blob: b20979ff18dd55a1b682f8527a0828e3f218d8e3 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-core.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/mount.h>
15#include <linux/ctype.h>
16#include <linux/string.h>
17#include <linux/slab.h>
18#include <linux/interrupt.h>
19#include <linux/mutex.h>
20#include <linux/delay.h>
21#include <linux/atomic.h>
22#include <linux/blk-mq.h>
23#include <linux/mount.h>
24#include <linux/dax.h>
25
26#define DM_MSG_PREFIX "table"
27
28#define MAX_DEPTH 16
29#define NODE_SIZE L1_CACHE_BYTES
30#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
31#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
32
33struct dm_table {
34 struct mapped_device *md;
35 enum dm_queue_mode type;
36
37 /* btree table */
38 unsigned int depth;
39 unsigned int counts[MAX_DEPTH]; /* in nodes */
40 sector_t *index[MAX_DEPTH];
41
42 unsigned int num_targets;
43 unsigned int num_allocated;
44 sector_t *highs;
45 struct dm_target *targets;
46
47 struct target_type *immutable_target_type;
48
49 bool integrity_supported:1;
50 bool singleton:1;
51 bool all_blk_mq:1;
52 unsigned integrity_added:1;
53
54 /*
55 * Indicates the rw permissions for the new logical
56 * device. This should be a combination of FMODE_READ
57 * and FMODE_WRITE.
58 */
59 fmode_t mode;
60
61 /* a list of devices used by this table */
62 struct list_head devices;
63
64 /* events get handed up using this callback */
65 void (*event_fn)(void *);
66 void *event_context;
67
68 struct dm_md_mempools *mempools;
69
70 struct list_head target_callbacks;
71};
72
73/*
74 * Similar to ceiling(log_size(n))
75 */
76static unsigned int int_log(unsigned int n, unsigned int base)
77{
78 int result = 0;
79
80 while (n > 1) {
81 n = dm_div_up(n, base);
82 result++;
83 }
84
85 return result;
86}
87
88/*
89 * Calculate the index of the child node of the n'th node k'th key.
90 */
91static inline unsigned int get_child(unsigned int n, unsigned int k)
92{
93 return (n * CHILDREN_PER_NODE) + k;
94}
95
96/*
97 * Return the n'th node of level l from table t.
98 */
99static inline sector_t *get_node(struct dm_table *t,
100 unsigned int l, unsigned int n)
101{
102 return t->index[l] + (n * KEYS_PER_NODE);
103}
104
105/*
106 * Return the highest key that you could lookup from the n'th
107 * node on level l of the btree.
108 */
109static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
110{
111 for (; l < t->depth - 1; l++)
112 n = get_child(n, CHILDREN_PER_NODE - 1);
113
114 if (n >= t->counts[l])
115 return (sector_t) - 1;
116
117 return get_node(t, l, n)[KEYS_PER_NODE - 1];
118}
119
120/*
121 * Fills in a level of the btree based on the highs of the level
122 * below it.
123 */
124static int setup_btree_index(unsigned int l, struct dm_table *t)
125{
126 unsigned int n, k;
127 sector_t *node;
128
129 for (n = 0U; n < t->counts[l]; n++) {
130 node = get_node(t, l, n);
131
132 for (k = 0U; k < KEYS_PER_NODE; k++)
133 node[k] = high(t, l + 1, get_child(n, k));
134 }
135
136 return 0;
137}
138
139void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
140{
141 unsigned long size;
142 void *addr;
143
144 /*
145 * Check that we're not going to overflow.
146 */
147 if (nmemb > (ULONG_MAX / elem_size))
148 return NULL;
149
150 size = nmemb * elem_size;
151 addr = vzalloc(size);
152
153 return addr;
154}
155EXPORT_SYMBOL(dm_vcalloc);
156
157/*
158 * highs, and targets are managed as dynamic arrays during a
159 * table load.
160 */
161static int alloc_targets(struct dm_table *t, unsigned int num)
162{
163 sector_t *n_highs;
164 struct dm_target *n_targets;
165
166 /*
167 * Allocate both the target array and offset array at once.
168 * Append an empty entry to catch sectors beyond the end of
169 * the device.
170 */
171 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
172 sizeof(sector_t));
173 if (!n_highs)
174 return -ENOMEM;
175
176 n_targets = (struct dm_target *) (n_highs + num);
177
178 memset(n_highs, -1, sizeof(*n_highs) * num);
179 vfree(t->highs);
180
181 t->num_allocated = num;
182 t->highs = n_highs;
183 t->targets = n_targets;
184
185 return 0;
186}
187
188int dm_table_create(struct dm_table **result, fmode_t mode,
189 unsigned num_targets, struct mapped_device *md)
190{
191 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
192
193 if (!t)
194 return -ENOMEM;
195
196 INIT_LIST_HEAD(&t->devices);
197 INIT_LIST_HEAD(&t->target_callbacks);
198
199 if (!num_targets)
200 num_targets = KEYS_PER_NODE;
201
202 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
203
204 if (!num_targets) {
205 kfree(t);
206 return -ENOMEM;
207 }
208
209 if (alloc_targets(t, num_targets)) {
210 kfree(t);
211 return -ENOMEM;
212 }
213
214 t->type = DM_TYPE_NONE;
215 t->mode = mode;
216 t->md = md;
217 *result = t;
218 return 0;
219}
220
221static void free_devices(struct list_head *devices, struct mapped_device *md)
222{
223 struct list_head *tmp, *next;
224
225 list_for_each_safe(tmp, next, devices) {
226 struct dm_dev_internal *dd =
227 list_entry(tmp, struct dm_dev_internal, list);
228 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
229 dm_device_name(md), dd->dm_dev->name);
230 dm_put_table_device(md, dd->dm_dev);
231 kfree(dd);
232 }
233}
234
235void dm_table_destroy(struct dm_table *t)
236{
237 unsigned int i;
238
239 if (!t)
240 return;
241
242 /* free the indexes */
243 if (t->depth >= 2)
244 vfree(t->index[t->depth - 2]);
245
246 /* free the targets */
247 for (i = 0; i < t->num_targets; i++) {
248 struct dm_target *tgt = t->targets + i;
249
250 if (tgt->type->dtr)
251 tgt->type->dtr(tgt);
252
253 dm_put_target_type(tgt->type);
254 }
255
256 vfree(t->highs);
257
258 /* free the device list */
259 free_devices(&t->devices, t->md);
260
261 dm_free_md_mempools(t->mempools);
262
263 kfree(t);
264}
265
266/*
267 * See if we've already got a device in the list.
268 */
269static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
270{
271 struct dm_dev_internal *dd;
272
273 list_for_each_entry (dd, l, list)
274 if (dd->dm_dev->bdev->bd_dev == dev)
275 return dd;
276
277 return NULL;
278}
279
280/*
281 * If possible, this checks an area of a destination device is invalid.
282 */
283static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
284 sector_t start, sector_t len, void *data)
285{
286 struct request_queue *q;
287 struct queue_limits *limits = data;
288 struct block_device *bdev = dev->bdev;
289 sector_t dev_size =
290 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
291 unsigned short logical_block_size_sectors =
292 limits->logical_block_size >> SECTOR_SHIFT;
293 char b[BDEVNAME_SIZE];
294
295 /*
296 * Some devices exist without request functions,
297 * such as loop devices not yet bound to backing files.
298 * Forbid the use of such devices.
299 */
300 q = bdev_get_queue(bdev);
301 if (!q || !q->make_request_fn) {
302 DMWARN("%s: %s is not yet initialised: "
303 "start=%llu, len=%llu, dev_size=%llu",
304 dm_device_name(ti->table->md), bdevname(bdev, b),
305 (unsigned long long)start,
306 (unsigned long long)len,
307 (unsigned long long)dev_size);
308 return 1;
309 }
310
311 if (!dev_size)
312 return 0;
313
314 if ((start >= dev_size) || (start + len > dev_size)) {
315 DMWARN("%s: %s too small for target: "
316 "start=%llu, len=%llu, dev_size=%llu",
317 dm_device_name(ti->table->md), bdevname(bdev, b),
318 (unsigned long long)start,
319 (unsigned long long)len,
320 (unsigned long long)dev_size);
321 return 1;
322 }
323
324 /*
325 * If the target is mapped to zoned block device(s), check
326 * that the zones are not partially mapped.
327 */
328 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
329 unsigned int zone_sectors = bdev_zone_sectors(bdev);
330
331 if (start & (zone_sectors - 1)) {
332 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
333 dm_device_name(ti->table->md),
334 (unsigned long long)start,
335 zone_sectors, bdevname(bdev, b));
336 return 1;
337 }
338
339 /*
340 * Note: The last zone of a zoned block device may be smaller
341 * than other zones. So for a target mapping the end of a
342 * zoned block device with such a zone, len would not be zone
343 * aligned. We do not allow such last smaller zone to be part
344 * of the mapping here to ensure that mappings with multiple
345 * devices do not end up with a smaller zone in the middle of
346 * the sector range.
347 */
348 if (len & (zone_sectors - 1)) {
349 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
350 dm_device_name(ti->table->md),
351 (unsigned long long)len,
352 zone_sectors, bdevname(bdev, b));
353 return 1;
354 }
355 }
356
357 if (logical_block_size_sectors <= 1)
358 return 0;
359
360 if (start & (logical_block_size_sectors - 1)) {
361 DMWARN("%s: start=%llu not aligned to h/w "
362 "logical block size %u of %s",
363 dm_device_name(ti->table->md),
364 (unsigned long long)start,
365 limits->logical_block_size, bdevname(bdev, b));
366 return 1;
367 }
368
369 if (len & (logical_block_size_sectors - 1)) {
370 DMWARN("%s: len=%llu not aligned to h/w "
371 "logical block size %u of %s",
372 dm_device_name(ti->table->md),
373 (unsigned long long)len,
374 limits->logical_block_size, bdevname(bdev, b));
375 return 1;
376 }
377
378 return 0;
379}
380
381/*
382 * This upgrades the mode on an already open dm_dev, being
383 * careful to leave things as they were if we fail to reopen the
384 * device and not to touch the existing bdev field in case
385 * it is accessed concurrently inside dm_table_any_congested().
386 */
387static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
388 struct mapped_device *md)
389{
390 int r;
391 struct dm_dev *old_dev, *new_dev;
392
393 old_dev = dd->dm_dev;
394
395 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
396 dd->dm_dev->mode | new_mode, &new_dev);
397 if (r)
398 return r;
399
400 dd->dm_dev = new_dev;
401 dm_put_table_device(md, old_dev);
402
403 return 0;
404}
405
406/*
407 * Convert the path to a device
408 */
409dev_t dm_get_dev_t(const char *path)
410{
411 dev_t dev;
412 struct block_device *bdev;
413
414 bdev = lookup_bdev(path);
415 if (IS_ERR(bdev))
416 dev = name_to_dev_t(path);
417 else {
418 dev = bdev->bd_dev;
419 bdput(bdev);
420 }
421
422 return dev;
423}
424EXPORT_SYMBOL_GPL(dm_get_dev_t);
425
426/*
427 * Add a device to the list, or just increment the usage count if
428 * it's already present.
429 */
430int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
431 struct dm_dev **result)
432{
433 int r;
434 dev_t dev;
435 struct dm_dev_internal *dd;
436 struct dm_table *t = ti->table;
437
438 BUG_ON(!t);
439
440 dev = dm_get_dev_t(path);
441 if (!dev)
442 return -ENODEV;
443
444 dd = find_device(&t->devices, dev);
445 if (!dd) {
446 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
447 if (!dd)
448 return -ENOMEM;
449
450 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
451 kfree(dd);
452 return r;
453 }
454
455 refcount_set(&dd->count, 1);
456 list_add(&dd->list, &t->devices);
457 goto out;
458
459 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
460 r = upgrade_mode(dd, mode, t->md);
461 if (r)
462 return r;
463 }
464 refcount_inc(&dd->count);
465out:
466 *result = dd->dm_dev;
467 return 0;
468}
469EXPORT_SYMBOL(dm_get_device);
470
471static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
472 sector_t start, sector_t len, void *data)
473{
474 struct queue_limits *limits = data;
475 struct block_device *bdev = dev->bdev;
476 struct request_queue *q = bdev_get_queue(bdev);
477 char b[BDEVNAME_SIZE];
478
479 if (unlikely(!q)) {
480 DMWARN("%s: Cannot set limits for nonexistent device %s",
481 dm_device_name(ti->table->md), bdevname(bdev, b));
482 return 0;
483 }
484
485 if (bdev_stack_limits(limits, bdev, start) < 0)
486 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
487 "physical_block_size=%u, logical_block_size=%u, "
488 "alignment_offset=%u, start=%llu",
489 dm_device_name(ti->table->md), bdevname(bdev, b),
490 q->limits.physical_block_size,
491 q->limits.logical_block_size,
492 q->limits.alignment_offset,
493 (unsigned long long) start << SECTOR_SHIFT);
494
495 limits->zoned = blk_queue_zoned_model(q);
496
497 return 0;
498}
499
500/*
501 * Decrement a device's use count and remove it if necessary.
502 */
503void dm_put_device(struct dm_target *ti, struct dm_dev *d)
504{
505 int found = 0;
506 struct list_head *devices = &ti->table->devices;
507 struct dm_dev_internal *dd;
508
509 list_for_each_entry(dd, devices, list) {
510 if (dd->dm_dev == d) {
511 found = 1;
512 break;
513 }
514 }
515 if (!found) {
516 DMWARN("%s: device %s not in table devices list",
517 dm_device_name(ti->table->md), d->name);
518 return;
519 }
520 if (refcount_dec_and_test(&dd->count)) {
521 dm_put_table_device(ti->table->md, d);
522 list_del(&dd->list);
523 kfree(dd);
524 }
525}
526EXPORT_SYMBOL(dm_put_device);
527
528/*
529 * Checks to see if the target joins onto the end of the table.
530 */
531static int adjoin(struct dm_table *table, struct dm_target *ti)
532{
533 struct dm_target *prev;
534
535 if (!table->num_targets)
536 return !ti->begin;
537
538 prev = &table->targets[table->num_targets - 1];
539 return (ti->begin == (prev->begin + prev->len));
540}
541
542/*
543 * Used to dynamically allocate the arg array.
544 *
545 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
546 * process messages even if some device is suspended. These messages have a
547 * small fixed number of arguments.
548 *
549 * On the other hand, dm-switch needs to process bulk data using messages and
550 * excessive use of GFP_NOIO could cause trouble.
551 */
552static char **realloc_argv(unsigned *size, char **old_argv)
553{
554 char **argv;
555 unsigned new_size;
556 gfp_t gfp;
557
558 if (*size) {
559 new_size = *size * 2;
560 gfp = GFP_KERNEL;
561 } else {
562 new_size = 8;
563 gfp = GFP_NOIO;
564 }
565 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
566 if (argv && old_argv) {
567 memcpy(argv, old_argv, *size * sizeof(*argv));
568 *size = new_size;
569 }
570
571 kfree(old_argv);
572 return argv;
573}
574
575/*
576 * Destructively splits up the argument list to pass to ctr.
577 */
578int dm_split_args(int *argc, char ***argvp, char *input)
579{
580 char *start, *end = input, *out, **argv = NULL;
581 unsigned array_size = 0;
582
583 *argc = 0;
584
585 if (!input) {
586 *argvp = NULL;
587 return 0;
588 }
589
590 argv = realloc_argv(&array_size, argv);
591 if (!argv)
592 return -ENOMEM;
593
594 while (1) {
595 /* Skip whitespace */
596 start = skip_spaces(end);
597
598 if (!*start)
599 break; /* success, we hit the end */
600
601 /* 'out' is used to remove any back-quotes */
602 end = out = start;
603 while (*end) {
604 /* Everything apart from '\0' can be quoted */
605 if (*end == '\\' && *(end + 1)) {
606 *out++ = *(end + 1);
607 end += 2;
608 continue;
609 }
610
611 if (isspace(*end))
612 break; /* end of token */
613
614 *out++ = *end++;
615 }
616
617 /* have we already filled the array ? */
618 if ((*argc + 1) > array_size) {
619 argv = realloc_argv(&array_size, argv);
620 if (!argv)
621 return -ENOMEM;
622 }
623
624 /* we know this is whitespace */
625 if (*end)
626 end++;
627
628 /* terminate the string and put it in the array */
629 *out = '\0';
630 argv[*argc] = start;
631 (*argc)++;
632 }
633
634 *argvp = argv;
635 return 0;
636}
637
638/*
639 * Impose necessary and sufficient conditions on a devices's table such
640 * that any incoming bio which respects its logical_block_size can be
641 * processed successfully. If it falls across the boundary between
642 * two or more targets, the size of each piece it gets split into must
643 * be compatible with the logical_block_size of the target processing it.
644 */
645static int validate_hardware_logical_block_alignment(struct dm_table *table,
646 struct queue_limits *limits)
647{
648 /*
649 * This function uses arithmetic modulo the logical_block_size
650 * (in units of 512-byte sectors).
651 */
652 unsigned short device_logical_block_size_sects =
653 limits->logical_block_size >> SECTOR_SHIFT;
654
655 /*
656 * Offset of the start of the next table entry, mod logical_block_size.
657 */
658 unsigned short next_target_start = 0;
659
660 /*
661 * Given an aligned bio that extends beyond the end of a
662 * target, how many sectors must the next target handle?
663 */
664 unsigned short remaining = 0;
665
666 struct dm_target *uninitialized_var(ti);
667 struct queue_limits ti_limits;
668 unsigned i;
669
670 /*
671 * Check each entry in the table in turn.
672 */
673 for (i = 0; i < dm_table_get_num_targets(table); i++) {
674 ti = dm_table_get_target(table, i);
675
676 blk_set_stacking_limits(&ti_limits);
677
678 /* combine all target devices' limits */
679 if (ti->type->iterate_devices)
680 ti->type->iterate_devices(ti, dm_set_device_limits,
681 &ti_limits);
682
683 /*
684 * If the remaining sectors fall entirely within this
685 * table entry are they compatible with its logical_block_size?
686 */
687 if (remaining < ti->len &&
688 remaining & ((ti_limits.logical_block_size >>
689 SECTOR_SHIFT) - 1))
690 break; /* Error */
691
692 next_target_start =
693 (unsigned short) ((next_target_start + ti->len) &
694 (device_logical_block_size_sects - 1));
695 remaining = next_target_start ?
696 device_logical_block_size_sects - next_target_start : 0;
697 }
698
699 if (remaining) {
700 DMWARN("%s: table line %u (start sect %llu len %llu) "
701 "not aligned to h/w logical block size %u",
702 dm_device_name(table->md), i,
703 (unsigned long long) ti->begin,
704 (unsigned long long) ti->len,
705 limits->logical_block_size);
706 return -EINVAL;
707 }
708
709 return 0;
710}
711
712int dm_table_add_target(struct dm_table *t, const char *type,
713 sector_t start, sector_t len, char *params)
714{
715 int r = -EINVAL, argc;
716 char **argv;
717 struct dm_target *tgt;
718
719 if (t->singleton) {
720 DMERR("%s: target type %s must appear alone in table",
721 dm_device_name(t->md), t->targets->type->name);
722 return -EINVAL;
723 }
724
725 BUG_ON(t->num_targets >= t->num_allocated);
726
727 tgt = t->targets + t->num_targets;
728 memset(tgt, 0, sizeof(*tgt));
729
730 if (!len) {
731 DMERR("%s: zero-length target", dm_device_name(t->md));
732 return -EINVAL;
733 }
734
735 tgt->type = dm_get_target_type(type);
736 if (!tgt->type) {
737 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
738 return -EINVAL;
739 }
740
741 if (dm_target_needs_singleton(tgt->type)) {
742 if (t->num_targets) {
743 tgt->error = "singleton target type must appear alone in table";
744 goto bad;
745 }
746 t->singleton = true;
747 }
748
749 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
750 tgt->error = "target type may not be included in a read-only table";
751 goto bad;
752 }
753
754 if (t->immutable_target_type) {
755 if (t->immutable_target_type != tgt->type) {
756 tgt->error = "immutable target type cannot be mixed with other target types";
757 goto bad;
758 }
759 } else if (dm_target_is_immutable(tgt->type)) {
760 if (t->num_targets) {
761 tgt->error = "immutable target type cannot be mixed with other target types";
762 goto bad;
763 }
764 t->immutable_target_type = tgt->type;
765 }
766
767 if (dm_target_has_integrity(tgt->type))
768 t->integrity_added = 1;
769
770 tgt->table = t;
771 tgt->begin = start;
772 tgt->len = len;
773 tgt->error = "Unknown error";
774
775 /*
776 * Does this target adjoin the previous one ?
777 */
778 if (!adjoin(t, tgt)) {
779 tgt->error = "Gap in table";
780 goto bad;
781 }
782
783 r = dm_split_args(&argc, &argv, params);
784 if (r) {
785 tgt->error = "couldn't split parameters (insufficient memory)";
786 goto bad;
787 }
788
789 r = tgt->type->ctr(tgt, argc, argv);
790 kfree(argv);
791 if (r)
792 goto bad;
793
794 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
795
796 if (!tgt->num_discard_bios && tgt->discards_supported)
797 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
798 dm_device_name(t->md), type);
799
800 return 0;
801
802 bad:
803 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
804 dm_put_target_type(tgt->type);
805 return r;
806}
807
808/*
809 * Target argument parsing helpers.
810 */
811static int validate_next_arg(const struct dm_arg *arg,
812 struct dm_arg_set *arg_set,
813 unsigned *value, char **error, unsigned grouped)
814{
815 const char *arg_str = dm_shift_arg(arg_set);
816 char dummy;
817
818 if (!arg_str ||
819 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
820 (*value < arg->min) ||
821 (*value > arg->max) ||
822 (grouped && arg_set->argc < *value)) {
823 *error = arg->error;
824 return -EINVAL;
825 }
826
827 return 0;
828}
829
830int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
831 unsigned *value, char **error)
832{
833 return validate_next_arg(arg, arg_set, value, error, 0);
834}
835EXPORT_SYMBOL(dm_read_arg);
836
837int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
838 unsigned *value, char **error)
839{
840 return validate_next_arg(arg, arg_set, value, error, 1);
841}
842EXPORT_SYMBOL(dm_read_arg_group);
843
844const char *dm_shift_arg(struct dm_arg_set *as)
845{
846 char *r;
847
848 if (as->argc) {
849 as->argc--;
850 r = *as->argv;
851 as->argv++;
852 return r;
853 }
854
855 return NULL;
856}
857EXPORT_SYMBOL(dm_shift_arg);
858
859void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
860{
861 BUG_ON(as->argc < num_args);
862 as->argc -= num_args;
863 as->argv += num_args;
864}
865EXPORT_SYMBOL(dm_consume_args);
866
867static bool __table_type_bio_based(enum dm_queue_mode table_type)
868{
869 return (table_type == DM_TYPE_BIO_BASED ||
870 table_type == DM_TYPE_DAX_BIO_BASED ||
871 table_type == DM_TYPE_NVME_BIO_BASED);
872}
873
874static bool __table_type_request_based(enum dm_queue_mode table_type)
875{
876 return (table_type == DM_TYPE_REQUEST_BASED ||
877 table_type == DM_TYPE_MQ_REQUEST_BASED);
878}
879
880void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
881{
882 t->type = type;
883}
884EXPORT_SYMBOL_GPL(dm_table_set_type);
885
886static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
887 sector_t start, sector_t len, void *data)
888{
889 return bdev_dax_supported(dev->bdev, PAGE_SIZE);
890}
891
892static bool dm_table_supports_dax(struct dm_table *t)
893{
894 struct dm_target *ti;
895 unsigned i;
896
897 /* Ensure that all targets support DAX. */
898 for (i = 0; i < dm_table_get_num_targets(t); i++) {
899 ti = dm_table_get_target(t, i);
900
901 if (!ti->type->direct_access)
902 return false;
903
904 if (!ti->type->iterate_devices ||
905 !ti->type->iterate_devices(ti, device_supports_dax, NULL))
906 return false;
907 }
908
909 return true;
910}
911
912static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
913
914struct verify_rq_based_data {
915 unsigned sq_count;
916 unsigned mq_count;
917};
918
919static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
920 sector_t start, sector_t len, void *data)
921{
922 struct request_queue *q = bdev_get_queue(dev->bdev);
923 struct verify_rq_based_data *v = data;
924
925 if (q->mq_ops)
926 v->mq_count++;
927 else
928 v->sq_count++;
929
930 return queue_is_rq_based(q);
931}
932
933static int dm_table_determine_type(struct dm_table *t)
934{
935 unsigned i;
936 unsigned bio_based = 0, request_based = 0, hybrid = 0;
937 struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
938 struct dm_target *tgt;
939 struct list_head *devices = dm_table_get_devices(t);
940 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
941
942 if (t->type != DM_TYPE_NONE) {
943 /* target already set the table's type */
944 if (t->type == DM_TYPE_BIO_BASED) {
945 /* possibly upgrade to a variant of bio-based */
946 goto verify_bio_based;
947 }
948 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
949 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
950 goto verify_rq_based;
951 }
952
953 for (i = 0; i < t->num_targets; i++) {
954 tgt = t->targets + i;
955 if (dm_target_hybrid(tgt))
956 hybrid = 1;
957 else if (dm_target_request_based(tgt))
958 request_based = 1;
959 else
960 bio_based = 1;
961
962 if (bio_based && request_based) {
963 DMERR("Inconsistent table: different target types"
964 " can't be mixed up");
965 return -EINVAL;
966 }
967 }
968
969 if (hybrid && !bio_based && !request_based) {
970 /*
971 * The targets can work either way.
972 * Determine the type from the live device.
973 * Default to bio-based if device is new.
974 */
975 if (__table_type_request_based(live_md_type))
976 request_based = 1;
977 else
978 bio_based = 1;
979 }
980
981 if (bio_based) {
982verify_bio_based:
983 /* We must use this table as bio-based */
984 t->type = DM_TYPE_BIO_BASED;
985 if (dm_table_supports_dax(t) ||
986 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
987 t->type = DM_TYPE_DAX_BIO_BASED;
988 } else {
989 /* Check if upgrading to NVMe bio-based is valid or required */
990 tgt = dm_table_get_immutable_target(t);
991 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
992 t->type = DM_TYPE_NVME_BIO_BASED;
993 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
994 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
995 t->type = DM_TYPE_NVME_BIO_BASED;
996 }
997 }
998 return 0;
999 }
1000
1001 BUG_ON(!request_based); /* No targets in this table */
1002
1003 /*
1004 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
1005 * having a compatible target use dm_table_set_type.
1006 */
1007 t->type = DM_TYPE_REQUEST_BASED;
1008
1009verify_rq_based:
1010 /*
1011 * Request-based dm supports only tables that have a single target now.
1012 * To support multiple targets, request splitting support is needed,
1013 * and that needs lots of changes in the block-layer.
1014 * (e.g. request completion process for partial completion.)
1015 */
1016 if (t->num_targets > 1) {
1017 DMERR("%s DM doesn't support multiple targets",
1018 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1019 return -EINVAL;
1020 }
1021
1022 if (list_empty(devices)) {
1023 int srcu_idx;
1024 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1025
1026 /* inherit live table's type and all_blk_mq */
1027 if (live_table) {
1028 t->type = live_table->type;
1029 t->all_blk_mq = live_table->all_blk_mq;
1030 }
1031 dm_put_live_table(t->md, srcu_idx);
1032 return 0;
1033 }
1034
1035 tgt = dm_table_get_immutable_target(t);
1036 if (!tgt) {
1037 DMERR("table load rejected: immutable target is required");
1038 return -EINVAL;
1039 } else if (tgt->max_io_len) {
1040 DMERR("table load rejected: immutable target that splits IO is not supported");
1041 return -EINVAL;
1042 }
1043
1044 /* Non-request-stackable devices can't be used for request-based dm */
1045 if (!tgt->type->iterate_devices ||
1046 !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1047 DMERR("table load rejected: including non-request-stackable devices");
1048 return -EINVAL;
1049 }
1050 if (v.sq_count && v.mq_count) {
1051 DMERR("table load rejected: not all devices are blk-mq request-stackable");
1052 return -EINVAL;
1053 }
1054 t->all_blk_mq = v.mq_count > 0;
1055
1056 if (!t->all_blk_mq &&
1057 (t->type == DM_TYPE_MQ_REQUEST_BASED || t->type == DM_TYPE_NVME_BIO_BASED)) {
1058 DMERR("table load rejected: all devices are not blk-mq request-stackable");
1059 return -EINVAL;
1060 }
1061
1062 return 0;
1063}
1064
1065enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1066{
1067 return t->type;
1068}
1069
1070struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1071{
1072 return t->immutable_target_type;
1073}
1074
1075struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1076{
1077 /* Immutable target is implicitly a singleton */
1078 if (t->num_targets > 1 ||
1079 !dm_target_is_immutable(t->targets[0].type))
1080 return NULL;
1081
1082 return t->targets;
1083}
1084
1085struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1086{
1087 struct dm_target *ti;
1088 unsigned i;
1089
1090 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1091 ti = dm_table_get_target(t, i);
1092 if (dm_target_is_wildcard(ti->type))
1093 return ti;
1094 }
1095
1096 return NULL;
1097}
1098
1099bool dm_table_bio_based(struct dm_table *t)
1100{
1101 return __table_type_bio_based(dm_table_get_type(t));
1102}
1103
1104bool dm_table_request_based(struct dm_table *t)
1105{
1106 return __table_type_request_based(dm_table_get_type(t));
1107}
1108
1109bool dm_table_all_blk_mq_devices(struct dm_table *t)
1110{
1111 return t->all_blk_mq;
1112}
1113
1114static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1115{
1116 enum dm_queue_mode type = dm_table_get_type(t);
1117 unsigned per_io_data_size = 0;
1118 unsigned min_pool_size = 0;
1119 struct dm_target *ti;
1120 unsigned i;
1121
1122 if (unlikely(type == DM_TYPE_NONE)) {
1123 DMWARN("no table type is set, can't allocate mempools");
1124 return -EINVAL;
1125 }
1126
1127 if (__table_type_bio_based(type))
1128 for (i = 0; i < t->num_targets; i++) {
1129 ti = t->targets + i;
1130 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1131 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1132 }
1133
1134 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1135 per_io_data_size, min_pool_size);
1136 if (!t->mempools)
1137 return -ENOMEM;
1138
1139 return 0;
1140}
1141
1142void dm_table_free_md_mempools(struct dm_table *t)
1143{
1144 dm_free_md_mempools(t->mempools);
1145 t->mempools = NULL;
1146}
1147
1148struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1149{
1150 return t->mempools;
1151}
1152
1153static int setup_indexes(struct dm_table *t)
1154{
1155 int i;
1156 unsigned int total = 0;
1157 sector_t *indexes;
1158
1159 /* allocate the space for *all* the indexes */
1160 for (i = t->depth - 2; i >= 0; i--) {
1161 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1162 total += t->counts[i];
1163 }
1164
1165 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1166 if (!indexes)
1167 return -ENOMEM;
1168
1169 /* set up internal nodes, bottom-up */
1170 for (i = t->depth - 2; i >= 0; i--) {
1171 t->index[i] = indexes;
1172 indexes += (KEYS_PER_NODE * t->counts[i]);
1173 setup_btree_index(i, t);
1174 }
1175
1176 return 0;
1177}
1178
1179/*
1180 * Builds the btree to index the map.
1181 */
1182static int dm_table_build_index(struct dm_table *t)
1183{
1184 int r = 0;
1185 unsigned int leaf_nodes;
1186
1187 /* how many indexes will the btree have ? */
1188 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1189 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1190
1191 /* leaf layer has already been set up */
1192 t->counts[t->depth - 1] = leaf_nodes;
1193 t->index[t->depth - 1] = t->highs;
1194
1195 if (t->depth >= 2)
1196 r = setup_indexes(t);
1197
1198 return r;
1199}
1200
1201static bool integrity_profile_exists(struct gendisk *disk)
1202{
1203 return !!blk_get_integrity(disk);
1204}
1205
1206/*
1207 * Get a disk whose integrity profile reflects the table's profile.
1208 * Returns NULL if integrity support was inconsistent or unavailable.
1209 */
1210static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1211{
1212 struct list_head *devices = dm_table_get_devices(t);
1213 struct dm_dev_internal *dd = NULL;
1214 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1215 unsigned i;
1216
1217 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1218 struct dm_target *ti = dm_table_get_target(t, i);
1219 if (!dm_target_passes_integrity(ti->type))
1220 goto no_integrity;
1221 }
1222
1223 list_for_each_entry(dd, devices, list) {
1224 template_disk = dd->dm_dev->bdev->bd_disk;
1225 if (!integrity_profile_exists(template_disk))
1226 goto no_integrity;
1227 else if (prev_disk &&
1228 blk_integrity_compare(prev_disk, template_disk) < 0)
1229 goto no_integrity;
1230 prev_disk = template_disk;
1231 }
1232
1233 return template_disk;
1234
1235no_integrity:
1236 if (prev_disk)
1237 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1238 dm_device_name(t->md),
1239 prev_disk->disk_name,
1240 template_disk->disk_name);
1241 return NULL;
1242}
1243
1244/*
1245 * Register the mapped device for blk_integrity support if the
1246 * underlying devices have an integrity profile. But all devices may
1247 * not have matching profiles (checking all devices isn't reliable
1248 * during table load because this table may use other DM device(s) which
1249 * must be resumed before they will have an initialized integity
1250 * profile). Consequently, stacked DM devices force a 2 stage integrity
1251 * profile validation: First pass during table load, final pass during
1252 * resume.
1253 */
1254static int dm_table_register_integrity(struct dm_table *t)
1255{
1256 struct mapped_device *md = t->md;
1257 struct gendisk *template_disk = NULL;
1258
1259 /* If target handles integrity itself do not register it here. */
1260 if (t->integrity_added)
1261 return 0;
1262
1263 template_disk = dm_table_get_integrity_disk(t);
1264 if (!template_disk)
1265 return 0;
1266
1267 if (!integrity_profile_exists(dm_disk(md))) {
1268 t->integrity_supported = true;
1269 /*
1270 * Register integrity profile during table load; we can do
1271 * this because the final profile must match during resume.
1272 */
1273 blk_integrity_register(dm_disk(md),
1274 blk_get_integrity(template_disk));
1275 return 0;
1276 }
1277
1278 /*
1279 * If DM device already has an initialized integrity
1280 * profile the new profile should not conflict.
1281 */
1282 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1283 DMWARN("%s: conflict with existing integrity profile: "
1284 "%s profile mismatch",
1285 dm_device_name(t->md),
1286 template_disk->disk_name);
1287 return 1;
1288 }
1289
1290 /* Preserve existing integrity profile */
1291 t->integrity_supported = true;
1292 return 0;
1293}
1294
1295/*
1296 * Prepares the table for use by building the indices,
1297 * setting the type, and allocating mempools.
1298 */
1299int dm_table_complete(struct dm_table *t)
1300{
1301 int r;
1302
1303 r = dm_table_determine_type(t);
1304 if (r) {
1305 DMERR("unable to determine table type");
1306 return r;
1307 }
1308
1309 r = dm_table_build_index(t);
1310 if (r) {
1311 DMERR("unable to build btrees");
1312 return r;
1313 }
1314
1315 r = dm_table_register_integrity(t);
1316 if (r) {
1317 DMERR("could not register integrity profile.");
1318 return r;
1319 }
1320
1321 r = dm_table_alloc_md_mempools(t, t->md);
1322 if (r)
1323 DMERR("unable to allocate mempools");
1324
1325 return r;
1326}
1327
1328static DEFINE_MUTEX(_event_lock);
1329void dm_table_event_callback(struct dm_table *t,
1330 void (*fn)(void *), void *context)
1331{
1332 mutex_lock(&_event_lock);
1333 t->event_fn = fn;
1334 t->event_context = context;
1335 mutex_unlock(&_event_lock);
1336}
1337
1338void dm_table_event(struct dm_table *t)
1339{
1340 /*
1341 * You can no longer call dm_table_event() from interrupt
1342 * context, use a bottom half instead.
1343 */
1344 BUG_ON(in_interrupt());
1345
1346 mutex_lock(&_event_lock);
1347 if (t->event_fn)
1348 t->event_fn(t->event_context);
1349 mutex_unlock(&_event_lock);
1350}
1351EXPORT_SYMBOL(dm_table_event);
1352
1353inline sector_t dm_table_get_size(struct dm_table *t)
1354{
1355 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1356}
1357EXPORT_SYMBOL(dm_table_get_size);
1358
1359struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1360{
1361 if (index >= t->num_targets)
1362 return NULL;
1363
1364 return t->targets + index;
1365}
1366
1367/*
1368 * Search the btree for the correct target.
1369 *
1370 * Caller should check returned pointer with dm_target_is_valid()
1371 * to trap I/O beyond end of device.
1372 */
1373struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1374{
1375 unsigned int l, n = 0, k = 0;
1376 sector_t *node;
1377
1378 if (unlikely(sector >= dm_table_get_size(t)))
1379 return &t->targets[t->num_targets];
1380
1381 for (l = 0; l < t->depth; l++) {
1382 n = get_child(n, k);
1383 node = get_node(t, l, n);
1384
1385 for (k = 0; k < KEYS_PER_NODE; k++)
1386 if (node[k] >= sector)
1387 break;
1388 }
1389
1390 return &t->targets[(KEYS_PER_NODE * n) + k];
1391}
1392
1393static int count_device(struct dm_target *ti, struct dm_dev *dev,
1394 sector_t start, sector_t len, void *data)
1395{
1396 unsigned *num_devices = data;
1397
1398 (*num_devices)++;
1399
1400 return 0;
1401}
1402
1403/*
1404 * Check whether a table has no data devices attached using each
1405 * target's iterate_devices method.
1406 * Returns false if the result is unknown because a target doesn't
1407 * support iterate_devices.
1408 */
1409bool dm_table_has_no_data_devices(struct dm_table *table)
1410{
1411 struct dm_target *ti;
1412 unsigned i, num_devices;
1413
1414 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1415 ti = dm_table_get_target(table, i);
1416
1417 if (!ti->type->iterate_devices)
1418 return false;
1419
1420 num_devices = 0;
1421 ti->type->iterate_devices(ti, count_device, &num_devices);
1422 if (num_devices)
1423 return false;
1424 }
1425
1426 return true;
1427}
1428
1429static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1430 sector_t start, sector_t len, void *data)
1431{
1432 struct request_queue *q = bdev_get_queue(dev->bdev);
1433 enum blk_zoned_model *zoned_model = data;
1434
1435 return q && blk_queue_zoned_model(q) == *zoned_model;
1436}
1437
1438static bool dm_table_supports_zoned_model(struct dm_table *t,
1439 enum blk_zoned_model zoned_model)
1440{
1441 struct dm_target *ti;
1442 unsigned i;
1443
1444 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1445 ti = dm_table_get_target(t, i);
1446
1447 if (zoned_model == BLK_ZONED_HM &&
1448 !dm_target_supports_zoned_hm(ti->type))
1449 return false;
1450
1451 if (!ti->type->iterate_devices ||
1452 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1453 return false;
1454 }
1455
1456 return true;
1457}
1458
1459static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1460 sector_t start, sector_t len, void *data)
1461{
1462 struct request_queue *q = bdev_get_queue(dev->bdev);
1463 unsigned int *zone_sectors = data;
1464
1465 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1466}
1467
1468static bool dm_table_matches_zone_sectors(struct dm_table *t,
1469 unsigned int zone_sectors)
1470{
1471 struct dm_target *ti;
1472 unsigned i;
1473
1474 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1475 ti = dm_table_get_target(t, i);
1476
1477 if (!ti->type->iterate_devices ||
1478 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1479 return false;
1480 }
1481
1482 return true;
1483}
1484
1485static int validate_hardware_zoned_model(struct dm_table *table,
1486 enum blk_zoned_model zoned_model,
1487 unsigned int zone_sectors)
1488{
1489 if (zoned_model == BLK_ZONED_NONE)
1490 return 0;
1491
1492 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1493 DMERR("%s: zoned model is not consistent across all devices",
1494 dm_device_name(table->md));
1495 return -EINVAL;
1496 }
1497
1498 /* Check zone size validity and compatibility */
1499 if (!zone_sectors || !is_power_of_2(zone_sectors))
1500 return -EINVAL;
1501
1502 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1503 DMERR("%s: zone sectors is not consistent across all devices",
1504 dm_device_name(table->md));
1505 return -EINVAL;
1506 }
1507
1508 return 0;
1509}
1510
1511/*
1512 * Establish the new table's queue_limits and validate them.
1513 */
1514int dm_calculate_queue_limits(struct dm_table *table,
1515 struct queue_limits *limits)
1516{
1517 struct dm_target *ti;
1518 struct queue_limits ti_limits;
1519 unsigned i;
1520 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1521 unsigned int zone_sectors = 0;
1522
1523 blk_set_stacking_limits(limits);
1524
1525 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1526 blk_set_stacking_limits(&ti_limits);
1527
1528 ti = dm_table_get_target(table, i);
1529
1530 if (!ti->type->iterate_devices)
1531 goto combine_limits;
1532
1533 /*
1534 * Combine queue limits of all the devices this target uses.
1535 */
1536 ti->type->iterate_devices(ti, dm_set_device_limits,
1537 &ti_limits);
1538
1539 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1540 /*
1541 * After stacking all limits, validate all devices
1542 * in table support this zoned model and zone sectors.
1543 */
1544 zoned_model = ti_limits.zoned;
1545 zone_sectors = ti_limits.chunk_sectors;
1546 }
1547
1548 /* Set I/O hints portion of queue limits */
1549 if (ti->type->io_hints)
1550 ti->type->io_hints(ti, &ti_limits);
1551
1552 /*
1553 * Check each device area is consistent with the target's
1554 * overall queue limits.
1555 */
1556 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1557 &ti_limits))
1558 return -EINVAL;
1559
1560combine_limits:
1561 /*
1562 * Merge this target's queue limits into the overall limits
1563 * for the table.
1564 */
1565 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1566 DMWARN("%s: adding target device "
1567 "(start sect %llu len %llu) "
1568 "caused an alignment inconsistency",
1569 dm_device_name(table->md),
1570 (unsigned long long) ti->begin,
1571 (unsigned long long) ti->len);
1572
1573 /*
1574 * FIXME: this should likely be moved to blk_stack_limits(), would
1575 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1576 */
1577 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1578 /*
1579 * By default, the stacked limits zoned model is set to
1580 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1581 * this model using the first target model reported
1582 * that is not BLK_ZONED_NONE. This will be either the
1583 * first target device zoned model or the model reported
1584 * by the target .io_hints.
1585 */
1586 limits->zoned = ti_limits.zoned;
1587 }
1588 }
1589
1590 /*
1591 * Verify that the zoned model and zone sectors, as determined before
1592 * any .io_hints override, are the same across all devices in the table.
1593 * - this is especially relevant if .io_hints is emulating a disk-managed
1594 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1595 * BUT...
1596 */
1597 if (limits->zoned != BLK_ZONED_NONE) {
1598 /*
1599 * ...IF the above limits stacking determined a zoned model
1600 * validate that all of the table's devices conform to it.
1601 */
1602 zoned_model = limits->zoned;
1603 zone_sectors = limits->chunk_sectors;
1604 }
1605 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1606 return -EINVAL;
1607
1608 return validate_hardware_logical_block_alignment(table, limits);
1609}
1610
1611/*
1612 * Verify that all devices have an integrity profile that matches the
1613 * DM device's registered integrity profile. If the profiles don't
1614 * match then unregister the DM device's integrity profile.
1615 */
1616static void dm_table_verify_integrity(struct dm_table *t)
1617{
1618 struct gendisk *template_disk = NULL;
1619
1620 if (t->integrity_added)
1621 return;
1622
1623 if (t->integrity_supported) {
1624 /*
1625 * Verify that the original integrity profile
1626 * matches all the devices in this table.
1627 */
1628 template_disk = dm_table_get_integrity_disk(t);
1629 if (template_disk &&
1630 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1631 return;
1632 }
1633
1634 if (integrity_profile_exists(dm_disk(t->md))) {
1635 DMWARN("%s: unable to establish an integrity profile",
1636 dm_device_name(t->md));
1637 blk_integrity_unregister(dm_disk(t->md));
1638 }
1639}
1640
1641static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1642 sector_t start, sector_t len, void *data)
1643{
1644 unsigned long flush = (unsigned long) data;
1645 struct request_queue *q = bdev_get_queue(dev->bdev);
1646
1647 return q && (q->queue_flags & flush);
1648}
1649
1650static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1651{
1652 struct dm_target *ti;
1653 unsigned i;
1654
1655 /*
1656 * Require at least one underlying device to support flushes.
1657 * t->devices includes internal dm devices such as mirror logs
1658 * so we need to use iterate_devices here, which targets
1659 * supporting flushes must provide.
1660 */
1661 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1662 ti = dm_table_get_target(t, i);
1663
1664 if (!ti->num_flush_bios)
1665 continue;
1666
1667 if (ti->flush_supported)
1668 return true;
1669
1670 if (ti->type->iterate_devices &&
1671 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1672 return true;
1673 }
1674
1675 return false;
1676}
1677
1678static int device_dax_write_cache_enabled(struct dm_target *ti,
1679 struct dm_dev *dev, sector_t start,
1680 sector_t len, void *data)
1681{
1682 struct dax_device *dax_dev = dev->dax_dev;
1683
1684 if (!dax_dev)
1685 return false;
1686
1687 if (dax_write_cache_enabled(dax_dev))
1688 return true;
1689 return false;
1690}
1691
1692static int dm_table_supports_dax_write_cache(struct dm_table *t)
1693{
1694 struct dm_target *ti;
1695 unsigned i;
1696
1697 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1698 ti = dm_table_get_target(t, i);
1699
1700 if (ti->type->iterate_devices &&
1701 ti->type->iterate_devices(ti,
1702 device_dax_write_cache_enabled, NULL))
1703 return true;
1704 }
1705
1706 return false;
1707}
1708
1709static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1710 sector_t start, sector_t len, void *data)
1711{
1712 struct request_queue *q = bdev_get_queue(dev->bdev);
1713
1714 return q && blk_queue_nonrot(q);
1715}
1716
1717static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1718 sector_t start, sector_t len, void *data)
1719{
1720 struct request_queue *q = bdev_get_queue(dev->bdev);
1721
1722 return q && !blk_queue_add_random(q);
1723}
1724
1725static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1726 sector_t start, sector_t len, void *data)
1727{
1728 struct request_queue *q = bdev_get_queue(dev->bdev);
1729
1730 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1731}
1732
1733static bool dm_table_all_devices_attribute(struct dm_table *t,
1734 iterate_devices_callout_fn func)
1735{
1736 struct dm_target *ti;
1737 unsigned i;
1738
1739 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1740 ti = dm_table_get_target(t, i);
1741
1742 if (!ti->type->iterate_devices ||
1743 !ti->type->iterate_devices(ti, func, NULL))
1744 return false;
1745 }
1746
1747 return true;
1748}
1749
1750static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1751 sector_t start, sector_t len, void *data)
1752{
1753 char b[BDEVNAME_SIZE];
1754
1755 /* For now, NVMe devices are the only devices of this class */
1756 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1757}
1758
1759static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1760{
1761 return dm_table_all_devices_attribute(t, device_no_partial_completion);
1762}
1763
1764static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1765 sector_t start, sector_t len, void *data)
1766{
1767 struct request_queue *q = bdev_get_queue(dev->bdev);
1768
1769 return q && !q->limits.max_write_same_sectors;
1770}
1771
1772static bool dm_table_supports_write_same(struct dm_table *t)
1773{
1774 struct dm_target *ti;
1775 unsigned i;
1776
1777 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1778 ti = dm_table_get_target(t, i);
1779
1780 if (!ti->num_write_same_bios)
1781 return false;
1782
1783 if (!ti->type->iterate_devices ||
1784 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1785 return false;
1786 }
1787
1788 return true;
1789}
1790
1791static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1792 sector_t start, sector_t len, void *data)
1793{
1794 struct request_queue *q = bdev_get_queue(dev->bdev);
1795
1796 return q && !q->limits.max_write_zeroes_sectors;
1797}
1798
1799static bool dm_table_supports_write_zeroes(struct dm_table *t)
1800{
1801 struct dm_target *ti;
1802 unsigned i = 0;
1803
1804 while (i < dm_table_get_num_targets(t)) {
1805 ti = dm_table_get_target(t, i++);
1806
1807 if (!ti->num_write_zeroes_bios)
1808 return false;
1809
1810 if (!ti->type->iterate_devices ||
1811 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1812 return false;
1813 }
1814
1815 return true;
1816}
1817
1818static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1819 sector_t start, sector_t len, void *data)
1820{
1821 struct request_queue *q = bdev_get_queue(dev->bdev);
1822
1823 return q && !blk_queue_discard(q);
1824}
1825
1826static bool dm_table_supports_discards(struct dm_table *t)
1827{
1828 struct dm_target *ti;
1829 unsigned i;
1830
1831 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1832 ti = dm_table_get_target(t, i);
1833
1834 if (!ti->num_discard_bios)
1835 return false;
1836
1837 /*
1838 * Either the target provides discard support (as implied by setting
1839 * 'discards_supported') or it relies on _all_ data devices having
1840 * discard support.
1841 */
1842 if (!ti->discards_supported &&
1843 (!ti->type->iterate_devices ||
1844 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1845 return false;
1846 }
1847
1848 return true;
1849}
1850
1851static int device_not_secure_erase_capable(struct dm_target *ti,
1852 struct dm_dev *dev, sector_t start,
1853 sector_t len, void *data)
1854{
1855 struct request_queue *q = bdev_get_queue(dev->bdev);
1856
1857 return q && !blk_queue_secure_erase(q);
1858}
1859
1860static bool dm_table_supports_secure_erase(struct dm_table *t)
1861{
1862 struct dm_target *ti;
1863 unsigned int i;
1864
1865 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1866 ti = dm_table_get_target(t, i);
1867
1868 if (!ti->num_secure_erase_bios)
1869 return false;
1870
1871 if (!ti->type->iterate_devices ||
1872 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1873 return false;
1874 }
1875
1876 return true;
1877}
1878
1879static int device_requires_stable_pages(struct dm_target *ti,
1880 struct dm_dev *dev, sector_t start,
1881 sector_t len, void *data)
1882{
1883 struct request_queue *q = bdev_get_queue(dev->bdev);
1884
1885 return q && bdi_cap_stable_pages_required(q->backing_dev_info);
1886}
1887
1888/*
1889 * If any underlying device requires stable pages, a table must require
1890 * them as well. Only targets that support iterate_devices are considered:
1891 * don't want error, zero, etc to require stable pages.
1892 */
1893static bool dm_table_requires_stable_pages(struct dm_table *t)
1894{
1895 struct dm_target *ti;
1896 unsigned i;
1897
1898 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1899 ti = dm_table_get_target(t, i);
1900
1901 if (ti->type->iterate_devices &&
1902 ti->type->iterate_devices(ti, device_requires_stable_pages, NULL))
1903 return true;
1904 }
1905
1906 return false;
1907}
1908
1909void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1910 struct queue_limits *limits)
1911{
1912 bool wc = false, fua = false;
1913
1914 /*
1915 * Copy table's limits to the DM device's request_queue
1916 */
1917 q->limits = *limits;
1918
1919 if (!dm_table_supports_discards(t)) {
1920 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1921 /* Must also clear discard limits... */
1922 q->limits.max_discard_sectors = 0;
1923 q->limits.max_hw_discard_sectors = 0;
1924 q->limits.discard_granularity = 0;
1925 q->limits.discard_alignment = 0;
1926 q->limits.discard_misaligned = 0;
1927 } else
1928 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1929
1930 if (dm_table_supports_secure_erase(t))
1931 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1932
1933 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1934 wc = true;
1935 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1936 fua = true;
1937 }
1938 blk_queue_write_cache(q, wc, fua);
1939
1940 if (dm_table_supports_dax(t))
1941 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1942 else
1943 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1944
1945 if (dm_table_supports_dax_write_cache(t))
1946 dax_write_cache(t->md->dax_dev, true);
1947
1948 /* Ensure that all underlying devices are non-rotational. */
1949 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1950 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1951 else
1952 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1953
1954 if (!dm_table_supports_write_same(t))
1955 q->limits.max_write_same_sectors = 0;
1956 if (!dm_table_supports_write_zeroes(t))
1957 q->limits.max_write_zeroes_sectors = 0;
1958
1959 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1960 blk_queue_flag_clear(QUEUE_FLAG_NO_SG_MERGE, q);
1961 else
1962 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
1963
1964 dm_table_verify_integrity(t);
1965
1966 /*
1967 * Some devices don't use blk_integrity but still want stable pages
1968 * because they do their own checksumming.
1969 */
1970 if (dm_table_requires_stable_pages(t))
1971 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
1972 else
1973 q->backing_dev_info->capabilities &= ~BDI_CAP_STABLE_WRITES;
1974
1975 /*
1976 * Determine whether or not this queue's I/O timings contribute
1977 * to the entropy pool, Only request-based targets use this.
1978 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1979 * have it set.
1980 */
1981 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1982 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1983
1984 /* io_pages is used for readahead */
1985 q->backing_dev_info->io_pages = limits->max_sectors >> (PAGE_SHIFT - 9);
1986}
1987
1988unsigned int dm_table_get_num_targets(struct dm_table *t)
1989{
1990 return t->num_targets;
1991}
1992
1993struct list_head *dm_table_get_devices(struct dm_table *t)
1994{
1995 return &t->devices;
1996}
1997
1998fmode_t dm_table_get_mode(struct dm_table *t)
1999{
2000 return t->mode;
2001}
2002EXPORT_SYMBOL(dm_table_get_mode);
2003
2004enum suspend_mode {
2005 PRESUSPEND,
2006 PRESUSPEND_UNDO,
2007 POSTSUSPEND,
2008};
2009
2010static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2011{
2012 int i = t->num_targets;
2013 struct dm_target *ti = t->targets;
2014
2015 lockdep_assert_held(&t->md->suspend_lock);
2016
2017 while (i--) {
2018 switch (mode) {
2019 case PRESUSPEND:
2020 if (ti->type->presuspend)
2021 ti->type->presuspend(ti);
2022 break;
2023 case PRESUSPEND_UNDO:
2024 if (ti->type->presuspend_undo)
2025 ti->type->presuspend_undo(ti);
2026 break;
2027 case POSTSUSPEND:
2028 if (ti->type->postsuspend)
2029 ti->type->postsuspend(ti);
2030 break;
2031 }
2032 ti++;
2033 }
2034}
2035
2036void dm_table_presuspend_targets(struct dm_table *t)
2037{
2038 if (!t)
2039 return;
2040
2041 suspend_targets(t, PRESUSPEND);
2042}
2043
2044void dm_table_presuspend_undo_targets(struct dm_table *t)
2045{
2046 if (!t)
2047 return;
2048
2049 suspend_targets(t, PRESUSPEND_UNDO);
2050}
2051
2052void dm_table_postsuspend_targets(struct dm_table *t)
2053{
2054 if (!t)
2055 return;
2056
2057 suspend_targets(t, POSTSUSPEND);
2058}
2059
2060int dm_table_resume_targets(struct dm_table *t)
2061{
2062 int i, r = 0;
2063
2064 lockdep_assert_held(&t->md->suspend_lock);
2065
2066 for (i = 0; i < t->num_targets; i++) {
2067 struct dm_target *ti = t->targets + i;
2068
2069 if (!ti->type->preresume)
2070 continue;
2071
2072 r = ti->type->preresume(ti);
2073 if (r) {
2074 DMERR("%s: %s: preresume failed, error = %d",
2075 dm_device_name(t->md), ti->type->name, r);
2076 return r;
2077 }
2078 }
2079
2080 for (i = 0; i < t->num_targets; i++) {
2081 struct dm_target *ti = t->targets + i;
2082
2083 if (ti->type->resume)
2084 ti->type->resume(ti);
2085 }
2086
2087 return 0;
2088}
2089
2090void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2091{
2092 list_add(&cb->list, &t->target_callbacks);
2093}
2094EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2095
2096int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2097{
2098 struct dm_dev_internal *dd;
2099 struct list_head *devices = dm_table_get_devices(t);
2100 struct dm_target_callbacks *cb;
2101 int r = 0;
2102
2103 list_for_each_entry(dd, devices, list) {
2104 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2105 char b[BDEVNAME_SIZE];
2106
2107 if (likely(q))
2108 r |= bdi_congested(q->backing_dev_info, bdi_bits);
2109 else
2110 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2111 dm_device_name(t->md),
2112 bdevname(dd->dm_dev->bdev, b));
2113 }
2114
2115 list_for_each_entry(cb, &t->target_callbacks, list)
2116 if (cb->congested_fn)
2117 r |= cb->congested_fn(cb, bdi_bits);
2118
2119 return r;
2120}
2121
2122struct mapped_device *dm_table_get_md(struct dm_table *t)
2123{
2124 return t->md;
2125}
2126EXPORT_SYMBOL(dm_table_get_md);
2127
2128void dm_table_run_md_queue_async(struct dm_table *t)
2129{
2130 struct mapped_device *md;
2131 struct request_queue *queue;
2132 unsigned long flags;
2133
2134 if (!dm_table_request_based(t))
2135 return;
2136
2137 md = dm_table_get_md(t);
2138 queue = dm_get_md_queue(md);
2139 if (queue) {
2140 if (queue->mq_ops)
2141 blk_mq_run_hw_queues(queue, true);
2142 else {
2143 spin_lock_irqsave(queue->queue_lock, flags);
2144 blk_run_queue_async(queue);
2145 spin_unlock_irqrestore(queue->queue_lock, flags);
2146 }
2147 }
2148}
2149EXPORT_SYMBOL(dm_table_run_md_queue_async);
2150