each_memslot(memslot, slots) { |
| 1890 | unsigned long hva_start, hva_end; |
| 1891 | gfn_t gfn_start, gfn_end; |
| 1892 | |
| 1893 | hva_start = max(start, memslot->userspace_addr); |
| 1894 | hva_end = min(end, memslot->userspace_addr + |
| 1895 | (memslot->npages << PAGE_SHIFT)); |
| 1896 | if (hva_start >= hva_end) |
| 1897 | continue; |
| 1898 | /* |
| 1899 | * {gfn(page) | page intersects with [hva_start, hva_end)} = |
| 1900 | * {gfn_start, gfn_start+1, ..., gfn_end-1}. |
| 1901 | */ |
| 1902 | gfn_start = hva_to_gfn_memslot(hva_start, memslot); |
| 1903 | gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); |
| 1904 | |
| 1905 | for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL, |
| 1906 | PT_MAX_HUGEPAGE_LEVEL, |
| 1907 | gfn_start, gfn_end - 1, |
| 1908 | &iterator) |
| 1909 | ret |= handler(kvm, iterator.rmap, memslot, |
| 1910 | iterator.gfn, iterator.level, data); |
| 1911 | } |
| 1912 | } |
| 1913 | |
| 1914 | return ret; |
| 1915 | } |
| 1916 | |
| 1917 | static int kvm_handle_hva(struct kvm *kvm, unsigned long hva, |
| 1918 | unsigned long data, |
| 1919 | int (*handler)(struct kvm *kvm, |
| 1920 | struct kvm_rmap_head *rmap_head, |
| 1921 | struct kvm_memory_slot *slot, |
| 1922 | gfn_t gfn, int level, |
| 1923 | unsigned long data)) |
| 1924 | { |
| 1925 | return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler); |
| 1926 | } |
| 1927 | |
| 1928 | int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) |
| 1929 | { |
| 1930 | return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp); |
| 1931 | } |
| 1932 | |
| 1933 | void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) |
| 1934 | { |
| 1935 | kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp); |
| 1936 | } |
| 1937 | |
| 1938 | static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
| 1939 | struct kvm_memory_slot *slot, gfn_t gfn, int level, |
| 1940 | unsigned long data) |
| 1941 | { |
| 1942 | u64 *sptep; |
| 1943 | struct rmap_iterator uninitialized_var(iter); |
| 1944 | int young = 0; |
| 1945 | |
| 1946 | for_each_rmap_spte(rmap_head, &iter, sptep) |
| 1947 | young |= mmu_spte_age(sptep); |
| 1948 | |
| 1949 | trace_kvm_age_page(gfn, level, slot, young); |
| 1950 | return young; |
| 1951 | } |
| 1952 | |
| 1953 | static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, |
| 1954 | struct kvm_memory_slot *slot, gfn_t gfn, |
| 1955 | int level, unsigned long data) |
| 1956 | { |
| 1957 | u64 *sptep; |
| 1958 | struct rmap_iterator iter; |
| 1959 | |
| 1960 | for_each_rmap_spte(rmap_head, &iter, sptep) |
| 1961 | if (is_accessed_spte(*sptep)) |
| 1962 | return 1; |
| 1963 | return 0; |
| 1964 | } |
| 1965 | |
| 1966 | #define RMAP_RECYCLE_THRESHOLD 1000 |
| 1967 | |
| 1968 | static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) |
| 1969 | { |
| 1970 | struct kvm_rmap_head *rmap_head; |
| 1971 | struct kvm_mmu_page *sp; |
| 1972 | |
| 1973 | sp = page_header(__pa(spte)); |
| 1974 | |
| 1975 | rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); |
| 1976 | |
| 1977 | kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0); |
| 1978 | kvm_flush_remote_tlbs(vcpu->kvm); |
| 1979 | } |
| 1980 | |
| 1981 | int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) |
| 1982 | { |
| 1983 | return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp); |
| 1984 | } |
| 1985 | |
| 1986 | int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) |
| 1987 | { |
| 1988 | return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp); |
| 1989 | } |
| 1990 | |
| 1991 | #ifdef MMU_DEBUG |
| 1992 | static int is_empty_shadow_page(u64 *spt) |
| 1993 | { |
| 1994 | u64 *pos; |
| 1995 | u64 *end; |
| 1996 | |
| 1997 | for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) |
| 1998 | if (is_shadow_present_pte(*pos)) { |
| 1999 | printk(KERN_ERR "%s: %p %llx\n", __func__, |
| 2000 | pos, *pos); |
| 2001 | return 0; |
| 2002 | } |
| 2003 | return 1; |
| 2004 | } |
| 2005 | #endif |
| 2006 | |
| 2007 | /* |
| 2008 | * This value is the sum of all of the kvm instances's |
| 2009 | * kvm->arch.n_used_mmu_pages values. We need a global, |
| 2010 | * aggregate version in order to make the slab shrinker |
| 2011 | * faster |
| 2012 | */ |
| 2013 | static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr) |
| 2014 | { |
| 2015 | kvm->arch.n_used_mmu_pages += nr; |
| 2016 | percpu_counter_add(&kvm_total_used_mmu_pages, nr); |
| 2017 | } |
| 2018 | |
| 2019 | static void kvm_mmu_free_page(struct kvm_mmu_page *sp) |
| 2020 | { |
| 2021 | MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); |
| 2022 | hlist_del(&sp->hash_link); |
| 2023 | list_del(&sp->link); |
| 2024 | free_page((unsigned long)sp->spt); |
| 2025 | if (!sp->role.direct) |
| 2026 | free_page((unsigned long)sp->gfns); |
| 2027 | kmem_cache_free(mmu_page_header_cache, sp); |
| 2028 | } |
| 2029 | |
| 2030 | static unsigned kvm_page_table_hashfn(gfn_t gfn) |
| 2031 | { |
| 2032 | return hash_64(gfn, KVM_MMU_HASH_SHIFT); |
| 2033 | } |
| 2034 | |
| 2035 | static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, |
| 2036 | struct kvm_mmu_page *sp, u64 *parent_pte) |
| 2037 | { |
| 2038 | if (!parent_pte) |
| 2039 | return; |
| 2040 | |
| 2041 | pte_list_add(vcpu, parent_pte, &sp->parent_ptes); |
| 2042 | } |
| 2043 | |
| 2044 | static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, |
| 2045 | u64 *parent_pte) |
| 2046 | { |
| 2047 | pte_list_remove(parent_pte, &sp->parent_ptes); |
| 2048 | } |
| 2049 | |
| 2050 | static void drop_parent_pte(struct kvm_mmu_page *sp, |
| 2051 | u64 *parent_pte) |
| 2052 | { |
| 2053 | mmu_page_remove_parent_pte(sp, parent_pte); |
| 2054 | mmu_spte_clear_no_track(parent_pte); |
| 2055 | } |
| 2056 | |
| 2057 | static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) |
| 2058 | { |
| 2059 | struct kvm_mmu_page *sp; |
| 2060 | |
| 2061 | sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); |
| 2062 | sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); |
| 2063 | if (!direct) |
| 2064 | sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache); |
| 2065 | set_page_private(virt_to_page(sp->spt), (unsigned long)sp); |
| 2066 | |
| 2067 | /* |
| 2068 | * The active_mmu_pages list is the FIFO list, do not move the |
| 2069 | * page until it is zapped. kvm_zap_obsolete_pages depends on |
| 2070 | * this feature. See the comments in kvm_zap_obsolete_pages(). |
| 2071 | */ |
| 2072 | list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); |
| 2073 | kvm_mod_used_mmu_pages(vcpu->kvm, +1); |
| 2074 | return sp; |
| 2075 | } |
| 2076 | |
| 2077 | static void mark_unsync(u64 *spte); |
| 2078 | static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) |
| 2079 | { |
| 2080 | u64 *sptep; |
| 2081 | struct rmap_iterator iter; |
| 2082 | |
| 2083 | for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { |
| 2084 | mark_unsync(sptep); |
| 2085 | } |
| 2086 | } |
| 2087 | |
| 2088 | static void mark_unsync(u64 *spte) |
| 2089 | { |
| 2090 | struct kvm_mmu_page *sp; |
| 2091 | unsigned int index; |
| 2092 | |
| 2093 | sp = page_header(__pa(spte)); |
| 2094 | index = spte - sp->spt; |
| 2095 | if (__test_and_set_bit(index, sp->unsync_child_bitmap)) |
| 2096 | return; |
| 2097 | if (sp->unsync_children++) |
| 2098 | return; |
| 2099 | kvm_mmu_mark_parents_unsync(sp); |
| 2100 | } |
| 2101 | |
| 2102 | static int nonpaging_sync_page(struct kvm_vcpu *vcpu, |
| 2103 | struct kvm_mmu_page *sp) |
| 2104 | { |
| 2105 | return 0; |
| 2106 | } |
| 2107 | |
| 2108 | static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root) |
| 2109 | { |
| 2110 | } |
| 2111 | |
| 2112 | static void nonpaging_update_pte(struct kvm_vcpu *vcpu, |
| 2113 | struct kvm_mmu_page *sp, u64 *spte, |
| 2114 | const void *pte) |
| 2115 | { |
| 2116 | WARN_ON(1); |
| 2117 | } |
| 2118 | |
| 2119 | #define KVM_PAGE_ARRAY_NR 16 |
| 2120 | |
| 2121 | struct kvm_mmu_pages { |
| 2122 | struct mmu_page_and_offset { |
| 2123 | struct kvm_mmu_page *sp; |
| 2124 | unsigned int idx; |
| 2125 | } page[KVM_PAGE_ARRAY_NR]; |
| 2126 | unsigned int nr; |
| 2127 | }; |
| 2128 | |
| 2129 | static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, |
| 2130 | int idx) |
| 2131 | { |
| 2132 | int i; |
| 2133 | |
| 2134 | if (sp->unsync) |
| 2135 | for (i=0; i < pvec->nr; i++) |
| 2136 | if (pvec->page[i].sp == sp) |
| 2137 | return 0; |
| 2138 | |
| 2139 | pvec->page[pvec->nr].sp = sp; |
| 2140 | pvec->page[pvec->nr].idx = idx; |
| 2141 | pvec->nr++; |
| 2142 | return (pvec->nr == KVM_PAGE_ARRAY_NR); |
| 2143 | } |
| 2144 | |
| 2145 | static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) |
| 2146 | { |
| 2147 | --sp->unsync_children; |
| 2148 | WARN_ON((int)sp->unsync_children < 0); |
| 2149 | __clear_bit(idx, sp->unsync_child_bitmap); |
| 2150 | } |
| 2151 | |
| 2152 | static int __mmu_unsync_walk(struct kvm_mmu_page *sp, |
| 2153 | struct kvm_mmu_pages *pvec) |
| 2154 | { |
| 2155 | int i, ret, nr_unsync_leaf = 0; |
| 2156 | |
| 2157 | for_each_set_bit(i, sp->unsync_child_bitmap, 512) { |
| 2158 | struct kvm_mmu_page *child; |
| 2159 | u64 ent = sp->spt[i]; |
| 2160 | |
| 2161 | if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { |
| 2162 | clear_unsync_child_bit(sp, i); |
| 2163 | continue; |
| 2164 | } |
| 2165 | |
| 2166 | child = page_header(ent & PT64_BASE_ADDR_MASK); |
| 2167 | |
| 2168 | if (child->unsync_children) { |
| 2169 | if (mmu_pages_add(pvec, child, i)) |
| 2170 | return -ENOSPC; |
| 2171 | |
| 2172 | ret = __mmu_unsync_walk(child, pvec); |
| 2173 | if (!ret) { |
| 2174 | clear_unsync_child_bit(sp, i); |
| 2175 | continue; |
| 2176 | } else if (ret > 0) { |
| 2177 | nr_unsync_leaf += ret; |
| 2178 | } else |
| 2179 | return ret; |
| 2180 | } else if (child->unsync) { |
| 2181 | nr_unsync_leaf++; |
| 2182 | if (mmu_pages_add(pvec, child, i)) |
| 2183 | return -ENOSPC; |
| 2184 | } else |
| 2185 | clear_unsync_child_bit(sp, i); |
| 2186 | } |
| 2187 | |
| 2188 | return nr_unsync_leaf; |
| 2189 | } |
| 2190 | |
| 2191 | #define INVALID_INDEX (-1) |
| 2192 | |
| 2193 | static int mmu_unsync_walk(struct kvm_mmu_page *sp, |
| 2194 | struct kvm_mmu_pages *pvec) |
| 2195 | { |
| 2196 | pvec->nr = 0; |
| 2197 | if (!sp->unsync_children) |
| 2198 | return 0; |
| 2199 | |
| 2200 | mmu_pages_add(pvec, sp, INVALID_INDEX); |
| 2201 | return __mmu_unsync_walk(sp, pvec); |
| 2202 | } |
| 2203 | |
| 2204 | static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) |
| 2205 | { |
| 2206 | WARN_ON(!sp->unsync); |
| 2207 | trace_kvm_mmu_sync_page(sp); |
| 2208 | sp->unsync = 0; |
| 2209 | --kvm->stat.mmu_unsync; |
| 2210 | } |
| 2211 | |
| 2212 | static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, |
| 2213 | struct list_head *invalid_list); |
| 2214 | static void kvm_mmu_commit_zap_page(struct kvm *kvm, |
| 2215 | struct list_head *invalid_list); |
| 2216 | |
| 2217 | /* |
| 2218 | * NOTE: we should pay more attention on the zapped-obsolete page |
| 2219 | * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk |
| 2220 | * since it has been deleted from active_mmu_pages but still can be found |
| 2221 | * at hast list. |
| 2222 | * |
| 2223 | * for_each_valid_sp() has skipped that kind of pages. |
| 2224 | */ |
| 2225 | #define for_each_valid_sp(_kvm, _sp, _gfn) \ |
| 2226 | hlist_for_each_entry(_sp, \ |
| 2227 | &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \ |
| 2228 | if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \ |
| 2229 | } else |
| 2230 | |
| 2231 | #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ |
| 2232 | for_each_valid_sp(_kvm, _sp, _gfn) \ |
| 2233 | if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else |
| 2234 | |
| 2235 | /* @sp->gfn should be write-protected at the call site */ |
| 2236 | static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
| 2237 | struct list_head *invalid_list) |
| 2238 | { |
| 2239 | if (sp->role.cr4_pae != !!is_pae(vcpu) |
| 2240 | || vcpu->arch.mmu.sync_page(vcpu, sp) == 0) { |
| 2241 | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); |
| 2242 | return false; |
| 2243 | } |
| 2244 | |
| 2245 | return true; |
| 2246 | } |
| 2247 | |
| 2248 | static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu, |
| 2249 | struct list_head *invalid_list, |
| 2250 | bool remote_flush, bool local_flush) |
| 2251 | { |
| 2252 | if (!list_empty(invalid_list)) { |
| 2253 | kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list); |
| 2254 | return; |
| 2255 | } |
| 2256 | |
| 2257 | if (remote_flush) |
| 2258 | kvm_flush_remote_tlbs(vcpu->kvm); |
| 2259 | else if (local_flush) |
| 2260 | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
| 2261 | } |
| 2262 | |
| 2263 | #ifdef CONFIG_KVM_MMU_AUDIT |
| 2264 | #include "mmu_audit.c" |
| 2265 | #else |
| 2266 | static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } |
| 2267 | static void mmu_audit_disable(void) { } |
| 2268 | #endif |
| 2269 | |
| 2270 | static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) |
| 2271 | { |
| 2272 | return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); |
| 2273 | } |
| 2274 | |
| 2275 | static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
| 2276 | struct list_head *invalid_list) |
| 2277 | { |
| 2278 | kvm_unlink_unsync_page(vcpu->kvm, sp); |
| 2279 | return __kvm_sync_page(vcpu, sp, invalid_list); |
| 2280 | } |
| 2281 | |
| 2282 | /* @gfn should be write-protected at the call site */ |
| 2283 | static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, |
| 2284 | struct list_head *invalid_list) |
| 2285 | { |
| 2286 | struct kvm_mmu_page *s; |
| 2287 | bool ret = false; |
| 2288 | |
| 2289 | for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { |
| 2290 | if (!s->unsync) |
| 2291 | continue; |
| 2292 | |
| 2293 | WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL); |
| 2294 | ret |= kvm_sync_page(vcpu, s, invalid_list); |
| 2295 | } |
| 2296 | |
| 2297 | return ret; |
| 2298 | } |
| 2299 | |
| 2300 | struct mmu_page_path { |
| 2301 | struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; |
| 2302 | unsigned int idx[PT64_ROOT_MAX_LEVEL]; |
| 2303 | }; |
| 2304 | |
| 2305 | #define for_each_sp(pvec, sp, parents, i) \ |
| 2306 | for (i = mmu_pages_first(&pvec, &parents); \ |
| 2307 | i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ |
| 2308 | i = mmu_pages_next(&pvec, &parents, i)) |
| 2309 | |
| 2310 | static int mmu_pages_next(struct kvm_mmu_pages *pvec, |
| 2311 | struct mmu_page_path *parents, |
| 2312 | int i) |
| 2313 | { |
| 2314 | int n; |
| 2315 | |
| 2316 | for (n = i+1; n < pvec->nr; n++) { |
| 2317 | struct kvm_mmu_page *sp = pvec->page[n].sp; |
| 2318 | unsigned idx = pvec->page[n].idx; |
| 2319 | int level = sp->role.level; |
| 2320 | |
| 2321 | parents->idx[level-1] = idx; |
| 2322 | if (level == PT_PAGE_TABLE_LEVEL) |
| 2323 | break; |
| 2324 | |
| 2325 | parents->parent[level-2] = sp; |
| 2326 | } |
| 2327 | |
| 2328 | return n; |
| 2329 | } |
| 2330 | |
| 2331 | static int mmu_pages_first(struct kvm_mmu_pages *pvec, |
| 2332 | struct mmu_page_path *parents) |
| 2333 | { |
| 2334 | struct kvm_mmu_page *sp; |
| 2335 | int level; |
| 2336 | |
| 2337 | if (pvec->nr == 0) |
| 2338 | return 0; |
| 2339 | |
| 2340 | WARN_ON(pvec->page[0].idx != INVALID_INDEX); |
| 2341 | |
| 2342 | sp = pvec->page[0].sp; |
| 2343 | level = sp->role.level; |
| 2344 | WARN_ON(level == PT_PAGE_TABLE_LEVEL); |
| 2345 | |
| 2346 | parents->parent[level-2] = sp; |
| 2347 | |
| 2348 | /* Also set up a sentinel. Further entries in pvec are all |
| 2349 | * children of sp, so this element is never overwritten. |
| 2350 | */ |
| 2351 | parents->parent[level-1] = NULL; |
| 2352 | return mmu_pages_next(pvec, parents, 0); |
| 2353 | } |
| 2354 | |
| 2355 | static void mmu_pages_clear_parents(struct mmu_page_path *parents) |
| 2356 | { |
| 2357 | struct kvm_mmu_page *sp; |
| 2358 | unsigned int level = 0; |
| 2359 | |
| 2360 | do { |
| 2361 | unsigned int idx = parents->idx[level]; |
| 2362 | sp = parents->parent[level]; |
| 2363 | if (!sp) |
| 2364 | return; |
| 2365 | |
| 2366 | WARN_ON(idx == INVALID_INDEX); |
| 2367 | clear_unsync_child_bit(sp, idx); |
| 2368 | level++; |
| 2369 | } while (!sp->unsync_children); |
| 2370 | } |
| 2371 | |
| 2372 | static void mmu_sync_children(struct kvm_vcpu *vcpu, |
| 2373 | struct kvm_mmu_page *parent) |
| 2374 | { |
| 2375 | int i; |
| 2376 | struct kvm_mmu_page *sp; |
| 2377 | struct mmu_page_path parents; |
| 2378 | struct kvm_mmu_pages pages; |
| 2379 | LIST_HEAD(invalid_list); |
| 2380 | bool flush = false; |
| 2381 | |
| 2382 | while (mmu_unsync_walk(parent, &pages)) { |
| 2383 | bool protected = false; |
| 2384 | |
| 2385 | for_each_sp(pages, sp, parents, i) |
| 2386 | protected |= rmap_write_protect(vcpu, sp->gfn); |
| 2387 | |
| 2388 | if (protected) { |
| 2389 | kvm_flush_remote_tlbs(vcpu->kvm); |
| 2390 | flush = false; |
| 2391 | } |
| 2392 | |
| 2393 | for_each_sp(pages, sp, parents, i) { |
| 2394 | flush |= kvm_sync_page(vcpu, sp, &invalid_list); |
| 2395 | mmu_pages_clear_parents(&parents); |
| 2396 | } |
| 2397 | if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) { |
| 2398 | kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); |
| 2399 | cond_resched_lock(&vcpu->kvm->mmu_lock); |
| 2400 | flush = false; |
| 2401 | } |
| 2402 | } |
| 2403 | |
| 2404 | kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); |
| 2405 | } |
| 2406 | |
| 2407 | static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) |
| 2408 | { |
| 2409 | atomic_set(&sp->write_flooding_count, 0); |
| 2410 | } |
| 2411 | |
| 2412 | static void clear_sp_write_flooding_count(u64 *spte) |
| 2413 | { |
| 2414 | struct kvm_mmu_page *sp = page_header(__pa(spte)); |
| 2415 | |
| 2416 | __clear_sp_write_flooding_count(sp); |
| 2417 | } |
| 2418 | |
| 2419 | static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, |
| 2420 | gfn_t gfn, |
| 2421 | gva_t gaddr, |
| 2422 | unsigned level, |
| 2423 | int direct, |
| 2424 | unsigned access) |
| 2425 | { |
| 2426 | union kvm_mmu_page_role role; |
| 2427 | unsigned quadrant; |
| 2428 | struct kvm_mmu_page *sp; |
| 2429 | bool need_sync = false; |
| 2430 | bool flush = false; |
| 2431 | int collisions = 0; |
| 2432 | LIST_HEAD(invalid_list); |
| 2433 | |
| 2434 | role = vcpu->arch.mmu.base_role; |
| 2435 | role.level = level; |
| 2436 | role.direct = direct; |
| 2437 | if (role.direct) |
| 2438 | role.cr4_pae = 0; |
| 2439 | role.access = access; |
| 2440 | if (!vcpu->arch.mmu.direct_map |
| 2441 | && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) { |
| 2442 | quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); |
| 2443 | quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; |
| 2444 | role.quadrant = quadrant; |
| 2445 | } |
| 2446 | for_each_valid_sp(vcpu->kvm, sp, gfn) { |
| 2447 | if (sp->gfn != gfn) { |
| 2448 | collisions++; |
| 2449 | continue; |
| 2450 | } |
| 2451 | |
| 2452 | if (!need_sync && sp->unsync) |
| 2453 | need_sync = true; |
| 2454 | |
| 2455 | if (sp->role.word != role.word) |
| 2456 | continue; |
| 2457 | |
| 2458 | if (sp->unsync) { |
| 2459 | /* The page is good, but __kvm_sync_page might still end |
| 2460 | * up zapping it. If so, break in order to rebuild it. |
| 2461 | */ |
| 2462 | if (!__kvm_sync_page(vcpu, sp, &invalid_list)) |
| 2463 | break; |
| 2464 | |
| 2465 | WARN_ON(!list_empty(&invalid_list)); |
| 2466 | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
| 2467 | } |
| 2468 | |
| 2469 | if (sp->unsync_children) |
| 2470 | kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); |
| 2471 | |
| 2472 | __clear_sp_write_flooding_count(sp); |
| 2473 | trace_kvm_mmu_get_page(sp, false); |
| 2474 | goto out; |
| 2475 | } |
| 2476 | |
| 2477 | ++vcpu->kvm->stat.mmu_cache_miss; |
| 2478 | |
| 2479 | sp = kvm_mmu_alloc_page(vcpu, direct); |
| 2480 | |
| 2481 | sp->gfn = gfn; |
| 2482 | sp->role = role; |
| 2483 | hlist_add_head(&sp->hash_link, |
| 2484 | &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]); |
| 2485 | if (!direct) { |
| 2486 | /* |
| 2487 | * we should do write protection before syncing pages |
| 2488 | * otherwise the content of the synced shadow page may |
| 2489 | * be inconsistent with guest page table. |
| 2490 | */ |
| 2491 | account_shadowed(vcpu->kvm, sp); |
| 2492 | if (level == PT_PAGE_TABLE_LEVEL && |
| 2493 | rmap_write_protect(vcpu, gfn)) |
| 2494 | kvm_flush_remote_tlbs(vcpu->kvm); |
| 2495 | |
| 2496 | if (level > PT_PAGE_TABLE_LEVEL && need_sync) |
| 2497 | flush |= kvm_sync_pages(vcpu, gfn, &invalid_list); |
| 2498 | } |
| 2499 | sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; |
| 2500 | clear_page(sp->spt); |
| 2501 | trace_kvm_mmu_get_page(sp, true); |
| 2502 | |
| 2503 | kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); |
| 2504 | out: |
| 2505 | if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) |
| 2506 | vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; |
| 2507 | return sp; |
| 2508 | } |
| 2509 | |
| 2510 | static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, |
| 2511 | struct kvm_vcpu *vcpu, hpa_t root, |
| 2512 | u64 addr) |
| 2513 | { |
| 2514 | iterator->addr = addr; |
| 2515 | iterator->shadow_addr = root; |
| 2516 | iterator->level = vcpu->arch.mmu.shadow_root_level; |
| 2517 | |
| 2518 | if (iterator->level == PT64_ROOT_4LEVEL && |
| 2519 | vcpu->arch.mmu.root_level < PT64_ROOT_4LEVEL && |
| 2520 | !vcpu->arch.mmu.direct_map) |
| 2521 | --iterator->level; |
| 2522 | |
| 2523 | if (iterator->level == PT32E_ROOT_LEVEL) { |
| 2524 | /* |
| 2525 | * prev_root is currently only used for 64-bit hosts. So only |
| 2526 | * the active root_hpa is valid here. |
| 2527 | */ |
| 2528 | BUG_ON(root != vcpu->arch.mmu.root_hpa); |
| 2529 | |
| 2530 | iterator->shadow_addr |
| 2531 | = vcpu->arch.mmu.pae_root[(addr >> 30) & 3]; |
| 2532 | iterator->shadow_addr &= PT64_BASE_ADDR_MASK; |
| 2533 | --iterator->level; |
| 2534 | if (!iterator->shadow_addr) |
| 2535 | iterator->level = 0; |
| 2536 | } |
| 2537 | } |
| 2538 | |
| 2539 | static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, |
| 2540 | struct kvm_vcpu *vcpu, u64 addr) |
| 2541 | { |
| 2542 | shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu.root_hpa, |
| 2543 | addr); |
| 2544 | } |
| 2545 | |
| 2546 | static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) |
| 2547 | { |
| 2548 | if (iterator->level < PT_PAGE_TABLE_LEVEL) |
| 2549 | return false; |
| 2550 | |
| 2551 | iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); |
| 2552 | iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; |
| 2553 | return true; |
| 2554 | } |
| 2555 | |
| 2556 | static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, |
| 2557 | u64 spte) |
| 2558 | { |
| 2559 | if (is_last_spte(spte, iterator->level)) { |
| 2560 | iterator->level = 0; |
| 2561 | return; |
| 2562 | } |
| 2563 | |
| 2564 | iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; |
| 2565 | --iterator->level; |
| 2566 | } |
| 2567 | |
| 2568 | static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) |
| 2569 | { |
| 2570 | __shadow_walk_next(iterator, *iterator->sptep); |
| 2571 | } |
| 2572 | |
| 2573 | static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, |
| 2574 | struct kvm_mmu_page *sp) |
| 2575 | { |
| 2576 | u64 spte; |
| 2577 | |
| 2578 | BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); |
| 2579 | |
| 2580 | spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK | |
| 2581 | shadow_user_mask | shadow_x_mask | shadow_me_mask; |
| 2582 | |
| 2583 | if (sp_ad_disabled(sp)) |
| 2584 | spte |= shadow_acc_track_value; |
| 2585 | else |
| 2586 | spte |= shadow_accessed_mask; |
| 2587 | |
| 2588 | mmu_spte_set(sptep, spte); |
| 2589 | |
| 2590 | mmu_page_add_parent_pte(vcpu, sp, sptep); |
| 2591 | |
| 2592 | if (sp->unsync_children || sp->unsync) |
| 2593 | mark_unsync(sptep); |
| 2594 | } |
| 2595 | |
| 2596 | static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, |
| 2597 | unsigned direct_access) |
| 2598 | { |
| 2599 | if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { |
| 2600 | struct kvm_mmu_page *child; |
| 2601 | |
| 2602 | /* |
| 2603 | * For the direct sp, if the guest pte's dirty bit |
| 2604 | * changed form clean to dirty, it will corrupt the |
| 2605 | * sp's access: allow writable in the read-only sp, |
| 2606 | * so we should update the spte at this point to get |
| 2607 | * a new sp with the correct access. |
| 2608 | */ |
| 2609 | child = page_header(*sptep & PT64_BASE_ADDR_MASK); |
| 2610 | if (child->role.access == direct_access) |
| 2611 | return; |
| 2612 | |
| 2613 | drop_parent_pte(child, sptep); |
| 2614 | kvm_flush_remote_tlbs(vcpu->kvm); |
| 2615 | } |
| 2616 | } |
| 2617 | |
| 2618 | static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, |
| 2619 | u64 *spte) |
| 2620 | { |
| 2621 | u64 pte; |
| 2622 | struct kvm_mmu_page *child; |
| 2623 | |
| 2624 | pte = *spte; |
| 2625 | if (is_shadow_present_pte(pte)) { |
| 2626 | if (is_last_spte(pte, sp->role.level)) { |
| 2627 | drop_spte(kvm, spte); |
| 2628 | if (is_large_pte(pte)) |
| 2629 | --kvm->stat.lpages; |
| 2630 | } else { |
| 2631 | child = page_header(pte & PT64_BASE_ADDR_MASK); |
| 2632 | drop_parent_pte(child, spte); |
| 2633 | } |
| 2634 | return true; |
| 2635 | } |
| 2636 | |
| 2637 | if (is_mmio_spte(pte)) |
| 2638 | mmu_spte_clear_no_track(spte); |
| 2639 | |
| 2640 | return false; |
| 2641 | } |
| 2642 | |
| 2643 | static void kvm_mmu_page_unlink_children(struct kvm *kvm, |
| 2644 | struct kvm_mmu_page *sp) |
| 2645 | { |
| 2646 | unsigned i; |
| 2647 | |
| 2648 | for (i = 0; i < PT64_ENT_PER_PAGE; ++i) |
| 2649 | mmu_page_zap_pte(kvm, sp, sp->spt + i); |
| 2650 | } |
| 2651 | |
| 2652 | static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) |
| 2653 | { |
| 2654 | u64 *sptep; |
| 2655 | struct rmap_iterator iter; |
| 2656 | |
| 2657 | while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) |
| 2658 | drop_parent_pte(sp, sptep); |
| 2659 | } |
| 2660 | |
| 2661 | static int mmu_zap_unsync_children(struct kvm *kvm, |
| 2662 | struct kvm_mmu_page *parent, |
| 2663 | struct list_head *invalid_list) |
| 2664 | { |
| 2665 | int i, zapped = 0; |
| 2666 | struct mmu_page_path parents; |
| 2667 | struct kvm_mmu_pages pages; |
| 2668 | |
| 2669 | if (parent->role.level == PT_PAGE_TABLE_LEVEL) |
| 2670 | return 0; |
| 2671 | |
| 2672 | while (mmu_unsync_walk(parent, &pages)) { |
| 2673 | struct kvm_mmu_page *sp; |
| 2674 | |
| 2675 | for_each_sp(pages, sp, parents, i) { |
| 2676 | kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); |
| 2677 | mmu_pages_clear_parents(&parents); |
| 2678 | zapped++; |
| 2679 | } |
| 2680 | } |
| 2681 | |
| 2682 | return zapped; |
| 2683 | } |
| 2684 | |
| 2685 | static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, |
| 2686 | struct list_head *invalid_list) |
| 2687 | { |
| 2688 | int ret; |
| 2689 | |
| 2690 | trace_kvm_mmu_prepare_zap_page(sp); |
| 2691 | ++kvm->stat.mmu_shadow_zapped; |
| 2692 | ret = mmu_zap_unsync_children(kvm, sp, invalid_list); |
| 2693 | kvm_mmu_page_unlink_children(kvm, sp); |
| 2694 | kvm_mmu_unlink_parents(kvm, sp); |
| 2695 | |
| 2696 | if (!sp->role.invalid && !sp->role.direct) |
| 2697 | unaccount_shadowed(kvm, sp); |
| 2698 | |
| 2699 | if (sp->unsync) |
| 2700 | kvm_unlink_unsync_page(kvm, sp); |
| 2701 | if (!sp->root_count) { |
| 2702 | /* Count self */ |
| 2703 | ret++; |
| 2704 | list_move(&sp->link, invalid_list); |
| 2705 | kvm_mod_used_mmu_pages(kvm, -1); |
| 2706 | } else { |
| 2707 | list_move(&sp->link, &kvm->arch.active_mmu_pages); |
| 2708 | |
| 2709 | /* |
| 2710 | * The obsolete pages can not be used on any vcpus. |
| 2711 | * See the comments in kvm_mmu_invalidate_zap_all_pages(). |
| 2712 | */ |
| 2713 | if (!sp->role.invalid && !is_obsolete_sp(kvm, sp)) |
| 2714 | kvm_reload_remote_mmus(kvm); |
| 2715 | } |
| 2716 | |
| 2717 | if (sp->lpage_disallowed) |
| 2718 | unaccount_huge_nx_page(kvm, sp); |
| 2719 | |
| 2720 | sp->role.invalid = 1; |
| 2721 | return ret; |
| 2722 | } |
| 2723 | |
| 2724 | static void kvm_mmu_commit_zap_page(struct kvm *kvm, |
| 2725 | struct list_head *invalid_list) |
| 2726 | { |
| 2727 | struct kvm_mmu_page *sp, *nsp; |
| 2728 | |
| 2729 | if (list_empty(invalid_list)) |
| 2730 | return; |
| 2731 | |
| 2732 | /* |
| 2733 | * We need to make sure everyone sees our modifications to |
| 2734 | * the page tables and see changes to vcpu->mode here. The barrier |
| 2735 | * in the kvm_flush_remote_tlbs() achieves this. This pairs |
| 2736 | * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. |
| 2737 | * |
| 2738 | * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit |
| 2739 | * guest mode and/or lockless shadow page table walks. |
| 2740 | */ |
| 2741 | kvm_flush_remote_tlbs(kvm); |
| 2742 | |
| 2743 | list_for_each_entry_safe(sp, nsp, invalid_list, link) { |
| 2744 | WARN_ON(!sp->role.invalid || sp->root_count); |
| 2745 | kvm_mmu_free_page(sp); |
| 2746 | } |
| 2747 | } |
| 2748 | |
| 2749 | static bool prepare_zap_oldest_mmu_page(struct kvm *kvm, |
| 2750 | struct list_head *invalid_list) |
| 2751 | { |
| 2752 | struct kvm_mmu_page *sp; |
| 2753 | |
| 2754 | if (list_empty(&kvm->arch.active_mmu_pages)) |
| 2755 | return false; |
| 2756 | |
| 2757 | sp = list_last_entry(&kvm->arch.active_mmu_pages, |
| 2758 | struct kvm_mmu_page, link); |
| 2759 | return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); |
| 2760 | } |
| 2761 | |
| 2762 | /* |
| 2763 | * Changing the number of mmu pages allocated to the vm |
| 2764 | * Note: if goal_nr_mmu_pages is too small, you will get dead lock |
| 2765 | */ |
| 2766 | void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) |
| 2767 | { |
| 2768 | LIST_HEAD(invalid_list); |
| 2769 | |
| 2770 | spin_lock(&kvm->mmu_lock); |
| 2771 | |
| 2772 | if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { |
| 2773 | /* Need to free some mmu pages to achieve the goal. */ |
| 2774 | while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) |
| 2775 | if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list)) |
| 2776 | break; |
| 2777 | |
| 2778 | kvm_mmu_commit_zap_page(kvm, &invalid_list); |
| 2779 | goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; |
| 2780 | } |
| 2781 | |
| 2782 | kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; |
| 2783 | |
| 2784 | spin_unlock(&kvm->mmu_lock); |
| 2785 | } |
| 2786 | |
| 2787 | int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) |
| 2788 | { |
| 2789 | struct kvm_mmu_page *sp; |
| 2790 | LIST_HEAD(invalid_list); |
| 2791 | int r; |
| 2792 | |
| 2793 | pgprintk("%s: looking for gfn %llx\n", __func__, gfn); |
| 2794 | r = 0; |
| 2795 | spin_lock(&kvm->mmu_lock); |
| 2796 | for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { |
| 2797 | pgprintk("%s: gfn %llx role %x\n", __func__, gfn, |
| 2798 | sp->role.word); |
| 2799 | r = 1; |
| 2800 | kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); |
| 2801 | } |
| 2802 | kvm_mmu_commit_zap_page(kvm, &invalid_list); |
| 2803 | spin_unlock(&kvm->mmu_lock); |
| 2804 | |
| 2805 | return r; |
| 2806 | } |
| 2807 | EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page); |
| 2808 | |
| 2809 | static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) |
| 2810 | { |
| 2811 | trace_kvm_mmu_unsync_page(sp); |
| 2812 | ++vcpu->kvm->stat.mmu_unsync; |
| 2813 | sp->unsync = 1; |
| 2814 | |
| 2815 | kvm_mmu_mark_parents_unsync(sp); |
| 2816 | } |
| 2817 | |
| 2818 | static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, |
| 2819 | bool can_unsync) |
| 2820 | { |
| 2821 | struct kvm_mmu_page *sp; |
| 2822 | |
| 2823 | if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) |
| 2824 | return true; |
| 2825 | |
| 2826 | for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { |
| 2827 | if (!can_unsync) |
| 2828 | return true; |
| 2829 | |
| 2830 | if (sp->unsync) |
| 2831 | continue; |
| 2832 | |
| 2833 | WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL); |
| 2834 | kvm_unsync_page(vcpu, sp); |
| 2835 | } |
| 2836 | |
| 2837 | /* |
| 2838 | * We need to ensure that the marking of unsync pages is visible |
| 2839 | * before the SPTE is updated to allow writes because |
| 2840 | * kvm_mmu_sync_roots() checks the unsync flags without holding |
| 2841 | * the MMU lock and so can race with this. If the SPTE was updated |
| 2842 | * before the page had been marked as unsync-ed, something like the |
| 2843 | * following could happen: |
| 2844 | * |
| 2845 | * CPU 1 CPU 2 |
| 2846 | * --------------------------------------------------------------------- |
| 2847 | * 1.2 Host updates SPTE |
| 2848 | * to be writable |
| 2849 | * 2.1 Guest writes a GPTE for GVA X. |
| 2850 | * (GPTE being in the guest page table shadowed |
| 2851 | * by the SP from CPU 1.) |
| 2852 | * This reads SPTE during the page table walk. |
| 2853 | * Since SPTE.W is read as 1, there is no |
| 2854 | * fault. |
| 2855 | * |
| 2856 | * 2.2 Guest issues TLB flush. |
| 2857 | * That causes a VM Exit. |
| 2858 | * |
| 2859 | * 2.3 kvm_mmu_sync_pages() reads sp->unsync. |
| 2860 | * Since it is false, so it just returns. |
| 2861 | * |
| 2862 | * 2.4 Guest accesses GVA X. |
| 2863 | * Since the mapping in the SP was not updated, |
| 2864 | * so the old mapping for GVA X incorrectly |
| 2865 | * gets used. |
| 2866 | * 1.1 Host marks SP |
| 2867 | * as unsync |
| 2868 | * (sp->unsync = true) |
| 2869 | * |
| 2870 | * The write barrier below ensures that 1.1 happens before 1.2 and thus |
| 2871 | * the situation in 2.4 does not arise. The implicit barrier in 2.2 |
| 2872 | * pairs with this write barrier. |
| 2873 | */ |
| 2874 | smp_wmb(); |
| 2875 | |
| 2876 | return false; |
| 2877 | } |
| 2878 | |
| 2879 | static bool kvm_is_mmio_pfn(kvm_pfn_t pfn) |
| 2880 | { |
| 2881 | if (pfn_valid(pfn)) |
| 2882 | return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) && |
| 2883 | /* |
| 2884 | * Some reserved pages, such as those from NVDIMM |
| 2885 | * DAX devices, are not for MMIO, and can be mapped |
| 2886 | * with cached memory type for better performance. |
| 2887 | * However, the above check misconceives those pages |
| 2888 | * as MMIO, and results in KVM mapping them with UC |
| 2889 | * memory type, which would hurt the performance. |
| 2890 | * Therefore, we check the host memory type in addition |
| 2891 | * and only treat UC/UC-/WC pages as MMIO. |
| 2892 | */ |
| 2893 | (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn)); |
| 2894 | |
| 2895 | return true; |
| 2896 | } |
| 2897 | |
| 2898 | /* Bits which may be returned by set_spte() */ |
| 2899 | #define SET_SPTE_WRITE_PROTECTED_PT BIT(0) |
| 2900 | #define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1) |
| 2901 | |
| 2902 | static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, |
| 2903 | unsigned pte_access, int level, |
| 2904 | gfn_t gfn, kvm_pfn_t pfn, bool speculative, |
| 2905 | bool can_unsync, bool host_writable) |
| 2906 | { |
| 2907 | u64 spte = 0; |
| 2908 | int ret = 0; |
| 2909 | struct kvm_mmu_page *sp; |
| 2910 | |
| 2911 | if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access)) |
| 2912 | return 0; |
| 2913 | |
| 2914 | sp = page_header(__pa(sptep)); |
| 2915 | if (sp_ad_disabled(sp)) |
| 2916 | spte |= shadow_acc_track_value; |
| 2917 | |
| 2918 | /* |
| 2919 | * For the EPT case, shadow_present_mask is 0 if hardware |
| 2920 | * supports exec-only page table entries. In that case, |
| 2921 | * ACC_USER_MASK and shadow_user_mask are used to represent |
| 2922 | * read access. See FNAME(gpte_access) in paging_tmpl.h. |
| 2923 | */ |
| 2924 | spte |= shadow_present_mask; |
| 2925 | if (!speculative) |
| 2926 | spte |= spte_shadow_accessed_mask(spte); |
| 2927 | |
| 2928 | if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) && |
| 2929 | is_nx_huge_page_enabled()) { |
| 2930 | pte_access &= ~ACC_EXEC_MASK; |
| 2931 | } |
| 2932 | |
| 2933 | if (pte_access & ACC_EXEC_MASK) |
| 2934 | spte |= shadow_x_mask; |
| 2935 | else |
| 2936 | spte |= shadow_nx_mask; |
| 2937 | |
| 2938 | if (pte_access & ACC_USER_MASK) |
| 2939 | spte |= shadow_user_mask; |
| 2940 | |
| 2941 | if (level > PT_PAGE_TABLE_LEVEL) |
| 2942 | spte |= PT_PAGE_SIZE_MASK; |
| 2943 | if (tdp_enabled) |
| 2944 | spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn, |
| 2945 | kvm_is_mmio_pfn(pfn)); |
| 2946 | |
| 2947 | if (host_writable) |
| 2948 | spte |= SPTE_HOST_WRITEABLE; |
| 2949 | else |
| 2950 | pte_access &= ~ACC_WRITE_MASK; |
| 2951 | |
| 2952 | if (!kvm_is_mmio_pfn(pfn)) |
| 2953 | spte |= shadow_me_mask; |
| 2954 | |
| 2955 | spte |= (u64)pfn << PAGE_SHIFT; |
| 2956 | |
| 2957 | if (pte_access & ACC_WRITE_MASK) { |
| 2958 | |
| 2959 | /* |
| 2960 | * Other vcpu creates new sp in the window between |
| 2961 | * mapping_level() and acquiring mmu-lock. We can |
| 2962 | * allow guest to retry the access, the mapping can |
| 2963 | * be fixed if guest refault. |
| 2964 | */ |
| 2965 | if (level > PT_PAGE_TABLE_LEVEL && |
| 2966 | mmu_gfn_lpage_is_disallowed(vcpu, gfn, level)) |
| 2967 | goto done; |
| 2968 | |
| 2969 | spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE; |
| 2970 | |
| 2971 | /* |
| 2972 | * Optimization: for pte sync, if spte was writable the hash |
| 2973 | * lookup is unnecessary (and expensive). Write protection |
| 2974 | * is responsibility of mmu_get_page / kvm_sync_page. |
| 2975 | * Same reasoning can be applied to dirty page accounting. |
| 2976 | */ |
| 2977 | if (!can_unsync && is_writable_pte(*sptep)) |
| 2978 | goto set_pte; |
| 2979 | |
| 2980 | if (mmu_need_write_protect(vcpu, gfn, can_unsync)) { |
| 2981 | pgprintk("%s: found shadow page for %llx, marking ro\n", |
| 2982 | __func__, gfn); |
| 2983 | ret |= SET_SPTE_WRITE_PROTECTED_PT; |
| 2984 | pte_access &= ~ACC_WRITE_MASK; |
| 2985 | spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE); |
| 2986 | } |
| 2987 | } |
| 2988 | |
| 2989 | if (pte_access & ACC_WRITE_MASK) { |
| 2990 | kvm_vcpu_mark_page_dirty(vcpu, gfn); |
| 2991 | spte |= spte_shadow_dirty_mask(spte); |
| 2992 | } |
| 2993 | |
| 2994 | if (speculative) |
| 2995 | spte = mark_spte_for_access_track(spte); |
| 2996 | |
| 2997 | set_pte: |
| 2998 | if (mmu_spte_update(sptep, spte)) |
| 2999 | ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH; |
| 3000 | done: |
| 3001 | return ret; |
| 3002 | } |
| 3003 | |
| 3004 | static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access, |
| 3005 | int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn, |
| 3006 | bool speculative, bool host_writable) |
| 3007 | { |
| 3008 | int was_rmapped = 0; |
| 3009 | int rmap_count; |
| 3010 | int set_spte_ret; |
| 3011 | int ret = RET_PF_RETRY; |
| 3012 | bool flush = false; |
| 3013 | |
| 3014 | pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, |
| 3015 | *sptep, write_fault, gfn); |
| 3016 | |
| 3017 | if (is_shadow_present_pte(*sptep)) { |
| 3018 | /* |
| 3019 | * If we overwrite a PTE page pointer with a 2MB PMD, unlink |
| 3020 | * the parent of the now unreachable PTE. |
| 3021 | */ |
| 3022 | if (level > PT_PAGE_TABLE_LEVEL && |
| 3023 | !is_large_pte(*sptep)) { |
| 3024 | struct kvm_mmu_page *child; |
| 3025 | u64 pte = *sptep; |
| 3026 | |
| 3027 | child = page_header(pte & PT64_BASE_ADDR_MASK); |
| 3028 | drop_parent_pte(child, sptep); |
| 3029 | flush = true; |
| 3030 | } else if (pfn != spte_to_pfn(*sptep)) { |
| 3031 | pgprintk("hfn old %llx new %llx\n", |
| 3032 | spte_to_pfn(*sptep), pfn); |
| 3033 | drop_spte(vcpu->kvm, sptep); |
| 3034 | flush = true; |
| 3035 | } else |
| 3036 | was_rmapped = 1; |
| 3037 | } |
| 3038 | |
| 3039 | set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn, |
| 3040 | speculative, true, host_writable); |
| 3041 | if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { |
| 3042 | if (write_fault) |
| 3043 | ret = RET_PF_EMULATE; |
| 3044 | kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); |
| 3045 | } |
| 3046 | if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) |
| 3047 | kvm_flush_remote_tlbs(vcpu->kvm); |
| 3048 | |
| 3049 | if (unlikely(is_mmio_spte(*sptep))) |
| 3050 | ret = RET_PF_EMULATE; |
| 3051 | |
| 3052 | pgprintk("%s: setting spte %llx\n", __func__, *sptep); |
| 3053 | trace_kvm_mmu_set_spte(level, gfn, sptep); |
| 3054 | if (!was_rmapped && is_large_pte(*sptep)) |
| 3055 | ++vcpu->kvm->stat.lpages; |
| 3056 | |
| 3057 | if (is_shadow_present_pte(*sptep)) { |
| 3058 | if (!was_rmapped) { |
| 3059 | rmap_count = rmap_add(vcpu, sptep, gfn); |
| 3060 | if (rmap_count > RMAP_RECYCLE_THRESHOLD) |
| 3061 | rmap_recycle(vcpu, sptep, gfn); |
| 3062 | } |
| 3063 | } |
| 3064 | |
| 3065 | return ret; |
| 3066 | } |
| 3067 | |
| 3068 | static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, |
| 3069 | bool no_dirty_log) |
| 3070 | { |
| 3071 | struct kvm_memory_slot *slot; |
| 3072 | |
| 3073 | slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); |
| 3074 | if (!slot) |
| 3075 | return KVM_PFN_ERR_FAULT; |
| 3076 | |
| 3077 | return gfn_to_pfn_memslot_atomic(slot, gfn); |
| 3078 | } |
| 3079 | |
| 3080 | static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, |
| 3081 | struct kvm_mmu_page *sp, |
| 3082 | u64 *start, u64 *end) |
| 3083 | { |
| 3084 | struct page *pages[PTE_PREFETCH_NUM]; |
| 3085 | struct kvm_memory_slot *slot; |
| 3086 | unsigned access = sp->role.access; |
| 3087 | int i, ret; |
| 3088 | gfn_t gfn; |
| 3089 | |
| 3090 | gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); |
| 3091 | slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); |
| 3092 | if (!slot) |
| 3093 | return -1; |
| 3094 | |
| 3095 | ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); |
| 3096 | if (ret <= 0) |
| 3097 | return -1; |
| 3098 | |
| 3099 | for (i = 0; i < ret; i++, gfn++, start++) { |
| 3100 | mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn, |
| 3101 | page_to_pfn(pages[i]), true, true); |
| 3102 | put_page(pages[i]); |
| 3103 | } |
| 3104 | |
| 3105 | return 0; |
| 3106 | } |
| 3107 | |
| 3108 | static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, |
| 3109 | struct kvm_mmu_page *sp, u64 *sptep) |
| 3110 | { |
| 3111 | u64 *spte, *start = NULL; |
| 3112 | int i; |
| 3113 | |
| 3114 | WARN_ON(!sp->role.direct); |
| 3115 | |
| 3116 | i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); |
| 3117 | spte = sp->spt + i; |
| 3118 | |
| 3119 | for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { |
| 3120 | if (is_shadow_present_pte(*spte) || spte == sptep) { |
| 3121 | if (!start) |
| 3122 | continue; |
| 3123 | if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) |
| 3124 | break; |
| 3125 | start = NULL; |
| 3126 | } else if (!start) |
| 3127 | start = spte; |
| 3128 | } |
| 3129 | } |
| 3130 | |
| 3131 | static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) |
| 3132 | { |
| 3133 | struct kvm_mmu_page *sp; |
| 3134 | |
| 3135 | sp = page_header(__pa(sptep)); |
| 3136 | |
| 3137 | /* |
| 3138 | * Without accessed bits, there's no way to distinguish between |
| 3139 | * actually accessed translations and prefetched, so disable pte |
| 3140 | * prefetch if accessed bits aren't available. |
| 3141 | */ |
| 3142 | if (sp_ad_disabled(sp)) |
| 3143 | return; |
| 3144 | |
| 3145 | if (sp->role.level > PT_PAGE_TABLE_LEVEL) |
| 3146 | return; |
| 3147 | |
| 3148 | __direct_pte_prefetch(vcpu, sp, sptep); |
| 3149 | } |
| 3150 | |
| 3151 | static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it, |
| 3152 | gfn_t gfn, kvm_pfn_t *pfnp, int *levelp) |
| 3153 | { |
| 3154 | int level = *levelp; |
| 3155 | u64 spte = *it.sptep; |
| 3156 | |
| 3157 | if (it.level == level && level > PT_PAGE_TABLE_LEVEL && |
| 3158 | is_nx_huge_page_enabled() && |
| 3159 | is_shadow_present_pte(spte) && |
| 3160 | !is_large_pte(spte)) { |
| 3161 | /* |
| 3162 | * A small SPTE exists for this pfn, but FNAME(fetch) |
| 3163 | * and __direct_map would like to create a large PTE |
| 3164 | * instead: just force them to go down another level, |
| 3165 | * patching back for them into pfn the next 9 bits of |
| 3166 | * the address. |
| 3167 | */ |
| 3168 | u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1); |
| 3169 | *pfnp |= gfn & page_mask; |
| 3170 | (*levelp)--; |
| 3171 | } |
| 3172 | } |
| 3173 | |
| 3174 | static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write, |
| 3175 | int map_writable, int level, kvm_pfn_t pfn, |
| 3176 | bool prefault, bool lpage_disallowed) |
| 3177 | { |
| 3178 | struct kvm_shadow_walk_iterator it; |
| 3179 | struct kvm_mmu_page *sp; |
| 3180 | int ret; |
| 3181 | gfn_t gfn = gpa >> PAGE_SHIFT; |
| 3182 | gfn_t base_gfn = gfn; |
| 3183 | |
| 3184 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) |
| 3185 | return RET_PF_RETRY; |
| 3186 | |
| 3187 | trace_kvm_mmu_spte_requested(gpa, level, pfn); |
| 3188 | for_each_shadow_entry(vcpu, gpa, it) { |
| 3189 | /* |
| 3190 | * We cannot overwrite existing page tables with an NX |
| 3191 | * large page, as the leaf could be executable. |
| 3192 | */ |
| 3193 | disallowed_hugepage_adjust(it, gfn, &pfn, &level); |
| 3194 | |
| 3195 | base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); |
| 3196 | if (it.level == level) |
| 3197 | break; |
| 3198 | |
| 3199 | drop_large_spte(vcpu, it.sptep); |
| 3200 | if (!is_shadow_present_pte(*it.sptep)) { |
| 3201 | sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, |
| 3202 | it.level - 1, true, ACC_ALL); |
| 3203 | |
| 3204 | link_shadow_page(vcpu, it.sptep, sp); |
| 3205 | if (lpage_disallowed) |
| 3206 | account_huge_nx_page(vcpu->kvm, sp); |
| 3207 | } |
| 3208 | } |
| 3209 | |
| 3210 | ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL, |
| 3211 | write, level, base_gfn, pfn, prefault, |
| 3212 | map_writable); |
| 3213 | direct_pte_prefetch(vcpu, it.sptep); |
| 3214 | ++vcpu->stat.pf_fixed; |
| 3215 | return ret; |
| 3216 | } |
| 3217 | |
| 3218 | static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) |
| 3219 | { |
| 3220 | siginfo_t info; |
| 3221 | |
| 3222 | clear_siginfo(&info); |
| 3223 | info.si_signo = SIGBUS; |
| 3224 | info.si_errno = 0; |
| 3225 | info.si_code = BUS_MCEERR_AR; |
| 3226 | info.si_addr = (void __user *)address; |
| 3227 | info.si_addr_lsb = PAGE_SHIFT; |
| 3228 | |
| 3229 | send_sig_info(SIGBUS, &info, tsk); |
| 3230 | } |
| 3231 | |
| 3232 | static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) |
| 3233 | { |
| 3234 | /* |
| 3235 | * Do not cache the mmio info caused by writing the readonly gfn |
| 3236 | * into the spte otherwise read access on readonly gfn also can |
| 3237 | * caused mmio page fault and treat it as mmio access. |
| 3238 | */ |
| 3239 | if (pfn == KVM_PFN_ERR_RO_FAULT) |
| 3240 | return RET_PF_EMULATE; |
| 3241 | |
| 3242 | if (pfn == KVM_PFN_ERR_HWPOISON) { |
| 3243 | kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); |
| 3244 | return RET_PF_RETRY; |
| 3245 | } |
| 3246 | |
| 3247 | return -EFAULT; |
| 3248 | } |
| 3249 | |
| 3250 | static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu, |
| 3251 | gfn_t gfn, kvm_pfn_t *pfnp, |
| 3252 | int *levelp) |
| 3253 | { |
| 3254 | kvm_pfn_t pfn = *pfnp; |
| 3255 | int level = *levelp; |
| 3256 | |
| 3257 | /* |
| 3258 | * Check if it's a transparent hugepage. If this would be an |
| 3259 | * hugetlbfs page, level wouldn't be set to |
| 3260 | * PT_PAGE_TABLE_LEVEL and there would be no adjustment done |
| 3261 | * here. |
| 3262 | */ |
| 3263 | if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) && |
| 3264 | !kvm_is_zone_device_pfn(pfn) && level == PT_PAGE_TABLE_LEVEL && |
| 3265 | PageTransCompoundMap(pfn_to_page(pfn)) && |
| 3266 | !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) { |
| 3267 | unsigned long mask; |
| 3268 | /* |
| 3269 | * mmu_notifier_retry was successful and we hold the |
| 3270 | * mmu_lock here, so the pmd can't become splitting |
| 3271 | * from under us, and in turn |
| 3272 | * __split_huge_page_refcount() can't run from under |
| 3273 | * us and we can safely transfer the refcount from |
| 3274 | * PG_tail to PG_head as we switch the pfn to tail to |
| 3275 | * head. |
| 3276 | */ |
| 3277 | *levelp = level = PT_DIRECTORY_LEVEL; |
| 3278 | mask = KVM_PAGES_PER_HPAGE(level) - 1; |
| 3279 | VM_BUG_ON((gfn & mask) != (pfn & mask)); |
| 3280 | if (pfn & mask) { |
| 3281 | kvm_release_pfn_clean(pfn); |
| 3282 | pfn &= ~mask; |
| 3283 | kvm_get_pfn(pfn); |
| 3284 | *pfnp = pfn; |
| 3285 | } |
| 3286 | } |
| 3287 | } |
| 3288 | |
| 3289 | static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, |
| 3290 | kvm_pfn_t pfn, unsigned access, int *ret_val) |
| 3291 | { |
| 3292 | /* The pfn is invalid, report the error! */ |
| 3293 | if (unlikely(is_error_pfn(pfn))) { |
| 3294 | *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); |
| 3295 | return true; |
| 3296 | } |
| 3297 | |
| 3298 | if (unlikely(is_noslot_pfn(pfn))) |
| 3299 | vcpu_cache_mmio_info(vcpu, gva, gfn, access); |
| 3300 | |
| 3301 | return false; |
| 3302 | } |
| 3303 | |
| 3304 | static bool page_fault_can_be_fast(u32 error_code) |
| 3305 | { |
| 3306 | /* |
| 3307 | * Do not fix the mmio spte with invalid generation number which |
| 3308 | * need to be updated by slow page fault path. |
| 3309 | */ |
| 3310 | if (unlikely(error_code & PFERR_RSVD_MASK)) |
| 3311 | return false; |
| 3312 | |
| 3313 | /* See if the page fault is due to an NX violation */ |
| 3314 | if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) |
| 3315 | == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) |
| 3316 | return false; |
| 3317 | |
| 3318 | /* |
| 3319 | * #PF can be fast if: |
| 3320 | * 1. The shadow page table entry is not present, which could mean that |
| 3321 | * the fault is potentially caused by access tracking (if enabled). |
| 3322 | * 2. The shadow page table entry is present and the fault |
| 3323 | * is caused by write-protect, that means we just need change the W |
| 3324 | * bit of the spte which can be done out of mmu-lock. |
| 3325 | * |
| 3326 | * However, if access tracking is disabled we know that a non-present |
| 3327 | * page must be a genuine page fault where we have to create a new SPTE. |
| 3328 | * So, if access tracking is disabled, we return true only for write |
| 3329 | * accesses to a present page. |
| 3330 | */ |
| 3331 | |
| 3332 | return shadow_acc_track_mask != 0 || |
| 3333 | ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) |
| 3334 | == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); |
| 3335 | } |
| 3336 | |
| 3337 | /* |
| 3338 | * Returns true if the SPTE was fixed successfully. Otherwise, |
| 3339 | * someone else modified the SPTE from its original value. |
| 3340 | */ |
| 3341 | static bool |
| 3342 | fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, |
| 3343 | u64 *sptep, u64 old_spte, u64 new_spte) |
| 3344 | { |
| 3345 | gfn_t gfn; |
| 3346 | |
| 3347 | WARN_ON(!sp->role.direct); |
| 3348 | |
| 3349 | /* |
| 3350 | * Theoretically we could also set dirty bit (and flush TLB) here in |
| 3351 | * order to eliminate unnecessary PML logging. See comments in |
| 3352 | * set_spte. But fast_page_fault is very unlikely to happen with PML |
| 3353 | * enabled, so we do not do this. This might result in the same GPA |
| 3354 | * to be logged in PML buffer again when the write really happens, and |
| 3355 | * eventually to be called by mark_page_dirty twice. But it's also no |
| 3356 | * harm. This also avoids the TLB flush needed after setting dirty bit |
| 3357 | * so non-PML cases won't be impacted. |
| 3358 | * |
| 3359 | * Compare with set_spte where instead shadow_dirty_mask is set. |
| 3360 | */ |
| 3361 | if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) |
| 3362 | return false; |
| 3363 | |
| 3364 | if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { |
| 3365 | /* |
| 3366 | * The gfn of direct spte is stable since it is |
| 3367 | * calculated by sp->gfn. |
| 3368 | */ |
| 3369 | gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); |
| 3370 | kvm_vcpu_mark_page_dirty(vcpu, gfn); |
| 3371 | } |
| 3372 | |
| 3373 | return true; |
| 3374 | } |
| 3375 | |
| 3376 | static bool is_access_allowed(u32 fault_err_code, u64 spte) |
| 3377 | { |
| 3378 | if (fault_err_code & PFERR_FETCH_MASK) |
| 3379 | return is_executable_pte(spte); |
| 3380 | |
| 3381 | if (fault_err_code & PFERR_WRITE_MASK) |
| 3382 | return is_writable_pte(spte); |
| 3383 | |
| 3384 | /* Fault was on Read access */ |
| 3385 | return spte & PT_PRESENT_MASK; |
| 3386 | } |
| 3387 | |
| 3388 | /* |
| 3389 | * Return value: |
| 3390 | * - true: let the vcpu to access on the same address again. |
| 3391 | * - false: let the real page fault path to fix it. |
| 3392 | */ |
| 3393 | static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level, |
| 3394 | u32 error_code) |
| 3395 | { |
| 3396 | struct kvm_shadow_walk_iterator iterator; |
| 3397 | struct kvm_mmu_page *sp; |
| 3398 | bool fault_handled = false; |
| 3399 | u64 spte = 0ull; |
| 3400 | uint retry_count = 0; |
| 3401 | |
| 3402 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) |
| 3403 | return false; |
| 3404 | |
| 3405 | if (!page_fault_can_be_fast(error_code)) |
| 3406 | return false; |
| 3407 | |
| 3408 | walk_shadow_page_lockless_begin(vcpu); |
| 3409 | |
| 3410 | do { |
| 3411 | u64 new_spte; |
| 3412 | |
| 3413 | for_each_shadow_entry_lockless(vcpu, gva, iterator, spte) |
| 3414 | if (!is_shadow_present_pte(spte) || |
| 3415 | iterator.level < level) |
| 3416 | break; |
| 3417 | |
| 3418 | sp = page_header(__pa(iterator.sptep)); |
| 3419 | if (!is_last_spte(spte, sp->role.level)) |
| 3420 | break; |
| 3421 | |
| 3422 | /* |
| 3423 | * Check whether the memory access that caused the fault would |
| 3424 | * still cause it if it were to be performed right now. If not, |
| 3425 | * then this is a spurious fault caused by TLB lazily flushed, |
| 3426 | * or some other CPU has already fixed the PTE after the |
| 3427 | * current CPU took the fault. |
| 3428 | * |
| 3429 | * Need not check the access of upper level table entries since |
| 3430 | * they are always ACC_ALL. |
| 3431 | */ |
| 3432 | if (is_access_allowed(error_code, spte)) { |
| 3433 | fault_handled = true; |
| 3434 | break; |
| 3435 | } |
| 3436 | |
| 3437 | new_spte = spte; |
| 3438 | |
| 3439 | if (is_access_track_spte(spte)) |
| 3440 | new_spte = restore_acc_track_spte(new_spte); |
| 3441 | |
| 3442 | /* |
| 3443 | * Currently, to simplify the code, write-protection can |
| 3444 | * be removed in the fast path only if the SPTE was |
| 3445 | * write-protected for dirty-logging or access tracking. |
| 3446 | */ |
| 3447 | if ((error_code & PFERR_WRITE_MASK) && |
| 3448 | spte_can_locklessly_be_made_writable(spte)) |
| 3449 | { |
| 3450 | new_spte |= PT_WRITABLE_MASK; |
| 3451 | |
| 3452 | /* |
| 3453 | * Do not fix write-permission on the large spte. Since |
| 3454 | * we only dirty the first page into the dirty-bitmap in |
| 3455 | * fast_pf_fix_direct_spte(), other pages are missed |
| 3456 | * if its slot has dirty logging enabled. |
| 3457 | * |
| 3458 | * Instead, we let the slow page fault path create a |
| 3459 | * normal spte to fix the access. |
| 3460 | * |
| 3461 | * See the comments in kvm_arch_commit_memory_region(). |
| 3462 | */ |
| 3463 | if (sp->role.level > PT_PAGE_TABLE_LEVEL) |
| 3464 | break; |
| 3465 | } |
| 3466 | |
| 3467 | /* Verify that the fault can be handled in the fast path */ |
| 3468 | if (new_spte == spte || |
| 3469 | !is_access_allowed(error_code, new_spte)) |
| 3470 | break; |
| 3471 | |
| 3472 | /* |
| 3473 | * Currently, fast page fault only works for direct mapping |
| 3474 | * since the gfn is not stable for indirect shadow page. See |
| 3475 | * Documentation/virtual/kvm/locking.txt to get more detail. |
| 3476 | */ |
| 3477 | fault_handled = fast_pf_fix_direct_spte(vcpu, sp, |
| 3478 | iterator.sptep, spte, |
| 3479 | new_spte); |
| 3480 | if (fault_handled) |
| 3481 | break; |
| 3482 | |
| 3483 | if (++retry_count > 4) { |
| 3484 | printk_once(KERN_WARNING |
| 3485 | "kvm: Fast #PF retrying more than 4 times.\n"); |
| 3486 | break; |
| 3487 | } |
| 3488 | |
| 3489 | } while (true); |
| 3490 | |
| 3491 | trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep, |
| 3492 | spte, fault_handled); |
| 3493 | walk_shadow_page_lockless_end(vcpu); |
| 3494 | |
| 3495 | return fault_handled; |
| 3496 | } |
| 3497 | |
| 3498 | static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, |
| 3499 | gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable); |
| 3500 | static int make_mmu_pages_available(struct kvm_vcpu *vcpu); |
| 3501 | |
| 3502 | static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code, |
| 3503 | gfn_t gfn, bool prefault) |
| 3504 | { |
| 3505 | int r; |
| 3506 | int level; |
| 3507 | bool force_pt_level; |
| 3508 | kvm_pfn_t pfn; |
| 3509 | unsigned long mmu_seq; |
| 3510 | bool map_writable, write = error_code & PFERR_WRITE_MASK; |
| 3511 | bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) && |
| 3512 | is_nx_huge_page_enabled(); |
| 3513 | |
| 3514 | force_pt_level = lpage_disallowed; |
| 3515 | level = mapping_level(vcpu, gfn, &force_pt_level); |
| 3516 | if (likely(!force_pt_level)) { |
| 3517 | /* |
| 3518 | * This path builds a PAE pagetable - so we can map |
| 3519 | * 2mb pages at maximum. Therefore check if the level |
| 3520 | * is larger than that. |
| 3521 | */ |
| 3522 | if (level > PT_DIRECTORY_LEVEL) |
| 3523 | level = PT_DIRECTORY_LEVEL; |
| 3524 | |
| 3525 | gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); |
| 3526 | } |
| 3527 | |
| 3528 | if (fast_page_fault(vcpu, v, level, error_code)) |
| 3529 | return RET_PF_RETRY; |
| 3530 | |
| 3531 | mmu_seq = vcpu->kvm->mmu_notifier_seq; |
| 3532 | smp_rmb(); |
| 3533 | |
| 3534 | if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable)) |
| 3535 | return RET_PF_RETRY; |
| 3536 | |
| 3537 | if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r)) |
| 3538 | return r; |
| 3539 | |
| 3540 | r = RET_PF_RETRY; |
| 3541 | spin_lock(&vcpu->kvm->mmu_lock); |
| 3542 | if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) |
| 3543 | goto out_unlock; |
| 3544 | if (make_mmu_pages_available(vcpu) < 0) |
| 3545 | goto out_unlock; |
| 3546 | if (likely(!force_pt_level)) |
| 3547 | transparent_hugepage_adjust(vcpu, gfn, &pfn, &level); |
| 3548 | r = __direct_map(vcpu, v, write, map_writable, level, pfn, |
| 3549 | prefault, false); |
| 3550 | out_unlock: |
| 3551 | spin_unlock(&vcpu->kvm->mmu_lock); |
| 3552 | kvm_release_pfn_clean(pfn); |
| 3553 | return r; |
| 3554 | } |
| 3555 | |
| 3556 | static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, |
| 3557 | struct list_head *invalid_list) |
| 3558 | { |
| 3559 | struct kvm_mmu_page *sp; |
| 3560 | |
| 3561 | if (!VALID_PAGE(*root_hpa)) |
| 3562 | return; |
| 3563 | |
| 3564 | sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK); |
| 3565 | --sp->root_count; |
| 3566 | if (!sp->root_count && sp->role.invalid) |
| 3567 | kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); |
| 3568 | |
| 3569 | *root_hpa = INVALID_PAGE; |
| 3570 | } |
| 3571 | |
| 3572 | /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ |
| 3573 | void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, ulong roots_to_free) |
| 3574 | { |
| 3575 | int i; |
| 3576 | LIST_HEAD(invalid_list); |
| 3577 | struct kvm_mmu *mmu = &vcpu->arch.mmu; |
| 3578 | bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; |
| 3579 | |
| 3580 | BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); |
| 3581 | |
| 3582 | /* Before acquiring the MMU lock, see if we need to do any real work. */ |
| 3583 | if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { |
| 3584 | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) |
| 3585 | if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && |
| 3586 | VALID_PAGE(mmu->prev_roots[i].hpa)) |
| 3587 | break; |
| 3588 | |
| 3589 | if (i == KVM_MMU_NUM_PREV_ROOTS) |
| 3590 | return; |
| 3591 | } |
| 3592 | |
| 3593 | spin_lock(&vcpu->kvm->mmu_lock); |
| 3594 | |
| 3595 | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) |
| 3596 | if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) |
| 3597 | mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa, |
| 3598 | &invalid_list); |
| 3599 | |
| 3600 | if (free_active_root) { |
| 3601 | if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && |
| 3602 | (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { |
| 3603 | mmu_free_root_page(vcpu->kvm, &mmu->root_hpa, |
| 3604 | &invalid_list); |
| 3605 | } else { |
| 3606 | for (i = 0; i < 4; ++i) |
| 3607 | if (mmu->pae_root[i] != 0) |
| 3608 | mmu_free_root_page(vcpu->kvm, |
| 3609 | &mmu->pae_root[i], |
| 3610 | &invalid_list); |
| 3611 | mmu->root_hpa = INVALID_PAGE; |
| 3612 | } |
| 3613 | } |
| 3614 | |
| 3615 | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); |
| 3616 | spin_unlock(&vcpu->kvm->mmu_lock); |
| 3617 | } |
| 3618 | EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); |
| 3619 | |
| 3620 | static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) |
| 3621 | { |
| 3622 | int ret = 0; |
| 3623 | |
| 3624 | if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) { |
| 3625 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
| 3626 | ret = 1; |
| 3627 | } |
| 3628 | |
| 3629 | return ret; |
| 3630 | } |
| 3631 | |
| 3632 | static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) |
| 3633 | { |
| 3634 | struct kvm_mmu_page *sp; |
| 3635 | unsigned i; |
| 3636 | |
| 3637 | if (vcpu->arch.mmu.shadow_root_level >= PT64_ROOT_4LEVEL) { |
| 3638 | spin_lock(&vcpu->kvm->mmu_lock); |
| 3639 | if(make_mmu_pages_available(vcpu) < 0) { |
| 3640 | spin_unlock(&vcpu->kvm->mmu_lock); |
| 3641 | return -ENOSPC; |
| 3642 | } |
| 3643 | sp = kvm_mmu_get_page(vcpu, 0, 0, |
| 3644 | vcpu->arch.mmu.shadow_root_level, 1, ACC_ALL); |
| 3645 | ++sp->root_count; |
| 3646 | spin_unlock(&vcpu->kvm->mmu_lock); |
| 3647 | vcpu->arch.mmu.root_hpa = __pa(sp->spt); |
| 3648 | } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) { |
| 3649 | for (i = 0; i < 4; ++i) { |
| 3650 | hpa_t root = vcpu->arch.mmu.pae_root[i]; |
| 3651 | |
| 3652 | MMU_WARN_ON(VALID_PAGE(root)); |
| 3653 | spin_lock(&vcpu->kvm->mmu_lock); |
| 3654 | if (make_mmu_pages_available(vcpu) < 0) { |
| 3655 | spin_unlock(&vcpu->kvm->mmu_lock); |
| 3656 | return -ENOSPC; |
| 3657 | } |
| 3658 | sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT), |
| 3659 | i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL); |
| 3660 | root = __pa(sp->spt); |
| 3661 | ++sp->root_count; |
| 3662 | spin_unlock(&vcpu->kvm->mmu_lock); |
| 3663 | vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK; |
| 3664 | } |
| 3665 | vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root); |
| 3666 | } else |
| 3667 | BUG(); |
| 3668 | |
| 3669 | return 0; |
| 3670 | } |
| 3671 | |
| 3672 | static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) |
| 3673 | { |
| 3674 | struct kvm_mmu_page *sp; |
| 3675 | u64 pdptr, pm_mask; |
| 3676 | gfn_t root_gfn; |
| 3677 | int i; |
| 3678 | |
| 3679 | root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT; |
| 3680 | |
| 3681 | if (mmu_check_root(vcpu, root_gfn)) |
| 3682 | return 1; |
| 3683 | |
| 3684 | /* |
| 3685 | * Do we shadow a long mode page table? If so we need to |
| 3686 | * write-protect the guests page table root. |
| 3687 | */ |
| 3688 | if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) { |
| 3689 | hpa_t root = vcpu->arch.mmu.root_hpa; |
| 3690 | |
| 3691 | MMU_WARN_ON(VALID_PAGE(root)); |
| 3692 | |
| 3693 | spin_lock(&vcpu->kvm->mmu_lock); |
| 3694 | if (make_mmu_pages_available(vcpu) < 0) { |
| 3695 | spin_unlock(&vcpu->kvm->mmu_lock); |
| 3696 | return -ENOSPC; |
| 3697 | } |
| 3698 | sp = kvm_mmu_get_page(vcpu, root_gfn, 0, |
| 3699 | vcpu->arch.mmu.shadow_root_level, 0, ACC_ALL); |
| 3700 | root = __pa(sp->spt); |
| 3701 | ++sp->root_count; |
| 3702 | spin_unlock(&vcpu->kvm->mmu_lock); |
| 3703 | vcpu->arch.mmu.root_hpa = root; |
| 3704 | return 0; |
| 3705 | } |
| 3706 | |
| 3707 | /* |
| 3708 | * We shadow a 32 bit page table. This may be a legacy 2-level |
| 3709 | * or a PAE 3-level page table. In either case we need to be aware that |
| 3710 | * the shadow page table may be a PAE or a long mode page table. |
| 3711 | */ |
| 3712 | pm_mask = PT_PRESENT_MASK; |
| 3713 | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) |
| 3714 | pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; |
| 3715 | |
| 3716 | for (i = 0; i < 4; ++i) { |
| 3717 | hpa_t root = vcpu->arch.mmu.pae_root[i]; |
| 3718 | |
| 3719 | MMU_WARN_ON(VALID_PAGE(root)); |
| 3720 | if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) { |
| 3721 | pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i); |
| 3722 | if (!(pdptr & PT_PRESENT_MASK)) { |
| 3723 | vcpu->arch.mmu.pae_root[i] = 0; |
| 3724 | continue; |
| 3725 | } |
| 3726 | root_gfn = pdptr >> PAGE_SHIFT; |
| 3727 | if (mmu_check_root(vcpu, root_gfn)) |
| 3728 | return 1; |
| 3729 | } |
| 3730 | spin_lock(&vcpu->kvm->mmu_lock); |
| 3731 | if (make_mmu_pages_available(vcpu) < 0) { |
| 3732 | spin_unlock(&vcpu->kvm->mmu_lock); |
| 3733 | return -ENOSPC; |
| 3734 | } |
| 3735 | sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL, |
| 3736 | 0, ACC_ALL); |
| 3737 | root = __pa(sp->spt); |
| 3738 | ++sp->root_count; |
| 3739 | spin_unlock(&vcpu->kvm->mmu_lock); |
| 3740 | |
| 3741 | vcpu->arch.mmu.pae_root[i] = root | pm_mask; |
| 3742 | } |
| 3743 | vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root); |
| 3744 | |
| 3745 | /* |
| 3746 | * If we shadow a 32 bit page table with a long mode page |
| 3747 | * table we enter this path. |
| 3748 | */ |
| 3749 | if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_4LEVEL) { |
| 3750 | if (vcpu->arch.mmu.lm_root == NULL) { |
| 3751 | /* |
| 3752 | * The additional page necessary for this is only |
| 3753 | * allocated on demand. |
| 3754 | */ |
| 3755 | |
| 3756 | u64 *lm_root; |
| 3757 | |
| 3758 | lm_root = (void*)get_zeroed_page(GFP_KERNEL); |
| 3759 | if (lm_root == NULL) |
| 3760 | return 1; |
| 3761 | |
| 3762 | lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask; |
| 3763 | |
| 3764 | vcpu->arch.mmu.lm_root = lm_root; |
| 3765 | } |
| 3766 | |
| 3767 | vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root); |
| 3768 | } |
| 3769 | |
| 3770 | return 0; |
| 3771 | } |
| 3772 | |
| 3773 | static int mmu_alloc_roots(struct kvm_vcpu *vcpu) |
| 3774 | { |
| 3775 | if (vcpu->arch.mmu.direct_map) |
| 3776 | return mmu_alloc_direct_roots(vcpu); |
| 3777 | else |
| 3778 | return mmu_alloc_shadow_roots(vcpu); |
| 3779 | } |
| 3780 | |
| 3781 | void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) |
| 3782 | { |
| 3783 | int i; |
| 3784 | struct kvm_mmu_page *sp; |
| 3785 | |
| 3786 | if (vcpu->arch.mmu.direct_map) |
| 3787 | return; |
| 3788 | |
| 3789 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) |
| 3790 | return; |
| 3791 | |
| 3792 | vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); |
| 3793 | |
| 3794 | if (vcpu->arch.mmu.root_level >= PT64_ROOT_4LEVEL) { |
| 3795 | hpa_t root = vcpu->arch.mmu.root_hpa; |
| 3796 | |
| 3797 | sp = page_header(root); |
| 3798 | |
| 3799 | /* |
| 3800 | * Even if another CPU was marking the SP as unsync-ed |
| 3801 | * simultaneously, any guest page table changes are not |
| 3802 | * guaranteed to be visible anyway until this VCPU issues a TLB |
| 3803 | * flush strictly after those changes are made. We only need to |
| 3804 | * ensure that the other CPU sets these flags before any actual |
| 3805 | * changes to the page tables are made. The comments in |
| 3806 | * mmu_need_write_protect() describe what could go wrong if this |
| 3807 | * requirement isn't satisfied. |
| 3808 | */ |
| 3809 | if (!smp_load_acquire(&sp->unsync) && |
| 3810 | !smp_load_acquire(&sp->unsync_children)) |
| 3811 | return; |
| 3812 | |
| 3813 | spin_lock(&vcpu->kvm->mmu_lock); |
| 3814 | kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); |
| 3815 | |
| 3816 | mmu_sync_children(vcpu, sp); |
| 3817 | |
| 3818 | kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); |
| 3819 | spin_unlock(&vcpu->kvm->mmu_lock); |
| 3820 | return; |
| 3821 | } |
| 3822 | |
| 3823 | spin_lock(&vcpu->kvm->mmu_lock); |
| 3824 | kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); |
| 3825 | |
| 3826 | for (i = 0; i < 4; ++i) { |
| 3827 | hpa_t root = vcpu->arch.mmu.pae_root[i]; |
| 3828 | |
| 3829 | if (root && VALID_PAGE(root)) { |
| 3830 | root &= PT64_BASE_ADDR_MASK; |
| 3831 | sp = page_header(root); |
| 3832 | mmu_sync_children(vcpu, sp); |
| 3833 | } |
| 3834 | } |
| 3835 | |
| 3836 | kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); |
| 3837 | spin_unlock(&vcpu->kvm->mmu_lock); |
| 3838 | } |
| 3839 | EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots); |
| 3840 | |
| 3841 | static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr, |
| 3842 | u32 access, struct x86_exception *exception) |
| 3843 | { |
| 3844 | if (exception) |
| 3845 | exception->error_code = 0; |
| 3846 | return vaddr; |
| 3847 | } |
| 3848 | |
| 3849 | static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr, |
| 3850 | u32 access, |
| 3851 | struct x86_exception *exception) |
| 3852 | { |
| 3853 | if (exception) |
| 3854 | exception->error_code = 0; |
| 3855 | return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); |
| 3856 | } |
| 3857 | |
| 3858 | static bool |
| 3859 | __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level) |
| 3860 | { |
| 3861 | int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f; |
| 3862 | |
| 3863 | return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) | |
| 3864 | ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0); |
| 3865 | } |
| 3866 | |
| 3867 | static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level) |
| 3868 | { |
| 3869 | return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level); |
| 3870 | } |
| 3871 | |
| 3872 | static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level) |
| 3873 | { |
| 3874 | return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level); |
| 3875 | } |
| 3876 | |
| 3877 | static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) |
| 3878 | { |
| 3879 | /* |
| 3880 | * A nested guest cannot use the MMIO cache if it is using nested |
| 3881 | * page tables, because cr2 is a nGPA while the cache stores GPAs. |
| 3882 | */ |
| 3883 | if (mmu_is_nested(vcpu)) |
| 3884 | return false; |
| 3885 | |
| 3886 | if (direct) |
| 3887 | return vcpu_match_mmio_gpa(vcpu, addr); |
| 3888 | |
| 3889 | return vcpu_match_mmio_gva(vcpu, addr); |
| 3890 | } |
| 3891 | |
| 3892 | /* return true if reserved bit is detected on spte. */ |
| 3893 | static bool |
| 3894 | walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) |
| 3895 | { |
| 3896 | struct kvm_shadow_walk_iterator iterator; |
| 3897 | u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull; |
| 3898 | int root, leaf; |
| 3899 | bool reserved = false; |
| 3900 | |
| 3901 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) |
| 3902 | goto exit; |
| 3903 | |
| 3904 | walk_shadow_page_lockless_begin(vcpu); |
| 3905 | |
| 3906 | for (shadow_walk_init(&iterator, vcpu, addr), |
| 3907 | leaf = root = iterator.level; |
| 3908 | shadow_walk_okay(&iterator); |
| 3909 | __shadow_walk_next(&iterator, spte)) { |
| 3910 | spte = mmu_spte_get_lockless(iterator.sptep); |
| 3911 | |
| 3912 | sptes[leaf - 1] = spte; |
| 3913 | leaf--; |
| 3914 | |
| 3915 | if (!is_shadow_present_pte(spte)) |
| 3916 | break; |
| 3917 | |
| 3918 | reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte, |
| 3919 | iterator.level); |
| 3920 | } |
| 3921 | |
| 3922 | walk_shadow_page_lockless_end(vcpu); |
| 3923 | |
| 3924 | if (reserved) { |
| 3925 | pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n", |
| 3926 | __func__, addr); |
| 3927 | while (root > leaf) { |
| 3928 | pr_err("------ spte 0x%llx level %d.\n", |
| 3929 | sptes[root - 1], root); |
| 3930 | root--; |
| 3931 | } |
| 3932 | } |
| 3933 | exit: |
| 3934 | *sptep = spte; |
| 3935 | return reserved; |
| 3936 | } |
| 3937 | |
| 3938 | static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) |
| 3939 | { |
| 3940 | u64 spte; |
| 3941 | bool reserved; |
| 3942 | |
| 3943 | if (mmio_info_in_cache(vcpu, addr, direct)) |
| 3944 | return RET_PF_EMULATE; |
| 3945 | |
| 3946 | reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte); |
| 3947 | if (WARN_ON(reserved)) |
| 3948 | return -EINVAL; |
| 3949 | |
| 3950 | if (is_mmio_spte(spte)) { |
| 3951 | gfn_t gfn = get_mmio_spte_gfn(spte); |
| 3952 | unsigned access = get_mmio_spte_access(spte); |
| 3953 | |
| 3954 | if (!check_mmio_spte(vcpu, spte)) |
| 3955 | return RET_PF_INVALID; |
| 3956 | |
| 3957 | if (direct) |
| 3958 | addr = 0; |
| 3959 | |
| 3960 | trace_handle_mmio_page_fault(addr, gfn, access); |
| 3961 | vcpu_cache_mmio_info(vcpu, addr, gfn, access); |
| 3962 | return RET_PF_EMULATE; |
| 3963 | } |
| 3964 | |
| 3965 | /* |
| 3966 | * If the page table is zapped by other cpus, let CPU fault again on |
| 3967 | * the address. |
| 3968 | */ |
| 3969 | return RET_PF_RETRY; |
| 3970 | } |
| 3971 | |
| 3972 | static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, |
| 3973 | u32 error_code, gfn_t gfn) |
| 3974 | { |
| 3975 | if (unlikely(error_code & PFERR_RSVD_MASK)) |
| 3976 | return false; |
| 3977 | |
| 3978 | if (!(error_code & PFERR_PRESENT_MASK) || |
| 3979 | !(error_code & PFERR_WRITE_MASK)) |
| 3980 | return false; |
| 3981 | |
| 3982 | /* |
| 3983 | * guest is writing the page which is write tracked which can |
| 3984 | * not be fixed by page fault handler. |
| 3985 | */ |
| 3986 | if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) |
| 3987 | return true; |
| 3988 | |
| 3989 | return false; |
| 3990 | } |
| 3991 | |
| 3992 | static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) |
| 3993 | { |
| 3994 | struct kvm_shadow_walk_iterator iterator; |
| 3995 | u64 spte; |
| 3996 | |
| 3997 | if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) |
| 3998 | return; |
| 3999 | |
| 4000 | walk_shadow_page_lockless_begin(vcpu); |
| 4001 | for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { |
| 4002 | clear_sp_write_flooding_count(iterator.sptep); |
| 4003 | if (!is_shadow_present_pte(spte)) |
| 4004 | break; |
| 4005 | } |
| 4006 | walk_shadow_page_lockless_end(vcpu); |
| 4007 | } |
| 4008 | |
| 4009 | static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva, |
| 4010 | u32 error_code, bool prefault) |
| 4011 | { |
| 4012 | gfn_t gfn = gva >> PAGE_SHIFT; |
| 4013 | int r; |
| 4014 | |
| 4015 | pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code); |
| 4016 | |
| 4017 | if (page_fault_handle_page_track(vcpu, error_code, gfn)) |
| 4018 | return RET_PF_EMULATE; |
| 4019 | |
| 4020 | r = mmu_topup_memory_caches(vcpu); |
| 4021 | if (r) |
| 4022 | return r; |
| 4023 | |
| 4024 | MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); |
| 4025 | |
| 4026 | |
| 4027 | return nonpaging_map(vcpu, gva & PAGE_MASK, |
| 4028 | error_code, gfn, prefault); |
| 4029 | } |
| 4030 | |
| 4031 | static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn) |
| 4032 | { |
| 4033 | struct kvm_arch_async_pf arch; |
| 4034 | |
| 4035 | arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; |
| 4036 | arch.gfn = gfn; |
| 4037 | arch.direct_map = vcpu->arch.mmu.direct_map; |
| 4038 | arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu); |
| 4039 | |
| 4040 | return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); |
| 4041 | } |
| 4042 | |
| 4043 | bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) |
| 4044 | { |
| 4045 | if (unlikely(!lapic_in_kernel(vcpu) || |
| 4046 | kvm_event_needs_reinjection(vcpu) || |
| 4047 | vcpu->arch.exception.pending)) |
| 4048 | return false; |
| 4049 | |
| 4050 | if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu)) |
| 4051 | return false; |
| 4052 | |
| 4053 | return kvm_x86_ops->interrupt_allowed(vcpu); |
| 4054 | } |
| 4055 | |
| 4056 | static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, |
| 4057 | gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable) |
| 4058 | { |
| 4059 | struct kvm_memory_slot *slot; |
| 4060 | bool async; |
| 4061 | |
| 4062 | /* |
| 4063 | * Don't expose private memslots to L2. |
| 4064 | */ |
| 4065 | if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) { |
| 4066 | *pfn = KVM_PFN_NOSLOT; |
| 4067 | return false; |
| 4068 | } |
| 4069 | |
| 4070 | slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); |
| 4071 | async = false; |
| 4072 | *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable); |
| 4073 | if (!async) |
| 4074 | return false; /* *pfn has correct page already */ |
| 4075 | |
| 4076 | if (!prefault && kvm_can_do_async_pf(vcpu)) { |
| 4077 | trace_kvm_try_async_get_page(gva, gfn); |
| 4078 | if (kvm_find_async_pf_gfn(vcpu, gfn)) { |
| 4079 | trace_kvm_async_pf_doublefault(gva, gfn); |
| 4080 | kvm_make_request(KVM_REQ_APF_HALT, vcpu); |
| 4081 | return true; |
| 4082 | } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn)) |
| 4083 | return true; |
| 4084 | } |
| 4085 | |
| 4086 | *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable); |
| 4087 | return false; |
| 4088 | } |
| 4089 | |
| 4090 | int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, |
| 4091 | u64 fault_address, char *insn, int insn_len) |
| 4092 | { |
| 4093 | int r = 1; |
| 4094 | |
| 4095 | vcpu->arch.l1tf_flush_l1d = true; |
| 4096 | switch (vcpu->arch.apf.host_apf_reason) { |
| 4097 | default: |
| 4098 | trace_kvm_page_fault(fault_address, error_code); |
| 4099 | |
| 4100 | if (kvm_event_needs_reinjection(vcpu)) |
| 4101 | kvm_mmu_unprotect_page_virt(vcpu, fault_address); |
| 4102 | r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, |
| 4103 | insn_len); |
| 4104 | break; |
| 4105 | case KVM_PV_REASON_PAGE_NOT_PRESENT: |
| 4106 | vcpu->arch.apf.host_apf_reason = 0; |
| 4107 | local_irq_disable(); |
| 4108 | kvm_async_pf_task_wait(fault_address, 0); |
| 4109 | local_irq_enable(); |
| 4110 | break; |
| 4111 | case KVM_PV_REASON_PAGE_READY: |
| 4112 | vcpu->arch.apf.host_apf_reason = 0; |
| 4113 | local_irq_disable(); |
| 4114 | kvm_async_pf_task_wake(fault_address); |
| 4115 | local_irq_enable(); |
| 4116 | break; |
| 4117 | } |
| 4118 | return r; |
| 4119 | } |
| 4120 | EXPORT_SYMBOL_GPL(kvm_handle_page_fault); |
| 4121 | |
| 4122 | static bool |
| 4123 | check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level) |
| 4124 | { |
| 4125 | int page_num = KVM_PAGES_PER_HPAGE(level); |
| 4126 | |
| 4127 | gfn &= ~(page_num - 1); |
| 4128 | |
| 4129 | return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num); |
| 4130 | } |
| 4131 | |
| 4132 | static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code, |
| 4133 | bool prefault) |
| 4134 | { |
| 4135 | kvm_pfn_t pfn; |
| 4136 | int r; |
| 4137 | int level; |
| 4138 | bool force_pt_level; |
| 4139 | gfn_t gfn = gpa >> PAGE_SHIFT; |
| 4140 | unsigned long mmu_seq; |
| 4141 | int write = error_code & PFERR_WRITE_MASK; |
| 4142 | bool map_writable; |
| 4143 | bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) && |
| 4144 | is_nx_huge_page_enabled(); |
| 4145 | |
| 4146 | MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa)); |
| 4147 | |
| 4148 | if (page_fault_handle_page_track(vcpu, error_code, gfn)) |
| 4149 | return RET_PF_EMULATE; |
| 4150 | |
| 4151 | r = mmu_topup_memory_caches(vcpu); |
| 4152 | if (r) |
| 4153 | return r; |
| 4154 | |
| 4155 | force_pt_level = |
| 4156 | lpage_disallowed || |
| 4157 | !check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL); |
| 4158 | level = mapping_level(vcpu, gfn, &force_pt_level); |
| 4159 | if (likely(!force_pt_level)) { |
| 4160 | if (level > PT_DIRECTORY_LEVEL && |
| 4161 | !check_hugepage_cache_consistency(vcpu, gfn, level)) |
| 4162 | level = PT_DIRECTORY_LEVEL; |
| 4163 | gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1); |
| 4164 | } |
| 4165 | |
| 4166 | if (fast_page_fault(vcpu, gpa, level, error_code)) |
| 4167 | return RET_PF_RETRY; |
| 4168 | |
| 4169 | mmu_seq = vcpu->kvm->mmu_notifier_seq; |
| 4170 | smp_rmb(); |
| 4171 | |
| 4172 | if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable)) |
| 4173 | return RET_PF_RETRY; |
| 4174 | |
| 4175 | if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r)) |
| 4176 | return r; |
| 4177 | |
| 4178 | r = RET_PF_RETRY; |
| 4179 | spin_lock(&vcpu->kvm->mmu_lock); |
| 4180 | if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) |
| 4181 | goto out_unlock; |
| 4182 | if (make_mmu_pages_available(vcpu) < 0) |
| 4183 | goto out_unlock; |
| 4184 | if (likely(!force_pt_level)) |
| 4185 | transparent_hugepage_adjust(vcpu, gfn, &pfn, &level); |
| 4186 | r = __direct_map(vcpu, gpa, write, map_writable, level, pfn, |
| 4187 | prefault, lpage_disallowed); |
| 4188 | out_unlock: |
| 4189 | spin_unlock(&vcpu->kvm->mmu_lock); |
| 4190 | kvm_release_pfn_clean(pfn); |
| 4191 | return r; |
| 4192 | } |
| 4193 | |
| 4194 | static void nonpaging_init_context(struct kvm_vcpu *vcpu, |
| 4195 | struct kvm_mmu *context) |
| 4196 | { |
| 4197 | context->page_fault = nonpaging_page_fault; |
| 4198 | context->gva_to_gpa = nonpaging_gva_to_gpa; |
| 4199 | context->sync_page = nonpaging_sync_page; |
| 4200 | context->invlpg = nonpaging_invlpg; |
| 4201 | context->update_pte = nonpaging_update_pte; |
| 4202 | context->root_level = 0; |
| 4203 | context->shadow_root_level = PT32E_ROOT_LEVEL; |
| 4204 | context->direct_map = true; |
| 4205 | context->nx = false; |
| 4206 | } |
| 4207 | |
| 4208 | /* |
| 4209 | * Find out if a previously cached root matching the new CR3/role is available. |
| 4210 | * The current root is also inserted into the cache. |
| 4211 | * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is |
| 4212 | * returned. |
| 4213 | * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and |
| 4214 | * false is returned. This root should now be freed by the caller. |
| 4215 | */ |
| 4216 | static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3, |
| 4217 | union kvm_mmu_page_role new_role) |
| 4218 | { |
| 4219 | uint i; |
| 4220 | struct kvm_mmu_root_info root; |
| 4221 | struct kvm_mmu *mmu = &vcpu->arch.mmu; |
| 4222 | |
| 4223 | root.cr3 = mmu->get_cr3(vcpu); |
| 4224 | root.hpa = mmu->root_hpa; |
| 4225 | |
| 4226 | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { |
| 4227 | swap(root, mmu->prev_roots[i]); |
| 4228 | |
| 4229 | if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) && |
| 4230 | page_header(root.hpa) != NULL && |
| 4231 | new_role.word == page_header(root.hpa)->role.word) |
| 4232 | break; |
| 4233 | } |
| 4234 | |
| 4235 | mmu->root_hpa = root.hpa; |
| 4236 | |
| 4237 | return i < KVM_MMU_NUM_PREV_ROOTS; |
| 4238 | } |
| 4239 | |
| 4240 | static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3, |
| 4241 | union kvm_mmu_page_role new_role, |
| 4242 | bool skip_tlb_flush) |
| 4243 | { |
| 4244 | struct kvm_mmu *mmu = &vcpu->arch.mmu; |
| 4245 | |
| 4246 | /* |
| 4247 | * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid |
| 4248 | * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs |
| 4249 | * later if necessary. |
| 4250 | */ |
| 4251 | if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && |
| 4252 | mmu->root_level >= PT64_ROOT_4LEVEL) { |
| 4253 | if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT)) |
| 4254 | return false; |
| 4255 | |
| 4256 | if (cached_root_available(vcpu, new_cr3, new_role)) { |
| 4257 | /* |
| 4258 | * It is possible that the cached previous root page is |
| 4259 | * obsolete because of a change in the MMU |
| 4260 | * generation number. However, that is accompanied by |
| 4261 | * KVM_REQ_MMU_RELOAD, which will free the root that we |
| 4262 | * have set here and allocate a new one. |
| 4263 | */ |
| 4264 | |
| 4265 | kvm_make_request(KVM_REQ_LOAD_CR3, vcpu); |
| 4266 | if (!skip_tlb_flush) { |
| 4267 | kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); |
| 4268 | kvm_x86_ops->tlb_flush(vcpu, true); |
| 4269 | } |
| 4270 | |
| 4271 | /* |
| 4272 | * The last MMIO access's GVA and GPA are cached in the |
| 4273 | * VCPU. When switching to a new CR3, that GVA->GPA |
| 4274 | * mapping may no longer be valid. So clear any cached |
| 4275 | * MMIO info even when we don't need to sync the shadow |
| 4276 | * page tables. |
| 4277 | */ |
| 4278 | vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); |
| 4279 | |
| 4280 | __clear_sp_write_flooding_count( |
| 4281 | page_header(mmu->root_hpa)); |
| 4282 | |
| 4283 | return true; |
| 4284 | } |
| 4285 | } |
| 4286 | |
| 4287 | return false; |
| 4288 | } |
| 4289 | |
| 4290 | static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, |
| 4291 | union kvm_mmu_page_role new_role, |
| 4292 | bool skip_tlb_flush) |
| 4293 | { |
| 4294 | if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush)) |
| 4295 | kvm_mmu_free_roots(vcpu, KVM_MMU_ROOT_CURRENT); |
| 4296 | } |
| 4297 | |
| 4298 | void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush) |
| 4299 | { |
| 4300 | __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu), |
| 4301 | skip_tlb_flush); |
| 4302 | } |
| 4303 | EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3); |
| 4304 | |
| 4305 | static unsigned long get_cr3(struct kvm_vcpu *vcpu) |
| 4306 | { |
| 4307 | return kvm_read_cr3(vcpu); |
| 4308 | } |
| 4309 | |
| 4310 | static void inject_page_fault(struct kvm_vcpu *vcpu, |
| 4311 | struct x86_exception *fault) |
| 4312 | { |
| 4313 | vcpu->arch.mmu.inject_page_fault(vcpu, fault); |
| 4314 | } |
| 4315 | |
| 4316 | static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, |
| 4317 | unsigned access, int *nr_present) |
| 4318 | { |
| 4319 | if (unlikely(is_mmio_spte(*sptep))) { |
| 4320 | if (gfn != get_mmio_spte_gfn(*sptep)) { |
| 4321 | mmu_spte_clear_no_track(sptep); |
| 4322 | return true; |
| 4323 | } |
| 4324 | |
| 4325 | (*nr_present)++; |
| 4326 | mark_mmio_spte(vcpu, sptep, gfn, access); |
| 4327 | return true; |
| 4328 | } |
| 4329 | |
| 4330 | return false; |
| 4331 | } |
| 4332 | |
| 4333 | static inline bool is_last_gpte(struct kvm_mmu *mmu, |
| 4334 | unsigned level, unsigned gpte) |
| 4335 | { |
| 4336 | /* |
| 4337 | * The RHS has bit 7 set iff level < mmu->last_nonleaf_level. |
| 4338 | * If it is clear, there are no large pages at this level, so clear |
| 4339 | * PT_PAGE_SIZE_MASK in gpte if that is the case. |
| 4340 | */ |
| 4341 | gpte &= level - mmu->last_nonleaf_level; |
| 4342 | |
| 4343 | /* |
| 4344 | * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set |
| 4345 | * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means |
| 4346 | * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then. |
| 4347 | */ |
| 4348 | gpte |= level - PT_PAGE_TABLE_LEVEL - 1; |
| 4349 | |
| 4350 | return gpte & PT_PAGE_SIZE_MASK; |
| 4351 | } |
| 4352 | |
| 4353 | #define PTTYPE_EPT 18 /* arbitrary */ |
| 4354 | #define PTTYPE PTTYPE_EPT |
| 4355 | #include "paging_tmpl.h" |
| 4356 | #undef PTTYPE |
| 4357 | |
| 4358 | #define PTTYPE 64 |
| 4359 | #include "paging_tmpl.h" |
| 4360 | #undef PTTYPE |
| 4361 | |
| 4362 | #define PTTYPE 32 |
| 4363 | #include "paging_tmpl.h" |
| 4364 | #undef PTTYPE |
| 4365 | |
| 4366 | static void |
| 4367 | __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, |
| 4368 | struct rsvd_bits_validate *rsvd_check, |
| 4369 | int maxphyaddr, int level, bool nx, bool gbpages, |
| 4370 | bool pse, bool amd) |
| 4371 | { |
| 4372 | u64 exb_bit_rsvd = 0; |
| 4373 | u64 gbpages_bit_rsvd = 0; |
| 4374 | u64 nonleaf_bit8_rsvd = 0; |
| 4375 | |
| 4376 | rsvd_check->bad_mt_xwr = 0; |
| 4377 | |
| 4378 | if (!nx) |
| 4379 | exb_bit_rsvd = rsvd_bits(63, 63); |
| 4380 | if (!gbpages) |
| 4381 | gbpages_bit_rsvd = rsvd_bits(7, 7); |
| 4382 | |
| 4383 | /* |
| 4384 | * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for |
| 4385 | * leaf entries) on AMD CPUs only. |
| 4386 | */ |
| 4387 | if (amd) |
| 4388 | nonleaf_bit8_rsvd = rsvd_bits(8, 8); |
| 4389 | |
| 4390 | switch (level) { |
| 4391 | case PT32_ROOT_LEVEL: |
| 4392 | /* no rsvd bits for 2 level 4K page table entries */ |
| 4393 | rsvd_check->rsvd_bits_mask[0][1] = 0; |
| 4394 | rsvd_check->rsvd_bits_mask[0][0] = 0; |
| 4395 | rsvd_check->rsvd_bits_mask[1][0] = |
| 4396 | rsvd_check->rsvd_bits_mask[0][0]; |
| 4397 | |
| 4398 | if (!pse) { |
| 4399 | rsvd_check->rsvd_bits_mask[1][1] = 0; |
| 4400 | break; |
| 4401 | } |
| 4402 | |
| 4403 | if (is_cpuid_PSE36()) |
| 4404 | /* 36bits PSE 4MB page */ |
| 4405 | rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); |
| 4406 | else |
| 4407 | /* 32 bits PSE 4MB page */ |
| 4408 | rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); |
| 4409 | break; |
| 4410 | case PT32E_ROOT_LEVEL: |
| 4411 | rsvd_check->rsvd_bits_mask[0][2] = |
| 4412 | rsvd_bits(maxphyaddr, 63) | |
| 4413 | rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */ |
| 4414 | rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | |
| 4415 | rsvd_bits(maxphyaddr, 62); /* PDE */ |
| 4416 | rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | |
| 4417 | rsvd_bits(maxphyaddr, 62); /* PTE */ |
| 4418 | rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | |
| 4419 | rsvd_bits(maxphyaddr, 62) | |
| 4420 | rsvd_bits(13, 20); /* large page */ |
| 4421 | rsvd_check->rsvd_bits_mask[1][0] = |
| 4422 | rsvd_check->rsvd_bits_mask[0][0]; |
| 4423 | break; |
| 4424 | case PT64_ROOT_5LEVEL: |
| 4425 | rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd | |
| 4426 | nonleaf_bit8_rsvd | rsvd_bits(7, 7) | |
| 4427 | rsvd_bits(maxphyaddr, 51); |
| 4428 | rsvd_check->rsvd_bits_mask[1][4] = |
| 4429 | rsvd_check->rsvd_bits_mask[0][4]; |
| 4430 | case PT64_ROOT_4LEVEL: |
| 4431 | rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd | |
| 4432 | nonleaf_bit8_rsvd | rsvd_bits(7, 7) | |
| 4433 | rsvd_bits(maxphyaddr, 51); |
| 4434 | rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd | |
| 4435 | nonleaf_bit8_rsvd | gbpages_bit_rsvd | |
| 4436 | rsvd_bits(maxphyaddr, 51); |
| 4437 | rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd | |
| 4438 | rsvd_bits(maxphyaddr, 51); |
| 4439 | rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd | |
| 4440 | rsvd_bits(maxphyaddr, 51); |
| 4441 | rsvd_check->rsvd_bits_mask[1][3] = |
| 4442 | rsvd_check->rsvd_bits_mask[0][3]; |
| 4443 | rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd | |
| 4444 | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) | |
| 4445 | rsvd_bits(13, 29); |
| 4446 | rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd | |
| 4447 | rsvd_bits(maxphyaddr, 51) | |
| 4448 | rsvd_bits(13, 20); /* large page */ |
| 4449 | rsvd_check->rsvd_bits_mask[1][0] = |
| 4450 | rsvd_check->rsvd_bits_mask[0][0]; |
| 4451 | break; |
| 4452 | } |
| 4453 | } |
| 4454 | |
| 4455 | static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, |
| 4456 | struct kvm_mmu *context) |
| 4457 | { |
| 4458 | __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check, |
| 4459 | cpuid_maxphyaddr(vcpu), context->root_level, |
| 4460 | context->nx, |
| 4461 | guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), |
| 4462 | is_pse(vcpu), guest_cpuid_is_amd(vcpu)); |
| 4463 | } |
| 4464 | |
| 4465 | static void |
| 4466 | __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, |
| 4467 | int maxphyaddr, bool execonly) |
| 4468 | { |
| 4469 | u64 bad_mt_xwr; |
| 4470 | |
| 4471 | rsvd_check->rsvd_bits_mask[0][4] = |
| 4472 | rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); |
| 4473 | rsvd_check->rsvd_bits_mask[0][3] = |
| 4474 | rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7); |
| 4475 | rsvd_check->rsvd_bits_mask[0][2] = |
| 4476 | rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); |
| 4477 | rsvd_check->rsvd_bits_mask[0][1] = |
| 4478 | rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6); |
| 4479 | rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51); |
| 4480 | |
| 4481 | /* large page */ |
| 4482 | rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; |
| 4483 | rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; |
| 4484 | rsvd_check->rsvd_bits_mask[1][2] = |
| 4485 | rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29); |
| 4486 | rsvd_check->rsvd_bits_mask[1][1] = |
| 4487 | rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20); |
| 4488 | rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; |
| 4489 | |
| 4490 | bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ |
| 4491 | bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ |
| 4492 | bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ |
| 4493 | bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ |
| 4494 | bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ |
| 4495 | if (!execonly) { |
| 4496 | /* bits 0..2 must not be 100 unless VMX capabilities allow it */ |
| 4497 | bad_mt_xwr |= REPEAT_BYTE(1ull << 4); |
| 4498 | } |
| 4499 | rsvd_check->bad_mt_xwr = bad_mt_xwr; |
| 4500 | } |
| 4501 | |
| 4502 | static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, |
| 4503 | struct kvm_mmu *context, bool execonly) |
| 4504 | { |
| 4505 | __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, |
| 4506 | cpuid_maxphyaddr(vcpu), execonly); |
| 4507 | } |
| 4508 | |
| 4509 | /* |
| 4510 | * the page table on host is the shadow page table for the page |
| 4511 | * table in guest or amd nested guest, its mmu features completely |
| 4512 | * follow the features in guest. |
| 4513 | */ |
| 4514 | void |
| 4515 | reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context) |
| 4516 | { |
| 4517 | bool uses_nx = context->nx || context->base_role.smep_andnot_wp; |
| 4518 | struct rsvd_bits_validate *shadow_zero_check; |
| 4519 | int i; |
| 4520 | |
| 4521 | /* |
| 4522 | * Passing "true" to the last argument is okay; it adds a check |
| 4523 | * on bit 8 of the SPTEs which KVM doesn't use anyway. |
| 4524 | */ |
| 4525 | shadow_zero_check = &context->shadow_zero_check; |
| 4526 | __reset_rsvds_bits_mask(vcpu, shadow_zero_check, |
| 4527 | boot_cpu_data.x86_phys_bits, |
| 4528 | context->shadow_root_level, uses_nx, |
| 4529 | guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), |
| 4530 | is_pse(vcpu), true); |
| 4531 | |
| 4532 | if (!shadow_me_mask) |
| 4533 | return; |
| 4534 | |
| 4535 | for (i = context->shadow_root_level; --i >= 0;) { |
| 4536 | shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; |
| 4537 | shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; |
| 4538 | } |
| 4539 | |
| 4540 | } |
| 4541 | EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask); |
| 4542 | |
| 4543 | static inline bool boot_cpu_is_amd(void) |
| 4544 | { |
| 4545 | WARN_ON_ONCE(!tdp_enabled); |
| 4546 | return shadow_x_mask == 0; |
| 4547 | } |
| 4548 | |
| 4549 | /* |
| 4550 | * the direct page table on host, use as much mmu features as |
| 4551 | * possible, however, kvm currently does not do execution-protection. |
| 4552 | */ |
| 4553 | static void |
| 4554 | reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, |
| 4555 | struct kvm_mmu *context) |
| 4556 | { |
| 4557 | struct rsvd_bits_validate *shadow_zero_check; |
| 4558 | int i; |
| 4559 | |
| 4560 | shadow_zero_check = &context->shadow_zero_check; |
| 4561 | |
| 4562 | if (boot_cpu_is_amd()) |
| 4563 | __reset_rsvds_bits_mask(vcpu, shadow_zero_check, |
| 4564 | boot_cpu_data.x86_phys_bits, |
| 4565 | context->shadow_root_level, false, |
| 4566 | boot_cpu_has(X86_FEATURE_GBPAGES), |
| 4567 | true, true); |
| 4568 | else |
| 4569 | __reset_rsvds_bits_mask_ept(shadow_zero_check, |
| 4570 | boot_cpu_data.x86_phys_bits, |
| 4571 | false); |
| 4572 | |
| 4573 | if (!shadow_me_mask) |
| 4574 | return; |
| 4575 | |
| 4576 | for (i = context->shadow_root_level; --i >= 0;) { |
| 4577 | shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; |
| 4578 | shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; |
| 4579 | } |
| 4580 | } |
| 4581 | |
| 4582 | /* |
| 4583 | * as the comments in reset_shadow_zero_bits_mask() except it |
| 4584 | * is the shadow page table for intel nested guest. |
| 4585 | */ |
| 4586 | static void |
| 4587 | reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, |
| 4588 | struct kvm_mmu *context, bool execonly) |
| 4589 | { |
| 4590 | __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, |
| 4591 | boot_cpu_data.x86_phys_bits, execonly); |
| 4592 | } |
| 4593 | |
| 4594 | #define BYTE_MASK(access) \ |
| 4595 | ((1 & (access) ? 2 : 0) | \ |
| 4596 | (2 & (access) ? 4 : 0) | \ |
| 4597 | (3 & (access) ? 8 : 0) | \ |
| 4598 | (4 & (access) ? 16 : 0) | \ |
| 4599 | (5 & (access) ? 32 : 0) | \ |
| 4600 | (6 & (access) ? 64 : 0) | \ |
| 4601 | (7 & (access) ? 128 : 0)) |
| 4602 | |
| 4603 | |
| 4604 | static void update_permission_bitmask(struct kvm_vcpu *vcpu, |
| 4605 | struct kvm_mmu *mmu, bool ept) |
| 4606 | { |
| 4607 | unsigned byte; |
| 4608 | |
| 4609 | const u8 x = BYTE_MASK(ACC_EXEC_MASK); |
| 4610 | const u8 w = BYTE_MASK(ACC_WRITE_MASK); |
| 4611 | const u8 u = BYTE_MASK(ACC_USER_MASK); |
| 4612 | |
| 4613 | bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0; |
| 4614 | bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0; |
| 4615 | bool cr0_wp = is_write_protection(vcpu); |
| 4616 | |
| 4617 | for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { |
| 4618 | unsigned pfec = byte << 1; |
| 4619 | |
| 4620 | /* |
| 4621 | * Each "*f" variable has a 1 bit for each UWX value |
| 4622 | * that causes a fault with the given PFEC. |
| 4623 | */ |
| 4624 | |
| 4625 | /* Faults from writes to non-writable pages */ |
| 4626 | u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; |
| 4627 | /* Faults from user mode accesses to supervisor pages */ |
| 4628 | u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; |
| 4629 | /* Faults from fetches of non-executable pages*/ |
| 4630 | u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; |
| 4631 | /* Faults from kernel mode fetches of user pages */ |
| 4632 | u8 smepf = 0; |
| 4633 | /* Faults from kernel mode accesses of user pages */ |
| 4634 | u8 smapf = 0; |
| 4635 | |
| 4636 | if (!ept) { |
| 4637 | /* Faults from kernel mode accesses to user pages */ |
| 4638 | u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; |
| 4639 | |
| 4640 | /* Not really needed: !nx will cause pte.nx to fault */ |
| 4641 | if (!mmu->nx) |
| 4642 | ff = 0; |
| 4643 | |
| 4644 | /* Allow supervisor writes if !cr0.wp */ |
| 4645 | if (!cr0_wp) |
| 4646 | wf = (pfec & PFERR_USER_MASK) ? wf : 0; |
| 4647 | |
| 4648 | /* Disallow supervisor fetches of user code if cr4.smep */ |
| 4649 | if (cr4_smep) |
| 4650 | smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; |
| 4651 | |
| 4652 | /* |
| 4653 | * SMAP:kernel-mode data accesses from user-mode |
| 4654 | * mappings should fault. A fault is considered |
| 4655 | * as a SMAP violation if all of the following |
| 4656 | * conditions are ture: |
| 4657 | * - X86_CR4_SMAP is set in CR4 |
| 4658 | * - A user page is accessed |
| 4659 | * - The access is not a fetch |
| 4660 | * - Page fault in kernel mode |
| 4661 | * - if CPL = 3 or X86_EFLAGS_AC is clear |
| 4662 | * |
| 4663 | * Here, we cover the first three conditions. |
| 4664 | * The fourth is computed dynamically in permission_fault(); |
| 4665 | * PFERR_RSVD_MASK bit will be set in PFEC if the access is |
| 4666 | * *not* subject to SMAP restrictions. |
| 4667 | */ |
| 4668 | if (cr4_smap) |
| 4669 | smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; |
| 4670 | } |
| 4671 | |
| 4672 | mmu->permissions[byte] = ff | uf | wf | smepf | smapf; |
| 4673 | } |
| 4674 | } |
| 4675 | |
| 4676 | /* |
| 4677 | * PKU is an additional mechanism by which the paging controls access to |
| 4678 | * user-mode addresses based on the value in the PKRU register. Protection |
| 4679 | * key violations are reported through a bit in the page fault error code. |
| 4680 | * Unlike other bits of the error code, the PK bit is not known at the |
| 4681 | * call site of e.g. gva_to_gpa; it must be computed directly in |
| 4682 | * permission_fault based on two bits of PKRU, on some machine state (CR4, |
| 4683 | * CR0, EFER, CPL), and on other bits of the error code and the page tables. |
| 4684 | * |
| 4685 | * In particular the following conditions come from the error code, the |
| 4686 | * page tables and the machine state: |
| 4687 | * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 |
| 4688 | * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) |
| 4689 | * - PK is always zero if U=0 in the page tables |
| 4690 | * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. |
| 4691 | * |
| 4692 | * The PKRU bitmask caches the result of these four conditions. The error |
| 4693 | * code (minus the P bit) and the page table's U bit form an index into the |
| 4694 | * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed |
| 4695 | * with the two bits of the PKRU register corresponding to the protection key. |
| 4696 | * For the first three conditions above the bits will be 00, thus masking |
| 4697 | * away both AD and WD. For all reads or if the last condition holds, WD |
| 4698 | * only will be masked away. |
| 4699 | */ |
| 4700 | static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, |
| 4701 | bool ept) |
| 4702 | { |
| 4703 | unsigned bit; |
| 4704 | bool wp; |
| 4705 | |
| 4706 | if (ept) { |
| 4707 | mmu->pkru_mask = 0; |
| 4708 | return; |
| 4709 | } |
| 4710 | |
| 4711 | /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */ |
| 4712 | if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) { |
| 4713 | mmu->pkru_mask = 0; |
| 4714 | return; |
| 4715 | } |
| 4716 | |
| 4717 | wp = is_write_protection(vcpu); |
| 4718 | |
| 4719 | for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { |
| 4720 | unsigned pfec, pkey_bits; |
| 4721 | bool check_pkey, check_write, ff, uf, wf, pte_user; |
| 4722 | |
| 4723 | pfec = bit << 1; |
| 4724 | ff = pfec & PFERR_FETCH_MASK; |
| 4725 | uf = pfec & PFERR_USER_MASK; |
| 4726 | wf = pfec & PFERR_WRITE_MASK; |
| 4727 | |
| 4728 | /* PFEC.RSVD is replaced by ACC_USER_MASK. */ |
| 4729 | pte_user = pfec & PFERR_RSVD_MASK; |
| 4730 | |
| 4731 | /* |
| 4732 | * Only need to check the access which is not an |
| 4733 | * instruction fetch and is to a user page. |
| 4734 | */ |
| 4735 | check_pkey = (!ff && pte_user); |
| 4736 | /* |
| 4737 | * write access is controlled by PKRU if it is a |
| 4738 | * user access or CR0.WP = 1. |
| 4739 | */ |
| 4740 | check_write = check_pkey && wf && (uf || wp); |
| 4741 | |
| 4742 | /* PKRU.AD stops both read and write access. */ |
| 4743 | pkey_bits = !!check_pkey; |
| 4744 | /* PKRU.WD stops write access. */ |
| 4745 | pkey_bits |= (!!check_write) << 1; |
| 4746 | |
| 4747 | mmu->pkru_mask |= (pkey_bits & 3) << pfec; |
| 4748 | } |
| 4749 | } |
| 4750 | |
| 4751 | static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) |
| 4752 | { |
| 4753 | unsigned root_level = mmu->root_level; |
| 4754 | |
| 4755 | mmu->last_nonleaf_level = root_level; |
| 4756 | if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu)) |
| 4757 | mmu->last_nonleaf_level++; |
| 4758 | } |
| 4759 | |
| 4760 | static void paging64_init_context_common(struct kvm_vcpu *vcpu, |
| 4761 | struct kvm_mmu *context, |
| 4762 | int level) |
| 4763 | { |
| 4764 | context->nx = is_nx(vcpu); |
| 4765 | context->root_level = level; |
| 4766 | |
| 4767 | reset_rsvds_bits_mask(vcpu, context); |
| 4768 | update_permission_bitmask(vcpu, context, false); |
| 4769 | update_pkru_bitmask(vcpu, context, false); |
| 4770 | update_last_nonleaf_level(vcpu, context); |
| 4771 | |
| 4772 | MMU_WARN_ON(!is_pae(vcpu)); |
| 4773 | context->page_fault = paging64_page_fault; |
| 4774 | context->gva_to_gpa = paging64_gva_to_gpa; |
| 4775 | context->sync_page = paging64_sync_page; |
| 4776 | context->invlpg = paging64_invlpg; |
| 4777 | context->update_pte = paging64_update_pte; |
| 4778 | context->shadow_root_level = level; |
| 4779 | context->direct_map = false; |
| 4780 | } |
| 4781 | |
| 4782 | static void paging64_init_context(struct kvm_vcpu *vcpu, |
| 4783 | struct kvm_mmu *context) |
| 4784 | { |
| 4785 | int root_level = is_la57_mode(vcpu) ? |
| 4786 | PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; |
| 4787 | |
| 4788 | paging64_init_context_common(vcpu, context, root_level); |
| 4789 | } |
| 4790 | |
| 4791 | static void paging32_init_context(struct kvm_vcpu *vcpu, |
| 4792 | struct kvm_mmu *context) |
| 4793 | { |
| 4794 | context->nx = false; |
| 4795 | context->root_level = PT32_ROOT_LEVEL; |
| 4796 | |
| 4797 | reset_rsvds_bits_mask(vcpu, context); |
| 4798 | update_permission_bitmask(vcpu, context, false); |
| 4799 | update_pkru_bitmask(vcpu, context, false); |
| 4800 | update_last_nonleaf_level(vcpu, context); |
| 4801 | |
| 4802 | context->page_fault = paging32_page_fault; |
| 4803 | context->gva_to_gpa = paging32_gva_to_gpa; |
| 4804 | context->sync_page = paging32_sync_page; |
| 4805 | context->invlpg = paging32_invlpg; |
| 4806 | context->update_pte = paging32_update_pte; |
| 4807 | context->shadow_root_level = PT32E_ROOT_LEVEL; |
| 4808 | context->direct_map = false; |
| 4809 | } |
| 4810 | |
| 4811 | static void paging32E_init_context(struct kvm_vcpu *vcpu, |
| 4812 | struct kvm_mmu *context) |
| 4813 | { |
| 4814 | paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); |
| 4815 | } |
| 4816 | |
| 4817 | static union kvm_mmu_page_role |
| 4818 | kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu) |
| 4819 | { |
| 4820 | union kvm_mmu_page_role role = {0}; |
| 4821 | |
| 4822 | role.guest_mode = is_guest_mode(vcpu); |
| 4823 | role.smm = is_smm(vcpu); |
| 4824 | role.ad_disabled = (shadow_accessed_mask == 0); |
| 4825 | role.level = kvm_x86_ops->get_tdp_level(vcpu); |
| 4826 | role.direct = true; |
| 4827 | role.access = ACC_ALL; |
| 4828 | |
| 4829 | return role; |
| 4830 | } |
| 4831 | |
| 4832 | static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) |
| 4833 | { |
| 4834 | struct kvm_mmu *context = &vcpu->arch.mmu; |
| 4835 | |
| 4836 | context->base_role.word = mmu_base_role_mask.word & |
| 4837 | kvm_calc_tdp_mmu_root_page_role(vcpu).word; |
| 4838 | context->page_fault = tdp_page_fault; |
| 4839 | context->sync_page = nonpaging_sync_page; |
| 4840 | context->invlpg = nonpaging_invlpg; |
| 4841 | context->update_pte = nonpaging_update_pte; |
| 4842 | context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu); |
| 4843 | context->direct_map = true; |
| 4844 | context->set_cr3 = kvm_x86_ops->set_tdp_cr3; |
| 4845 | context->get_cr3 = get_cr3; |
| 4846 | context->get_pdptr = kvm_pdptr_read; |
| 4847 | context->inject_page_fault = kvm_inject_page_fault; |
| 4848 | |
| 4849 | if (!is_paging(vcpu)) { |
| 4850 | context->nx = false; |
| 4851 | context->gva_to_gpa = nonpaging_gva_to_gpa; |
| 4852 | context->root_level = 0; |
| 4853 | } else if (is_long_mode(vcpu)) { |
| 4854 | context->nx = is_nx(vcpu); |
| 4855 | context->root_level = is_la57_mode(vcpu) ? |
| 4856 | PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; |
| 4857 | reset_rsvds_bits_mask(vcpu, context); |
| 4858 | context->gva_to_gpa = paging64_gva_to_gpa; |
| 4859 | } else if (is_pae(vcpu)) { |
| 4860 | context->nx = is_nx(vcpu); |
| 4861 | context->root_level = PT32E_ROOT_LEVEL; |
| 4862 | reset_rsvds_bits_mask(vcpu, context); |
| 4863 | context->gva_to_gpa = paging64_gva_to_gpa; |
| 4864 | } else { |
| 4865 | context->nx = false; |
| 4866 | context->root_level = PT32_ROOT_LEVEL; |
| 4867 | reset_rsvds_bits_mask(vcpu, context); |
| 4868 | context->gva_to_gpa = paging32_gva_to_gpa; |
| 4869 | } |
| 4870 | |
| 4871 | update_permission_bitmask(vcpu, context, false); |
| 4872 | update_pkru_bitmask(vcpu, context, false); |
| 4873 | update_last_nonleaf_level(vcpu, context); |
| 4874 | reset_tdp_shadow_zero_bits_mask(vcpu, context); |
| 4875 | } |
| 4876 | |
| 4877 | static union kvm_mmu_page_role |
| 4878 | kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu) |
| 4879 | { |
| 4880 | union kvm_mmu_page_role role = {0}; |
| 4881 | bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); |
| 4882 | bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); |
| 4883 | |
| 4884 | role.nxe = is_nx(vcpu); |
| 4885 | role.cr4_pae = !!is_pae(vcpu); |
| 4886 | role.cr0_wp = is_write_protection(vcpu); |
| 4887 | role.smep_andnot_wp = smep && !is_write_protection(vcpu); |
| 4888 | role.smap_andnot_wp = smap && !is_write_protection(vcpu); |
| 4889 | role.guest_mode = is_guest_mode(vcpu); |
| 4890 | role.smm = is_smm(vcpu); |
| 4891 | role.direct = !is_paging(vcpu); |
| 4892 | role.access = ACC_ALL; |
| 4893 | |
| 4894 | if (!is_long_mode(vcpu)) |
| 4895 | role.level = PT32E_ROOT_LEVEL; |
| 4896 | else if (is_la57_mode(vcpu)) |
| 4897 | role.level = PT64_ROOT_5LEVEL; |
| 4898 | else |
| 4899 | role.level = PT64_ROOT_4LEVEL; |
| 4900 | |
| 4901 | return role; |
| 4902 | } |
| 4903 | |
| 4904 | void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu) |
| 4905 | { |
| 4906 | struct kvm_mmu *context = &vcpu->arch.mmu; |
| 4907 | |
| 4908 | if (!is_paging(vcpu)) |
| 4909 | nonpaging_init_context(vcpu, context); |
| 4910 | else if (is_long_mode(vcpu)) |
| 4911 | paging64_init_context(vcpu, context); |
| 4912 | else if (is_pae(vcpu)) |
| 4913 | paging32E_init_context(vcpu, context); |
| 4914 | else |
| 4915 | paging32_init_context(vcpu, context); |
| 4916 | |
| 4917 | context->base_role.word = mmu_base_role_mask.word & |
| 4918 | kvm_calc_shadow_mmu_root_page_role(vcpu).word; |
| 4919 | reset_shadow_zero_bits_mask(vcpu, context); |
| 4920 | } |
| 4921 | EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu); |
| 4922 | |
| 4923 | static union kvm_mmu_page_role |
| 4924 | kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty) |
| 4925 | { |
| 4926 | union kvm_mmu_page_role role = vcpu->arch.mmu.base_role; |
| 4927 | |
| 4928 | role.level = PT64_ROOT_4LEVEL; |
| 4929 | role.direct = false; |
| 4930 | role.ad_disabled = !accessed_dirty; |
| 4931 | role.guest_mode = true; |
| 4932 | role.access = ACC_ALL; |
| 4933 | |
| 4934 | return role; |
| 4935 | } |
| 4936 | |
| 4937 | void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, |
| 4938 | bool accessed_dirty, gpa_t new_eptp) |
| 4939 | { |
| 4940 | struct kvm_mmu *context = &vcpu->arch.mmu; |
| 4941 | union kvm_mmu_page_role root_page_role = |
| 4942 | kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty); |
| 4943 | |
| 4944 | __kvm_mmu_new_cr3(vcpu, new_eptp, root_page_role, false); |
| 4945 | context->shadow_root_level = PT64_ROOT_4LEVEL; |
| 4946 | |
| 4947 | context->nx = true; |
| 4948 | context->ept_ad = accessed_dirty; |
| 4949 | context->page_fault = ept_page_fault; |
| 4950 | context->gva_to_gpa = ept_gva_to_gpa; |
| 4951 | context->sync_page = ept_sync_page; |
| 4952 | context->invlpg = ept_invlpg; |
| 4953 | context->update_pte = ept_update_pte; |
| 4954 | context->root_level = PT64_ROOT_4LEVEL; |
| 4955 | context->direct_map = false; |
| 4956 | context->base_role.word = root_page_role.word & mmu_base_role_mask.word; |
| 4957 | update_permission_bitmask(vcpu, context, true); |
| 4958 | update_pkru_bitmask(vcpu, context, true); |
| 4959 | update_last_nonleaf_level(vcpu, context); |
| 4960 | reset_rsvds_bits_mask_ept(vcpu, context, execonly); |
| 4961 | reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); |
| 4962 | } |
| 4963 | EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); |
| 4964 | |
| 4965 | static void init_kvm_softmmu(struct kvm_vcpu *vcpu) |
| 4966 | { |
| 4967 | struct kvm_mmu *context = &vcpu->arch.mmu; |
| 4968 | |
| 4969 | kvm_init_shadow_mmu(vcpu); |
| 4970 | context->set_cr3 = kvm_x86_ops->set_cr3; |
| 4971 | context->get_cr3 = get_cr3; |
| 4972 | context->get_pdptr = kvm_pdptr_read; |
| 4973 | context->inject_page_fault = kvm_inject_page_fault; |
| 4974 | } |
| 4975 | |
| 4976 | static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) |
| 4977 | { |
| 4978 | struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; |
| 4979 | |
| 4980 | g_context->get_cr3 = get_cr3; |
| 4981 | g_context->get_pdptr = kvm_pdptr_read; |
| 4982 | g_context->inject_page_fault = kvm_inject_page_fault; |
| 4983 | |
| 4984 | /* |
| 4985 | * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using |
| 4986 | * L1's nested page tables (e.g. EPT12). The nested translation |
| 4987 | * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using |
| 4988 | * L2's page tables as the first level of translation and L1's |
| 4989 | * nested page tables as the second level of translation. Basically |
| 4990 | * the gva_to_gpa functions between mmu and nested_mmu are swapped. |
| 4991 | */ |
| 4992 | if (!is_paging(vcpu)) { |
| 4993 | g_context->nx = false; |
| 4994 | g_context->root_level = 0; |
| 4995 | g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; |
| 4996 | } else if (is_long_mode(vcpu)) { |
| 4997 | g_context->nx = is_nx(vcpu); |
| 4998 | g_context->root_level = is_la57_mode(vcpu) ? |
| 4999 | PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; |
| 5000 | reset_rsvds_bits_mask(vcpu, g_context); |
| 5001 | g_context->gva_to_gpa = paging64_gva_to_gpa_nested; |
| 5002 | } else if (is_pae(vcpu)) { |
| 5003 | g_context->nx = is_nx(vcpu); |
| 5004 | g_context->root_level = PT32E_ROOT_LEVEL; |
| 5005 | reset_rsvds_bits_mask(vcpu, g_context); |
| 5006 | g_context->gva_to_gpa = paging64_gva_to_gpa_nested; |
| 5007 | } else { |
| 5008 | g_context->nx = false; |
| 5009 | g_context->root_level = PT32_ROOT_LEVEL; |
| 5010 | reset_rsvds_bits_mask(vcpu, g_context); |
| 5011 | g_context->gva_to_gpa = paging32_gva_to_gpa_nested; |
| 5012 | } |
| 5013 | |
| 5014 | update_permission_bitmask(vcpu, g_context, false); |
| 5015 | update_pkru_bitmask(vcpu, g_context, false); |
| 5016 | update_last_nonleaf_level(vcpu, g_context); |
| 5017 | } |
| 5018 | |
| 5019 | void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots) |
| 5020 | { |
| 5021 | if (reset_roots) { |
| 5022 | uint i; |
| 5023 | |
| 5024 | vcpu->arch.mmu.root_hpa = INVALID_PAGE; |
| 5025 | |
| 5026 | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) |
| 5027 | vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; |
| 5028 | } |
| 5029 | |
| 5030 | if (mmu_is_nested(vcpu)) |
| 5031 | init_kvm_nested_mmu(vcpu); |
| 5032 | else if (tdp_enabled) |
| 5033 | init_kvm_tdp_mmu(vcpu); |
| 5034 | else |
| 5035 | init_kvm_softmmu(vcpu); |
| 5036 | } |
| 5037 | EXPORT_SYMBOL_GPL(kvm_init_mmu); |
| 5038 | |
| 5039 | static union kvm_mmu_page_role |
| 5040 | kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) |
| 5041 | { |
| 5042 | if (tdp_enabled) |
| 5043 | return kvm_calc_tdp_mmu_root_page_role(vcpu); |
| 5044 | else |
| 5045 | return kvm_calc_shadow_mmu_root_page_role(vcpu); |
| 5046 | } |
| 5047 | |
| 5048 | void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) |
| 5049 | { |
| 5050 | kvm_mmu_unload(vcpu); |
| 5051 | kvm_init_mmu(vcpu, true); |
| 5052 | } |
| 5053 | EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); |
| 5054 | |
| 5055 | int kvm_mmu_load(struct kvm_vcpu *vcpu) |
| 5056 | { |
| 5057 | int r; |
| 5058 | |
| 5059 | r = mmu_topup_memory_caches(vcpu); |
| 5060 | if (r) |
| 5061 | goto out; |
| 5062 | r = mmu_alloc_roots(vcpu); |
| 5063 | kvm_mmu_sync_roots(vcpu); |
| 5064 | if (r) |
| 5065 | goto out; |
| 5066 | kvm_mmu_load_cr3(vcpu); |
| 5067 | kvm_x86_ops->tlb_flush(vcpu, true); |
| 5068 | out: |
| 5069 | return r; |
| 5070 | } |
| 5071 | EXPORT_SYMBOL_GPL(kvm_mmu_load); |
| 5072 | |
| 5073 | void kvm_mmu_unload(struct kvm_vcpu *vcpu) |
| 5074 | { |
| 5075 | kvm_mmu_free_roots(vcpu, KVM_MMU_ROOTS_ALL); |
| 5076 | WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa)); |
| 5077 | } |
| 5078 | EXPORT_SYMBOL_GPL(kvm_mmu_unload); |
| 5079 | |
| 5080 | static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu, |
| 5081 | struct kvm_mmu_page *sp, u64 *spte, |
| 5082 | const void *new) |
| 5083 | { |
| 5084 | if (sp->role.level != PT_PAGE_TABLE_LEVEL) { |
| 5085 | ++vcpu->kvm->stat.mmu_pde_zapped; |
| 5086 | return; |
| 5087 | } |
| 5088 | |
| 5089 | ++vcpu->kvm->stat.mmu_pte_updated; |
| 5090 | vcpu->arch.mmu.update_pte(vcpu, sp, spte, new); |
| 5091 | } |
| 5092 | |
| 5093 | static bool need_remote_flush(u64 old, u64 new) |
| 5094 | { |
| 5095 | if (!is_shadow_present_pte(old)) |
| 5096 | return false; |
| 5097 | if (!is_shadow_present_pte(new)) |
| 5098 | return true; |
| 5099 | if ((old ^ new) & PT64_BASE_ADDR_MASK) |
| 5100 | return true; |
| 5101 | old ^= shadow_nx_mask; |
| 5102 | new ^= shadow_nx_mask; |
| 5103 | return (old & ~new & PT64_PERM_MASK) != 0; |
| 5104 | } |
| 5105 | |
| 5106 | static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, |
| 5107 | int *bytes) |
| 5108 | { |
| 5109 | u64 gentry = 0; |
| 5110 | int r; |
| 5111 | |
| 5112 | /* |
| 5113 | * Assume that the pte write on a page table of the same type |
| 5114 | * as the current vcpu paging mode since we update the sptes only |
| 5115 | * when they have the same mode. |
| 5116 | */ |
| 5117 | if (is_pae(vcpu) && *bytes == 4) { |
| 5118 | /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ |
| 5119 | *gpa &= ~(gpa_t)7; |
| 5120 | *bytes = 8; |
| 5121 | } |
| 5122 | |
| 5123 | if (*bytes == 4 || *bytes == 8) { |
| 5124 | r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); |
| 5125 | if (r) |
| 5126 | gentry = 0; |
| 5127 | } |
| 5128 | |
| 5129 | return gentry; |
| 5130 | } |
| 5131 | |
| 5132 | /* |
| 5133 | * If we're seeing too many writes to a page, it may no longer be a page table, |
| 5134 | * or we may be forking, in which case it is better to unmap the page. |
| 5135 | */ |
| 5136 | static bool detect_write_flooding(struct kvm_mmu_page *sp) |
| 5137 | { |
| 5138 | /* |
| 5139 | * Skip write-flooding detected for the sp whose level is 1, because |
| 5140 | * it can become unsync, then the guest page is not write-protected. |
| 5141 | */ |
| 5142 | if (sp->role.level == PT_PAGE_TABLE_LEVEL) |
| 5143 | return false; |
| 5144 | |
| 5145 | atomic_inc(&sp->write_flooding_count); |
| 5146 | return atomic_read(&sp->write_flooding_count) >= 3; |
| 5147 | } |
| 5148 | |
| 5149 | /* |
| 5150 | * Misaligned accesses are too much trouble to fix up; also, they usually |
| 5151 | * indicate a page is not used as a page table. |
| 5152 | */ |
| 5153 | static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, |
| 5154 | int bytes) |
| 5155 | { |
| 5156 | unsigned offset, pte_size, misaligned; |
| 5157 | |
| 5158 | pgprintk("misaligned: gpa %llx bytes %d role %x\n", |
| 5159 | gpa, bytes, sp->role.word); |
| 5160 | |
| 5161 | offset = offset_in_page(gpa); |
| 5162 | pte_size = sp->role.cr4_pae ? 8 : 4; |
| 5163 | |
| 5164 | /* |
| 5165 | * Sometimes, the OS only writes the last one bytes to update status |
| 5166 | * bits, for example, in linux, andb instruction is used in clear_bit(). |
| 5167 | */ |
| 5168 | if (!(offset & (pte_size - 1)) && bytes == 1) |
| 5169 | return false; |
| 5170 | |
| 5171 | misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); |
| 5172 | misaligned |= bytes < 4; |
| 5173 | |
| 5174 | return misaligned; |
| 5175 | } |
| 5176 | |
| 5177 | static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) |
| 5178 | { |
| 5179 | unsigned page_offset, quadrant; |
| 5180 | u64 *spte; |
| 5181 | int level; |
| 5182 | |
| 5183 | page_offset = offset_in_page(gpa); |
| 5184 | level = sp->role.level; |
| 5185 | *nspte = 1; |
| 5186 | if (!sp->role.cr4_pae) { |
| 5187 | page_offset <<= 1; /* 32->64 */ |
| 5188 | /* |
| 5189 | * A 32-bit pde maps 4MB while the shadow pdes map |
| 5190 | * only 2MB. So we need to double the offset again |
| 5191 | * and zap two pdes instead of one. |
| 5192 | */ |
| 5193 | if (level == PT32_ROOT_LEVEL) { |
| 5194 | page_offset &= ~7; /* kill rounding error */ |
| 5195 | page_offset <<= 1; |
| 5196 | *nspte = 2; |
| 5197 | } |
| 5198 | quadrant = page_offset >> PAGE_SHIFT; |
| 5199 | page_offset &= ~PAGE_MASK; |
| 5200 | if (quadrant != sp->role.quadrant) |
| 5201 | return NULL; |
| 5202 | } |
| 5203 | |
| 5204 | spte = &sp->spt[page_offset / sizeof(*spte)]; |
| 5205 | return spte; |
| 5206 | } |
| 5207 | |
| 5208 | static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, |
| 5209 | const u8 *new, int bytes, |
| 5210 | struct kvm_page_track_notifier_node *node) |
| 5211 | { |
| 5212 | gfn_t gfn = gpa >> PAGE_SHIFT; |
| 5213 | struct kvm_mmu_page *sp; |
| 5214 | LIST_HEAD(invalid_list); |
| 5215 | u64 entry, gentry, *spte; |
| 5216 | int npte; |
| 5217 | bool remote_flush, local_flush; |
| 5218 | |
| 5219 | /* |
| 5220 | * If we don't have indirect shadow pages, it means no page is |
| 5221 | * write-protected, so we can exit simply. |
| 5222 | */ |
| 5223 | if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) |
| 5224 | return; |
| 5225 | |
| 5226 | remote_flush = local_flush = false; |
| 5227 | |
| 5228 | pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); |
| 5229 | |
| 5230 | /* |
| 5231 | * No need to care whether allocation memory is successful |
| 5232 | * or not since pte prefetch is skiped if it does not have |
| 5233 | * enough objects in the cache. |
| 5234 | */ |
| 5235 | mmu_topup_memory_caches(vcpu); |
| 5236 | |
| 5237 | spin_lock(&vcpu->kvm->mmu_lock); |
| 5238 | |
| 5239 | gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); |
| 5240 | |
| 5241 | ++vcpu->kvm->stat.mmu_pte_write; |
| 5242 | kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); |
| 5243 | |
| 5244 | for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { |
| 5245 | if (detect_write_misaligned(sp, gpa, bytes) || |
| 5246 | detect_write_flooding(sp)) { |
| 5247 | kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); |
| 5248 | ++vcpu->kvm->stat.mmu_flooded; |
| 5249 | continue; |
| 5250 | } |
| 5251 | |
| 5252 | spte = get_written_sptes(sp, gpa, &npte); |
| 5253 | if (!spte) |
| 5254 | continue; |
| 5255 | |
| 5256 | local_flush = true; |
| 5257 | while (npte--) { |
| 5258 | entry = *spte; |
| 5259 | mmu_page_zap_pte(vcpu->kvm, sp, spte); |
| 5260 | if (gentry && |
| 5261 | !((sp->role.word ^ vcpu->arch.mmu.base_role.word) |
| 5262 | & mmu_base_role_mask.word) && rmap_can_add(vcpu)) |
| 5263 | mmu_pte_write_new_pte(vcpu, sp, spte, &gentry); |
| 5264 | if (need_remote_flush(entry, *spte)) |
| 5265 | remote_flush = true; |
| 5266 | ++spte; |
| 5267 | } |
| 5268 | } |
| 5269 | kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush); |
| 5270 | kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); |
| 5271 | spin_unlock(&vcpu->kvm->mmu_lock); |
| 5272 | } |
| 5273 | |
| 5274 | int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) |
| 5275 | { |
| 5276 | gpa_t gpa; |
| 5277 | int r; |
| 5278 | |
| 5279 | if (vcpu->arch.mmu.direct_map) |
| 5280 | return 0; |
| 5281 | |
| 5282 | gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); |
| 5283 | |
| 5284 | r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); |
| 5285 | |
| 5286 | return r; |
| 5287 | } |
| 5288 | EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt); |
| 5289 | |
| 5290 | static int make_mmu_pages_available(struct kvm_vcpu *vcpu) |
| 5291 | { |
| 5292 | LIST_HEAD(invalid_list); |
| 5293 | |
| 5294 | if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES)) |
| 5295 | return 0; |
| 5296 | |
| 5297 | while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) { |
| 5298 | if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list)) |
| 5299 | break; |
| 5300 | |
| 5301 | ++vcpu->kvm->stat.mmu_recycled; |
| 5302 | } |
| 5303 | kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list); |
| 5304 | |
| 5305 | if (!kvm_mmu_available_pages(vcpu->kvm)) |
| 5306 | return -ENOSPC; |
| 5307 | return 0; |
| 5308 | } |
| 5309 | |
| 5310 | int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code, |
| 5311 | void *insn, int insn_len) |
| 5312 | { |
| 5313 | int r, emulation_type = 0; |
| 5314 | enum emulation_result er; |
| 5315 | bool direct = vcpu->arch.mmu.direct_map; |
| 5316 | |
| 5317 | /* With shadow page tables, fault_address contains a GVA or nGPA. */ |
| 5318 | if (vcpu->arch.mmu.direct_map) { |
| 5319 | vcpu->arch.gpa_available = true; |
| 5320 | vcpu->arch.gpa_val = cr2; |
| 5321 | } |
| 5322 | |
| 5323 | r = RET_PF_INVALID; |
| 5324 | if (unlikely(error_code & PFERR_RSVD_MASK)) { |
| 5325 | r = handle_mmio_page_fault(vcpu, cr2, direct); |
| 5326 | if (r == RET_PF_EMULATE) |
| 5327 | goto emulate; |
| 5328 | } |
| 5329 | |
| 5330 | if (r == RET_PF_INVALID) { |
| 5331 | r = vcpu->arch.mmu.page_fault(vcpu, cr2, lower_32_bits(error_code), |
| 5332 | false); |
| 5333 | WARN_ON(r == RET_PF_INVALID); |
| 5334 | } |
| 5335 | |
| 5336 | if (r == RET_PF_RETRY) |
| 5337 | return 1; |
| 5338 | if (r < 0) |
| 5339 | return r; |
| 5340 | |
| 5341 | /* |
| 5342 | * Before emulating the instruction, check if the error code |
| 5343 | * was due to a RO violation while translating the guest page. |
| 5344 | * This can occur when using nested virtualization with nested |
| 5345 | * paging in both guests. If true, we simply unprotect the page |
| 5346 | * and resume the guest. |
| 5347 | */ |
| 5348 | if (vcpu->arch.mmu.direct_map && |
| 5349 | (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { |
| 5350 | kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2)); |
| 5351 | return 1; |
| 5352 | } |
| 5353 | |
| 5354 | /* |
| 5355 | * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still |
| 5356 | * optimistically try to just unprotect the page and let the processor |
| 5357 | * re-execute the instruction that caused the page fault. Do not allow |
| 5358 | * retrying MMIO emulation, as it's not only pointless but could also |
| 5359 | * cause us to enter an infinite loop because the processor will keep |
| 5360 | * faulting on the non-existent MMIO address. Retrying an instruction |
| 5361 | * from a nested guest is also pointless and dangerous as we are only |
| 5362 | * explicitly shadowing L1's page tables, i.e. unprotecting something |
| 5363 | * for L1 isn't going to magically fix whatever issue cause L2 to fail. |
| 5364 | */ |
| 5365 | if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu)) |
| 5366 | emulation_type = EMULTYPE_ALLOW_RETRY; |
| 5367 | emulate: |
| 5368 | /* |
| 5369 | * On AMD platforms, under certain conditions insn_len may be zero on #NPF. |
| 5370 | * This can happen if a guest gets a page-fault on data access but the HW |
| 5371 | * table walker is not able to read the instruction page (e.g instruction |
| 5372 | * page is not present in memory). In those cases we simply restart the |
| 5373 | * guest. |
| 5374 | */ |
| 5375 | if (unlikely(insn && !insn_len)) |
| 5376 | return 1; |
| 5377 | |
| 5378 | er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len); |
| 5379 | |
| 5380 | switch (er) { |
| 5381 | case EMULATE_DONE: |
| 5382 | return 1; |
| 5383 | case EMULATE_USER_EXIT: |
| 5384 | ++vcpu->stat.mmio_exits; |
| 5385 | /* fall through */ |
| 5386 | case EMULATE_FAIL: |
| 5387 | return 0; |
| 5388 | default: |
| 5389 | BUG(); |
| 5390 | } |
| 5391 | } |
| 5392 | EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); |
| 5393 | |
| 5394 | void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) |
| 5395 | { |
| 5396 | struct kvm_mmu *mmu = &vcpu->arch.mmu; |
| 5397 | int i; |
| 5398 | |
| 5399 | /* INVLPG on a * non-canonical address is a NOP according to the SDM. */ |
| 5400 | if (is_noncanonical_address(gva, vcpu)) |
| 5401 | return; |
| 5402 | |
| 5403 | mmu->invlpg(vcpu, gva, mmu->root_hpa); |
| 5404 | |
| 5405 | /* |
| 5406 | * INVLPG is required to invalidate any global mappings for the VA, |
| 5407 | * irrespective of PCID. Since it would take us roughly similar amount |
| 5408 | * of work to determine whether any of the prev_root mappings of the VA |
| 5409 | * is marked global, or to just sync it blindly, so we might as well |
| 5410 | * just always sync it. |
| 5411 | * |
| 5412 | * Mappings not reachable via the current cr3 or the prev_roots will be |
| 5413 | * synced when switching to that cr3, so nothing needs to be done here |
| 5414 | * for them. |
| 5415 | */ |
| 5416 | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) |
| 5417 | if (VALID_PAGE(mmu->prev_roots[i].hpa)) |
| 5418 | mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); |
| 5419 | |
| 5420 | kvm_x86_ops->tlb_flush_gva(vcpu, gva); |
| 5421 | ++vcpu->stat.invlpg; |
| 5422 | } |
| 5423 | EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); |
| 5424 | |
| 5425 | void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) |
| 5426 | { |
| 5427 | struct kvm_mmu *mmu = &vcpu->arch.mmu; |
| 5428 | bool tlb_flush = false; |
| 5429 | uint i; |
| 5430 | |
| 5431 | if (pcid == kvm_get_active_pcid(vcpu)) { |
| 5432 | mmu->invlpg(vcpu, gva, mmu->root_hpa); |
| 5433 | tlb_flush = true; |
| 5434 | } |
| 5435 | |
| 5436 | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { |
| 5437 | if (VALID_PAGE(mmu->prev_roots[i].hpa) && |
| 5438 | pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) { |
| 5439 | mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); |
| 5440 | tlb_flush = true; |
| 5441 | } |
| 5442 | } |
| 5443 | |
| 5444 | if (tlb_flush) |
| 5445 | kvm_x86_ops->tlb_flush_gva(vcpu, gva); |
| 5446 | |
| 5447 | ++vcpu->stat.invlpg; |
| 5448 | |
| 5449 | /* |
| 5450 | * Mappings not reachable via the current cr3 or the prev_roots will be |
| 5451 | * synced when switching to that cr3, so nothing needs to be done here |
| 5452 | * for them. |
| 5453 | */ |
| 5454 | } |
| 5455 | EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva); |
| 5456 | |
| 5457 | void kvm_enable_tdp(void) |
| 5458 | { |
| 5459 | tdp_enabled = true; |
| 5460 | } |
| 5461 | EXPORT_SYMBOL_GPL(kvm_enable_tdp); |
| 5462 | |
| 5463 | void kvm_disable_tdp(void) |
| 5464 | { |
| 5465 | tdp_enabled = false; |
| 5466 | } |
| 5467 | EXPORT_SYMBOL_GPL(kvm_disable_tdp); |
| 5468 | |
| 5469 | static void free_mmu_pages(struct kvm_vcpu *vcpu) |
| 5470 | { |
| 5471 | free_page((unsigned long)vcpu->arch.mmu.pae_root); |
| 5472 | free_page((unsigned long)vcpu->arch.mmu.lm_root); |
| 5473 | } |
| 5474 | |
| 5475 | static int alloc_mmu_pages(struct kvm_vcpu *vcpu) |
| 5476 | { |
| 5477 | struct page *page; |
| 5478 | int i; |
| 5479 | |
| 5480 | /* |
| 5481 | * When using PAE paging, the four PDPTEs are treated as 'root' pages, |
| 5482 | * while the PDP table is a per-vCPU construct that's allocated at MMU |
| 5483 | * creation. When emulating 32-bit mode, cr3 is only 32 bits even on |
| 5484 | * x86_64. Therefore we need to allocate the PDP table in the first |
| 5485 | * 4GB of memory, which happens to fit the DMA32 zone. Except for |
| 5486 | * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can |
| 5487 | * skip allocating the PDP table. |
| 5488 | */ |
| 5489 | if (tdp_enabled && kvm_x86_ops->get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) |
| 5490 | return 0; |
| 5491 | |
| 5492 | /* |
| 5493 | * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64. |
| 5494 | * Therefore we need to allocate shadow page tables in the first |
| 5495 | * 4GB of memory, which happens to fit the DMA32 zone. |
| 5496 | */ |
| 5497 | page = alloc_page(GFP_KERNEL | __GFP_DMA32); |
| 5498 | if (!page) |
| 5499 | return -ENOMEM; |
| 5500 | |
| 5501 | vcpu->arch.mmu.pae_root = page_address(page); |
| 5502 | for (i = 0; i < 4; ++i) |
| 5503 | vcpu->arch.mmu.pae_root[i] = INVALID_PAGE; |
| 5504 | |
| 5505 | return 0; |
| 5506 | } |
| 5507 | |
| 5508 | int kvm_mmu_create(struct kvm_vcpu *vcpu) |
| 5509 | { |
| 5510 | uint i; |
| 5511 | |
| 5512 | vcpu->arch.walk_mmu = &vcpu->arch.mmu; |
| 5513 | vcpu->arch.mmu.root_hpa = INVALID_PAGE; |
| 5514 | vcpu->arch.mmu.translate_gpa = translate_gpa; |
| 5515 | vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; |
| 5516 | |
| 5517 | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) |
| 5518 | vcpu->arch.mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; |
| 5519 | |
| 5520 | return alloc_mmu_pages(vcpu); |
| 5521 | } |
| 5522 | |
| 5523 | void kvm_mmu_setup(struct kvm_vcpu *vcpu) |
| 5524 | { |
| 5525 | MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa)); |
| 5526 | |
| 5527 | /* |
| 5528 | * kvm_mmu_setup() is called only on vCPU initialization. |
| 5529 | * Therefore, no need to reset mmu roots as they are not yet |
| 5530 | * initialized. |
| 5531 | */ |
| 5532 | kvm_init_mmu(vcpu, false); |
| 5533 | } |
| 5534 | |
| 5535 | static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, |
| 5536 | struct kvm_memory_slot *slot, |
| 5537 | struct kvm_page_track_notifier_node *node) |
| 5538 | { |
| 5539 | kvm_mmu_invalidate_zap_all_pages(kvm); |
| 5540 | } |
| 5541 | |
| 5542 | void kvm_mmu_init_vm(struct kvm *kvm) |
| 5543 | { |
| 5544 | struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; |
| 5545 | |
| 5546 | node->track_write = kvm_mmu_pte_write; |
| 5547 | node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; |
| 5548 | kvm_page_track_register_notifier(kvm, node); |
| 5549 | } |
| 5550 | |
| 5551 | void kvm_mmu_uninit_vm(struct kvm *kvm) |
| 5552 | { |
| 5553 | struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; |
| 5554 | |
| 5555 | kvm_page_track_unregister_notifier(kvm, node); |
| 5556 | } |
| 5557 | |
| 5558 | /* The return value indicates if tlb flush on all vcpus is needed. */ |
| 5559 | typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head); |
| 5560 | |
| 5561 | /* The caller should hold mmu-lock before calling this function. */ |
| 5562 | static __always_inline bool |
| 5563 | slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot, |
| 5564 | slot_level_handler fn, int start_level, int end_level, |
| 5565 | gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb) |
| 5566 | { |
| 5567 | struct slot_rmap_walk_iterator iterator; |
| 5568 | bool flush = false; |
| 5569 | |
| 5570 | for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, |
| 5571 | end_gfn, &iterator) { |
| 5572 | if (iterator.rmap) |
| 5573 | flush |= fn(kvm, iterator.rmap); |
| 5574 | |
| 5575 | if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { |
| 5576 | if (flush && lock_flush_tlb) { |
| 5577 | kvm_flush_remote_tlbs(kvm); |
| 5578 | flush = false; |
| 5579 | } |
| 5580 | cond_resched_lock(&kvm->mmu_lock); |
| 5581 | } |
| 5582 | } |
| 5583 | |
| 5584 | if (flush && lock_flush_tlb) { |
| 5585 | kvm_flush_remote_tlbs(kvm); |
| 5586 | flush = false; |
| 5587 | } |
| 5588 | |
| 5589 | return flush; |
| 5590 | } |
| 5591 | |
| 5592 | static __always_inline bool |
| 5593 | slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot, |
| 5594 | slot_level_handler fn, int start_level, int end_level, |
| 5595 | bool lock_flush_tlb) |
| 5596 | { |
| 5597 | return slot_handle_level_range(kvm, memslot, fn, start_level, |
| 5598 | end_level, memslot->base_gfn, |
| 5599 | memslot->base_gfn + memslot->npages - 1, |
| 5600 | lock_flush_tlb); |
| 5601 | } |
| 5602 | |
| 5603 | static __always_inline bool |
| 5604 | slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot, |
| 5605 | slot_level_handler fn, bool lock_flush_tlb) |
| 5606 | { |
| 5607 | return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL, |
| 5608 | PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); |
| 5609 | } |
| 5610 | |
| 5611 | static __always_inline bool |
| 5612 | slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot, |
| 5613 | slot_level_handler fn, bool lock_flush_tlb) |
| 5614 | { |
| 5615 | return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1, |
| 5616 | PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb); |
| 5617 | } |
| 5618 | |
| 5619 | static __always_inline bool |
| 5620 | slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot, |
| 5621 | slot_level_handler fn, bool lock_flush_tlb) |
| 5622 | { |
| 5623 | return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL, |
| 5624 | PT_PAGE_TABLE_LEVEL, lock_flush_tlb); |
| 5625 | } |
| 5626 | |
| 5627 | void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) |
| 5628 | { |
| 5629 | struct kvm_memslots *slots; |
| 5630 | struct kvm_memory_slot *memslot; |
| 5631 | int i; |
| 5632 | |
| 5633 | spin_lock(&kvm->mmu_lock); |
| 5634 | for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { |
| 5635 | slots = __kvm_memslots(kvm, i); |
| 5636 | kvm_for_each_memslot(memslot, slots) { |
| 5637 | gfn_t start, end; |
| 5638 | |
| 5639 | start = max(gfn_start, memslot->base_gfn); |
| 5640 | end = min(gfn_end, memslot->base_gfn + memslot->npages); |
| 5641 | if (start >= end) |
| 5642 | continue; |
| 5643 | |
| 5644 | slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, |
| 5645 | PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL, |
| 5646 | start, end - 1, true); |
| 5647 | } |
| 5648 | } |
| 5649 | |
| 5650 | spin_unlock(&kvm->mmu_lock); |
| 5651 | } |
| 5652 | |
| 5653 | static bool slot_rmap_write_protect(struct kvm *kvm, |
| 5654 | struct kvm_rmap_head *rmap_head) |
| 5655 | { |
| 5656 | return __rmap_write_protect(kvm, rmap_head, false); |
| 5657 | } |
| 5658 | |
| 5659 | void kvm_mmu_slot_remove_write_access(struct kvm *kvm, |
| 5660 | struct kvm_memory_slot *memslot) |
| 5661 | { |
| 5662 | bool flush; |
| 5663 | |
| 5664 | spin_lock(&kvm->mmu_lock); |
| 5665 | flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect, |
| 5666 | false); |
| 5667 | spin_unlock(&kvm->mmu_lock); |
| 5668 | |
| 5669 | /* |
| 5670 | * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log() |
| 5671 | * which do tlb flush out of mmu-lock should be serialized by |
| 5672 | * kvm->slots_lock otherwise tlb flush would be missed. |
| 5673 | */ |
| 5674 | lockdep_assert_held(&kvm->slots_lock); |
| 5675 | |
| 5676 | /* |
| 5677 | * We can flush all the TLBs out of the mmu lock without TLB |
| 5678 | * corruption since we just change the spte from writable to |
| 5679 | * readonly so that we only need to care the case of changing |
| 5680 | * spte from present to present (changing the spte from present |
| 5681 | * to nonpresent will flush all the TLBs immediately), in other |
| 5682 | * words, the only case we care is mmu_spte_update() where we |
| 5683 | * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE |
| 5684 | * instead of PT_WRITABLE_MASK, that means it does not depend |
| 5685 | * on PT_WRITABLE_MASK anymore. |
| 5686 | */ |
| 5687 | if (flush) |
| 5688 | kvm_flush_remote_tlbs(kvm); |
| 5689 | } |
| 5690 | |
| 5691 | static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, |
| 5692 | struct kvm_rmap_head *rmap_head) |
| 5693 | { |
| 5694 | u64 *sptep; |
| 5695 | struct rmap_iterator iter; |
| 5696 | int need_tlb_flush = 0; |
| 5697 | kvm_pfn_t pfn; |
| 5698 | struct kvm_mmu_page *sp; |
| 5699 | |
| 5700 | restart: |
| 5701 | for_each_rmap_spte(rmap_head, &iter, sptep) { |
| 5702 | sp = page_header(__pa(sptep)); |
| 5703 | pfn = spte_to_pfn(*sptep); |
| 5704 | |
| 5705 | /* |
| 5706 | * We cannot do huge page mapping for indirect shadow pages, |
| 5707 | * which are found on the last rmap (level = 1) when not using |
| 5708 | * tdp; such shadow pages are synced with the page table in |
| 5709 | * the guest, and the guest page table is using 4K page size |
| 5710 | * mapping if the indirect sp has level = 1. |
| 5711 | */ |
| 5712 | if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && |
| 5713 | !kvm_is_zone_device_pfn(pfn) && |
| 5714 | PageTransCompoundMap(pfn_to_page(pfn))) { |
| 5715 | drop_spte(kvm, sptep); |
| 5716 | need_tlb_flush = 1; |
| 5717 | goto restart; |
| 5718 | } |
| 5719 | } |
| 5720 | |
| 5721 | return need_tlb_flush; |
| 5722 | } |
| 5723 | |
| 5724 | void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, |
| 5725 | const struct kvm_memory_slot *memslot) |
| 5726 | { |
| 5727 | /* FIXME: const-ify all uses of struct kvm_memory_slot. */ |
| 5728 | spin_lock(&kvm->mmu_lock); |
| 5729 | slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot, |
| 5730 | kvm_mmu_zap_collapsible_spte, true); |
| 5731 | spin_unlock(&kvm->mmu_lock); |
| 5732 | } |
| 5733 | |
| 5734 | void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, |
| 5735 | struct kvm_memory_slot *memslot) |
| 5736 | { |
| 5737 | bool flush; |
| 5738 | |
| 5739 | spin_lock(&kvm->mmu_lock); |
| 5740 | flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false); |
| 5741 | spin_unlock(&kvm->mmu_lock); |
| 5742 | |
| 5743 | lockdep_assert_held(&kvm->slots_lock); |
| 5744 | |
| 5745 | /* |
| 5746 | * It's also safe to flush TLBs out of mmu lock here as currently this |
| 5747 | * function is only used for dirty logging, in which case flushing TLB |
| 5748 | * out of mmu lock also guarantees no dirty pages will be lost in |
| 5749 | * dirty_bitmap. |
| 5750 | */ |
| 5751 | if (flush) |
| 5752 | kvm_flush_remote_tlbs(kvm); |
| 5753 | } |
| 5754 | EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty); |
| 5755 | |
| 5756 | void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, |
| 5757 | struct kvm_memory_slot *memslot) |
| 5758 | { |
| 5759 | bool flush; |
| 5760 | |
| 5761 | spin_lock(&kvm->mmu_lock); |
| 5762 | flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect, |
| 5763 | false); |
| 5764 | spin_unlock(&kvm->mmu_lock); |
| 5765 | |
| 5766 | /* see kvm_mmu_slot_remove_write_access */ |
| 5767 | lockdep_assert_held(&kvm->slots_lock); |
| 5768 | |
| 5769 | if (flush) |
| 5770 | kvm_flush_remote_tlbs(kvm); |
| 5771 | } |
| 5772 | EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access); |
| 5773 | |
| 5774 | void kvm_mmu_slot_set_dirty(struct kvm *kvm, |
| 5775 | struct kvm_memory_slot *memslot) |
| 5776 | { |
| 5777 | bool flush; |
| 5778 | |
| 5779 | spin_lock(&kvm->mmu_lock); |
| 5780 | flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false); |
| 5781 | spin_unlock(&kvm->mmu_lock); |
| 5782 | |
| 5783 | lockdep_assert_held(&kvm->slots_lock); |
| 5784 | |
| 5785 | /* see kvm_mmu_slot_leaf_clear_dirty */ |
| 5786 | if (flush) |
| 5787 | kvm_flush_remote_tlbs(kvm); |
| 5788 | } |
| 5789 | EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty); |
| 5790 | |
| 5791 | #define BATCH_ZAP_PAGES 10 |
| 5792 | static void kvm_zap_obsolete_pages(struct kvm *kvm) |
| 5793 | { |
| 5794 | struct kvm_mmu_page *sp, *node; |
| 5795 | int batch = 0; |
| 5796 | |
| 5797 | restart: |
| 5798 | list_for_each_entry_safe_reverse(sp, node, |
| 5799 | &kvm->arch.active_mmu_pages, link) { |
| 5800 | int ret; |
| 5801 | |
| 5802 | /* |
| 5803 | * No obsolete page exists before new created page since |
| 5804 | * active_mmu_pages is the FIFO list. |
| 5805 | */ |
| 5806 | if (!is_obsolete_sp(kvm, sp)) |
| 5807 | break; |
| 5808 | |
| 5809 | /* |
| 5810 | * Since we are reversely walking the list and the invalid |
| 5811 | * list will be moved to the head, skip the invalid page |
| 5812 | * can help us to avoid the infinity list walking. |
| 5813 | */ |
| 5814 | if (sp->role.invalid) |
| 5815 | continue; |
| 5816 | |
| 5817 | /* |
| 5818 | * Need not flush tlb since we only zap the sp with invalid |
| 5819 | * generation number. |
| 5820 | */ |
| 5821 | if (batch >= BATCH_ZAP_PAGES && |
| 5822 | cond_resched_lock(&kvm->mmu_lock)) { |
| 5823 | batch = 0; |
| 5824 | goto restart; |
| 5825 | } |
| 5826 | |
| 5827 | ret = kvm_mmu_prepare_zap_page(kvm, sp, |
| 5828 | &kvm->arch.zapped_obsolete_pages); |
| 5829 | batch += ret; |
| 5830 | |
| 5831 | if (ret) |
| 5832 | goto restart; |
| 5833 | } |
| 5834 | |
| 5835 | /* |
| 5836 | * Should flush tlb before free page tables since lockless-walking |
| 5837 | * may use the pages. |
| 5838 | */ |
| 5839 | kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); |
| 5840 | } |
| 5841 | |
| 5842 | /* |
| 5843 | * Fast invalidate all shadow pages and use lock-break technique |
| 5844 | * to zap obsolete pages. |
| 5845 | * |
| 5846 | * It's required when memslot is being deleted or VM is being |
| 5847 | * destroyed, in these cases, we should ensure that KVM MMU does |
| 5848 | * not use any resource of the being-deleted slot or all slots |
| 5849 | * after calling the function. |
| 5850 | */ |
| 5851 | void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm) |
| 5852 | { |
| 5853 | spin_lock(&kvm->mmu_lock); |
| 5854 | trace_kvm_mmu_invalidate_zap_all_pages(kvm); |
| 5855 | kvm->arch.mmu_valid_gen++; |
| 5856 | |
| 5857 | /* |
| 5858 | * Notify all vcpus to reload its shadow page table |
| 5859 | * and flush TLB. Then all vcpus will switch to new |
| 5860 | * shadow page table with the new mmu_valid_gen. |
| 5861 | * |
| 5862 | * Note: we should do this under the protection of |
| 5863 | * mmu-lock, otherwise, vcpu would purge shadow page |
| 5864 | * but miss tlb flush. |
| 5865 | */ |
| 5866 | kvm_reload_remote_mmus(kvm); |
| 5867 | |
| 5868 | kvm_zap_obsolete_pages(kvm); |
| 5869 | spin_unlock(&kvm->mmu_lock); |
| 5870 | } |
| 5871 | |
| 5872 | static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) |
| 5873 | { |
| 5874 | return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); |
| 5875 | } |
| 5876 | |
| 5877 | void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen) |
| 5878 | { |
| 5879 | gen &= MMIO_GEN_MASK; |
| 5880 | |
| 5881 | /* |
| 5882 | * Shift to eliminate the "update in-progress" flag, which isn't |
| 5883 | * included in the spte's generation number. |
| 5884 | */ |
| 5885 | gen >>= 1; |
| 5886 | |
| 5887 | /* |
| 5888 | * Generation numbers are incremented in multiples of the number of |
| 5889 | * address spaces in order to provide unique generations across all |
| 5890 | * address spaces. Strip what is effectively the address space |
| 5891 | * modifier prior to checking for a wrap of the MMIO generation so |
| 5892 | * that a wrap in any address space is detected. |
| 5893 | */ |
| 5894 | gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1); |
| 5895 | |
| 5896 | /* |
| 5897 | * The very rare case: if the MMIO generation number has wrapped, |
| 5898 | * zap all shadow pages. |
| 5899 | */ |
| 5900 | if (unlikely(gen == 0)) { |
| 5901 | kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n"); |
| 5902 | kvm_mmu_invalidate_zap_all_pages(kvm); |
| 5903 | } |
| 5904 | } |
| 5905 | |
| 5906 | static unsigned long |
| 5907 | mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) |
| 5908 | { |
| 5909 | struct kvm *kvm; |
| 5910 | int nr_to_scan = sc->nr_to_scan; |
| 5911 | unsigned long freed = 0; |
| 5912 | |
| 5913 | mutex_lock(&kvm_lock); |
| 5914 | |
| 5915 | list_for_each_entry(kvm, &vm_list, vm_list) { |
| 5916 | int idx; |
| 5917 | LIST_HEAD(invalid_list); |
| 5918 | |
| 5919 | /* |
| 5920 | * Never scan more than sc->nr_to_scan VM instances. |
| 5921 | * Will not hit this condition practically since we do not try |
| 5922 | * to shrink more than one VM and it is very unlikely to see |
| 5923 | * !n_used_mmu_pages so many times. |
| 5924 | */ |
| 5925 | if (!nr_to_scan--) |
| 5926 | break; |
| 5927 | /* |
| 5928 | * n_used_mmu_pages is accessed without holding kvm->mmu_lock |
| 5929 | * here. We may skip a VM instance errorneosly, but we do not |
| 5930 | * want to shrink a VM that only started to populate its MMU |
| 5931 | * anyway. |
| 5932 | */ |
| 5933 | if (!kvm->arch.n_used_mmu_pages && |
| 5934 | !kvm_has_zapped_obsolete_pages(kvm)) |
| 5935 | continue; |
| 5936 | |
| 5937 | idx = srcu_read_lock(&kvm->srcu); |
| 5938 | spin_lock(&kvm->mmu_lock); |
| 5939 | |
| 5940 | if (kvm_has_zapped_obsolete_pages(kvm)) { |
| 5941 | kvm_mmu_commit_zap_page(kvm, |
| 5942 | &kvm->arch.zapped_obsolete_pages); |
| 5943 | goto unlock; |
| 5944 | } |
| 5945 | |
| 5946 | if (prepare_zap_oldest_mmu_page(kvm, &invalid_list)) |
| 5947 | freed++; |
| 5948 | kvm_mmu_commit_zap_page(kvm, &invalid_list); |
| 5949 | |
| 5950 | unlock: |
| 5951 | spin_unlock(&kvm->mmu_lock); |
| 5952 | srcu_read_unlock(&kvm->srcu, idx); |
| 5953 | |
| 5954 | /* |
| 5955 | * unfair on small ones |
| 5956 | * per-vm shrinkers cry out |
| 5957 | * sadness comes quickly |
| 5958 | */ |
| 5959 | list_move_tail(&kvm->vm_list, &vm_list); |
| 5960 | break; |
| 5961 | } |
| 5962 | |
| 5963 | mutex_unlock(&kvm_lock); |
| 5964 | return freed; |
| 5965 | } |
| 5966 | |
| 5967 | static unsigned long |
| 5968 | mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc) |
| 5969 | { |
| 5970 | return percpu_counter_read_positive(&kvm_total_used_mmu_pages); |
| 5971 | } |
| 5972 | |
| 5973 | static struct shrinker mmu_shrinker = { |
| 5974 | .count_objects = mmu_shrink_count, |
| 5975 | .scan_objects = mmu_shrink_scan, |
| 5976 | .seeks = DEFAULT_SEEKS * 10, |
| 5977 | }; |
| 5978 | |
| 5979 | static void mmu_destroy_caches(void) |
| 5980 | { |
| 5981 | kmem_cache_destroy(pte_list_desc_cache); |
| 5982 | kmem_cache_destroy(mmu_page_header_cache); |
| 5983 | } |
| 5984 | |
| 5985 | static bool get_nx_auto_mode(void) |
| 5986 | { |
| 5987 | /* Return true when CPU has the bug, and mitigations are ON */ |
| 5988 | return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off(); |
| 5989 | } |
| 5990 | |
| 5991 | static void __set_nx_huge_pages(bool val) |
| 5992 | { |
| 5993 | nx_huge_pages = itlb_multihit_kvm_mitigation = val; |
| 5994 | } |
| 5995 | |
| 5996 | static int set_nx_huge_pages(const char *val, const struct kernel_param *kp) |
| 5997 | { |
| 5998 | bool old_val = nx_huge_pages; |
| 5999 | bool new_val; |
| 6000 | |
| 6001 | /* In "auto" mode deploy workaround only if CPU has the bug. */ |
| 6002 | if (sysfs_streq(val, "off")) |
| 6003 | new_val = 0; |
| 6004 | else if (sysfs_streq(val, "force")) |
| 6005 | new_val = 1; |
| 6006 | else if (sysfs_streq(val, "auto")) |
| 6007 | new_val = get_nx_auto_mode(); |
| 6008 | else if (strtobool(val, &new_val) < 0) |
| 6009 | return -EINVAL; |
| 6010 | |
| 6011 | __set_nx_huge_pages(new_val); |
| 6012 | |
| 6013 | if (new_val != old_val) { |
| 6014 | struct kvm *kvm; |
| 6015 | int idx; |
| 6016 | |
| 6017 | mutex_lock(&kvm_lock); |
| 6018 | |
| 6019 | list_for_each_entry(kvm, &vm_list, vm_list) { |
| 6020 | idx = srcu_read_lock(&kvm->srcu); |
| 6021 | kvm_mmu_invalidate_zap_all_pages(kvm); |
| 6022 | srcu_read_unlock(&kvm->srcu, idx); |
| 6023 | |
| 6024 | wake_up_process(kvm->arch.nx_lpage_recovery_thread); |
| 6025 | } |
| 6026 | mutex_unlock(&kvm_lock); |
| 6027 | } |
| 6028 | |
| 6029 | return 0; |
| 6030 | } |
| 6031 | |
| 6032 | int kvm_mmu_module_init(void) |
| 6033 | { |
| 6034 | int ret = -ENOMEM; |
| 6035 | |
| 6036 | if (nx_huge_pages == -1) |
| 6037 | __set_nx_huge_pages(get_nx_auto_mode()); |
| 6038 | |
| 6039 | kvm_mmu_reset_all_pte_masks(); |
| 6040 | |
| 6041 | pte_list_desc_cache = kmem_cache_create("pte_list_desc", |
| 6042 | sizeof(struct pte_list_desc), |
| 6043 | 0, SLAB_ACCOUNT, NULL); |
| 6044 | if (!pte_list_desc_cache) |
| 6045 | goto out; |
| 6046 | |
| 6047 | mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header", |
| 6048 | sizeof(struct kvm_mmu_page), |
| 6049 | 0, SLAB_ACCOUNT, NULL); |
| 6050 | if (!mmu_page_header_cache) |
| 6051 | goto out; |
| 6052 | |
| 6053 | if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL)) |
| 6054 | goto out; |
| 6055 | |
| 6056 | ret = register_shrinker(&mmu_shrinker); |
| 6057 | if (ret) |
| 6058 | goto out; |
| 6059 | |
| 6060 | return 0; |
| 6061 | |
| 6062 | out: |
| 6063 | mmu_destroy_caches(); |
| 6064 | return ret; |
| 6065 | } |
| 6066 | |
| 6067 | /* |
| 6068 | * Caculate mmu pages needed for kvm. |
| 6069 | */ |
| 6070 | unsigned long kvm_mmu_calculate_mmu_pages(struct kvm *kvm) |
| 6071 | { |
| 6072 | unsigned long nr_mmu_pages; |
| 6073 | unsigned long nr_pages = 0; |
| 6074 | struct kvm_memslots *slots; |
| 6075 | struct kvm_memory_slot *memslot; |
| 6076 | int i; |
| 6077 | |
| 6078 | for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { |
| 6079 | slots = __kvm_memslots(kvm, i); |
| 6080 | |
| 6081 | kvm_for_each_memslot(memslot, slots) |
| 6082 | nr_pages += memslot->npages; |
| 6083 | } |
| 6084 | |
| 6085 | nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000; |
| 6086 | nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); |
| 6087 | |
| 6088 | return nr_mmu_pages; |
| 6089 | } |
| 6090 | |
| 6091 | void kvm_mmu_destroy(struct kvm_vcpu *vcpu) |
| 6092 | { |
| 6093 | kvm_mmu_unload(vcpu); |
| 6094 | free_mmu_pages(vcpu); |
| 6095 | mmu_free_memory_caches(vcpu); |
| 6096 | } |
| 6097 | |
| 6098 | void kvm_mmu_module_exit(void) |
| 6099 | { |
| 6100 | mmu_destroy_caches(); |
| 6101 | percpu_counter_destroy(&kvm_total_used_mmu_pages); |
| 6102 | unregister_shrinker(&mmu_shrinker); |
| 6103 | mmu_audit_disable(); |
| 6104 | } |
| 6105 | |
| 6106 | static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp) |
| 6107 | { |
| 6108 | unsigned int old_val; |
| 6109 | int err; |
| 6110 | |
| 6111 | old_val = nx_huge_pages_recovery_ratio; |
| 6112 | err = param_set_uint(val, kp); |
| 6113 | if (err) |
| 6114 | return err; |
| 6115 | |
| 6116 | if (READ_ONCE(nx_huge_pages) && |
| 6117 | !old_val && nx_huge_pages_recovery_ratio) { |
| 6118 | struct kvm *kvm; |
| 6119 | |
| 6120 | mutex_lock(&kvm_lock); |
| 6121 | |
| 6122 | list_for_each_entry(kvm, &vm_list, vm_list) |
| 6123 | wake_up_process(kvm->arch.nx_lpage_recovery_thread); |
| 6124 | |
| 6125 | mutex_unlock(&kvm_lock); |
| 6126 | } |
| 6127 | |
| 6128 | return err; |
| 6129 | } |
| 6130 | |
| 6131 | static void kvm_recover_nx_lpages(struct kvm *kvm) |
| 6132 | { |
| 6133 | int rcu_idx; |
| 6134 | struct kvm_mmu_page *sp; |
| 6135 | unsigned int ratio; |
| 6136 | LIST_HEAD(invalid_list); |
| 6137 | ulong to_zap; |
| 6138 | |
| 6139 | rcu_idx = srcu_read_lock(&kvm->srcu); |
| 6140 | spin_lock(&kvm->mmu_lock); |
| 6141 | |
| 6142 | ratio = READ_ONCE(nx_huge_pages_recovery_ratio); |
| 6143 | to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0; |
| 6144 | while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) { |
| 6145 | /* |
| 6146 | * We use a separate list instead of just using active_mmu_pages |
| 6147 | * because the number of lpage_disallowed pages is expected to |
| 6148 | * be relatively small compared to the total. |
| 6149 | */ |
| 6150 | sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages, |
| 6151 | struct kvm_mmu_page, |
| 6152 | lpage_disallowed_link); |
| 6153 | WARN_ON_ONCE(!sp->lpage_disallowed); |
| 6154 | kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); |
| 6155 | WARN_ON_ONCE(sp->lpage_disallowed); |
| 6156 | |
| 6157 | if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) { |
| 6158 | kvm_mmu_commit_zap_page(kvm, &invalid_list); |
| 6159 | if (to_zap) |
| 6160 | cond_resched_lock(&kvm->mmu_lock); |
| 6161 | } |
| 6162 | } |
| 6163 | |
| 6164 | spin_unlock(&kvm->mmu_lock); |
| 6165 | srcu_read_unlock(&kvm->srcu, rcu_idx); |
| 6166 | } |
| 6167 | |
| 6168 | static long get_nx_lpage_recovery_timeout(u64 start_time) |
| 6169 | { |
| 6170 | return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio) |
| 6171 | ? start_time + 60 * HZ - get_jiffies_64() |
| 6172 | : MAX_SCHEDULE_TIMEOUT; |
| 6173 | } |
| 6174 | |
| 6175 | static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data) |
| 6176 | { |
| 6177 | u64 start_time; |
| 6178 | long remaining_time; |
| 6179 | |
| 6180 | while (true) { |
| 6181 | start_time = get_jiffies_64(); |
| 6182 | remaining_time = get_nx_lpage_recovery_timeout(start_time); |
| 6183 | |
| 6184 | set_current_state(TASK_INTERRUPTIBLE); |
| 6185 | while (!kthread_should_stop() && remaining_time > 0) { |
| 6186 | schedule_timeout(remaining_time); |
| 6187 | remaining_time = get_nx_lpage_recovery_timeout(start_time); |
| 6188 | set_current_state(TASK_INTERRUPTIBLE); |
| 6189 | } |
| 6190 | |
| 6191 | set_current_state(TASK_RUNNING); |
| 6192 | |
| 6193 | if (kthread_should_stop()) |
| 6194 | return 0; |
| 6195 | |
| 6196 | kvm_recover_nx_lpages(kvm); |
| 6197 | } |
| 6198 | } |
| 6199 | |
| 6200 | int kvm_mmu_post_init_vm(struct kvm *kvm) |
| 6201 | { |
| 6202 | int err; |
| 6203 | |
| 6204 | err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0, |
| 6205 | "kvm-nx-lpage-recovery", |
| 6206 | &kvm->arch.nx_lpage_recovery_thread); |
| 6207 | if (!err) |
| 6208 | kthread_unpark(kvm->arch.nx_lpage_recovery_thread); |
| 6209 | |
| 6210 | return err; |
| 6211 | } |
| 6212 | |
| 6213 | void kvm_mmu_pre_destroy_vm(struct kvm *kvm) |
| 6214 | { |
| 6215 | if (kvm->arch.nx_lpage_recovery_thread) |
| 6216 | kthread_stop(kvm->arch.nx_lpage_recovery_thread); |
| 6217 | } |