blob: e2dbe2cbb7efa18e125a1d1a1f5f7b54a5df9538 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS superblock. The superblock is stored at the first
25 * LEB of the volume and is never changed by UBIFS. Only user-space tools may
26 * change it. The superblock node mostly contains geometry information.
27 */
28
29#include "ubifs.h"
30#include <linux/slab.h>
31#include <linux/math64.h>
32#include <linux/uuid.h>
33
34/*
35 * Default journal size in logical eraseblocks as a percent of total
36 * flash size.
37 */
38#define DEFAULT_JNL_PERCENT 5
39
40/* Default maximum journal size in bytes */
41#define DEFAULT_MAX_JNL (32*1024*1024)
42
43/* Default indexing tree fanout */
44#define DEFAULT_FANOUT 8
45
46/* Default number of data journal heads */
47#define DEFAULT_JHEADS_CNT 1
48
49/* Default positions of different LEBs in the main area */
50#define DEFAULT_IDX_LEB 0
51#define DEFAULT_DATA_LEB 1
52#define DEFAULT_GC_LEB 2
53
54/* Default number of LEB numbers in LPT's save table */
55#define DEFAULT_LSAVE_CNT 256
56
57/* Default reserved pool size as a percent of maximum free space */
58#define DEFAULT_RP_PERCENT 5
59
60/* The default maximum size of reserved pool in bytes */
61#define DEFAULT_MAX_RP_SIZE (5*1024*1024)
62
63/* Default time granularity in nanoseconds */
64#define DEFAULT_TIME_GRAN 1000000000
65
66static int get_default_compressor(struct ubifs_info *c)
67{
68 if (ubifs_compr_present(c, UBIFS_COMPR_LZO))
69 return UBIFS_COMPR_LZO;
70
71 if (ubifs_compr_present(c, UBIFS_COMPR_ZLIB))
72 return UBIFS_COMPR_ZLIB;
73
74 return UBIFS_COMPR_NONE;
75}
76
77/**
78 * create_default_filesystem - format empty UBI volume.
79 * @c: UBIFS file-system description object
80 *
81 * This function creates default empty file-system. Returns zero in case of
82 * success and a negative error code in case of failure.
83 */
84static int create_default_filesystem(struct ubifs_info *c)
85{
86 struct ubifs_sb_node *sup;
87 struct ubifs_mst_node *mst;
88 struct ubifs_idx_node *idx;
89 struct ubifs_branch *br;
90 struct ubifs_ino_node *ino;
91 struct ubifs_cs_node *cs;
92 union ubifs_key key;
93 int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
94 int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
95 int min_leb_cnt = UBIFS_MIN_LEB_CNT;
96 long long tmp64, main_bytes;
97 __le64 tmp_le64;
98 __le32 tmp_le32;
99 struct timespec64 ts;
100
101 /* Some functions called from here depend on the @c->key_len filed */
102 c->key_len = UBIFS_SK_LEN;
103
104 /*
105 * First of all, we have to calculate default file-system geometry -
106 * log size, journal size, etc.
107 */
108 if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
109 /* We can first multiply then divide and have no overflow */
110 jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
111 else
112 jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
113
114 if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
115 jnl_lebs = UBIFS_MIN_JNL_LEBS;
116 if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
117 jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
118
119 /*
120 * The log should be large enough to fit reference nodes for all bud
121 * LEBs. Because buds do not have to start from the beginning of LEBs
122 * (half of the LEB may contain committed data), the log should
123 * generally be larger, make it twice as large.
124 */
125 tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
126 log_lebs = tmp / c->leb_size;
127 /* Plus one LEB reserved for commit */
128 log_lebs += 1;
129 if (c->leb_cnt - min_leb_cnt > 8) {
130 /* And some extra space to allow writes while committing */
131 log_lebs += 1;
132 min_leb_cnt += 1;
133 }
134
135 max_buds = jnl_lebs - log_lebs;
136 if (max_buds < UBIFS_MIN_BUD_LEBS)
137 max_buds = UBIFS_MIN_BUD_LEBS;
138
139 /*
140 * Orphan nodes are stored in a separate area. One node can store a lot
141 * of orphan inode numbers, but when new orphan comes we just add a new
142 * orphan node. At some point the nodes are consolidated into one
143 * orphan node.
144 */
145 orph_lebs = UBIFS_MIN_ORPH_LEBS;
146 if (c->leb_cnt - min_leb_cnt > 1)
147 /*
148 * For debugging purposes it is better to have at least 2
149 * orphan LEBs, because the orphan subsystem would need to do
150 * consolidations and would be stressed more.
151 */
152 orph_lebs += 1;
153
154 main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
155 main_lebs -= orph_lebs;
156
157 lpt_first = UBIFS_LOG_LNUM + log_lebs;
158 c->lsave_cnt = DEFAULT_LSAVE_CNT;
159 c->max_leb_cnt = c->leb_cnt;
160 err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
161 &big_lpt);
162 if (err)
163 return err;
164
165 dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
166 lpt_first + lpt_lebs - 1);
167
168 main_first = c->leb_cnt - main_lebs;
169
170 /* Create default superblock */
171 tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
172 sup = kzalloc(tmp, GFP_KERNEL);
173 if (!sup)
174 return -ENOMEM;
175
176 tmp64 = (long long)max_buds * c->leb_size;
177 if (big_lpt)
178 sup_flags |= UBIFS_FLG_BIGLPT;
179#ifndef CONFIG_UBIFS_FS_FORMAT4
180 sup_flags |= UBIFS_FLG_DOUBLE_HASH;
181#endif
182
183 sup->ch.node_type = UBIFS_SB_NODE;
184 sup->key_hash = UBIFS_KEY_HASH_R5;
185 sup->flags = cpu_to_le32(sup_flags);
186 sup->min_io_size = cpu_to_le32(c->min_io_size);
187 sup->leb_size = cpu_to_le32(c->leb_size);
188 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
189 sup->max_leb_cnt = cpu_to_le32(c->max_leb_cnt);
190 sup->max_bud_bytes = cpu_to_le64(tmp64);
191 sup->log_lebs = cpu_to_le32(log_lebs);
192 sup->lpt_lebs = cpu_to_le32(lpt_lebs);
193 sup->orph_lebs = cpu_to_le32(orph_lebs);
194 sup->jhead_cnt = cpu_to_le32(DEFAULT_JHEADS_CNT);
195 sup->fanout = cpu_to_le32(DEFAULT_FANOUT);
196 sup->lsave_cnt = cpu_to_le32(c->lsave_cnt);
197#ifdef CONFIG_UBIFS_FS_FORMAT4
198 sup->fmt_version = cpu_to_le32(4);
199#else
200 sup->fmt_version = cpu_to_le32(UBIFS_FORMAT_VERSION);
201#endif
202 sup->time_gran = cpu_to_le32(DEFAULT_TIME_GRAN);
203 if (c->mount_opts.override_compr)
204 sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
205 else
206 sup->default_compr = cpu_to_le16(get_default_compressor(c));
207
208 generate_random_uuid(sup->uuid);
209
210 main_bytes = (long long)main_lebs * c->leb_size;
211 tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
212 if (tmp64 > DEFAULT_MAX_RP_SIZE)
213 tmp64 = DEFAULT_MAX_RP_SIZE;
214 sup->rp_size = cpu_to_le64(tmp64);
215 sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
216
217 err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0);
218 kfree(sup);
219 if (err)
220 return err;
221
222 dbg_gen("default superblock created at LEB 0:0");
223
224 /* Create default master node */
225 mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
226 if (!mst)
227 return -ENOMEM;
228
229 mst->ch.node_type = UBIFS_MST_NODE;
230 mst->log_lnum = cpu_to_le32(UBIFS_LOG_LNUM);
231 mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
232 mst->cmt_no = 0;
233 mst->root_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
234 mst->root_offs = 0;
235 tmp = ubifs_idx_node_sz(c, 1);
236 mst->root_len = cpu_to_le32(tmp);
237 mst->gc_lnum = cpu_to_le32(main_first + DEFAULT_GC_LEB);
238 mst->ihead_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
239 mst->ihead_offs = cpu_to_le32(ALIGN(tmp, c->min_io_size));
240 mst->index_size = cpu_to_le64(ALIGN(tmp, 8));
241 mst->lpt_lnum = cpu_to_le32(c->lpt_lnum);
242 mst->lpt_offs = cpu_to_le32(c->lpt_offs);
243 mst->nhead_lnum = cpu_to_le32(c->nhead_lnum);
244 mst->nhead_offs = cpu_to_le32(c->nhead_offs);
245 mst->ltab_lnum = cpu_to_le32(c->ltab_lnum);
246 mst->ltab_offs = cpu_to_le32(c->ltab_offs);
247 mst->lsave_lnum = cpu_to_le32(c->lsave_lnum);
248 mst->lsave_offs = cpu_to_le32(c->lsave_offs);
249 mst->lscan_lnum = cpu_to_le32(main_first);
250 mst->empty_lebs = cpu_to_le32(main_lebs - 2);
251 mst->idx_lebs = cpu_to_le32(1);
252 mst->leb_cnt = cpu_to_le32(c->leb_cnt);
253
254 /* Calculate lprops statistics */
255 tmp64 = main_bytes;
256 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
257 tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
258 mst->total_free = cpu_to_le64(tmp64);
259
260 tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
261 ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
262 UBIFS_INO_NODE_SZ;
263 tmp64 += ino_waste;
264 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
265 mst->total_dirty = cpu_to_le64(tmp64);
266
267 /* The indexing LEB does not contribute to dark space */
268 tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
269 mst->total_dark = cpu_to_le64(tmp64);
270
271 mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
272
273 err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0);
274 if (err) {
275 kfree(mst);
276 return err;
277 }
278 err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1,
279 0);
280 kfree(mst);
281 if (err)
282 return err;
283
284 dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
285
286 /* Create the root indexing node */
287 tmp = ubifs_idx_node_sz(c, 1);
288 idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
289 if (!idx)
290 return -ENOMEM;
291
292 c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
293 c->key_hash = key_r5_hash;
294
295 idx->ch.node_type = UBIFS_IDX_NODE;
296 idx->child_cnt = cpu_to_le16(1);
297 ino_key_init(c, &key, UBIFS_ROOT_INO);
298 br = ubifs_idx_branch(c, idx, 0);
299 key_write_idx(c, &key, &br->key);
300 br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
301 br->len = cpu_to_le32(UBIFS_INO_NODE_SZ);
302 err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0);
303 kfree(idx);
304 if (err)
305 return err;
306
307 dbg_gen("default root indexing node created LEB %d:0",
308 main_first + DEFAULT_IDX_LEB);
309
310 /* Create default root inode */
311 tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
312 ino = kzalloc(tmp, GFP_KERNEL);
313 if (!ino)
314 return -ENOMEM;
315
316 ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
317 ino->ch.node_type = UBIFS_INO_NODE;
318 ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
319 ino->nlink = cpu_to_le32(2);
320
321 ktime_get_real_ts64(&ts);
322 ts = timespec64_trunc(ts, DEFAULT_TIME_GRAN);
323 tmp_le64 = cpu_to_le64(ts.tv_sec);
324 ino->atime_sec = tmp_le64;
325 ino->ctime_sec = tmp_le64;
326 ino->mtime_sec = tmp_le64;
327 tmp_le32 = cpu_to_le32(ts.tv_nsec);
328 ino->atime_nsec = tmp_le32;
329 ino->ctime_nsec = tmp_le32;
330 ino->mtime_nsec = tmp_le32;
331 ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
332 ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
333
334 /* Set compression enabled by default */
335 ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
336
337 err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
338 main_first + DEFAULT_DATA_LEB, 0);
339 kfree(ino);
340 if (err)
341 return err;
342
343 dbg_gen("root inode created at LEB %d:0",
344 main_first + DEFAULT_DATA_LEB);
345
346 /*
347 * The first node in the log has to be the commit start node. This is
348 * always the case during normal file-system operation. Write a fake
349 * commit start node to the log.
350 */
351 tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size);
352 cs = kzalloc(tmp, GFP_KERNEL);
353 if (!cs)
354 return -ENOMEM;
355
356 cs->ch.node_type = UBIFS_CS_NODE;
357 err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0);
358 kfree(cs);
359 if (err)
360 return err;
361
362 ubifs_msg(c, "default file-system created");
363 return 0;
364}
365
366/**
367 * validate_sb - validate superblock node.
368 * @c: UBIFS file-system description object
369 * @sup: superblock node
370 *
371 * This function validates superblock node @sup. Since most of data was read
372 * from the superblock and stored in @c, the function validates fields in @c
373 * instead. Returns zero in case of success and %-EINVAL in case of validation
374 * failure.
375 */
376static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
377{
378 long long max_bytes;
379 int err = 1, min_leb_cnt;
380
381 if (!c->key_hash) {
382 err = 2;
383 goto failed;
384 }
385
386 if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
387 err = 3;
388 goto failed;
389 }
390
391 if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
392 ubifs_err(c, "min. I/O unit mismatch: %d in superblock, %d real",
393 le32_to_cpu(sup->min_io_size), c->min_io_size);
394 goto failed;
395 }
396
397 if (le32_to_cpu(sup->leb_size) != c->leb_size) {
398 ubifs_err(c, "LEB size mismatch: %d in superblock, %d real",
399 le32_to_cpu(sup->leb_size), c->leb_size);
400 goto failed;
401 }
402
403 if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
404 c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
405 c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
406 c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
407 err = 4;
408 goto failed;
409 }
410
411 /*
412 * Calculate minimum allowed amount of main area LEBs. This is very
413 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
414 * have just read from the superblock.
415 */
416 min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
417 min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
418
419 if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
420 ubifs_err(c, "bad LEB count: %d in superblock, %d on UBI volume, %d minimum required",
421 c->leb_cnt, c->vi.size, min_leb_cnt);
422 goto failed;
423 }
424
425 if (c->max_leb_cnt < c->leb_cnt) {
426 ubifs_err(c, "max. LEB count %d less than LEB count %d",
427 c->max_leb_cnt, c->leb_cnt);
428 goto failed;
429 }
430
431 if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
432 ubifs_err(c, "too few main LEBs count %d, must be at least %d",
433 c->main_lebs, UBIFS_MIN_MAIN_LEBS);
434 goto failed;
435 }
436
437 max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
438 if (c->max_bud_bytes < max_bytes) {
439 ubifs_err(c, "too small journal (%lld bytes), must be at least %lld bytes",
440 c->max_bud_bytes, max_bytes);
441 goto failed;
442 }
443
444 max_bytes = (long long)c->leb_size * c->main_lebs;
445 if (c->max_bud_bytes > max_bytes) {
446 ubifs_err(c, "too large journal size (%lld bytes), only %lld bytes available in the main area",
447 c->max_bud_bytes, max_bytes);
448 goto failed;
449 }
450
451 if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
452 c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
453 err = 9;
454 goto failed;
455 }
456
457 if (c->fanout < UBIFS_MIN_FANOUT ||
458 ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
459 err = 10;
460 goto failed;
461 }
462
463 if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
464 c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
465 c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
466 err = 11;
467 goto failed;
468 }
469
470 if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
471 c->orph_lebs + c->main_lebs != c->leb_cnt) {
472 err = 12;
473 goto failed;
474 }
475
476 if (c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
477 err = 13;
478 goto failed;
479 }
480
481 if (c->rp_size < 0 || max_bytes < c->rp_size) {
482 err = 14;
483 goto failed;
484 }
485
486 if (le32_to_cpu(sup->time_gran) > 1000000000 ||
487 le32_to_cpu(sup->time_gran) < 1) {
488 err = 15;
489 goto failed;
490 }
491
492 if (!c->double_hash && c->fmt_version >= 5) {
493 err = 16;
494 goto failed;
495 }
496
497 if (c->encrypted && c->fmt_version < 5) {
498 err = 17;
499 goto failed;
500 }
501
502 return 0;
503
504failed:
505 ubifs_err(c, "bad superblock, error %d", err);
506 ubifs_dump_node(c, sup);
507 return -EINVAL;
508}
509
510/**
511 * ubifs_read_sb_node - read superblock node.
512 * @c: UBIFS file-system description object
513 *
514 * This function returns a pointer to the superblock node or a negative error
515 * code. Note, the user of this function is responsible of kfree()'ing the
516 * returned superblock buffer.
517 */
518struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
519{
520 struct ubifs_sb_node *sup;
521 int err;
522
523 sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
524 if (!sup)
525 return ERR_PTR(-ENOMEM);
526
527 err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
528 UBIFS_SB_LNUM, 0);
529 if (err) {
530 kfree(sup);
531 return ERR_PTR(err);
532 }
533
534 return sup;
535}
536
537/**
538 * ubifs_write_sb_node - write superblock node.
539 * @c: UBIFS file-system description object
540 * @sup: superblock node read with 'ubifs_read_sb_node()'
541 *
542 * This function returns %0 on success and a negative error code on failure.
543 */
544int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
545{
546 int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
547
548 ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1);
549 return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len);
550}
551
552/**
553 * ubifs_read_superblock - read superblock.
554 * @c: UBIFS file-system description object
555 *
556 * This function finds, reads and checks the superblock. If an empty UBI volume
557 * is being mounted, this function creates default superblock. Returns zero in
558 * case of success, and a negative error code in case of failure.
559 */
560int ubifs_read_superblock(struct ubifs_info *c)
561{
562 int err, sup_flags;
563 struct ubifs_sb_node *sup;
564
565 if (c->empty) {
566 err = create_default_filesystem(c);
567 if (err)
568 return err;
569 }
570
571 sup = ubifs_read_sb_node(c);
572 if (IS_ERR(sup))
573 return PTR_ERR(sup);
574
575 c->fmt_version = le32_to_cpu(sup->fmt_version);
576 c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
577
578 /*
579 * The software supports all previous versions but not future versions,
580 * due to the unavailability of time-travelling equipment.
581 */
582 if (c->fmt_version > UBIFS_FORMAT_VERSION) {
583 ubifs_assert(c, !c->ro_media || c->ro_mount);
584 if (!c->ro_mount ||
585 c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
586 ubifs_err(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
587 c->fmt_version, c->ro_compat_version,
588 UBIFS_FORMAT_VERSION,
589 UBIFS_RO_COMPAT_VERSION);
590 if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
591 ubifs_msg(c, "only R/O mounting is possible");
592 err = -EROFS;
593 } else
594 err = -EINVAL;
595 goto out;
596 }
597
598 /*
599 * The FS is mounted R/O, and the media format is
600 * R/O-compatible with the UBIFS implementation, so we can
601 * mount.
602 */
603 c->rw_incompat = 1;
604 }
605
606 if (c->fmt_version < 3) {
607 ubifs_err(c, "on-flash format version %d is not supported",
608 c->fmt_version);
609 err = -EINVAL;
610 goto out;
611 }
612
613 switch (sup->key_hash) {
614 case UBIFS_KEY_HASH_R5:
615 c->key_hash = key_r5_hash;
616 c->key_hash_type = UBIFS_KEY_HASH_R5;
617 break;
618
619 case UBIFS_KEY_HASH_TEST:
620 c->key_hash = key_test_hash;
621 c->key_hash_type = UBIFS_KEY_HASH_TEST;
622 break;
623 };
624
625 c->key_fmt = sup->key_fmt;
626
627 switch (c->key_fmt) {
628 case UBIFS_SIMPLE_KEY_FMT:
629 c->key_len = UBIFS_SK_LEN;
630 break;
631 default:
632 ubifs_err(c, "unsupported key format");
633 err = -EINVAL;
634 goto out;
635 }
636
637 c->leb_cnt = le32_to_cpu(sup->leb_cnt);
638 c->max_leb_cnt = le32_to_cpu(sup->max_leb_cnt);
639 c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
640 c->log_lebs = le32_to_cpu(sup->log_lebs);
641 c->lpt_lebs = le32_to_cpu(sup->lpt_lebs);
642 c->orph_lebs = le32_to_cpu(sup->orph_lebs);
643 c->jhead_cnt = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
644 c->fanout = le32_to_cpu(sup->fanout);
645 c->lsave_cnt = le32_to_cpu(sup->lsave_cnt);
646 c->rp_size = le64_to_cpu(sup->rp_size);
647 c->rp_uid = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid));
648 c->rp_gid = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid));
649 sup_flags = le32_to_cpu(sup->flags);
650 if (!c->mount_opts.override_compr)
651 c->default_compr = le16_to_cpu(sup->default_compr);
652
653 c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
654 memcpy(&c->uuid, &sup->uuid, 16);
655 c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
656 c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
657 c->double_hash = !!(sup_flags & UBIFS_FLG_DOUBLE_HASH);
658 c->encrypted = !!(sup_flags & UBIFS_FLG_ENCRYPTION);
659
660 if ((sup_flags & ~UBIFS_FLG_MASK) != 0) {
661 ubifs_err(c, "Unknown feature flags found: %#x",
662 sup_flags & ~UBIFS_FLG_MASK);
663 err = -EINVAL;
664 goto out;
665 }
666
667#ifndef CONFIG_FS_ENCRYPTION
668 if (c->encrypted) {
669 ubifs_err(c, "file system contains encrypted files but UBIFS"
670 " was built without crypto support.");
671 err = -EINVAL;
672 goto out;
673 }
674#endif
675
676 /* Automatically increase file system size to the maximum size */
677 c->old_leb_cnt = c->leb_cnt;
678 if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
679 c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
680 if (c->ro_mount)
681 dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
682 c->old_leb_cnt, c->leb_cnt);
683 else {
684 dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
685 c->old_leb_cnt, c->leb_cnt);
686 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
687 err = ubifs_write_sb_node(c, sup);
688 if (err)
689 goto out;
690 c->old_leb_cnt = c->leb_cnt;
691 }
692 }
693
694 c->log_bytes = (long long)c->log_lebs * c->leb_size;
695 c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
696 c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
697 c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
698 c->orph_first = c->lpt_last + 1;
699 c->orph_last = c->orph_first + c->orph_lebs - 1;
700 c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
701 c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
702 c->main_first = c->leb_cnt - c->main_lebs;
703
704 err = validate_sb(c, sup);
705out:
706 kfree(sup);
707 return err;
708}
709
710/**
711 * fixup_leb - fixup/unmap an LEB containing free space.
712 * @c: UBIFS file-system description object
713 * @lnum: the LEB number to fix up
714 * @len: number of used bytes in LEB (starting at offset 0)
715 *
716 * This function reads the contents of the given LEB number @lnum, then fixes
717 * it up, so that empty min. I/O units in the end of LEB are actually erased on
718 * flash (rather than being just all-0xff real data). If the LEB is completely
719 * empty, it is simply unmapped.
720 */
721static int fixup_leb(struct ubifs_info *c, int lnum, int len)
722{
723 int err;
724
725 ubifs_assert(c, len >= 0);
726 ubifs_assert(c, len % c->min_io_size == 0);
727 ubifs_assert(c, len < c->leb_size);
728
729 if (len == 0) {
730 dbg_mnt("unmap empty LEB %d", lnum);
731 return ubifs_leb_unmap(c, lnum);
732 }
733
734 dbg_mnt("fixup LEB %d, data len %d", lnum, len);
735 err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
736 if (err)
737 return err;
738
739 return ubifs_leb_change(c, lnum, c->sbuf, len);
740}
741
742/**
743 * fixup_free_space - find & remap all LEBs containing free space.
744 * @c: UBIFS file-system description object
745 *
746 * This function walks through all LEBs in the filesystem and fiexes up those
747 * containing free/empty space.
748 */
749static int fixup_free_space(struct ubifs_info *c)
750{
751 int lnum, err = 0;
752 struct ubifs_lprops *lprops;
753
754 ubifs_get_lprops(c);
755
756 /* Fixup LEBs in the master area */
757 for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
758 err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
759 if (err)
760 goto out;
761 }
762
763 /* Unmap unused log LEBs */
764 lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
765 while (lnum != c->ltail_lnum) {
766 err = fixup_leb(c, lnum, 0);
767 if (err)
768 goto out;
769 lnum = ubifs_next_log_lnum(c, lnum);
770 }
771
772 /*
773 * Fixup the log head which contains the only a CS node at the
774 * beginning.
775 */
776 err = fixup_leb(c, c->lhead_lnum,
777 ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size));
778 if (err)
779 goto out;
780
781 /* Fixup LEBs in the LPT area */
782 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
783 int free = c->ltab[lnum - c->lpt_first].free;
784
785 if (free > 0) {
786 err = fixup_leb(c, lnum, c->leb_size - free);
787 if (err)
788 goto out;
789 }
790 }
791
792 /* Unmap LEBs in the orphans area */
793 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
794 err = fixup_leb(c, lnum, 0);
795 if (err)
796 goto out;
797 }
798
799 /* Fixup LEBs in the main area */
800 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
801 lprops = ubifs_lpt_lookup(c, lnum);
802 if (IS_ERR(lprops)) {
803 err = PTR_ERR(lprops);
804 goto out;
805 }
806
807 if (lprops->free > 0) {
808 err = fixup_leb(c, lnum, c->leb_size - lprops->free);
809 if (err)
810 goto out;
811 }
812 }
813
814out:
815 ubifs_release_lprops(c);
816 return err;
817}
818
819/**
820 * ubifs_fixup_free_space - find & fix all LEBs with free space.
821 * @c: UBIFS file-system description object
822 *
823 * This function fixes up LEBs containing free space on first mount, if the
824 * appropriate flag was set when the FS was created. Each LEB with one or more
825 * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
826 * the free space is actually erased. E.g., this is necessary for some NAND
827 * chips, since the free space may have been programmed like real "0xff" data
828 * (generating a non-0xff ECC), causing future writes to the not-really-erased
829 * NAND pages to behave badly. After the space is fixed up, the superblock flag
830 * is cleared, so that this is skipped for all future mounts.
831 */
832int ubifs_fixup_free_space(struct ubifs_info *c)
833{
834 int err;
835 struct ubifs_sb_node *sup;
836
837 ubifs_assert(c, c->space_fixup);
838 ubifs_assert(c, !c->ro_mount);
839
840 ubifs_msg(c, "start fixing up free space");
841
842 err = fixup_free_space(c);
843 if (err)
844 return err;
845
846 sup = ubifs_read_sb_node(c);
847 if (IS_ERR(sup))
848 return PTR_ERR(sup);
849
850 /* Free-space fixup is no longer required */
851 c->space_fixup = 0;
852 sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
853
854 err = ubifs_write_sb_node(c, sup);
855 kfree(sup);
856 if (err)
857 return err;
858
859 ubifs_msg(c, "free space fixup complete");
860 return err;
861}
862
863int ubifs_enable_encryption(struct ubifs_info *c)
864{
865 int err;
866 struct ubifs_sb_node *sup;
867
868 if (c->encrypted)
869 return 0;
870
871 if (c->ro_mount || c->ro_media)
872 return -EROFS;
873
874 if (c->fmt_version < 5) {
875 ubifs_err(c, "on-flash format version 5 is needed for encryption");
876 return -EINVAL;
877 }
878
879 sup = ubifs_read_sb_node(c);
880 if (IS_ERR(sup))
881 return PTR_ERR(sup);
882
883 sup->flags |= cpu_to_le32(UBIFS_FLG_ENCRYPTION);
884
885 err = ubifs_write_sb_node(c, sup);
886 if (!err)
887 c->encrypted = 1;
888 kfree(sup);
889
890 return err;
891}