| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
 | 2 |  *  libata-sff.c - helper library for PCI IDE BMDMA | 
 | 3 |  * | 
 | 4 |  *  Maintained by:  Tejun Heo <tj@kernel.org> | 
 | 5 |  *    		    Please ALWAYS copy linux-ide@vger.kernel.org | 
 | 6 |  *		    on emails. | 
 | 7 |  * | 
 | 8 |  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved. | 
 | 9 |  *  Copyright 2003-2006 Jeff Garzik | 
 | 10 |  * | 
 | 11 |  * | 
 | 12 |  *  This program is free software; you can redistribute it and/or modify | 
 | 13 |  *  it under the terms of the GNU General Public License as published by | 
 | 14 |  *  the Free Software Foundation; either version 2, or (at your option) | 
 | 15 |  *  any later version. | 
 | 16 |  * | 
 | 17 |  *  This program is distributed in the hope that it will be useful, | 
 | 18 |  *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 19 |  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | 20 |  *  GNU General Public License for more details. | 
 | 21 |  * | 
 | 22 |  *  You should have received a copy of the GNU General Public License | 
 | 23 |  *  along with this program; see the file COPYING.  If not, write to | 
 | 24 |  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. | 
 | 25 |  * | 
 | 26 |  * | 
 | 27 |  *  libata documentation is available via 'make {ps|pdf}docs', | 
 | 28 |  *  as Documentation/driver-api/libata.rst | 
 | 29 |  * | 
 | 30 |  *  Hardware documentation available from http://www.t13.org/ and | 
 | 31 |  *  http://www.sata-io.org/ | 
 | 32 |  * | 
 | 33 |  */ | 
 | 34 |  | 
 | 35 | #include <linux/kernel.h> | 
 | 36 | #include <linux/gfp.h> | 
 | 37 | #include <linux/pci.h> | 
 | 38 | #include <linux/module.h> | 
 | 39 | #include <linux/libata.h> | 
 | 40 | #include <linux/highmem.h> | 
 | 41 |  | 
 | 42 | #include "libata.h" | 
 | 43 |  | 
 | 44 | static struct workqueue_struct *ata_sff_wq; | 
 | 45 |  | 
 | 46 | const struct ata_port_operations ata_sff_port_ops = { | 
 | 47 | 	.inherits		= &ata_base_port_ops, | 
 | 48 |  | 
 | 49 | 	.qc_prep		= ata_noop_qc_prep, | 
 | 50 | 	.qc_issue		= ata_sff_qc_issue, | 
 | 51 | 	.qc_fill_rtf		= ata_sff_qc_fill_rtf, | 
 | 52 |  | 
 | 53 | 	.freeze			= ata_sff_freeze, | 
 | 54 | 	.thaw			= ata_sff_thaw, | 
 | 55 | 	.prereset		= ata_sff_prereset, | 
 | 56 | 	.softreset		= ata_sff_softreset, | 
 | 57 | 	.hardreset		= sata_sff_hardreset, | 
 | 58 | 	.postreset		= ata_sff_postreset, | 
 | 59 | 	.error_handler		= ata_sff_error_handler, | 
 | 60 |  | 
 | 61 | 	.sff_dev_select		= ata_sff_dev_select, | 
 | 62 | 	.sff_check_status	= ata_sff_check_status, | 
 | 63 | 	.sff_tf_load		= ata_sff_tf_load, | 
 | 64 | 	.sff_tf_read		= ata_sff_tf_read, | 
 | 65 | 	.sff_exec_command	= ata_sff_exec_command, | 
 | 66 | 	.sff_data_xfer		= ata_sff_data_xfer, | 
 | 67 | 	.sff_drain_fifo		= ata_sff_drain_fifo, | 
 | 68 |  | 
 | 69 | 	.lost_interrupt		= ata_sff_lost_interrupt, | 
 | 70 | }; | 
 | 71 | EXPORT_SYMBOL_GPL(ata_sff_port_ops); | 
 | 72 |  | 
 | 73 | /** | 
 | 74 |  *	ata_sff_check_status - Read device status reg & clear interrupt | 
 | 75 |  *	@ap: port where the device is | 
 | 76 |  * | 
 | 77 |  *	Reads ATA taskfile status register for currently-selected device | 
 | 78 |  *	and return its value. This also clears pending interrupts | 
 | 79 |  *      from this device | 
 | 80 |  * | 
 | 81 |  *	LOCKING: | 
 | 82 |  *	Inherited from caller. | 
 | 83 |  */ | 
 | 84 | u8 ata_sff_check_status(struct ata_port *ap) | 
 | 85 | { | 
 | 86 | 	return ioread8(ap->ioaddr.status_addr); | 
 | 87 | } | 
 | 88 | EXPORT_SYMBOL_GPL(ata_sff_check_status); | 
 | 89 |  | 
 | 90 | /** | 
 | 91 |  *	ata_sff_altstatus - Read device alternate status reg | 
 | 92 |  *	@ap: port where the device is | 
 | 93 |  * | 
 | 94 |  *	Reads ATA taskfile alternate status register for | 
 | 95 |  *	currently-selected device and return its value. | 
 | 96 |  * | 
 | 97 |  *	Note: may NOT be used as the check_altstatus() entry in | 
 | 98 |  *	ata_port_operations. | 
 | 99 |  * | 
 | 100 |  *	LOCKING: | 
 | 101 |  *	Inherited from caller. | 
 | 102 |  */ | 
 | 103 | static u8 ata_sff_altstatus(struct ata_port *ap) | 
 | 104 | { | 
 | 105 | 	if (ap->ops->sff_check_altstatus) | 
 | 106 | 		return ap->ops->sff_check_altstatus(ap); | 
 | 107 |  | 
 | 108 | 	return ioread8(ap->ioaddr.altstatus_addr); | 
 | 109 | } | 
 | 110 |  | 
 | 111 | /** | 
 | 112 |  *	ata_sff_irq_status - Check if the device is busy | 
 | 113 |  *	@ap: port where the device is | 
 | 114 |  * | 
 | 115 |  *	Determine if the port is currently busy. Uses altstatus | 
 | 116 |  *	if available in order to avoid clearing shared IRQ status | 
 | 117 |  *	when finding an IRQ source. Non ctl capable devices don't | 
 | 118 |  *	share interrupt lines fortunately for us. | 
 | 119 |  * | 
 | 120 |  *	LOCKING: | 
 | 121 |  *	Inherited from caller. | 
 | 122 |  */ | 
 | 123 | static u8 ata_sff_irq_status(struct ata_port *ap) | 
 | 124 | { | 
 | 125 | 	u8 status; | 
 | 126 |  | 
 | 127 | 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { | 
 | 128 | 		status = ata_sff_altstatus(ap); | 
 | 129 | 		/* Not us: We are busy */ | 
 | 130 | 		if (status & ATA_BUSY) | 
 | 131 | 			return status; | 
 | 132 | 	} | 
 | 133 | 	/* Clear INTRQ latch */ | 
 | 134 | 	status = ap->ops->sff_check_status(ap); | 
 | 135 | 	return status; | 
 | 136 | } | 
 | 137 |  | 
 | 138 | /** | 
 | 139 |  *	ata_sff_sync - Flush writes | 
 | 140 |  *	@ap: Port to wait for. | 
 | 141 |  * | 
 | 142 |  *	CAUTION: | 
 | 143 |  *	If we have an mmio device with no ctl and no altstatus | 
 | 144 |  *	method this will fail. No such devices are known to exist. | 
 | 145 |  * | 
 | 146 |  *	LOCKING: | 
 | 147 |  *	Inherited from caller. | 
 | 148 |  */ | 
 | 149 |  | 
 | 150 | static void ata_sff_sync(struct ata_port *ap) | 
 | 151 | { | 
 | 152 | 	if (ap->ops->sff_check_altstatus) | 
 | 153 | 		ap->ops->sff_check_altstatus(ap); | 
 | 154 | 	else if (ap->ioaddr.altstatus_addr) | 
 | 155 | 		ioread8(ap->ioaddr.altstatus_addr); | 
 | 156 | } | 
 | 157 |  | 
 | 158 | /** | 
 | 159 |  *	ata_sff_pause		-	Flush writes and wait 400nS | 
 | 160 |  *	@ap: Port to pause for. | 
 | 161 |  * | 
 | 162 |  *	CAUTION: | 
 | 163 |  *	If we have an mmio device with no ctl and no altstatus | 
 | 164 |  *	method this will fail. No such devices are known to exist. | 
 | 165 |  * | 
 | 166 |  *	LOCKING: | 
 | 167 |  *	Inherited from caller. | 
 | 168 |  */ | 
 | 169 |  | 
 | 170 | void ata_sff_pause(struct ata_port *ap) | 
 | 171 | { | 
 | 172 | 	ata_sff_sync(ap); | 
 | 173 | 	ndelay(400); | 
 | 174 | } | 
 | 175 | EXPORT_SYMBOL_GPL(ata_sff_pause); | 
 | 176 |  | 
 | 177 | /** | 
 | 178 |  *	ata_sff_dma_pause	-	Pause before commencing DMA | 
 | 179 |  *	@ap: Port to pause for. | 
 | 180 |  * | 
 | 181 |  *	Perform I/O fencing and ensure sufficient cycle delays occur | 
 | 182 |  *	for the HDMA1:0 transition | 
 | 183 |  */ | 
 | 184 |  | 
 | 185 | void ata_sff_dma_pause(struct ata_port *ap) | 
 | 186 | { | 
 | 187 | 	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { | 
 | 188 | 		/* An altstatus read will cause the needed delay without | 
 | 189 | 		   messing up the IRQ status */ | 
 | 190 | 		ata_sff_altstatus(ap); | 
 | 191 | 		return; | 
 | 192 | 	} | 
 | 193 | 	/* There are no DMA controllers without ctl. BUG here to ensure | 
 | 194 | 	   we never violate the HDMA1:0 transition timing and risk | 
 | 195 | 	   corruption. */ | 
 | 196 | 	BUG(); | 
 | 197 | } | 
 | 198 | EXPORT_SYMBOL_GPL(ata_sff_dma_pause); | 
 | 199 |  | 
 | 200 | /** | 
 | 201 |  *	ata_sff_busy_sleep - sleep until BSY clears, or timeout | 
 | 202 |  *	@ap: port containing status register to be polled | 
 | 203 |  *	@tmout_pat: impatience timeout in msecs | 
 | 204 |  *	@tmout: overall timeout in msecs | 
 | 205 |  * | 
 | 206 |  *	Sleep until ATA Status register bit BSY clears, | 
 | 207 |  *	or a timeout occurs. | 
 | 208 |  * | 
 | 209 |  *	LOCKING: | 
 | 210 |  *	Kernel thread context (may sleep). | 
 | 211 |  * | 
 | 212 |  *	RETURNS: | 
 | 213 |  *	0 on success, -errno otherwise. | 
 | 214 |  */ | 
 | 215 | int ata_sff_busy_sleep(struct ata_port *ap, | 
 | 216 | 		       unsigned long tmout_pat, unsigned long tmout) | 
 | 217 | { | 
 | 218 | 	unsigned long timer_start, timeout; | 
 | 219 | 	u8 status; | 
 | 220 |  | 
 | 221 | 	status = ata_sff_busy_wait(ap, ATA_BUSY, 300); | 
 | 222 | 	timer_start = jiffies; | 
 | 223 | 	timeout = ata_deadline(timer_start, tmout_pat); | 
 | 224 | 	while (status != 0xff && (status & ATA_BUSY) && | 
 | 225 | 	       time_before(jiffies, timeout)) { | 
 | 226 | 		ata_msleep(ap, 50); | 
 | 227 | 		status = ata_sff_busy_wait(ap, ATA_BUSY, 3); | 
 | 228 | 	} | 
 | 229 |  | 
 | 230 | 	if (status != 0xff && (status & ATA_BUSY)) | 
 | 231 | 		ata_port_warn(ap, | 
 | 232 | 			      "port is slow to respond, please be patient (Status 0x%x)\n", | 
 | 233 | 			      status); | 
 | 234 |  | 
 | 235 | 	timeout = ata_deadline(timer_start, tmout); | 
 | 236 | 	while (status != 0xff && (status & ATA_BUSY) && | 
 | 237 | 	       time_before(jiffies, timeout)) { | 
 | 238 | 		ata_msleep(ap, 50); | 
 | 239 | 		status = ap->ops->sff_check_status(ap); | 
 | 240 | 	} | 
 | 241 |  | 
 | 242 | 	if (status == 0xff) | 
 | 243 | 		return -ENODEV; | 
 | 244 |  | 
 | 245 | 	if (status & ATA_BUSY) { | 
 | 246 | 		ata_port_err(ap, | 
 | 247 | 			     "port failed to respond (%lu secs, Status 0x%x)\n", | 
 | 248 | 			     DIV_ROUND_UP(tmout, 1000), status); | 
 | 249 | 		return -EBUSY; | 
 | 250 | 	} | 
 | 251 |  | 
 | 252 | 	return 0; | 
 | 253 | } | 
 | 254 | EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); | 
 | 255 |  | 
 | 256 | static int ata_sff_check_ready(struct ata_link *link) | 
 | 257 | { | 
 | 258 | 	u8 status = link->ap->ops->sff_check_status(link->ap); | 
 | 259 |  | 
 | 260 | 	return ata_check_ready(status); | 
 | 261 | } | 
 | 262 |  | 
 | 263 | /** | 
 | 264 |  *	ata_sff_wait_ready - sleep until BSY clears, or timeout | 
 | 265 |  *	@link: SFF link to wait ready status for | 
 | 266 |  *	@deadline: deadline jiffies for the operation | 
 | 267 |  * | 
 | 268 |  *	Sleep until ATA Status register bit BSY clears, or timeout | 
 | 269 |  *	occurs. | 
 | 270 |  * | 
 | 271 |  *	LOCKING: | 
 | 272 |  *	Kernel thread context (may sleep). | 
 | 273 |  * | 
 | 274 |  *	RETURNS: | 
 | 275 |  *	0 on success, -errno otherwise. | 
 | 276 |  */ | 
 | 277 | int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) | 
 | 278 | { | 
 | 279 | 	return ata_wait_ready(link, deadline, ata_sff_check_ready); | 
 | 280 | } | 
 | 281 | EXPORT_SYMBOL_GPL(ata_sff_wait_ready); | 
 | 282 |  | 
 | 283 | /** | 
 | 284 |  *	ata_sff_set_devctl - Write device control reg | 
 | 285 |  *	@ap: port where the device is | 
 | 286 |  *	@ctl: value to write | 
 | 287 |  * | 
 | 288 |  *	Writes ATA taskfile device control register. | 
 | 289 |  * | 
 | 290 |  *	Note: may NOT be used as the sff_set_devctl() entry in | 
 | 291 |  *	ata_port_operations. | 
 | 292 |  * | 
 | 293 |  *	LOCKING: | 
 | 294 |  *	Inherited from caller. | 
 | 295 |  */ | 
 | 296 | static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl) | 
 | 297 | { | 
 | 298 | 	if (ap->ops->sff_set_devctl) | 
 | 299 | 		ap->ops->sff_set_devctl(ap, ctl); | 
 | 300 | 	else | 
 | 301 | 		iowrite8(ctl, ap->ioaddr.ctl_addr); | 
 | 302 | } | 
 | 303 |  | 
 | 304 | /** | 
 | 305 |  *	ata_sff_dev_select - Select device 0/1 on ATA bus | 
 | 306 |  *	@ap: ATA channel to manipulate | 
 | 307 |  *	@device: ATA device (numbered from zero) to select | 
 | 308 |  * | 
 | 309 |  *	Use the method defined in the ATA specification to | 
 | 310 |  *	make either device 0, or device 1, active on the | 
 | 311 |  *	ATA channel.  Works with both PIO and MMIO. | 
 | 312 |  * | 
 | 313 |  *	May be used as the dev_select() entry in ata_port_operations. | 
 | 314 |  * | 
 | 315 |  *	LOCKING: | 
 | 316 |  *	caller. | 
 | 317 |  */ | 
 | 318 | void ata_sff_dev_select(struct ata_port *ap, unsigned int device) | 
 | 319 | { | 
 | 320 | 	u8 tmp; | 
 | 321 |  | 
 | 322 | 	if (device == 0) | 
 | 323 | 		tmp = ATA_DEVICE_OBS; | 
 | 324 | 	else | 
 | 325 | 		tmp = ATA_DEVICE_OBS | ATA_DEV1; | 
 | 326 |  | 
 | 327 | 	iowrite8(tmp, ap->ioaddr.device_addr); | 
 | 328 | 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */ | 
 | 329 | } | 
 | 330 | EXPORT_SYMBOL_GPL(ata_sff_dev_select); | 
 | 331 |  | 
 | 332 | /** | 
 | 333 |  *	ata_dev_select - Select device 0/1 on ATA bus | 
 | 334 |  *	@ap: ATA channel to manipulate | 
 | 335 |  *	@device: ATA device (numbered from zero) to select | 
 | 336 |  *	@wait: non-zero to wait for Status register BSY bit to clear | 
 | 337 |  *	@can_sleep: non-zero if context allows sleeping | 
 | 338 |  * | 
 | 339 |  *	Use the method defined in the ATA specification to | 
 | 340 |  *	make either device 0, or device 1, active on the | 
 | 341 |  *	ATA channel. | 
 | 342 |  * | 
 | 343 |  *	This is a high-level version of ata_sff_dev_select(), which | 
 | 344 |  *	additionally provides the services of inserting the proper | 
 | 345 |  *	pauses and status polling, where needed. | 
 | 346 |  * | 
 | 347 |  *	LOCKING: | 
 | 348 |  *	caller. | 
 | 349 |  */ | 
 | 350 | static void ata_dev_select(struct ata_port *ap, unsigned int device, | 
 | 351 | 			   unsigned int wait, unsigned int can_sleep) | 
 | 352 | { | 
 | 353 | 	if (ata_msg_probe(ap)) | 
 | 354 | 		ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n", | 
 | 355 | 			      device, wait); | 
 | 356 |  | 
 | 357 | 	if (wait) | 
 | 358 | 		ata_wait_idle(ap); | 
 | 359 |  | 
 | 360 | 	ap->ops->sff_dev_select(ap, device); | 
 | 361 |  | 
 | 362 | 	if (wait) { | 
 | 363 | 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) | 
 | 364 | 			ata_msleep(ap, 150); | 
 | 365 | 		ata_wait_idle(ap); | 
 | 366 | 	} | 
 | 367 | } | 
 | 368 |  | 
 | 369 | /** | 
 | 370 |  *	ata_sff_irq_on - Enable interrupts on a port. | 
 | 371 |  *	@ap: Port on which interrupts are enabled. | 
 | 372 |  * | 
 | 373 |  *	Enable interrupts on a legacy IDE device using MMIO or PIO, | 
 | 374 |  *	wait for idle, clear any pending interrupts. | 
 | 375 |  * | 
 | 376 |  *	Note: may NOT be used as the sff_irq_on() entry in | 
 | 377 |  *	ata_port_operations. | 
 | 378 |  * | 
 | 379 |  *	LOCKING: | 
 | 380 |  *	Inherited from caller. | 
 | 381 |  */ | 
 | 382 | void ata_sff_irq_on(struct ata_port *ap) | 
 | 383 | { | 
 | 384 | 	struct ata_ioports *ioaddr = &ap->ioaddr; | 
 | 385 |  | 
 | 386 | 	if (ap->ops->sff_irq_on) { | 
 | 387 | 		ap->ops->sff_irq_on(ap); | 
 | 388 | 		return; | 
 | 389 | 	} | 
 | 390 |  | 
 | 391 | 	ap->ctl &= ~ATA_NIEN; | 
 | 392 | 	ap->last_ctl = ap->ctl; | 
 | 393 |  | 
 | 394 | 	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr) | 
 | 395 | 		ata_sff_set_devctl(ap, ap->ctl); | 
 | 396 | 	ata_wait_idle(ap); | 
 | 397 |  | 
 | 398 | 	if (ap->ops->sff_irq_clear) | 
 | 399 | 		ap->ops->sff_irq_clear(ap); | 
 | 400 | } | 
 | 401 | EXPORT_SYMBOL_GPL(ata_sff_irq_on); | 
 | 402 |  | 
 | 403 | /** | 
 | 404 |  *	ata_sff_tf_load - send taskfile registers to host controller | 
 | 405 |  *	@ap: Port to which output is sent | 
 | 406 |  *	@tf: ATA taskfile register set | 
 | 407 |  * | 
 | 408 |  *	Outputs ATA taskfile to standard ATA host controller. | 
 | 409 |  * | 
 | 410 |  *	LOCKING: | 
 | 411 |  *	Inherited from caller. | 
 | 412 |  */ | 
 | 413 | void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) | 
 | 414 | { | 
 | 415 | 	struct ata_ioports *ioaddr = &ap->ioaddr; | 
 | 416 | 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; | 
 | 417 |  | 
 | 418 | 	if (tf->ctl != ap->last_ctl) { | 
 | 419 | 		if (ioaddr->ctl_addr) | 
 | 420 | 			iowrite8(tf->ctl, ioaddr->ctl_addr); | 
 | 421 | 		ap->last_ctl = tf->ctl; | 
 | 422 | 		ata_wait_idle(ap); | 
 | 423 | 	} | 
 | 424 |  | 
 | 425 | 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { | 
 | 426 | 		WARN_ON_ONCE(!ioaddr->ctl_addr); | 
 | 427 | 		iowrite8(tf->hob_feature, ioaddr->feature_addr); | 
 | 428 | 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr); | 
 | 429 | 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr); | 
 | 430 | 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr); | 
 | 431 | 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr); | 
 | 432 | 		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", | 
 | 433 | 			tf->hob_feature, | 
 | 434 | 			tf->hob_nsect, | 
 | 435 | 			tf->hob_lbal, | 
 | 436 | 			tf->hob_lbam, | 
 | 437 | 			tf->hob_lbah); | 
 | 438 | 	} | 
 | 439 |  | 
 | 440 | 	if (is_addr) { | 
 | 441 | 		iowrite8(tf->feature, ioaddr->feature_addr); | 
 | 442 | 		iowrite8(tf->nsect, ioaddr->nsect_addr); | 
 | 443 | 		iowrite8(tf->lbal, ioaddr->lbal_addr); | 
 | 444 | 		iowrite8(tf->lbam, ioaddr->lbam_addr); | 
 | 445 | 		iowrite8(tf->lbah, ioaddr->lbah_addr); | 
 | 446 | 		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", | 
 | 447 | 			tf->feature, | 
 | 448 | 			tf->nsect, | 
 | 449 | 			tf->lbal, | 
 | 450 | 			tf->lbam, | 
 | 451 | 			tf->lbah); | 
 | 452 | 	} | 
 | 453 |  | 
 | 454 | 	if (tf->flags & ATA_TFLAG_DEVICE) { | 
 | 455 | 		iowrite8(tf->device, ioaddr->device_addr); | 
 | 456 | 		VPRINTK("device 0x%X\n", tf->device); | 
 | 457 | 	} | 
 | 458 |  | 
 | 459 | 	ata_wait_idle(ap); | 
 | 460 | } | 
 | 461 | EXPORT_SYMBOL_GPL(ata_sff_tf_load); | 
 | 462 |  | 
 | 463 | /** | 
 | 464 |  *	ata_sff_tf_read - input device's ATA taskfile shadow registers | 
 | 465 |  *	@ap: Port from which input is read | 
 | 466 |  *	@tf: ATA taskfile register set for storing input | 
 | 467 |  * | 
 | 468 |  *	Reads ATA taskfile registers for currently-selected device | 
 | 469 |  *	into @tf. Assumes the device has a fully SFF compliant task file | 
 | 470 |  *	layout and behaviour. If you device does not (eg has a different | 
 | 471 |  *	status method) then you will need to provide a replacement tf_read | 
 | 472 |  * | 
 | 473 |  *	LOCKING: | 
 | 474 |  *	Inherited from caller. | 
 | 475 |  */ | 
 | 476 | void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) | 
 | 477 | { | 
 | 478 | 	struct ata_ioports *ioaddr = &ap->ioaddr; | 
 | 479 |  | 
 | 480 | 	tf->command = ata_sff_check_status(ap); | 
 | 481 | 	tf->feature = ioread8(ioaddr->error_addr); | 
 | 482 | 	tf->nsect = ioread8(ioaddr->nsect_addr); | 
 | 483 | 	tf->lbal = ioread8(ioaddr->lbal_addr); | 
 | 484 | 	tf->lbam = ioread8(ioaddr->lbam_addr); | 
 | 485 | 	tf->lbah = ioread8(ioaddr->lbah_addr); | 
 | 486 | 	tf->device = ioread8(ioaddr->device_addr); | 
 | 487 |  | 
 | 488 | 	if (tf->flags & ATA_TFLAG_LBA48) { | 
 | 489 | 		if (likely(ioaddr->ctl_addr)) { | 
 | 490 | 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); | 
 | 491 | 			tf->hob_feature = ioread8(ioaddr->error_addr); | 
 | 492 | 			tf->hob_nsect = ioread8(ioaddr->nsect_addr); | 
 | 493 | 			tf->hob_lbal = ioread8(ioaddr->lbal_addr); | 
 | 494 | 			tf->hob_lbam = ioread8(ioaddr->lbam_addr); | 
 | 495 | 			tf->hob_lbah = ioread8(ioaddr->lbah_addr); | 
 | 496 | 			iowrite8(tf->ctl, ioaddr->ctl_addr); | 
 | 497 | 			ap->last_ctl = tf->ctl; | 
 | 498 | 		} else | 
 | 499 | 			WARN_ON_ONCE(1); | 
 | 500 | 	} | 
 | 501 | } | 
 | 502 | EXPORT_SYMBOL_GPL(ata_sff_tf_read); | 
 | 503 |  | 
 | 504 | /** | 
 | 505 |  *	ata_sff_exec_command - issue ATA command to host controller | 
 | 506 |  *	@ap: port to which command is being issued | 
 | 507 |  *	@tf: ATA taskfile register set | 
 | 508 |  * | 
 | 509 |  *	Issues ATA command, with proper synchronization with interrupt | 
 | 510 |  *	handler / other threads. | 
 | 511 |  * | 
 | 512 |  *	LOCKING: | 
 | 513 |  *	spin_lock_irqsave(host lock) | 
 | 514 |  */ | 
 | 515 | void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) | 
 | 516 | { | 
 | 517 | 	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); | 
 | 518 |  | 
 | 519 | 	iowrite8(tf->command, ap->ioaddr.command_addr); | 
 | 520 | 	ata_sff_pause(ap); | 
 | 521 | } | 
 | 522 | EXPORT_SYMBOL_GPL(ata_sff_exec_command); | 
 | 523 |  | 
 | 524 | /** | 
 | 525 |  *	ata_tf_to_host - issue ATA taskfile to host controller | 
 | 526 |  *	@ap: port to which command is being issued | 
 | 527 |  *	@tf: ATA taskfile register set | 
 | 528 |  * | 
 | 529 |  *	Issues ATA taskfile register set to ATA host controller, | 
 | 530 |  *	with proper synchronization with interrupt handler and | 
 | 531 |  *	other threads. | 
 | 532 |  * | 
 | 533 |  *	LOCKING: | 
 | 534 |  *	spin_lock_irqsave(host lock) | 
 | 535 |  */ | 
 | 536 | static inline void ata_tf_to_host(struct ata_port *ap, | 
 | 537 | 				  const struct ata_taskfile *tf) | 
 | 538 | { | 
 | 539 | 	ap->ops->sff_tf_load(ap, tf); | 
 | 540 | 	ap->ops->sff_exec_command(ap, tf); | 
 | 541 | } | 
 | 542 |  | 
 | 543 | /** | 
 | 544 |  *	ata_sff_data_xfer - Transfer data by PIO | 
 | 545 |  *	@qc: queued command | 
 | 546 |  *	@buf: data buffer | 
 | 547 |  *	@buflen: buffer length | 
 | 548 |  *	@rw: read/write | 
 | 549 |  * | 
 | 550 |  *	Transfer data from/to the device data register by PIO. | 
 | 551 |  * | 
 | 552 |  *	LOCKING: | 
 | 553 |  *	Inherited from caller. | 
 | 554 |  * | 
 | 555 |  *	RETURNS: | 
 | 556 |  *	Bytes consumed. | 
 | 557 |  */ | 
 | 558 | unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf, | 
 | 559 | 			       unsigned int buflen, int rw) | 
 | 560 | { | 
 | 561 | 	struct ata_port *ap = qc->dev->link->ap; | 
 | 562 | 	void __iomem *data_addr = ap->ioaddr.data_addr; | 
 | 563 | 	unsigned int words = buflen >> 1; | 
 | 564 |  | 
 | 565 | 	/* Transfer multiple of 2 bytes */ | 
 | 566 | 	if (rw == READ) | 
 | 567 | 		ioread16_rep(data_addr, buf, words); | 
 | 568 | 	else | 
 | 569 | 		iowrite16_rep(data_addr, buf, words); | 
 | 570 |  | 
 | 571 | 	/* Transfer trailing byte, if any. */ | 
 | 572 | 	if (unlikely(buflen & 0x01)) { | 
 | 573 | 		unsigned char pad[2] = { }; | 
 | 574 |  | 
 | 575 | 		/* Point buf to the tail of buffer */ | 
 | 576 | 		buf += buflen - 1; | 
 | 577 |  | 
 | 578 | 		/* | 
 | 579 | 		 * Use io*16_rep() accessors here as well to avoid pointlessly | 
 | 580 | 		 * swapping bytes to and from on the big endian machines... | 
 | 581 | 		 */ | 
 | 582 | 		if (rw == READ) { | 
 | 583 | 			ioread16_rep(data_addr, pad, 1); | 
 | 584 | 			*buf = pad[0]; | 
 | 585 | 		} else { | 
 | 586 | 			pad[0] = *buf; | 
 | 587 | 			iowrite16_rep(data_addr, pad, 1); | 
 | 588 | 		} | 
 | 589 | 		words++; | 
 | 590 | 	} | 
 | 591 |  | 
 | 592 | 	return words << 1; | 
 | 593 | } | 
 | 594 | EXPORT_SYMBOL_GPL(ata_sff_data_xfer); | 
 | 595 |  | 
 | 596 | /** | 
 | 597 |  *	ata_sff_data_xfer32 - Transfer data by PIO | 
 | 598 |  *	@qc: queued command | 
 | 599 |  *	@buf: data buffer | 
 | 600 |  *	@buflen: buffer length | 
 | 601 |  *	@rw: read/write | 
 | 602 |  * | 
 | 603 |  *	Transfer data from/to the device data register by PIO using 32bit | 
 | 604 |  *	I/O operations. | 
 | 605 |  * | 
 | 606 |  *	LOCKING: | 
 | 607 |  *	Inherited from caller. | 
 | 608 |  * | 
 | 609 |  *	RETURNS: | 
 | 610 |  *	Bytes consumed. | 
 | 611 |  */ | 
 | 612 |  | 
 | 613 | unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf, | 
 | 614 | 			       unsigned int buflen, int rw) | 
 | 615 | { | 
 | 616 | 	struct ata_device *dev = qc->dev; | 
 | 617 | 	struct ata_port *ap = dev->link->ap; | 
 | 618 | 	void __iomem *data_addr = ap->ioaddr.data_addr; | 
 | 619 | 	unsigned int words = buflen >> 2; | 
 | 620 | 	int slop = buflen & 3; | 
 | 621 |  | 
 | 622 | 	if (!(ap->pflags & ATA_PFLAG_PIO32)) | 
 | 623 | 		return ata_sff_data_xfer(qc, buf, buflen, rw); | 
 | 624 |  | 
 | 625 | 	/* Transfer multiple of 4 bytes */ | 
 | 626 | 	if (rw == READ) | 
 | 627 | 		ioread32_rep(data_addr, buf, words); | 
 | 628 | 	else | 
 | 629 | 		iowrite32_rep(data_addr, buf, words); | 
 | 630 |  | 
 | 631 | 	/* Transfer trailing bytes, if any */ | 
 | 632 | 	if (unlikely(slop)) { | 
 | 633 | 		unsigned char pad[4] = { }; | 
 | 634 |  | 
 | 635 | 		/* Point buf to the tail of buffer */ | 
 | 636 | 		buf += buflen - slop; | 
 | 637 |  | 
 | 638 | 		/* | 
 | 639 | 		 * Use io*_rep() accessors here as well to avoid pointlessly | 
 | 640 | 		 * swapping bytes to and from on the big endian machines... | 
 | 641 | 		 */ | 
 | 642 | 		if (rw == READ) { | 
 | 643 | 			if (slop < 3) | 
 | 644 | 				ioread16_rep(data_addr, pad, 1); | 
 | 645 | 			else | 
 | 646 | 				ioread32_rep(data_addr, pad, 1); | 
 | 647 | 			memcpy(buf, pad, slop); | 
 | 648 | 		} else { | 
 | 649 | 			memcpy(pad, buf, slop); | 
 | 650 | 			if (slop < 3) | 
 | 651 | 				iowrite16_rep(data_addr, pad, 1); | 
 | 652 | 			else | 
 | 653 | 				iowrite32_rep(data_addr, pad, 1); | 
 | 654 | 		} | 
 | 655 | 	} | 
 | 656 | 	return (buflen + 1) & ~1; | 
 | 657 | } | 
 | 658 | EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); | 
 | 659 |  | 
 | 660 | /** | 
 | 661 |  *	ata_pio_sector - Transfer a sector of data. | 
 | 662 |  *	@qc: Command on going | 
 | 663 |  * | 
 | 664 |  *	Transfer qc->sect_size bytes of data from/to the ATA device. | 
 | 665 |  * | 
 | 666 |  *	LOCKING: | 
 | 667 |  *	Inherited from caller. | 
 | 668 |  */ | 
 | 669 | static void ata_pio_sector(struct ata_queued_cmd *qc) | 
 | 670 | { | 
 | 671 | 	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); | 
 | 672 | 	struct ata_port *ap = qc->ap; | 
 | 673 | 	struct page *page; | 
 | 674 | 	unsigned int offset; | 
 | 675 | 	unsigned char *buf; | 
 | 676 |  | 
 | 677 | 	if (!qc->cursg) { | 
 | 678 | 		qc->curbytes = qc->nbytes; | 
 | 679 | 		return; | 
 | 680 | 	} | 
 | 681 | 	if (qc->curbytes == qc->nbytes - qc->sect_size) | 
 | 682 | 		ap->hsm_task_state = HSM_ST_LAST; | 
 | 683 |  | 
 | 684 | 	page = sg_page(qc->cursg); | 
 | 685 | 	offset = qc->cursg->offset + qc->cursg_ofs; | 
 | 686 |  | 
 | 687 | 	/* get the current page and offset */ | 
 | 688 | 	page = nth_page(page, (offset >> PAGE_SHIFT)); | 
 | 689 | 	offset %= PAGE_SIZE; | 
 | 690 |  | 
 | 691 | 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); | 
 | 692 |  | 
 | 693 | 	/* do the actual data transfer */ | 
 | 694 | 	buf = kmap_atomic(page); | 
 | 695 | 	ap->ops->sff_data_xfer(qc, buf + offset, qc->sect_size, do_write); | 
 | 696 | 	kunmap_atomic(buf); | 
 | 697 |  | 
 | 698 | 	if (!do_write && !PageSlab(page)) | 
 | 699 | 		flush_dcache_page(page); | 
 | 700 |  | 
 | 701 | 	qc->curbytes += qc->sect_size; | 
 | 702 | 	qc->cursg_ofs += qc->sect_size; | 
 | 703 |  | 
 | 704 | 	if (qc->cursg_ofs == qc->cursg->length) { | 
 | 705 | 		qc->cursg = sg_next(qc->cursg); | 
 | 706 | 		if (!qc->cursg) | 
 | 707 | 			ap->hsm_task_state = HSM_ST_LAST; | 
 | 708 | 		qc->cursg_ofs = 0; | 
 | 709 | 	} | 
 | 710 | } | 
 | 711 |  | 
 | 712 | /** | 
 | 713 |  *	ata_pio_sectors - Transfer one or many sectors. | 
 | 714 |  *	@qc: Command on going | 
 | 715 |  * | 
 | 716 |  *	Transfer one or many sectors of data from/to the | 
 | 717 |  *	ATA device for the DRQ request. | 
 | 718 |  * | 
 | 719 |  *	LOCKING: | 
 | 720 |  *	Inherited from caller. | 
 | 721 |  */ | 
 | 722 | static void ata_pio_sectors(struct ata_queued_cmd *qc) | 
 | 723 | { | 
 | 724 | 	if (is_multi_taskfile(&qc->tf)) { | 
 | 725 | 		/* READ/WRITE MULTIPLE */ | 
 | 726 | 		unsigned int nsect; | 
 | 727 |  | 
 | 728 | 		WARN_ON_ONCE(qc->dev->multi_count == 0); | 
 | 729 |  | 
 | 730 | 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, | 
 | 731 | 			    qc->dev->multi_count); | 
 | 732 | 		while (nsect--) | 
 | 733 | 			ata_pio_sector(qc); | 
 | 734 | 	} else | 
 | 735 | 		ata_pio_sector(qc); | 
 | 736 |  | 
 | 737 | 	ata_sff_sync(qc->ap); /* flush */ | 
 | 738 | } | 
 | 739 |  | 
 | 740 | /** | 
 | 741 |  *	atapi_send_cdb - Write CDB bytes to hardware | 
 | 742 |  *	@ap: Port to which ATAPI device is attached. | 
 | 743 |  *	@qc: Taskfile currently active | 
 | 744 |  * | 
 | 745 |  *	When device has indicated its readiness to accept | 
 | 746 |  *	a CDB, this function is called.  Send the CDB. | 
 | 747 |  * | 
 | 748 |  *	LOCKING: | 
 | 749 |  *	caller. | 
 | 750 |  */ | 
 | 751 | static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) | 
 | 752 | { | 
 | 753 | 	/* send SCSI cdb */ | 
 | 754 | 	DPRINTK("send cdb\n"); | 
 | 755 | 	WARN_ON_ONCE(qc->dev->cdb_len < 12); | 
 | 756 |  | 
 | 757 | 	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1); | 
 | 758 | 	ata_sff_sync(ap); | 
 | 759 | 	/* FIXME: If the CDB is for DMA do we need to do the transition delay | 
 | 760 | 	   or is bmdma_start guaranteed to do it ? */ | 
 | 761 | 	switch (qc->tf.protocol) { | 
 | 762 | 	case ATAPI_PROT_PIO: | 
 | 763 | 		ap->hsm_task_state = HSM_ST; | 
 | 764 | 		break; | 
 | 765 | 	case ATAPI_PROT_NODATA: | 
 | 766 | 		ap->hsm_task_state = HSM_ST_LAST; | 
 | 767 | 		break; | 
 | 768 | #ifdef CONFIG_ATA_BMDMA | 
 | 769 | 	case ATAPI_PROT_DMA: | 
 | 770 | 		ap->hsm_task_state = HSM_ST_LAST; | 
 | 771 | 		/* initiate bmdma */ | 
 | 772 | 		ap->ops->bmdma_start(qc); | 
 | 773 | 		break; | 
 | 774 | #endif /* CONFIG_ATA_BMDMA */ | 
 | 775 | 	default: | 
 | 776 | 		BUG(); | 
 | 777 | 	} | 
 | 778 | } | 
 | 779 |  | 
 | 780 | /** | 
 | 781 |  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device. | 
 | 782 |  *	@qc: Command on going | 
 | 783 |  *	@bytes: number of bytes | 
 | 784 |  * | 
 | 785 |  *	Transfer Transfer data from/to the ATAPI device. | 
 | 786 |  * | 
 | 787 |  *	LOCKING: | 
 | 788 |  *	Inherited from caller. | 
 | 789 |  * | 
 | 790 |  */ | 
 | 791 | static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) | 
 | 792 | { | 
 | 793 | 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; | 
 | 794 | 	struct ata_port *ap = qc->ap; | 
 | 795 | 	struct ata_device *dev = qc->dev; | 
 | 796 | 	struct ata_eh_info *ehi = &dev->link->eh_info; | 
 | 797 | 	struct scatterlist *sg; | 
 | 798 | 	struct page *page; | 
 | 799 | 	unsigned char *buf; | 
 | 800 | 	unsigned int offset, count, consumed; | 
 | 801 |  | 
 | 802 | next_sg: | 
 | 803 | 	sg = qc->cursg; | 
 | 804 | 	if (unlikely(!sg)) { | 
 | 805 | 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data " | 
 | 806 | 				  "buf=%u cur=%u bytes=%u", | 
 | 807 | 				  qc->nbytes, qc->curbytes, bytes); | 
 | 808 | 		return -1; | 
 | 809 | 	} | 
 | 810 |  | 
 | 811 | 	page = sg_page(sg); | 
 | 812 | 	offset = sg->offset + qc->cursg_ofs; | 
 | 813 |  | 
 | 814 | 	/* get the current page and offset */ | 
 | 815 | 	page = nth_page(page, (offset >> PAGE_SHIFT)); | 
 | 816 | 	offset %= PAGE_SIZE; | 
 | 817 |  | 
 | 818 | 	/* don't overrun current sg */ | 
 | 819 | 	count = min(sg->length - qc->cursg_ofs, bytes); | 
 | 820 |  | 
 | 821 | 	/* don't cross page boundaries */ | 
 | 822 | 	count = min(count, (unsigned int)PAGE_SIZE - offset); | 
 | 823 |  | 
 | 824 | 	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); | 
 | 825 |  | 
 | 826 | 	/* do the actual data transfer */ | 
 | 827 | 	buf = kmap_atomic(page); | 
 | 828 | 	consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw); | 
 | 829 | 	kunmap_atomic(buf); | 
 | 830 |  | 
 | 831 | 	bytes -= min(bytes, consumed); | 
 | 832 | 	qc->curbytes += count; | 
 | 833 | 	qc->cursg_ofs += count; | 
 | 834 |  | 
 | 835 | 	if (qc->cursg_ofs == sg->length) { | 
 | 836 | 		qc->cursg = sg_next(qc->cursg); | 
 | 837 | 		qc->cursg_ofs = 0; | 
 | 838 | 	} | 
 | 839 |  | 
 | 840 | 	/* | 
 | 841 | 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed); | 
 | 842 | 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN | 
 | 843 | 	 * check correctly as it doesn't know if it is the last request being | 
 | 844 | 	 * made. Somebody should implement a proper sanity check. | 
 | 845 | 	 */ | 
 | 846 | 	if (bytes) | 
 | 847 | 		goto next_sg; | 
 | 848 | 	return 0; | 
 | 849 | } | 
 | 850 |  | 
 | 851 | /** | 
 | 852 |  *	atapi_pio_bytes - Transfer data from/to the ATAPI device. | 
 | 853 |  *	@qc: Command on going | 
 | 854 |  * | 
 | 855 |  *	Transfer Transfer data from/to the ATAPI device. | 
 | 856 |  * | 
 | 857 |  *	LOCKING: | 
 | 858 |  *	Inherited from caller. | 
 | 859 |  */ | 
 | 860 | static void atapi_pio_bytes(struct ata_queued_cmd *qc) | 
 | 861 | { | 
 | 862 | 	struct ata_port *ap = qc->ap; | 
 | 863 | 	struct ata_device *dev = qc->dev; | 
 | 864 | 	struct ata_eh_info *ehi = &dev->link->eh_info; | 
 | 865 | 	unsigned int ireason, bc_lo, bc_hi, bytes; | 
 | 866 | 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; | 
 | 867 |  | 
 | 868 | 	/* Abuse qc->result_tf for temp storage of intermediate TF | 
 | 869 | 	 * here to save some kernel stack usage. | 
 | 870 | 	 * For normal completion, qc->result_tf is not relevant. For | 
 | 871 | 	 * error, qc->result_tf is later overwritten by ata_qc_complete(). | 
 | 872 | 	 * So, the correctness of qc->result_tf is not affected. | 
 | 873 | 	 */ | 
 | 874 | 	ap->ops->sff_tf_read(ap, &qc->result_tf); | 
 | 875 | 	ireason = qc->result_tf.nsect; | 
 | 876 | 	bc_lo = qc->result_tf.lbam; | 
 | 877 | 	bc_hi = qc->result_tf.lbah; | 
 | 878 | 	bytes = (bc_hi << 8) | bc_lo; | 
 | 879 |  | 
 | 880 | 	/* shall be cleared to zero, indicating xfer of data */ | 
 | 881 | 	if (unlikely(ireason & ATAPI_COD)) | 
 | 882 | 		goto atapi_check; | 
 | 883 |  | 
 | 884 | 	/* make sure transfer direction matches expected */ | 
 | 885 | 	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; | 
 | 886 | 	if (unlikely(do_write != i_write)) | 
 | 887 | 		goto atapi_check; | 
 | 888 |  | 
 | 889 | 	if (unlikely(!bytes)) | 
 | 890 | 		goto atapi_check; | 
 | 891 |  | 
 | 892 | 	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); | 
 | 893 |  | 
 | 894 | 	if (unlikely(__atapi_pio_bytes(qc, bytes))) | 
 | 895 | 		goto err_out; | 
 | 896 | 	ata_sff_sync(ap); /* flush */ | 
 | 897 |  | 
 | 898 | 	return; | 
 | 899 |  | 
 | 900 |  atapi_check: | 
 | 901 | 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", | 
 | 902 | 			  ireason, bytes); | 
 | 903 |  err_out: | 
 | 904 | 	qc->err_mask |= AC_ERR_HSM; | 
 | 905 | 	ap->hsm_task_state = HSM_ST_ERR; | 
 | 906 | } | 
 | 907 |  | 
 | 908 | /** | 
 | 909 |  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. | 
 | 910 |  *	@ap: the target ata_port | 
 | 911 |  *	@qc: qc on going | 
 | 912 |  * | 
 | 913 |  *	RETURNS: | 
 | 914 |  *	1 if ok in workqueue, 0 otherwise. | 
 | 915 |  */ | 
 | 916 | static inline int ata_hsm_ok_in_wq(struct ata_port *ap, | 
 | 917 | 						struct ata_queued_cmd *qc) | 
 | 918 | { | 
 | 919 | 	if (qc->tf.flags & ATA_TFLAG_POLLING) | 
 | 920 | 		return 1; | 
 | 921 |  | 
 | 922 | 	if (ap->hsm_task_state == HSM_ST_FIRST) { | 
 | 923 | 		if (qc->tf.protocol == ATA_PROT_PIO && | 
 | 924 | 		   (qc->tf.flags & ATA_TFLAG_WRITE)) | 
 | 925 | 		    return 1; | 
 | 926 |  | 
 | 927 | 		if (ata_is_atapi(qc->tf.protocol) && | 
 | 928 | 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) | 
 | 929 | 			return 1; | 
 | 930 | 	} | 
 | 931 |  | 
 | 932 | 	return 0; | 
 | 933 | } | 
 | 934 |  | 
 | 935 | /** | 
 | 936 |  *	ata_hsm_qc_complete - finish a qc running on standard HSM | 
 | 937 |  *	@qc: Command to complete | 
 | 938 |  *	@in_wq: 1 if called from workqueue, 0 otherwise | 
 | 939 |  * | 
 | 940 |  *	Finish @qc which is running on standard HSM. | 
 | 941 |  * | 
 | 942 |  *	LOCKING: | 
 | 943 |  *	If @in_wq is zero, spin_lock_irqsave(host lock). | 
 | 944 |  *	Otherwise, none on entry and grabs host lock. | 
 | 945 |  */ | 
 | 946 | static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) | 
 | 947 | { | 
 | 948 | 	struct ata_port *ap = qc->ap; | 
 | 949 |  | 
 | 950 | 	if (ap->ops->error_handler) { | 
 | 951 | 		if (in_wq) { | 
 | 952 | 			/* EH might have kicked in while host lock is | 
 | 953 | 			 * released. | 
 | 954 | 			 */ | 
 | 955 | 			qc = ata_qc_from_tag(ap, qc->tag); | 
 | 956 | 			if (qc) { | 
 | 957 | 				if (likely(!(qc->err_mask & AC_ERR_HSM))) { | 
 | 958 | 					ata_sff_irq_on(ap); | 
 | 959 | 					ata_qc_complete(qc); | 
 | 960 | 				} else | 
 | 961 | 					ata_port_freeze(ap); | 
 | 962 | 			} | 
 | 963 | 		} else { | 
 | 964 | 			if (likely(!(qc->err_mask & AC_ERR_HSM))) | 
 | 965 | 				ata_qc_complete(qc); | 
 | 966 | 			else | 
 | 967 | 				ata_port_freeze(ap); | 
 | 968 | 		} | 
 | 969 | 	} else { | 
 | 970 | 		if (in_wq) { | 
 | 971 | 			ata_sff_irq_on(ap); | 
 | 972 | 			ata_qc_complete(qc); | 
 | 973 | 		} else | 
 | 974 | 			ata_qc_complete(qc); | 
 | 975 | 	} | 
 | 976 | } | 
 | 977 |  | 
 | 978 | /** | 
 | 979 |  *	ata_sff_hsm_move - move the HSM to the next state. | 
 | 980 |  *	@ap: the target ata_port | 
 | 981 |  *	@qc: qc on going | 
 | 982 |  *	@status: current device status | 
 | 983 |  *	@in_wq: 1 if called from workqueue, 0 otherwise | 
 | 984 |  * | 
 | 985 |  *	RETURNS: | 
 | 986 |  *	1 when poll next status needed, 0 otherwise. | 
 | 987 |  */ | 
 | 988 | int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, | 
 | 989 | 		     u8 status, int in_wq) | 
 | 990 | { | 
 | 991 | 	struct ata_link *link = qc->dev->link; | 
 | 992 | 	struct ata_eh_info *ehi = &link->eh_info; | 
 | 993 | 	int poll_next; | 
 | 994 |  | 
 | 995 | 	lockdep_assert_held(ap->lock); | 
 | 996 |  | 
 | 997 | 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); | 
 | 998 |  | 
 | 999 | 	/* Make sure ata_sff_qc_issue() does not throw things | 
 | 1000 | 	 * like DMA polling into the workqueue. Notice that | 
 | 1001 | 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). | 
 | 1002 | 	 */ | 
 | 1003 | 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); | 
 | 1004 |  | 
 | 1005 | fsm_start: | 
 | 1006 | 	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", | 
 | 1007 | 		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); | 
 | 1008 |  | 
 | 1009 | 	switch (ap->hsm_task_state) { | 
 | 1010 | 	case HSM_ST_FIRST: | 
 | 1011 | 		/* Send first data block or PACKET CDB */ | 
 | 1012 |  | 
 | 1013 | 		/* If polling, we will stay in the work queue after | 
 | 1014 | 		 * sending the data. Otherwise, interrupt handler | 
 | 1015 | 		 * takes over after sending the data. | 
 | 1016 | 		 */ | 
 | 1017 | 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); | 
 | 1018 |  | 
 | 1019 | 		/* check device status */ | 
 | 1020 | 		if (unlikely((status & ATA_DRQ) == 0)) { | 
 | 1021 | 			/* handle BSY=0, DRQ=0 as error */ | 
 | 1022 | 			if (likely(status & (ATA_ERR | ATA_DF))) | 
 | 1023 | 				/* device stops HSM for abort/error */ | 
 | 1024 | 				qc->err_mask |= AC_ERR_DEV; | 
 | 1025 | 			else { | 
 | 1026 | 				/* HSM violation. Let EH handle this */ | 
 | 1027 | 				ata_ehi_push_desc(ehi, | 
 | 1028 | 					"ST_FIRST: !(DRQ|ERR|DF)"); | 
 | 1029 | 				qc->err_mask |= AC_ERR_HSM; | 
 | 1030 | 			} | 
 | 1031 |  | 
 | 1032 | 			ap->hsm_task_state = HSM_ST_ERR; | 
 | 1033 | 			goto fsm_start; | 
 | 1034 | 		} | 
 | 1035 |  | 
 | 1036 | 		/* Device should not ask for data transfer (DRQ=1) | 
 | 1037 | 		 * when it finds something wrong. | 
 | 1038 | 		 * We ignore DRQ here and stop the HSM by | 
 | 1039 | 		 * changing hsm_task_state to HSM_ST_ERR and | 
 | 1040 | 		 * let the EH abort the command or reset the device. | 
 | 1041 | 		 */ | 
 | 1042 | 		if (unlikely(status & (ATA_ERR | ATA_DF))) { | 
 | 1043 | 			/* Some ATAPI tape drives forget to clear the ERR bit | 
 | 1044 | 			 * when doing the next command (mostly request sense). | 
 | 1045 | 			 * We ignore ERR here to workaround and proceed sending | 
 | 1046 | 			 * the CDB. | 
 | 1047 | 			 */ | 
 | 1048 | 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { | 
 | 1049 | 				ata_ehi_push_desc(ehi, "ST_FIRST: " | 
 | 1050 | 					"DRQ=1 with device error, " | 
 | 1051 | 					"dev_stat 0x%X", status); | 
 | 1052 | 				qc->err_mask |= AC_ERR_HSM; | 
 | 1053 | 				ap->hsm_task_state = HSM_ST_ERR; | 
 | 1054 | 				goto fsm_start; | 
 | 1055 | 			} | 
 | 1056 | 		} | 
 | 1057 |  | 
 | 1058 | 		if (qc->tf.protocol == ATA_PROT_PIO) { | 
 | 1059 | 			/* PIO data out protocol. | 
 | 1060 | 			 * send first data block. | 
 | 1061 | 			 */ | 
 | 1062 |  | 
 | 1063 | 			/* ata_pio_sectors() might change the state | 
 | 1064 | 			 * to HSM_ST_LAST. so, the state is changed here | 
 | 1065 | 			 * before ata_pio_sectors(). | 
 | 1066 | 			 */ | 
 | 1067 | 			ap->hsm_task_state = HSM_ST; | 
 | 1068 | 			ata_pio_sectors(qc); | 
 | 1069 | 		} else | 
 | 1070 | 			/* send CDB */ | 
 | 1071 | 			atapi_send_cdb(ap, qc); | 
 | 1072 |  | 
 | 1073 | 		/* if polling, ata_sff_pio_task() handles the rest. | 
 | 1074 | 		 * otherwise, interrupt handler takes over from here. | 
 | 1075 | 		 */ | 
 | 1076 | 		break; | 
 | 1077 |  | 
 | 1078 | 	case HSM_ST: | 
 | 1079 | 		/* complete command or read/write the data register */ | 
 | 1080 | 		if (qc->tf.protocol == ATAPI_PROT_PIO) { | 
 | 1081 | 			/* ATAPI PIO protocol */ | 
 | 1082 | 			if ((status & ATA_DRQ) == 0) { | 
 | 1083 | 				/* No more data to transfer or device error. | 
 | 1084 | 				 * Device error will be tagged in HSM_ST_LAST. | 
 | 1085 | 				 */ | 
 | 1086 | 				ap->hsm_task_state = HSM_ST_LAST; | 
 | 1087 | 				goto fsm_start; | 
 | 1088 | 			} | 
 | 1089 |  | 
 | 1090 | 			/* Device should not ask for data transfer (DRQ=1) | 
 | 1091 | 			 * when it finds something wrong. | 
 | 1092 | 			 * We ignore DRQ here and stop the HSM by | 
 | 1093 | 			 * changing hsm_task_state to HSM_ST_ERR and | 
 | 1094 | 			 * let the EH abort the command or reset the device. | 
 | 1095 | 			 */ | 
 | 1096 | 			if (unlikely(status & (ATA_ERR | ATA_DF))) { | 
 | 1097 | 				ata_ehi_push_desc(ehi, "ST-ATAPI: " | 
 | 1098 | 					"DRQ=1 with device error, " | 
 | 1099 | 					"dev_stat 0x%X", status); | 
 | 1100 | 				qc->err_mask |= AC_ERR_HSM; | 
 | 1101 | 				ap->hsm_task_state = HSM_ST_ERR; | 
 | 1102 | 				goto fsm_start; | 
 | 1103 | 			} | 
 | 1104 |  | 
 | 1105 | 			atapi_pio_bytes(qc); | 
 | 1106 |  | 
 | 1107 | 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) | 
 | 1108 | 				/* bad ireason reported by device */ | 
 | 1109 | 				goto fsm_start; | 
 | 1110 |  | 
 | 1111 | 		} else { | 
 | 1112 | 			/* ATA PIO protocol */ | 
 | 1113 | 			if (unlikely((status & ATA_DRQ) == 0)) { | 
 | 1114 | 				/* handle BSY=0, DRQ=0 as error */ | 
 | 1115 | 				if (likely(status & (ATA_ERR | ATA_DF))) { | 
 | 1116 | 					/* device stops HSM for abort/error */ | 
 | 1117 | 					qc->err_mask |= AC_ERR_DEV; | 
 | 1118 |  | 
 | 1119 | 					/* If diagnostic failed and this is | 
 | 1120 | 					 * IDENTIFY, it's likely a phantom | 
 | 1121 | 					 * device.  Mark hint. | 
 | 1122 | 					 */ | 
 | 1123 | 					if (qc->dev->horkage & | 
 | 1124 | 					    ATA_HORKAGE_DIAGNOSTIC) | 
 | 1125 | 						qc->err_mask |= | 
 | 1126 | 							AC_ERR_NODEV_HINT; | 
 | 1127 | 				} else { | 
 | 1128 | 					/* HSM violation. Let EH handle this. | 
 | 1129 | 					 * Phantom devices also trigger this | 
 | 1130 | 					 * condition.  Mark hint. | 
 | 1131 | 					 */ | 
 | 1132 | 					ata_ehi_push_desc(ehi, "ST-ATA: " | 
 | 1133 | 						"DRQ=0 without device error, " | 
 | 1134 | 						"dev_stat 0x%X", status); | 
 | 1135 | 					qc->err_mask |= AC_ERR_HSM | | 
 | 1136 | 							AC_ERR_NODEV_HINT; | 
 | 1137 | 				} | 
 | 1138 |  | 
 | 1139 | 				ap->hsm_task_state = HSM_ST_ERR; | 
 | 1140 | 				goto fsm_start; | 
 | 1141 | 			} | 
 | 1142 |  | 
 | 1143 | 			/* For PIO reads, some devices may ask for | 
 | 1144 | 			 * data transfer (DRQ=1) alone with ERR=1. | 
 | 1145 | 			 * We respect DRQ here and transfer one | 
 | 1146 | 			 * block of junk data before changing the | 
 | 1147 | 			 * hsm_task_state to HSM_ST_ERR. | 
 | 1148 | 			 * | 
 | 1149 | 			 * For PIO writes, ERR=1 DRQ=1 doesn't make | 
 | 1150 | 			 * sense since the data block has been | 
 | 1151 | 			 * transferred to the device. | 
 | 1152 | 			 */ | 
 | 1153 | 			if (unlikely(status & (ATA_ERR | ATA_DF))) { | 
 | 1154 | 				/* data might be corrputed */ | 
 | 1155 | 				qc->err_mask |= AC_ERR_DEV; | 
 | 1156 |  | 
 | 1157 | 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { | 
 | 1158 | 					ata_pio_sectors(qc); | 
 | 1159 | 					status = ata_wait_idle(ap); | 
 | 1160 | 				} | 
 | 1161 |  | 
 | 1162 | 				if (status & (ATA_BUSY | ATA_DRQ)) { | 
 | 1163 | 					ata_ehi_push_desc(ehi, "ST-ATA: " | 
 | 1164 | 						"BUSY|DRQ persists on ERR|DF, " | 
 | 1165 | 						"dev_stat 0x%X", status); | 
 | 1166 | 					qc->err_mask |= AC_ERR_HSM; | 
 | 1167 | 				} | 
 | 1168 |  | 
 | 1169 | 				/* There are oddball controllers with | 
 | 1170 | 				 * status register stuck at 0x7f and | 
 | 1171 | 				 * lbal/m/h at zero which makes it | 
 | 1172 | 				 * pass all other presence detection | 
 | 1173 | 				 * mechanisms we have.  Set NODEV_HINT | 
 | 1174 | 				 * for it.  Kernel bz#7241. | 
 | 1175 | 				 */ | 
 | 1176 | 				if (status == 0x7f) | 
 | 1177 | 					qc->err_mask |= AC_ERR_NODEV_HINT; | 
 | 1178 |  | 
 | 1179 | 				/* ata_pio_sectors() might change the | 
 | 1180 | 				 * state to HSM_ST_LAST. so, the state | 
 | 1181 | 				 * is changed after ata_pio_sectors(). | 
 | 1182 | 				 */ | 
 | 1183 | 				ap->hsm_task_state = HSM_ST_ERR; | 
 | 1184 | 				goto fsm_start; | 
 | 1185 | 			} | 
 | 1186 |  | 
 | 1187 | 			ata_pio_sectors(qc); | 
 | 1188 |  | 
 | 1189 | 			if (ap->hsm_task_state == HSM_ST_LAST && | 
 | 1190 | 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) { | 
 | 1191 | 				/* all data read */ | 
 | 1192 | 				status = ata_wait_idle(ap); | 
 | 1193 | 				goto fsm_start; | 
 | 1194 | 			} | 
 | 1195 | 		} | 
 | 1196 |  | 
 | 1197 | 		poll_next = 1; | 
 | 1198 | 		break; | 
 | 1199 |  | 
 | 1200 | 	case HSM_ST_LAST: | 
 | 1201 | 		if (unlikely(!ata_ok(status))) { | 
 | 1202 | 			qc->err_mask |= __ac_err_mask(status); | 
 | 1203 | 			ap->hsm_task_state = HSM_ST_ERR; | 
 | 1204 | 			goto fsm_start; | 
 | 1205 | 		} | 
 | 1206 |  | 
 | 1207 | 		/* no more data to transfer */ | 
 | 1208 | 		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", | 
 | 1209 | 			ap->print_id, qc->dev->devno, status); | 
 | 1210 |  | 
 | 1211 | 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); | 
 | 1212 |  | 
 | 1213 | 		ap->hsm_task_state = HSM_ST_IDLE; | 
 | 1214 |  | 
 | 1215 | 		/* complete taskfile transaction */ | 
 | 1216 | 		ata_hsm_qc_complete(qc, in_wq); | 
 | 1217 |  | 
 | 1218 | 		poll_next = 0; | 
 | 1219 | 		break; | 
 | 1220 |  | 
 | 1221 | 	case HSM_ST_ERR: | 
 | 1222 | 		ap->hsm_task_state = HSM_ST_IDLE; | 
 | 1223 |  | 
 | 1224 | 		/* complete taskfile transaction */ | 
 | 1225 | 		ata_hsm_qc_complete(qc, in_wq); | 
 | 1226 |  | 
 | 1227 | 		poll_next = 0; | 
 | 1228 | 		break; | 
 | 1229 | 	default: | 
 | 1230 | 		poll_next = 0; | 
 | 1231 | 		WARN(true, "ata%d: SFF host state machine in invalid state %d", | 
 | 1232 | 		     ap->print_id, ap->hsm_task_state); | 
 | 1233 | 	} | 
 | 1234 |  | 
 | 1235 | 	return poll_next; | 
 | 1236 | } | 
 | 1237 | EXPORT_SYMBOL_GPL(ata_sff_hsm_move); | 
 | 1238 |  | 
 | 1239 | void ata_sff_queue_work(struct work_struct *work) | 
 | 1240 | { | 
 | 1241 | 	queue_work(ata_sff_wq, work); | 
 | 1242 | } | 
 | 1243 | EXPORT_SYMBOL_GPL(ata_sff_queue_work); | 
 | 1244 |  | 
 | 1245 | void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) | 
 | 1246 | { | 
 | 1247 | 	queue_delayed_work(ata_sff_wq, dwork, delay); | 
 | 1248 | } | 
 | 1249 | EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); | 
 | 1250 |  | 
 | 1251 | void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) | 
 | 1252 | { | 
 | 1253 | 	struct ata_port *ap = link->ap; | 
 | 1254 |  | 
 | 1255 | 	WARN_ON((ap->sff_pio_task_link != NULL) && | 
 | 1256 | 		(ap->sff_pio_task_link != link)); | 
 | 1257 | 	ap->sff_pio_task_link = link; | 
 | 1258 |  | 
 | 1259 | 	/* may fail if ata_sff_flush_pio_task() in progress */ | 
 | 1260 | 	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); | 
 | 1261 | } | 
 | 1262 | EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); | 
 | 1263 |  | 
 | 1264 | void ata_sff_flush_pio_task(struct ata_port *ap) | 
 | 1265 | { | 
 | 1266 | 	DPRINTK("ENTER\n"); | 
 | 1267 |  | 
 | 1268 | 	cancel_delayed_work_sync(&ap->sff_pio_task); | 
 | 1269 |  | 
 | 1270 | 	/* | 
 | 1271 | 	 * We wanna reset the HSM state to IDLE.  If we do so without | 
 | 1272 | 	 * grabbing the port lock, critical sections protected by it which | 
 | 1273 | 	 * expect the HSM state to stay stable may get surprised.  For | 
 | 1274 | 	 * example, we may set IDLE in between the time | 
 | 1275 | 	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls | 
 | 1276 | 	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG(). | 
 | 1277 | 	 */ | 
 | 1278 | 	spin_lock_irq(ap->lock); | 
 | 1279 | 	ap->hsm_task_state = HSM_ST_IDLE; | 
 | 1280 | 	spin_unlock_irq(ap->lock); | 
 | 1281 |  | 
 | 1282 | 	ap->sff_pio_task_link = NULL; | 
 | 1283 |  | 
 | 1284 | 	if (ata_msg_ctl(ap)) | 
 | 1285 | 		ata_port_dbg(ap, "%s: EXIT\n", __func__); | 
 | 1286 | } | 
 | 1287 |  | 
 | 1288 | static void ata_sff_pio_task(struct work_struct *work) | 
 | 1289 | { | 
 | 1290 | 	struct ata_port *ap = | 
 | 1291 | 		container_of(work, struct ata_port, sff_pio_task.work); | 
 | 1292 | 	struct ata_link *link = ap->sff_pio_task_link; | 
 | 1293 | 	struct ata_queued_cmd *qc; | 
 | 1294 | 	u8 status; | 
 | 1295 | 	int poll_next; | 
 | 1296 |  | 
 | 1297 | 	spin_lock_irq(ap->lock); | 
 | 1298 |  | 
 | 1299 | 	BUG_ON(ap->sff_pio_task_link == NULL); | 
 | 1300 | 	/* qc can be NULL if timeout occurred */ | 
 | 1301 | 	qc = ata_qc_from_tag(ap, link->active_tag); | 
 | 1302 | 	if (!qc) { | 
 | 1303 | 		ap->sff_pio_task_link = NULL; | 
 | 1304 | 		goto out_unlock; | 
 | 1305 | 	} | 
 | 1306 |  | 
 | 1307 | fsm_start: | 
 | 1308 | 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); | 
 | 1309 |  | 
 | 1310 | 	/* | 
 | 1311 | 	 * This is purely heuristic.  This is a fast path. | 
 | 1312 | 	 * Sometimes when we enter, BSY will be cleared in | 
 | 1313 | 	 * a chk-status or two.  If not, the drive is probably seeking | 
 | 1314 | 	 * or something.  Snooze for a couple msecs, then | 
 | 1315 | 	 * chk-status again.  If still busy, queue delayed work. | 
 | 1316 | 	 */ | 
 | 1317 | 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5); | 
 | 1318 | 	if (status & ATA_BUSY) { | 
 | 1319 | 		spin_unlock_irq(ap->lock); | 
 | 1320 | 		ata_msleep(ap, 2); | 
 | 1321 | 		spin_lock_irq(ap->lock); | 
 | 1322 |  | 
 | 1323 | 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10); | 
 | 1324 | 		if (status & ATA_BUSY) { | 
 | 1325 | 			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); | 
 | 1326 | 			goto out_unlock; | 
 | 1327 | 		} | 
 | 1328 | 	} | 
 | 1329 |  | 
 | 1330 | 	/* | 
 | 1331 | 	 * hsm_move() may trigger another command to be processed. | 
 | 1332 | 	 * clean the link beforehand. | 
 | 1333 | 	 */ | 
 | 1334 | 	ap->sff_pio_task_link = NULL; | 
 | 1335 | 	/* move the HSM */ | 
 | 1336 | 	poll_next = ata_sff_hsm_move(ap, qc, status, 1); | 
 | 1337 |  | 
 | 1338 | 	/* another command or interrupt handler | 
 | 1339 | 	 * may be running at this point. | 
 | 1340 | 	 */ | 
 | 1341 | 	if (poll_next) | 
 | 1342 | 		goto fsm_start; | 
 | 1343 | out_unlock: | 
 | 1344 | 	spin_unlock_irq(ap->lock); | 
 | 1345 | } | 
 | 1346 |  | 
 | 1347 | /** | 
 | 1348 |  *	ata_sff_qc_issue - issue taskfile to a SFF controller | 
 | 1349 |  *	@qc: command to issue to device | 
 | 1350 |  * | 
 | 1351 |  *	This function issues a PIO or NODATA command to a SFF | 
 | 1352 |  *	controller. | 
 | 1353 |  * | 
 | 1354 |  *	LOCKING: | 
 | 1355 |  *	spin_lock_irqsave(host lock) | 
 | 1356 |  * | 
 | 1357 |  *	RETURNS: | 
 | 1358 |  *	Zero on success, AC_ERR_* mask on failure | 
 | 1359 |  */ | 
 | 1360 | unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) | 
 | 1361 | { | 
 | 1362 | 	struct ata_port *ap = qc->ap; | 
 | 1363 | 	struct ata_link *link = qc->dev->link; | 
 | 1364 |  | 
 | 1365 | 	/* Use polling pio if the LLD doesn't handle | 
 | 1366 | 	 * interrupt driven pio and atapi CDB interrupt. | 
 | 1367 | 	 */ | 
 | 1368 | 	if (ap->flags & ATA_FLAG_PIO_POLLING) | 
 | 1369 | 		qc->tf.flags |= ATA_TFLAG_POLLING; | 
 | 1370 |  | 
 | 1371 | 	/* select the device */ | 
 | 1372 | 	ata_dev_select(ap, qc->dev->devno, 1, 0); | 
 | 1373 |  | 
 | 1374 | 	/* start the command */ | 
 | 1375 | 	switch (qc->tf.protocol) { | 
 | 1376 | 	case ATA_PROT_NODATA: | 
 | 1377 | 		if (qc->tf.flags & ATA_TFLAG_POLLING) | 
 | 1378 | 			ata_qc_set_polling(qc); | 
 | 1379 |  | 
 | 1380 | 		ata_tf_to_host(ap, &qc->tf); | 
 | 1381 | 		ap->hsm_task_state = HSM_ST_LAST; | 
 | 1382 |  | 
 | 1383 | 		if (qc->tf.flags & ATA_TFLAG_POLLING) | 
 | 1384 | 			ata_sff_queue_pio_task(link, 0); | 
 | 1385 |  | 
 | 1386 | 		break; | 
 | 1387 |  | 
 | 1388 | 	case ATA_PROT_PIO: | 
 | 1389 | 		if (qc->tf.flags & ATA_TFLAG_POLLING) | 
 | 1390 | 			ata_qc_set_polling(qc); | 
 | 1391 |  | 
 | 1392 | 		ata_tf_to_host(ap, &qc->tf); | 
 | 1393 |  | 
 | 1394 | 		if (qc->tf.flags & ATA_TFLAG_WRITE) { | 
 | 1395 | 			/* PIO data out protocol */ | 
 | 1396 | 			ap->hsm_task_state = HSM_ST_FIRST; | 
 | 1397 | 			ata_sff_queue_pio_task(link, 0); | 
 | 1398 |  | 
 | 1399 | 			/* always send first data block using the | 
 | 1400 | 			 * ata_sff_pio_task() codepath. | 
 | 1401 | 			 */ | 
 | 1402 | 		} else { | 
 | 1403 | 			/* PIO data in protocol */ | 
 | 1404 | 			ap->hsm_task_state = HSM_ST; | 
 | 1405 |  | 
 | 1406 | 			if (qc->tf.flags & ATA_TFLAG_POLLING) | 
 | 1407 | 				ata_sff_queue_pio_task(link, 0); | 
 | 1408 |  | 
 | 1409 | 			/* if polling, ata_sff_pio_task() handles the | 
 | 1410 | 			 * rest.  otherwise, interrupt handler takes | 
 | 1411 | 			 * over from here. | 
 | 1412 | 			 */ | 
 | 1413 | 		} | 
 | 1414 |  | 
 | 1415 | 		break; | 
 | 1416 |  | 
 | 1417 | 	case ATAPI_PROT_PIO: | 
 | 1418 | 	case ATAPI_PROT_NODATA: | 
 | 1419 | 		if (qc->tf.flags & ATA_TFLAG_POLLING) | 
 | 1420 | 			ata_qc_set_polling(qc); | 
 | 1421 |  | 
 | 1422 | 		ata_tf_to_host(ap, &qc->tf); | 
 | 1423 |  | 
 | 1424 | 		ap->hsm_task_state = HSM_ST_FIRST; | 
 | 1425 |  | 
 | 1426 | 		/* send cdb by polling if no cdb interrupt */ | 
 | 1427 | 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || | 
 | 1428 | 		    (qc->tf.flags & ATA_TFLAG_POLLING)) | 
 | 1429 | 			ata_sff_queue_pio_task(link, 0); | 
 | 1430 | 		break; | 
 | 1431 |  | 
 | 1432 | 	default: | 
 | 1433 | 		return AC_ERR_SYSTEM; | 
 | 1434 | 	} | 
 | 1435 |  | 
 | 1436 | 	return 0; | 
 | 1437 | } | 
 | 1438 | EXPORT_SYMBOL_GPL(ata_sff_qc_issue); | 
 | 1439 |  | 
 | 1440 | /** | 
 | 1441 |  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read | 
 | 1442 |  *	@qc: qc to fill result TF for | 
 | 1443 |  * | 
 | 1444 |  *	@qc is finished and result TF needs to be filled.  Fill it | 
 | 1445 |  *	using ->sff_tf_read. | 
 | 1446 |  * | 
 | 1447 |  *	LOCKING: | 
 | 1448 |  *	spin_lock_irqsave(host lock) | 
 | 1449 |  * | 
 | 1450 |  *	RETURNS: | 
 | 1451 |  *	true indicating that result TF is successfully filled. | 
 | 1452 |  */ | 
 | 1453 | bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) | 
 | 1454 | { | 
 | 1455 | 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); | 
 | 1456 | 	return true; | 
 | 1457 | } | 
 | 1458 | EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); | 
 | 1459 |  | 
 | 1460 | static unsigned int ata_sff_idle_irq(struct ata_port *ap) | 
 | 1461 | { | 
 | 1462 | 	ap->stats.idle_irq++; | 
 | 1463 |  | 
 | 1464 | #ifdef ATA_IRQ_TRAP | 
 | 1465 | 	if ((ap->stats.idle_irq % 1000) == 0) { | 
 | 1466 | 		ap->ops->sff_check_status(ap); | 
 | 1467 | 		if (ap->ops->sff_irq_clear) | 
 | 1468 | 			ap->ops->sff_irq_clear(ap); | 
 | 1469 | 		ata_port_warn(ap, "irq trap\n"); | 
 | 1470 | 		return 1; | 
 | 1471 | 	} | 
 | 1472 | #endif | 
 | 1473 | 	return 0;	/* irq not handled */ | 
 | 1474 | } | 
 | 1475 |  | 
 | 1476 | static unsigned int __ata_sff_port_intr(struct ata_port *ap, | 
 | 1477 | 					struct ata_queued_cmd *qc, | 
 | 1478 | 					bool hsmv_on_idle) | 
 | 1479 | { | 
 | 1480 | 	u8 status; | 
 | 1481 |  | 
 | 1482 | 	VPRINTK("ata%u: protocol %d task_state %d\n", | 
 | 1483 | 		ap->print_id, qc->tf.protocol, ap->hsm_task_state); | 
 | 1484 |  | 
 | 1485 | 	/* Check whether we are expecting interrupt in this state */ | 
 | 1486 | 	switch (ap->hsm_task_state) { | 
 | 1487 | 	case HSM_ST_FIRST: | 
 | 1488 | 		/* Some pre-ATAPI-4 devices assert INTRQ | 
 | 1489 | 		 * at this state when ready to receive CDB. | 
 | 1490 | 		 */ | 
 | 1491 |  | 
 | 1492 | 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here. | 
 | 1493 | 		 * The flag was turned on only for atapi devices.  No | 
 | 1494 | 		 * need to check ata_is_atapi(qc->tf.protocol) again. | 
 | 1495 | 		 */ | 
 | 1496 | 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) | 
 | 1497 | 			return ata_sff_idle_irq(ap); | 
 | 1498 | 		break; | 
 | 1499 | 	case HSM_ST_IDLE: | 
 | 1500 | 		return ata_sff_idle_irq(ap); | 
 | 1501 | 	default: | 
 | 1502 | 		break; | 
 | 1503 | 	} | 
 | 1504 |  | 
 | 1505 | 	/* check main status, clearing INTRQ if needed */ | 
 | 1506 | 	status = ata_sff_irq_status(ap); | 
 | 1507 | 	if (status & ATA_BUSY) { | 
 | 1508 | 		if (hsmv_on_idle) { | 
 | 1509 | 			/* BMDMA engine is already stopped, we're screwed */ | 
 | 1510 | 			qc->err_mask |= AC_ERR_HSM; | 
 | 1511 | 			ap->hsm_task_state = HSM_ST_ERR; | 
 | 1512 | 		} else | 
 | 1513 | 			return ata_sff_idle_irq(ap); | 
 | 1514 | 	} | 
 | 1515 |  | 
 | 1516 | 	/* clear irq events */ | 
 | 1517 | 	if (ap->ops->sff_irq_clear) | 
 | 1518 | 		ap->ops->sff_irq_clear(ap); | 
 | 1519 |  | 
 | 1520 | 	ata_sff_hsm_move(ap, qc, status, 0); | 
 | 1521 |  | 
 | 1522 | 	return 1;	/* irq handled */ | 
 | 1523 | } | 
 | 1524 |  | 
 | 1525 | /** | 
 | 1526 |  *	ata_sff_port_intr - Handle SFF port interrupt | 
 | 1527 |  *	@ap: Port on which interrupt arrived (possibly...) | 
 | 1528 |  *	@qc: Taskfile currently active in engine | 
 | 1529 |  * | 
 | 1530 |  *	Handle port interrupt for given queued command. | 
 | 1531 |  * | 
 | 1532 |  *	LOCKING: | 
 | 1533 |  *	spin_lock_irqsave(host lock) | 
 | 1534 |  * | 
 | 1535 |  *	RETURNS: | 
 | 1536 |  *	One if interrupt was handled, zero if not (shared irq). | 
 | 1537 |  */ | 
 | 1538 | unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) | 
 | 1539 | { | 
 | 1540 | 	return __ata_sff_port_intr(ap, qc, false); | 
 | 1541 | } | 
 | 1542 | EXPORT_SYMBOL_GPL(ata_sff_port_intr); | 
 | 1543 |  | 
 | 1544 | static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, | 
 | 1545 | 	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) | 
 | 1546 | { | 
 | 1547 | 	struct ata_host *host = dev_instance; | 
 | 1548 | 	bool retried = false; | 
 | 1549 | 	unsigned int i; | 
 | 1550 | 	unsigned int handled, idle, polling; | 
 | 1551 | 	unsigned long flags; | 
 | 1552 |  | 
 | 1553 | 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ | 
 | 1554 | 	spin_lock_irqsave(&host->lock, flags); | 
 | 1555 |  | 
 | 1556 | retry: | 
 | 1557 | 	handled = idle = polling = 0; | 
 | 1558 | 	for (i = 0; i < host->n_ports; i++) { | 
 | 1559 | 		struct ata_port *ap = host->ports[i]; | 
 | 1560 | 		struct ata_queued_cmd *qc; | 
 | 1561 |  | 
 | 1562 | 		qc = ata_qc_from_tag(ap, ap->link.active_tag); | 
 | 1563 | 		if (qc) { | 
 | 1564 | 			if (!(qc->tf.flags & ATA_TFLAG_POLLING)) | 
 | 1565 | 				handled |= port_intr(ap, qc); | 
 | 1566 | 			else | 
 | 1567 | 				polling |= 1 << i; | 
 | 1568 | 		} else | 
 | 1569 | 			idle |= 1 << i; | 
 | 1570 | 	} | 
 | 1571 |  | 
 | 1572 | 	/* | 
 | 1573 | 	 * If no port was expecting IRQ but the controller is actually | 
 | 1574 | 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ | 
 | 1575 | 	 * pending status if available and clear spurious IRQ. | 
 | 1576 | 	 */ | 
 | 1577 | 	if (!handled && !retried) { | 
 | 1578 | 		bool retry = false; | 
 | 1579 |  | 
 | 1580 | 		for (i = 0; i < host->n_ports; i++) { | 
 | 1581 | 			struct ata_port *ap = host->ports[i]; | 
 | 1582 |  | 
 | 1583 | 			if (polling & (1 << i)) | 
 | 1584 | 				continue; | 
 | 1585 |  | 
 | 1586 | 			if (!ap->ops->sff_irq_check || | 
 | 1587 | 			    !ap->ops->sff_irq_check(ap)) | 
 | 1588 | 				continue; | 
 | 1589 |  | 
 | 1590 | 			if (idle & (1 << i)) { | 
 | 1591 | 				ap->ops->sff_check_status(ap); | 
 | 1592 | 				if (ap->ops->sff_irq_clear) | 
 | 1593 | 					ap->ops->sff_irq_clear(ap); | 
 | 1594 | 			} else { | 
 | 1595 | 				/* clear INTRQ and check if BUSY cleared */ | 
 | 1596 | 				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) | 
 | 1597 | 					retry |= true; | 
 | 1598 | 				/* | 
 | 1599 | 				 * With command in flight, we can't do | 
 | 1600 | 				 * sff_irq_clear() w/o racing with completion. | 
 | 1601 | 				 */ | 
 | 1602 | 			} | 
 | 1603 | 		} | 
 | 1604 |  | 
 | 1605 | 		if (retry) { | 
 | 1606 | 			retried = true; | 
 | 1607 | 			goto retry; | 
 | 1608 | 		} | 
 | 1609 | 	} | 
 | 1610 |  | 
 | 1611 | 	spin_unlock_irqrestore(&host->lock, flags); | 
 | 1612 |  | 
 | 1613 | 	return IRQ_RETVAL(handled); | 
 | 1614 | } | 
 | 1615 |  | 
 | 1616 | /** | 
 | 1617 |  *	ata_sff_interrupt - Default SFF ATA host interrupt handler | 
 | 1618 |  *	@irq: irq line (unused) | 
 | 1619 |  *	@dev_instance: pointer to our ata_host information structure | 
 | 1620 |  * | 
 | 1621 |  *	Default interrupt handler for PCI IDE devices.  Calls | 
 | 1622 |  *	ata_sff_port_intr() for each port that is not disabled. | 
 | 1623 |  * | 
 | 1624 |  *	LOCKING: | 
 | 1625 |  *	Obtains host lock during operation. | 
 | 1626 |  * | 
 | 1627 |  *	RETURNS: | 
 | 1628 |  *	IRQ_NONE or IRQ_HANDLED. | 
 | 1629 |  */ | 
 | 1630 | irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) | 
 | 1631 | { | 
 | 1632 | 	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); | 
 | 1633 | } | 
 | 1634 | EXPORT_SYMBOL_GPL(ata_sff_interrupt); | 
 | 1635 |  | 
 | 1636 | /** | 
 | 1637 |  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt | 
 | 1638 |  *	@ap: port that appears to have timed out | 
 | 1639 |  * | 
 | 1640 |  *	Called from the libata error handlers when the core code suspects | 
 | 1641 |  *	an interrupt has been lost. If it has complete anything we can and | 
 | 1642 |  *	then return. Interface must support altstatus for this faster | 
 | 1643 |  *	recovery to occur. | 
 | 1644 |  * | 
 | 1645 |  *	Locking: | 
 | 1646 |  *	Caller holds host lock | 
 | 1647 |  */ | 
 | 1648 |  | 
 | 1649 | void ata_sff_lost_interrupt(struct ata_port *ap) | 
 | 1650 | { | 
 | 1651 | 	u8 status; | 
 | 1652 | 	struct ata_queued_cmd *qc; | 
 | 1653 |  | 
 | 1654 | 	/* Only one outstanding command per SFF channel */ | 
 | 1655 | 	qc = ata_qc_from_tag(ap, ap->link.active_tag); | 
 | 1656 | 	/* We cannot lose an interrupt on a non-existent or polled command */ | 
 | 1657 | 	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) | 
 | 1658 | 		return; | 
 | 1659 | 	/* See if the controller thinks it is still busy - if so the command | 
 | 1660 | 	   isn't a lost IRQ but is still in progress */ | 
 | 1661 | 	status = ata_sff_altstatus(ap); | 
 | 1662 | 	if (status & ATA_BUSY) | 
 | 1663 | 		return; | 
 | 1664 |  | 
 | 1665 | 	/* There was a command running, we are no longer busy and we have | 
 | 1666 | 	   no interrupt. */ | 
 | 1667 | 	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", | 
 | 1668 | 								status); | 
 | 1669 | 	/* Run the host interrupt logic as if the interrupt had not been | 
 | 1670 | 	   lost */ | 
 | 1671 | 	ata_sff_port_intr(ap, qc); | 
 | 1672 | } | 
 | 1673 | EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); | 
 | 1674 |  | 
 | 1675 | /** | 
 | 1676 |  *	ata_sff_freeze - Freeze SFF controller port | 
 | 1677 |  *	@ap: port to freeze | 
 | 1678 |  * | 
 | 1679 |  *	Freeze SFF controller port. | 
 | 1680 |  * | 
 | 1681 |  *	LOCKING: | 
 | 1682 |  *	Inherited from caller. | 
 | 1683 |  */ | 
 | 1684 | void ata_sff_freeze(struct ata_port *ap) | 
 | 1685 | { | 
 | 1686 | 	ap->ctl |= ATA_NIEN; | 
 | 1687 | 	ap->last_ctl = ap->ctl; | 
 | 1688 |  | 
 | 1689 | 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) | 
 | 1690 | 		ata_sff_set_devctl(ap, ap->ctl); | 
 | 1691 |  | 
 | 1692 | 	/* Under certain circumstances, some controllers raise IRQ on | 
 | 1693 | 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask | 
 | 1694 | 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it. | 
 | 1695 | 	 */ | 
 | 1696 | 	ap->ops->sff_check_status(ap); | 
 | 1697 |  | 
 | 1698 | 	if (ap->ops->sff_irq_clear) | 
 | 1699 | 		ap->ops->sff_irq_clear(ap); | 
 | 1700 | } | 
 | 1701 | EXPORT_SYMBOL_GPL(ata_sff_freeze); | 
 | 1702 |  | 
 | 1703 | /** | 
 | 1704 |  *	ata_sff_thaw - Thaw SFF controller port | 
 | 1705 |  *	@ap: port to thaw | 
 | 1706 |  * | 
 | 1707 |  *	Thaw SFF controller port. | 
 | 1708 |  * | 
 | 1709 |  *	LOCKING: | 
 | 1710 |  *	Inherited from caller. | 
 | 1711 |  */ | 
 | 1712 | void ata_sff_thaw(struct ata_port *ap) | 
 | 1713 | { | 
 | 1714 | 	/* clear & re-enable interrupts */ | 
 | 1715 | 	ap->ops->sff_check_status(ap); | 
 | 1716 | 	if (ap->ops->sff_irq_clear) | 
 | 1717 | 		ap->ops->sff_irq_clear(ap); | 
 | 1718 | 	ata_sff_irq_on(ap); | 
 | 1719 | } | 
 | 1720 | EXPORT_SYMBOL_GPL(ata_sff_thaw); | 
 | 1721 |  | 
 | 1722 | /** | 
 | 1723 |  *	ata_sff_prereset - prepare SFF link for reset | 
 | 1724 |  *	@link: SFF link to be reset | 
 | 1725 |  *	@deadline: deadline jiffies for the operation | 
 | 1726 |  * | 
 | 1727 |  *	SFF link @link is about to be reset.  Initialize it.  It first | 
 | 1728 |  *	calls ata_std_prereset() and wait for !BSY if the port is | 
 | 1729 |  *	being softreset. | 
 | 1730 |  * | 
 | 1731 |  *	LOCKING: | 
 | 1732 |  *	Kernel thread context (may sleep) | 
 | 1733 |  * | 
 | 1734 |  *	RETURNS: | 
 | 1735 |  *	0 on success, -errno otherwise. | 
 | 1736 |  */ | 
 | 1737 | int ata_sff_prereset(struct ata_link *link, unsigned long deadline) | 
 | 1738 | { | 
 | 1739 | 	struct ata_eh_context *ehc = &link->eh_context; | 
 | 1740 | 	int rc; | 
 | 1741 |  | 
 | 1742 | 	rc = ata_std_prereset(link, deadline); | 
 | 1743 | 	if (rc) | 
 | 1744 | 		return rc; | 
 | 1745 |  | 
 | 1746 | 	/* if we're about to do hardreset, nothing more to do */ | 
 | 1747 | 	if (ehc->i.action & ATA_EH_HARDRESET) | 
 | 1748 | 		return 0; | 
 | 1749 |  | 
 | 1750 | 	/* wait for !BSY if we don't know that no device is attached */ | 
 | 1751 | 	if (!ata_link_offline(link)) { | 
 | 1752 | 		rc = ata_sff_wait_ready(link, deadline); | 
 | 1753 | 		if (rc && rc != -ENODEV) { | 
 | 1754 | 			ata_link_warn(link, | 
 | 1755 | 				      "device not ready (errno=%d), forcing hardreset\n", | 
 | 1756 | 				      rc); | 
 | 1757 | 			ehc->i.action |= ATA_EH_HARDRESET; | 
 | 1758 | 		} | 
 | 1759 | 	} | 
 | 1760 |  | 
 | 1761 | 	return 0; | 
 | 1762 | } | 
 | 1763 | EXPORT_SYMBOL_GPL(ata_sff_prereset); | 
 | 1764 |  | 
 | 1765 | /** | 
 | 1766 |  *	ata_devchk - PATA device presence detection | 
 | 1767 |  *	@ap: ATA channel to examine | 
 | 1768 |  *	@device: Device to examine (starting at zero) | 
 | 1769 |  * | 
 | 1770 |  *	This technique was originally described in | 
 | 1771 |  *	Hale Landis's ATADRVR (www.ata-atapi.com), and | 
 | 1772 |  *	later found its way into the ATA/ATAPI spec. | 
 | 1773 |  * | 
 | 1774 |  *	Write a pattern to the ATA shadow registers, | 
 | 1775 |  *	and if a device is present, it will respond by | 
 | 1776 |  *	correctly storing and echoing back the | 
 | 1777 |  *	ATA shadow register contents. | 
 | 1778 |  * | 
 | 1779 |  *	LOCKING: | 
 | 1780 |  *	caller. | 
 | 1781 |  */ | 
 | 1782 | static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) | 
 | 1783 | { | 
 | 1784 | 	struct ata_ioports *ioaddr = &ap->ioaddr; | 
 | 1785 | 	u8 nsect, lbal; | 
 | 1786 |  | 
 | 1787 | 	ap->ops->sff_dev_select(ap, device); | 
 | 1788 |  | 
 | 1789 | 	iowrite8(0x55, ioaddr->nsect_addr); | 
 | 1790 | 	iowrite8(0xaa, ioaddr->lbal_addr); | 
 | 1791 |  | 
 | 1792 | 	iowrite8(0xaa, ioaddr->nsect_addr); | 
 | 1793 | 	iowrite8(0x55, ioaddr->lbal_addr); | 
 | 1794 |  | 
 | 1795 | 	iowrite8(0x55, ioaddr->nsect_addr); | 
 | 1796 | 	iowrite8(0xaa, ioaddr->lbal_addr); | 
 | 1797 |  | 
 | 1798 | 	nsect = ioread8(ioaddr->nsect_addr); | 
 | 1799 | 	lbal = ioread8(ioaddr->lbal_addr); | 
 | 1800 |  | 
 | 1801 | 	if ((nsect == 0x55) && (lbal == 0xaa)) | 
 | 1802 | 		return 1;	/* we found a device */ | 
 | 1803 |  | 
 | 1804 | 	return 0;		/* nothing found */ | 
 | 1805 | } | 
 | 1806 |  | 
 | 1807 | /** | 
 | 1808 |  *	ata_sff_dev_classify - Parse returned ATA device signature | 
 | 1809 |  *	@dev: ATA device to classify (starting at zero) | 
 | 1810 |  *	@present: device seems present | 
 | 1811 |  *	@r_err: Value of error register on completion | 
 | 1812 |  * | 
 | 1813 |  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, | 
 | 1814 |  *	an ATA/ATAPI-defined set of values is placed in the ATA | 
 | 1815 |  *	shadow registers, indicating the results of device detection | 
 | 1816 |  *	and diagnostics. | 
 | 1817 |  * | 
 | 1818 |  *	Select the ATA device, and read the values from the ATA shadow | 
 | 1819 |  *	registers.  Then parse according to the Error register value, | 
 | 1820 |  *	and the spec-defined values examined by ata_dev_classify(). | 
 | 1821 |  * | 
 | 1822 |  *	LOCKING: | 
 | 1823 |  *	caller. | 
 | 1824 |  * | 
 | 1825 |  *	RETURNS: | 
 | 1826 |  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. | 
 | 1827 |  */ | 
 | 1828 | unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, | 
 | 1829 | 				  u8 *r_err) | 
 | 1830 | { | 
 | 1831 | 	struct ata_port *ap = dev->link->ap; | 
 | 1832 | 	struct ata_taskfile tf; | 
 | 1833 | 	unsigned int class; | 
 | 1834 | 	u8 err; | 
 | 1835 |  | 
 | 1836 | 	ap->ops->sff_dev_select(ap, dev->devno); | 
 | 1837 |  | 
 | 1838 | 	memset(&tf, 0, sizeof(tf)); | 
 | 1839 |  | 
 | 1840 | 	ap->ops->sff_tf_read(ap, &tf); | 
 | 1841 | 	err = tf.feature; | 
 | 1842 | 	if (r_err) | 
 | 1843 | 		*r_err = err; | 
 | 1844 |  | 
 | 1845 | 	/* see if device passed diags: continue and warn later */ | 
 | 1846 | 	if (err == 0) | 
 | 1847 | 		/* diagnostic fail : do nothing _YET_ */ | 
 | 1848 | 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; | 
 | 1849 | 	else if (err == 1) | 
 | 1850 | 		/* do nothing */ ; | 
 | 1851 | 	else if ((dev->devno == 0) && (err == 0x81)) | 
 | 1852 | 		/* do nothing */ ; | 
 | 1853 | 	else | 
 | 1854 | 		return ATA_DEV_NONE; | 
 | 1855 |  | 
 | 1856 | 	/* determine if device is ATA or ATAPI */ | 
 | 1857 | 	class = ata_dev_classify(&tf); | 
 | 1858 |  | 
 | 1859 | 	if (class == ATA_DEV_UNKNOWN) { | 
 | 1860 | 		/* If the device failed diagnostic, it's likely to | 
 | 1861 | 		 * have reported incorrect device signature too. | 
 | 1862 | 		 * Assume ATA device if the device seems present but | 
 | 1863 | 		 * device signature is invalid with diagnostic | 
 | 1864 | 		 * failure. | 
 | 1865 | 		 */ | 
 | 1866 | 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) | 
 | 1867 | 			class = ATA_DEV_ATA; | 
 | 1868 | 		else | 
 | 1869 | 			class = ATA_DEV_NONE; | 
 | 1870 | 	} else if ((class == ATA_DEV_ATA) && | 
 | 1871 | 		   (ap->ops->sff_check_status(ap) == 0)) | 
 | 1872 | 		class = ATA_DEV_NONE; | 
 | 1873 |  | 
 | 1874 | 	return class; | 
 | 1875 | } | 
 | 1876 | EXPORT_SYMBOL_GPL(ata_sff_dev_classify); | 
 | 1877 |  | 
 | 1878 | /** | 
 | 1879 |  *	ata_sff_wait_after_reset - wait for devices to become ready after reset | 
 | 1880 |  *	@link: SFF link which is just reset | 
 | 1881 |  *	@devmask: mask of present devices | 
 | 1882 |  *	@deadline: deadline jiffies for the operation | 
 | 1883 |  * | 
 | 1884 |  *	Wait devices attached to SFF @link to become ready after | 
 | 1885 |  *	reset.  It contains preceding 150ms wait to avoid accessing TF | 
 | 1886 |  *	status register too early. | 
 | 1887 |  * | 
 | 1888 |  *	LOCKING: | 
 | 1889 |  *	Kernel thread context (may sleep). | 
 | 1890 |  * | 
 | 1891 |  *	RETURNS: | 
 | 1892 |  *	0 on success, -ENODEV if some or all of devices in @devmask | 
 | 1893 |  *	don't seem to exist.  -errno on other errors. | 
 | 1894 |  */ | 
 | 1895 | int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, | 
 | 1896 | 			     unsigned long deadline) | 
 | 1897 | { | 
 | 1898 | 	struct ata_port *ap = link->ap; | 
 | 1899 | 	struct ata_ioports *ioaddr = &ap->ioaddr; | 
 | 1900 | 	unsigned int dev0 = devmask & (1 << 0); | 
 | 1901 | 	unsigned int dev1 = devmask & (1 << 1); | 
 | 1902 | 	int rc, ret = 0; | 
 | 1903 |  | 
 | 1904 | 	ata_msleep(ap, ATA_WAIT_AFTER_RESET); | 
 | 1905 |  | 
 | 1906 | 	/* always check readiness of the master device */ | 
 | 1907 | 	rc = ata_sff_wait_ready(link, deadline); | 
 | 1908 | 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor | 
 | 1909 | 	 * and TF status is 0xff, bail out on it too. | 
 | 1910 | 	 */ | 
 | 1911 | 	if (rc) | 
 | 1912 | 		return rc; | 
 | 1913 |  | 
 | 1914 | 	/* if device 1 was found in ata_devchk, wait for register | 
 | 1915 | 	 * access briefly, then wait for BSY to clear. | 
 | 1916 | 	 */ | 
 | 1917 | 	if (dev1) { | 
 | 1918 | 		int i; | 
 | 1919 |  | 
 | 1920 | 		ap->ops->sff_dev_select(ap, 1); | 
 | 1921 |  | 
 | 1922 | 		/* Wait for register access.  Some ATAPI devices fail | 
 | 1923 | 		 * to set nsect/lbal after reset, so don't waste too | 
 | 1924 | 		 * much time on it.  We're gonna wait for !BSY anyway. | 
 | 1925 | 		 */ | 
 | 1926 | 		for (i = 0; i < 2; i++) { | 
 | 1927 | 			u8 nsect, lbal; | 
 | 1928 |  | 
 | 1929 | 			nsect = ioread8(ioaddr->nsect_addr); | 
 | 1930 | 			lbal = ioread8(ioaddr->lbal_addr); | 
 | 1931 | 			if ((nsect == 1) && (lbal == 1)) | 
 | 1932 | 				break; | 
 | 1933 | 			ata_msleep(ap, 50);	/* give drive a breather */ | 
 | 1934 | 		} | 
 | 1935 |  | 
 | 1936 | 		rc = ata_sff_wait_ready(link, deadline); | 
 | 1937 | 		if (rc) { | 
 | 1938 | 			if (rc != -ENODEV) | 
 | 1939 | 				return rc; | 
 | 1940 | 			ret = rc; | 
 | 1941 | 		} | 
 | 1942 | 	} | 
 | 1943 |  | 
 | 1944 | 	/* is all this really necessary? */ | 
 | 1945 | 	ap->ops->sff_dev_select(ap, 0); | 
 | 1946 | 	if (dev1) | 
 | 1947 | 		ap->ops->sff_dev_select(ap, 1); | 
 | 1948 | 	if (dev0) | 
 | 1949 | 		ap->ops->sff_dev_select(ap, 0); | 
 | 1950 |  | 
 | 1951 | 	return ret; | 
 | 1952 | } | 
 | 1953 | EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); | 
 | 1954 |  | 
 | 1955 | static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, | 
 | 1956 | 			     unsigned long deadline) | 
 | 1957 | { | 
 | 1958 | 	struct ata_ioports *ioaddr = &ap->ioaddr; | 
 | 1959 |  | 
 | 1960 | 	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); | 
 | 1961 |  | 
 | 1962 | 	if (ap->ioaddr.ctl_addr) { | 
 | 1963 | 		/* software reset.  causes dev0 to be selected */ | 
 | 1964 | 		iowrite8(ap->ctl, ioaddr->ctl_addr); | 
 | 1965 | 		udelay(20);	/* FIXME: flush */ | 
 | 1966 | 		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); | 
 | 1967 | 		udelay(20);	/* FIXME: flush */ | 
 | 1968 | 		iowrite8(ap->ctl, ioaddr->ctl_addr); | 
 | 1969 | 		ap->last_ctl = ap->ctl; | 
 | 1970 | 	} | 
 | 1971 |  | 
 | 1972 | 	/* wait the port to become ready */ | 
 | 1973 | 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline); | 
 | 1974 | } | 
 | 1975 |  | 
 | 1976 | /** | 
 | 1977 |  *	ata_sff_softreset - reset host port via ATA SRST | 
 | 1978 |  *	@link: ATA link to reset | 
 | 1979 |  *	@classes: resulting classes of attached devices | 
 | 1980 |  *	@deadline: deadline jiffies for the operation | 
 | 1981 |  * | 
 | 1982 |  *	Reset host port using ATA SRST. | 
 | 1983 |  * | 
 | 1984 |  *	LOCKING: | 
 | 1985 |  *	Kernel thread context (may sleep) | 
 | 1986 |  * | 
 | 1987 |  *	RETURNS: | 
 | 1988 |  *	0 on success, -errno otherwise. | 
 | 1989 |  */ | 
 | 1990 | int ata_sff_softreset(struct ata_link *link, unsigned int *classes, | 
 | 1991 | 		      unsigned long deadline) | 
 | 1992 | { | 
 | 1993 | 	struct ata_port *ap = link->ap; | 
 | 1994 | 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; | 
 | 1995 | 	unsigned int devmask = 0; | 
 | 1996 | 	int rc; | 
 | 1997 | 	u8 err; | 
 | 1998 |  | 
 | 1999 | 	DPRINTK("ENTER\n"); | 
 | 2000 |  | 
 | 2001 | 	/* determine if device 0/1 are present */ | 
 | 2002 | 	if (ata_devchk(ap, 0)) | 
 | 2003 | 		devmask |= (1 << 0); | 
 | 2004 | 	if (slave_possible && ata_devchk(ap, 1)) | 
 | 2005 | 		devmask |= (1 << 1); | 
 | 2006 |  | 
 | 2007 | 	/* select device 0 again */ | 
 | 2008 | 	ap->ops->sff_dev_select(ap, 0); | 
 | 2009 |  | 
 | 2010 | 	/* issue bus reset */ | 
 | 2011 | 	DPRINTK("about to softreset, devmask=%x\n", devmask); | 
 | 2012 | 	rc = ata_bus_softreset(ap, devmask, deadline); | 
 | 2013 | 	/* if link is occupied, -ENODEV too is an error */ | 
 | 2014 | 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) { | 
 | 2015 | 		ata_link_err(link, "SRST failed (errno=%d)\n", rc); | 
 | 2016 | 		return rc; | 
 | 2017 | 	} | 
 | 2018 |  | 
 | 2019 | 	/* determine by signature whether we have ATA or ATAPI devices */ | 
 | 2020 | 	classes[0] = ata_sff_dev_classify(&link->device[0], | 
 | 2021 | 					  devmask & (1 << 0), &err); | 
 | 2022 | 	if (slave_possible && err != 0x81) | 
 | 2023 | 		classes[1] = ata_sff_dev_classify(&link->device[1], | 
 | 2024 | 						  devmask & (1 << 1), &err); | 
 | 2025 |  | 
 | 2026 | 	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); | 
 | 2027 | 	return 0; | 
 | 2028 | } | 
 | 2029 | EXPORT_SYMBOL_GPL(ata_sff_softreset); | 
 | 2030 |  | 
 | 2031 | /** | 
 | 2032 |  *	sata_sff_hardreset - reset host port via SATA phy reset | 
 | 2033 |  *	@link: link to reset | 
 | 2034 |  *	@class: resulting class of attached device | 
 | 2035 |  *	@deadline: deadline jiffies for the operation | 
 | 2036 |  * | 
 | 2037 |  *	SATA phy-reset host port using DET bits of SControl register, | 
 | 2038 |  *	wait for !BSY and classify the attached device. | 
 | 2039 |  * | 
 | 2040 |  *	LOCKING: | 
 | 2041 |  *	Kernel thread context (may sleep) | 
 | 2042 |  * | 
 | 2043 |  *	RETURNS: | 
 | 2044 |  *	0 on success, -errno otherwise. | 
 | 2045 |  */ | 
 | 2046 | int sata_sff_hardreset(struct ata_link *link, unsigned int *class, | 
 | 2047 | 		       unsigned long deadline) | 
 | 2048 | { | 
 | 2049 | 	struct ata_eh_context *ehc = &link->eh_context; | 
 | 2050 | 	const unsigned long *timing = sata_ehc_deb_timing(ehc); | 
 | 2051 | 	bool online; | 
 | 2052 | 	int rc; | 
 | 2053 |  | 
 | 2054 | 	rc = sata_link_hardreset(link, timing, deadline, &online, | 
 | 2055 | 				 ata_sff_check_ready); | 
 | 2056 | 	if (online) | 
 | 2057 | 		*class = ata_sff_dev_classify(link->device, 1, NULL); | 
 | 2058 |  | 
 | 2059 | 	DPRINTK("EXIT, class=%u\n", *class); | 
 | 2060 | 	return rc; | 
 | 2061 | } | 
 | 2062 | EXPORT_SYMBOL_GPL(sata_sff_hardreset); | 
 | 2063 |  | 
 | 2064 | /** | 
 | 2065 |  *	ata_sff_postreset - SFF postreset callback | 
 | 2066 |  *	@link: the target SFF ata_link | 
 | 2067 |  *	@classes: classes of attached devices | 
 | 2068 |  * | 
 | 2069 |  *	This function is invoked after a successful reset.  It first | 
 | 2070 |  *	calls ata_std_postreset() and performs SFF specific postreset | 
 | 2071 |  *	processing. | 
 | 2072 |  * | 
 | 2073 |  *	LOCKING: | 
 | 2074 |  *	Kernel thread context (may sleep) | 
 | 2075 |  */ | 
 | 2076 | void ata_sff_postreset(struct ata_link *link, unsigned int *classes) | 
 | 2077 | { | 
 | 2078 | 	struct ata_port *ap = link->ap; | 
 | 2079 |  | 
 | 2080 | 	ata_std_postreset(link, classes); | 
 | 2081 |  | 
 | 2082 | 	/* is double-select really necessary? */ | 
 | 2083 | 	if (classes[0] != ATA_DEV_NONE) | 
 | 2084 | 		ap->ops->sff_dev_select(ap, 1); | 
 | 2085 | 	if (classes[1] != ATA_DEV_NONE) | 
 | 2086 | 		ap->ops->sff_dev_select(ap, 0); | 
 | 2087 |  | 
 | 2088 | 	/* bail out if no device is present */ | 
 | 2089 | 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { | 
 | 2090 | 		DPRINTK("EXIT, no device\n"); | 
 | 2091 | 		return; | 
 | 2092 | 	} | 
 | 2093 |  | 
 | 2094 | 	/* set up device control */ | 
 | 2095 | 	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) { | 
 | 2096 | 		ata_sff_set_devctl(ap, ap->ctl); | 
 | 2097 | 		ap->last_ctl = ap->ctl; | 
 | 2098 | 	} | 
 | 2099 | } | 
 | 2100 | EXPORT_SYMBOL_GPL(ata_sff_postreset); | 
 | 2101 |  | 
 | 2102 | /** | 
 | 2103 |  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers | 
 | 2104 |  *	@qc: command | 
 | 2105 |  * | 
 | 2106 |  *	Drain the FIFO and device of any stuck data following a command | 
 | 2107 |  *	failing to complete. In some cases this is necessary before a | 
 | 2108 |  *	reset will recover the device. | 
 | 2109 |  * | 
 | 2110 |  */ | 
 | 2111 |  | 
 | 2112 | void ata_sff_drain_fifo(struct ata_queued_cmd *qc) | 
 | 2113 | { | 
 | 2114 | 	int count; | 
 | 2115 | 	struct ata_port *ap; | 
 | 2116 |  | 
 | 2117 | 	/* We only need to flush incoming data when a command was running */ | 
 | 2118 | 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) | 
 | 2119 | 		return; | 
 | 2120 |  | 
 | 2121 | 	ap = qc->ap; | 
 | 2122 | 	/* Drain up to 64K of data before we give up this recovery method */ | 
 | 2123 | 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) | 
 | 2124 | 						&& count < 65536; count += 2) | 
 | 2125 | 		ioread16(ap->ioaddr.data_addr); | 
 | 2126 |  | 
 | 2127 | 	/* Can become DEBUG later */ | 
 | 2128 | 	if (count) | 
 | 2129 | 		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); | 
 | 2130 |  | 
 | 2131 | } | 
 | 2132 | EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); | 
 | 2133 |  | 
 | 2134 | /** | 
 | 2135 |  *	ata_sff_error_handler - Stock error handler for SFF controller | 
 | 2136 |  *	@ap: port to handle error for | 
 | 2137 |  * | 
 | 2138 |  *	Stock error handler for SFF controller.  It can handle both | 
 | 2139 |  *	PATA and SATA controllers.  Many controllers should be able to | 
 | 2140 |  *	use this EH as-is or with some added handling before and | 
 | 2141 |  *	after. | 
 | 2142 |  * | 
 | 2143 |  *	LOCKING: | 
 | 2144 |  *	Kernel thread context (may sleep) | 
 | 2145 |  */ | 
 | 2146 | void ata_sff_error_handler(struct ata_port *ap) | 
 | 2147 | { | 
 | 2148 | 	ata_reset_fn_t softreset = ap->ops->softreset; | 
 | 2149 | 	ata_reset_fn_t hardreset = ap->ops->hardreset; | 
 | 2150 | 	struct ata_queued_cmd *qc; | 
 | 2151 | 	unsigned long flags; | 
 | 2152 |  | 
 | 2153 | 	qc = __ata_qc_from_tag(ap, ap->link.active_tag); | 
 | 2154 | 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) | 
 | 2155 | 		qc = NULL; | 
 | 2156 |  | 
 | 2157 | 	spin_lock_irqsave(ap->lock, flags); | 
 | 2158 |  | 
 | 2159 | 	/* | 
 | 2160 | 	 * We *MUST* do FIFO draining before we issue a reset as | 
 | 2161 | 	 * several devices helpfully clear their internal state and | 
 | 2162 | 	 * will lock solid if we touch the data port post reset. Pass | 
 | 2163 | 	 * qc in case anyone wants to do different PIO/DMA recovery or | 
 | 2164 | 	 * has per command fixups | 
 | 2165 | 	 */ | 
 | 2166 | 	if (ap->ops->sff_drain_fifo) | 
 | 2167 | 		ap->ops->sff_drain_fifo(qc); | 
 | 2168 |  | 
 | 2169 | 	spin_unlock_irqrestore(ap->lock, flags); | 
 | 2170 |  | 
 | 2171 | 	/* ignore built-in hardresets if SCR access is not available */ | 
 | 2172 | 	if ((hardreset == sata_std_hardreset || | 
 | 2173 | 	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) | 
 | 2174 | 		hardreset = NULL; | 
 | 2175 |  | 
 | 2176 | 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, | 
 | 2177 | 		  ap->ops->postreset); | 
 | 2178 | } | 
 | 2179 | EXPORT_SYMBOL_GPL(ata_sff_error_handler); | 
 | 2180 |  | 
 | 2181 | /** | 
 | 2182 |  *	ata_sff_std_ports - initialize ioaddr with standard port offsets. | 
 | 2183 |  *	@ioaddr: IO address structure to be initialized | 
 | 2184 |  * | 
 | 2185 |  *	Utility function which initializes data_addr, error_addr, | 
 | 2186 |  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, | 
 | 2187 |  *	device_addr, status_addr, and command_addr to standard offsets | 
 | 2188 |  *	relative to cmd_addr. | 
 | 2189 |  * | 
 | 2190 |  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. | 
 | 2191 |  */ | 
 | 2192 | void ata_sff_std_ports(struct ata_ioports *ioaddr) | 
 | 2193 | { | 
 | 2194 | 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; | 
 | 2195 | 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; | 
 | 2196 | 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; | 
 | 2197 | 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; | 
 | 2198 | 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; | 
 | 2199 | 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; | 
 | 2200 | 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; | 
 | 2201 | 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; | 
 | 2202 | 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; | 
 | 2203 | 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; | 
 | 2204 | } | 
 | 2205 | EXPORT_SYMBOL_GPL(ata_sff_std_ports); | 
 | 2206 |  | 
 | 2207 | #ifdef CONFIG_PCI | 
 | 2208 |  | 
 | 2209 | static int ata_resources_present(struct pci_dev *pdev, int port) | 
 | 2210 | { | 
 | 2211 | 	int i; | 
 | 2212 |  | 
 | 2213 | 	/* Check the PCI resources for this channel are enabled */ | 
 | 2214 | 	port = port * 2; | 
 | 2215 | 	for (i = 0; i < 2; i++) { | 
 | 2216 | 		if (pci_resource_start(pdev, port + i) == 0 || | 
 | 2217 | 		    pci_resource_len(pdev, port + i) == 0) | 
 | 2218 | 			return 0; | 
 | 2219 | 	} | 
 | 2220 | 	return 1; | 
 | 2221 | } | 
 | 2222 |  | 
 | 2223 | /** | 
 | 2224 |  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host | 
 | 2225 |  *	@host: target ATA host | 
 | 2226 |  * | 
 | 2227 |  *	Acquire native PCI ATA resources for @host and initialize the | 
 | 2228 |  *	first two ports of @host accordingly.  Ports marked dummy are | 
 | 2229 |  *	skipped and allocation failure makes the port dummy. | 
 | 2230 |  * | 
 | 2231 |  *	Note that native PCI resources are valid even for legacy hosts | 
 | 2232 |  *	as we fix up pdev resources array early in boot, so this | 
 | 2233 |  *	function can be used for both native and legacy SFF hosts. | 
 | 2234 |  * | 
 | 2235 |  *	LOCKING: | 
 | 2236 |  *	Inherited from calling layer (may sleep). | 
 | 2237 |  * | 
 | 2238 |  *	RETURNS: | 
 | 2239 |  *	0 if at least one port is initialized, -ENODEV if no port is | 
 | 2240 |  *	available. | 
 | 2241 |  */ | 
 | 2242 | int ata_pci_sff_init_host(struct ata_host *host) | 
 | 2243 | { | 
 | 2244 | 	struct device *gdev = host->dev; | 
 | 2245 | 	struct pci_dev *pdev = to_pci_dev(gdev); | 
 | 2246 | 	unsigned int mask = 0; | 
 | 2247 | 	int i, rc; | 
 | 2248 |  | 
 | 2249 | 	/* request, iomap BARs and init port addresses accordingly */ | 
 | 2250 | 	for (i = 0; i < 2; i++) { | 
 | 2251 | 		struct ata_port *ap = host->ports[i]; | 
 | 2252 | 		int base = i * 2; | 
 | 2253 | 		void __iomem * const *iomap; | 
 | 2254 |  | 
 | 2255 | 		if (ata_port_is_dummy(ap)) | 
 | 2256 | 			continue; | 
 | 2257 |  | 
 | 2258 | 		/* Discard disabled ports.  Some controllers show | 
 | 2259 | 		 * their unused channels this way.  Disabled ports are | 
 | 2260 | 		 * made dummy. | 
 | 2261 | 		 */ | 
 | 2262 | 		if (!ata_resources_present(pdev, i)) { | 
 | 2263 | 			ap->ops = &ata_dummy_port_ops; | 
 | 2264 | 			continue; | 
 | 2265 | 		} | 
 | 2266 |  | 
 | 2267 | 		rc = pcim_iomap_regions(pdev, 0x3 << base, | 
 | 2268 | 					dev_driver_string(gdev)); | 
 | 2269 | 		if (rc) { | 
 | 2270 | 			dev_warn(gdev, | 
 | 2271 | 				 "failed to request/iomap BARs for port %d (errno=%d)\n", | 
 | 2272 | 				 i, rc); | 
 | 2273 | 			if (rc == -EBUSY) | 
 | 2274 | 				pcim_pin_device(pdev); | 
 | 2275 | 			ap->ops = &ata_dummy_port_ops; | 
 | 2276 | 			continue; | 
 | 2277 | 		} | 
 | 2278 | 		host->iomap = iomap = pcim_iomap_table(pdev); | 
 | 2279 |  | 
 | 2280 | 		ap->ioaddr.cmd_addr = iomap[base]; | 
 | 2281 | 		ap->ioaddr.altstatus_addr = | 
 | 2282 | 		ap->ioaddr.ctl_addr = (void __iomem *) | 
 | 2283 | 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); | 
 | 2284 | 		ata_sff_std_ports(&ap->ioaddr); | 
 | 2285 |  | 
 | 2286 | 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", | 
 | 2287 | 			(unsigned long long)pci_resource_start(pdev, base), | 
 | 2288 | 			(unsigned long long)pci_resource_start(pdev, base + 1)); | 
 | 2289 |  | 
 | 2290 | 		mask |= 1 << i; | 
 | 2291 | 	} | 
 | 2292 |  | 
 | 2293 | 	if (!mask) { | 
 | 2294 | 		dev_err(gdev, "no available native port\n"); | 
 | 2295 | 		return -ENODEV; | 
 | 2296 | 	} | 
 | 2297 |  | 
 | 2298 | 	return 0; | 
 | 2299 | } | 
 | 2300 | EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); | 
 | 2301 |  | 
 | 2302 | /** | 
 | 2303 |  *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host | 
 | 2304 |  *	@pdev: target PCI device | 
 | 2305 |  *	@ppi: array of port_info, must be enough for two ports | 
 | 2306 |  *	@r_host: out argument for the initialized ATA host | 
 | 2307 |  * | 
 | 2308 |  *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire | 
 | 2309 |  *	all PCI resources and initialize it accordingly in one go. | 
 | 2310 |  * | 
 | 2311 |  *	LOCKING: | 
 | 2312 |  *	Inherited from calling layer (may sleep). | 
 | 2313 |  * | 
 | 2314 |  *	RETURNS: | 
 | 2315 |  *	0 on success, -errno otherwise. | 
 | 2316 |  */ | 
 | 2317 | int ata_pci_sff_prepare_host(struct pci_dev *pdev, | 
 | 2318 | 			     const struct ata_port_info * const *ppi, | 
 | 2319 | 			     struct ata_host **r_host) | 
 | 2320 | { | 
 | 2321 | 	struct ata_host *host; | 
 | 2322 | 	int rc; | 
 | 2323 |  | 
 | 2324 | 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) | 
 | 2325 | 		return -ENOMEM; | 
 | 2326 |  | 
 | 2327 | 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); | 
 | 2328 | 	if (!host) { | 
 | 2329 | 		dev_err(&pdev->dev, "failed to allocate ATA host\n"); | 
 | 2330 | 		rc = -ENOMEM; | 
 | 2331 | 		goto err_out; | 
 | 2332 | 	} | 
 | 2333 |  | 
 | 2334 | 	rc = ata_pci_sff_init_host(host); | 
 | 2335 | 	if (rc) | 
 | 2336 | 		goto err_out; | 
 | 2337 |  | 
 | 2338 | 	devres_remove_group(&pdev->dev, NULL); | 
 | 2339 | 	*r_host = host; | 
 | 2340 | 	return 0; | 
 | 2341 |  | 
 | 2342 | err_out: | 
 | 2343 | 	devres_release_group(&pdev->dev, NULL); | 
 | 2344 | 	return rc; | 
 | 2345 | } | 
 | 2346 | EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); | 
 | 2347 |  | 
 | 2348 | /** | 
 | 2349 |  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it | 
 | 2350 |  *	@host: target SFF ATA host | 
 | 2351 |  *	@irq_handler: irq_handler used when requesting IRQ(s) | 
 | 2352 |  *	@sht: scsi_host_template to use when registering the host | 
 | 2353 |  * | 
 | 2354 |  *	This is the counterpart of ata_host_activate() for SFF ATA | 
 | 2355 |  *	hosts.  This separate helper is necessary because SFF hosts | 
 | 2356 |  *	use two separate interrupts in legacy mode. | 
 | 2357 |  * | 
 | 2358 |  *	LOCKING: | 
 | 2359 |  *	Inherited from calling layer (may sleep). | 
 | 2360 |  * | 
 | 2361 |  *	RETURNS: | 
 | 2362 |  *	0 on success, -errno otherwise. | 
 | 2363 |  */ | 
 | 2364 | int ata_pci_sff_activate_host(struct ata_host *host, | 
 | 2365 | 			      irq_handler_t irq_handler, | 
 | 2366 | 			      struct scsi_host_template *sht) | 
 | 2367 | { | 
 | 2368 | 	struct device *dev = host->dev; | 
 | 2369 | 	struct pci_dev *pdev = to_pci_dev(dev); | 
 | 2370 | 	const char *drv_name = dev_driver_string(host->dev); | 
 | 2371 | 	int legacy_mode = 0, rc; | 
 | 2372 |  | 
 | 2373 | 	rc = ata_host_start(host); | 
 | 2374 | 	if (rc) | 
 | 2375 | 		return rc; | 
 | 2376 |  | 
 | 2377 | 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { | 
 | 2378 | 		u8 tmp8, mask = 0; | 
 | 2379 |  | 
 | 2380 | 		/* | 
 | 2381 | 		 * ATA spec says we should use legacy mode when one | 
 | 2382 | 		 * port is in legacy mode, but disabled ports on some | 
 | 2383 | 		 * PCI hosts appear as fixed legacy ports, e.g SB600/700 | 
 | 2384 | 		 * on which the secondary port is not wired, so | 
 | 2385 | 		 * ignore ports that are marked as 'dummy' during | 
 | 2386 | 		 * this check | 
 | 2387 | 		 */ | 
 | 2388 | 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); | 
 | 2389 | 		if (!ata_port_is_dummy(host->ports[0])) | 
 | 2390 | 			mask |= (1 << 0); | 
 | 2391 | 		if (!ata_port_is_dummy(host->ports[1])) | 
 | 2392 | 			mask |= (1 << 2); | 
 | 2393 | 		if ((tmp8 & mask) != mask) | 
 | 2394 | 			legacy_mode = 1; | 
 | 2395 | 	} | 
 | 2396 |  | 
 | 2397 | 	if (!devres_open_group(dev, NULL, GFP_KERNEL)) | 
 | 2398 | 		return -ENOMEM; | 
 | 2399 |  | 
 | 2400 | 	if (!legacy_mode && pdev->irq) { | 
 | 2401 | 		int i; | 
 | 2402 |  | 
 | 2403 | 		rc = devm_request_irq(dev, pdev->irq, irq_handler, | 
 | 2404 | 				      IRQF_SHARED, drv_name, host); | 
 | 2405 | 		if (rc) | 
 | 2406 | 			goto out; | 
 | 2407 |  | 
 | 2408 | 		for (i = 0; i < 2; i++) { | 
 | 2409 | 			if (ata_port_is_dummy(host->ports[i])) | 
 | 2410 | 				continue; | 
 | 2411 | 			ata_port_desc(host->ports[i], "irq %d", pdev->irq); | 
 | 2412 | 		} | 
 | 2413 | 	} else if (legacy_mode) { | 
 | 2414 | 		if (!ata_port_is_dummy(host->ports[0])) { | 
 | 2415 | 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), | 
 | 2416 | 					      irq_handler, IRQF_SHARED, | 
 | 2417 | 					      drv_name, host); | 
 | 2418 | 			if (rc) | 
 | 2419 | 				goto out; | 
 | 2420 |  | 
 | 2421 | 			ata_port_desc(host->ports[0], "irq %d", | 
 | 2422 | 				      ATA_PRIMARY_IRQ(pdev)); | 
 | 2423 | 		} | 
 | 2424 |  | 
 | 2425 | 		if (!ata_port_is_dummy(host->ports[1])) { | 
 | 2426 | 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), | 
 | 2427 | 					      irq_handler, IRQF_SHARED, | 
 | 2428 | 					      drv_name, host); | 
 | 2429 | 			if (rc) | 
 | 2430 | 				goto out; | 
 | 2431 |  | 
 | 2432 | 			ata_port_desc(host->ports[1], "irq %d", | 
 | 2433 | 				      ATA_SECONDARY_IRQ(pdev)); | 
 | 2434 | 		} | 
 | 2435 | 	} | 
 | 2436 |  | 
 | 2437 | 	rc = ata_host_register(host, sht); | 
 | 2438 | out: | 
 | 2439 | 	if (rc == 0) | 
 | 2440 | 		devres_remove_group(dev, NULL); | 
 | 2441 | 	else | 
 | 2442 | 		devres_release_group(dev, NULL); | 
 | 2443 |  | 
 | 2444 | 	return rc; | 
 | 2445 | } | 
 | 2446 | EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); | 
 | 2447 |  | 
 | 2448 | static const struct ata_port_info *ata_sff_find_valid_pi( | 
 | 2449 | 					const struct ata_port_info * const *ppi) | 
 | 2450 | { | 
 | 2451 | 	int i; | 
 | 2452 |  | 
 | 2453 | 	/* look up the first valid port_info */ | 
 | 2454 | 	for (i = 0; i < 2 && ppi[i]; i++) | 
 | 2455 | 		if (ppi[i]->port_ops != &ata_dummy_port_ops) | 
 | 2456 | 			return ppi[i]; | 
 | 2457 |  | 
 | 2458 | 	return NULL; | 
 | 2459 | } | 
 | 2460 |  | 
 | 2461 | static int ata_pci_init_one(struct pci_dev *pdev, | 
 | 2462 | 		const struct ata_port_info * const *ppi, | 
 | 2463 | 		struct scsi_host_template *sht, void *host_priv, | 
 | 2464 | 		int hflags, bool bmdma) | 
 | 2465 | { | 
 | 2466 | 	struct device *dev = &pdev->dev; | 
 | 2467 | 	const struct ata_port_info *pi; | 
 | 2468 | 	struct ata_host *host = NULL; | 
 | 2469 | 	int rc; | 
 | 2470 |  | 
 | 2471 | 	DPRINTK("ENTER\n"); | 
 | 2472 |  | 
 | 2473 | 	pi = ata_sff_find_valid_pi(ppi); | 
 | 2474 | 	if (!pi) { | 
 | 2475 | 		dev_err(&pdev->dev, "no valid port_info specified\n"); | 
 | 2476 | 		return -EINVAL; | 
 | 2477 | 	} | 
 | 2478 |  | 
 | 2479 | 	if (!devres_open_group(dev, NULL, GFP_KERNEL)) | 
 | 2480 | 		return -ENOMEM; | 
 | 2481 |  | 
 | 2482 | 	rc = pcim_enable_device(pdev); | 
 | 2483 | 	if (rc) | 
 | 2484 | 		goto out; | 
 | 2485 |  | 
 | 2486 | #ifdef CONFIG_ATA_BMDMA | 
 | 2487 | 	if (bmdma) | 
 | 2488 | 		/* prepare and activate BMDMA host */ | 
 | 2489 | 		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); | 
 | 2490 | 	else | 
 | 2491 | #endif | 
 | 2492 | 		/* prepare and activate SFF host */ | 
 | 2493 | 		rc = ata_pci_sff_prepare_host(pdev, ppi, &host); | 
 | 2494 | 	if (rc) | 
 | 2495 | 		goto out; | 
 | 2496 | 	host->private_data = host_priv; | 
 | 2497 | 	host->flags |= hflags; | 
 | 2498 |  | 
 | 2499 | #ifdef CONFIG_ATA_BMDMA | 
 | 2500 | 	if (bmdma) { | 
 | 2501 | 		pci_set_master(pdev); | 
 | 2502 | 		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); | 
 | 2503 | 	} else | 
 | 2504 | #endif | 
 | 2505 | 		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); | 
 | 2506 | out: | 
 | 2507 | 	if (rc == 0) | 
 | 2508 | 		devres_remove_group(&pdev->dev, NULL); | 
 | 2509 | 	else | 
 | 2510 | 		devres_release_group(&pdev->dev, NULL); | 
 | 2511 |  | 
 | 2512 | 	return rc; | 
 | 2513 | } | 
 | 2514 |  | 
 | 2515 | /** | 
 | 2516 |  *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller | 
 | 2517 |  *	@pdev: Controller to be initialized | 
 | 2518 |  *	@ppi: array of port_info, must be enough for two ports | 
 | 2519 |  *	@sht: scsi_host_template to use when registering the host | 
 | 2520 |  *	@host_priv: host private_data | 
 | 2521 |  *	@hflag: host flags | 
 | 2522 |  * | 
 | 2523 |  *	This is a helper function which can be called from a driver's | 
 | 2524 |  *	xxx_init_one() probe function if the hardware uses traditional | 
 | 2525 |  *	IDE taskfile registers and is PIO only. | 
 | 2526 |  * | 
 | 2527 |  *	ASSUMPTION: | 
 | 2528 |  *	Nobody makes a single channel controller that appears solely as | 
 | 2529 |  *	the secondary legacy port on PCI. | 
 | 2530 |  * | 
 | 2531 |  *	LOCKING: | 
 | 2532 |  *	Inherited from PCI layer (may sleep). | 
 | 2533 |  * | 
 | 2534 |  *	RETURNS: | 
 | 2535 |  *	Zero on success, negative on errno-based value on error. | 
 | 2536 |  */ | 
 | 2537 | int ata_pci_sff_init_one(struct pci_dev *pdev, | 
 | 2538 | 		 const struct ata_port_info * const *ppi, | 
 | 2539 | 		 struct scsi_host_template *sht, void *host_priv, int hflag) | 
 | 2540 | { | 
 | 2541 | 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); | 
 | 2542 | } | 
 | 2543 | EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); | 
 | 2544 |  | 
 | 2545 | #endif /* CONFIG_PCI */ | 
 | 2546 |  | 
 | 2547 | /* | 
 | 2548 |  *	BMDMA support | 
 | 2549 |  */ | 
 | 2550 |  | 
 | 2551 | #ifdef CONFIG_ATA_BMDMA | 
 | 2552 |  | 
 | 2553 | const struct ata_port_operations ata_bmdma_port_ops = { | 
 | 2554 | 	.inherits		= &ata_sff_port_ops, | 
 | 2555 |  | 
 | 2556 | 	.error_handler		= ata_bmdma_error_handler, | 
 | 2557 | 	.post_internal_cmd	= ata_bmdma_post_internal_cmd, | 
 | 2558 |  | 
 | 2559 | 	.qc_prep		= ata_bmdma_qc_prep, | 
 | 2560 | 	.qc_issue		= ata_bmdma_qc_issue, | 
 | 2561 |  | 
 | 2562 | 	.sff_irq_clear		= ata_bmdma_irq_clear, | 
 | 2563 | 	.bmdma_setup		= ata_bmdma_setup, | 
 | 2564 | 	.bmdma_start		= ata_bmdma_start, | 
 | 2565 | 	.bmdma_stop		= ata_bmdma_stop, | 
 | 2566 | 	.bmdma_status		= ata_bmdma_status, | 
 | 2567 |  | 
 | 2568 | 	.port_start		= ata_bmdma_port_start, | 
 | 2569 | }; | 
 | 2570 | EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); | 
 | 2571 |  | 
 | 2572 | const struct ata_port_operations ata_bmdma32_port_ops = { | 
 | 2573 | 	.inherits		= &ata_bmdma_port_ops, | 
 | 2574 |  | 
 | 2575 | 	.sff_data_xfer		= ata_sff_data_xfer32, | 
 | 2576 | 	.port_start		= ata_bmdma_port_start32, | 
 | 2577 | }; | 
 | 2578 | EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); | 
 | 2579 |  | 
 | 2580 | /** | 
 | 2581 |  *	ata_bmdma_fill_sg - Fill PCI IDE PRD table | 
 | 2582 |  *	@qc: Metadata associated with taskfile to be transferred | 
 | 2583 |  * | 
 | 2584 |  *	Fill PCI IDE PRD (scatter-gather) table with segments | 
 | 2585 |  *	associated with the current disk command. | 
 | 2586 |  * | 
 | 2587 |  *	LOCKING: | 
 | 2588 |  *	spin_lock_irqsave(host lock) | 
 | 2589 |  * | 
 | 2590 |  */ | 
 | 2591 | static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) | 
 | 2592 | { | 
 | 2593 | 	struct ata_port *ap = qc->ap; | 
 | 2594 | 	struct ata_bmdma_prd *prd = ap->bmdma_prd; | 
 | 2595 | 	struct scatterlist *sg; | 
 | 2596 | 	unsigned int si, pi; | 
 | 2597 |  | 
 | 2598 | 	pi = 0; | 
 | 2599 | 	for_each_sg(qc->sg, sg, qc->n_elem, si) { | 
 | 2600 | 		u32 addr, offset; | 
 | 2601 | 		u32 sg_len, len; | 
 | 2602 |  | 
 | 2603 | 		/* determine if physical DMA addr spans 64K boundary. | 
 | 2604 | 		 * Note h/w doesn't support 64-bit, so we unconditionally | 
 | 2605 | 		 * truncate dma_addr_t to u32. | 
 | 2606 | 		 */ | 
 | 2607 | 		addr = (u32) sg_dma_address(sg); | 
 | 2608 | 		sg_len = sg_dma_len(sg); | 
 | 2609 |  | 
 | 2610 | 		while (sg_len) { | 
 | 2611 | 			offset = addr & 0xffff; | 
 | 2612 | 			len = sg_len; | 
 | 2613 | 			if ((offset + sg_len) > 0x10000) | 
 | 2614 | 				len = 0x10000 - offset; | 
 | 2615 |  | 
 | 2616 | 			prd[pi].addr = cpu_to_le32(addr); | 
 | 2617 | 			prd[pi].flags_len = cpu_to_le32(len & 0xffff); | 
 | 2618 | 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); | 
 | 2619 |  | 
 | 2620 | 			pi++; | 
 | 2621 | 			sg_len -= len; | 
 | 2622 | 			addr += len; | 
 | 2623 | 		} | 
 | 2624 | 	} | 
 | 2625 |  | 
 | 2626 | 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); | 
 | 2627 | } | 
 | 2628 |  | 
 | 2629 | /** | 
 | 2630 |  *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table | 
 | 2631 |  *	@qc: Metadata associated with taskfile to be transferred | 
 | 2632 |  * | 
 | 2633 |  *	Fill PCI IDE PRD (scatter-gather) table with segments | 
 | 2634 |  *	associated with the current disk command. Perform the fill | 
 | 2635 |  *	so that we avoid writing any length 64K records for | 
 | 2636 |  *	controllers that don't follow the spec. | 
 | 2637 |  * | 
 | 2638 |  *	LOCKING: | 
 | 2639 |  *	spin_lock_irqsave(host lock) | 
 | 2640 |  * | 
 | 2641 |  */ | 
 | 2642 | static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) | 
 | 2643 | { | 
 | 2644 | 	struct ata_port *ap = qc->ap; | 
 | 2645 | 	struct ata_bmdma_prd *prd = ap->bmdma_prd; | 
 | 2646 | 	struct scatterlist *sg; | 
 | 2647 | 	unsigned int si, pi; | 
 | 2648 |  | 
 | 2649 | 	pi = 0; | 
 | 2650 | 	for_each_sg(qc->sg, sg, qc->n_elem, si) { | 
 | 2651 | 		u32 addr, offset; | 
 | 2652 | 		u32 sg_len, len, blen; | 
 | 2653 |  | 
 | 2654 | 		/* determine if physical DMA addr spans 64K boundary. | 
 | 2655 | 		 * Note h/w doesn't support 64-bit, so we unconditionally | 
 | 2656 | 		 * truncate dma_addr_t to u32. | 
 | 2657 | 		 */ | 
 | 2658 | 		addr = (u32) sg_dma_address(sg); | 
 | 2659 | 		sg_len = sg_dma_len(sg); | 
 | 2660 |  | 
 | 2661 | 		while (sg_len) { | 
 | 2662 | 			offset = addr & 0xffff; | 
 | 2663 | 			len = sg_len; | 
 | 2664 | 			if ((offset + sg_len) > 0x10000) | 
 | 2665 | 				len = 0x10000 - offset; | 
 | 2666 |  | 
 | 2667 | 			blen = len & 0xffff; | 
 | 2668 | 			prd[pi].addr = cpu_to_le32(addr); | 
 | 2669 | 			if (blen == 0) { | 
 | 2670 | 				/* Some PATA chipsets like the CS5530 can't | 
 | 2671 | 				   cope with 0x0000 meaning 64K as the spec | 
 | 2672 | 				   says */ | 
 | 2673 | 				prd[pi].flags_len = cpu_to_le32(0x8000); | 
 | 2674 | 				blen = 0x8000; | 
 | 2675 | 				prd[++pi].addr = cpu_to_le32(addr + 0x8000); | 
 | 2676 | 			} | 
 | 2677 | 			prd[pi].flags_len = cpu_to_le32(blen); | 
 | 2678 | 			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); | 
 | 2679 |  | 
 | 2680 | 			pi++; | 
 | 2681 | 			sg_len -= len; | 
 | 2682 | 			addr += len; | 
 | 2683 | 		} | 
 | 2684 | 	} | 
 | 2685 |  | 
 | 2686 | 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); | 
 | 2687 | } | 
 | 2688 |  | 
 | 2689 | /** | 
 | 2690 |  *	ata_bmdma_qc_prep - Prepare taskfile for submission | 
 | 2691 |  *	@qc: Metadata associated with taskfile to be prepared | 
 | 2692 |  * | 
 | 2693 |  *	Prepare ATA taskfile for submission. | 
 | 2694 |  * | 
 | 2695 |  *	LOCKING: | 
 | 2696 |  *	spin_lock_irqsave(host lock) | 
 | 2697 |  */ | 
 | 2698 | void ata_bmdma_qc_prep(struct ata_queued_cmd *qc) | 
 | 2699 | { | 
 | 2700 | 	if (!(qc->flags & ATA_QCFLAG_DMAMAP)) | 
 | 2701 | 		return; | 
 | 2702 |  | 
 | 2703 | 	ata_bmdma_fill_sg(qc); | 
 | 2704 | } | 
 | 2705 | EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); | 
 | 2706 |  | 
 | 2707 | /** | 
 | 2708 |  *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission | 
 | 2709 |  *	@qc: Metadata associated with taskfile to be prepared | 
 | 2710 |  * | 
 | 2711 |  *	Prepare ATA taskfile for submission. | 
 | 2712 |  * | 
 | 2713 |  *	LOCKING: | 
 | 2714 |  *	spin_lock_irqsave(host lock) | 
 | 2715 |  */ | 
 | 2716 | void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) | 
 | 2717 | { | 
 | 2718 | 	if (!(qc->flags & ATA_QCFLAG_DMAMAP)) | 
 | 2719 | 		return; | 
 | 2720 |  | 
 | 2721 | 	ata_bmdma_fill_sg_dumb(qc); | 
 | 2722 | } | 
 | 2723 | EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); | 
 | 2724 |  | 
 | 2725 | /** | 
 | 2726 |  *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller | 
 | 2727 |  *	@qc: command to issue to device | 
 | 2728 |  * | 
 | 2729 |  *	This function issues a PIO, NODATA or DMA command to a | 
 | 2730 |  *	SFF/BMDMA controller.  PIO and NODATA are handled by | 
 | 2731 |  *	ata_sff_qc_issue(). | 
 | 2732 |  * | 
 | 2733 |  *	LOCKING: | 
 | 2734 |  *	spin_lock_irqsave(host lock) | 
 | 2735 |  * | 
 | 2736 |  *	RETURNS: | 
 | 2737 |  *	Zero on success, AC_ERR_* mask on failure | 
 | 2738 |  */ | 
 | 2739 | unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) | 
 | 2740 | { | 
 | 2741 | 	struct ata_port *ap = qc->ap; | 
 | 2742 | 	struct ata_link *link = qc->dev->link; | 
 | 2743 |  | 
 | 2744 | 	/* defer PIO handling to sff_qc_issue */ | 
 | 2745 | 	if (!ata_is_dma(qc->tf.protocol)) | 
 | 2746 | 		return ata_sff_qc_issue(qc); | 
 | 2747 |  | 
 | 2748 | 	/* select the device */ | 
 | 2749 | 	ata_dev_select(ap, qc->dev->devno, 1, 0); | 
 | 2750 |  | 
 | 2751 | 	/* start the command */ | 
 | 2752 | 	switch (qc->tf.protocol) { | 
 | 2753 | 	case ATA_PROT_DMA: | 
 | 2754 | 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); | 
 | 2755 |  | 
 | 2756 | 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */ | 
 | 2757 | 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */ | 
 | 2758 | 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */ | 
 | 2759 | 		ap->hsm_task_state = HSM_ST_LAST; | 
 | 2760 | 		break; | 
 | 2761 |  | 
 | 2762 | 	case ATAPI_PROT_DMA: | 
 | 2763 | 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); | 
 | 2764 |  | 
 | 2765 | 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */ | 
 | 2766 | 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */ | 
 | 2767 | 		ap->hsm_task_state = HSM_ST_FIRST; | 
 | 2768 |  | 
 | 2769 | 		/* send cdb by polling if no cdb interrupt */ | 
 | 2770 | 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) | 
 | 2771 | 			ata_sff_queue_pio_task(link, 0); | 
 | 2772 | 		break; | 
 | 2773 |  | 
 | 2774 | 	default: | 
 | 2775 | 		WARN_ON(1); | 
 | 2776 | 		return AC_ERR_SYSTEM; | 
 | 2777 | 	} | 
 | 2778 |  | 
 | 2779 | 	return 0; | 
 | 2780 | } | 
 | 2781 | EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); | 
 | 2782 |  | 
 | 2783 | /** | 
 | 2784 |  *	ata_bmdma_port_intr - Handle BMDMA port interrupt | 
 | 2785 |  *	@ap: Port on which interrupt arrived (possibly...) | 
 | 2786 |  *	@qc: Taskfile currently active in engine | 
 | 2787 |  * | 
 | 2788 |  *	Handle port interrupt for given queued command. | 
 | 2789 |  * | 
 | 2790 |  *	LOCKING: | 
 | 2791 |  *	spin_lock_irqsave(host lock) | 
 | 2792 |  * | 
 | 2793 |  *	RETURNS: | 
 | 2794 |  *	One if interrupt was handled, zero if not (shared irq). | 
 | 2795 |  */ | 
 | 2796 | unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) | 
 | 2797 | { | 
 | 2798 | 	struct ata_eh_info *ehi = &ap->link.eh_info; | 
 | 2799 | 	u8 host_stat = 0; | 
 | 2800 | 	bool bmdma_stopped = false; | 
 | 2801 | 	unsigned int handled; | 
 | 2802 |  | 
 | 2803 | 	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { | 
 | 2804 | 		/* check status of DMA engine */ | 
 | 2805 | 		host_stat = ap->ops->bmdma_status(ap); | 
 | 2806 | 		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat); | 
 | 2807 |  | 
 | 2808 | 		/* if it's not our irq... */ | 
 | 2809 | 		if (!(host_stat & ATA_DMA_INTR)) | 
 | 2810 | 			return ata_sff_idle_irq(ap); | 
 | 2811 |  | 
 | 2812 | 		/* before we do anything else, clear DMA-Start bit */ | 
 | 2813 | 		ap->ops->bmdma_stop(qc); | 
 | 2814 | 		bmdma_stopped = true; | 
 | 2815 |  | 
 | 2816 | 		if (unlikely(host_stat & ATA_DMA_ERR)) { | 
 | 2817 | 			/* error when transferring data to/from memory */ | 
 | 2818 | 			qc->err_mask |= AC_ERR_HOST_BUS; | 
 | 2819 | 			ap->hsm_task_state = HSM_ST_ERR; | 
 | 2820 | 		} | 
 | 2821 | 	} | 
 | 2822 |  | 
 | 2823 | 	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); | 
 | 2824 |  | 
 | 2825 | 	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) | 
 | 2826 | 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); | 
 | 2827 |  | 
 | 2828 | 	return handled; | 
 | 2829 | } | 
 | 2830 | EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); | 
 | 2831 |  | 
 | 2832 | /** | 
 | 2833 |  *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler | 
 | 2834 |  *	@irq: irq line (unused) | 
 | 2835 |  *	@dev_instance: pointer to our ata_host information structure | 
 | 2836 |  * | 
 | 2837 |  *	Default interrupt handler for PCI IDE devices.  Calls | 
 | 2838 |  *	ata_bmdma_port_intr() for each port that is not disabled. | 
 | 2839 |  * | 
 | 2840 |  *	LOCKING: | 
 | 2841 |  *	Obtains host lock during operation. | 
 | 2842 |  * | 
 | 2843 |  *	RETURNS: | 
 | 2844 |  *	IRQ_NONE or IRQ_HANDLED. | 
 | 2845 |  */ | 
 | 2846 | irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) | 
 | 2847 | { | 
 | 2848 | 	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); | 
 | 2849 | } | 
 | 2850 | EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); | 
 | 2851 |  | 
 | 2852 | /** | 
 | 2853 |  *	ata_bmdma_error_handler - Stock error handler for BMDMA controller | 
 | 2854 |  *	@ap: port to handle error for | 
 | 2855 |  * | 
 | 2856 |  *	Stock error handler for BMDMA controller.  It can handle both | 
 | 2857 |  *	PATA and SATA controllers.  Most BMDMA controllers should be | 
 | 2858 |  *	able to use this EH as-is or with some added handling before | 
 | 2859 |  *	and after. | 
 | 2860 |  * | 
 | 2861 |  *	LOCKING: | 
 | 2862 |  *	Kernel thread context (may sleep) | 
 | 2863 |  */ | 
 | 2864 | void ata_bmdma_error_handler(struct ata_port *ap) | 
 | 2865 | { | 
 | 2866 | 	struct ata_queued_cmd *qc; | 
 | 2867 | 	unsigned long flags; | 
 | 2868 | 	bool thaw = false; | 
 | 2869 |  | 
 | 2870 | 	qc = __ata_qc_from_tag(ap, ap->link.active_tag); | 
 | 2871 | 	if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) | 
 | 2872 | 		qc = NULL; | 
 | 2873 |  | 
 | 2874 | 	/* reset PIO HSM and stop DMA engine */ | 
 | 2875 | 	spin_lock_irqsave(ap->lock, flags); | 
 | 2876 |  | 
 | 2877 | 	if (qc && ata_is_dma(qc->tf.protocol)) { | 
 | 2878 | 		u8 host_stat; | 
 | 2879 |  | 
 | 2880 | 		host_stat = ap->ops->bmdma_status(ap); | 
 | 2881 |  | 
 | 2882 | 		/* BMDMA controllers indicate host bus error by | 
 | 2883 | 		 * setting DMA_ERR bit and timing out.  As it wasn't | 
 | 2884 | 		 * really a timeout event, adjust error mask and | 
 | 2885 | 		 * cancel frozen state. | 
 | 2886 | 		 */ | 
 | 2887 | 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { | 
 | 2888 | 			qc->err_mask = AC_ERR_HOST_BUS; | 
 | 2889 | 			thaw = true; | 
 | 2890 | 		} | 
 | 2891 |  | 
 | 2892 | 		ap->ops->bmdma_stop(qc); | 
 | 2893 |  | 
 | 2894 | 		/* if we're gonna thaw, make sure IRQ is clear */ | 
 | 2895 | 		if (thaw) { | 
 | 2896 | 			ap->ops->sff_check_status(ap); | 
 | 2897 | 			if (ap->ops->sff_irq_clear) | 
 | 2898 | 				ap->ops->sff_irq_clear(ap); | 
 | 2899 | 		} | 
 | 2900 | 	} | 
 | 2901 |  | 
 | 2902 | 	spin_unlock_irqrestore(ap->lock, flags); | 
 | 2903 |  | 
 | 2904 | 	if (thaw) | 
 | 2905 | 		ata_eh_thaw_port(ap); | 
 | 2906 |  | 
 | 2907 | 	ata_sff_error_handler(ap); | 
 | 2908 | } | 
 | 2909 | EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); | 
 | 2910 |  | 
 | 2911 | /** | 
 | 2912 |  *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA | 
 | 2913 |  *	@qc: internal command to clean up | 
 | 2914 |  * | 
 | 2915 |  *	LOCKING: | 
 | 2916 |  *	Kernel thread context (may sleep) | 
 | 2917 |  */ | 
 | 2918 | void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) | 
 | 2919 | { | 
 | 2920 | 	struct ata_port *ap = qc->ap; | 
 | 2921 | 	unsigned long flags; | 
 | 2922 |  | 
 | 2923 | 	if (ata_is_dma(qc->tf.protocol)) { | 
 | 2924 | 		spin_lock_irqsave(ap->lock, flags); | 
 | 2925 | 		ap->ops->bmdma_stop(qc); | 
 | 2926 | 		spin_unlock_irqrestore(ap->lock, flags); | 
 | 2927 | 	} | 
 | 2928 | } | 
 | 2929 | EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); | 
 | 2930 |  | 
 | 2931 | /** | 
 | 2932 |  *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. | 
 | 2933 |  *	@ap: Port associated with this ATA transaction. | 
 | 2934 |  * | 
 | 2935 |  *	Clear interrupt and error flags in DMA status register. | 
 | 2936 |  * | 
 | 2937 |  *	May be used as the irq_clear() entry in ata_port_operations. | 
 | 2938 |  * | 
 | 2939 |  *	LOCKING: | 
 | 2940 |  *	spin_lock_irqsave(host lock) | 
 | 2941 |  */ | 
 | 2942 | void ata_bmdma_irq_clear(struct ata_port *ap) | 
 | 2943 | { | 
 | 2944 | 	void __iomem *mmio = ap->ioaddr.bmdma_addr; | 
 | 2945 |  | 
 | 2946 | 	if (!mmio) | 
 | 2947 | 		return; | 
 | 2948 |  | 
 | 2949 | 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); | 
 | 2950 | } | 
 | 2951 | EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); | 
 | 2952 |  | 
 | 2953 | /** | 
 | 2954 |  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction | 
 | 2955 |  *	@qc: Info associated with this ATA transaction. | 
 | 2956 |  * | 
 | 2957 |  *	LOCKING: | 
 | 2958 |  *	spin_lock_irqsave(host lock) | 
 | 2959 |  */ | 
 | 2960 | void ata_bmdma_setup(struct ata_queued_cmd *qc) | 
 | 2961 | { | 
 | 2962 | 	struct ata_port *ap = qc->ap; | 
 | 2963 | 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); | 
 | 2964 | 	u8 dmactl; | 
 | 2965 |  | 
 | 2966 | 	/* load PRD table addr. */ | 
 | 2967 | 	mb();	/* make sure PRD table writes are visible to controller */ | 
 | 2968 | 	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); | 
 | 2969 |  | 
 | 2970 | 	/* specify data direction, triple-check start bit is clear */ | 
 | 2971 | 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); | 
 | 2972 | 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); | 
 | 2973 | 	if (!rw) | 
 | 2974 | 		dmactl |= ATA_DMA_WR; | 
 | 2975 | 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); | 
 | 2976 |  | 
 | 2977 | 	/* issue r/w command */ | 
 | 2978 | 	ap->ops->sff_exec_command(ap, &qc->tf); | 
 | 2979 | } | 
 | 2980 | EXPORT_SYMBOL_GPL(ata_bmdma_setup); | 
 | 2981 |  | 
 | 2982 | /** | 
 | 2983 |  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction | 
 | 2984 |  *	@qc: Info associated with this ATA transaction. | 
 | 2985 |  * | 
 | 2986 |  *	LOCKING: | 
 | 2987 |  *	spin_lock_irqsave(host lock) | 
 | 2988 |  */ | 
 | 2989 | void ata_bmdma_start(struct ata_queued_cmd *qc) | 
 | 2990 | { | 
 | 2991 | 	struct ata_port *ap = qc->ap; | 
 | 2992 | 	u8 dmactl; | 
 | 2993 |  | 
 | 2994 | 	/* start host DMA transaction */ | 
 | 2995 | 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); | 
 | 2996 | 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); | 
 | 2997 |  | 
 | 2998 | 	/* Strictly, one may wish to issue an ioread8() here, to | 
 | 2999 | 	 * flush the mmio write.  However, control also passes | 
 | 3000 | 	 * to the hardware at this point, and it will interrupt | 
 | 3001 | 	 * us when we are to resume control.  So, in effect, | 
 | 3002 | 	 * we don't care when the mmio write flushes. | 
 | 3003 | 	 * Further, a read of the DMA status register _immediately_ | 
 | 3004 | 	 * following the write may not be what certain flaky hardware | 
 | 3005 | 	 * is expected, so I think it is best to not add a readb() | 
 | 3006 | 	 * without first all the MMIO ATA cards/mobos. | 
 | 3007 | 	 * Or maybe I'm just being paranoid. | 
 | 3008 | 	 * | 
 | 3009 | 	 * FIXME: The posting of this write means I/O starts are | 
 | 3010 | 	 * unnecessarily delayed for MMIO | 
 | 3011 | 	 */ | 
 | 3012 | } | 
 | 3013 | EXPORT_SYMBOL_GPL(ata_bmdma_start); | 
 | 3014 |  | 
 | 3015 | /** | 
 | 3016 |  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer | 
 | 3017 |  *	@qc: Command we are ending DMA for | 
 | 3018 |  * | 
 | 3019 |  *	Clears the ATA_DMA_START flag in the dma control register | 
 | 3020 |  * | 
 | 3021 |  *	May be used as the bmdma_stop() entry in ata_port_operations. | 
 | 3022 |  * | 
 | 3023 |  *	LOCKING: | 
 | 3024 |  *	spin_lock_irqsave(host lock) | 
 | 3025 |  */ | 
 | 3026 | void ata_bmdma_stop(struct ata_queued_cmd *qc) | 
 | 3027 | { | 
 | 3028 | 	struct ata_port *ap = qc->ap; | 
 | 3029 | 	void __iomem *mmio = ap->ioaddr.bmdma_addr; | 
 | 3030 |  | 
 | 3031 | 	/* clear start/stop bit */ | 
 | 3032 | 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, | 
 | 3033 | 		 mmio + ATA_DMA_CMD); | 
 | 3034 |  | 
 | 3035 | 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ | 
 | 3036 | 	ata_sff_dma_pause(ap); | 
 | 3037 | } | 
 | 3038 | EXPORT_SYMBOL_GPL(ata_bmdma_stop); | 
 | 3039 |  | 
 | 3040 | /** | 
 | 3041 |  *	ata_bmdma_status - Read PCI IDE BMDMA status | 
 | 3042 |  *	@ap: Port associated with this ATA transaction. | 
 | 3043 |  * | 
 | 3044 |  *	Read and return BMDMA status register. | 
 | 3045 |  * | 
 | 3046 |  *	May be used as the bmdma_status() entry in ata_port_operations. | 
 | 3047 |  * | 
 | 3048 |  *	LOCKING: | 
 | 3049 |  *	spin_lock_irqsave(host lock) | 
 | 3050 |  */ | 
 | 3051 | u8 ata_bmdma_status(struct ata_port *ap) | 
 | 3052 | { | 
 | 3053 | 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); | 
 | 3054 | } | 
 | 3055 | EXPORT_SYMBOL_GPL(ata_bmdma_status); | 
 | 3056 |  | 
 | 3057 |  | 
 | 3058 | /** | 
 | 3059 |  *	ata_bmdma_port_start - Set port up for bmdma. | 
 | 3060 |  *	@ap: Port to initialize | 
 | 3061 |  * | 
 | 3062 |  *	Called just after data structures for each port are | 
 | 3063 |  *	initialized.  Allocates space for PRD table. | 
 | 3064 |  * | 
 | 3065 |  *	May be used as the port_start() entry in ata_port_operations. | 
 | 3066 |  * | 
 | 3067 |  *	LOCKING: | 
 | 3068 |  *	Inherited from caller. | 
 | 3069 |  */ | 
 | 3070 | int ata_bmdma_port_start(struct ata_port *ap) | 
 | 3071 | { | 
 | 3072 | 	if (ap->mwdma_mask || ap->udma_mask) { | 
 | 3073 | 		ap->bmdma_prd = | 
 | 3074 | 			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, | 
 | 3075 | 					    &ap->bmdma_prd_dma, GFP_KERNEL); | 
 | 3076 | 		if (!ap->bmdma_prd) | 
 | 3077 | 			return -ENOMEM; | 
 | 3078 | 	} | 
 | 3079 |  | 
 | 3080 | 	return 0; | 
 | 3081 | } | 
 | 3082 | EXPORT_SYMBOL_GPL(ata_bmdma_port_start); | 
 | 3083 |  | 
 | 3084 | /** | 
 | 3085 |  *	ata_bmdma_port_start32 - Set port up for dma. | 
 | 3086 |  *	@ap: Port to initialize | 
 | 3087 |  * | 
 | 3088 |  *	Called just after data structures for each port are | 
 | 3089 |  *	initialized.  Enables 32bit PIO and allocates space for PRD | 
 | 3090 |  *	table. | 
 | 3091 |  * | 
 | 3092 |  *	May be used as the port_start() entry in ata_port_operations for | 
 | 3093 |  *	devices that are capable of 32bit PIO. | 
 | 3094 |  * | 
 | 3095 |  *	LOCKING: | 
 | 3096 |  *	Inherited from caller. | 
 | 3097 |  */ | 
 | 3098 | int ata_bmdma_port_start32(struct ata_port *ap) | 
 | 3099 | { | 
 | 3100 | 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; | 
 | 3101 | 	return ata_bmdma_port_start(ap); | 
 | 3102 | } | 
 | 3103 | EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); | 
 | 3104 |  | 
 | 3105 | #ifdef CONFIG_PCI | 
 | 3106 |  | 
 | 3107 | /** | 
 | 3108 |  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex | 
 | 3109 |  *	@pdev: PCI device | 
 | 3110 |  * | 
 | 3111 |  *	Some PCI ATA devices report simplex mode but in fact can be told to | 
 | 3112 |  *	enter non simplex mode. This implements the necessary logic to | 
 | 3113 |  *	perform the task on such devices. Calling it on other devices will | 
 | 3114 |  *	have -undefined- behaviour. | 
 | 3115 |  */ | 
 | 3116 | int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) | 
 | 3117 | { | 
 | 3118 | 	unsigned long bmdma = pci_resource_start(pdev, 4); | 
 | 3119 | 	u8 simplex; | 
 | 3120 |  | 
 | 3121 | 	if (bmdma == 0) | 
 | 3122 | 		return -ENOENT; | 
 | 3123 |  | 
 | 3124 | 	simplex = inb(bmdma + 0x02); | 
 | 3125 | 	outb(simplex & 0x60, bmdma + 0x02); | 
 | 3126 | 	simplex = inb(bmdma + 0x02); | 
 | 3127 | 	if (simplex & 0x80) | 
 | 3128 | 		return -EOPNOTSUPP; | 
 | 3129 | 	return 0; | 
 | 3130 | } | 
 | 3131 | EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); | 
 | 3132 |  | 
 | 3133 | static void ata_bmdma_nodma(struct ata_host *host, const char *reason) | 
 | 3134 | { | 
 | 3135 | 	int i; | 
 | 3136 |  | 
 | 3137 | 	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); | 
 | 3138 |  | 
 | 3139 | 	for (i = 0; i < 2; i++) { | 
 | 3140 | 		host->ports[i]->mwdma_mask = 0; | 
 | 3141 | 		host->ports[i]->udma_mask = 0; | 
 | 3142 | 	} | 
 | 3143 | } | 
 | 3144 |  | 
 | 3145 | /** | 
 | 3146 |  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host | 
 | 3147 |  *	@host: target ATA host | 
 | 3148 |  * | 
 | 3149 |  *	Acquire PCI BMDMA resources and initialize @host accordingly. | 
 | 3150 |  * | 
 | 3151 |  *	LOCKING: | 
 | 3152 |  *	Inherited from calling layer (may sleep). | 
 | 3153 |  */ | 
 | 3154 | void ata_pci_bmdma_init(struct ata_host *host) | 
 | 3155 | { | 
 | 3156 | 	struct device *gdev = host->dev; | 
 | 3157 | 	struct pci_dev *pdev = to_pci_dev(gdev); | 
 | 3158 | 	int i, rc; | 
 | 3159 |  | 
 | 3160 | 	/* No BAR4 allocation: No DMA */ | 
 | 3161 | 	if (pci_resource_start(pdev, 4) == 0) { | 
 | 3162 | 		ata_bmdma_nodma(host, "BAR4 is zero"); | 
 | 3163 | 		return; | 
 | 3164 | 	} | 
 | 3165 |  | 
 | 3166 | 	/* | 
 | 3167 | 	 * Some controllers require BMDMA region to be initialized | 
 | 3168 | 	 * even if DMA is not in use to clear IRQ status via | 
 | 3169 | 	 * ->sff_irq_clear method.  Try to initialize bmdma_addr | 
 | 3170 | 	 * regardless of dma masks. | 
 | 3171 | 	 */ | 
 | 3172 | 	rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK); | 
 | 3173 | 	if (rc) | 
 | 3174 | 		ata_bmdma_nodma(host, "failed to set dma mask"); | 
 | 3175 | 	if (!rc) { | 
 | 3176 | 		rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK); | 
 | 3177 | 		if (rc) | 
 | 3178 | 			ata_bmdma_nodma(host, | 
 | 3179 | 					"failed to set consistent dma mask"); | 
 | 3180 | 	} | 
 | 3181 |  | 
 | 3182 | 	/* request and iomap DMA region */ | 
 | 3183 | 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); | 
 | 3184 | 	if (rc) { | 
 | 3185 | 		ata_bmdma_nodma(host, "failed to request/iomap BAR4"); | 
 | 3186 | 		return; | 
 | 3187 | 	} | 
 | 3188 | 	host->iomap = pcim_iomap_table(pdev); | 
 | 3189 |  | 
 | 3190 | 	for (i = 0; i < 2; i++) { | 
 | 3191 | 		struct ata_port *ap = host->ports[i]; | 
 | 3192 | 		void __iomem *bmdma = host->iomap[4] + 8 * i; | 
 | 3193 |  | 
 | 3194 | 		if (ata_port_is_dummy(ap)) | 
 | 3195 | 			continue; | 
 | 3196 |  | 
 | 3197 | 		ap->ioaddr.bmdma_addr = bmdma; | 
 | 3198 | 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && | 
 | 3199 | 		    (ioread8(bmdma + 2) & 0x80)) | 
 | 3200 | 			host->flags |= ATA_HOST_SIMPLEX; | 
 | 3201 |  | 
 | 3202 | 		ata_port_desc(ap, "bmdma 0x%llx", | 
 | 3203 | 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); | 
 | 3204 | 	} | 
 | 3205 | } | 
 | 3206 | EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); | 
 | 3207 |  | 
 | 3208 | /** | 
 | 3209 |  *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host | 
 | 3210 |  *	@pdev: target PCI device | 
 | 3211 |  *	@ppi: array of port_info, must be enough for two ports | 
 | 3212 |  *	@r_host: out argument for the initialized ATA host | 
 | 3213 |  * | 
 | 3214 |  *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI | 
 | 3215 |  *	resources and initialize it accordingly in one go. | 
 | 3216 |  * | 
 | 3217 |  *	LOCKING: | 
 | 3218 |  *	Inherited from calling layer (may sleep). | 
 | 3219 |  * | 
 | 3220 |  *	RETURNS: | 
 | 3221 |  *	0 on success, -errno otherwise. | 
 | 3222 |  */ | 
 | 3223 | int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, | 
 | 3224 | 			       const struct ata_port_info * const * ppi, | 
 | 3225 | 			       struct ata_host **r_host) | 
 | 3226 | { | 
 | 3227 | 	int rc; | 
 | 3228 |  | 
 | 3229 | 	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); | 
 | 3230 | 	if (rc) | 
 | 3231 | 		return rc; | 
 | 3232 |  | 
 | 3233 | 	ata_pci_bmdma_init(*r_host); | 
 | 3234 | 	return 0; | 
 | 3235 | } | 
 | 3236 | EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); | 
 | 3237 |  | 
 | 3238 | /** | 
 | 3239 |  *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller | 
 | 3240 |  *	@pdev: Controller to be initialized | 
 | 3241 |  *	@ppi: array of port_info, must be enough for two ports | 
 | 3242 |  *	@sht: scsi_host_template to use when registering the host | 
 | 3243 |  *	@host_priv: host private_data | 
 | 3244 |  *	@hflags: host flags | 
 | 3245 |  * | 
 | 3246 |  *	This function is similar to ata_pci_sff_init_one() but also | 
 | 3247 |  *	takes care of BMDMA initialization. | 
 | 3248 |  * | 
 | 3249 |  *	LOCKING: | 
 | 3250 |  *	Inherited from PCI layer (may sleep). | 
 | 3251 |  * | 
 | 3252 |  *	RETURNS: | 
 | 3253 |  *	Zero on success, negative on errno-based value on error. | 
 | 3254 |  */ | 
 | 3255 | int ata_pci_bmdma_init_one(struct pci_dev *pdev, | 
 | 3256 | 			   const struct ata_port_info * const * ppi, | 
 | 3257 | 			   struct scsi_host_template *sht, void *host_priv, | 
 | 3258 | 			   int hflags) | 
 | 3259 | { | 
 | 3260 | 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); | 
 | 3261 | } | 
 | 3262 | EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); | 
 | 3263 |  | 
 | 3264 | #endif /* CONFIG_PCI */ | 
 | 3265 | #endif /* CONFIG_ATA_BMDMA */ | 
 | 3266 |  | 
 | 3267 | /** | 
 | 3268 |  *	ata_sff_port_init - Initialize SFF/BMDMA ATA port | 
 | 3269 |  *	@ap: Port to initialize | 
 | 3270 |  * | 
 | 3271 |  *	Called on port allocation to initialize SFF/BMDMA specific | 
 | 3272 |  *	fields. | 
 | 3273 |  * | 
 | 3274 |  *	LOCKING: | 
 | 3275 |  *	None. | 
 | 3276 |  */ | 
 | 3277 | void ata_sff_port_init(struct ata_port *ap) | 
 | 3278 | { | 
 | 3279 | 	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); | 
 | 3280 | 	ap->ctl = ATA_DEVCTL_OBS; | 
 | 3281 | 	ap->last_ctl = 0xFF; | 
 | 3282 | } | 
 | 3283 |  | 
 | 3284 | int __init ata_sff_init(void) | 
 | 3285 | { | 
 | 3286 | 	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); | 
 | 3287 | 	if (!ata_sff_wq) | 
 | 3288 | 		return -ENOMEM; | 
 | 3289 |  | 
 | 3290 | 	return 0; | 
 | 3291 | } | 
 | 3292 |  | 
 | 3293 | void ata_sff_exit(void) | 
 | 3294 | { | 
 | 3295 | 	destroy_workqueue(ata_sff_wq); | 
 | 3296 | } |