| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* memcontrol.c - Memory Controller | 
|  | 2 | * | 
|  | 3 | * Copyright IBM Corporation, 2007 | 
|  | 4 | * Author Balbir Singh <balbir@linux.vnet.ibm.com> | 
|  | 5 | * | 
|  | 6 | * Copyright 2007 OpenVZ SWsoft Inc | 
|  | 7 | * Author: Pavel Emelianov <xemul@openvz.org> | 
|  | 8 | * | 
|  | 9 | * Memory thresholds | 
|  | 10 | * Copyright (C) 2009 Nokia Corporation | 
|  | 11 | * Author: Kirill A. Shutemov | 
|  | 12 | * | 
|  | 13 | * Kernel Memory Controller | 
|  | 14 | * Copyright (C) 2012 Parallels Inc. and Google Inc. | 
|  | 15 | * Authors: Glauber Costa and Suleiman Souhlal | 
|  | 16 | * | 
|  | 17 | * Native page reclaim | 
|  | 18 | * Charge lifetime sanitation | 
|  | 19 | * Lockless page tracking & accounting | 
|  | 20 | * Unified hierarchy configuration model | 
|  | 21 | * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner | 
|  | 22 | * | 
|  | 23 | * This program is free software; you can redistribute it and/or modify | 
|  | 24 | * it under the terms of the GNU General Public License as published by | 
|  | 25 | * the Free Software Foundation; either version 2 of the License, or | 
|  | 26 | * (at your option) any later version. | 
|  | 27 | * | 
|  | 28 | * This program is distributed in the hope that it will be useful, | 
|  | 29 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 30 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | 31 | * GNU General Public License for more details. | 
|  | 32 | */ | 
|  | 33 |  | 
|  | 34 | #include <linux/page_counter.h> | 
|  | 35 | #include <linux/memcontrol.h> | 
|  | 36 | #include <linux/cgroup.h> | 
|  | 37 | #include <linux/mm.h> | 
|  | 38 | #include <linux/sched/mm.h> | 
|  | 39 | #include <linux/shmem_fs.h> | 
|  | 40 | #include <linux/hugetlb.h> | 
|  | 41 | #include <linux/pagemap.h> | 
|  | 42 | #include <linux/smp.h> | 
|  | 43 | #include <linux/page-flags.h> | 
|  | 44 | #include <linux/backing-dev.h> | 
|  | 45 | #include <linux/bit_spinlock.h> | 
|  | 46 | #include <linux/rcupdate.h> | 
|  | 47 | #include <linux/limits.h> | 
|  | 48 | #include <linux/export.h> | 
|  | 49 | #include <linux/mutex.h> | 
|  | 50 | #include <linux/rbtree.h> | 
|  | 51 | #include <linux/slab.h> | 
|  | 52 | #include <linux/swap.h> | 
|  | 53 | #include <linux/swapops.h> | 
|  | 54 | #include <linux/spinlock.h> | 
|  | 55 | #include <linux/eventfd.h> | 
|  | 56 | #include <linux/poll.h> | 
|  | 57 | #include <linux/sort.h> | 
|  | 58 | #include <linux/fs.h> | 
|  | 59 | #include <linux/seq_file.h> | 
|  | 60 | #include <linux/vmpressure.h> | 
|  | 61 | #include <linux/mm_inline.h> | 
|  | 62 | #include <linux/swap_cgroup.h> | 
|  | 63 | #include <linux/cpu.h> | 
|  | 64 | #include <linux/oom.h> | 
|  | 65 | #include <linux/lockdep.h> | 
|  | 66 | #include <linux/file.h> | 
|  | 67 | #include <linux/tracehook.h> | 
|  | 68 | #include "internal.h" | 
|  | 69 | #include <net/sock.h> | 
|  | 70 | #include <net/ip.h> | 
|  | 71 | #include "slab.h" | 
|  | 72 |  | 
|  | 73 | #include <linux/uaccess.h> | 
|  | 74 |  | 
|  | 75 | #include <trace/events/vmscan.h> | 
|  | 76 |  | 
|  | 77 | struct cgroup_subsys memory_cgrp_subsys __read_mostly; | 
|  | 78 | EXPORT_SYMBOL(memory_cgrp_subsys); | 
|  | 79 |  | 
|  | 80 | struct mem_cgroup *root_mem_cgroup __read_mostly; | 
|  | 81 |  | 
|  | 82 | #define MEM_CGROUP_RECLAIM_RETRIES	5 | 
|  | 83 |  | 
|  | 84 | /* Socket memory accounting disabled? */ | 
|  | 85 | static bool cgroup_memory_nosocket; | 
|  | 86 |  | 
|  | 87 | /* Kernel memory accounting disabled? */ | 
|  | 88 | static bool cgroup_memory_nokmem; | 
|  | 89 |  | 
|  | 90 | /* Whether the swap controller is active */ | 
|  | 91 | #ifdef CONFIG_MEMCG_SWAP | 
|  | 92 | int do_swap_account __read_mostly; | 
|  | 93 | #else | 
|  | 94 | #define do_swap_account		0 | 
|  | 95 | #endif | 
|  | 96 |  | 
|  | 97 | /* Whether legacy memory+swap accounting is active */ | 
|  | 98 | static bool do_memsw_account(void) | 
|  | 99 | { | 
|  | 100 | return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; | 
|  | 101 | } | 
|  | 102 |  | 
|  | 103 | static const char *const mem_cgroup_lru_names[] = { | 
|  | 104 | "inactive_anon", | 
|  | 105 | "active_anon", | 
|  | 106 | "inactive_file", | 
|  | 107 | "active_file", | 
|  | 108 | "unevictable", | 
|  | 109 | }; | 
|  | 110 |  | 
|  | 111 | #define THRESHOLDS_EVENTS_TARGET 128 | 
|  | 112 | #define SOFTLIMIT_EVENTS_TARGET 1024 | 
|  | 113 | #define NUMAINFO_EVENTS_TARGET	1024 | 
|  | 114 |  | 
|  | 115 | /* | 
|  | 116 | * Cgroups above their limits are maintained in a RB-Tree, independent of | 
|  | 117 | * their hierarchy representation | 
|  | 118 | */ | 
|  | 119 |  | 
|  | 120 | struct mem_cgroup_tree_per_node { | 
|  | 121 | struct rb_root rb_root; | 
|  | 122 | struct rb_node *rb_rightmost; | 
|  | 123 | spinlock_t lock; | 
|  | 124 | }; | 
|  | 125 |  | 
|  | 126 | struct mem_cgroup_tree { | 
|  | 127 | struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; | 
|  | 128 | }; | 
|  | 129 |  | 
|  | 130 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; | 
|  | 131 |  | 
|  | 132 | /* for OOM */ | 
|  | 133 | struct mem_cgroup_eventfd_list { | 
|  | 134 | struct list_head list; | 
|  | 135 | struct eventfd_ctx *eventfd; | 
|  | 136 | }; | 
|  | 137 |  | 
|  | 138 | /* | 
|  | 139 | * cgroup_event represents events which userspace want to receive. | 
|  | 140 | */ | 
|  | 141 | struct mem_cgroup_event { | 
|  | 142 | /* | 
|  | 143 | * memcg which the event belongs to. | 
|  | 144 | */ | 
|  | 145 | struct mem_cgroup *memcg; | 
|  | 146 | /* | 
|  | 147 | * eventfd to signal userspace about the event. | 
|  | 148 | */ | 
|  | 149 | struct eventfd_ctx *eventfd; | 
|  | 150 | /* | 
|  | 151 | * Each of these stored in a list by the cgroup. | 
|  | 152 | */ | 
|  | 153 | struct list_head list; | 
|  | 154 | /* | 
|  | 155 | * register_event() callback will be used to add new userspace | 
|  | 156 | * waiter for changes related to this event.  Use eventfd_signal() | 
|  | 157 | * on eventfd to send notification to userspace. | 
|  | 158 | */ | 
|  | 159 | int (*register_event)(struct mem_cgroup *memcg, | 
|  | 160 | struct eventfd_ctx *eventfd, const char *args); | 
|  | 161 | /* | 
|  | 162 | * unregister_event() callback will be called when userspace closes | 
|  | 163 | * the eventfd or on cgroup removing.  This callback must be set, | 
|  | 164 | * if you want provide notification functionality. | 
|  | 165 | */ | 
|  | 166 | void (*unregister_event)(struct mem_cgroup *memcg, | 
|  | 167 | struct eventfd_ctx *eventfd); | 
|  | 168 | /* | 
|  | 169 | * All fields below needed to unregister event when | 
|  | 170 | * userspace closes eventfd. | 
|  | 171 | */ | 
|  | 172 | poll_table pt; | 
|  | 173 | wait_queue_head_t *wqh; | 
|  | 174 | wait_queue_entry_t wait; | 
|  | 175 | struct work_struct remove; | 
|  | 176 | }; | 
|  | 177 |  | 
|  | 178 | static void mem_cgroup_threshold(struct mem_cgroup *memcg); | 
|  | 179 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); | 
|  | 180 |  | 
|  | 181 | /* Stuffs for move charges at task migration. */ | 
|  | 182 | /* | 
|  | 183 | * Types of charges to be moved. | 
|  | 184 | */ | 
|  | 185 | #define MOVE_ANON	0x1U | 
|  | 186 | #define MOVE_FILE	0x2U | 
|  | 187 | #define MOVE_MASK	(MOVE_ANON | MOVE_FILE) | 
|  | 188 |  | 
|  | 189 | /* "mc" and its members are protected by cgroup_mutex */ | 
|  | 190 | static struct move_charge_struct { | 
|  | 191 | spinlock_t	  lock; /* for from, to */ | 
|  | 192 | struct mm_struct  *mm; | 
|  | 193 | struct mem_cgroup *from; | 
|  | 194 | struct mem_cgroup *to; | 
|  | 195 | unsigned long flags; | 
|  | 196 | unsigned long precharge; | 
|  | 197 | unsigned long moved_charge; | 
|  | 198 | unsigned long moved_swap; | 
|  | 199 | struct task_struct *moving_task;	/* a task moving charges */ | 
|  | 200 | wait_queue_head_t waitq;		/* a waitq for other context */ | 
|  | 201 | } mc = { | 
|  | 202 | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), | 
|  | 203 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), | 
|  | 204 | }; | 
|  | 205 |  | 
|  | 206 | /* | 
|  | 207 | * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft | 
|  | 208 | * limit reclaim to prevent infinite loops, if they ever occur. | 
|  | 209 | */ | 
|  | 210 | #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100 | 
|  | 211 | #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2 | 
|  | 212 |  | 
|  | 213 | enum charge_type { | 
|  | 214 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | 
|  | 215 | MEM_CGROUP_CHARGE_TYPE_ANON, | 
|  | 216 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */ | 
|  | 217 | MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */ | 
|  | 218 | NR_CHARGE_TYPE, | 
|  | 219 | }; | 
|  | 220 |  | 
|  | 221 | /* for encoding cft->private value on file */ | 
|  | 222 | enum res_type { | 
|  | 223 | _MEM, | 
|  | 224 | _MEMSWAP, | 
|  | 225 | _OOM_TYPE, | 
|  | 226 | _KMEM, | 
|  | 227 | _TCP, | 
|  | 228 | }; | 
|  | 229 |  | 
|  | 230 | #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val)) | 
|  | 231 | #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff) | 
|  | 232 | #define MEMFILE_ATTR(val)	((val) & 0xffff) | 
|  | 233 | /* Used for OOM nofiier */ | 
|  | 234 | #define OOM_CONTROL		(0) | 
|  | 235 |  | 
|  | 236 | /* | 
|  | 237 | * Iteration constructs for visiting all cgroups (under a tree).  If | 
|  | 238 | * loops are exited prematurely (break), mem_cgroup_iter_break() must | 
|  | 239 | * be used for reference counting. | 
|  | 240 | */ | 
|  | 241 | #define for_each_mem_cgroup_tree(iter, root)		\ | 
|  | 242 | for (iter = mem_cgroup_iter(root, NULL, NULL);	\ | 
|  | 243 | iter != NULL;				\ | 
|  | 244 | iter = mem_cgroup_iter(root, iter, NULL)) | 
|  | 245 |  | 
|  | 246 | #define for_each_mem_cgroup(iter)			\ | 
|  | 247 | for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\ | 
|  | 248 | iter != NULL;				\ | 
|  | 249 | iter = mem_cgroup_iter(NULL, iter, NULL)) | 
|  | 250 |  | 
|  | 251 | static inline bool should_force_charge(void) | 
|  | 252 | { | 
|  | 253 | return tsk_is_oom_victim(current) || fatal_signal_pending(current) || | 
|  | 254 | (current->flags & PF_EXITING); | 
|  | 255 | } | 
|  | 256 |  | 
|  | 257 | /* Some nice accessors for the vmpressure. */ | 
|  | 258 | struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) | 
|  | 259 | { | 
|  | 260 | if (!memcg) | 
|  | 261 | memcg = root_mem_cgroup; | 
|  | 262 | return &memcg->vmpressure; | 
|  | 263 | } | 
|  | 264 |  | 
|  | 265 | struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) | 
|  | 266 | { | 
|  | 267 | return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; | 
|  | 268 | } | 
|  | 269 |  | 
|  | 270 | #ifdef CONFIG_MEMCG_KMEM | 
|  | 271 | /* | 
|  | 272 | * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. | 
|  | 273 | * The main reason for not using cgroup id for this: | 
|  | 274 | *  this works better in sparse environments, where we have a lot of memcgs, | 
|  | 275 | *  but only a few kmem-limited. Or also, if we have, for instance, 200 | 
|  | 276 | *  memcgs, and none but the 200th is kmem-limited, we'd have to have a | 
|  | 277 | *  200 entry array for that. | 
|  | 278 | * | 
|  | 279 | * The current size of the caches array is stored in memcg_nr_cache_ids. It | 
|  | 280 | * will double each time we have to increase it. | 
|  | 281 | */ | 
|  | 282 | static DEFINE_IDA(memcg_cache_ida); | 
|  | 283 | int memcg_nr_cache_ids; | 
|  | 284 |  | 
|  | 285 | /* Protects memcg_nr_cache_ids */ | 
|  | 286 | static DECLARE_RWSEM(memcg_cache_ids_sem); | 
|  | 287 |  | 
|  | 288 | void memcg_get_cache_ids(void) | 
|  | 289 | { | 
|  | 290 | down_read(&memcg_cache_ids_sem); | 
|  | 291 | } | 
|  | 292 |  | 
|  | 293 | void memcg_put_cache_ids(void) | 
|  | 294 | { | 
|  | 295 | up_read(&memcg_cache_ids_sem); | 
|  | 296 | } | 
|  | 297 |  | 
|  | 298 | /* | 
|  | 299 | * MIN_SIZE is different than 1, because we would like to avoid going through | 
|  | 300 | * the alloc/free process all the time. In a small machine, 4 kmem-limited | 
|  | 301 | * cgroups is a reasonable guess. In the future, it could be a parameter or | 
|  | 302 | * tunable, but that is strictly not necessary. | 
|  | 303 | * | 
|  | 304 | * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get | 
|  | 305 | * this constant directly from cgroup, but it is understandable that this is | 
|  | 306 | * better kept as an internal representation in cgroup.c. In any case, the | 
|  | 307 | * cgrp_id space is not getting any smaller, and we don't have to necessarily | 
|  | 308 | * increase ours as well if it increases. | 
|  | 309 | */ | 
|  | 310 | #define MEMCG_CACHES_MIN_SIZE 4 | 
|  | 311 | #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX | 
|  | 312 |  | 
|  | 313 | /* | 
|  | 314 | * A lot of the calls to the cache allocation functions are expected to be | 
|  | 315 | * inlined by the compiler. Since the calls to memcg_kmem_get_cache are | 
|  | 316 | * conditional to this static branch, we'll have to allow modules that does | 
|  | 317 | * kmem_cache_alloc and the such to see this symbol as well | 
|  | 318 | */ | 
|  | 319 | DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); | 
|  | 320 | EXPORT_SYMBOL(memcg_kmem_enabled_key); | 
|  | 321 |  | 
|  | 322 | struct workqueue_struct *memcg_kmem_cache_wq; | 
|  | 323 |  | 
|  | 324 | static int memcg_shrinker_map_size; | 
|  | 325 | static DEFINE_MUTEX(memcg_shrinker_map_mutex); | 
|  | 326 |  | 
|  | 327 | static void memcg_free_shrinker_map_rcu(struct rcu_head *head) | 
|  | 328 | { | 
|  | 329 | kvfree(container_of(head, struct memcg_shrinker_map, rcu)); | 
|  | 330 | } | 
|  | 331 |  | 
|  | 332 | static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, | 
|  | 333 | int size, int old_size) | 
|  | 334 | { | 
|  | 335 | struct memcg_shrinker_map *new, *old; | 
|  | 336 | int nid; | 
|  | 337 |  | 
|  | 338 | lockdep_assert_held(&memcg_shrinker_map_mutex); | 
|  | 339 |  | 
|  | 340 | for_each_node(nid) { | 
|  | 341 | old = rcu_dereference_protected( | 
|  | 342 | mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); | 
|  | 343 | /* Not yet online memcg */ | 
|  | 344 | if (!old) | 
|  | 345 | return 0; | 
|  | 346 |  | 
|  | 347 | new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); | 
|  | 348 | if (!new) | 
|  | 349 | return -ENOMEM; | 
|  | 350 |  | 
|  | 351 | /* Set all old bits, clear all new bits */ | 
|  | 352 | memset(new->map, (int)0xff, old_size); | 
|  | 353 | memset((void *)new->map + old_size, 0, size - old_size); | 
|  | 354 |  | 
|  | 355 | rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); | 
|  | 356 | call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); | 
|  | 357 | } | 
|  | 358 |  | 
|  | 359 | return 0; | 
|  | 360 | } | 
|  | 361 |  | 
|  | 362 | static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) | 
|  | 363 | { | 
|  | 364 | struct mem_cgroup_per_node *pn; | 
|  | 365 | struct memcg_shrinker_map *map; | 
|  | 366 | int nid; | 
|  | 367 |  | 
|  | 368 | if (mem_cgroup_is_root(memcg)) | 
|  | 369 | return; | 
|  | 370 |  | 
|  | 371 | for_each_node(nid) { | 
|  | 372 | pn = mem_cgroup_nodeinfo(memcg, nid); | 
|  | 373 | map = rcu_dereference_protected(pn->shrinker_map, true); | 
|  | 374 | if (map) | 
|  | 375 | kvfree(map); | 
|  | 376 | rcu_assign_pointer(pn->shrinker_map, NULL); | 
|  | 377 | } | 
|  | 378 | } | 
|  | 379 |  | 
|  | 380 | static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) | 
|  | 381 | { | 
|  | 382 | struct memcg_shrinker_map *map; | 
|  | 383 | int nid, size, ret = 0; | 
|  | 384 |  | 
|  | 385 | if (mem_cgroup_is_root(memcg)) | 
|  | 386 | return 0; | 
|  | 387 |  | 
|  | 388 | mutex_lock(&memcg_shrinker_map_mutex); | 
|  | 389 | size = memcg_shrinker_map_size; | 
|  | 390 | for_each_node(nid) { | 
|  | 391 | map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); | 
|  | 392 | if (!map) { | 
|  | 393 | memcg_free_shrinker_maps(memcg); | 
|  | 394 | ret = -ENOMEM; | 
|  | 395 | break; | 
|  | 396 | } | 
|  | 397 | rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); | 
|  | 398 | } | 
|  | 399 | mutex_unlock(&memcg_shrinker_map_mutex); | 
|  | 400 |  | 
|  | 401 | return ret; | 
|  | 402 | } | 
|  | 403 |  | 
|  | 404 | int memcg_expand_shrinker_maps(int new_id) | 
|  | 405 | { | 
|  | 406 | int size, old_size, ret = 0; | 
|  | 407 | struct mem_cgroup *memcg; | 
|  | 408 |  | 
|  | 409 | size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); | 
|  | 410 | old_size = memcg_shrinker_map_size; | 
|  | 411 | if (size <= old_size) | 
|  | 412 | return 0; | 
|  | 413 |  | 
|  | 414 | mutex_lock(&memcg_shrinker_map_mutex); | 
|  | 415 | if (!root_mem_cgroup) | 
|  | 416 | goto unlock; | 
|  | 417 |  | 
|  | 418 | for_each_mem_cgroup(memcg) { | 
|  | 419 | if (mem_cgroup_is_root(memcg)) | 
|  | 420 | continue; | 
|  | 421 | ret = memcg_expand_one_shrinker_map(memcg, size, old_size); | 
|  | 422 | if (ret) | 
|  | 423 | goto unlock; | 
|  | 424 | } | 
|  | 425 | unlock: | 
|  | 426 | if (!ret) | 
|  | 427 | memcg_shrinker_map_size = size; | 
|  | 428 | mutex_unlock(&memcg_shrinker_map_mutex); | 
|  | 429 | return ret; | 
|  | 430 | } | 
|  | 431 |  | 
|  | 432 | void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) | 
|  | 433 | { | 
|  | 434 | if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { | 
|  | 435 | struct memcg_shrinker_map *map; | 
|  | 436 |  | 
|  | 437 | rcu_read_lock(); | 
|  | 438 | map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); | 
|  | 439 | /* Pairs with smp mb in shrink_slab() */ | 
|  | 440 | smp_mb__before_atomic(); | 
|  | 441 | set_bit(shrinker_id, map->map); | 
|  | 442 | rcu_read_unlock(); | 
|  | 443 | } | 
|  | 444 | } | 
|  | 445 |  | 
|  | 446 | #else /* CONFIG_MEMCG_KMEM */ | 
|  | 447 | static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) | 
|  | 448 | { | 
|  | 449 | return 0; | 
|  | 450 | } | 
|  | 451 | static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { } | 
|  | 452 | #endif /* CONFIG_MEMCG_KMEM */ | 
|  | 453 |  | 
|  | 454 | /** | 
|  | 455 | * mem_cgroup_css_from_page - css of the memcg associated with a page | 
|  | 456 | * @page: page of interest | 
|  | 457 | * | 
|  | 458 | * If memcg is bound to the default hierarchy, css of the memcg associated | 
|  | 459 | * with @page is returned.  The returned css remains associated with @page | 
|  | 460 | * until it is released. | 
|  | 461 | * | 
|  | 462 | * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup | 
|  | 463 | * is returned. | 
|  | 464 | */ | 
|  | 465 | struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) | 
|  | 466 | { | 
|  | 467 | struct mem_cgroup *memcg; | 
|  | 468 |  | 
|  | 469 | memcg = page->mem_cgroup; | 
|  | 470 |  | 
|  | 471 | if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | 472 | memcg = root_mem_cgroup; | 
|  | 473 |  | 
|  | 474 | return &memcg->css; | 
|  | 475 | } | 
|  | 476 |  | 
|  | 477 | /** | 
|  | 478 | * page_cgroup_ino - return inode number of the memcg a page is charged to | 
|  | 479 | * @page: the page | 
|  | 480 | * | 
|  | 481 | * Look up the closest online ancestor of the memory cgroup @page is charged to | 
|  | 482 | * and return its inode number or 0 if @page is not charged to any cgroup. It | 
|  | 483 | * is safe to call this function without holding a reference to @page. | 
|  | 484 | * | 
|  | 485 | * Note, this function is inherently racy, because there is nothing to prevent | 
|  | 486 | * the cgroup inode from getting torn down and potentially reallocated a moment | 
|  | 487 | * after page_cgroup_ino() returns, so it only should be used by callers that | 
|  | 488 | * do not care (such as procfs interfaces). | 
|  | 489 | */ | 
|  | 490 | ino_t page_cgroup_ino(struct page *page) | 
|  | 491 | { | 
|  | 492 | struct mem_cgroup *memcg; | 
|  | 493 | unsigned long ino = 0; | 
|  | 494 |  | 
|  | 495 | rcu_read_lock(); | 
|  | 496 | memcg = READ_ONCE(page->mem_cgroup); | 
|  | 497 | while (memcg && !(memcg->css.flags & CSS_ONLINE)) | 
|  | 498 | memcg = parent_mem_cgroup(memcg); | 
|  | 499 | if (memcg) | 
|  | 500 | ino = cgroup_ino(memcg->css.cgroup); | 
|  | 501 | rcu_read_unlock(); | 
|  | 502 | return ino; | 
|  | 503 | } | 
|  | 504 |  | 
|  | 505 | static struct mem_cgroup_per_node * | 
|  | 506 | mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) | 
|  | 507 | { | 
|  | 508 | int nid = page_to_nid(page); | 
|  | 509 |  | 
|  | 510 | return memcg->nodeinfo[nid]; | 
|  | 511 | } | 
|  | 512 |  | 
|  | 513 | static struct mem_cgroup_tree_per_node * | 
|  | 514 | soft_limit_tree_node(int nid) | 
|  | 515 | { | 
|  | 516 | return soft_limit_tree.rb_tree_per_node[nid]; | 
|  | 517 | } | 
|  | 518 |  | 
|  | 519 | static struct mem_cgroup_tree_per_node * | 
|  | 520 | soft_limit_tree_from_page(struct page *page) | 
|  | 521 | { | 
|  | 522 | int nid = page_to_nid(page); | 
|  | 523 |  | 
|  | 524 | return soft_limit_tree.rb_tree_per_node[nid]; | 
|  | 525 | } | 
|  | 526 |  | 
|  | 527 | static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, | 
|  | 528 | struct mem_cgroup_tree_per_node *mctz, | 
|  | 529 | unsigned long new_usage_in_excess) | 
|  | 530 | { | 
|  | 531 | struct rb_node **p = &mctz->rb_root.rb_node; | 
|  | 532 | struct rb_node *parent = NULL; | 
|  | 533 | struct mem_cgroup_per_node *mz_node; | 
|  | 534 | bool rightmost = true; | 
|  | 535 |  | 
|  | 536 | if (mz->on_tree) | 
|  | 537 | return; | 
|  | 538 |  | 
|  | 539 | mz->usage_in_excess = new_usage_in_excess; | 
|  | 540 | if (!mz->usage_in_excess) | 
|  | 541 | return; | 
|  | 542 | while (*p) { | 
|  | 543 | parent = *p; | 
|  | 544 | mz_node = rb_entry(parent, struct mem_cgroup_per_node, | 
|  | 545 | tree_node); | 
|  | 546 | if (mz->usage_in_excess < mz_node->usage_in_excess) { | 
|  | 547 | p = &(*p)->rb_left; | 
|  | 548 | rightmost = false; | 
|  | 549 | } | 
|  | 550 |  | 
|  | 551 | /* | 
|  | 552 | * We can't avoid mem cgroups that are over their soft | 
|  | 553 | * limit by the same amount | 
|  | 554 | */ | 
|  | 555 | else if (mz->usage_in_excess >= mz_node->usage_in_excess) | 
|  | 556 | p = &(*p)->rb_right; | 
|  | 557 | } | 
|  | 558 |  | 
|  | 559 | if (rightmost) | 
|  | 560 | mctz->rb_rightmost = &mz->tree_node; | 
|  | 561 |  | 
|  | 562 | rb_link_node(&mz->tree_node, parent, p); | 
|  | 563 | rb_insert_color(&mz->tree_node, &mctz->rb_root); | 
|  | 564 | mz->on_tree = true; | 
|  | 565 | } | 
|  | 566 |  | 
|  | 567 | static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, | 
|  | 568 | struct mem_cgroup_tree_per_node *mctz) | 
|  | 569 | { | 
|  | 570 | if (!mz->on_tree) | 
|  | 571 | return; | 
|  | 572 |  | 
|  | 573 | if (&mz->tree_node == mctz->rb_rightmost) | 
|  | 574 | mctz->rb_rightmost = rb_prev(&mz->tree_node); | 
|  | 575 |  | 
|  | 576 | rb_erase(&mz->tree_node, &mctz->rb_root); | 
|  | 577 | mz->on_tree = false; | 
|  | 578 | } | 
|  | 579 |  | 
|  | 580 | static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, | 
|  | 581 | struct mem_cgroup_tree_per_node *mctz) | 
|  | 582 | { | 
|  | 583 | unsigned long flags; | 
|  | 584 |  | 
|  | 585 | spin_lock_irqsave(&mctz->lock, flags); | 
|  | 586 | __mem_cgroup_remove_exceeded(mz, mctz); | 
|  | 587 | spin_unlock_irqrestore(&mctz->lock, flags); | 
|  | 588 | } | 
|  | 589 |  | 
|  | 590 | static unsigned long soft_limit_excess(struct mem_cgroup *memcg) | 
|  | 591 | { | 
|  | 592 | unsigned long nr_pages = page_counter_read(&memcg->memory); | 
|  | 593 | unsigned long soft_limit = READ_ONCE(memcg->soft_limit); | 
|  | 594 | unsigned long excess = 0; | 
|  | 595 |  | 
|  | 596 | if (nr_pages > soft_limit) | 
|  | 597 | excess = nr_pages - soft_limit; | 
|  | 598 |  | 
|  | 599 | return excess; | 
|  | 600 | } | 
|  | 601 |  | 
|  | 602 | static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) | 
|  | 603 | { | 
|  | 604 | unsigned long excess; | 
|  | 605 | struct mem_cgroup_per_node *mz; | 
|  | 606 | struct mem_cgroup_tree_per_node *mctz; | 
|  | 607 |  | 
|  | 608 | mctz = soft_limit_tree_from_page(page); | 
|  | 609 | if (!mctz) | 
|  | 610 | return; | 
|  | 611 | /* | 
|  | 612 | * Necessary to update all ancestors when hierarchy is used. | 
|  | 613 | * because their event counter is not touched. | 
|  | 614 | */ | 
|  | 615 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { | 
|  | 616 | mz = mem_cgroup_page_nodeinfo(memcg, page); | 
|  | 617 | excess = soft_limit_excess(memcg); | 
|  | 618 | /* | 
|  | 619 | * We have to update the tree if mz is on RB-tree or | 
|  | 620 | * mem is over its softlimit. | 
|  | 621 | */ | 
|  | 622 | if (excess || mz->on_tree) { | 
|  | 623 | unsigned long flags; | 
|  | 624 |  | 
|  | 625 | spin_lock_irqsave(&mctz->lock, flags); | 
|  | 626 | /* if on-tree, remove it */ | 
|  | 627 | if (mz->on_tree) | 
|  | 628 | __mem_cgroup_remove_exceeded(mz, mctz); | 
|  | 629 | /* | 
|  | 630 | * Insert again. mz->usage_in_excess will be updated. | 
|  | 631 | * If excess is 0, no tree ops. | 
|  | 632 | */ | 
|  | 633 | __mem_cgroup_insert_exceeded(mz, mctz, excess); | 
|  | 634 | spin_unlock_irqrestore(&mctz->lock, flags); | 
|  | 635 | } | 
|  | 636 | } | 
|  | 637 | } | 
|  | 638 |  | 
|  | 639 | static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) | 
|  | 640 | { | 
|  | 641 | struct mem_cgroup_tree_per_node *mctz; | 
|  | 642 | struct mem_cgroup_per_node *mz; | 
|  | 643 | int nid; | 
|  | 644 |  | 
|  | 645 | for_each_node(nid) { | 
|  | 646 | mz = mem_cgroup_nodeinfo(memcg, nid); | 
|  | 647 | mctz = soft_limit_tree_node(nid); | 
|  | 648 | if (mctz) | 
|  | 649 | mem_cgroup_remove_exceeded(mz, mctz); | 
|  | 650 | } | 
|  | 651 | } | 
|  | 652 |  | 
|  | 653 | static struct mem_cgroup_per_node * | 
|  | 654 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) | 
|  | 655 | { | 
|  | 656 | struct mem_cgroup_per_node *mz; | 
|  | 657 |  | 
|  | 658 | retry: | 
|  | 659 | mz = NULL; | 
|  | 660 | if (!mctz->rb_rightmost) | 
|  | 661 | goto done;		/* Nothing to reclaim from */ | 
|  | 662 |  | 
|  | 663 | mz = rb_entry(mctz->rb_rightmost, | 
|  | 664 | struct mem_cgroup_per_node, tree_node); | 
|  | 665 | /* | 
|  | 666 | * Remove the node now but someone else can add it back, | 
|  | 667 | * we will to add it back at the end of reclaim to its correct | 
|  | 668 | * position in the tree. | 
|  | 669 | */ | 
|  | 670 | __mem_cgroup_remove_exceeded(mz, mctz); | 
|  | 671 | if (!soft_limit_excess(mz->memcg) || | 
|  | 672 | !css_tryget_online(&mz->memcg->css)) | 
|  | 673 | goto retry; | 
|  | 674 | done: | 
|  | 675 | return mz; | 
|  | 676 | } | 
|  | 677 |  | 
|  | 678 | static struct mem_cgroup_per_node * | 
|  | 679 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) | 
|  | 680 | { | 
|  | 681 | struct mem_cgroup_per_node *mz; | 
|  | 682 |  | 
|  | 683 | spin_lock_irq(&mctz->lock); | 
|  | 684 | mz = __mem_cgroup_largest_soft_limit_node(mctz); | 
|  | 685 | spin_unlock_irq(&mctz->lock); | 
|  | 686 | return mz; | 
|  | 687 | } | 
|  | 688 |  | 
|  | 689 | static unsigned long memcg_sum_events(struct mem_cgroup *memcg, | 
|  | 690 | int event) | 
|  | 691 | { | 
|  | 692 | return atomic_long_read(&memcg->events[event]); | 
|  | 693 | } | 
|  | 694 |  | 
|  | 695 | static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, | 
|  | 696 | struct page *page, | 
|  | 697 | bool compound, int nr_pages) | 
|  | 698 | { | 
|  | 699 | /* | 
|  | 700 | * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is | 
|  | 701 | * counted as CACHE even if it's on ANON LRU. | 
|  | 702 | */ | 
|  | 703 | if (PageAnon(page)) | 
|  | 704 | __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); | 
|  | 705 | else { | 
|  | 706 | __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); | 
|  | 707 | if (PageSwapBacked(page)) | 
|  | 708 | __mod_memcg_state(memcg, NR_SHMEM, nr_pages); | 
|  | 709 | } | 
|  | 710 |  | 
|  | 711 | if (compound) { | 
|  | 712 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | 
|  | 713 | __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); | 
|  | 714 | } | 
|  | 715 |  | 
|  | 716 | /* pagein of a big page is an event. So, ignore page size */ | 
|  | 717 | if (nr_pages > 0) | 
|  | 718 | __count_memcg_events(memcg, PGPGIN, 1); | 
|  | 719 | else { | 
|  | 720 | __count_memcg_events(memcg, PGPGOUT, 1); | 
|  | 721 | nr_pages = -nr_pages; /* for event */ | 
|  | 722 | } | 
|  | 723 |  | 
|  | 724 | __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages); | 
|  | 725 | } | 
|  | 726 |  | 
|  | 727 | unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, | 
|  | 728 | int nid, unsigned int lru_mask) | 
|  | 729 | { | 
|  | 730 | struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); | 
|  | 731 | unsigned long nr = 0; | 
|  | 732 | enum lru_list lru; | 
|  | 733 |  | 
|  | 734 | VM_BUG_ON((unsigned)nid >= nr_node_ids); | 
|  | 735 |  | 
|  | 736 | for_each_lru(lru) { | 
|  | 737 | if (!(BIT(lru) & lru_mask)) | 
|  | 738 | continue; | 
|  | 739 | nr += mem_cgroup_get_lru_size(lruvec, lru); | 
|  | 740 | } | 
|  | 741 | return nr; | 
|  | 742 | } | 
|  | 743 |  | 
|  | 744 | static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, | 
|  | 745 | unsigned int lru_mask) | 
|  | 746 | { | 
|  | 747 | unsigned long nr = 0; | 
|  | 748 | int nid; | 
|  | 749 |  | 
|  | 750 | for_each_node_state(nid, N_MEMORY) | 
|  | 751 | nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); | 
|  | 752 | return nr; | 
|  | 753 | } | 
|  | 754 |  | 
|  | 755 | static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, | 
|  | 756 | enum mem_cgroup_events_target target) | 
|  | 757 | { | 
|  | 758 | unsigned long val, next; | 
|  | 759 |  | 
|  | 760 | val = __this_cpu_read(memcg->stat_cpu->nr_page_events); | 
|  | 761 | next = __this_cpu_read(memcg->stat_cpu->targets[target]); | 
|  | 762 | /* from time_after() in jiffies.h */ | 
|  | 763 | if ((long)(next - val) < 0) { | 
|  | 764 | switch (target) { | 
|  | 765 | case MEM_CGROUP_TARGET_THRESH: | 
|  | 766 | next = val + THRESHOLDS_EVENTS_TARGET; | 
|  | 767 | break; | 
|  | 768 | case MEM_CGROUP_TARGET_SOFTLIMIT: | 
|  | 769 | next = val + SOFTLIMIT_EVENTS_TARGET; | 
|  | 770 | break; | 
|  | 771 | case MEM_CGROUP_TARGET_NUMAINFO: | 
|  | 772 | next = val + NUMAINFO_EVENTS_TARGET; | 
|  | 773 | break; | 
|  | 774 | default: | 
|  | 775 | break; | 
|  | 776 | } | 
|  | 777 | __this_cpu_write(memcg->stat_cpu->targets[target], next); | 
|  | 778 | return true; | 
|  | 779 | } | 
|  | 780 | return false; | 
|  | 781 | } | 
|  | 782 |  | 
|  | 783 | /* | 
|  | 784 | * Check events in order. | 
|  | 785 | * | 
|  | 786 | */ | 
|  | 787 | static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) | 
|  | 788 | { | 
|  | 789 | /* threshold event is triggered in finer grain than soft limit */ | 
|  | 790 | if (unlikely(mem_cgroup_event_ratelimit(memcg, | 
|  | 791 | MEM_CGROUP_TARGET_THRESH))) { | 
|  | 792 | bool do_softlimit; | 
|  | 793 | bool do_numainfo __maybe_unused; | 
|  | 794 |  | 
|  | 795 | do_softlimit = mem_cgroup_event_ratelimit(memcg, | 
|  | 796 | MEM_CGROUP_TARGET_SOFTLIMIT); | 
|  | 797 | #if MAX_NUMNODES > 1 | 
|  | 798 | do_numainfo = mem_cgroup_event_ratelimit(memcg, | 
|  | 799 | MEM_CGROUP_TARGET_NUMAINFO); | 
|  | 800 | #endif | 
|  | 801 | mem_cgroup_threshold(memcg); | 
|  | 802 | if (unlikely(do_softlimit)) | 
|  | 803 | mem_cgroup_update_tree(memcg, page); | 
|  | 804 | #if MAX_NUMNODES > 1 | 
|  | 805 | if (unlikely(do_numainfo)) | 
|  | 806 | atomic_inc(&memcg->numainfo_events); | 
|  | 807 | #endif | 
|  | 808 | } | 
|  | 809 | } | 
|  | 810 |  | 
|  | 811 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) | 
|  | 812 | { | 
|  | 813 | /* | 
|  | 814 | * mm_update_next_owner() may clear mm->owner to NULL | 
|  | 815 | * if it races with swapoff, page migration, etc. | 
|  | 816 | * So this can be called with p == NULL. | 
|  | 817 | */ | 
|  | 818 | if (unlikely(!p)) | 
|  | 819 | return NULL; | 
|  | 820 |  | 
|  | 821 | return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); | 
|  | 822 | } | 
|  | 823 | EXPORT_SYMBOL(mem_cgroup_from_task); | 
|  | 824 |  | 
|  | 825 | /** | 
|  | 826 | * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. | 
|  | 827 | * @mm: mm from which memcg should be extracted. It can be NULL. | 
|  | 828 | * | 
|  | 829 | * Obtain a reference on mm->memcg and returns it if successful. Otherwise | 
|  | 830 | * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is | 
|  | 831 | * returned. | 
|  | 832 | */ | 
|  | 833 | struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) | 
|  | 834 | { | 
|  | 835 | struct mem_cgroup *memcg; | 
|  | 836 |  | 
|  | 837 | if (mem_cgroup_disabled()) | 
|  | 838 | return NULL; | 
|  | 839 |  | 
|  | 840 | rcu_read_lock(); | 
|  | 841 | do { | 
|  | 842 | /* | 
|  | 843 | * Page cache insertions can happen withou an | 
|  | 844 | * actual mm context, e.g. during disk probing | 
|  | 845 | * on boot, loopback IO, acct() writes etc. | 
|  | 846 | */ | 
|  | 847 | if (unlikely(!mm)) | 
|  | 848 | memcg = root_mem_cgroup; | 
|  | 849 | else { | 
|  | 850 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); | 
|  | 851 | if (unlikely(!memcg)) | 
|  | 852 | memcg = root_mem_cgroup; | 
|  | 853 | } | 
|  | 854 | } while (!css_tryget(&memcg->css)); | 
|  | 855 | rcu_read_unlock(); | 
|  | 856 | return memcg; | 
|  | 857 | } | 
|  | 858 | EXPORT_SYMBOL(get_mem_cgroup_from_mm); | 
|  | 859 |  | 
|  | 860 | /** | 
|  | 861 | * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. | 
|  | 862 | * @page: page from which memcg should be extracted. | 
|  | 863 | * | 
|  | 864 | * Obtain a reference on page->memcg and returns it if successful. Otherwise | 
|  | 865 | * root_mem_cgroup is returned. | 
|  | 866 | */ | 
|  | 867 | struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) | 
|  | 868 | { | 
|  | 869 | struct mem_cgroup *memcg = page->mem_cgroup; | 
|  | 870 |  | 
|  | 871 | if (mem_cgroup_disabled()) | 
|  | 872 | return NULL; | 
|  | 873 |  | 
|  | 874 | rcu_read_lock(); | 
|  | 875 | if (!memcg || !css_tryget_online(&memcg->css)) | 
|  | 876 | memcg = root_mem_cgroup; | 
|  | 877 | rcu_read_unlock(); | 
|  | 878 | return memcg; | 
|  | 879 | } | 
|  | 880 | EXPORT_SYMBOL(get_mem_cgroup_from_page); | 
|  | 881 |  | 
|  | 882 | /** | 
|  | 883 | * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. | 
|  | 884 | */ | 
|  | 885 | static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) | 
|  | 886 | { | 
|  | 887 | if (unlikely(current->active_memcg)) { | 
|  | 888 | struct mem_cgroup *memcg = root_mem_cgroup; | 
|  | 889 |  | 
|  | 890 | rcu_read_lock(); | 
|  | 891 | if (css_tryget_online(¤t->active_memcg->css)) | 
|  | 892 | memcg = current->active_memcg; | 
|  | 893 | rcu_read_unlock(); | 
|  | 894 | return memcg; | 
|  | 895 | } | 
|  | 896 | return get_mem_cgroup_from_mm(current->mm); | 
|  | 897 | } | 
|  | 898 |  | 
|  | 899 | /** | 
|  | 900 | * mem_cgroup_iter - iterate over memory cgroup hierarchy | 
|  | 901 | * @root: hierarchy root | 
|  | 902 | * @prev: previously returned memcg, NULL on first invocation | 
|  | 903 | * @reclaim: cookie for shared reclaim walks, NULL for full walks | 
|  | 904 | * | 
|  | 905 | * Returns references to children of the hierarchy below @root, or | 
|  | 906 | * @root itself, or %NULL after a full round-trip. | 
|  | 907 | * | 
|  | 908 | * Caller must pass the return value in @prev on subsequent | 
|  | 909 | * invocations for reference counting, or use mem_cgroup_iter_break() | 
|  | 910 | * to cancel a hierarchy walk before the round-trip is complete. | 
|  | 911 | * | 
|  | 912 | * Reclaimers can specify a node and a priority level in @reclaim to | 
|  | 913 | * divide up the memcgs in the hierarchy among all concurrent | 
|  | 914 | * reclaimers operating on the same node and priority. | 
|  | 915 | */ | 
|  | 916 | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, | 
|  | 917 | struct mem_cgroup *prev, | 
|  | 918 | struct mem_cgroup_reclaim_cookie *reclaim) | 
|  | 919 | { | 
|  | 920 | struct mem_cgroup_reclaim_iter *uninitialized_var(iter); | 
|  | 921 | struct cgroup_subsys_state *css = NULL; | 
|  | 922 | struct mem_cgroup *memcg = NULL; | 
|  | 923 | struct mem_cgroup *pos = NULL; | 
|  | 924 |  | 
|  | 925 | if (mem_cgroup_disabled()) | 
|  | 926 | return NULL; | 
|  | 927 |  | 
|  | 928 | if (!root) | 
|  | 929 | root = root_mem_cgroup; | 
|  | 930 |  | 
|  | 931 | if (prev && !reclaim) | 
|  | 932 | pos = prev; | 
|  | 933 |  | 
|  | 934 | if (!root->use_hierarchy && root != root_mem_cgroup) { | 
|  | 935 | if (prev) | 
|  | 936 | goto out; | 
|  | 937 | return root; | 
|  | 938 | } | 
|  | 939 |  | 
|  | 940 | rcu_read_lock(); | 
|  | 941 |  | 
|  | 942 | if (reclaim) { | 
|  | 943 | struct mem_cgroup_per_node *mz; | 
|  | 944 |  | 
|  | 945 | mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); | 
|  | 946 | iter = &mz->iter[reclaim->priority]; | 
|  | 947 |  | 
|  | 948 | if (prev && reclaim->generation != iter->generation) | 
|  | 949 | goto out_unlock; | 
|  | 950 |  | 
|  | 951 | while (1) { | 
|  | 952 | pos = READ_ONCE(iter->position); | 
|  | 953 | if (!pos || css_tryget(&pos->css)) | 
|  | 954 | break; | 
|  | 955 | /* | 
|  | 956 | * css reference reached zero, so iter->position will | 
|  | 957 | * be cleared by ->css_released. However, we should not | 
|  | 958 | * rely on this happening soon, because ->css_released | 
|  | 959 | * is called from a work queue, and by busy-waiting we | 
|  | 960 | * might block it. So we clear iter->position right | 
|  | 961 | * away. | 
|  | 962 | */ | 
|  | 963 | (void)cmpxchg(&iter->position, pos, NULL); | 
|  | 964 | } | 
|  | 965 | } | 
|  | 966 |  | 
|  | 967 | if (pos) | 
|  | 968 | css = &pos->css; | 
|  | 969 |  | 
|  | 970 | for (;;) { | 
|  | 971 | css = css_next_descendant_pre(css, &root->css); | 
|  | 972 | if (!css) { | 
|  | 973 | /* | 
|  | 974 | * Reclaimers share the hierarchy walk, and a | 
|  | 975 | * new one might jump in right at the end of | 
|  | 976 | * the hierarchy - make sure they see at least | 
|  | 977 | * one group and restart from the beginning. | 
|  | 978 | */ | 
|  | 979 | if (!prev) | 
|  | 980 | continue; | 
|  | 981 | break; | 
|  | 982 | } | 
|  | 983 |  | 
|  | 984 | /* | 
|  | 985 | * Verify the css and acquire a reference.  The root | 
|  | 986 | * is provided by the caller, so we know it's alive | 
|  | 987 | * and kicking, and don't take an extra reference. | 
|  | 988 | */ | 
|  | 989 | memcg = mem_cgroup_from_css(css); | 
|  | 990 |  | 
|  | 991 | if (css == &root->css) | 
|  | 992 | break; | 
|  | 993 |  | 
|  | 994 | if (css_tryget(css)) | 
|  | 995 | break; | 
|  | 996 |  | 
|  | 997 | memcg = NULL; | 
|  | 998 | } | 
|  | 999 |  | 
|  | 1000 | if (reclaim) { | 
|  | 1001 | /* | 
|  | 1002 | * The position could have already been updated by a competing | 
|  | 1003 | * thread, so check that the value hasn't changed since we read | 
|  | 1004 | * it to avoid reclaiming from the same cgroup twice. | 
|  | 1005 | */ | 
|  | 1006 | (void)cmpxchg(&iter->position, pos, memcg); | 
|  | 1007 |  | 
|  | 1008 | if (pos) | 
|  | 1009 | css_put(&pos->css); | 
|  | 1010 |  | 
|  | 1011 | if (!memcg) | 
|  | 1012 | iter->generation++; | 
|  | 1013 | else if (!prev) | 
|  | 1014 | reclaim->generation = iter->generation; | 
|  | 1015 | } | 
|  | 1016 |  | 
|  | 1017 | out_unlock: | 
|  | 1018 | rcu_read_unlock(); | 
|  | 1019 | out: | 
|  | 1020 | if (prev && prev != root) | 
|  | 1021 | css_put(&prev->css); | 
|  | 1022 |  | 
|  | 1023 | return memcg; | 
|  | 1024 | } | 
|  | 1025 |  | 
|  | 1026 | /** | 
|  | 1027 | * mem_cgroup_iter_break - abort a hierarchy walk prematurely | 
|  | 1028 | * @root: hierarchy root | 
|  | 1029 | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() | 
|  | 1030 | */ | 
|  | 1031 | void mem_cgroup_iter_break(struct mem_cgroup *root, | 
|  | 1032 | struct mem_cgroup *prev) | 
|  | 1033 | { | 
|  | 1034 | if (!root) | 
|  | 1035 | root = root_mem_cgroup; | 
|  | 1036 | if (prev && prev != root) | 
|  | 1037 | css_put(&prev->css); | 
|  | 1038 | } | 
|  | 1039 |  | 
|  | 1040 | static void __invalidate_reclaim_iterators(struct mem_cgroup *from, | 
|  | 1041 | struct mem_cgroup *dead_memcg) | 
|  | 1042 | { | 
|  | 1043 | struct mem_cgroup_reclaim_iter *iter; | 
|  | 1044 | struct mem_cgroup_per_node *mz; | 
|  | 1045 | int nid; | 
|  | 1046 | int i; | 
|  | 1047 |  | 
|  | 1048 | for_each_node(nid) { | 
|  | 1049 | mz = mem_cgroup_nodeinfo(from, nid); | 
|  | 1050 | for (i = 0; i <= DEF_PRIORITY; i++) { | 
|  | 1051 | iter = &mz->iter[i]; | 
|  | 1052 | cmpxchg(&iter->position, | 
|  | 1053 | dead_memcg, NULL); | 
|  | 1054 | } | 
|  | 1055 | } | 
|  | 1056 | } | 
|  | 1057 |  | 
|  | 1058 | static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) | 
|  | 1059 | { | 
|  | 1060 | struct mem_cgroup *memcg = dead_memcg; | 
|  | 1061 | struct mem_cgroup *last; | 
|  | 1062 |  | 
|  | 1063 | do { | 
|  | 1064 | __invalidate_reclaim_iterators(memcg, dead_memcg); | 
|  | 1065 | last = memcg; | 
|  | 1066 | } while ((memcg = parent_mem_cgroup(memcg))); | 
|  | 1067 |  | 
|  | 1068 | /* | 
|  | 1069 | * When cgruop1 non-hierarchy mode is used, | 
|  | 1070 | * parent_mem_cgroup() does not walk all the way up to the | 
|  | 1071 | * cgroup root (root_mem_cgroup). So we have to handle | 
|  | 1072 | * dead_memcg from cgroup root separately. | 
|  | 1073 | */ | 
|  | 1074 | if (last != root_mem_cgroup) | 
|  | 1075 | __invalidate_reclaim_iterators(root_mem_cgroup, | 
|  | 1076 | dead_memcg); | 
|  | 1077 | } | 
|  | 1078 |  | 
|  | 1079 | /** | 
|  | 1080 | * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy | 
|  | 1081 | * @memcg: hierarchy root | 
|  | 1082 | * @fn: function to call for each task | 
|  | 1083 | * @arg: argument passed to @fn | 
|  | 1084 | * | 
|  | 1085 | * This function iterates over tasks attached to @memcg or to any of its | 
|  | 1086 | * descendants and calls @fn for each task. If @fn returns a non-zero | 
|  | 1087 | * value, the function breaks the iteration loop and returns the value. | 
|  | 1088 | * Otherwise, it will iterate over all tasks and return 0. | 
|  | 1089 | * | 
|  | 1090 | * This function must not be called for the root memory cgroup. | 
|  | 1091 | */ | 
|  | 1092 | int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, | 
|  | 1093 | int (*fn)(struct task_struct *, void *), void *arg) | 
|  | 1094 | { | 
|  | 1095 | struct mem_cgroup *iter; | 
|  | 1096 | int ret = 0; | 
|  | 1097 |  | 
|  | 1098 | BUG_ON(memcg == root_mem_cgroup); | 
|  | 1099 |  | 
|  | 1100 | for_each_mem_cgroup_tree(iter, memcg) { | 
|  | 1101 | struct css_task_iter it; | 
|  | 1102 | struct task_struct *task; | 
|  | 1103 |  | 
|  | 1104 | css_task_iter_start(&iter->css, 0, &it); | 
|  | 1105 | while (!ret && (task = css_task_iter_next(&it))) | 
|  | 1106 | ret = fn(task, arg); | 
|  | 1107 | css_task_iter_end(&it); | 
|  | 1108 | if (ret) { | 
|  | 1109 | mem_cgroup_iter_break(memcg, iter); | 
|  | 1110 | break; | 
|  | 1111 | } | 
|  | 1112 | } | 
|  | 1113 | return ret; | 
|  | 1114 | } | 
|  | 1115 |  | 
|  | 1116 | /** | 
|  | 1117 | * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page | 
|  | 1118 | * @page: the page | 
|  | 1119 | * @pgdat: pgdat of the page | 
|  | 1120 | * | 
|  | 1121 | * This function is only safe when following the LRU page isolation | 
|  | 1122 | * and putback protocol: the LRU lock must be held, and the page must | 
|  | 1123 | * either be PageLRU() or the caller must have isolated/allocated it. | 
|  | 1124 | */ | 
|  | 1125 | struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) | 
|  | 1126 | { | 
|  | 1127 | struct mem_cgroup_per_node *mz; | 
|  | 1128 | struct mem_cgroup *memcg; | 
|  | 1129 | struct lruvec *lruvec; | 
|  | 1130 |  | 
|  | 1131 | if (mem_cgroup_disabled()) { | 
|  | 1132 | lruvec = &pgdat->lruvec; | 
|  | 1133 | goto out; | 
|  | 1134 | } | 
|  | 1135 |  | 
|  | 1136 | memcg = page->mem_cgroup; | 
|  | 1137 | /* | 
|  | 1138 | * Swapcache readahead pages are added to the LRU - and | 
|  | 1139 | * possibly migrated - before they are charged. | 
|  | 1140 | */ | 
|  | 1141 | if (!memcg) | 
|  | 1142 | memcg = root_mem_cgroup; | 
|  | 1143 |  | 
|  | 1144 | mz = mem_cgroup_page_nodeinfo(memcg, page); | 
|  | 1145 | lruvec = &mz->lruvec; | 
|  | 1146 | out: | 
|  | 1147 | /* | 
|  | 1148 | * Since a node can be onlined after the mem_cgroup was created, | 
|  | 1149 | * we have to be prepared to initialize lruvec->zone here; | 
|  | 1150 | * and if offlined then reonlined, we need to reinitialize it. | 
|  | 1151 | */ | 
|  | 1152 | if (unlikely(lruvec->pgdat != pgdat)) | 
|  | 1153 | lruvec->pgdat = pgdat; | 
|  | 1154 | return lruvec; | 
|  | 1155 | } | 
|  | 1156 |  | 
|  | 1157 | /** | 
|  | 1158 | * mem_cgroup_update_lru_size - account for adding or removing an lru page | 
|  | 1159 | * @lruvec: mem_cgroup per zone lru vector | 
|  | 1160 | * @lru: index of lru list the page is sitting on | 
|  | 1161 | * @zid: zone id of the accounted pages | 
|  | 1162 | * @nr_pages: positive when adding or negative when removing | 
|  | 1163 | * | 
|  | 1164 | * This function must be called under lru_lock, just before a page is added | 
|  | 1165 | * to or just after a page is removed from an lru list (that ordering being | 
|  | 1166 | * so as to allow it to check that lru_size 0 is consistent with list_empty). | 
|  | 1167 | */ | 
|  | 1168 | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, | 
|  | 1169 | int zid, int nr_pages) | 
|  | 1170 | { | 
|  | 1171 | struct mem_cgroup_per_node *mz; | 
|  | 1172 | unsigned long *lru_size; | 
|  | 1173 | long size; | 
|  | 1174 |  | 
|  | 1175 | if (mem_cgroup_disabled()) | 
|  | 1176 | return; | 
|  | 1177 |  | 
|  | 1178 | mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); | 
|  | 1179 | lru_size = &mz->lru_zone_size[zid][lru]; | 
|  | 1180 |  | 
|  | 1181 | if (nr_pages < 0) | 
|  | 1182 | *lru_size += nr_pages; | 
|  | 1183 |  | 
|  | 1184 | size = *lru_size; | 
|  | 1185 | if (WARN_ONCE(size < 0, | 
|  | 1186 | "%s(%p, %d, %d): lru_size %ld\n", | 
|  | 1187 | __func__, lruvec, lru, nr_pages, size)) { | 
|  | 1188 | VM_BUG_ON(1); | 
|  | 1189 | *lru_size = 0; | 
|  | 1190 | } | 
|  | 1191 |  | 
|  | 1192 | if (nr_pages > 0) | 
|  | 1193 | *lru_size += nr_pages; | 
|  | 1194 | } | 
|  | 1195 |  | 
|  | 1196 | bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) | 
|  | 1197 | { | 
|  | 1198 | struct mem_cgroup *task_memcg; | 
|  | 1199 | struct task_struct *p; | 
|  | 1200 | bool ret; | 
|  | 1201 |  | 
|  | 1202 | p = find_lock_task_mm(task); | 
|  | 1203 | if (p) { | 
|  | 1204 | task_memcg = get_mem_cgroup_from_mm(p->mm); | 
|  | 1205 | task_unlock(p); | 
|  | 1206 | } else { | 
|  | 1207 | /* | 
|  | 1208 | * All threads may have already detached their mm's, but the oom | 
|  | 1209 | * killer still needs to detect if they have already been oom | 
|  | 1210 | * killed to prevent needlessly killing additional tasks. | 
|  | 1211 | */ | 
|  | 1212 | rcu_read_lock(); | 
|  | 1213 | task_memcg = mem_cgroup_from_task(task); | 
|  | 1214 | css_get(&task_memcg->css); | 
|  | 1215 | rcu_read_unlock(); | 
|  | 1216 | } | 
|  | 1217 | ret = mem_cgroup_is_descendant(task_memcg, memcg); | 
|  | 1218 | css_put(&task_memcg->css); | 
|  | 1219 | return ret; | 
|  | 1220 | } | 
|  | 1221 |  | 
|  | 1222 | /** | 
|  | 1223 | * mem_cgroup_margin - calculate chargeable space of a memory cgroup | 
|  | 1224 | * @memcg: the memory cgroup | 
|  | 1225 | * | 
|  | 1226 | * Returns the maximum amount of memory @mem can be charged with, in | 
|  | 1227 | * pages. | 
|  | 1228 | */ | 
|  | 1229 | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) | 
|  | 1230 | { | 
|  | 1231 | unsigned long margin = 0; | 
|  | 1232 | unsigned long count; | 
|  | 1233 | unsigned long limit; | 
|  | 1234 |  | 
|  | 1235 | count = page_counter_read(&memcg->memory); | 
|  | 1236 | limit = READ_ONCE(memcg->memory.max); | 
|  | 1237 | if (count < limit) | 
|  | 1238 | margin = limit - count; | 
|  | 1239 |  | 
|  | 1240 | if (do_memsw_account()) { | 
|  | 1241 | count = page_counter_read(&memcg->memsw); | 
|  | 1242 | limit = READ_ONCE(memcg->memsw.max); | 
|  | 1243 | if (count <= limit) | 
|  | 1244 | margin = min(margin, limit - count); | 
|  | 1245 | else | 
|  | 1246 | margin = 0; | 
|  | 1247 | } | 
|  | 1248 |  | 
|  | 1249 | return margin; | 
|  | 1250 | } | 
|  | 1251 |  | 
|  | 1252 | /* | 
|  | 1253 | * A routine for checking "mem" is under move_account() or not. | 
|  | 1254 | * | 
|  | 1255 | * Checking a cgroup is mc.from or mc.to or under hierarchy of | 
|  | 1256 | * moving cgroups. This is for waiting at high-memory pressure | 
|  | 1257 | * caused by "move". | 
|  | 1258 | */ | 
|  | 1259 | static bool mem_cgroup_under_move(struct mem_cgroup *memcg) | 
|  | 1260 | { | 
|  | 1261 | struct mem_cgroup *from; | 
|  | 1262 | struct mem_cgroup *to; | 
|  | 1263 | bool ret = false; | 
|  | 1264 | /* | 
|  | 1265 | * Unlike task_move routines, we access mc.to, mc.from not under | 
|  | 1266 | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | 
|  | 1267 | */ | 
|  | 1268 | spin_lock(&mc.lock); | 
|  | 1269 | from = mc.from; | 
|  | 1270 | to = mc.to; | 
|  | 1271 | if (!from) | 
|  | 1272 | goto unlock; | 
|  | 1273 |  | 
|  | 1274 | ret = mem_cgroup_is_descendant(from, memcg) || | 
|  | 1275 | mem_cgroup_is_descendant(to, memcg); | 
|  | 1276 | unlock: | 
|  | 1277 | spin_unlock(&mc.lock); | 
|  | 1278 | return ret; | 
|  | 1279 | } | 
|  | 1280 |  | 
|  | 1281 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) | 
|  | 1282 | { | 
|  | 1283 | if (mc.moving_task && current != mc.moving_task) { | 
|  | 1284 | if (mem_cgroup_under_move(memcg)) { | 
|  | 1285 | DEFINE_WAIT(wait); | 
|  | 1286 | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | 
|  | 1287 | /* moving charge context might have finished. */ | 
|  | 1288 | if (mc.moving_task) | 
|  | 1289 | schedule(); | 
|  | 1290 | finish_wait(&mc.waitq, &wait); | 
|  | 1291 | return true; | 
|  | 1292 | } | 
|  | 1293 | } | 
|  | 1294 | return false; | 
|  | 1295 | } | 
|  | 1296 |  | 
|  | 1297 | static const unsigned int memcg1_stats[] = { | 
|  | 1298 | MEMCG_CACHE, | 
|  | 1299 | MEMCG_RSS, | 
|  | 1300 | MEMCG_RSS_HUGE, | 
|  | 1301 | NR_SHMEM, | 
|  | 1302 | NR_FILE_MAPPED, | 
|  | 1303 | NR_FILE_DIRTY, | 
|  | 1304 | NR_WRITEBACK, | 
|  | 1305 | MEMCG_SWAP, | 
|  | 1306 | }; | 
|  | 1307 |  | 
|  | 1308 | static const char *const memcg1_stat_names[] = { | 
|  | 1309 | "cache", | 
|  | 1310 | "rss", | 
|  | 1311 | "rss_huge", | 
|  | 1312 | "shmem", | 
|  | 1313 | "mapped_file", | 
|  | 1314 | "dirty", | 
|  | 1315 | "writeback", | 
|  | 1316 | "swap", | 
|  | 1317 | }; | 
|  | 1318 |  | 
|  | 1319 | #define K(x) ((x) << (PAGE_SHIFT-10)) | 
|  | 1320 | /** | 
|  | 1321 | * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. | 
|  | 1322 | * @memcg: The memory cgroup that went over limit | 
|  | 1323 | * @p: Task that is going to be killed | 
|  | 1324 | * | 
|  | 1325 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | 
|  | 1326 | * enabled | 
|  | 1327 | */ | 
|  | 1328 | void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) | 
|  | 1329 | { | 
|  | 1330 | struct mem_cgroup *iter; | 
|  | 1331 | unsigned int i; | 
|  | 1332 |  | 
|  | 1333 | rcu_read_lock(); | 
|  | 1334 |  | 
|  | 1335 | if (p) { | 
|  | 1336 | pr_info("Task in "); | 
|  | 1337 | pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); | 
|  | 1338 | pr_cont(" killed as a result of limit of "); | 
|  | 1339 | } else { | 
|  | 1340 | pr_info("Memory limit reached of cgroup "); | 
|  | 1341 | } | 
|  | 1342 |  | 
|  | 1343 | pr_cont_cgroup_path(memcg->css.cgroup); | 
|  | 1344 | pr_cont("\n"); | 
|  | 1345 |  | 
|  | 1346 | rcu_read_unlock(); | 
|  | 1347 |  | 
|  | 1348 | pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", | 
|  | 1349 | K((u64)page_counter_read(&memcg->memory)), | 
|  | 1350 | K((u64)memcg->memory.max), memcg->memory.failcnt); | 
|  | 1351 | pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", | 
|  | 1352 | K((u64)page_counter_read(&memcg->memsw)), | 
|  | 1353 | K((u64)memcg->memsw.max), memcg->memsw.failcnt); | 
|  | 1354 | pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", | 
|  | 1355 | K((u64)page_counter_read(&memcg->kmem)), | 
|  | 1356 | K((u64)memcg->kmem.max), memcg->kmem.failcnt); | 
|  | 1357 |  | 
|  | 1358 | for_each_mem_cgroup_tree(iter, memcg) { | 
|  | 1359 | pr_info("Memory cgroup stats for "); | 
|  | 1360 | pr_cont_cgroup_path(iter->css.cgroup); | 
|  | 1361 | pr_cont(":"); | 
|  | 1362 |  | 
|  | 1363 | for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { | 
|  | 1364 | if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account) | 
|  | 1365 | continue; | 
|  | 1366 | pr_cont(" %s:%luKB", memcg1_stat_names[i], | 
|  | 1367 | K(memcg_page_state(iter, memcg1_stats[i]))); | 
|  | 1368 | } | 
|  | 1369 |  | 
|  | 1370 | for (i = 0; i < NR_LRU_LISTS; i++) | 
|  | 1371 | pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], | 
|  | 1372 | K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); | 
|  | 1373 |  | 
|  | 1374 | pr_cont("\n"); | 
|  | 1375 | } | 
|  | 1376 | } | 
|  | 1377 |  | 
|  | 1378 | /* | 
|  | 1379 | * Return the memory (and swap, if configured) limit for a memcg. | 
|  | 1380 | */ | 
|  | 1381 | unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) | 
|  | 1382 | { | 
|  | 1383 | unsigned long max; | 
|  | 1384 |  | 
|  | 1385 | max = memcg->memory.max; | 
|  | 1386 | if (mem_cgroup_swappiness(memcg)) { | 
|  | 1387 | unsigned long memsw_max; | 
|  | 1388 | unsigned long swap_max; | 
|  | 1389 |  | 
|  | 1390 | memsw_max = memcg->memsw.max; | 
|  | 1391 | swap_max = memcg->swap.max; | 
|  | 1392 | swap_max = min(swap_max, (unsigned long)total_swap_pages); | 
|  | 1393 | max = min(max + swap_max, memsw_max); | 
|  | 1394 | } | 
|  | 1395 | return max; | 
|  | 1396 | } | 
|  | 1397 |  | 
|  | 1398 | static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, | 
|  | 1399 | int order) | 
|  | 1400 | { | 
|  | 1401 | struct oom_control oc = { | 
|  | 1402 | .zonelist = NULL, | 
|  | 1403 | .nodemask = NULL, | 
|  | 1404 | .memcg = memcg, | 
|  | 1405 | .gfp_mask = gfp_mask, | 
|  | 1406 | .order = order, | 
|  | 1407 | }; | 
|  | 1408 | bool ret; | 
|  | 1409 |  | 
|  | 1410 | if (mutex_lock_killable(&oom_lock)) | 
|  | 1411 | return true; | 
|  | 1412 | /* | 
|  | 1413 | * A few threads which were not waiting at mutex_lock_killable() can | 
|  | 1414 | * fail to bail out. Therefore, check again after holding oom_lock. | 
|  | 1415 | */ | 
|  | 1416 | ret = should_force_charge() || out_of_memory(&oc); | 
|  | 1417 | mutex_unlock(&oom_lock); | 
|  | 1418 | return ret; | 
|  | 1419 | } | 
|  | 1420 |  | 
|  | 1421 | #if MAX_NUMNODES > 1 | 
|  | 1422 |  | 
|  | 1423 | /** | 
|  | 1424 | * test_mem_cgroup_node_reclaimable | 
|  | 1425 | * @memcg: the target memcg | 
|  | 1426 | * @nid: the node ID to be checked. | 
|  | 1427 | * @noswap : specify true here if the user wants flle only information. | 
|  | 1428 | * | 
|  | 1429 | * This function returns whether the specified memcg contains any | 
|  | 1430 | * reclaimable pages on a node. Returns true if there are any reclaimable | 
|  | 1431 | * pages in the node. | 
|  | 1432 | */ | 
|  | 1433 | static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, | 
|  | 1434 | int nid, bool noswap) | 
|  | 1435 | { | 
|  | 1436 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) | 
|  | 1437 | return true; | 
|  | 1438 | if (noswap || !total_swap_pages) | 
|  | 1439 | return false; | 
|  | 1440 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) | 
|  | 1441 | return true; | 
|  | 1442 | return false; | 
|  | 1443 |  | 
|  | 1444 | } | 
|  | 1445 |  | 
|  | 1446 | /* | 
|  | 1447 | * Always updating the nodemask is not very good - even if we have an empty | 
|  | 1448 | * list or the wrong list here, we can start from some node and traverse all | 
|  | 1449 | * nodes based on the zonelist. So update the list loosely once per 10 secs. | 
|  | 1450 | * | 
|  | 1451 | */ | 
|  | 1452 | static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) | 
|  | 1453 | { | 
|  | 1454 | int nid; | 
|  | 1455 | /* | 
|  | 1456 | * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET | 
|  | 1457 | * pagein/pageout changes since the last update. | 
|  | 1458 | */ | 
|  | 1459 | if (!atomic_read(&memcg->numainfo_events)) | 
|  | 1460 | return; | 
|  | 1461 | if (atomic_inc_return(&memcg->numainfo_updating) > 1) | 
|  | 1462 | return; | 
|  | 1463 |  | 
|  | 1464 | /* make a nodemask where this memcg uses memory from */ | 
|  | 1465 | memcg->scan_nodes = node_states[N_MEMORY]; | 
|  | 1466 |  | 
|  | 1467 | for_each_node_mask(nid, node_states[N_MEMORY]) { | 
|  | 1468 |  | 
|  | 1469 | if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) | 
|  | 1470 | node_clear(nid, memcg->scan_nodes); | 
|  | 1471 | } | 
|  | 1472 |  | 
|  | 1473 | atomic_set(&memcg->numainfo_events, 0); | 
|  | 1474 | atomic_set(&memcg->numainfo_updating, 0); | 
|  | 1475 | } | 
|  | 1476 |  | 
|  | 1477 | /* | 
|  | 1478 | * Selecting a node where we start reclaim from. Because what we need is just | 
|  | 1479 | * reducing usage counter, start from anywhere is O,K. Considering | 
|  | 1480 | * memory reclaim from current node, there are pros. and cons. | 
|  | 1481 | * | 
|  | 1482 | * Freeing memory from current node means freeing memory from a node which | 
|  | 1483 | * we'll use or we've used. So, it may make LRU bad. And if several threads | 
|  | 1484 | * hit limits, it will see a contention on a node. But freeing from remote | 
|  | 1485 | * node means more costs for memory reclaim because of memory latency. | 
|  | 1486 | * | 
|  | 1487 | * Now, we use round-robin. Better algorithm is welcomed. | 
|  | 1488 | */ | 
|  | 1489 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) | 
|  | 1490 | { | 
|  | 1491 | int node; | 
|  | 1492 |  | 
|  | 1493 | mem_cgroup_may_update_nodemask(memcg); | 
|  | 1494 | node = memcg->last_scanned_node; | 
|  | 1495 |  | 
|  | 1496 | node = next_node_in(node, memcg->scan_nodes); | 
|  | 1497 | /* | 
|  | 1498 | * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages | 
|  | 1499 | * last time it really checked all the LRUs due to rate limiting. | 
|  | 1500 | * Fallback to the current node in that case for simplicity. | 
|  | 1501 | */ | 
|  | 1502 | if (unlikely(node == MAX_NUMNODES)) | 
|  | 1503 | node = numa_node_id(); | 
|  | 1504 |  | 
|  | 1505 | memcg->last_scanned_node = node; | 
|  | 1506 | return node; | 
|  | 1507 | } | 
|  | 1508 | #else | 
|  | 1509 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) | 
|  | 1510 | { | 
|  | 1511 | return 0; | 
|  | 1512 | } | 
|  | 1513 | #endif | 
|  | 1514 |  | 
|  | 1515 | static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, | 
|  | 1516 | pg_data_t *pgdat, | 
|  | 1517 | gfp_t gfp_mask, | 
|  | 1518 | unsigned long *total_scanned) | 
|  | 1519 | { | 
|  | 1520 | struct mem_cgroup *victim = NULL; | 
|  | 1521 | int total = 0; | 
|  | 1522 | int loop = 0; | 
|  | 1523 | unsigned long excess; | 
|  | 1524 | unsigned long nr_scanned; | 
|  | 1525 | struct mem_cgroup_reclaim_cookie reclaim = { | 
|  | 1526 | .pgdat = pgdat, | 
|  | 1527 | .priority = 0, | 
|  | 1528 | }; | 
|  | 1529 |  | 
|  | 1530 | excess = soft_limit_excess(root_memcg); | 
|  | 1531 |  | 
|  | 1532 | while (1) { | 
|  | 1533 | victim = mem_cgroup_iter(root_memcg, victim, &reclaim); | 
|  | 1534 | if (!victim) { | 
|  | 1535 | loop++; | 
|  | 1536 | if (loop >= 2) { | 
|  | 1537 | /* | 
|  | 1538 | * If we have not been able to reclaim | 
|  | 1539 | * anything, it might because there are | 
|  | 1540 | * no reclaimable pages under this hierarchy | 
|  | 1541 | */ | 
|  | 1542 | if (!total) | 
|  | 1543 | break; | 
|  | 1544 | /* | 
|  | 1545 | * We want to do more targeted reclaim. | 
|  | 1546 | * excess >> 2 is not to excessive so as to | 
|  | 1547 | * reclaim too much, nor too less that we keep | 
|  | 1548 | * coming back to reclaim from this cgroup | 
|  | 1549 | */ | 
|  | 1550 | if (total >= (excess >> 2) || | 
|  | 1551 | (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) | 
|  | 1552 | break; | 
|  | 1553 | } | 
|  | 1554 | continue; | 
|  | 1555 | } | 
|  | 1556 | total += mem_cgroup_shrink_node(victim, gfp_mask, false, | 
|  | 1557 | pgdat, &nr_scanned); | 
|  | 1558 | *total_scanned += nr_scanned; | 
|  | 1559 | if (!soft_limit_excess(root_memcg)) | 
|  | 1560 | break; | 
|  | 1561 | } | 
|  | 1562 | mem_cgroup_iter_break(root_memcg, victim); | 
|  | 1563 | return total; | 
|  | 1564 | } | 
|  | 1565 |  | 
|  | 1566 | #ifdef CONFIG_LOCKDEP | 
|  | 1567 | static struct lockdep_map memcg_oom_lock_dep_map = { | 
|  | 1568 | .name = "memcg_oom_lock", | 
|  | 1569 | }; | 
|  | 1570 | #endif | 
|  | 1571 |  | 
|  | 1572 | static DEFINE_SPINLOCK(memcg_oom_lock); | 
|  | 1573 |  | 
|  | 1574 | /* | 
|  | 1575 | * Check OOM-Killer is already running under our hierarchy. | 
|  | 1576 | * If someone is running, return false. | 
|  | 1577 | */ | 
|  | 1578 | static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) | 
|  | 1579 | { | 
|  | 1580 | struct mem_cgroup *iter, *failed = NULL; | 
|  | 1581 |  | 
|  | 1582 | spin_lock(&memcg_oom_lock); | 
|  | 1583 |  | 
|  | 1584 | for_each_mem_cgroup_tree(iter, memcg) { | 
|  | 1585 | if (iter->oom_lock) { | 
|  | 1586 | /* | 
|  | 1587 | * this subtree of our hierarchy is already locked | 
|  | 1588 | * so we cannot give a lock. | 
|  | 1589 | */ | 
|  | 1590 | failed = iter; | 
|  | 1591 | mem_cgroup_iter_break(memcg, iter); | 
|  | 1592 | break; | 
|  | 1593 | } else | 
|  | 1594 | iter->oom_lock = true; | 
|  | 1595 | } | 
|  | 1596 |  | 
|  | 1597 | if (failed) { | 
|  | 1598 | /* | 
|  | 1599 | * OK, we failed to lock the whole subtree so we have | 
|  | 1600 | * to clean up what we set up to the failing subtree | 
|  | 1601 | */ | 
|  | 1602 | for_each_mem_cgroup_tree(iter, memcg) { | 
|  | 1603 | if (iter == failed) { | 
|  | 1604 | mem_cgroup_iter_break(memcg, iter); | 
|  | 1605 | break; | 
|  | 1606 | } | 
|  | 1607 | iter->oom_lock = false; | 
|  | 1608 | } | 
|  | 1609 | } else | 
|  | 1610 | mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); | 
|  | 1611 |  | 
|  | 1612 | spin_unlock(&memcg_oom_lock); | 
|  | 1613 |  | 
|  | 1614 | return !failed; | 
|  | 1615 | } | 
|  | 1616 |  | 
|  | 1617 | static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) | 
|  | 1618 | { | 
|  | 1619 | struct mem_cgroup *iter; | 
|  | 1620 |  | 
|  | 1621 | spin_lock(&memcg_oom_lock); | 
|  | 1622 | mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); | 
|  | 1623 | for_each_mem_cgroup_tree(iter, memcg) | 
|  | 1624 | iter->oom_lock = false; | 
|  | 1625 | spin_unlock(&memcg_oom_lock); | 
|  | 1626 | } | 
|  | 1627 |  | 
|  | 1628 | static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) | 
|  | 1629 | { | 
|  | 1630 | struct mem_cgroup *iter; | 
|  | 1631 |  | 
|  | 1632 | spin_lock(&memcg_oom_lock); | 
|  | 1633 | for_each_mem_cgroup_tree(iter, memcg) | 
|  | 1634 | iter->under_oom++; | 
|  | 1635 | spin_unlock(&memcg_oom_lock); | 
|  | 1636 | } | 
|  | 1637 |  | 
|  | 1638 | static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) | 
|  | 1639 | { | 
|  | 1640 | struct mem_cgroup *iter; | 
|  | 1641 |  | 
|  | 1642 | /* | 
|  | 1643 | * When a new child is created while the hierarchy is under oom, | 
|  | 1644 | * mem_cgroup_oom_lock() may not be called. Watch for underflow. | 
|  | 1645 | */ | 
|  | 1646 | spin_lock(&memcg_oom_lock); | 
|  | 1647 | for_each_mem_cgroup_tree(iter, memcg) | 
|  | 1648 | if (iter->under_oom > 0) | 
|  | 1649 | iter->under_oom--; | 
|  | 1650 | spin_unlock(&memcg_oom_lock); | 
|  | 1651 | } | 
|  | 1652 |  | 
|  | 1653 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); | 
|  | 1654 |  | 
|  | 1655 | struct oom_wait_info { | 
|  | 1656 | struct mem_cgroup *memcg; | 
|  | 1657 | wait_queue_entry_t	wait; | 
|  | 1658 | }; | 
|  | 1659 |  | 
|  | 1660 | static int memcg_oom_wake_function(wait_queue_entry_t *wait, | 
|  | 1661 | unsigned mode, int sync, void *arg) | 
|  | 1662 | { | 
|  | 1663 | struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; | 
|  | 1664 | struct mem_cgroup *oom_wait_memcg; | 
|  | 1665 | struct oom_wait_info *oom_wait_info; | 
|  | 1666 |  | 
|  | 1667 | oom_wait_info = container_of(wait, struct oom_wait_info, wait); | 
|  | 1668 | oom_wait_memcg = oom_wait_info->memcg; | 
|  | 1669 |  | 
|  | 1670 | if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && | 
|  | 1671 | !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) | 
|  | 1672 | return 0; | 
|  | 1673 | return autoremove_wake_function(wait, mode, sync, arg); | 
|  | 1674 | } | 
|  | 1675 |  | 
|  | 1676 | static void memcg_oom_recover(struct mem_cgroup *memcg) | 
|  | 1677 | { | 
|  | 1678 | /* | 
|  | 1679 | * For the following lockless ->under_oom test, the only required | 
|  | 1680 | * guarantee is that it must see the state asserted by an OOM when | 
|  | 1681 | * this function is called as a result of userland actions | 
|  | 1682 | * triggered by the notification of the OOM.  This is trivially | 
|  | 1683 | * achieved by invoking mem_cgroup_mark_under_oom() before | 
|  | 1684 | * triggering notification. | 
|  | 1685 | */ | 
|  | 1686 | if (memcg && memcg->under_oom) | 
|  | 1687 | __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); | 
|  | 1688 | } | 
|  | 1689 |  | 
|  | 1690 | enum oom_status { | 
|  | 1691 | OOM_SUCCESS, | 
|  | 1692 | OOM_FAILED, | 
|  | 1693 | OOM_ASYNC, | 
|  | 1694 | OOM_SKIPPED | 
|  | 1695 | }; | 
|  | 1696 |  | 
|  | 1697 | static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) | 
|  | 1698 | { | 
|  | 1699 | enum oom_status ret; | 
|  | 1700 | bool locked; | 
|  | 1701 |  | 
|  | 1702 | if (order > PAGE_ALLOC_COSTLY_ORDER) | 
|  | 1703 | return OOM_SKIPPED; | 
|  | 1704 |  | 
|  | 1705 | /* | 
|  | 1706 | * We are in the middle of the charge context here, so we | 
|  | 1707 | * don't want to block when potentially sitting on a callstack | 
|  | 1708 | * that holds all kinds of filesystem and mm locks. | 
|  | 1709 | * | 
|  | 1710 | * cgroup1 allows disabling the OOM killer and waiting for outside | 
|  | 1711 | * handling until the charge can succeed; remember the context and put | 
|  | 1712 | * the task to sleep at the end of the page fault when all locks are | 
|  | 1713 | * released. | 
|  | 1714 | * | 
|  | 1715 | * On the other hand, in-kernel OOM killer allows for an async victim | 
|  | 1716 | * memory reclaim (oom_reaper) and that means that we are not solely | 
|  | 1717 | * relying on the oom victim to make a forward progress and we can | 
|  | 1718 | * invoke the oom killer here. | 
|  | 1719 | * | 
|  | 1720 | * Please note that mem_cgroup_out_of_memory might fail to find a | 
|  | 1721 | * victim and then we have to bail out from the charge path. | 
|  | 1722 | */ | 
|  | 1723 | if (memcg->oom_kill_disable) { | 
|  | 1724 | if (!current->in_user_fault) | 
|  | 1725 | return OOM_SKIPPED; | 
|  | 1726 | css_get(&memcg->css); | 
|  | 1727 | current->memcg_in_oom = memcg; | 
|  | 1728 | current->memcg_oom_gfp_mask = mask; | 
|  | 1729 | current->memcg_oom_order = order; | 
|  | 1730 |  | 
|  | 1731 | return OOM_ASYNC; | 
|  | 1732 | } | 
|  | 1733 |  | 
|  | 1734 | mem_cgroup_mark_under_oom(memcg); | 
|  | 1735 |  | 
|  | 1736 | locked = mem_cgroup_oom_trylock(memcg); | 
|  | 1737 |  | 
|  | 1738 | if (locked) | 
|  | 1739 | mem_cgroup_oom_notify(memcg); | 
|  | 1740 |  | 
|  | 1741 | mem_cgroup_unmark_under_oom(memcg); | 
|  | 1742 | if (mem_cgroup_out_of_memory(memcg, mask, order)) | 
|  | 1743 | ret = OOM_SUCCESS; | 
|  | 1744 | else | 
|  | 1745 | ret = OOM_FAILED; | 
|  | 1746 |  | 
|  | 1747 | if (locked) | 
|  | 1748 | mem_cgroup_oom_unlock(memcg); | 
|  | 1749 |  | 
|  | 1750 | return ret; | 
|  | 1751 | } | 
|  | 1752 |  | 
|  | 1753 | /** | 
|  | 1754 | * mem_cgroup_oom_synchronize - complete memcg OOM handling | 
|  | 1755 | * @handle: actually kill/wait or just clean up the OOM state | 
|  | 1756 | * | 
|  | 1757 | * This has to be called at the end of a page fault if the memcg OOM | 
|  | 1758 | * handler was enabled. | 
|  | 1759 | * | 
|  | 1760 | * Memcg supports userspace OOM handling where failed allocations must | 
|  | 1761 | * sleep on a waitqueue until the userspace task resolves the | 
|  | 1762 | * situation.  Sleeping directly in the charge context with all kinds | 
|  | 1763 | * of locks held is not a good idea, instead we remember an OOM state | 
|  | 1764 | * in the task and mem_cgroup_oom_synchronize() has to be called at | 
|  | 1765 | * the end of the page fault to complete the OOM handling. | 
|  | 1766 | * | 
|  | 1767 | * Returns %true if an ongoing memcg OOM situation was detected and | 
|  | 1768 | * completed, %false otherwise. | 
|  | 1769 | */ | 
|  | 1770 | bool mem_cgroup_oom_synchronize(bool handle) | 
|  | 1771 | { | 
|  | 1772 | struct mem_cgroup *memcg = current->memcg_in_oom; | 
|  | 1773 | struct oom_wait_info owait; | 
|  | 1774 | bool locked; | 
|  | 1775 |  | 
|  | 1776 | /* OOM is global, do not handle */ | 
|  | 1777 | if (!memcg) | 
|  | 1778 | return false; | 
|  | 1779 |  | 
|  | 1780 | if (!handle) | 
|  | 1781 | goto cleanup; | 
|  | 1782 |  | 
|  | 1783 | owait.memcg = memcg; | 
|  | 1784 | owait.wait.flags = 0; | 
|  | 1785 | owait.wait.func = memcg_oom_wake_function; | 
|  | 1786 | owait.wait.private = current; | 
|  | 1787 | INIT_LIST_HEAD(&owait.wait.entry); | 
|  | 1788 |  | 
|  | 1789 | prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); | 
|  | 1790 | mem_cgroup_mark_under_oom(memcg); | 
|  | 1791 |  | 
|  | 1792 | locked = mem_cgroup_oom_trylock(memcg); | 
|  | 1793 |  | 
|  | 1794 | if (locked) | 
|  | 1795 | mem_cgroup_oom_notify(memcg); | 
|  | 1796 |  | 
|  | 1797 | if (locked && !memcg->oom_kill_disable) { | 
|  | 1798 | mem_cgroup_unmark_under_oom(memcg); | 
|  | 1799 | finish_wait(&memcg_oom_waitq, &owait.wait); | 
|  | 1800 | mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, | 
|  | 1801 | current->memcg_oom_order); | 
|  | 1802 | } else { | 
|  | 1803 | schedule(); | 
|  | 1804 | mem_cgroup_unmark_under_oom(memcg); | 
|  | 1805 | finish_wait(&memcg_oom_waitq, &owait.wait); | 
|  | 1806 | } | 
|  | 1807 |  | 
|  | 1808 | if (locked) { | 
|  | 1809 | mem_cgroup_oom_unlock(memcg); | 
|  | 1810 | /* | 
|  | 1811 | * There is no guarantee that an OOM-lock contender | 
|  | 1812 | * sees the wakeups triggered by the OOM kill | 
|  | 1813 | * uncharges.  Wake any sleepers explicitely. | 
|  | 1814 | */ | 
|  | 1815 | memcg_oom_recover(memcg); | 
|  | 1816 | } | 
|  | 1817 | cleanup: | 
|  | 1818 | current->memcg_in_oom = NULL; | 
|  | 1819 | css_put(&memcg->css); | 
|  | 1820 | return true; | 
|  | 1821 | } | 
|  | 1822 |  | 
|  | 1823 | /** | 
|  | 1824 | * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM | 
|  | 1825 | * @victim: task to be killed by the OOM killer | 
|  | 1826 | * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM | 
|  | 1827 | * | 
|  | 1828 | * Returns a pointer to a memory cgroup, which has to be cleaned up | 
|  | 1829 | * by killing all belonging OOM-killable tasks. | 
|  | 1830 | * | 
|  | 1831 | * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. | 
|  | 1832 | */ | 
|  | 1833 | struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, | 
|  | 1834 | struct mem_cgroup *oom_domain) | 
|  | 1835 | { | 
|  | 1836 | struct mem_cgroup *oom_group = NULL; | 
|  | 1837 | struct mem_cgroup *memcg; | 
|  | 1838 |  | 
|  | 1839 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | 1840 | return NULL; | 
|  | 1841 |  | 
|  | 1842 | if (!oom_domain) | 
|  | 1843 | oom_domain = root_mem_cgroup; | 
|  | 1844 |  | 
|  | 1845 | rcu_read_lock(); | 
|  | 1846 |  | 
|  | 1847 | memcg = mem_cgroup_from_task(victim); | 
|  | 1848 | if (memcg == root_mem_cgroup) | 
|  | 1849 | goto out; | 
|  | 1850 |  | 
|  | 1851 | /* | 
|  | 1852 | * Traverse the memory cgroup hierarchy from the victim task's | 
|  | 1853 | * cgroup up to the OOMing cgroup (or root) to find the | 
|  | 1854 | * highest-level memory cgroup with oom.group set. | 
|  | 1855 | */ | 
|  | 1856 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { | 
|  | 1857 | if (memcg->oom_group) | 
|  | 1858 | oom_group = memcg; | 
|  | 1859 |  | 
|  | 1860 | if (memcg == oom_domain) | 
|  | 1861 | break; | 
|  | 1862 | } | 
|  | 1863 |  | 
|  | 1864 | if (oom_group) | 
|  | 1865 | css_get(&oom_group->css); | 
|  | 1866 | out: | 
|  | 1867 | rcu_read_unlock(); | 
|  | 1868 |  | 
|  | 1869 | return oom_group; | 
|  | 1870 | } | 
|  | 1871 |  | 
|  | 1872 | void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) | 
|  | 1873 | { | 
|  | 1874 | pr_info("Tasks in "); | 
|  | 1875 | pr_cont_cgroup_path(memcg->css.cgroup); | 
|  | 1876 | pr_cont(" are going to be killed due to memory.oom.group set\n"); | 
|  | 1877 | } | 
|  | 1878 |  | 
|  | 1879 | /** | 
|  | 1880 | * lock_page_memcg - lock a page->mem_cgroup binding | 
|  | 1881 | * @page: the page | 
|  | 1882 | * | 
|  | 1883 | * This function protects unlocked LRU pages from being moved to | 
|  | 1884 | * another cgroup. | 
|  | 1885 | * | 
|  | 1886 | * It ensures lifetime of the returned memcg. Caller is responsible | 
|  | 1887 | * for the lifetime of the page; __unlock_page_memcg() is available | 
|  | 1888 | * when @page might get freed inside the locked section. | 
|  | 1889 | */ | 
|  | 1890 | struct mem_cgroup *lock_page_memcg(struct page *page) | 
|  | 1891 | { | 
|  | 1892 | struct mem_cgroup *memcg; | 
|  | 1893 | unsigned long flags; | 
|  | 1894 |  | 
|  | 1895 | /* | 
|  | 1896 | * The RCU lock is held throughout the transaction.  The fast | 
|  | 1897 | * path can get away without acquiring the memcg->move_lock | 
|  | 1898 | * because page moving starts with an RCU grace period. | 
|  | 1899 | * | 
|  | 1900 | * The RCU lock also protects the memcg from being freed when | 
|  | 1901 | * the page state that is going to change is the only thing | 
|  | 1902 | * preventing the page itself from being freed. E.g. writeback | 
|  | 1903 | * doesn't hold a page reference and relies on PG_writeback to | 
|  | 1904 | * keep off truncation, migration and so forth. | 
|  | 1905 | */ | 
|  | 1906 | rcu_read_lock(); | 
|  | 1907 |  | 
|  | 1908 | if (mem_cgroup_disabled()) | 
|  | 1909 | return NULL; | 
|  | 1910 | again: | 
|  | 1911 | memcg = page->mem_cgroup; | 
|  | 1912 | if (unlikely(!memcg)) | 
|  | 1913 | return NULL; | 
|  | 1914 |  | 
|  | 1915 | if (atomic_read(&memcg->moving_account) <= 0) | 
|  | 1916 | return memcg; | 
|  | 1917 |  | 
|  | 1918 | spin_lock_irqsave(&memcg->move_lock, flags); | 
|  | 1919 | if (memcg != page->mem_cgroup) { | 
|  | 1920 | spin_unlock_irqrestore(&memcg->move_lock, flags); | 
|  | 1921 | goto again; | 
|  | 1922 | } | 
|  | 1923 |  | 
|  | 1924 | /* | 
|  | 1925 | * When charge migration first begins, we can have locked and | 
|  | 1926 | * unlocked page stat updates happening concurrently.  Track | 
|  | 1927 | * the task who has the lock for unlock_page_memcg(). | 
|  | 1928 | */ | 
|  | 1929 | memcg->move_lock_task = current; | 
|  | 1930 | memcg->move_lock_flags = flags; | 
|  | 1931 |  | 
|  | 1932 | return memcg; | 
|  | 1933 | } | 
|  | 1934 | EXPORT_SYMBOL(lock_page_memcg); | 
|  | 1935 |  | 
|  | 1936 | /** | 
|  | 1937 | * __unlock_page_memcg - unlock and unpin a memcg | 
|  | 1938 | * @memcg: the memcg | 
|  | 1939 | * | 
|  | 1940 | * Unlock and unpin a memcg returned by lock_page_memcg(). | 
|  | 1941 | */ | 
|  | 1942 | void __unlock_page_memcg(struct mem_cgroup *memcg) | 
|  | 1943 | { | 
|  | 1944 | if (memcg && memcg->move_lock_task == current) { | 
|  | 1945 | unsigned long flags = memcg->move_lock_flags; | 
|  | 1946 |  | 
|  | 1947 | memcg->move_lock_task = NULL; | 
|  | 1948 | memcg->move_lock_flags = 0; | 
|  | 1949 |  | 
|  | 1950 | spin_unlock_irqrestore(&memcg->move_lock, flags); | 
|  | 1951 | } | 
|  | 1952 |  | 
|  | 1953 | rcu_read_unlock(); | 
|  | 1954 | } | 
|  | 1955 |  | 
|  | 1956 | /** | 
|  | 1957 | * unlock_page_memcg - unlock a page->mem_cgroup binding | 
|  | 1958 | * @page: the page | 
|  | 1959 | */ | 
|  | 1960 | void unlock_page_memcg(struct page *page) | 
|  | 1961 | { | 
|  | 1962 | __unlock_page_memcg(page->mem_cgroup); | 
|  | 1963 | } | 
|  | 1964 | EXPORT_SYMBOL(unlock_page_memcg); | 
|  | 1965 |  | 
|  | 1966 | struct memcg_stock_pcp { | 
|  | 1967 | struct mem_cgroup *cached; /* this never be root cgroup */ | 
|  | 1968 | unsigned int nr_pages; | 
|  | 1969 | struct work_struct work; | 
|  | 1970 | unsigned long flags; | 
|  | 1971 | #define FLUSHING_CACHED_CHARGE	0 | 
|  | 1972 | }; | 
|  | 1973 | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); | 
|  | 1974 | static DEFINE_MUTEX(percpu_charge_mutex); | 
|  | 1975 |  | 
|  | 1976 | /** | 
|  | 1977 | * consume_stock: Try to consume stocked charge on this cpu. | 
|  | 1978 | * @memcg: memcg to consume from. | 
|  | 1979 | * @nr_pages: how many pages to charge. | 
|  | 1980 | * | 
|  | 1981 | * The charges will only happen if @memcg matches the current cpu's memcg | 
|  | 1982 | * stock, and at least @nr_pages are available in that stock.  Failure to | 
|  | 1983 | * service an allocation will refill the stock. | 
|  | 1984 | * | 
|  | 1985 | * returns true if successful, false otherwise. | 
|  | 1986 | */ | 
|  | 1987 | static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | 
|  | 1988 | { | 
|  | 1989 | struct memcg_stock_pcp *stock; | 
|  | 1990 | unsigned long flags; | 
|  | 1991 | bool ret = false; | 
|  | 1992 |  | 
|  | 1993 | if (nr_pages > MEMCG_CHARGE_BATCH) | 
|  | 1994 | return ret; | 
|  | 1995 |  | 
|  | 1996 | local_irq_save(flags); | 
|  | 1997 |  | 
|  | 1998 | stock = this_cpu_ptr(&memcg_stock); | 
|  | 1999 | if (memcg == stock->cached && stock->nr_pages >= nr_pages) { | 
|  | 2000 | stock->nr_pages -= nr_pages; | 
|  | 2001 | ret = true; | 
|  | 2002 | } | 
|  | 2003 |  | 
|  | 2004 | local_irq_restore(flags); | 
|  | 2005 |  | 
|  | 2006 | return ret; | 
|  | 2007 | } | 
|  | 2008 |  | 
|  | 2009 | /* | 
|  | 2010 | * Returns stocks cached in percpu and reset cached information. | 
|  | 2011 | */ | 
|  | 2012 | static void drain_stock(struct memcg_stock_pcp *stock) | 
|  | 2013 | { | 
|  | 2014 | struct mem_cgroup *old = stock->cached; | 
|  | 2015 |  | 
|  | 2016 | if (stock->nr_pages) { | 
|  | 2017 | page_counter_uncharge(&old->memory, stock->nr_pages); | 
|  | 2018 | if (do_memsw_account()) | 
|  | 2019 | page_counter_uncharge(&old->memsw, stock->nr_pages); | 
|  | 2020 | css_put_many(&old->css, stock->nr_pages); | 
|  | 2021 | stock->nr_pages = 0; | 
|  | 2022 | } | 
|  | 2023 | stock->cached = NULL; | 
|  | 2024 | } | 
|  | 2025 |  | 
|  | 2026 | static void drain_local_stock(struct work_struct *dummy) | 
|  | 2027 | { | 
|  | 2028 | struct memcg_stock_pcp *stock; | 
|  | 2029 | unsigned long flags; | 
|  | 2030 |  | 
|  | 2031 | /* | 
|  | 2032 | * The only protection from memory hotplug vs. drain_stock races is | 
|  | 2033 | * that we always operate on local CPU stock here with IRQ disabled | 
|  | 2034 | */ | 
|  | 2035 | local_irq_save(flags); | 
|  | 2036 |  | 
|  | 2037 | stock = this_cpu_ptr(&memcg_stock); | 
|  | 2038 | drain_stock(stock); | 
|  | 2039 | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); | 
|  | 2040 |  | 
|  | 2041 | local_irq_restore(flags); | 
|  | 2042 | } | 
|  | 2043 |  | 
|  | 2044 | /* | 
|  | 2045 | * Cache charges(val) to local per_cpu area. | 
|  | 2046 | * This will be consumed by consume_stock() function, later. | 
|  | 2047 | */ | 
|  | 2048 | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) | 
|  | 2049 | { | 
|  | 2050 | struct memcg_stock_pcp *stock; | 
|  | 2051 | unsigned long flags; | 
|  | 2052 |  | 
|  | 2053 | local_irq_save(flags); | 
|  | 2054 |  | 
|  | 2055 | stock = this_cpu_ptr(&memcg_stock); | 
|  | 2056 | if (stock->cached != memcg) { /* reset if necessary */ | 
|  | 2057 | drain_stock(stock); | 
|  | 2058 | stock->cached = memcg; | 
|  | 2059 | } | 
|  | 2060 | stock->nr_pages += nr_pages; | 
|  | 2061 |  | 
|  | 2062 | if (stock->nr_pages > MEMCG_CHARGE_BATCH) | 
|  | 2063 | drain_stock(stock); | 
|  | 2064 |  | 
|  | 2065 | local_irq_restore(flags); | 
|  | 2066 | } | 
|  | 2067 |  | 
|  | 2068 | /* | 
|  | 2069 | * Drains all per-CPU charge caches for given root_memcg resp. subtree | 
|  | 2070 | * of the hierarchy under it. | 
|  | 2071 | */ | 
|  | 2072 | static void drain_all_stock(struct mem_cgroup *root_memcg) | 
|  | 2073 | { | 
|  | 2074 | int cpu, curcpu; | 
|  | 2075 |  | 
|  | 2076 | /* If someone's already draining, avoid adding running more workers. */ | 
|  | 2077 | if (!mutex_trylock(&percpu_charge_mutex)) | 
|  | 2078 | return; | 
|  | 2079 | /* | 
|  | 2080 | * Notify other cpus that system-wide "drain" is running | 
|  | 2081 | * We do not care about races with the cpu hotplug because cpu down | 
|  | 2082 | * as well as workers from this path always operate on the local | 
|  | 2083 | * per-cpu data. CPU up doesn't touch memcg_stock at all. | 
|  | 2084 | */ | 
|  | 2085 | curcpu = get_cpu(); | 
|  | 2086 | for_each_online_cpu(cpu) { | 
|  | 2087 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | 
|  | 2088 | struct mem_cgroup *memcg; | 
|  | 2089 |  | 
|  | 2090 | memcg = stock->cached; | 
|  | 2091 | if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css)) | 
|  | 2092 | continue; | 
|  | 2093 | if (!mem_cgroup_is_descendant(memcg, root_memcg)) { | 
|  | 2094 | css_put(&memcg->css); | 
|  | 2095 | continue; | 
|  | 2096 | } | 
|  | 2097 | if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { | 
|  | 2098 | if (cpu == curcpu) | 
|  | 2099 | drain_local_stock(&stock->work); | 
|  | 2100 | else | 
|  | 2101 | schedule_work_on(cpu, &stock->work); | 
|  | 2102 | } | 
|  | 2103 | css_put(&memcg->css); | 
|  | 2104 | } | 
|  | 2105 | put_cpu(); | 
|  | 2106 | mutex_unlock(&percpu_charge_mutex); | 
|  | 2107 | } | 
|  | 2108 |  | 
|  | 2109 | static int memcg_hotplug_cpu_dead(unsigned int cpu) | 
|  | 2110 | { | 
|  | 2111 | struct memcg_stock_pcp *stock; | 
|  | 2112 | struct mem_cgroup *memcg; | 
|  | 2113 |  | 
|  | 2114 | stock = &per_cpu(memcg_stock, cpu); | 
|  | 2115 | drain_stock(stock); | 
|  | 2116 |  | 
|  | 2117 | for_each_mem_cgroup(memcg) { | 
|  | 2118 | int i; | 
|  | 2119 |  | 
|  | 2120 | for (i = 0; i < MEMCG_NR_STAT; i++) { | 
|  | 2121 | int nid; | 
|  | 2122 | long x; | 
|  | 2123 |  | 
|  | 2124 | x = this_cpu_xchg(memcg->stat_cpu->count[i], 0); | 
|  | 2125 | if (x) | 
|  | 2126 | atomic_long_add(x, &memcg->stat[i]); | 
|  | 2127 |  | 
|  | 2128 | if (i >= NR_VM_NODE_STAT_ITEMS) | 
|  | 2129 | continue; | 
|  | 2130 |  | 
|  | 2131 | for_each_node(nid) { | 
|  | 2132 | struct mem_cgroup_per_node *pn; | 
|  | 2133 |  | 
|  | 2134 | pn = mem_cgroup_nodeinfo(memcg, nid); | 
|  | 2135 | x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); | 
|  | 2136 | if (x) | 
|  | 2137 | atomic_long_add(x, &pn->lruvec_stat[i]); | 
|  | 2138 | } | 
|  | 2139 | } | 
|  | 2140 |  | 
|  | 2141 | for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { | 
|  | 2142 | long x; | 
|  | 2143 |  | 
|  | 2144 | x = this_cpu_xchg(memcg->stat_cpu->events[i], 0); | 
|  | 2145 | if (x) | 
|  | 2146 | atomic_long_add(x, &memcg->events[i]); | 
|  | 2147 | } | 
|  | 2148 | } | 
|  | 2149 |  | 
|  | 2150 | return 0; | 
|  | 2151 | } | 
|  | 2152 |  | 
|  | 2153 | static void reclaim_high(struct mem_cgroup *memcg, | 
|  | 2154 | unsigned int nr_pages, | 
|  | 2155 | gfp_t gfp_mask) | 
|  | 2156 | { | 
|  | 2157 | do { | 
|  | 2158 | if (page_counter_read(&memcg->memory) <= memcg->high) | 
|  | 2159 | continue; | 
|  | 2160 | memcg_memory_event(memcg, MEMCG_HIGH); | 
|  | 2161 | try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); | 
|  | 2162 | } while ((memcg = parent_mem_cgroup(memcg))); | 
|  | 2163 | } | 
|  | 2164 |  | 
|  | 2165 | static void high_work_func(struct work_struct *work) | 
|  | 2166 | { | 
|  | 2167 | struct mem_cgroup *memcg; | 
|  | 2168 |  | 
|  | 2169 | memcg = container_of(work, struct mem_cgroup, high_work); | 
|  | 2170 | reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); | 
|  | 2171 | } | 
|  | 2172 |  | 
|  | 2173 | /* | 
|  | 2174 | * Scheduled by try_charge() to be executed from the userland return path | 
|  | 2175 | * and reclaims memory over the high limit. | 
|  | 2176 | */ | 
|  | 2177 | void mem_cgroup_handle_over_high(void) | 
|  | 2178 | { | 
|  | 2179 | unsigned int nr_pages = current->memcg_nr_pages_over_high; | 
|  | 2180 | struct mem_cgroup *memcg; | 
|  | 2181 |  | 
|  | 2182 | if (likely(!nr_pages)) | 
|  | 2183 | return; | 
|  | 2184 |  | 
|  | 2185 | memcg = get_mem_cgroup_from_mm(current->mm); | 
|  | 2186 | reclaim_high(memcg, nr_pages, GFP_KERNEL); | 
|  | 2187 | css_put(&memcg->css); | 
|  | 2188 | current->memcg_nr_pages_over_high = 0; | 
|  | 2189 | } | 
|  | 2190 |  | 
|  | 2191 | static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, | 
|  | 2192 | unsigned int nr_pages) | 
|  | 2193 | { | 
|  | 2194 | unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); | 
|  | 2195 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
|  | 2196 | struct mem_cgroup *mem_over_limit; | 
|  | 2197 | struct page_counter *counter; | 
|  | 2198 | unsigned long nr_reclaimed; | 
|  | 2199 | bool may_swap = true; | 
|  | 2200 | bool drained = false; | 
|  | 2201 | bool oomed = false; | 
|  | 2202 | enum oom_status oom_status; | 
|  | 2203 |  | 
|  | 2204 | if (mem_cgroup_is_root(memcg)) | 
|  | 2205 | return 0; | 
|  | 2206 | retry: | 
|  | 2207 | if (consume_stock(memcg, nr_pages)) | 
|  | 2208 | return 0; | 
|  | 2209 |  | 
|  | 2210 | if (!do_memsw_account() || | 
|  | 2211 | page_counter_try_charge(&memcg->memsw, batch, &counter)) { | 
|  | 2212 | if (page_counter_try_charge(&memcg->memory, batch, &counter)) | 
|  | 2213 | goto done_restock; | 
|  | 2214 | if (do_memsw_account()) | 
|  | 2215 | page_counter_uncharge(&memcg->memsw, batch); | 
|  | 2216 | mem_over_limit = mem_cgroup_from_counter(counter, memory); | 
|  | 2217 | } else { | 
|  | 2218 | mem_over_limit = mem_cgroup_from_counter(counter, memsw); | 
|  | 2219 | may_swap = false; | 
|  | 2220 | } | 
|  | 2221 |  | 
|  | 2222 | if (batch > nr_pages) { | 
|  | 2223 | batch = nr_pages; | 
|  | 2224 | goto retry; | 
|  | 2225 | } | 
|  | 2226 |  | 
|  | 2227 | /* | 
|  | 2228 | * Memcg doesn't have a dedicated reserve for atomic | 
|  | 2229 | * allocations. But like the global atomic pool, we need to | 
|  | 2230 | * put the burden of reclaim on regular allocation requests | 
|  | 2231 | * and let these go through as privileged allocations. | 
|  | 2232 | */ | 
|  | 2233 | if (gfp_mask & __GFP_ATOMIC) | 
|  | 2234 | goto force; | 
|  | 2235 |  | 
|  | 2236 | /* | 
|  | 2237 | * Unlike in global OOM situations, memcg is not in a physical | 
|  | 2238 | * memory shortage.  Allow dying and OOM-killed tasks to | 
|  | 2239 | * bypass the last charges so that they can exit quickly and | 
|  | 2240 | * free their memory. | 
|  | 2241 | */ | 
|  | 2242 | if (unlikely(should_force_charge())) | 
|  | 2243 | goto force; | 
|  | 2244 |  | 
|  | 2245 | /* | 
|  | 2246 | * Prevent unbounded recursion when reclaim operations need to | 
|  | 2247 | * allocate memory. This might exceed the limits temporarily, | 
|  | 2248 | * but we prefer facilitating memory reclaim and getting back | 
|  | 2249 | * under the limit over triggering OOM kills in these cases. | 
|  | 2250 | */ | 
|  | 2251 | if (unlikely(current->flags & PF_MEMALLOC)) | 
|  | 2252 | goto force; | 
|  | 2253 |  | 
|  | 2254 | if (unlikely(task_in_memcg_oom(current))) | 
|  | 2255 | goto nomem; | 
|  | 2256 |  | 
|  | 2257 | if (!gfpflags_allow_blocking(gfp_mask)) | 
|  | 2258 | goto nomem; | 
|  | 2259 |  | 
|  | 2260 | memcg_memory_event(mem_over_limit, MEMCG_MAX); | 
|  | 2261 |  | 
|  | 2262 | nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, | 
|  | 2263 | gfp_mask, may_swap); | 
|  | 2264 |  | 
|  | 2265 | if (mem_cgroup_margin(mem_over_limit) >= nr_pages) | 
|  | 2266 | goto retry; | 
|  | 2267 |  | 
|  | 2268 | if (!drained) { | 
|  | 2269 | drain_all_stock(mem_over_limit); | 
|  | 2270 | drained = true; | 
|  | 2271 | goto retry; | 
|  | 2272 | } | 
|  | 2273 |  | 
|  | 2274 | if (gfp_mask & __GFP_NORETRY) | 
|  | 2275 | goto nomem; | 
|  | 2276 | /* | 
|  | 2277 | * Even though the limit is exceeded at this point, reclaim | 
|  | 2278 | * may have been able to free some pages.  Retry the charge | 
|  | 2279 | * before killing the task. | 
|  | 2280 | * | 
|  | 2281 | * Only for regular pages, though: huge pages are rather | 
|  | 2282 | * unlikely to succeed so close to the limit, and we fall back | 
|  | 2283 | * to regular pages anyway in case of failure. | 
|  | 2284 | */ | 
|  | 2285 | if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) | 
|  | 2286 | goto retry; | 
|  | 2287 | /* | 
|  | 2288 | * At task move, charge accounts can be doubly counted. So, it's | 
|  | 2289 | * better to wait until the end of task_move if something is going on. | 
|  | 2290 | */ | 
|  | 2291 | if (mem_cgroup_wait_acct_move(mem_over_limit)) | 
|  | 2292 | goto retry; | 
|  | 2293 |  | 
|  | 2294 | if (nr_retries--) | 
|  | 2295 | goto retry; | 
|  | 2296 |  | 
|  | 2297 | if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed) | 
|  | 2298 | goto nomem; | 
|  | 2299 |  | 
|  | 2300 | if (gfp_mask & __GFP_NOFAIL) | 
|  | 2301 | goto force; | 
|  | 2302 |  | 
|  | 2303 | if (fatal_signal_pending(current)) | 
|  | 2304 | goto force; | 
|  | 2305 |  | 
|  | 2306 | memcg_memory_event(mem_over_limit, MEMCG_OOM); | 
|  | 2307 |  | 
|  | 2308 | /* | 
|  | 2309 | * keep retrying as long as the memcg oom killer is able to make | 
|  | 2310 | * a forward progress or bypass the charge if the oom killer | 
|  | 2311 | * couldn't make any progress. | 
|  | 2312 | */ | 
|  | 2313 | oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, | 
|  | 2314 | get_order(nr_pages * PAGE_SIZE)); | 
|  | 2315 | switch (oom_status) { | 
|  | 2316 | case OOM_SUCCESS: | 
|  | 2317 | nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
|  | 2318 | oomed = true; | 
|  | 2319 | goto retry; | 
|  | 2320 | case OOM_FAILED: | 
|  | 2321 | goto force; | 
|  | 2322 | default: | 
|  | 2323 | goto nomem; | 
|  | 2324 | } | 
|  | 2325 | nomem: | 
|  | 2326 | if (!(gfp_mask & __GFP_NOFAIL)) | 
|  | 2327 | return -ENOMEM; | 
|  | 2328 | force: | 
|  | 2329 | /* | 
|  | 2330 | * The allocation either can't fail or will lead to more memory | 
|  | 2331 | * being freed very soon.  Allow memory usage go over the limit | 
|  | 2332 | * temporarily by force charging it. | 
|  | 2333 | */ | 
|  | 2334 | page_counter_charge(&memcg->memory, nr_pages); | 
|  | 2335 | if (do_memsw_account()) | 
|  | 2336 | page_counter_charge(&memcg->memsw, nr_pages); | 
|  | 2337 | css_get_many(&memcg->css, nr_pages); | 
|  | 2338 |  | 
|  | 2339 | return 0; | 
|  | 2340 |  | 
|  | 2341 | done_restock: | 
|  | 2342 | css_get_many(&memcg->css, batch); | 
|  | 2343 | if (batch > nr_pages) | 
|  | 2344 | refill_stock(memcg, batch - nr_pages); | 
|  | 2345 |  | 
|  | 2346 | /* | 
|  | 2347 | * If the hierarchy is above the normal consumption range, schedule | 
|  | 2348 | * reclaim on returning to userland.  We can perform reclaim here | 
|  | 2349 | * if __GFP_RECLAIM but let's always punt for simplicity and so that | 
|  | 2350 | * GFP_KERNEL can consistently be used during reclaim.  @memcg is | 
|  | 2351 | * not recorded as it most likely matches current's and won't | 
|  | 2352 | * change in the meantime.  As high limit is checked again before | 
|  | 2353 | * reclaim, the cost of mismatch is negligible. | 
|  | 2354 | */ | 
|  | 2355 | do { | 
|  | 2356 | if (page_counter_read(&memcg->memory) > memcg->high) { | 
|  | 2357 | /* Don't bother a random interrupted task */ | 
|  | 2358 | if (in_interrupt()) { | 
|  | 2359 | schedule_work(&memcg->high_work); | 
|  | 2360 | break; | 
|  | 2361 | } | 
|  | 2362 | current->memcg_nr_pages_over_high += batch; | 
|  | 2363 | set_notify_resume(current); | 
|  | 2364 | break; | 
|  | 2365 | } | 
|  | 2366 | } while ((memcg = parent_mem_cgroup(memcg))); | 
|  | 2367 |  | 
|  | 2368 | return 0; | 
|  | 2369 | } | 
|  | 2370 |  | 
|  | 2371 | static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) | 
|  | 2372 | { | 
|  | 2373 | if (mem_cgroup_is_root(memcg)) | 
|  | 2374 | return; | 
|  | 2375 |  | 
|  | 2376 | page_counter_uncharge(&memcg->memory, nr_pages); | 
|  | 2377 | if (do_memsw_account()) | 
|  | 2378 | page_counter_uncharge(&memcg->memsw, nr_pages); | 
|  | 2379 |  | 
|  | 2380 | css_put_many(&memcg->css, nr_pages); | 
|  | 2381 | } | 
|  | 2382 |  | 
|  | 2383 | static void lock_page_lru(struct page *page, int *isolated) | 
|  | 2384 | { | 
|  | 2385 | struct zone *zone = page_zone(page); | 
|  | 2386 |  | 
|  | 2387 | spin_lock_irq(zone_lru_lock(zone)); | 
|  | 2388 | if (PageLRU(page)) { | 
|  | 2389 | struct lruvec *lruvec; | 
|  | 2390 |  | 
|  | 2391 | lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); | 
|  | 2392 | ClearPageLRU(page); | 
|  | 2393 | del_page_from_lru_list(page, lruvec, page_lru(page)); | 
|  | 2394 | *isolated = 1; | 
|  | 2395 | } else | 
|  | 2396 | *isolated = 0; | 
|  | 2397 | } | 
|  | 2398 |  | 
|  | 2399 | static void unlock_page_lru(struct page *page, int isolated) | 
|  | 2400 | { | 
|  | 2401 | struct zone *zone = page_zone(page); | 
|  | 2402 |  | 
|  | 2403 | if (isolated) { | 
|  | 2404 | struct lruvec *lruvec; | 
|  | 2405 |  | 
|  | 2406 | lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); | 
|  | 2407 | VM_BUG_ON_PAGE(PageLRU(page), page); | 
|  | 2408 | SetPageLRU(page); | 
|  | 2409 | add_page_to_lru_list(page, lruvec, page_lru(page)); | 
|  | 2410 | } | 
|  | 2411 | spin_unlock_irq(zone_lru_lock(zone)); | 
|  | 2412 | } | 
|  | 2413 |  | 
|  | 2414 | static void commit_charge(struct page *page, struct mem_cgroup *memcg, | 
|  | 2415 | bool lrucare) | 
|  | 2416 | { | 
|  | 2417 | int isolated; | 
|  | 2418 |  | 
|  | 2419 | VM_BUG_ON_PAGE(page->mem_cgroup, page); | 
|  | 2420 |  | 
|  | 2421 | /* | 
|  | 2422 | * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page | 
|  | 2423 | * may already be on some other mem_cgroup's LRU.  Take care of it. | 
|  | 2424 | */ | 
|  | 2425 | if (lrucare) | 
|  | 2426 | lock_page_lru(page, &isolated); | 
|  | 2427 |  | 
|  | 2428 | /* | 
|  | 2429 | * Nobody should be changing or seriously looking at | 
|  | 2430 | * page->mem_cgroup at this point: | 
|  | 2431 | * | 
|  | 2432 | * - the page is uncharged | 
|  | 2433 | * | 
|  | 2434 | * - the page is off-LRU | 
|  | 2435 | * | 
|  | 2436 | * - an anonymous fault has exclusive page access, except for | 
|  | 2437 | *   a locked page table | 
|  | 2438 | * | 
|  | 2439 | * - a page cache insertion, a swapin fault, or a migration | 
|  | 2440 | *   have the page locked | 
|  | 2441 | */ | 
|  | 2442 | page->mem_cgroup = memcg; | 
|  | 2443 |  | 
|  | 2444 | if (lrucare) | 
|  | 2445 | unlock_page_lru(page, isolated); | 
|  | 2446 | } | 
|  | 2447 |  | 
|  | 2448 | #ifdef CONFIG_MEMCG_KMEM | 
|  | 2449 | static int memcg_alloc_cache_id(void) | 
|  | 2450 | { | 
|  | 2451 | int id, size; | 
|  | 2452 | int err; | 
|  | 2453 |  | 
|  | 2454 | id = ida_simple_get(&memcg_cache_ida, | 
|  | 2455 | 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); | 
|  | 2456 | if (id < 0) | 
|  | 2457 | return id; | 
|  | 2458 |  | 
|  | 2459 | if (id < memcg_nr_cache_ids) | 
|  | 2460 | return id; | 
|  | 2461 |  | 
|  | 2462 | /* | 
|  | 2463 | * There's no space for the new id in memcg_caches arrays, | 
|  | 2464 | * so we have to grow them. | 
|  | 2465 | */ | 
|  | 2466 | down_write(&memcg_cache_ids_sem); | 
|  | 2467 |  | 
|  | 2468 | size = 2 * (id + 1); | 
|  | 2469 | if (size < MEMCG_CACHES_MIN_SIZE) | 
|  | 2470 | size = MEMCG_CACHES_MIN_SIZE; | 
|  | 2471 | else if (size > MEMCG_CACHES_MAX_SIZE) | 
|  | 2472 | size = MEMCG_CACHES_MAX_SIZE; | 
|  | 2473 |  | 
|  | 2474 | err = memcg_update_all_caches(size); | 
|  | 2475 | if (!err) | 
|  | 2476 | err = memcg_update_all_list_lrus(size); | 
|  | 2477 | if (!err) | 
|  | 2478 | memcg_nr_cache_ids = size; | 
|  | 2479 |  | 
|  | 2480 | up_write(&memcg_cache_ids_sem); | 
|  | 2481 |  | 
|  | 2482 | if (err) { | 
|  | 2483 | ida_simple_remove(&memcg_cache_ida, id); | 
|  | 2484 | return err; | 
|  | 2485 | } | 
|  | 2486 | return id; | 
|  | 2487 | } | 
|  | 2488 |  | 
|  | 2489 | static void memcg_free_cache_id(int id) | 
|  | 2490 | { | 
|  | 2491 | ida_simple_remove(&memcg_cache_ida, id); | 
|  | 2492 | } | 
|  | 2493 |  | 
|  | 2494 | struct memcg_kmem_cache_create_work { | 
|  | 2495 | struct mem_cgroup *memcg; | 
|  | 2496 | struct kmem_cache *cachep; | 
|  | 2497 | struct work_struct work; | 
|  | 2498 | }; | 
|  | 2499 |  | 
|  | 2500 | static void memcg_kmem_cache_create_func(struct work_struct *w) | 
|  | 2501 | { | 
|  | 2502 | struct memcg_kmem_cache_create_work *cw = | 
|  | 2503 | container_of(w, struct memcg_kmem_cache_create_work, work); | 
|  | 2504 | struct mem_cgroup *memcg = cw->memcg; | 
|  | 2505 | struct kmem_cache *cachep = cw->cachep; | 
|  | 2506 |  | 
|  | 2507 | memcg_create_kmem_cache(memcg, cachep); | 
|  | 2508 |  | 
|  | 2509 | css_put(&memcg->css); | 
|  | 2510 | kfree(cw); | 
|  | 2511 | } | 
|  | 2512 |  | 
|  | 2513 | /* | 
|  | 2514 | * Enqueue the creation of a per-memcg kmem_cache. | 
|  | 2515 | */ | 
|  | 2516 | static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, | 
|  | 2517 | struct kmem_cache *cachep) | 
|  | 2518 | { | 
|  | 2519 | struct memcg_kmem_cache_create_work *cw; | 
|  | 2520 |  | 
|  | 2521 | cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); | 
|  | 2522 | if (!cw) | 
|  | 2523 | return; | 
|  | 2524 |  | 
|  | 2525 | css_get(&memcg->css); | 
|  | 2526 |  | 
|  | 2527 | cw->memcg = memcg; | 
|  | 2528 | cw->cachep = cachep; | 
|  | 2529 | INIT_WORK(&cw->work, memcg_kmem_cache_create_func); | 
|  | 2530 |  | 
|  | 2531 | queue_work(memcg_kmem_cache_wq, &cw->work); | 
|  | 2532 | } | 
|  | 2533 |  | 
|  | 2534 | static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, | 
|  | 2535 | struct kmem_cache *cachep) | 
|  | 2536 | { | 
|  | 2537 | /* | 
|  | 2538 | * We need to stop accounting when we kmalloc, because if the | 
|  | 2539 | * corresponding kmalloc cache is not yet created, the first allocation | 
|  | 2540 | * in __memcg_schedule_kmem_cache_create will recurse. | 
|  | 2541 | * | 
|  | 2542 | * However, it is better to enclose the whole function. Depending on | 
|  | 2543 | * the debugging options enabled, INIT_WORK(), for instance, can | 
|  | 2544 | * trigger an allocation. This too, will make us recurse. Because at | 
|  | 2545 | * this point we can't allow ourselves back into memcg_kmem_get_cache, | 
|  | 2546 | * the safest choice is to do it like this, wrapping the whole function. | 
|  | 2547 | */ | 
|  | 2548 | current->memcg_kmem_skip_account = 1; | 
|  | 2549 | __memcg_schedule_kmem_cache_create(memcg, cachep); | 
|  | 2550 | current->memcg_kmem_skip_account = 0; | 
|  | 2551 | } | 
|  | 2552 |  | 
|  | 2553 | static inline bool memcg_kmem_bypass(void) | 
|  | 2554 | { | 
|  | 2555 | if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) | 
|  | 2556 | return true; | 
|  | 2557 | return false; | 
|  | 2558 | } | 
|  | 2559 |  | 
|  | 2560 | /** | 
|  | 2561 | * memcg_kmem_get_cache: select the correct per-memcg cache for allocation | 
|  | 2562 | * @cachep: the original global kmem cache | 
|  | 2563 | * | 
|  | 2564 | * Return the kmem_cache we're supposed to use for a slab allocation. | 
|  | 2565 | * We try to use the current memcg's version of the cache. | 
|  | 2566 | * | 
|  | 2567 | * If the cache does not exist yet, if we are the first user of it, we | 
|  | 2568 | * create it asynchronously in a workqueue and let the current allocation | 
|  | 2569 | * go through with the original cache. | 
|  | 2570 | * | 
|  | 2571 | * This function takes a reference to the cache it returns to assure it | 
|  | 2572 | * won't get destroyed while we are working with it. Once the caller is | 
|  | 2573 | * done with it, memcg_kmem_put_cache() must be called to release the | 
|  | 2574 | * reference. | 
|  | 2575 | */ | 
|  | 2576 | struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) | 
|  | 2577 | { | 
|  | 2578 | struct mem_cgroup *memcg; | 
|  | 2579 | struct kmem_cache *memcg_cachep; | 
|  | 2580 | int kmemcg_id; | 
|  | 2581 |  | 
|  | 2582 | VM_BUG_ON(!is_root_cache(cachep)); | 
|  | 2583 |  | 
|  | 2584 | if (memcg_kmem_bypass()) | 
|  | 2585 | return cachep; | 
|  | 2586 |  | 
|  | 2587 | if (current->memcg_kmem_skip_account) | 
|  | 2588 | return cachep; | 
|  | 2589 |  | 
|  | 2590 | memcg = get_mem_cgroup_from_current(); | 
|  | 2591 | kmemcg_id = READ_ONCE(memcg->kmemcg_id); | 
|  | 2592 | if (kmemcg_id < 0) | 
|  | 2593 | goto out; | 
|  | 2594 |  | 
|  | 2595 | memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); | 
|  | 2596 | if (likely(memcg_cachep)) | 
|  | 2597 | return memcg_cachep; | 
|  | 2598 |  | 
|  | 2599 | /* | 
|  | 2600 | * If we are in a safe context (can wait, and not in interrupt | 
|  | 2601 | * context), we could be be predictable and return right away. | 
|  | 2602 | * This would guarantee that the allocation being performed | 
|  | 2603 | * already belongs in the new cache. | 
|  | 2604 | * | 
|  | 2605 | * However, there are some clashes that can arrive from locking. | 
|  | 2606 | * For instance, because we acquire the slab_mutex while doing | 
|  | 2607 | * memcg_create_kmem_cache, this means no further allocation | 
|  | 2608 | * could happen with the slab_mutex held. So it's better to | 
|  | 2609 | * defer everything. | 
|  | 2610 | */ | 
|  | 2611 | memcg_schedule_kmem_cache_create(memcg, cachep); | 
|  | 2612 | out: | 
|  | 2613 | css_put(&memcg->css); | 
|  | 2614 | return cachep; | 
|  | 2615 | } | 
|  | 2616 |  | 
|  | 2617 | /** | 
|  | 2618 | * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache | 
|  | 2619 | * @cachep: the cache returned by memcg_kmem_get_cache | 
|  | 2620 | */ | 
|  | 2621 | void memcg_kmem_put_cache(struct kmem_cache *cachep) | 
|  | 2622 | { | 
|  | 2623 | if (!is_root_cache(cachep)) | 
|  | 2624 | css_put(&cachep->memcg_params.memcg->css); | 
|  | 2625 | } | 
|  | 2626 |  | 
|  | 2627 | /** | 
|  | 2628 | * memcg_kmem_charge_memcg: charge a kmem page | 
|  | 2629 | * @page: page to charge | 
|  | 2630 | * @gfp: reclaim mode | 
|  | 2631 | * @order: allocation order | 
|  | 2632 | * @memcg: memory cgroup to charge | 
|  | 2633 | * | 
|  | 2634 | * Returns 0 on success, an error code on failure. | 
|  | 2635 | */ | 
|  | 2636 | int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, | 
|  | 2637 | struct mem_cgroup *memcg) | 
|  | 2638 | { | 
|  | 2639 | unsigned int nr_pages = 1 << order; | 
|  | 2640 | struct page_counter *counter; | 
|  | 2641 | int ret; | 
|  | 2642 |  | 
|  | 2643 | ret = try_charge(memcg, gfp, nr_pages); | 
|  | 2644 | if (ret) | 
|  | 2645 | return ret; | 
|  | 2646 |  | 
|  | 2647 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && | 
|  | 2648 | !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { | 
|  | 2649 |  | 
|  | 2650 | /* | 
|  | 2651 | * Enforce __GFP_NOFAIL allocation because callers are not | 
|  | 2652 | * prepared to see failures and likely do not have any failure | 
|  | 2653 | * handling code. | 
|  | 2654 | */ | 
|  | 2655 | if (gfp & __GFP_NOFAIL) { | 
|  | 2656 | page_counter_charge(&memcg->kmem, nr_pages); | 
|  | 2657 | return 0; | 
|  | 2658 | } | 
|  | 2659 | cancel_charge(memcg, nr_pages); | 
|  | 2660 | return -ENOMEM; | 
|  | 2661 | } | 
|  | 2662 |  | 
|  | 2663 | page->mem_cgroup = memcg; | 
|  | 2664 |  | 
|  | 2665 | return 0; | 
|  | 2666 | } | 
|  | 2667 |  | 
|  | 2668 | /** | 
|  | 2669 | * memcg_kmem_charge: charge a kmem page to the current memory cgroup | 
|  | 2670 | * @page: page to charge | 
|  | 2671 | * @gfp: reclaim mode | 
|  | 2672 | * @order: allocation order | 
|  | 2673 | * | 
|  | 2674 | * Returns 0 on success, an error code on failure. | 
|  | 2675 | */ | 
|  | 2676 | int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) | 
|  | 2677 | { | 
|  | 2678 | struct mem_cgroup *memcg; | 
|  | 2679 | int ret = 0; | 
|  | 2680 |  | 
|  | 2681 | if (mem_cgroup_disabled() || memcg_kmem_bypass()) | 
|  | 2682 | return 0; | 
|  | 2683 |  | 
|  | 2684 | memcg = get_mem_cgroup_from_current(); | 
|  | 2685 | if (!mem_cgroup_is_root(memcg)) { | 
|  | 2686 | ret = memcg_kmem_charge_memcg(page, gfp, order, memcg); | 
|  | 2687 | if (!ret) | 
|  | 2688 | __SetPageKmemcg(page); | 
|  | 2689 | } | 
|  | 2690 | css_put(&memcg->css); | 
|  | 2691 | return ret; | 
|  | 2692 | } | 
|  | 2693 | /** | 
|  | 2694 | * memcg_kmem_uncharge: uncharge a kmem page | 
|  | 2695 | * @page: page to uncharge | 
|  | 2696 | * @order: allocation order | 
|  | 2697 | */ | 
|  | 2698 | void memcg_kmem_uncharge(struct page *page, int order) | 
|  | 2699 | { | 
|  | 2700 | struct mem_cgroup *memcg = page->mem_cgroup; | 
|  | 2701 | unsigned int nr_pages = 1 << order; | 
|  | 2702 |  | 
|  | 2703 | if (!memcg) | 
|  | 2704 | return; | 
|  | 2705 |  | 
|  | 2706 | VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); | 
|  | 2707 |  | 
|  | 2708 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | 2709 | page_counter_uncharge(&memcg->kmem, nr_pages); | 
|  | 2710 |  | 
|  | 2711 | page_counter_uncharge(&memcg->memory, nr_pages); | 
|  | 2712 | if (do_memsw_account()) | 
|  | 2713 | page_counter_uncharge(&memcg->memsw, nr_pages); | 
|  | 2714 |  | 
|  | 2715 | page->mem_cgroup = NULL; | 
|  | 2716 |  | 
|  | 2717 | /* slab pages do not have PageKmemcg flag set */ | 
|  | 2718 | if (PageKmemcg(page)) | 
|  | 2719 | __ClearPageKmemcg(page); | 
|  | 2720 |  | 
|  | 2721 | css_put_many(&memcg->css, nr_pages); | 
|  | 2722 | } | 
|  | 2723 | #endif /* CONFIG_MEMCG_KMEM */ | 
|  | 2724 |  | 
|  | 2725 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | 2726 |  | 
|  | 2727 | /* | 
|  | 2728 | * Because tail pages are not marked as "used", set it. We're under | 
|  | 2729 | * zone_lru_lock and migration entries setup in all page mappings. | 
|  | 2730 | */ | 
|  | 2731 | void mem_cgroup_split_huge_fixup(struct page *head) | 
|  | 2732 | { | 
|  | 2733 | int i; | 
|  | 2734 |  | 
|  | 2735 | if (mem_cgroup_disabled()) | 
|  | 2736 | return; | 
|  | 2737 |  | 
|  | 2738 | for (i = 1; i < HPAGE_PMD_NR; i++) | 
|  | 2739 | head[i].mem_cgroup = head->mem_cgroup; | 
|  | 2740 |  | 
|  | 2741 | __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); | 
|  | 2742 | } | 
|  | 2743 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | 
|  | 2744 |  | 
|  | 2745 | #ifdef CONFIG_MEMCG_SWAP | 
|  | 2746 | /** | 
|  | 2747 | * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. | 
|  | 2748 | * @entry: swap entry to be moved | 
|  | 2749 | * @from:  mem_cgroup which the entry is moved from | 
|  | 2750 | * @to:  mem_cgroup which the entry is moved to | 
|  | 2751 | * | 
|  | 2752 | * It succeeds only when the swap_cgroup's record for this entry is the same | 
|  | 2753 | * as the mem_cgroup's id of @from. | 
|  | 2754 | * | 
|  | 2755 | * Returns 0 on success, -EINVAL on failure. | 
|  | 2756 | * | 
|  | 2757 | * The caller must have charged to @to, IOW, called page_counter_charge() about | 
|  | 2758 | * both res and memsw, and called css_get(). | 
|  | 2759 | */ | 
|  | 2760 | static int mem_cgroup_move_swap_account(swp_entry_t entry, | 
|  | 2761 | struct mem_cgroup *from, struct mem_cgroup *to) | 
|  | 2762 | { | 
|  | 2763 | unsigned short old_id, new_id; | 
|  | 2764 |  | 
|  | 2765 | old_id = mem_cgroup_id(from); | 
|  | 2766 | new_id = mem_cgroup_id(to); | 
|  | 2767 |  | 
|  | 2768 | if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { | 
|  | 2769 | mod_memcg_state(from, MEMCG_SWAP, -1); | 
|  | 2770 | mod_memcg_state(to, MEMCG_SWAP, 1); | 
|  | 2771 | return 0; | 
|  | 2772 | } | 
|  | 2773 | return -EINVAL; | 
|  | 2774 | } | 
|  | 2775 | #else | 
|  | 2776 | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, | 
|  | 2777 | struct mem_cgroup *from, struct mem_cgroup *to) | 
|  | 2778 | { | 
|  | 2779 | return -EINVAL; | 
|  | 2780 | } | 
|  | 2781 | #endif | 
|  | 2782 |  | 
|  | 2783 | static DEFINE_MUTEX(memcg_max_mutex); | 
|  | 2784 |  | 
|  | 2785 | static int mem_cgroup_resize_max(struct mem_cgroup *memcg, | 
|  | 2786 | unsigned long max, bool memsw) | 
|  | 2787 | { | 
|  | 2788 | bool enlarge = false; | 
|  | 2789 | bool drained = false; | 
|  | 2790 | int ret; | 
|  | 2791 | bool limits_invariant; | 
|  | 2792 | struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; | 
|  | 2793 |  | 
|  | 2794 | do { | 
|  | 2795 | if (signal_pending(current)) { | 
|  | 2796 | ret = -EINTR; | 
|  | 2797 | break; | 
|  | 2798 | } | 
|  | 2799 |  | 
|  | 2800 | mutex_lock(&memcg_max_mutex); | 
|  | 2801 | /* | 
|  | 2802 | * Make sure that the new limit (memsw or memory limit) doesn't | 
|  | 2803 | * break our basic invariant rule memory.max <= memsw.max. | 
|  | 2804 | */ | 
|  | 2805 | limits_invariant = memsw ? max >= memcg->memory.max : | 
|  | 2806 | max <= memcg->memsw.max; | 
|  | 2807 | if (!limits_invariant) { | 
|  | 2808 | mutex_unlock(&memcg_max_mutex); | 
|  | 2809 | ret = -EINVAL; | 
|  | 2810 | break; | 
|  | 2811 | } | 
|  | 2812 | if (max > counter->max) | 
|  | 2813 | enlarge = true; | 
|  | 2814 | ret = page_counter_set_max(counter, max); | 
|  | 2815 | mutex_unlock(&memcg_max_mutex); | 
|  | 2816 |  | 
|  | 2817 | if (!ret) | 
|  | 2818 | break; | 
|  | 2819 |  | 
|  | 2820 | if (!drained) { | 
|  | 2821 | drain_all_stock(memcg); | 
|  | 2822 | drained = true; | 
|  | 2823 | continue; | 
|  | 2824 | } | 
|  | 2825 |  | 
|  | 2826 | if (!try_to_free_mem_cgroup_pages(memcg, 1, | 
|  | 2827 | GFP_KERNEL, !memsw)) { | 
|  | 2828 | ret = -EBUSY; | 
|  | 2829 | break; | 
|  | 2830 | } | 
|  | 2831 | } while (true); | 
|  | 2832 |  | 
|  | 2833 | if (!ret && enlarge) | 
|  | 2834 | memcg_oom_recover(memcg); | 
|  | 2835 |  | 
|  | 2836 | return ret; | 
|  | 2837 | } | 
|  | 2838 |  | 
|  | 2839 | unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, | 
|  | 2840 | gfp_t gfp_mask, | 
|  | 2841 | unsigned long *total_scanned) | 
|  | 2842 | { | 
|  | 2843 | unsigned long nr_reclaimed = 0; | 
|  | 2844 | struct mem_cgroup_per_node *mz, *next_mz = NULL; | 
|  | 2845 | unsigned long reclaimed; | 
|  | 2846 | int loop = 0; | 
|  | 2847 | struct mem_cgroup_tree_per_node *mctz; | 
|  | 2848 | unsigned long excess; | 
|  | 2849 | unsigned long nr_scanned; | 
|  | 2850 |  | 
|  | 2851 | if (order > 0) | 
|  | 2852 | return 0; | 
|  | 2853 |  | 
|  | 2854 | mctz = soft_limit_tree_node(pgdat->node_id); | 
|  | 2855 |  | 
|  | 2856 | /* | 
|  | 2857 | * Do not even bother to check the largest node if the root | 
|  | 2858 | * is empty. Do it lockless to prevent lock bouncing. Races | 
|  | 2859 | * are acceptable as soft limit is best effort anyway. | 
|  | 2860 | */ | 
|  | 2861 | if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) | 
|  | 2862 | return 0; | 
|  | 2863 |  | 
|  | 2864 | /* | 
|  | 2865 | * This loop can run a while, specially if mem_cgroup's continuously | 
|  | 2866 | * keep exceeding their soft limit and putting the system under | 
|  | 2867 | * pressure | 
|  | 2868 | */ | 
|  | 2869 | do { | 
|  | 2870 | if (next_mz) | 
|  | 2871 | mz = next_mz; | 
|  | 2872 | else | 
|  | 2873 | mz = mem_cgroup_largest_soft_limit_node(mctz); | 
|  | 2874 | if (!mz) | 
|  | 2875 | break; | 
|  | 2876 |  | 
|  | 2877 | nr_scanned = 0; | 
|  | 2878 | reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, | 
|  | 2879 | gfp_mask, &nr_scanned); | 
|  | 2880 | nr_reclaimed += reclaimed; | 
|  | 2881 | *total_scanned += nr_scanned; | 
|  | 2882 | spin_lock_irq(&mctz->lock); | 
|  | 2883 | __mem_cgroup_remove_exceeded(mz, mctz); | 
|  | 2884 |  | 
|  | 2885 | /* | 
|  | 2886 | * If we failed to reclaim anything from this memory cgroup | 
|  | 2887 | * it is time to move on to the next cgroup | 
|  | 2888 | */ | 
|  | 2889 | next_mz = NULL; | 
|  | 2890 | if (!reclaimed) | 
|  | 2891 | next_mz = __mem_cgroup_largest_soft_limit_node(mctz); | 
|  | 2892 |  | 
|  | 2893 | excess = soft_limit_excess(mz->memcg); | 
|  | 2894 | /* | 
|  | 2895 | * One school of thought says that we should not add | 
|  | 2896 | * back the node to the tree if reclaim returns 0. | 
|  | 2897 | * But our reclaim could return 0, simply because due | 
|  | 2898 | * to priority we are exposing a smaller subset of | 
|  | 2899 | * memory to reclaim from. Consider this as a longer | 
|  | 2900 | * term TODO. | 
|  | 2901 | */ | 
|  | 2902 | /* If excess == 0, no tree ops */ | 
|  | 2903 | __mem_cgroup_insert_exceeded(mz, mctz, excess); | 
|  | 2904 | spin_unlock_irq(&mctz->lock); | 
|  | 2905 | css_put(&mz->memcg->css); | 
|  | 2906 | loop++; | 
|  | 2907 | /* | 
|  | 2908 | * Could not reclaim anything and there are no more | 
|  | 2909 | * mem cgroups to try or we seem to be looping without | 
|  | 2910 | * reclaiming anything. | 
|  | 2911 | */ | 
|  | 2912 | if (!nr_reclaimed && | 
|  | 2913 | (next_mz == NULL || | 
|  | 2914 | loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) | 
|  | 2915 | break; | 
|  | 2916 | } while (!nr_reclaimed); | 
|  | 2917 | if (next_mz) | 
|  | 2918 | css_put(&next_mz->memcg->css); | 
|  | 2919 | return nr_reclaimed; | 
|  | 2920 | } | 
|  | 2921 |  | 
|  | 2922 | /* | 
|  | 2923 | * Test whether @memcg has children, dead or alive.  Note that this | 
|  | 2924 | * function doesn't care whether @memcg has use_hierarchy enabled and | 
|  | 2925 | * returns %true if there are child csses according to the cgroup | 
|  | 2926 | * hierarchy.  Testing use_hierarchy is the caller's responsiblity. | 
|  | 2927 | */ | 
|  | 2928 | static inline bool memcg_has_children(struct mem_cgroup *memcg) | 
|  | 2929 | { | 
|  | 2930 | bool ret; | 
|  | 2931 |  | 
|  | 2932 | rcu_read_lock(); | 
|  | 2933 | ret = css_next_child(NULL, &memcg->css); | 
|  | 2934 | rcu_read_unlock(); | 
|  | 2935 | return ret; | 
|  | 2936 | } | 
|  | 2937 |  | 
|  | 2938 | /* | 
|  | 2939 | * Reclaims as many pages from the given memcg as possible. | 
|  | 2940 | * | 
|  | 2941 | * Caller is responsible for holding css reference for memcg. | 
|  | 2942 | */ | 
|  | 2943 | static int mem_cgroup_force_empty(struct mem_cgroup *memcg) | 
|  | 2944 | { | 
|  | 2945 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | 
|  | 2946 |  | 
|  | 2947 | /* we call try-to-free pages for make this cgroup empty */ | 
|  | 2948 | lru_add_drain_all(); | 
|  | 2949 |  | 
|  | 2950 | drain_all_stock(memcg); | 
|  | 2951 |  | 
|  | 2952 | /* try to free all pages in this cgroup */ | 
|  | 2953 | while (nr_retries && page_counter_read(&memcg->memory)) { | 
|  | 2954 | int progress; | 
|  | 2955 |  | 
|  | 2956 | if (signal_pending(current)) | 
|  | 2957 | return -EINTR; | 
|  | 2958 |  | 
|  | 2959 | progress = try_to_free_mem_cgroup_pages(memcg, 1, | 
|  | 2960 | GFP_KERNEL, true); | 
|  | 2961 | if (!progress) { | 
|  | 2962 | nr_retries--; | 
|  | 2963 | /* maybe some writeback is necessary */ | 
|  | 2964 | congestion_wait(BLK_RW_ASYNC, HZ/10); | 
|  | 2965 | } | 
|  | 2966 |  | 
|  | 2967 | } | 
|  | 2968 |  | 
|  | 2969 | return 0; | 
|  | 2970 | } | 
|  | 2971 |  | 
|  | 2972 | static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, | 
|  | 2973 | char *buf, size_t nbytes, | 
|  | 2974 | loff_t off) | 
|  | 2975 | { | 
|  | 2976 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | 2977 |  | 
|  | 2978 | if (mem_cgroup_is_root(memcg)) | 
|  | 2979 | return -EINVAL; | 
|  | 2980 | return mem_cgroup_force_empty(memcg) ?: nbytes; | 
|  | 2981 | } | 
|  | 2982 |  | 
|  | 2983 | static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, | 
|  | 2984 | struct cftype *cft) | 
|  | 2985 | { | 
|  | 2986 | return mem_cgroup_from_css(css)->use_hierarchy; | 
|  | 2987 | } | 
|  | 2988 |  | 
|  | 2989 | static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, | 
|  | 2990 | struct cftype *cft, u64 val) | 
|  | 2991 | { | 
|  | 2992 | int retval = 0; | 
|  | 2993 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | 2994 | struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); | 
|  | 2995 |  | 
|  | 2996 | if (memcg->use_hierarchy == val) | 
|  | 2997 | return 0; | 
|  | 2998 |  | 
|  | 2999 | /* | 
|  | 3000 | * If parent's use_hierarchy is set, we can't make any modifications | 
|  | 3001 | * in the child subtrees. If it is unset, then the change can | 
|  | 3002 | * occur, provided the current cgroup has no children. | 
|  | 3003 | * | 
|  | 3004 | * For the root cgroup, parent_mem is NULL, we allow value to be | 
|  | 3005 | * set if there are no children. | 
|  | 3006 | */ | 
|  | 3007 | if ((!parent_memcg || !parent_memcg->use_hierarchy) && | 
|  | 3008 | (val == 1 || val == 0)) { | 
|  | 3009 | if (!memcg_has_children(memcg)) | 
|  | 3010 | memcg->use_hierarchy = val; | 
|  | 3011 | else | 
|  | 3012 | retval = -EBUSY; | 
|  | 3013 | } else | 
|  | 3014 | retval = -EINVAL; | 
|  | 3015 |  | 
|  | 3016 | return retval; | 
|  | 3017 | } | 
|  | 3018 |  | 
|  | 3019 | struct accumulated_stats { | 
|  | 3020 | unsigned long stat[MEMCG_NR_STAT]; | 
|  | 3021 | unsigned long events[NR_VM_EVENT_ITEMS]; | 
|  | 3022 | unsigned long lru_pages[NR_LRU_LISTS]; | 
|  | 3023 | const unsigned int *stats_array; | 
|  | 3024 | const unsigned int *events_array; | 
|  | 3025 | int stats_size; | 
|  | 3026 | int events_size; | 
|  | 3027 | }; | 
|  | 3028 |  | 
|  | 3029 | static void accumulate_memcg_tree(struct mem_cgroup *memcg, | 
|  | 3030 | struct accumulated_stats *acc) | 
|  | 3031 | { | 
|  | 3032 | struct mem_cgroup *mi; | 
|  | 3033 | int i; | 
|  | 3034 |  | 
|  | 3035 | for_each_mem_cgroup_tree(mi, memcg) { | 
|  | 3036 | for (i = 0; i < acc->stats_size; i++) | 
|  | 3037 | acc->stat[i] += memcg_page_state(mi, | 
|  | 3038 | acc->stats_array ? acc->stats_array[i] : i); | 
|  | 3039 |  | 
|  | 3040 | for (i = 0; i < acc->events_size; i++) | 
|  | 3041 | acc->events[i] += memcg_sum_events(mi, | 
|  | 3042 | acc->events_array ? acc->events_array[i] : i); | 
|  | 3043 |  | 
|  | 3044 | for (i = 0; i < NR_LRU_LISTS; i++) | 
|  | 3045 | acc->lru_pages[i] += | 
|  | 3046 | mem_cgroup_nr_lru_pages(mi, BIT(i)); | 
|  | 3047 | } | 
|  | 3048 | } | 
|  | 3049 |  | 
|  | 3050 | static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) | 
|  | 3051 | { | 
|  | 3052 | unsigned long val = 0; | 
|  | 3053 |  | 
|  | 3054 | if (mem_cgroup_is_root(memcg)) { | 
|  | 3055 | struct mem_cgroup *iter; | 
|  | 3056 |  | 
|  | 3057 | for_each_mem_cgroup_tree(iter, memcg) { | 
|  | 3058 | val += memcg_page_state(iter, MEMCG_CACHE); | 
|  | 3059 | val += memcg_page_state(iter, MEMCG_RSS); | 
|  | 3060 | if (swap) | 
|  | 3061 | val += memcg_page_state(iter, MEMCG_SWAP); | 
|  | 3062 | } | 
|  | 3063 | } else { | 
|  | 3064 | if (!swap) | 
|  | 3065 | val = page_counter_read(&memcg->memory); | 
|  | 3066 | else | 
|  | 3067 | val = page_counter_read(&memcg->memsw); | 
|  | 3068 | } | 
|  | 3069 | return val; | 
|  | 3070 | } | 
|  | 3071 |  | 
|  | 3072 | enum { | 
|  | 3073 | RES_USAGE, | 
|  | 3074 | RES_LIMIT, | 
|  | 3075 | RES_MAX_USAGE, | 
|  | 3076 | RES_FAILCNT, | 
|  | 3077 | RES_SOFT_LIMIT, | 
|  | 3078 | }; | 
|  | 3079 |  | 
|  | 3080 | static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, | 
|  | 3081 | struct cftype *cft) | 
|  | 3082 | { | 
|  | 3083 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | 3084 | struct page_counter *counter; | 
|  | 3085 |  | 
|  | 3086 | switch (MEMFILE_TYPE(cft->private)) { | 
|  | 3087 | case _MEM: | 
|  | 3088 | counter = &memcg->memory; | 
|  | 3089 | break; | 
|  | 3090 | case _MEMSWAP: | 
|  | 3091 | counter = &memcg->memsw; | 
|  | 3092 | break; | 
|  | 3093 | case _KMEM: | 
|  | 3094 | counter = &memcg->kmem; | 
|  | 3095 | break; | 
|  | 3096 | case _TCP: | 
|  | 3097 | counter = &memcg->tcpmem; | 
|  | 3098 | break; | 
|  | 3099 | default: | 
|  | 3100 | BUG(); | 
|  | 3101 | } | 
|  | 3102 |  | 
|  | 3103 | switch (MEMFILE_ATTR(cft->private)) { | 
|  | 3104 | case RES_USAGE: | 
|  | 3105 | if (counter == &memcg->memory) | 
|  | 3106 | return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; | 
|  | 3107 | if (counter == &memcg->memsw) | 
|  | 3108 | return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; | 
|  | 3109 | return (u64)page_counter_read(counter) * PAGE_SIZE; | 
|  | 3110 | case RES_LIMIT: | 
|  | 3111 | return (u64)counter->max * PAGE_SIZE; | 
|  | 3112 | case RES_MAX_USAGE: | 
|  | 3113 | return (u64)counter->watermark * PAGE_SIZE; | 
|  | 3114 | case RES_FAILCNT: | 
|  | 3115 | return counter->failcnt; | 
|  | 3116 | case RES_SOFT_LIMIT: | 
|  | 3117 | return (u64)memcg->soft_limit * PAGE_SIZE; | 
|  | 3118 | default: | 
|  | 3119 | BUG(); | 
|  | 3120 | } | 
|  | 3121 | } | 
|  | 3122 |  | 
|  | 3123 | #ifdef CONFIG_MEMCG_KMEM | 
|  | 3124 | static int memcg_online_kmem(struct mem_cgroup *memcg) | 
|  | 3125 | { | 
|  | 3126 | int memcg_id; | 
|  | 3127 |  | 
|  | 3128 | if (cgroup_memory_nokmem) | 
|  | 3129 | return 0; | 
|  | 3130 |  | 
|  | 3131 | BUG_ON(memcg->kmemcg_id >= 0); | 
|  | 3132 | BUG_ON(memcg->kmem_state); | 
|  | 3133 |  | 
|  | 3134 | memcg_id = memcg_alloc_cache_id(); | 
|  | 3135 | if (memcg_id < 0) | 
|  | 3136 | return memcg_id; | 
|  | 3137 |  | 
|  | 3138 | static_branch_inc(&memcg_kmem_enabled_key); | 
|  | 3139 | /* | 
|  | 3140 | * A memory cgroup is considered kmem-online as soon as it gets | 
|  | 3141 | * kmemcg_id. Setting the id after enabling static branching will | 
|  | 3142 | * guarantee no one starts accounting before all call sites are | 
|  | 3143 | * patched. | 
|  | 3144 | */ | 
|  | 3145 | memcg->kmemcg_id = memcg_id; | 
|  | 3146 | memcg->kmem_state = KMEM_ONLINE; | 
|  | 3147 | INIT_LIST_HEAD(&memcg->kmem_caches); | 
|  | 3148 |  | 
|  | 3149 | return 0; | 
|  | 3150 | } | 
|  | 3151 |  | 
|  | 3152 | static void memcg_offline_kmem(struct mem_cgroup *memcg) | 
|  | 3153 | { | 
|  | 3154 | struct cgroup_subsys_state *css; | 
|  | 3155 | struct mem_cgroup *parent, *child; | 
|  | 3156 | int kmemcg_id; | 
|  | 3157 |  | 
|  | 3158 | if (memcg->kmem_state != KMEM_ONLINE) | 
|  | 3159 | return; | 
|  | 3160 | /* | 
|  | 3161 | * Clear the online state before clearing memcg_caches array | 
|  | 3162 | * entries. The slab_mutex in memcg_deactivate_kmem_caches() | 
|  | 3163 | * guarantees that no cache will be created for this cgroup | 
|  | 3164 | * after we are done (see memcg_create_kmem_cache()). | 
|  | 3165 | */ | 
|  | 3166 | memcg->kmem_state = KMEM_ALLOCATED; | 
|  | 3167 |  | 
|  | 3168 | memcg_deactivate_kmem_caches(memcg); | 
|  | 3169 |  | 
|  | 3170 | kmemcg_id = memcg->kmemcg_id; | 
|  | 3171 | BUG_ON(kmemcg_id < 0); | 
|  | 3172 |  | 
|  | 3173 | parent = parent_mem_cgroup(memcg); | 
|  | 3174 | if (!parent) | 
|  | 3175 | parent = root_mem_cgroup; | 
|  | 3176 |  | 
|  | 3177 | /* | 
|  | 3178 | * Change kmemcg_id of this cgroup and all its descendants to the | 
|  | 3179 | * parent's id, and then move all entries from this cgroup's list_lrus | 
|  | 3180 | * to ones of the parent. After we have finished, all list_lrus | 
|  | 3181 | * corresponding to this cgroup are guaranteed to remain empty. The | 
|  | 3182 | * ordering is imposed by list_lru_node->lock taken by | 
|  | 3183 | * memcg_drain_all_list_lrus(). | 
|  | 3184 | */ | 
|  | 3185 | rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ | 
|  | 3186 | css_for_each_descendant_pre(css, &memcg->css) { | 
|  | 3187 | child = mem_cgroup_from_css(css); | 
|  | 3188 | BUG_ON(child->kmemcg_id != kmemcg_id); | 
|  | 3189 | child->kmemcg_id = parent->kmemcg_id; | 
|  | 3190 | if (!memcg->use_hierarchy) | 
|  | 3191 | break; | 
|  | 3192 | } | 
|  | 3193 | rcu_read_unlock(); | 
|  | 3194 |  | 
|  | 3195 | memcg_drain_all_list_lrus(kmemcg_id, parent); | 
|  | 3196 |  | 
|  | 3197 | memcg_free_cache_id(kmemcg_id); | 
|  | 3198 | } | 
|  | 3199 |  | 
|  | 3200 | static void memcg_free_kmem(struct mem_cgroup *memcg) | 
|  | 3201 | { | 
|  | 3202 | /* css_alloc() failed, offlining didn't happen */ | 
|  | 3203 | if (unlikely(memcg->kmem_state == KMEM_ONLINE)) | 
|  | 3204 | memcg_offline_kmem(memcg); | 
|  | 3205 |  | 
|  | 3206 | if (memcg->kmem_state == KMEM_ALLOCATED) { | 
|  | 3207 | memcg_destroy_kmem_caches(memcg); | 
|  | 3208 | static_branch_dec(&memcg_kmem_enabled_key); | 
|  | 3209 | WARN_ON(page_counter_read(&memcg->kmem)); | 
|  | 3210 | } | 
|  | 3211 | } | 
|  | 3212 | #else | 
|  | 3213 | static int memcg_online_kmem(struct mem_cgroup *memcg) | 
|  | 3214 | { | 
|  | 3215 | return 0; | 
|  | 3216 | } | 
|  | 3217 | static void memcg_offline_kmem(struct mem_cgroup *memcg) | 
|  | 3218 | { | 
|  | 3219 | } | 
|  | 3220 | static void memcg_free_kmem(struct mem_cgroup *memcg) | 
|  | 3221 | { | 
|  | 3222 | } | 
|  | 3223 | #endif /* CONFIG_MEMCG_KMEM */ | 
|  | 3224 |  | 
|  | 3225 | static int memcg_update_kmem_max(struct mem_cgroup *memcg, | 
|  | 3226 | unsigned long max) | 
|  | 3227 | { | 
|  | 3228 | int ret; | 
|  | 3229 |  | 
|  | 3230 | mutex_lock(&memcg_max_mutex); | 
|  | 3231 | ret = page_counter_set_max(&memcg->kmem, max); | 
|  | 3232 | mutex_unlock(&memcg_max_mutex); | 
|  | 3233 | return ret; | 
|  | 3234 | } | 
|  | 3235 |  | 
|  | 3236 | static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) | 
|  | 3237 | { | 
|  | 3238 | int ret; | 
|  | 3239 |  | 
|  | 3240 | mutex_lock(&memcg_max_mutex); | 
|  | 3241 |  | 
|  | 3242 | ret = page_counter_set_max(&memcg->tcpmem, max); | 
|  | 3243 | if (ret) | 
|  | 3244 | goto out; | 
|  | 3245 |  | 
|  | 3246 | if (!memcg->tcpmem_active) { | 
|  | 3247 | /* | 
|  | 3248 | * The active flag needs to be written after the static_key | 
|  | 3249 | * update. This is what guarantees that the socket activation | 
|  | 3250 | * function is the last one to run. See mem_cgroup_sk_alloc() | 
|  | 3251 | * for details, and note that we don't mark any socket as | 
|  | 3252 | * belonging to this memcg until that flag is up. | 
|  | 3253 | * | 
|  | 3254 | * We need to do this, because static_keys will span multiple | 
|  | 3255 | * sites, but we can't control their order. If we mark a socket | 
|  | 3256 | * as accounted, but the accounting functions are not patched in | 
|  | 3257 | * yet, we'll lose accounting. | 
|  | 3258 | * | 
|  | 3259 | * We never race with the readers in mem_cgroup_sk_alloc(), | 
|  | 3260 | * because when this value change, the code to process it is not | 
|  | 3261 | * patched in yet. | 
|  | 3262 | */ | 
|  | 3263 | static_branch_inc(&memcg_sockets_enabled_key); | 
|  | 3264 | memcg->tcpmem_active = true; | 
|  | 3265 | } | 
|  | 3266 | out: | 
|  | 3267 | mutex_unlock(&memcg_max_mutex); | 
|  | 3268 | return ret; | 
|  | 3269 | } | 
|  | 3270 |  | 
|  | 3271 | /* | 
|  | 3272 | * The user of this function is... | 
|  | 3273 | * RES_LIMIT. | 
|  | 3274 | */ | 
|  | 3275 | static ssize_t mem_cgroup_write(struct kernfs_open_file *of, | 
|  | 3276 | char *buf, size_t nbytes, loff_t off) | 
|  | 3277 | { | 
|  | 3278 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | 3279 | unsigned long nr_pages; | 
|  | 3280 | int ret; | 
|  | 3281 |  | 
|  | 3282 | buf = strstrip(buf); | 
|  | 3283 | ret = page_counter_memparse(buf, "-1", &nr_pages); | 
|  | 3284 | if (ret) | 
|  | 3285 | return ret; | 
|  | 3286 |  | 
|  | 3287 | switch (MEMFILE_ATTR(of_cft(of)->private)) { | 
|  | 3288 | case RES_LIMIT: | 
|  | 3289 | if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ | 
|  | 3290 | ret = -EINVAL; | 
|  | 3291 | break; | 
|  | 3292 | } | 
|  | 3293 | switch (MEMFILE_TYPE(of_cft(of)->private)) { | 
|  | 3294 | case _MEM: | 
|  | 3295 | ret = mem_cgroup_resize_max(memcg, nr_pages, false); | 
|  | 3296 | break; | 
|  | 3297 | case _MEMSWAP: | 
|  | 3298 | ret = mem_cgroup_resize_max(memcg, nr_pages, true); | 
|  | 3299 | break; | 
|  | 3300 | case _KMEM: | 
|  | 3301 | ret = memcg_update_kmem_max(memcg, nr_pages); | 
|  | 3302 | break; | 
|  | 3303 | case _TCP: | 
|  | 3304 | ret = memcg_update_tcp_max(memcg, nr_pages); | 
|  | 3305 | break; | 
|  | 3306 | } | 
|  | 3307 | break; | 
|  | 3308 | case RES_SOFT_LIMIT: | 
|  | 3309 | memcg->soft_limit = nr_pages; | 
|  | 3310 | ret = 0; | 
|  | 3311 | break; | 
|  | 3312 | } | 
|  | 3313 | return ret ?: nbytes; | 
|  | 3314 | } | 
|  | 3315 |  | 
|  | 3316 | static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, | 
|  | 3317 | size_t nbytes, loff_t off) | 
|  | 3318 | { | 
|  | 3319 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | 3320 | struct page_counter *counter; | 
|  | 3321 |  | 
|  | 3322 | switch (MEMFILE_TYPE(of_cft(of)->private)) { | 
|  | 3323 | case _MEM: | 
|  | 3324 | counter = &memcg->memory; | 
|  | 3325 | break; | 
|  | 3326 | case _MEMSWAP: | 
|  | 3327 | counter = &memcg->memsw; | 
|  | 3328 | break; | 
|  | 3329 | case _KMEM: | 
|  | 3330 | counter = &memcg->kmem; | 
|  | 3331 | break; | 
|  | 3332 | case _TCP: | 
|  | 3333 | counter = &memcg->tcpmem; | 
|  | 3334 | break; | 
|  | 3335 | default: | 
|  | 3336 | BUG(); | 
|  | 3337 | } | 
|  | 3338 |  | 
|  | 3339 | switch (MEMFILE_ATTR(of_cft(of)->private)) { | 
|  | 3340 | case RES_MAX_USAGE: | 
|  | 3341 | page_counter_reset_watermark(counter); | 
|  | 3342 | break; | 
|  | 3343 | case RES_FAILCNT: | 
|  | 3344 | counter->failcnt = 0; | 
|  | 3345 | break; | 
|  | 3346 | default: | 
|  | 3347 | BUG(); | 
|  | 3348 | } | 
|  | 3349 |  | 
|  | 3350 | return nbytes; | 
|  | 3351 | } | 
|  | 3352 |  | 
|  | 3353 | static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, | 
|  | 3354 | struct cftype *cft) | 
|  | 3355 | { | 
|  | 3356 | return mem_cgroup_from_css(css)->move_charge_at_immigrate; | 
|  | 3357 | } | 
|  | 3358 |  | 
|  | 3359 | #ifdef CONFIG_MMU | 
|  | 3360 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, | 
|  | 3361 | struct cftype *cft, u64 val) | 
|  | 3362 | { | 
|  | 3363 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | 3364 |  | 
|  | 3365 | if (val & ~MOVE_MASK) | 
|  | 3366 | return -EINVAL; | 
|  | 3367 |  | 
|  | 3368 | /* | 
|  | 3369 | * No kind of locking is needed in here, because ->can_attach() will | 
|  | 3370 | * check this value once in the beginning of the process, and then carry | 
|  | 3371 | * on with stale data. This means that changes to this value will only | 
|  | 3372 | * affect task migrations starting after the change. | 
|  | 3373 | */ | 
|  | 3374 | memcg->move_charge_at_immigrate = val; | 
|  | 3375 | return 0; | 
|  | 3376 | } | 
|  | 3377 | #else | 
|  | 3378 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, | 
|  | 3379 | struct cftype *cft, u64 val) | 
|  | 3380 | { | 
|  | 3381 | return -ENOSYS; | 
|  | 3382 | } | 
|  | 3383 | #endif | 
|  | 3384 |  | 
|  | 3385 | #ifdef CONFIG_NUMA | 
|  | 3386 | static int memcg_numa_stat_show(struct seq_file *m, void *v) | 
|  | 3387 | { | 
|  | 3388 | struct numa_stat { | 
|  | 3389 | const char *name; | 
|  | 3390 | unsigned int lru_mask; | 
|  | 3391 | }; | 
|  | 3392 |  | 
|  | 3393 | static const struct numa_stat stats[] = { | 
|  | 3394 | { "total", LRU_ALL }, | 
|  | 3395 | { "file", LRU_ALL_FILE }, | 
|  | 3396 | { "anon", LRU_ALL_ANON }, | 
|  | 3397 | { "unevictable", BIT(LRU_UNEVICTABLE) }, | 
|  | 3398 | }; | 
|  | 3399 | const struct numa_stat *stat; | 
|  | 3400 | int nid; | 
|  | 3401 | unsigned long nr; | 
|  | 3402 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | 3403 |  | 
|  | 3404 | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { | 
|  | 3405 | nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); | 
|  | 3406 | seq_printf(m, "%s=%lu", stat->name, nr); | 
|  | 3407 | for_each_node_state(nid, N_MEMORY) { | 
|  | 3408 | nr = mem_cgroup_node_nr_lru_pages(memcg, nid, | 
|  | 3409 | stat->lru_mask); | 
|  | 3410 | seq_printf(m, " N%d=%lu", nid, nr); | 
|  | 3411 | } | 
|  | 3412 | seq_putc(m, '\n'); | 
|  | 3413 | } | 
|  | 3414 |  | 
|  | 3415 | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { | 
|  | 3416 | struct mem_cgroup *iter; | 
|  | 3417 |  | 
|  | 3418 | nr = 0; | 
|  | 3419 | for_each_mem_cgroup_tree(iter, memcg) | 
|  | 3420 | nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); | 
|  | 3421 | seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); | 
|  | 3422 | for_each_node_state(nid, N_MEMORY) { | 
|  | 3423 | nr = 0; | 
|  | 3424 | for_each_mem_cgroup_tree(iter, memcg) | 
|  | 3425 | nr += mem_cgroup_node_nr_lru_pages( | 
|  | 3426 | iter, nid, stat->lru_mask); | 
|  | 3427 | seq_printf(m, " N%d=%lu", nid, nr); | 
|  | 3428 | } | 
|  | 3429 | seq_putc(m, '\n'); | 
|  | 3430 | } | 
|  | 3431 |  | 
|  | 3432 | return 0; | 
|  | 3433 | } | 
|  | 3434 | #endif /* CONFIG_NUMA */ | 
|  | 3435 |  | 
|  | 3436 | /* Universal VM events cgroup1 shows, original sort order */ | 
|  | 3437 | static const unsigned int memcg1_events[] = { | 
|  | 3438 | PGPGIN, | 
|  | 3439 | PGPGOUT, | 
|  | 3440 | PGFAULT, | 
|  | 3441 | PGMAJFAULT, | 
|  | 3442 | }; | 
|  | 3443 |  | 
|  | 3444 | static const char *const memcg1_event_names[] = { | 
|  | 3445 | "pgpgin", | 
|  | 3446 | "pgpgout", | 
|  | 3447 | "pgfault", | 
|  | 3448 | "pgmajfault", | 
|  | 3449 | }; | 
|  | 3450 |  | 
|  | 3451 | static int memcg_stat_show(struct seq_file *m, void *v) | 
|  | 3452 | { | 
|  | 3453 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | 3454 | unsigned long memory, memsw; | 
|  | 3455 | struct mem_cgroup *mi; | 
|  | 3456 | unsigned int i; | 
|  | 3457 | struct accumulated_stats acc; | 
|  | 3458 |  | 
|  | 3459 | BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); | 
|  | 3460 | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); | 
|  | 3461 |  | 
|  | 3462 | for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { | 
|  | 3463 | if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) | 
|  | 3464 | continue; | 
|  | 3465 | seq_printf(m, "%s %lu\n", memcg1_stat_names[i], | 
|  | 3466 | memcg_page_state(memcg, memcg1_stats[i]) * | 
|  | 3467 | PAGE_SIZE); | 
|  | 3468 | } | 
|  | 3469 |  | 
|  | 3470 | for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) | 
|  | 3471 | seq_printf(m, "%s %lu\n", memcg1_event_names[i], | 
|  | 3472 | memcg_sum_events(memcg, memcg1_events[i])); | 
|  | 3473 |  | 
|  | 3474 | for (i = 0; i < NR_LRU_LISTS; i++) | 
|  | 3475 | seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], | 
|  | 3476 | mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); | 
|  | 3477 |  | 
|  | 3478 | /* Hierarchical information */ | 
|  | 3479 | memory = memsw = PAGE_COUNTER_MAX; | 
|  | 3480 | for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { | 
|  | 3481 | memory = min(memory, mi->memory.max); | 
|  | 3482 | memsw = min(memsw, mi->memsw.max); | 
|  | 3483 | } | 
|  | 3484 | seq_printf(m, "hierarchical_memory_limit %llu\n", | 
|  | 3485 | (u64)memory * PAGE_SIZE); | 
|  | 3486 | if (do_memsw_account()) | 
|  | 3487 | seq_printf(m, "hierarchical_memsw_limit %llu\n", | 
|  | 3488 | (u64)memsw * PAGE_SIZE); | 
|  | 3489 |  | 
|  | 3490 | memset(&acc, 0, sizeof(acc)); | 
|  | 3491 | acc.stats_size = ARRAY_SIZE(memcg1_stats); | 
|  | 3492 | acc.stats_array = memcg1_stats; | 
|  | 3493 | acc.events_size = ARRAY_SIZE(memcg1_events); | 
|  | 3494 | acc.events_array = memcg1_events; | 
|  | 3495 | accumulate_memcg_tree(memcg, &acc); | 
|  | 3496 |  | 
|  | 3497 | for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { | 
|  | 3498 | if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) | 
|  | 3499 | continue; | 
|  | 3500 | seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], | 
|  | 3501 | (u64)acc.stat[i] * PAGE_SIZE); | 
|  | 3502 | } | 
|  | 3503 |  | 
|  | 3504 | for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) | 
|  | 3505 | seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], | 
|  | 3506 | (u64)acc.events[i]); | 
|  | 3507 |  | 
|  | 3508 | for (i = 0; i < NR_LRU_LISTS; i++) | 
|  | 3509 | seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], | 
|  | 3510 | (u64)acc.lru_pages[i] * PAGE_SIZE); | 
|  | 3511 |  | 
|  | 3512 | #ifdef CONFIG_DEBUG_VM | 
|  | 3513 | { | 
|  | 3514 | pg_data_t *pgdat; | 
|  | 3515 | struct mem_cgroup_per_node *mz; | 
|  | 3516 | struct zone_reclaim_stat *rstat; | 
|  | 3517 | unsigned long recent_rotated[2] = {0, 0}; | 
|  | 3518 | unsigned long recent_scanned[2] = {0, 0}; | 
|  | 3519 |  | 
|  | 3520 | for_each_online_pgdat(pgdat) { | 
|  | 3521 | mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); | 
|  | 3522 | rstat = &mz->lruvec.reclaim_stat; | 
|  | 3523 |  | 
|  | 3524 | recent_rotated[0] += rstat->recent_rotated[0]; | 
|  | 3525 | recent_rotated[1] += rstat->recent_rotated[1]; | 
|  | 3526 | recent_scanned[0] += rstat->recent_scanned[0]; | 
|  | 3527 | recent_scanned[1] += rstat->recent_scanned[1]; | 
|  | 3528 | } | 
|  | 3529 | seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); | 
|  | 3530 | seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); | 
|  | 3531 | seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); | 
|  | 3532 | seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); | 
|  | 3533 | } | 
|  | 3534 | #endif | 
|  | 3535 |  | 
|  | 3536 | return 0; | 
|  | 3537 | } | 
|  | 3538 |  | 
|  | 3539 | static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, | 
|  | 3540 | struct cftype *cft) | 
|  | 3541 | { | 
|  | 3542 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | 3543 |  | 
|  | 3544 | return mem_cgroup_swappiness(memcg); | 
|  | 3545 | } | 
|  | 3546 |  | 
|  | 3547 | static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, | 
|  | 3548 | struct cftype *cft, u64 val) | 
|  | 3549 | { | 
|  | 3550 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | 3551 |  | 
|  | 3552 | if (val > 100) | 
|  | 3553 | return -EINVAL; | 
|  | 3554 |  | 
|  | 3555 | if (css->parent) | 
|  | 3556 | memcg->swappiness = val; | 
|  | 3557 | else | 
|  | 3558 | vm_swappiness = val; | 
|  | 3559 |  | 
|  | 3560 | return 0; | 
|  | 3561 | } | 
|  | 3562 |  | 
|  | 3563 | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) | 
|  | 3564 | { | 
|  | 3565 | struct mem_cgroup_threshold_ary *t; | 
|  | 3566 | unsigned long usage; | 
|  | 3567 | int i; | 
|  | 3568 |  | 
|  | 3569 | rcu_read_lock(); | 
|  | 3570 | if (!swap) | 
|  | 3571 | t = rcu_dereference(memcg->thresholds.primary); | 
|  | 3572 | else | 
|  | 3573 | t = rcu_dereference(memcg->memsw_thresholds.primary); | 
|  | 3574 |  | 
|  | 3575 | if (!t) | 
|  | 3576 | goto unlock; | 
|  | 3577 |  | 
|  | 3578 | usage = mem_cgroup_usage(memcg, swap); | 
|  | 3579 |  | 
|  | 3580 | /* | 
|  | 3581 | * current_threshold points to threshold just below or equal to usage. | 
|  | 3582 | * If it's not true, a threshold was crossed after last | 
|  | 3583 | * call of __mem_cgroup_threshold(). | 
|  | 3584 | */ | 
|  | 3585 | i = t->current_threshold; | 
|  | 3586 |  | 
|  | 3587 | /* | 
|  | 3588 | * Iterate backward over array of thresholds starting from | 
|  | 3589 | * current_threshold and check if a threshold is crossed. | 
|  | 3590 | * If none of thresholds below usage is crossed, we read | 
|  | 3591 | * only one element of the array here. | 
|  | 3592 | */ | 
|  | 3593 | for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) | 
|  | 3594 | eventfd_signal(t->entries[i].eventfd, 1); | 
|  | 3595 |  | 
|  | 3596 | /* i = current_threshold + 1 */ | 
|  | 3597 | i++; | 
|  | 3598 |  | 
|  | 3599 | /* | 
|  | 3600 | * Iterate forward over array of thresholds starting from | 
|  | 3601 | * current_threshold+1 and check if a threshold is crossed. | 
|  | 3602 | * If none of thresholds above usage is crossed, we read | 
|  | 3603 | * only one element of the array here. | 
|  | 3604 | */ | 
|  | 3605 | for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) | 
|  | 3606 | eventfd_signal(t->entries[i].eventfd, 1); | 
|  | 3607 |  | 
|  | 3608 | /* Update current_threshold */ | 
|  | 3609 | t->current_threshold = i - 1; | 
|  | 3610 | unlock: | 
|  | 3611 | rcu_read_unlock(); | 
|  | 3612 | } | 
|  | 3613 |  | 
|  | 3614 | static void mem_cgroup_threshold(struct mem_cgroup *memcg) | 
|  | 3615 | { | 
|  | 3616 | while (memcg) { | 
|  | 3617 | __mem_cgroup_threshold(memcg, false); | 
|  | 3618 | if (do_memsw_account()) | 
|  | 3619 | __mem_cgroup_threshold(memcg, true); | 
|  | 3620 |  | 
|  | 3621 | memcg = parent_mem_cgroup(memcg); | 
|  | 3622 | } | 
|  | 3623 | } | 
|  | 3624 |  | 
|  | 3625 | static int compare_thresholds(const void *a, const void *b) | 
|  | 3626 | { | 
|  | 3627 | const struct mem_cgroup_threshold *_a = a; | 
|  | 3628 | const struct mem_cgroup_threshold *_b = b; | 
|  | 3629 |  | 
|  | 3630 | if (_a->threshold > _b->threshold) | 
|  | 3631 | return 1; | 
|  | 3632 |  | 
|  | 3633 | if (_a->threshold < _b->threshold) | 
|  | 3634 | return -1; | 
|  | 3635 |  | 
|  | 3636 | return 0; | 
|  | 3637 | } | 
|  | 3638 |  | 
|  | 3639 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) | 
|  | 3640 | { | 
|  | 3641 | struct mem_cgroup_eventfd_list *ev; | 
|  | 3642 |  | 
|  | 3643 | spin_lock(&memcg_oom_lock); | 
|  | 3644 |  | 
|  | 3645 | list_for_each_entry(ev, &memcg->oom_notify, list) | 
|  | 3646 | eventfd_signal(ev->eventfd, 1); | 
|  | 3647 |  | 
|  | 3648 | spin_unlock(&memcg_oom_lock); | 
|  | 3649 | return 0; | 
|  | 3650 | } | 
|  | 3651 |  | 
|  | 3652 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) | 
|  | 3653 | { | 
|  | 3654 | struct mem_cgroup *iter; | 
|  | 3655 |  | 
|  | 3656 | for_each_mem_cgroup_tree(iter, memcg) | 
|  | 3657 | mem_cgroup_oom_notify_cb(iter); | 
|  | 3658 | } | 
|  | 3659 |  | 
|  | 3660 | static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, | 
|  | 3661 | struct eventfd_ctx *eventfd, const char *args, enum res_type type) | 
|  | 3662 | { | 
|  | 3663 | struct mem_cgroup_thresholds *thresholds; | 
|  | 3664 | struct mem_cgroup_threshold_ary *new; | 
|  | 3665 | unsigned long threshold; | 
|  | 3666 | unsigned long usage; | 
|  | 3667 | int i, size, ret; | 
|  | 3668 |  | 
|  | 3669 | ret = page_counter_memparse(args, "-1", &threshold); | 
|  | 3670 | if (ret) | 
|  | 3671 | return ret; | 
|  | 3672 |  | 
|  | 3673 | mutex_lock(&memcg->thresholds_lock); | 
|  | 3674 |  | 
|  | 3675 | if (type == _MEM) { | 
|  | 3676 | thresholds = &memcg->thresholds; | 
|  | 3677 | usage = mem_cgroup_usage(memcg, false); | 
|  | 3678 | } else if (type == _MEMSWAP) { | 
|  | 3679 | thresholds = &memcg->memsw_thresholds; | 
|  | 3680 | usage = mem_cgroup_usage(memcg, true); | 
|  | 3681 | } else | 
|  | 3682 | BUG(); | 
|  | 3683 |  | 
|  | 3684 | /* Check if a threshold crossed before adding a new one */ | 
|  | 3685 | if (thresholds->primary) | 
|  | 3686 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | 
|  | 3687 |  | 
|  | 3688 | size = thresholds->primary ? thresholds->primary->size + 1 : 1; | 
|  | 3689 |  | 
|  | 3690 | /* Allocate memory for new array of thresholds */ | 
|  | 3691 | new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), | 
|  | 3692 | GFP_KERNEL); | 
|  | 3693 | if (!new) { | 
|  | 3694 | ret = -ENOMEM; | 
|  | 3695 | goto unlock; | 
|  | 3696 | } | 
|  | 3697 | new->size = size; | 
|  | 3698 |  | 
|  | 3699 | /* Copy thresholds (if any) to new array */ | 
|  | 3700 | if (thresholds->primary) { | 
|  | 3701 | memcpy(new->entries, thresholds->primary->entries, (size - 1) * | 
|  | 3702 | sizeof(struct mem_cgroup_threshold)); | 
|  | 3703 | } | 
|  | 3704 |  | 
|  | 3705 | /* Add new threshold */ | 
|  | 3706 | new->entries[size - 1].eventfd = eventfd; | 
|  | 3707 | new->entries[size - 1].threshold = threshold; | 
|  | 3708 |  | 
|  | 3709 | /* Sort thresholds. Registering of new threshold isn't time-critical */ | 
|  | 3710 | sort(new->entries, size, sizeof(struct mem_cgroup_threshold), | 
|  | 3711 | compare_thresholds, NULL); | 
|  | 3712 |  | 
|  | 3713 | /* Find current threshold */ | 
|  | 3714 | new->current_threshold = -1; | 
|  | 3715 | for (i = 0; i < size; i++) { | 
|  | 3716 | if (new->entries[i].threshold <= usage) { | 
|  | 3717 | /* | 
|  | 3718 | * new->current_threshold will not be used until | 
|  | 3719 | * rcu_assign_pointer(), so it's safe to increment | 
|  | 3720 | * it here. | 
|  | 3721 | */ | 
|  | 3722 | ++new->current_threshold; | 
|  | 3723 | } else | 
|  | 3724 | break; | 
|  | 3725 | } | 
|  | 3726 |  | 
|  | 3727 | /* Free old spare buffer and save old primary buffer as spare */ | 
|  | 3728 | kfree(thresholds->spare); | 
|  | 3729 | thresholds->spare = thresholds->primary; | 
|  | 3730 |  | 
|  | 3731 | rcu_assign_pointer(thresholds->primary, new); | 
|  | 3732 |  | 
|  | 3733 | /* To be sure that nobody uses thresholds */ | 
|  | 3734 | synchronize_rcu(); | 
|  | 3735 |  | 
|  | 3736 | unlock: | 
|  | 3737 | mutex_unlock(&memcg->thresholds_lock); | 
|  | 3738 |  | 
|  | 3739 | return ret; | 
|  | 3740 | } | 
|  | 3741 |  | 
|  | 3742 | static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, | 
|  | 3743 | struct eventfd_ctx *eventfd, const char *args) | 
|  | 3744 | { | 
|  | 3745 | return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); | 
|  | 3746 | } | 
|  | 3747 |  | 
|  | 3748 | static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, | 
|  | 3749 | struct eventfd_ctx *eventfd, const char *args) | 
|  | 3750 | { | 
|  | 3751 | return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); | 
|  | 3752 | } | 
|  | 3753 |  | 
|  | 3754 | static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | 
|  | 3755 | struct eventfd_ctx *eventfd, enum res_type type) | 
|  | 3756 | { | 
|  | 3757 | struct mem_cgroup_thresholds *thresholds; | 
|  | 3758 | struct mem_cgroup_threshold_ary *new; | 
|  | 3759 | unsigned long usage; | 
|  | 3760 | int i, j, size; | 
|  | 3761 |  | 
|  | 3762 | mutex_lock(&memcg->thresholds_lock); | 
|  | 3763 |  | 
|  | 3764 | if (type == _MEM) { | 
|  | 3765 | thresholds = &memcg->thresholds; | 
|  | 3766 | usage = mem_cgroup_usage(memcg, false); | 
|  | 3767 | } else if (type == _MEMSWAP) { | 
|  | 3768 | thresholds = &memcg->memsw_thresholds; | 
|  | 3769 | usage = mem_cgroup_usage(memcg, true); | 
|  | 3770 | } else | 
|  | 3771 | BUG(); | 
|  | 3772 |  | 
|  | 3773 | if (!thresholds->primary) | 
|  | 3774 | goto unlock; | 
|  | 3775 |  | 
|  | 3776 | /* Check if a threshold crossed before removing */ | 
|  | 3777 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | 
|  | 3778 |  | 
|  | 3779 | /* Calculate new number of threshold */ | 
|  | 3780 | size = 0; | 
|  | 3781 | for (i = 0; i < thresholds->primary->size; i++) { | 
|  | 3782 | if (thresholds->primary->entries[i].eventfd != eventfd) | 
|  | 3783 | size++; | 
|  | 3784 | } | 
|  | 3785 |  | 
|  | 3786 | new = thresholds->spare; | 
|  | 3787 |  | 
|  | 3788 | /* Set thresholds array to NULL if we don't have thresholds */ | 
|  | 3789 | if (!size) { | 
|  | 3790 | kfree(new); | 
|  | 3791 | new = NULL; | 
|  | 3792 | goto swap_buffers; | 
|  | 3793 | } | 
|  | 3794 |  | 
|  | 3795 | new->size = size; | 
|  | 3796 |  | 
|  | 3797 | /* Copy thresholds and find current threshold */ | 
|  | 3798 | new->current_threshold = -1; | 
|  | 3799 | for (i = 0, j = 0; i < thresholds->primary->size; i++) { | 
|  | 3800 | if (thresholds->primary->entries[i].eventfd == eventfd) | 
|  | 3801 | continue; | 
|  | 3802 |  | 
|  | 3803 | new->entries[j] = thresholds->primary->entries[i]; | 
|  | 3804 | if (new->entries[j].threshold <= usage) { | 
|  | 3805 | /* | 
|  | 3806 | * new->current_threshold will not be used | 
|  | 3807 | * until rcu_assign_pointer(), so it's safe to increment | 
|  | 3808 | * it here. | 
|  | 3809 | */ | 
|  | 3810 | ++new->current_threshold; | 
|  | 3811 | } | 
|  | 3812 | j++; | 
|  | 3813 | } | 
|  | 3814 |  | 
|  | 3815 | swap_buffers: | 
|  | 3816 | /* Swap primary and spare array */ | 
|  | 3817 | thresholds->spare = thresholds->primary; | 
|  | 3818 |  | 
|  | 3819 | rcu_assign_pointer(thresholds->primary, new); | 
|  | 3820 |  | 
|  | 3821 | /* To be sure that nobody uses thresholds */ | 
|  | 3822 | synchronize_rcu(); | 
|  | 3823 |  | 
|  | 3824 | /* If all events are unregistered, free the spare array */ | 
|  | 3825 | if (!new) { | 
|  | 3826 | kfree(thresholds->spare); | 
|  | 3827 | thresholds->spare = NULL; | 
|  | 3828 | } | 
|  | 3829 | unlock: | 
|  | 3830 | mutex_unlock(&memcg->thresholds_lock); | 
|  | 3831 | } | 
|  | 3832 |  | 
|  | 3833 | static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | 
|  | 3834 | struct eventfd_ctx *eventfd) | 
|  | 3835 | { | 
|  | 3836 | return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); | 
|  | 3837 | } | 
|  | 3838 |  | 
|  | 3839 | static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, | 
|  | 3840 | struct eventfd_ctx *eventfd) | 
|  | 3841 | { | 
|  | 3842 | return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); | 
|  | 3843 | } | 
|  | 3844 |  | 
|  | 3845 | static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, | 
|  | 3846 | struct eventfd_ctx *eventfd, const char *args) | 
|  | 3847 | { | 
|  | 3848 | struct mem_cgroup_eventfd_list *event; | 
|  | 3849 |  | 
|  | 3850 | event = kmalloc(sizeof(*event),	GFP_KERNEL); | 
|  | 3851 | if (!event) | 
|  | 3852 | return -ENOMEM; | 
|  | 3853 |  | 
|  | 3854 | spin_lock(&memcg_oom_lock); | 
|  | 3855 |  | 
|  | 3856 | event->eventfd = eventfd; | 
|  | 3857 | list_add(&event->list, &memcg->oom_notify); | 
|  | 3858 |  | 
|  | 3859 | /* already in OOM ? */ | 
|  | 3860 | if (memcg->under_oom) | 
|  | 3861 | eventfd_signal(eventfd, 1); | 
|  | 3862 | spin_unlock(&memcg_oom_lock); | 
|  | 3863 |  | 
|  | 3864 | return 0; | 
|  | 3865 | } | 
|  | 3866 |  | 
|  | 3867 | static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, | 
|  | 3868 | struct eventfd_ctx *eventfd) | 
|  | 3869 | { | 
|  | 3870 | struct mem_cgroup_eventfd_list *ev, *tmp; | 
|  | 3871 |  | 
|  | 3872 | spin_lock(&memcg_oom_lock); | 
|  | 3873 |  | 
|  | 3874 | list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { | 
|  | 3875 | if (ev->eventfd == eventfd) { | 
|  | 3876 | list_del(&ev->list); | 
|  | 3877 | kfree(ev); | 
|  | 3878 | } | 
|  | 3879 | } | 
|  | 3880 |  | 
|  | 3881 | spin_unlock(&memcg_oom_lock); | 
|  | 3882 | } | 
|  | 3883 |  | 
|  | 3884 | static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) | 
|  | 3885 | { | 
|  | 3886 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); | 
|  | 3887 |  | 
|  | 3888 | seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); | 
|  | 3889 | seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); | 
|  | 3890 | seq_printf(sf, "oom_kill %lu\n", | 
|  | 3891 | atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); | 
|  | 3892 | return 0; | 
|  | 3893 | } | 
|  | 3894 |  | 
|  | 3895 | static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, | 
|  | 3896 | struct cftype *cft, u64 val) | 
|  | 3897 | { | 
|  | 3898 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | 3899 |  | 
|  | 3900 | /* cannot set to root cgroup and only 0 and 1 are allowed */ | 
|  | 3901 | if (!css->parent || !((val == 0) || (val == 1))) | 
|  | 3902 | return -EINVAL; | 
|  | 3903 |  | 
|  | 3904 | memcg->oom_kill_disable = val; | 
|  | 3905 | if (!val) | 
|  | 3906 | memcg_oom_recover(memcg); | 
|  | 3907 |  | 
|  | 3908 | return 0; | 
|  | 3909 | } | 
|  | 3910 |  | 
|  | 3911 | #ifdef CONFIG_CGROUP_WRITEBACK | 
|  | 3912 |  | 
|  | 3913 | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) | 
|  | 3914 | { | 
|  | 3915 | return wb_domain_init(&memcg->cgwb_domain, gfp); | 
|  | 3916 | } | 
|  | 3917 |  | 
|  | 3918 | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) | 
|  | 3919 | { | 
|  | 3920 | wb_domain_exit(&memcg->cgwb_domain); | 
|  | 3921 | } | 
|  | 3922 |  | 
|  | 3923 | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) | 
|  | 3924 | { | 
|  | 3925 | wb_domain_size_changed(&memcg->cgwb_domain); | 
|  | 3926 | } | 
|  | 3927 |  | 
|  | 3928 | struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) | 
|  | 3929 | { | 
|  | 3930 | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | 
|  | 3931 |  | 
|  | 3932 | if (!memcg->css.parent) | 
|  | 3933 | return NULL; | 
|  | 3934 |  | 
|  | 3935 | return &memcg->cgwb_domain; | 
|  | 3936 | } | 
|  | 3937 |  | 
|  | 3938 | /* | 
|  | 3939 | * idx can be of type enum memcg_stat_item or node_stat_item. | 
|  | 3940 | * Keep in sync with memcg_exact_page(). | 
|  | 3941 | */ | 
|  | 3942 | static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) | 
|  | 3943 | { | 
|  | 3944 | long x = atomic_long_read(&memcg->stat[idx]); | 
|  | 3945 | int cpu; | 
|  | 3946 |  | 
|  | 3947 | for_each_online_cpu(cpu) | 
|  | 3948 | x += per_cpu_ptr(memcg->stat_cpu, cpu)->count[idx]; | 
|  | 3949 | if (x < 0) | 
|  | 3950 | x = 0; | 
|  | 3951 | return x; | 
|  | 3952 | } | 
|  | 3953 |  | 
|  | 3954 | /** | 
|  | 3955 | * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg | 
|  | 3956 | * @wb: bdi_writeback in question | 
|  | 3957 | * @pfilepages: out parameter for number of file pages | 
|  | 3958 | * @pheadroom: out parameter for number of allocatable pages according to memcg | 
|  | 3959 | * @pdirty: out parameter for number of dirty pages | 
|  | 3960 | * @pwriteback: out parameter for number of pages under writeback | 
|  | 3961 | * | 
|  | 3962 | * Determine the numbers of file, headroom, dirty, and writeback pages in | 
|  | 3963 | * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom | 
|  | 3964 | * is a bit more involved. | 
|  | 3965 | * | 
|  | 3966 | * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the | 
|  | 3967 | * headroom is calculated as the lowest headroom of itself and the | 
|  | 3968 | * ancestors.  Note that this doesn't consider the actual amount of | 
|  | 3969 | * available memory in the system.  The caller should further cap | 
|  | 3970 | * *@pheadroom accordingly. | 
|  | 3971 | */ | 
|  | 3972 | void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, | 
|  | 3973 | unsigned long *pheadroom, unsigned long *pdirty, | 
|  | 3974 | unsigned long *pwriteback) | 
|  | 3975 | { | 
|  | 3976 | struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); | 
|  | 3977 | struct mem_cgroup *parent; | 
|  | 3978 |  | 
|  | 3979 | *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); | 
|  | 3980 |  | 
|  | 3981 | /* this should eventually include NR_UNSTABLE_NFS */ | 
|  | 3982 | *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); | 
|  | 3983 | *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | | 
|  | 3984 | (1 << LRU_ACTIVE_FILE)); | 
|  | 3985 | *pheadroom = PAGE_COUNTER_MAX; | 
|  | 3986 |  | 
|  | 3987 | while ((parent = parent_mem_cgroup(memcg))) { | 
|  | 3988 | unsigned long ceiling = min(memcg->memory.max, memcg->high); | 
|  | 3989 | unsigned long used = page_counter_read(&memcg->memory); | 
|  | 3990 |  | 
|  | 3991 | *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); | 
|  | 3992 | memcg = parent; | 
|  | 3993 | } | 
|  | 3994 | } | 
|  | 3995 |  | 
|  | 3996 | #else	/* CONFIG_CGROUP_WRITEBACK */ | 
|  | 3997 |  | 
|  | 3998 | static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) | 
|  | 3999 | { | 
|  | 4000 | return 0; | 
|  | 4001 | } | 
|  | 4002 |  | 
|  | 4003 | static void memcg_wb_domain_exit(struct mem_cgroup *memcg) | 
|  | 4004 | { | 
|  | 4005 | } | 
|  | 4006 |  | 
|  | 4007 | static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) | 
|  | 4008 | { | 
|  | 4009 | } | 
|  | 4010 |  | 
|  | 4011 | #endif	/* CONFIG_CGROUP_WRITEBACK */ | 
|  | 4012 |  | 
|  | 4013 | /* | 
|  | 4014 | * DO NOT USE IN NEW FILES. | 
|  | 4015 | * | 
|  | 4016 | * "cgroup.event_control" implementation. | 
|  | 4017 | * | 
|  | 4018 | * This is way over-engineered.  It tries to support fully configurable | 
|  | 4019 | * events for each user.  Such level of flexibility is completely | 
|  | 4020 | * unnecessary especially in the light of the planned unified hierarchy. | 
|  | 4021 | * | 
|  | 4022 | * Please deprecate this and replace with something simpler if at all | 
|  | 4023 | * possible. | 
|  | 4024 | */ | 
|  | 4025 |  | 
|  | 4026 | /* | 
|  | 4027 | * Unregister event and free resources. | 
|  | 4028 | * | 
|  | 4029 | * Gets called from workqueue. | 
|  | 4030 | */ | 
|  | 4031 | static void memcg_event_remove(struct work_struct *work) | 
|  | 4032 | { | 
|  | 4033 | struct mem_cgroup_event *event = | 
|  | 4034 | container_of(work, struct mem_cgroup_event, remove); | 
|  | 4035 | struct mem_cgroup *memcg = event->memcg; | 
|  | 4036 |  | 
|  | 4037 | remove_wait_queue(event->wqh, &event->wait); | 
|  | 4038 |  | 
|  | 4039 | event->unregister_event(memcg, event->eventfd); | 
|  | 4040 |  | 
|  | 4041 | /* Notify userspace the event is going away. */ | 
|  | 4042 | eventfd_signal(event->eventfd, 1); | 
|  | 4043 |  | 
|  | 4044 | eventfd_ctx_put(event->eventfd); | 
|  | 4045 | kfree(event); | 
|  | 4046 | css_put(&memcg->css); | 
|  | 4047 | } | 
|  | 4048 |  | 
|  | 4049 | /* | 
|  | 4050 | * Gets called on EPOLLHUP on eventfd when user closes it. | 
|  | 4051 | * | 
|  | 4052 | * Called with wqh->lock held and interrupts disabled. | 
|  | 4053 | */ | 
|  | 4054 | static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, | 
|  | 4055 | int sync, void *key) | 
|  | 4056 | { | 
|  | 4057 | struct mem_cgroup_event *event = | 
|  | 4058 | container_of(wait, struct mem_cgroup_event, wait); | 
|  | 4059 | struct mem_cgroup *memcg = event->memcg; | 
|  | 4060 | __poll_t flags = key_to_poll(key); | 
|  | 4061 |  | 
|  | 4062 | if (flags & EPOLLHUP) { | 
|  | 4063 | /* | 
|  | 4064 | * If the event has been detached at cgroup removal, we | 
|  | 4065 | * can simply return knowing the other side will cleanup | 
|  | 4066 | * for us. | 
|  | 4067 | * | 
|  | 4068 | * We can't race against event freeing since the other | 
|  | 4069 | * side will require wqh->lock via remove_wait_queue(), | 
|  | 4070 | * which we hold. | 
|  | 4071 | */ | 
|  | 4072 | spin_lock(&memcg->event_list_lock); | 
|  | 4073 | if (!list_empty(&event->list)) { | 
|  | 4074 | list_del_init(&event->list); | 
|  | 4075 | /* | 
|  | 4076 | * We are in atomic context, but cgroup_event_remove() | 
|  | 4077 | * may sleep, so we have to call it in workqueue. | 
|  | 4078 | */ | 
|  | 4079 | schedule_work(&event->remove); | 
|  | 4080 | } | 
|  | 4081 | spin_unlock(&memcg->event_list_lock); | 
|  | 4082 | } | 
|  | 4083 |  | 
|  | 4084 | return 0; | 
|  | 4085 | } | 
|  | 4086 |  | 
|  | 4087 | static void memcg_event_ptable_queue_proc(struct file *file, | 
|  | 4088 | wait_queue_head_t *wqh, poll_table *pt) | 
|  | 4089 | { | 
|  | 4090 | struct mem_cgroup_event *event = | 
|  | 4091 | container_of(pt, struct mem_cgroup_event, pt); | 
|  | 4092 |  | 
|  | 4093 | event->wqh = wqh; | 
|  | 4094 | add_wait_queue(wqh, &event->wait); | 
|  | 4095 | } | 
|  | 4096 |  | 
|  | 4097 | /* | 
|  | 4098 | * DO NOT USE IN NEW FILES. | 
|  | 4099 | * | 
|  | 4100 | * Parse input and register new cgroup event handler. | 
|  | 4101 | * | 
|  | 4102 | * Input must be in format '<event_fd> <control_fd> <args>'. | 
|  | 4103 | * Interpretation of args is defined by control file implementation. | 
|  | 4104 | */ | 
|  | 4105 | static ssize_t memcg_write_event_control(struct kernfs_open_file *of, | 
|  | 4106 | char *buf, size_t nbytes, loff_t off) | 
|  | 4107 | { | 
|  | 4108 | struct cgroup_subsys_state *css = of_css(of); | 
|  | 4109 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | 4110 | struct mem_cgroup_event *event; | 
|  | 4111 | struct cgroup_subsys_state *cfile_css; | 
|  | 4112 | unsigned int efd, cfd; | 
|  | 4113 | struct fd efile; | 
|  | 4114 | struct fd cfile; | 
|  | 4115 | const char *name; | 
|  | 4116 | char *endp; | 
|  | 4117 | int ret; | 
|  | 4118 |  | 
|  | 4119 | buf = strstrip(buf); | 
|  | 4120 |  | 
|  | 4121 | efd = simple_strtoul(buf, &endp, 10); | 
|  | 4122 | if (*endp != ' ') | 
|  | 4123 | return -EINVAL; | 
|  | 4124 | buf = endp + 1; | 
|  | 4125 |  | 
|  | 4126 | cfd = simple_strtoul(buf, &endp, 10); | 
|  | 4127 | if ((*endp != ' ') && (*endp != '\0')) | 
|  | 4128 | return -EINVAL; | 
|  | 4129 | buf = endp + 1; | 
|  | 4130 |  | 
|  | 4131 | event = kzalloc(sizeof(*event), GFP_KERNEL); | 
|  | 4132 | if (!event) | 
|  | 4133 | return -ENOMEM; | 
|  | 4134 |  | 
|  | 4135 | event->memcg = memcg; | 
|  | 4136 | INIT_LIST_HEAD(&event->list); | 
|  | 4137 | init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); | 
|  | 4138 | init_waitqueue_func_entry(&event->wait, memcg_event_wake); | 
|  | 4139 | INIT_WORK(&event->remove, memcg_event_remove); | 
|  | 4140 |  | 
|  | 4141 | efile = fdget(efd); | 
|  | 4142 | if (!efile.file) { | 
|  | 4143 | ret = -EBADF; | 
|  | 4144 | goto out_kfree; | 
|  | 4145 | } | 
|  | 4146 |  | 
|  | 4147 | event->eventfd = eventfd_ctx_fileget(efile.file); | 
|  | 4148 | if (IS_ERR(event->eventfd)) { | 
|  | 4149 | ret = PTR_ERR(event->eventfd); | 
|  | 4150 | goto out_put_efile; | 
|  | 4151 | } | 
|  | 4152 |  | 
|  | 4153 | cfile = fdget(cfd); | 
|  | 4154 | if (!cfile.file) { | 
|  | 4155 | ret = -EBADF; | 
|  | 4156 | goto out_put_eventfd; | 
|  | 4157 | } | 
|  | 4158 |  | 
|  | 4159 | /* the process need read permission on control file */ | 
|  | 4160 | /* AV: shouldn't we check that it's been opened for read instead? */ | 
|  | 4161 | ret = inode_permission(file_inode(cfile.file), MAY_READ); | 
|  | 4162 | if (ret < 0) | 
|  | 4163 | goto out_put_cfile; | 
|  | 4164 |  | 
|  | 4165 | /* | 
|  | 4166 | * Determine the event callbacks and set them in @event.  This used | 
|  | 4167 | * to be done via struct cftype but cgroup core no longer knows | 
|  | 4168 | * about these events.  The following is crude but the whole thing | 
|  | 4169 | * is for compatibility anyway. | 
|  | 4170 | * | 
|  | 4171 | * DO NOT ADD NEW FILES. | 
|  | 4172 | */ | 
|  | 4173 | name = cfile.file->f_path.dentry->d_name.name; | 
|  | 4174 |  | 
|  | 4175 | if (!strcmp(name, "memory.usage_in_bytes")) { | 
|  | 4176 | event->register_event = mem_cgroup_usage_register_event; | 
|  | 4177 | event->unregister_event = mem_cgroup_usage_unregister_event; | 
|  | 4178 | } else if (!strcmp(name, "memory.oom_control")) { | 
|  | 4179 | event->register_event = mem_cgroup_oom_register_event; | 
|  | 4180 | event->unregister_event = mem_cgroup_oom_unregister_event; | 
|  | 4181 | } else if (!strcmp(name, "memory.pressure_level")) { | 
|  | 4182 | event->register_event = vmpressure_register_event; | 
|  | 4183 | event->unregister_event = vmpressure_unregister_event; | 
|  | 4184 | } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { | 
|  | 4185 | event->register_event = memsw_cgroup_usage_register_event; | 
|  | 4186 | event->unregister_event = memsw_cgroup_usage_unregister_event; | 
|  | 4187 | } else { | 
|  | 4188 | ret = -EINVAL; | 
|  | 4189 | goto out_put_cfile; | 
|  | 4190 | } | 
|  | 4191 |  | 
|  | 4192 | /* | 
|  | 4193 | * Verify @cfile should belong to @css.  Also, remaining events are | 
|  | 4194 | * automatically removed on cgroup destruction but the removal is | 
|  | 4195 | * asynchronous, so take an extra ref on @css. | 
|  | 4196 | */ | 
|  | 4197 | cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, | 
|  | 4198 | &memory_cgrp_subsys); | 
|  | 4199 | ret = -EINVAL; | 
|  | 4200 | if (IS_ERR(cfile_css)) | 
|  | 4201 | goto out_put_cfile; | 
|  | 4202 | if (cfile_css != css) { | 
|  | 4203 | css_put(cfile_css); | 
|  | 4204 | goto out_put_cfile; | 
|  | 4205 | } | 
|  | 4206 |  | 
|  | 4207 | ret = event->register_event(memcg, event->eventfd, buf); | 
|  | 4208 | if (ret) | 
|  | 4209 | goto out_put_css; | 
|  | 4210 |  | 
|  | 4211 | vfs_poll(efile.file, &event->pt); | 
|  | 4212 |  | 
|  | 4213 | spin_lock(&memcg->event_list_lock); | 
|  | 4214 | list_add(&event->list, &memcg->event_list); | 
|  | 4215 | spin_unlock(&memcg->event_list_lock); | 
|  | 4216 |  | 
|  | 4217 | fdput(cfile); | 
|  | 4218 | fdput(efile); | 
|  | 4219 |  | 
|  | 4220 | return nbytes; | 
|  | 4221 |  | 
|  | 4222 | out_put_css: | 
|  | 4223 | css_put(css); | 
|  | 4224 | out_put_cfile: | 
|  | 4225 | fdput(cfile); | 
|  | 4226 | out_put_eventfd: | 
|  | 4227 | eventfd_ctx_put(event->eventfd); | 
|  | 4228 | out_put_efile: | 
|  | 4229 | fdput(efile); | 
|  | 4230 | out_kfree: | 
|  | 4231 | kfree(event); | 
|  | 4232 |  | 
|  | 4233 | return ret; | 
|  | 4234 | } | 
|  | 4235 |  | 
|  | 4236 | static struct cftype mem_cgroup_legacy_files[] = { | 
|  | 4237 | { | 
|  | 4238 | .name = "usage_in_bytes", | 
|  | 4239 | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), | 
|  | 4240 | .read_u64 = mem_cgroup_read_u64, | 
|  | 4241 | }, | 
|  | 4242 | { | 
|  | 4243 | .name = "max_usage_in_bytes", | 
|  | 4244 | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), | 
|  | 4245 | .write = mem_cgroup_reset, | 
|  | 4246 | .read_u64 = mem_cgroup_read_u64, | 
|  | 4247 | }, | 
|  | 4248 | { | 
|  | 4249 | .name = "limit_in_bytes", | 
|  | 4250 | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), | 
|  | 4251 | .write = mem_cgroup_write, | 
|  | 4252 | .read_u64 = mem_cgroup_read_u64, | 
|  | 4253 | }, | 
|  | 4254 | { | 
|  | 4255 | .name = "soft_limit_in_bytes", | 
|  | 4256 | .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), | 
|  | 4257 | .write = mem_cgroup_write, | 
|  | 4258 | .read_u64 = mem_cgroup_read_u64, | 
|  | 4259 | }, | 
|  | 4260 | { | 
|  | 4261 | .name = "failcnt", | 
|  | 4262 | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), | 
|  | 4263 | .write = mem_cgroup_reset, | 
|  | 4264 | .read_u64 = mem_cgroup_read_u64, | 
|  | 4265 | }, | 
|  | 4266 | { | 
|  | 4267 | .name = "stat", | 
|  | 4268 | .seq_show = memcg_stat_show, | 
|  | 4269 | }, | 
|  | 4270 | { | 
|  | 4271 | .name = "force_empty", | 
|  | 4272 | .write = mem_cgroup_force_empty_write, | 
|  | 4273 | }, | 
|  | 4274 | { | 
|  | 4275 | .name = "use_hierarchy", | 
|  | 4276 | .write_u64 = mem_cgroup_hierarchy_write, | 
|  | 4277 | .read_u64 = mem_cgroup_hierarchy_read, | 
|  | 4278 | }, | 
|  | 4279 | { | 
|  | 4280 | .name = "cgroup.event_control",		/* XXX: for compat */ | 
|  | 4281 | .write = memcg_write_event_control, | 
|  | 4282 | .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, | 
|  | 4283 | }, | 
|  | 4284 | { | 
|  | 4285 | .name = "swappiness", | 
|  | 4286 | .read_u64 = mem_cgroup_swappiness_read, | 
|  | 4287 | .write_u64 = mem_cgroup_swappiness_write, | 
|  | 4288 | }, | 
|  | 4289 | { | 
|  | 4290 | .name = "move_charge_at_immigrate", | 
|  | 4291 | .read_u64 = mem_cgroup_move_charge_read, | 
|  | 4292 | .write_u64 = mem_cgroup_move_charge_write, | 
|  | 4293 | }, | 
|  | 4294 | { | 
|  | 4295 | .name = "oom_control", | 
|  | 4296 | .seq_show = mem_cgroup_oom_control_read, | 
|  | 4297 | .write_u64 = mem_cgroup_oom_control_write, | 
|  | 4298 | .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), | 
|  | 4299 | }, | 
|  | 4300 | { | 
|  | 4301 | .name = "pressure_level", | 
|  | 4302 | }, | 
|  | 4303 | #ifdef CONFIG_NUMA | 
|  | 4304 | { | 
|  | 4305 | .name = "numa_stat", | 
|  | 4306 | .seq_show = memcg_numa_stat_show, | 
|  | 4307 | }, | 
|  | 4308 | #endif | 
|  | 4309 | { | 
|  | 4310 | .name = "kmem.limit_in_bytes", | 
|  | 4311 | .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), | 
|  | 4312 | .write = mem_cgroup_write, | 
|  | 4313 | .read_u64 = mem_cgroup_read_u64, | 
|  | 4314 | }, | 
|  | 4315 | { | 
|  | 4316 | .name = "kmem.usage_in_bytes", | 
|  | 4317 | .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), | 
|  | 4318 | .read_u64 = mem_cgroup_read_u64, | 
|  | 4319 | }, | 
|  | 4320 | { | 
|  | 4321 | .name = "kmem.failcnt", | 
|  | 4322 | .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), | 
|  | 4323 | .write = mem_cgroup_reset, | 
|  | 4324 | .read_u64 = mem_cgroup_read_u64, | 
|  | 4325 | }, | 
|  | 4326 | { | 
|  | 4327 | .name = "kmem.max_usage_in_bytes", | 
|  | 4328 | .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), | 
|  | 4329 | .write = mem_cgroup_reset, | 
|  | 4330 | .read_u64 = mem_cgroup_read_u64, | 
|  | 4331 | }, | 
|  | 4332 | #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) | 
|  | 4333 | { | 
|  | 4334 | .name = "kmem.slabinfo", | 
|  | 4335 | .seq_start = memcg_slab_start, | 
|  | 4336 | .seq_next = memcg_slab_next, | 
|  | 4337 | .seq_stop = memcg_slab_stop, | 
|  | 4338 | .seq_show = memcg_slab_show, | 
|  | 4339 | }, | 
|  | 4340 | #endif | 
|  | 4341 | { | 
|  | 4342 | .name = "kmem.tcp.limit_in_bytes", | 
|  | 4343 | .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), | 
|  | 4344 | .write = mem_cgroup_write, | 
|  | 4345 | .read_u64 = mem_cgroup_read_u64, | 
|  | 4346 | }, | 
|  | 4347 | { | 
|  | 4348 | .name = "kmem.tcp.usage_in_bytes", | 
|  | 4349 | .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), | 
|  | 4350 | .read_u64 = mem_cgroup_read_u64, | 
|  | 4351 | }, | 
|  | 4352 | { | 
|  | 4353 | .name = "kmem.tcp.failcnt", | 
|  | 4354 | .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), | 
|  | 4355 | .write = mem_cgroup_reset, | 
|  | 4356 | .read_u64 = mem_cgroup_read_u64, | 
|  | 4357 | }, | 
|  | 4358 | { | 
|  | 4359 | .name = "kmem.tcp.max_usage_in_bytes", | 
|  | 4360 | .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), | 
|  | 4361 | .write = mem_cgroup_reset, | 
|  | 4362 | .read_u64 = mem_cgroup_read_u64, | 
|  | 4363 | }, | 
|  | 4364 | { },	/* terminate */ | 
|  | 4365 | }; | 
|  | 4366 |  | 
|  | 4367 | /* | 
|  | 4368 | * Private memory cgroup IDR | 
|  | 4369 | * | 
|  | 4370 | * Swap-out records and page cache shadow entries need to store memcg | 
|  | 4371 | * references in constrained space, so we maintain an ID space that is | 
|  | 4372 | * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of | 
|  | 4373 | * memory-controlled cgroups to 64k. | 
|  | 4374 | * | 
|  | 4375 | * However, there usually are many references to the oflline CSS after | 
|  | 4376 | * the cgroup has been destroyed, such as page cache or reclaimable | 
|  | 4377 | * slab objects, that don't need to hang on to the ID. We want to keep | 
|  | 4378 | * those dead CSS from occupying IDs, or we might quickly exhaust the | 
|  | 4379 | * relatively small ID space and prevent the creation of new cgroups | 
|  | 4380 | * even when there are much fewer than 64k cgroups - possibly none. | 
|  | 4381 | * | 
|  | 4382 | * Maintain a private 16-bit ID space for memcg, and allow the ID to | 
|  | 4383 | * be freed and recycled when it's no longer needed, which is usually | 
|  | 4384 | * when the CSS is offlined. | 
|  | 4385 | * | 
|  | 4386 | * The only exception to that are records of swapped out tmpfs/shmem | 
|  | 4387 | * pages that need to be attributed to live ancestors on swapin. But | 
|  | 4388 | * those references are manageable from userspace. | 
|  | 4389 | */ | 
|  | 4390 |  | 
|  | 4391 | static DEFINE_IDR(mem_cgroup_idr); | 
|  | 4392 |  | 
|  | 4393 | static void mem_cgroup_id_remove(struct mem_cgroup *memcg) | 
|  | 4394 | { | 
|  | 4395 | if (memcg->id.id > 0) { | 
|  | 4396 | idr_remove(&mem_cgroup_idr, memcg->id.id); | 
|  | 4397 | memcg->id.id = 0; | 
|  | 4398 | } | 
|  | 4399 | } | 
|  | 4400 |  | 
|  | 4401 | static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) | 
|  | 4402 | { | 
|  | 4403 | VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0); | 
|  | 4404 | atomic_add(n, &memcg->id.ref); | 
|  | 4405 | } | 
|  | 4406 |  | 
|  | 4407 | static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) | 
|  | 4408 | { | 
|  | 4409 | VM_BUG_ON(atomic_read(&memcg->id.ref) < n); | 
|  | 4410 | if (atomic_sub_and_test(n, &memcg->id.ref)) { | 
|  | 4411 | mem_cgroup_id_remove(memcg); | 
|  | 4412 |  | 
|  | 4413 | /* Memcg ID pins CSS */ | 
|  | 4414 | css_put(&memcg->css); | 
|  | 4415 | } | 
|  | 4416 | } | 
|  | 4417 |  | 
|  | 4418 | static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) | 
|  | 4419 | { | 
|  | 4420 | mem_cgroup_id_get_many(memcg, 1); | 
|  | 4421 | } | 
|  | 4422 |  | 
|  | 4423 | static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) | 
|  | 4424 | { | 
|  | 4425 | mem_cgroup_id_put_many(memcg, 1); | 
|  | 4426 | } | 
|  | 4427 |  | 
|  | 4428 | /** | 
|  | 4429 | * mem_cgroup_from_id - look up a memcg from a memcg id | 
|  | 4430 | * @id: the memcg id to look up | 
|  | 4431 | * | 
|  | 4432 | * Caller must hold rcu_read_lock(). | 
|  | 4433 | */ | 
|  | 4434 | struct mem_cgroup *mem_cgroup_from_id(unsigned short id) | 
|  | 4435 | { | 
|  | 4436 | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|  | 4437 | return idr_find(&mem_cgroup_idr, id); | 
|  | 4438 | } | 
|  | 4439 |  | 
|  | 4440 | static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) | 
|  | 4441 | { | 
|  | 4442 | struct mem_cgroup_per_node *pn; | 
|  | 4443 | int tmp = node; | 
|  | 4444 | /* | 
|  | 4445 | * This routine is called against possible nodes. | 
|  | 4446 | * But it's BUG to call kmalloc() against offline node. | 
|  | 4447 | * | 
|  | 4448 | * TODO: this routine can waste much memory for nodes which will | 
|  | 4449 | *       never be onlined. It's better to use memory hotplug callback | 
|  | 4450 | *       function. | 
|  | 4451 | */ | 
|  | 4452 | if (!node_state(node, N_NORMAL_MEMORY)) | 
|  | 4453 | tmp = -1; | 
|  | 4454 | pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); | 
|  | 4455 | if (!pn) | 
|  | 4456 | return 1; | 
|  | 4457 |  | 
|  | 4458 | pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); | 
|  | 4459 | if (!pn->lruvec_stat_cpu) { | 
|  | 4460 | kfree(pn); | 
|  | 4461 | return 1; | 
|  | 4462 | } | 
|  | 4463 |  | 
|  | 4464 | lruvec_init(&pn->lruvec); | 
|  | 4465 | pn->usage_in_excess = 0; | 
|  | 4466 | pn->on_tree = false; | 
|  | 4467 | pn->memcg = memcg; | 
|  | 4468 |  | 
|  | 4469 | memcg->nodeinfo[node] = pn; | 
|  | 4470 | return 0; | 
|  | 4471 | } | 
|  | 4472 |  | 
|  | 4473 | static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) | 
|  | 4474 | { | 
|  | 4475 | struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; | 
|  | 4476 |  | 
|  | 4477 | if (!pn) | 
|  | 4478 | return; | 
|  | 4479 |  | 
|  | 4480 | free_percpu(pn->lruvec_stat_cpu); | 
|  | 4481 | kfree(pn); | 
|  | 4482 | } | 
|  | 4483 |  | 
|  | 4484 | static void __mem_cgroup_free(struct mem_cgroup *memcg) | 
|  | 4485 | { | 
|  | 4486 | int node; | 
|  | 4487 |  | 
|  | 4488 | for_each_node(node) | 
|  | 4489 | free_mem_cgroup_per_node_info(memcg, node); | 
|  | 4490 | free_percpu(memcg->stat_cpu); | 
|  | 4491 | kfree(memcg); | 
|  | 4492 | } | 
|  | 4493 |  | 
|  | 4494 | static void mem_cgroup_free(struct mem_cgroup *memcg) | 
|  | 4495 | { | 
|  | 4496 | memcg_wb_domain_exit(memcg); | 
|  | 4497 | __mem_cgroup_free(memcg); | 
|  | 4498 | } | 
|  | 4499 |  | 
|  | 4500 | static struct mem_cgroup *mem_cgroup_alloc(void) | 
|  | 4501 | { | 
|  | 4502 | struct mem_cgroup *memcg; | 
|  | 4503 | size_t size; | 
|  | 4504 | int node; | 
|  | 4505 |  | 
|  | 4506 | size = sizeof(struct mem_cgroup); | 
|  | 4507 | size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); | 
|  | 4508 |  | 
|  | 4509 | memcg = kzalloc(size, GFP_KERNEL); | 
|  | 4510 | if (!memcg) | 
|  | 4511 | return NULL; | 
|  | 4512 |  | 
|  | 4513 | memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, | 
|  | 4514 | 1, MEM_CGROUP_ID_MAX, | 
|  | 4515 | GFP_KERNEL); | 
|  | 4516 | if (memcg->id.id < 0) | 
|  | 4517 | goto fail; | 
|  | 4518 |  | 
|  | 4519 | memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu); | 
|  | 4520 | if (!memcg->stat_cpu) | 
|  | 4521 | goto fail; | 
|  | 4522 |  | 
|  | 4523 | for_each_node(node) | 
|  | 4524 | if (alloc_mem_cgroup_per_node_info(memcg, node)) | 
|  | 4525 | goto fail; | 
|  | 4526 |  | 
|  | 4527 | if (memcg_wb_domain_init(memcg, GFP_KERNEL)) | 
|  | 4528 | goto fail; | 
|  | 4529 |  | 
|  | 4530 | INIT_WORK(&memcg->high_work, high_work_func); | 
|  | 4531 | memcg->last_scanned_node = MAX_NUMNODES; | 
|  | 4532 | INIT_LIST_HEAD(&memcg->oom_notify); | 
|  | 4533 | mutex_init(&memcg->thresholds_lock); | 
|  | 4534 | spin_lock_init(&memcg->move_lock); | 
|  | 4535 | vmpressure_init(&memcg->vmpressure); | 
|  | 4536 | INIT_LIST_HEAD(&memcg->event_list); | 
|  | 4537 | spin_lock_init(&memcg->event_list_lock); | 
|  | 4538 | memcg->socket_pressure = jiffies; | 
|  | 4539 | #ifdef CONFIG_MEMCG_KMEM | 
|  | 4540 | memcg->kmemcg_id = -1; | 
|  | 4541 | #endif | 
|  | 4542 | #ifdef CONFIG_CGROUP_WRITEBACK | 
|  | 4543 | INIT_LIST_HEAD(&memcg->cgwb_list); | 
|  | 4544 | #endif | 
|  | 4545 | idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); | 
|  | 4546 | return memcg; | 
|  | 4547 | fail: | 
|  | 4548 | mem_cgroup_id_remove(memcg); | 
|  | 4549 | __mem_cgroup_free(memcg); | 
|  | 4550 | return NULL; | 
|  | 4551 | } | 
|  | 4552 |  | 
|  | 4553 | static struct cgroup_subsys_state * __ref | 
|  | 4554 | mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) | 
|  | 4555 | { | 
|  | 4556 | struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); | 
|  | 4557 | struct mem_cgroup *memcg; | 
|  | 4558 | long error = -ENOMEM; | 
|  | 4559 |  | 
|  | 4560 | memcg = mem_cgroup_alloc(); | 
|  | 4561 | if (!memcg) | 
|  | 4562 | return ERR_PTR(error); | 
|  | 4563 |  | 
|  | 4564 | memcg->high = PAGE_COUNTER_MAX; | 
|  | 4565 | memcg->soft_limit = PAGE_COUNTER_MAX; | 
|  | 4566 | if (parent) { | 
|  | 4567 | memcg->swappiness = mem_cgroup_swappiness(parent); | 
|  | 4568 | memcg->oom_kill_disable = parent->oom_kill_disable; | 
|  | 4569 | } | 
|  | 4570 | if (parent && parent->use_hierarchy) { | 
|  | 4571 | memcg->use_hierarchy = true; | 
|  | 4572 | page_counter_init(&memcg->memory, &parent->memory); | 
|  | 4573 | page_counter_init(&memcg->swap, &parent->swap); | 
|  | 4574 | page_counter_init(&memcg->memsw, &parent->memsw); | 
|  | 4575 | page_counter_init(&memcg->kmem, &parent->kmem); | 
|  | 4576 | page_counter_init(&memcg->tcpmem, &parent->tcpmem); | 
|  | 4577 | } else { | 
|  | 4578 | page_counter_init(&memcg->memory, NULL); | 
|  | 4579 | page_counter_init(&memcg->swap, NULL); | 
|  | 4580 | page_counter_init(&memcg->memsw, NULL); | 
|  | 4581 | page_counter_init(&memcg->kmem, NULL); | 
|  | 4582 | page_counter_init(&memcg->tcpmem, NULL); | 
|  | 4583 | /* | 
|  | 4584 | * Deeper hierachy with use_hierarchy == false doesn't make | 
|  | 4585 | * much sense so let cgroup subsystem know about this | 
|  | 4586 | * unfortunate state in our controller. | 
|  | 4587 | */ | 
|  | 4588 | if (parent != root_mem_cgroup) | 
|  | 4589 | memory_cgrp_subsys.broken_hierarchy = true; | 
|  | 4590 | } | 
|  | 4591 |  | 
|  | 4592 | /* The following stuff does not apply to the root */ | 
|  | 4593 | if (!parent) { | 
|  | 4594 | root_mem_cgroup = memcg; | 
|  | 4595 | return &memcg->css; | 
|  | 4596 | } | 
|  | 4597 |  | 
|  | 4598 | error = memcg_online_kmem(memcg); | 
|  | 4599 | if (error) | 
|  | 4600 | goto fail; | 
|  | 4601 |  | 
|  | 4602 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) | 
|  | 4603 | static_branch_inc(&memcg_sockets_enabled_key); | 
|  | 4604 |  | 
|  | 4605 | return &memcg->css; | 
|  | 4606 | fail: | 
|  | 4607 | mem_cgroup_id_remove(memcg); | 
|  | 4608 | mem_cgroup_free(memcg); | 
|  | 4609 | return ERR_PTR(-ENOMEM); | 
|  | 4610 | } | 
|  | 4611 |  | 
|  | 4612 | static int mem_cgroup_css_online(struct cgroup_subsys_state *css) | 
|  | 4613 | { | 
|  | 4614 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | 4615 |  | 
|  | 4616 | /* | 
|  | 4617 | * A memcg must be visible for memcg_expand_shrinker_maps() | 
|  | 4618 | * by the time the maps are allocated. So, we allocate maps | 
|  | 4619 | * here, when for_each_mem_cgroup() can't skip it. | 
|  | 4620 | */ | 
|  | 4621 | if (memcg_alloc_shrinker_maps(memcg)) { | 
|  | 4622 | mem_cgroup_id_remove(memcg); | 
|  | 4623 | return -ENOMEM; | 
|  | 4624 | } | 
|  | 4625 |  | 
|  | 4626 | /* Online state pins memcg ID, memcg ID pins CSS */ | 
|  | 4627 | atomic_set(&memcg->id.ref, 1); | 
|  | 4628 | css_get(css); | 
|  | 4629 | return 0; | 
|  | 4630 | } | 
|  | 4631 |  | 
|  | 4632 | static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) | 
|  | 4633 | { | 
|  | 4634 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | 4635 | struct mem_cgroup_event *event, *tmp; | 
|  | 4636 |  | 
|  | 4637 | /* | 
|  | 4638 | * Unregister events and notify userspace. | 
|  | 4639 | * Notify userspace about cgroup removing only after rmdir of cgroup | 
|  | 4640 | * directory to avoid race between userspace and kernelspace. | 
|  | 4641 | */ | 
|  | 4642 | spin_lock(&memcg->event_list_lock); | 
|  | 4643 | list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { | 
|  | 4644 | list_del_init(&event->list); | 
|  | 4645 | schedule_work(&event->remove); | 
|  | 4646 | } | 
|  | 4647 | spin_unlock(&memcg->event_list_lock); | 
|  | 4648 |  | 
|  | 4649 | page_counter_set_min(&memcg->memory, 0); | 
|  | 4650 | page_counter_set_low(&memcg->memory, 0); | 
|  | 4651 |  | 
|  | 4652 | memcg_offline_kmem(memcg); | 
|  | 4653 | wb_memcg_offline(memcg); | 
|  | 4654 |  | 
|  | 4655 | mem_cgroup_id_put(memcg); | 
|  | 4656 | } | 
|  | 4657 |  | 
|  | 4658 | static void mem_cgroup_css_released(struct cgroup_subsys_state *css) | 
|  | 4659 | { | 
|  | 4660 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | 4661 |  | 
|  | 4662 | invalidate_reclaim_iterators(memcg); | 
|  | 4663 | } | 
|  | 4664 |  | 
|  | 4665 | static void mem_cgroup_css_free(struct cgroup_subsys_state *css) | 
|  | 4666 | { | 
|  | 4667 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | 4668 |  | 
|  | 4669 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) | 
|  | 4670 | static_branch_dec(&memcg_sockets_enabled_key); | 
|  | 4671 |  | 
|  | 4672 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) | 
|  | 4673 | static_branch_dec(&memcg_sockets_enabled_key); | 
|  | 4674 |  | 
|  | 4675 | vmpressure_cleanup(&memcg->vmpressure); | 
|  | 4676 | cancel_work_sync(&memcg->high_work); | 
|  | 4677 | mem_cgroup_remove_from_trees(memcg); | 
|  | 4678 | memcg_free_shrinker_maps(memcg); | 
|  | 4679 | memcg_free_kmem(memcg); | 
|  | 4680 | mem_cgroup_free(memcg); | 
|  | 4681 | } | 
|  | 4682 |  | 
|  | 4683 | /** | 
|  | 4684 | * mem_cgroup_css_reset - reset the states of a mem_cgroup | 
|  | 4685 | * @css: the target css | 
|  | 4686 | * | 
|  | 4687 | * Reset the states of the mem_cgroup associated with @css.  This is | 
|  | 4688 | * invoked when the userland requests disabling on the default hierarchy | 
|  | 4689 | * but the memcg is pinned through dependency.  The memcg should stop | 
|  | 4690 | * applying policies and should revert to the vanilla state as it may be | 
|  | 4691 | * made visible again. | 
|  | 4692 | * | 
|  | 4693 | * The current implementation only resets the essential configurations. | 
|  | 4694 | * This needs to be expanded to cover all the visible parts. | 
|  | 4695 | */ | 
|  | 4696 | static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) | 
|  | 4697 | { | 
|  | 4698 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | 4699 |  | 
|  | 4700 | page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); | 
|  | 4701 | page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); | 
|  | 4702 | page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); | 
|  | 4703 | page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); | 
|  | 4704 | page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); | 
|  | 4705 | page_counter_set_min(&memcg->memory, 0); | 
|  | 4706 | page_counter_set_low(&memcg->memory, 0); | 
|  | 4707 | memcg->high = PAGE_COUNTER_MAX; | 
|  | 4708 | memcg->soft_limit = PAGE_COUNTER_MAX; | 
|  | 4709 | memcg_wb_domain_size_changed(memcg); | 
|  | 4710 | } | 
|  | 4711 |  | 
|  | 4712 | #ifdef CONFIG_MMU | 
|  | 4713 | /* Handlers for move charge at task migration. */ | 
|  | 4714 | static int mem_cgroup_do_precharge(unsigned long count) | 
|  | 4715 | { | 
|  | 4716 | int ret; | 
|  | 4717 |  | 
|  | 4718 | /* Try a single bulk charge without reclaim first, kswapd may wake */ | 
|  | 4719 | ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); | 
|  | 4720 | if (!ret) { | 
|  | 4721 | mc.precharge += count; | 
|  | 4722 | return ret; | 
|  | 4723 | } | 
|  | 4724 |  | 
|  | 4725 | /* Try charges one by one with reclaim, but do not retry */ | 
|  | 4726 | while (count--) { | 
|  | 4727 | ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); | 
|  | 4728 | if (ret) | 
|  | 4729 | return ret; | 
|  | 4730 | mc.precharge++; | 
|  | 4731 | cond_resched(); | 
|  | 4732 | } | 
|  | 4733 | return 0; | 
|  | 4734 | } | 
|  | 4735 |  | 
|  | 4736 | union mc_target { | 
|  | 4737 | struct page	*page; | 
|  | 4738 | swp_entry_t	ent; | 
|  | 4739 | }; | 
|  | 4740 |  | 
|  | 4741 | enum mc_target_type { | 
|  | 4742 | MC_TARGET_NONE = 0, | 
|  | 4743 | MC_TARGET_PAGE, | 
|  | 4744 | MC_TARGET_SWAP, | 
|  | 4745 | MC_TARGET_DEVICE, | 
|  | 4746 | }; | 
|  | 4747 |  | 
|  | 4748 | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, | 
|  | 4749 | unsigned long addr, pte_t ptent) | 
|  | 4750 | { | 
|  | 4751 | struct page *page = _vm_normal_page(vma, addr, ptent, true); | 
|  | 4752 |  | 
|  | 4753 | if (!page || !page_mapped(page)) | 
|  | 4754 | return NULL; | 
|  | 4755 | if (PageAnon(page)) { | 
|  | 4756 | if (!(mc.flags & MOVE_ANON)) | 
|  | 4757 | return NULL; | 
|  | 4758 | } else { | 
|  | 4759 | if (!(mc.flags & MOVE_FILE)) | 
|  | 4760 | return NULL; | 
|  | 4761 | } | 
|  | 4762 | if (!get_page_unless_zero(page)) | 
|  | 4763 | return NULL; | 
|  | 4764 |  | 
|  | 4765 | return page; | 
|  | 4766 | } | 
|  | 4767 |  | 
|  | 4768 | #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) | 
|  | 4769 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | 
|  | 4770 | pte_t ptent, swp_entry_t *entry) | 
|  | 4771 | { | 
|  | 4772 | struct page *page = NULL; | 
|  | 4773 | swp_entry_t ent = pte_to_swp_entry(ptent); | 
|  | 4774 |  | 
|  | 4775 | if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) | 
|  | 4776 | return NULL; | 
|  | 4777 |  | 
|  | 4778 | /* | 
|  | 4779 | * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to | 
|  | 4780 | * a device and because they are not accessible by CPU they are store | 
|  | 4781 | * as special swap entry in the CPU page table. | 
|  | 4782 | */ | 
|  | 4783 | if (is_device_private_entry(ent)) { | 
|  | 4784 | page = device_private_entry_to_page(ent); | 
|  | 4785 | /* | 
|  | 4786 | * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have | 
|  | 4787 | * a refcount of 1 when free (unlike normal page) | 
|  | 4788 | */ | 
|  | 4789 | if (!page_ref_add_unless(page, 1, 1)) | 
|  | 4790 | return NULL; | 
|  | 4791 | return page; | 
|  | 4792 | } | 
|  | 4793 |  | 
|  | 4794 | /* | 
|  | 4795 | * Because lookup_swap_cache() updates some statistics counter, | 
|  | 4796 | * we call find_get_page() with swapper_space directly. | 
|  | 4797 | */ | 
|  | 4798 | page = find_get_page(swap_address_space(ent), swp_offset(ent)); | 
|  | 4799 | if (do_memsw_account()) | 
|  | 4800 | entry->val = ent.val; | 
|  | 4801 |  | 
|  | 4802 | return page; | 
|  | 4803 | } | 
|  | 4804 | #else | 
|  | 4805 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | 
|  | 4806 | pte_t ptent, swp_entry_t *entry) | 
|  | 4807 | { | 
|  | 4808 | return NULL; | 
|  | 4809 | } | 
|  | 4810 | #endif | 
|  | 4811 |  | 
|  | 4812 | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, | 
|  | 4813 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | 
|  | 4814 | { | 
|  | 4815 | struct page *page = NULL; | 
|  | 4816 | struct address_space *mapping; | 
|  | 4817 | pgoff_t pgoff; | 
|  | 4818 |  | 
|  | 4819 | if (!vma->vm_file) /* anonymous vma */ | 
|  | 4820 | return NULL; | 
|  | 4821 | if (!(mc.flags & MOVE_FILE)) | 
|  | 4822 | return NULL; | 
|  | 4823 |  | 
|  | 4824 | mapping = vma->vm_file->f_mapping; | 
|  | 4825 | pgoff = linear_page_index(vma, addr); | 
|  | 4826 |  | 
|  | 4827 | /* page is moved even if it's not RSS of this task(page-faulted). */ | 
|  | 4828 | #ifdef CONFIG_SWAP | 
|  | 4829 | /* shmem/tmpfs may report page out on swap: account for that too. */ | 
|  | 4830 | if (shmem_mapping(mapping)) { | 
|  | 4831 | page = find_get_entry(mapping, pgoff); | 
|  | 4832 | if (radix_tree_exceptional_entry(page)) { | 
|  | 4833 | swp_entry_t swp = radix_to_swp_entry(page); | 
|  | 4834 | if (do_memsw_account()) | 
|  | 4835 | *entry = swp; | 
|  | 4836 | page = find_get_page(swap_address_space(swp), | 
|  | 4837 | swp_offset(swp)); | 
|  | 4838 | } | 
|  | 4839 | } else | 
|  | 4840 | page = find_get_page(mapping, pgoff); | 
|  | 4841 | #else | 
|  | 4842 | page = find_get_page(mapping, pgoff); | 
|  | 4843 | #endif | 
|  | 4844 | return page; | 
|  | 4845 | } | 
|  | 4846 |  | 
|  | 4847 | /** | 
|  | 4848 | * mem_cgroup_move_account - move account of the page | 
|  | 4849 | * @page: the page | 
|  | 4850 | * @compound: charge the page as compound or small page | 
|  | 4851 | * @from: mem_cgroup which the page is moved from. | 
|  | 4852 | * @to:	mem_cgroup which the page is moved to. @from != @to. | 
|  | 4853 | * | 
|  | 4854 | * The caller must make sure the page is not on LRU (isolate_page() is useful.) | 
|  | 4855 | * | 
|  | 4856 | * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" | 
|  | 4857 | * from old cgroup. | 
|  | 4858 | */ | 
|  | 4859 | static int mem_cgroup_move_account(struct page *page, | 
|  | 4860 | bool compound, | 
|  | 4861 | struct mem_cgroup *from, | 
|  | 4862 | struct mem_cgroup *to) | 
|  | 4863 | { | 
|  | 4864 | unsigned long flags; | 
|  | 4865 | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | 
|  | 4866 | int ret; | 
|  | 4867 | bool anon; | 
|  | 4868 |  | 
|  | 4869 | VM_BUG_ON(from == to); | 
|  | 4870 | VM_BUG_ON_PAGE(PageLRU(page), page); | 
|  | 4871 | VM_BUG_ON(compound && !PageTransHuge(page)); | 
|  | 4872 |  | 
|  | 4873 | /* | 
|  | 4874 | * Prevent mem_cgroup_migrate() from looking at | 
|  | 4875 | * page->mem_cgroup of its source page while we change it. | 
|  | 4876 | */ | 
|  | 4877 | ret = -EBUSY; | 
|  | 4878 | if (!trylock_page(page)) | 
|  | 4879 | goto out; | 
|  | 4880 |  | 
|  | 4881 | ret = -EINVAL; | 
|  | 4882 | if (page->mem_cgroup != from) | 
|  | 4883 | goto out_unlock; | 
|  | 4884 |  | 
|  | 4885 | anon = PageAnon(page); | 
|  | 4886 |  | 
|  | 4887 | spin_lock_irqsave(&from->move_lock, flags); | 
|  | 4888 |  | 
|  | 4889 | if (!anon && page_mapped(page)) { | 
|  | 4890 | __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages); | 
|  | 4891 | __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages); | 
|  | 4892 | } | 
|  | 4893 |  | 
|  | 4894 | /* | 
|  | 4895 | * move_lock grabbed above and caller set from->moving_account, so | 
|  | 4896 | * mod_memcg_page_state will serialize updates to PageDirty. | 
|  | 4897 | * So mapping should be stable for dirty pages. | 
|  | 4898 | */ | 
|  | 4899 | if (!anon && PageDirty(page)) { | 
|  | 4900 | struct address_space *mapping = page_mapping(page); | 
|  | 4901 |  | 
|  | 4902 | if (mapping_cap_account_dirty(mapping)) { | 
|  | 4903 | __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages); | 
|  | 4904 | __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages); | 
|  | 4905 | } | 
|  | 4906 | } | 
|  | 4907 |  | 
|  | 4908 | if (PageWriteback(page)) { | 
|  | 4909 | __mod_memcg_state(from, NR_WRITEBACK, -nr_pages); | 
|  | 4910 | __mod_memcg_state(to, NR_WRITEBACK, nr_pages); | 
|  | 4911 | } | 
|  | 4912 |  | 
|  | 4913 | /* | 
|  | 4914 | * It is safe to change page->mem_cgroup here because the page | 
|  | 4915 | * is referenced, charged, and isolated - we can't race with | 
|  | 4916 | * uncharging, charging, migration, or LRU putback. | 
|  | 4917 | */ | 
|  | 4918 |  | 
|  | 4919 | /* caller should have done css_get */ | 
|  | 4920 | page->mem_cgroup = to; | 
|  | 4921 | spin_unlock_irqrestore(&from->move_lock, flags); | 
|  | 4922 |  | 
|  | 4923 | ret = 0; | 
|  | 4924 |  | 
|  | 4925 | local_irq_disable(); | 
|  | 4926 | mem_cgroup_charge_statistics(to, page, compound, nr_pages); | 
|  | 4927 | memcg_check_events(to, page); | 
|  | 4928 | mem_cgroup_charge_statistics(from, page, compound, -nr_pages); | 
|  | 4929 | memcg_check_events(from, page); | 
|  | 4930 | local_irq_enable(); | 
|  | 4931 | out_unlock: | 
|  | 4932 | unlock_page(page); | 
|  | 4933 | out: | 
|  | 4934 | return ret; | 
|  | 4935 | } | 
|  | 4936 |  | 
|  | 4937 | /** | 
|  | 4938 | * get_mctgt_type - get target type of moving charge | 
|  | 4939 | * @vma: the vma the pte to be checked belongs | 
|  | 4940 | * @addr: the address corresponding to the pte to be checked | 
|  | 4941 | * @ptent: the pte to be checked | 
|  | 4942 | * @target: the pointer the target page or swap ent will be stored(can be NULL) | 
|  | 4943 | * | 
|  | 4944 | * Returns | 
|  | 4945 | *   0(MC_TARGET_NONE): if the pte is not a target for move charge. | 
|  | 4946 | *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for | 
|  | 4947 | *     move charge. if @target is not NULL, the page is stored in target->page | 
|  | 4948 | *     with extra refcnt got(Callers should handle it). | 
|  | 4949 | *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a | 
|  | 4950 | *     target for charge migration. if @target is not NULL, the entry is stored | 
|  | 4951 | *     in target->ent. | 
|  | 4952 | *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC | 
|  | 4953 | *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru). | 
|  | 4954 | *     For now we such page is charge like a regular page would be as for all | 
|  | 4955 | *     intent and purposes it is just special memory taking the place of a | 
|  | 4956 | *     regular page. | 
|  | 4957 | * | 
|  | 4958 | *     See Documentations/vm/hmm.txt and include/linux/hmm.h | 
|  | 4959 | * | 
|  | 4960 | * Called with pte lock held. | 
|  | 4961 | */ | 
|  | 4962 |  | 
|  | 4963 | static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, | 
|  | 4964 | unsigned long addr, pte_t ptent, union mc_target *target) | 
|  | 4965 | { | 
|  | 4966 | struct page *page = NULL; | 
|  | 4967 | enum mc_target_type ret = MC_TARGET_NONE; | 
|  | 4968 | swp_entry_t ent = { .val = 0 }; | 
|  | 4969 |  | 
|  | 4970 | if (pte_present(ptent)) | 
|  | 4971 | page = mc_handle_present_pte(vma, addr, ptent); | 
|  | 4972 | else if (is_swap_pte(ptent)) | 
|  | 4973 | page = mc_handle_swap_pte(vma, ptent, &ent); | 
|  | 4974 | else if (pte_none(ptent)) | 
|  | 4975 | page = mc_handle_file_pte(vma, addr, ptent, &ent); | 
|  | 4976 |  | 
|  | 4977 | if (!page && !ent.val) | 
|  | 4978 | return ret; | 
|  | 4979 | if (page) { | 
|  | 4980 | /* | 
|  | 4981 | * Do only loose check w/o serialization. | 
|  | 4982 | * mem_cgroup_move_account() checks the page is valid or | 
|  | 4983 | * not under LRU exclusion. | 
|  | 4984 | */ | 
|  | 4985 | if (page->mem_cgroup == mc.from) { | 
|  | 4986 | ret = MC_TARGET_PAGE; | 
|  | 4987 | if (is_device_private_page(page) || | 
|  | 4988 | is_device_public_page(page)) | 
|  | 4989 | ret = MC_TARGET_DEVICE; | 
|  | 4990 | if (target) | 
|  | 4991 | target->page = page; | 
|  | 4992 | } | 
|  | 4993 | if (!ret || !target) | 
|  | 4994 | put_page(page); | 
|  | 4995 | } | 
|  | 4996 | /* | 
|  | 4997 | * There is a swap entry and a page doesn't exist or isn't charged. | 
|  | 4998 | * But we cannot move a tail-page in a THP. | 
|  | 4999 | */ | 
|  | 5000 | if (ent.val && !ret && (!page || !PageTransCompound(page)) && | 
|  | 5001 | mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { | 
|  | 5002 | ret = MC_TARGET_SWAP; | 
|  | 5003 | if (target) | 
|  | 5004 | target->ent = ent; | 
|  | 5005 | } | 
|  | 5006 | return ret; | 
|  | 5007 | } | 
|  | 5008 |  | 
|  | 5009 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | 5010 | /* | 
|  | 5011 | * We don't consider PMD mapped swapping or file mapped pages because THP does | 
|  | 5012 | * not support them for now. | 
|  | 5013 | * Caller should make sure that pmd_trans_huge(pmd) is true. | 
|  | 5014 | */ | 
|  | 5015 | static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | 
|  | 5016 | unsigned long addr, pmd_t pmd, union mc_target *target) | 
|  | 5017 | { | 
|  | 5018 | struct page *page = NULL; | 
|  | 5019 | enum mc_target_type ret = MC_TARGET_NONE; | 
|  | 5020 |  | 
|  | 5021 | if (unlikely(is_swap_pmd(pmd))) { | 
|  | 5022 | VM_BUG_ON(thp_migration_supported() && | 
|  | 5023 | !is_pmd_migration_entry(pmd)); | 
|  | 5024 | return ret; | 
|  | 5025 | } | 
|  | 5026 | page = pmd_page(pmd); | 
|  | 5027 | VM_BUG_ON_PAGE(!page || !PageHead(page), page); | 
|  | 5028 | if (!(mc.flags & MOVE_ANON)) | 
|  | 5029 | return ret; | 
|  | 5030 | if (page->mem_cgroup == mc.from) { | 
|  | 5031 | ret = MC_TARGET_PAGE; | 
|  | 5032 | if (target) { | 
|  | 5033 | get_page(page); | 
|  | 5034 | target->page = page; | 
|  | 5035 | } | 
|  | 5036 | } | 
|  | 5037 | return ret; | 
|  | 5038 | } | 
|  | 5039 | #else | 
|  | 5040 | static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | 
|  | 5041 | unsigned long addr, pmd_t pmd, union mc_target *target) | 
|  | 5042 | { | 
|  | 5043 | return MC_TARGET_NONE; | 
|  | 5044 | } | 
|  | 5045 | #endif | 
|  | 5046 |  | 
|  | 5047 | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, | 
|  | 5048 | unsigned long addr, unsigned long end, | 
|  | 5049 | struct mm_walk *walk) | 
|  | 5050 | { | 
|  | 5051 | struct vm_area_struct *vma = walk->vma; | 
|  | 5052 | pte_t *pte; | 
|  | 5053 | spinlock_t *ptl; | 
|  | 5054 |  | 
|  | 5055 | ptl = pmd_trans_huge_lock(pmd, vma); | 
|  | 5056 | if (ptl) { | 
|  | 5057 | /* | 
|  | 5058 | * Note their can not be MC_TARGET_DEVICE for now as we do not | 
|  | 5059 | * support transparent huge page with MEMORY_DEVICE_PUBLIC or | 
|  | 5060 | * MEMORY_DEVICE_PRIVATE but this might change. | 
|  | 5061 | */ | 
|  | 5062 | if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) | 
|  | 5063 | mc.precharge += HPAGE_PMD_NR; | 
|  | 5064 | spin_unlock(ptl); | 
|  | 5065 | return 0; | 
|  | 5066 | } | 
|  | 5067 |  | 
|  | 5068 | if (pmd_trans_unstable(pmd)) | 
|  | 5069 | return 0; | 
|  | 5070 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
|  | 5071 | for (; addr != end; pte++, addr += PAGE_SIZE) | 
|  | 5072 | if (get_mctgt_type(vma, addr, *pte, NULL)) | 
|  | 5073 | mc.precharge++;	/* increment precharge temporarily */ | 
|  | 5074 | pte_unmap_unlock(pte - 1, ptl); | 
|  | 5075 | cond_resched(); | 
|  | 5076 |  | 
|  | 5077 | return 0; | 
|  | 5078 | } | 
|  | 5079 |  | 
|  | 5080 | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) | 
|  | 5081 | { | 
|  | 5082 | unsigned long precharge; | 
|  | 5083 |  | 
|  | 5084 | struct mm_walk mem_cgroup_count_precharge_walk = { | 
|  | 5085 | .pmd_entry = mem_cgroup_count_precharge_pte_range, | 
|  | 5086 | .mm = mm, | 
|  | 5087 | }; | 
|  | 5088 | down_read(&mm->mmap_sem); | 
|  | 5089 | walk_page_range(0, mm->highest_vm_end, | 
|  | 5090 | &mem_cgroup_count_precharge_walk); | 
|  | 5091 | up_read(&mm->mmap_sem); | 
|  | 5092 |  | 
|  | 5093 | precharge = mc.precharge; | 
|  | 5094 | mc.precharge = 0; | 
|  | 5095 |  | 
|  | 5096 | return precharge; | 
|  | 5097 | } | 
|  | 5098 |  | 
|  | 5099 | static int mem_cgroup_precharge_mc(struct mm_struct *mm) | 
|  | 5100 | { | 
|  | 5101 | unsigned long precharge = mem_cgroup_count_precharge(mm); | 
|  | 5102 |  | 
|  | 5103 | VM_BUG_ON(mc.moving_task); | 
|  | 5104 | mc.moving_task = current; | 
|  | 5105 | return mem_cgroup_do_precharge(precharge); | 
|  | 5106 | } | 
|  | 5107 |  | 
|  | 5108 | /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ | 
|  | 5109 | static void __mem_cgroup_clear_mc(void) | 
|  | 5110 | { | 
|  | 5111 | struct mem_cgroup *from = mc.from; | 
|  | 5112 | struct mem_cgroup *to = mc.to; | 
|  | 5113 |  | 
|  | 5114 | /* we must uncharge all the leftover precharges from mc.to */ | 
|  | 5115 | if (mc.precharge) { | 
|  | 5116 | cancel_charge(mc.to, mc.precharge); | 
|  | 5117 | mc.precharge = 0; | 
|  | 5118 | } | 
|  | 5119 | /* | 
|  | 5120 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | 
|  | 5121 | * we must uncharge here. | 
|  | 5122 | */ | 
|  | 5123 | if (mc.moved_charge) { | 
|  | 5124 | cancel_charge(mc.from, mc.moved_charge); | 
|  | 5125 | mc.moved_charge = 0; | 
|  | 5126 | } | 
|  | 5127 | /* we must fixup refcnts and charges */ | 
|  | 5128 | if (mc.moved_swap) { | 
|  | 5129 | /* uncharge swap account from the old cgroup */ | 
|  | 5130 | if (!mem_cgroup_is_root(mc.from)) | 
|  | 5131 | page_counter_uncharge(&mc.from->memsw, mc.moved_swap); | 
|  | 5132 |  | 
|  | 5133 | mem_cgroup_id_put_many(mc.from, mc.moved_swap); | 
|  | 5134 |  | 
|  | 5135 | /* | 
|  | 5136 | * we charged both to->memory and to->memsw, so we | 
|  | 5137 | * should uncharge to->memory. | 
|  | 5138 | */ | 
|  | 5139 | if (!mem_cgroup_is_root(mc.to)) | 
|  | 5140 | page_counter_uncharge(&mc.to->memory, mc.moved_swap); | 
|  | 5141 |  | 
|  | 5142 | mem_cgroup_id_get_many(mc.to, mc.moved_swap); | 
|  | 5143 | css_put_many(&mc.to->css, mc.moved_swap); | 
|  | 5144 |  | 
|  | 5145 | mc.moved_swap = 0; | 
|  | 5146 | } | 
|  | 5147 | memcg_oom_recover(from); | 
|  | 5148 | memcg_oom_recover(to); | 
|  | 5149 | wake_up_all(&mc.waitq); | 
|  | 5150 | } | 
|  | 5151 |  | 
|  | 5152 | static void mem_cgroup_clear_mc(void) | 
|  | 5153 | { | 
|  | 5154 | struct mm_struct *mm = mc.mm; | 
|  | 5155 |  | 
|  | 5156 | /* | 
|  | 5157 | * we must clear moving_task before waking up waiters at the end of | 
|  | 5158 | * task migration. | 
|  | 5159 | */ | 
|  | 5160 | mc.moving_task = NULL; | 
|  | 5161 | __mem_cgroup_clear_mc(); | 
|  | 5162 | spin_lock(&mc.lock); | 
|  | 5163 | mc.from = NULL; | 
|  | 5164 | mc.to = NULL; | 
|  | 5165 | mc.mm = NULL; | 
|  | 5166 | spin_unlock(&mc.lock); | 
|  | 5167 |  | 
|  | 5168 | mmput(mm); | 
|  | 5169 | } | 
|  | 5170 |  | 
|  | 5171 | static int mem_cgroup_can_attach(struct cgroup_taskset *tset) | 
|  | 5172 | { | 
|  | 5173 | struct cgroup_subsys_state *css; | 
|  | 5174 | struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ | 
|  | 5175 | struct mem_cgroup *from; | 
|  | 5176 | struct task_struct *leader, *p; | 
|  | 5177 | struct mm_struct *mm; | 
|  | 5178 | unsigned long move_flags; | 
|  | 5179 | int ret = 0; | 
|  | 5180 |  | 
|  | 5181 | /* charge immigration isn't supported on the default hierarchy */ | 
|  | 5182 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | 5183 | return 0; | 
|  | 5184 |  | 
|  | 5185 | /* | 
|  | 5186 | * Multi-process migrations only happen on the default hierarchy | 
|  | 5187 | * where charge immigration is not used.  Perform charge | 
|  | 5188 | * immigration if @tset contains a leader and whine if there are | 
|  | 5189 | * multiple. | 
|  | 5190 | */ | 
|  | 5191 | p = NULL; | 
|  | 5192 | cgroup_taskset_for_each_leader(leader, css, tset) { | 
|  | 5193 | WARN_ON_ONCE(p); | 
|  | 5194 | p = leader; | 
|  | 5195 | memcg = mem_cgroup_from_css(css); | 
|  | 5196 | } | 
|  | 5197 | if (!p) | 
|  | 5198 | return 0; | 
|  | 5199 |  | 
|  | 5200 | /* | 
|  | 5201 | * We are now commited to this value whatever it is. Changes in this | 
|  | 5202 | * tunable will only affect upcoming migrations, not the current one. | 
|  | 5203 | * So we need to save it, and keep it going. | 
|  | 5204 | */ | 
|  | 5205 | move_flags = READ_ONCE(memcg->move_charge_at_immigrate); | 
|  | 5206 | if (!move_flags) | 
|  | 5207 | return 0; | 
|  | 5208 |  | 
|  | 5209 | from = mem_cgroup_from_task(p); | 
|  | 5210 |  | 
|  | 5211 | VM_BUG_ON(from == memcg); | 
|  | 5212 |  | 
|  | 5213 | mm = get_task_mm(p); | 
|  | 5214 | if (!mm) | 
|  | 5215 | return 0; | 
|  | 5216 | /* We move charges only when we move a owner of the mm */ | 
|  | 5217 | if (mm->owner == p) { | 
|  | 5218 | VM_BUG_ON(mc.from); | 
|  | 5219 | VM_BUG_ON(mc.to); | 
|  | 5220 | VM_BUG_ON(mc.precharge); | 
|  | 5221 | VM_BUG_ON(mc.moved_charge); | 
|  | 5222 | VM_BUG_ON(mc.moved_swap); | 
|  | 5223 |  | 
|  | 5224 | spin_lock(&mc.lock); | 
|  | 5225 | mc.mm = mm; | 
|  | 5226 | mc.from = from; | 
|  | 5227 | mc.to = memcg; | 
|  | 5228 | mc.flags = move_flags; | 
|  | 5229 | spin_unlock(&mc.lock); | 
|  | 5230 | /* We set mc.moving_task later */ | 
|  | 5231 |  | 
|  | 5232 | ret = mem_cgroup_precharge_mc(mm); | 
|  | 5233 | if (ret) | 
|  | 5234 | mem_cgroup_clear_mc(); | 
|  | 5235 | } else { | 
|  | 5236 | mmput(mm); | 
|  | 5237 | } | 
|  | 5238 | return ret; | 
|  | 5239 | } | 
|  | 5240 |  | 
|  | 5241 | static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) | 
|  | 5242 | { | 
|  | 5243 | if (mc.to) | 
|  | 5244 | mem_cgroup_clear_mc(); | 
|  | 5245 | } | 
|  | 5246 |  | 
|  | 5247 | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, | 
|  | 5248 | unsigned long addr, unsigned long end, | 
|  | 5249 | struct mm_walk *walk) | 
|  | 5250 | { | 
|  | 5251 | int ret = 0; | 
|  | 5252 | struct vm_area_struct *vma = walk->vma; | 
|  | 5253 | pte_t *pte; | 
|  | 5254 | spinlock_t *ptl; | 
|  | 5255 | enum mc_target_type target_type; | 
|  | 5256 | union mc_target target; | 
|  | 5257 | struct page *page; | 
|  | 5258 |  | 
|  | 5259 | ptl = pmd_trans_huge_lock(pmd, vma); | 
|  | 5260 | if (ptl) { | 
|  | 5261 | if (mc.precharge < HPAGE_PMD_NR) { | 
|  | 5262 | spin_unlock(ptl); | 
|  | 5263 | return 0; | 
|  | 5264 | } | 
|  | 5265 | target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); | 
|  | 5266 | if (target_type == MC_TARGET_PAGE) { | 
|  | 5267 | page = target.page; | 
|  | 5268 | if (!isolate_lru_page(page)) { | 
|  | 5269 | if (!mem_cgroup_move_account(page, true, | 
|  | 5270 | mc.from, mc.to)) { | 
|  | 5271 | mc.precharge -= HPAGE_PMD_NR; | 
|  | 5272 | mc.moved_charge += HPAGE_PMD_NR; | 
|  | 5273 | } | 
|  | 5274 | putback_lru_page(page); | 
|  | 5275 | } | 
|  | 5276 | put_page(page); | 
|  | 5277 | } else if (target_type == MC_TARGET_DEVICE) { | 
|  | 5278 | page = target.page; | 
|  | 5279 | if (!mem_cgroup_move_account(page, true, | 
|  | 5280 | mc.from, mc.to)) { | 
|  | 5281 | mc.precharge -= HPAGE_PMD_NR; | 
|  | 5282 | mc.moved_charge += HPAGE_PMD_NR; | 
|  | 5283 | } | 
|  | 5284 | put_page(page); | 
|  | 5285 | } | 
|  | 5286 | spin_unlock(ptl); | 
|  | 5287 | return 0; | 
|  | 5288 | } | 
|  | 5289 |  | 
|  | 5290 | if (pmd_trans_unstable(pmd)) | 
|  | 5291 | return 0; | 
|  | 5292 | retry: | 
|  | 5293 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | 
|  | 5294 | for (; addr != end; addr += PAGE_SIZE) { | 
|  | 5295 | pte_t ptent = *(pte++); | 
|  | 5296 | bool device = false; | 
|  | 5297 | swp_entry_t ent; | 
|  | 5298 |  | 
|  | 5299 | if (!mc.precharge) | 
|  | 5300 | break; | 
|  | 5301 |  | 
|  | 5302 | switch (get_mctgt_type(vma, addr, ptent, &target)) { | 
|  | 5303 | case MC_TARGET_DEVICE: | 
|  | 5304 | device = true; | 
|  | 5305 | /* fall through */ | 
|  | 5306 | case MC_TARGET_PAGE: | 
|  | 5307 | page = target.page; | 
|  | 5308 | /* | 
|  | 5309 | * We can have a part of the split pmd here. Moving it | 
|  | 5310 | * can be done but it would be too convoluted so simply | 
|  | 5311 | * ignore such a partial THP and keep it in original | 
|  | 5312 | * memcg. There should be somebody mapping the head. | 
|  | 5313 | */ | 
|  | 5314 | if (PageTransCompound(page)) | 
|  | 5315 | goto put; | 
|  | 5316 | if (!device && isolate_lru_page(page)) | 
|  | 5317 | goto put; | 
|  | 5318 | if (!mem_cgroup_move_account(page, false, | 
|  | 5319 | mc.from, mc.to)) { | 
|  | 5320 | mc.precharge--; | 
|  | 5321 | /* we uncharge from mc.from later. */ | 
|  | 5322 | mc.moved_charge++; | 
|  | 5323 | } | 
|  | 5324 | if (!device) | 
|  | 5325 | putback_lru_page(page); | 
|  | 5326 | put:			/* get_mctgt_type() gets the page */ | 
|  | 5327 | put_page(page); | 
|  | 5328 | break; | 
|  | 5329 | case MC_TARGET_SWAP: | 
|  | 5330 | ent = target.ent; | 
|  | 5331 | if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { | 
|  | 5332 | mc.precharge--; | 
|  | 5333 | /* we fixup refcnts and charges later. */ | 
|  | 5334 | mc.moved_swap++; | 
|  | 5335 | } | 
|  | 5336 | break; | 
|  | 5337 | default: | 
|  | 5338 | break; | 
|  | 5339 | } | 
|  | 5340 | } | 
|  | 5341 | pte_unmap_unlock(pte - 1, ptl); | 
|  | 5342 | cond_resched(); | 
|  | 5343 |  | 
|  | 5344 | if (addr != end) { | 
|  | 5345 | /* | 
|  | 5346 | * We have consumed all precharges we got in can_attach(). | 
|  | 5347 | * We try charge one by one, but don't do any additional | 
|  | 5348 | * charges to mc.to if we have failed in charge once in attach() | 
|  | 5349 | * phase. | 
|  | 5350 | */ | 
|  | 5351 | ret = mem_cgroup_do_precharge(1); | 
|  | 5352 | if (!ret) | 
|  | 5353 | goto retry; | 
|  | 5354 | } | 
|  | 5355 |  | 
|  | 5356 | return ret; | 
|  | 5357 | } | 
|  | 5358 |  | 
|  | 5359 | static void mem_cgroup_move_charge(void) | 
|  | 5360 | { | 
|  | 5361 | struct mm_walk mem_cgroup_move_charge_walk = { | 
|  | 5362 | .pmd_entry = mem_cgroup_move_charge_pte_range, | 
|  | 5363 | .mm = mc.mm, | 
|  | 5364 | }; | 
|  | 5365 |  | 
|  | 5366 | lru_add_drain_all(); | 
|  | 5367 | /* | 
|  | 5368 | * Signal lock_page_memcg() to take the memcg's move_lock | 
|  | 5369 | * while we're moving its pages to another memcg. Then wait | 
|  | 5370 | * for already started RCU-only updates to finish. | 
|  | 5371 | */ | 
|  | 5372 | atomic_inc(&mc.from->moving_account); | 
|  | 5373 | synchronize_rcu(); | 
|  | 5374 | retry: | 
|  | 5375 | if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { | 
|  | 5376 | /* | 
|  | 5377 | * Someone who are holding the mmap_sem might be waiting in | 
|  | 5378 | * waitq. So we cancel all extra charges, wake up all waiters, | 
|  | 5379 | * and retry. Because we cancel precharges, we might not be able | 
|  | 5380 | * to move enough charges, but moving charge is a best-effort | 
|  | 5381 | * feature anyway, so it wouldn't be a big problem. | 
|  | 5382 | */ | 
|  | 5383 | __mem_cgroup_clear_mc(); | 
|  | 5384 | cond_resched(); | 
|  | 5385 | goto retry; | 
|  | 5386 | } | 
|  | 5387 | /* | 
|  | 5388 | * When we have consumed all precharges and failed in doing | 
|  | 5389 | * additional charge, the page walk just aborts. | 
|  | 5390 | */ | 
|  | 5391 | walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk); | 
|  | 5392 |  | 
|  | 5393 | up_read(&mc.mm->mmap_sem); | 
|  | 5394 | atomic_dec(&mc.from->moving_account); | 
|  | 5395 | } | 
|  | 5396 |  | 
|  | 5397 | static void mem_cgroup_move_task(void) | 
|  | 5398 | { | 
|  | 5399 | if (mc.to) { | 
|  | 5400 | mem_cgroup_move_charge(); | 
|  | 5401 | mem_cgroup_clear_mc(); | 
|  | 5402 | } | 
|  | 5403 | } | 
|  | 5404 | #else	/* !CONFIG_MMU */ | 
|  | 5405 | static int mem_cgroup_can_attach(struct cgroup_taskset *tset) | 
|  | 5406 | { | 
|  | 5407 | return 0; | 
|  | 5408 | } | 
|  | 5409 | static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) | 
|  | 5410 | { | 
|  | 5411 | } | 
|  | 5412 | static void mem_cgroup_move_task(void) | 
|  | 5413 | { | 
|  | 5414 | } | 
|  | 5415 | #endif | 
|  | 5416 |  | 
|  | 5417 | /* | 
|  | 5418 | * Cgroup retains root cgroups across [un]mount cycles making it necessary | 
|  | 5419 | * to verify whether we're attached to the default hierarchy on each mount | 
|  | 5420 | * attempt. | 
|  | 5421 | */ | 
|  | 5422 | static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) | 
|  | 5423 | { | 
|  | 5424 | /* | 
|  | 5425 | * use_hierarchy is forced on the default hierarchy.  cgroup core | 
|  | 5426 | * guarantees that @root doesn't have any children, so turning it | 
|  | 5427 | * on for the root memcg is enough. | 
|  | 5428 | */ | 
|  | 5429 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | 5430 | root_mem_cgroup->use_hierarchy = true; | 
|  | 5431 | else | 
|  | 5432 | root_mem_cgroup->use_hierarchy = false; | 
|  | 5433 | } | 
|  | 5434 |  | 
|  | 5435 | static u64 memory_current_read(struct cgroup_subsys_state *css, | 
|  | 5436 | struct cftype *cft) | 
|  | 5437 | { | 
|  | 5438 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | 5439 |  | 
|  | 5440 | return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; | 
|  | 5441 | } | 
|  | 5442 |  | 
|  | 5443 | static int memory_min_show(struct seq_file *m, void *v) | 
|  | 5444 | { | 
|  | 5445 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | 5446 | unsigned long min = READ_ONCE(memcg->memory.min); | 
|  | 5447 |  | 
|  | 5448 | if (min == PAGE_COUNTER_MAX) | 
|  | 5449 | seq_puts(m, "max\n"); | 
|  | 5450 | else | 
|  | 5451 | seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE); | 
|  | 5452 |  | 
|  | 5453 | return 0; | 
|  | 5454 | } | 
|  | 5455 |  | 
|  | 5456 | static ssize_t memory_min_write(struct kernfs_open_file *of, | 
|  | 5457 | char *buf, size_t nbytes, loff_t off) | 
|  | 5458 | { | 
|  | 5459 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | 5460 | unsigned long min; | 
|  | 5461 | int err; | 
|  | 5462 |  | 
|  | 5463 | buf = strstrip(buf); | 
|  | 5464 | err = page_counter_memparse(buf, "max", &min); | 
|  | 5465 | if (err) | 
|  | 5466 | return err; | 
|  | 5467 |  | 
|  | 5468 | page_counter_set_min(&memcg->memory, min); | 
|  | 5469 |  | 
|  | 5470 | return nbytes; | 
|  | 5471 | } | 
|  | 5472 |  | 
|  | 5473 | static int memory_low_show(struct seq_file *m, void *v) | 
|  | 5474 | { | 
|  | 5475 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | 5476 | unsigned long low = READ_ONCE(memcg->memory.low); | 
|  | 5477 |  | 
|  | 5478 | if (low == PAGE_COUNTER_MAX) | 
|  | 5479 | seq_puts(m, "max\n"); | 
|  | 5480 | else | 
|  | 5481 | seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); | 
|  | 5482 |  | 
|  | 5483 | return 0; | 
|  | 5484 | } | 
|  | 5485 |  | 
|  | 5486 | static ssize_t memory_low_write(struct kernfs_open_file *of, | 
|  | 5487 | char *buf, size_t nbytes, loff_t off) | 
|  | 5488 | { | 
|  | 5489 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | 5490 | unsigned long low; | 
|  | 5491 | int err; | 
|  | 5492 |  | 
|  | 5493 | buf = strstrip(buf); | 
|  | 5494 | err = page_counter_memparse(buf, "max", &low); | 
|  | 5495 | if (err) | 
|  | 5496 | return err; | 
|  | 5497 |  | 
|  | 5498 | page_counter_set_low(&memcg->memory, low); | 
|  | 5499 |  | 
|  | 5500 | return nbytes; | 
|  | 5501 | } | 
|  | 5502 |  | 
|  | 5503 | static int memory_high_show(struct seq_file *m, void *v) | 
|  | 5504 | { | 
|  | 5505 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | 5506 | unsigned long high = READ_ONCE(memcg->high); | 
|  | 5507 |  | 
|  | 5508 | if (high == PAGE_COUNTER_MAX) | 
|  | 5509 | seq_puts(m, "max\n"); | 
|  | 5510 | else | 
|  | 5511 | seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); | 
|  | 5512 |  | 
|  | 5513 | return 0; | 
|  | 5514 | } | 
|  | 5515 |  | 
|  | 5516 | static ssize_t memory_high_write(struct kernfs_open_file *of, | 
|  | 5517 | char *buf, size_t nbytes, loff_t off) | 
|  | 5518 | { | 
|  | 5519 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | 5520 | unsigned long nr_pages; | 
|  | 5521 | unsigned long high; | 
|  | 5522 | int err; | 
|  | 5523 |  | 
|  | 5524 | buf = strstrip(buf); | 
|  | 5525 | err = page_counter_memparse(buf, "max", &high); | 
|  | 5526 | if (err) | 
|  | 5527 | return err; | 
|  | 5528 |  | 
|  | 5529 | memcg->high = high; | 
|  | 5530 |  | 
|  | 5531 | nr_pages = page_counter_read(&memcg->memory); | 
|  | 5532 | if (nr_pages > high) | 
|  | 5533 | try_to_free_mem_cgroup_pages(memcg, nr_pages - high, | 
|  | 5534 | GFP_KERNEL, true); | 
|  | 5535 |  | 
|  | 5536 | memcg_wb_domain_size_changed(memcg); | 
|  | 5537 | return nbytes; | 
|  | 5538 | } | 
|  | 5539 |  | 
|  | 5540 | static int memory_max_show(struct seq_file *m, void *v) | 
|  | 5541 | { | 
|  | 5542 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | 5543 | unsigned long max = READ_ONCE(memcg->memory.max); | 
|  | 5544 |  | 
|  | 5545 | if (max == PAGE_COUNTER_MAX) | 
|  | 5546 | seq_puts(m, "max\n"); | 
|  | 5547 | else | 
|  | 5548 | seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); | 
|  | 5549 |  | 
|  | 5550 | return 0; | 
|  | 5551 | } | 
|  | 5552 |  | 
|  | 5553 | static ssize_t memory_max_write(struct kernfs_open_file *of, | 
|  | 5554 | char *buf, size_t nbytes, loff_t off) | 
|  | 5555 | { | 
|  | 5556 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | 5557 | unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; | 
|  | 5558 | bool drained = false; | 
|  | 5559 | unsigned long max; | 
|  | 5560 | int err; | 
|  | 5561 |  | 
|  | 5562 | buf = strstrip(buf); | 
|  | 5563 | err = page_counter_memparse(buf, "max", &max); | 
|  | 5564 | if (err) | 
|  | 5565 | return err; | 
|  | 5566 |  | 
|  | 5567 | xchg(&memcg->memory.max, max); | 
|  | 5568 |  | 
|  | 5569 | for (;;) { | 
|  | 5570 | unsigned long nr_pages = page_counter_read(&memcg->memory); | 
|  | 5571 |  | 
|  | 5572 | if (nr_pages <= max) | 
|  | 5573 | break; | 
|  | 5574 |  | 
|  | 5575 | if (signal_pending(current)) { | 
|  | 5576 | err = -EINTR; | 
|  | 5577 | break; | 
|  | 5578 | } | 
|  | 5579 |  | 
|  | 5580 | if (!drained) { | 
|  | 5581 | drain_all_stock(memcg); | 
|  | 5582 | drained = true; | 
|  | 5583 | continue; | 
|  | 5584 | } | 
|  | 5585 |  | 
|  | 5586 | if (nr_reclaims) { | 
|  | 5587 | if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, | 
|  | 5588 | GFP_KERNEL, true)) | 
|  | 5589 | nr_reclaims--; | 
|  | 5590 | continue; | 
|  | 5591 | } | 
|  | 5592 |  | 
|  | 5593 | memcg_memory_event(memcg, MEMCG_OOM); | 
|  | 5594 | if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) | 
|  | 5595 | break; | 
|  | 5596 | } | 
|  | 5597 |  | 
|  | 5598 | memcg_wb_domain_size_changed(memcg); | 
|  | 5599 | return nbytes; | 
|  | 5600 | } | 
|  | 5601 |  | 
|  | 5602 | static int memory_events_show(struct seq_file *m, void *v) | 
|  | 5603 | { | 
|  | 5604 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | 5605 |  | 
|  | 5606 | seq_printf(m, "low %lu\n", | 
|  | 5607 | atomic_long_read(&memcg->memory_events[MEMCG_LOW])); | 
|  | 5608 | seq_printf(m, "high %lu\n", | 
|  | 5609 | atomic_long_read(&memcg->memory_events[MEMCG_HIGH])); | 
|  | 5610 | seq_printf(m, "max %lu\n", | 
|  | 5611 | atomic_long_read(&memcg->memory_events[MEMCG_MAX])); | 
|  | 5612 | seq_printf(m, "oom %lu\n", | 
|  | 5613 | atomic_long_read(&memcg->memory_events[MEMCG_OOM])); | 
|  | 5614 | seq_printf(m, "oom_kill %lu\n", | 
|  | 5615 | atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); | 
|  | 5616 |  | 
|  | 5617 | return 0; | 
|  | 5618 | } | 
|  | 5619 |  | 
|  | 5620 | static int memory_stat_show(struct seq_file *m, void *v) | 
|  | 5621 | { | 
|  | 5622 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | 5623 | struct accumulated_stats acc; | 
|  | 5624 | int i; | 
|  | 5625 |  | 
|  | 5626 | /* | 
|  | 5627 | * Provide statistics on the state of the memory subsystem as | 
|  | 5628 | * well as cumulative event counters that show past behavior. | 
|  | 5629 | * | 
|  | 5630 | * This list is ordered following a combination of these gradients: | 
|  | 5631 | * 1) generic big picture -> specifics and details | 
|  | 5632 | * 2) reflecting userspace activity -> reflecting kernel heuristics | 
|  | 5633 | * | 
|  | 5634 | * Current memory state: | 
|  | 5635 | */ | 
|  | 5636 |  | 
|  | 5637 | memset(&acc, 0, sizeof(acc)); | 
|  | 5638 | acc.stats_size = MEMCG_NR_STAT; | 
|  | 5639 | acc.events_size = NR_VM_EVENT_ITEMS; | 
|  | 5640 | accumulate_memcg_tree(memcg, &acc); | 
|  | 5641 |  | 
|  | 5642 | seq_printf(m, "anon %llu\n", | 
|  | 5643 | (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE); | 
|  | 5644 | seq_printf(m, "file %llu\n", | 
|  | 5645 | (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE); | 
|  | 5646 | seq_printf(m, "kernel_stack %llu\n", | 
|  | 5647 | (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024); | 
|  | 5648 | seq_printf(m, "slab %llu\n", | 
|  | 5649 | (u64)(acc.stat[NR_SLAB_RECLAIMABLE] + | 
|  | 5650 | acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); | 
|  | 5651 | seq_printf(m, "sock %llu\n", | 
|  | 5652 | (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE); | 
|  | 5653 |  | 
|  | 5654 | seq_printf(m, "shmem %llu\n", | 
|  | 5655 | (u64)acc.stat[NR_SHMEM] * PAGE_SIZE); | 
|  | 5656 | seq_printf(m, "file_mapped %llu\n", | 
|  | 5657 | (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE); | 
|  | 5658 | seq_printf(m, "file_dirty %llu\n", | 
|  | 5659 | (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE); | 
|  | 5660 | seq_printf(m, "file_writeback %llu\n", | 
|  | 5661 | (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE); | 
|  | 5662 |  | 
|  | 5663 | for (i = 0; i < NR_LRU_LISTS; i++) | 
|  | 5664 | seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i], | 
|  | 5665 | (u64)acc.lru_pages[i] * PAGE_SIZE); | 
|  | 5666 |  | 
|  | 5667 | seq_printf(m, "slab_reclaimable %llu\n", | 
|  | 5668 | (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE); | 
|  | 5669 | seq_printf(m, "slab_unreclaimable %llu\n", | 
|  | 5670 | (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE); | 
|  | 5671 |  | 
|  | 5672 | /* Accumulated memory events */ | 
|  | 5673 |  | 
|  | 5674 | seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]); | 
|  | 5675 | seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]); | 
|  | 5676 |  | 
|  | 5677 | seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]); | 
|  | 5678 | seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] + | 
|  | 5679 | acc.events[PGSCAN_DIRECT]); | 
|  | 5680 | seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] + | 
|  | 5681 | acc.events[PGSTEAL_DIRECT]); | 
|  | 5682 | seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]); | 
|  | 5683 | seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]); | 
|  | 5684 | seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]); | 
|  | 5685 | seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]); | 
|  | 5686 |  | 
|  | 5687 | seq_printf(m, "workingset_refault %lu\n", | 
|  | 5688 | acc.stat[WORKINGSET_REFAULT]); | 
|  | 5689 | seq_printf(m, "workingset_activate %lu\n", | 
|  | 5690 | acc.stat[WORKINGSET_ACTIVATE]); | 
|  | 5691 | seq_printf(m, "workingset_nodereclaim %lu\n", | 
|  | 5692 | acc.stat[WORKINGSET_NODERECLAIM]); | 
|  | 5693 |  | 
|  | 5694 | return 0; | 
|  | 5695 | } | 
|  | 5696 |  | 
|  | 5697 | static int memory_oom_group_show(struct seq_file *m, void *v) | 
|  | 5698 | { | 
|  | 5699 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | 5700 |  | 
|  | 5701 | seq_printf(m, "%d\n", memcg->oom_group); | 
|  | 5702 |  | 
|  | 5703 | return 0; | 
|  | 5704 | } | 
|  | 5705 |  | 
|  | 5706 | static ssize_t memory_oom_group_write(struct kernfs_open_file *of, | 
|  | 5707 | char *buf, size_t nbytes, loff_t off) | 
|  | 5708 | { | 
|  | 5709 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | 5710 | int ret, oom_group; | 
|  | 5711 |  | 
|  | 5712 | buf = strstrip(buf); | 
|  | 5713 | if (!buf) | 
|  | 5714 | return -EINVAL; | 
|  | 5715 |  | 
|  | 5716 | ret = kstrtoint(buf, 0, &oom_group); | 
|  | 5717 | if (ret) | 
|  | 5718 | return ret; | 
|  | 5719 |  | 
|  | 5720 | if (oom_group != 0 && oom_group != 1) | 
|  | 5721 | return -EINVAL; | 
|  | 5722 |  | 
|  | 5723 | memcg->oom_group = oom_group; | 
|  | 5724 |  | 
|  | 5725 | return nbytes; | 
|  | 5726 | } | 
|  | 5727 |  | 
|  | 5728 | static struct cftype memory_files[] = { | 
|  | 5729 | { | 
|  | 5730 | .name = "current", | 
|  | 5731 | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | 5732 | .read_u64 = memory_current_read, | 
|  | 5733 | }, | 
|  | 5734 | { | 
|  | 5735 | .name = "min", | 
|  | 5736 | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | 5737 | .seq_show = memory_min_show, | 
|  | 5738 | .write = memory_min_write, | 
|  | 5739 | }, | 
|  | 5740 | { | 
|  | 5741 | .name = "low", | 
|  | 5742 | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | 5743 | .seq_show = memory_low_show, | 
|  | 5744 | .write = memory_low_write, | 
|  | 5745 | }, | 
|  | 5746 | { | 
|  | 5747 | .name = "high", | 
|  | 5748 | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | 5749 | .seq_show = memory_high_show, | 
|  | 5750 | .write = memory_high_write, | 
|  | 5751 | }, | 
|  | 5752 | { | 
|  | 5753 | .name = "max", | 
|  | 5754 | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | 5755 | .seq_show = memory_max_show, | 
|  | 5756 | .write = memory_max_write, | 
|  | 5757 | }, | 
|  | 5758 | { | 
|  | 5759 | .name = "events", | 
|  | 5760 | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | 5761 | .file_offset = offsetof(struct mem_cgroup, events_file), | 
|  | 5762 | .seq_show = memory_events_show, | 
|  | 5763 | }, | 
|  | 5764 | { | 
|  | 5765 | .name = "stat", | 
|  | 5766 | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | 5767 | .seq_show = memory_stat_show, | 
|  | 5768 | }, | 
|  | 5769 | { | 
|  | 5770 | .name = "oom.group", | 
|  | 5771 | .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, | 
|  | 5772 | .seq_show = memory_oom_group_show, | 
|  | 5773 | .write = memory_oom_group_write, | 
|  | 5774 | }, | 
|  | 5775 | { }	/* terminate */ | 
|  | 5776 | }; | 
|  | 5777 |  | 
|  | 5778 | struct cgroup_subsys memory_cgrp_subsys = { | 
|  | 5779 | .css_alloc = mem_cgroup_css_alloc, | 
|  | 5780 | .css_online = mem_cgroup_css_online, | 
|  | 5781 | .css_offline = mem_cgroup_css_offline, | 
|  | 5782 | .css_released = mem_cgroup_css_released, | 
|  | 5783 | .css_free = mem_cgroup_css_free, | 
|  | 5784 | .css_reset = mem_cgroup_css_reset, | 
|  | 5785 | .can_attach = mem_cgroup_can_attach, | 
|  | 5786 | .cancel_attach = mem_cgroup_cancel_attach, | 
|  | 5787 | .post_attach = mem_cgroup_move_task, | 
|  | 5788 | .bind = mem_cgroup_bind, | 
|  | 5789 | .dfl_cftypes = memory_files, | 
|  | 5790 | .legacy_cftypes = mem_cgroup_legacy_files, | 
|  | 5791 | .early_init = 0, | 
|  | 5792 | }; | 
|  | 5793 |  | 
|  | 5794 | /** | 
|  | 5795 | * mem_cgroup_protected - check if memory consumption is in the normal range | 
|  | 5796 | * @root: the top ancestor of the sub-tree being checked | 
|  | 5797 | * @memcg: the memory cgroup to check | 
|  | 5798 | * | 
|  | 5799 | * WARNING: This function is not stateless! It can only be used as part | 
|  | 5800 | *          of a top-down tree iteration, not for isolated queries. | 
|  | 5801 | * | 
|  | 5802 | * Returns one of the following: | 
|  | 5803 | *   MEMCG_PROT_NONE: cgroup memory is not protected | 
|  | 5804 | *   MEMCG_PROT_LOW: cgroup memory is protected as long there is | 
|  | 5805 | *     an unprotected supply of reclaimable memory from other cgroups. | 
|  | 5806 | *   MEMCG_PROT_MIN: cgroup memory is protected | 
|  | 5807 | * | 
|  | 5808 | * @root is exclusive; it is never protected when looked at directly | 
|  | 5809 | * | 
|  | 5810 | * To provide a proper hierarchical behavior, effective memory.min/low values | 
|  | 5811 | * are used. Below is the description of how effective memory.low is calculated. | 
|  | 5812 | * Effective memory.min values is calculated in the same way. | 
|  | 5813 | * | 
|  | 5814 | * Effective memory.low is always equal or less than the original memory.low. | 
|  | 5815 | * If there is no memory.low overcommittment (which is always true for | 
|  | 5816 | * top-level memory cgroups), these two values are equal. | 
|  | 5817 | * Otherwise, it's a part of parent's effective memory.low, | 
|  | 5818 | * calculated as a cgroup's memory.low usage divided by sum of sibling's | 
|  | 5819 | * memory.low usages, where memory.low usage is the size of actually | 
|  | 5820 | * protected memory. | 
|  | 5821 | * | 
|  | 5822 | *                                             low_usage | 
|  | 5823 | * elow = min( memory.low, parent->elow * ------------------ ), | 
|  | 5824 | *                                        siblings_low_usage | 
|  | 5825 | * | 
|  | 5826 | *             | memory.current, if memory.current < memory.low | 
|  | 5827 | * low_usage = | | 
|  | 5828 | | 0, otherwise. | 
|  | 5829 | * | 
|  | 5830 | * | 
|  | 5831 | * Such definition of the effective memory.low provides the expected | 
|  | 5832 | * hierarchical behavior: parent's memory.low value is limiting | 
|  | 5833 | * children, unprotected memory is reclaimed first and cgroups, | 
|  | 5834 | * which are not using their guarantee do not affect actual memory | 
|  | 5835 | * distribution. | 
|  | 5836 | * | 
|  | 5837 | * For example, if there are memcgs A, A/B, A/C, A/D and A/E: | 
|  | 5838 | * | 
|  | 5839 | *     A      A/memory.low = 2G, A/memory.current = 6G | 
|  | 5840 | *    //\\ | 
|  | 5841 | *   BC  DE   B/memory.low = 3G  B/memory.current = 2G | 
|  | 5842 | *            C/memory.low = 1G  C/memory.current = 2G | 
|  | 5843 | *            D/memory.low = 0   D/memory.current = 2G | 
|  | 5844 | *            E/memory.low = 10G E/memory.current = 0 | 
|  | 5845 | * | 
|  | 5846 | * and the memory pressure is applied, the following memory distribution | 
|  | 5847 | * is expected (approximately): | 
|  | 5848 | * | 
|  | 5849 | *     A/memory.current = 2G | 
|  | 5850 | * | 
|  | 5851 | *     B/memory.current = 1.3G | 
|  | 5852 | *     C/memory.current = 0.6G | 
|  | 5853 | *     D/memory.current = 0 | 
|  | 5854 | *     E/memory.current = 0 | 
|  | 5855 | * | 
|  | 5856 | * These calculations require constant tracking of the actual low usages | 
|  | 5857 | * (see propagate_protected_usage()), as well as recursive calculation of | 
|  | 5858 | * effective memory.low values. But as we do call mem_cgroup_protected() | 
|  | 5859 | * path for each memory cgroup top-down from the reclaim, | 
|  | 5860 | * it's possible to optimize this part, and save calculated elow | 
|  | 5861 | * for next usage. This part is intentionally racy, but it's ok, | 
|  | 5862 | * as memory.low is a best-effort mechanism. | 
|  | 5863 | */ | 
|  | 5864 | enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, | 
|  | 5865 | struct mem_cgroup *memcg) | 
|  | 5866 | { | 
|  | 5867 | struct mem_cgroup *parent; | 
|  | 5868 | unsigned long emin, parent_emin; | 
|  | 5869 | unsigned long elow, parent_elow; | 
|  | 5870 | unsigned long usage; | 
|  | 5871 |  | 
|  | 5872 | if (mem_cgroup_disabled()) | 
|  | 5873 | return MEMCG_PROT_NONE; | 
|  | 5874 |  | 
|  | 5875 | if (!root) | 
|  | 5876 | root = root_mem_cgroup; | 
|  | 5877 | if (memcg == root) | 
|  | 5878 | return MEMCG_PROT_NONE; | 
|  | 5879 |  | 
|  | 5880 | usage = page_counter_read(&memcg->memory); | 
|  | 5881 | if (!usage) | 
|  | 5882 | return MEMCG_PROT_NONE; | 
|  | 5883 |  | 
|  | 5884 | emin = memcg->memory.min; | 
|  | 5885 | elow = memcg->memory.low; | 
|  | 5886 |  | 
|  | 5887 | parent = parent_mem_cgroup(memcg); | 
|  | 5888 | /* No parent means a non-hierarchical mode on v1 memcg */ | 
|  | 5889 | if (!parent) | 
|  | 5890 | return MEMCG_PROT_NONE; | 
|  | 5891 |  | 
|  | 5892 | if (parent == root) | 
|  | 5893 | goto exit; | 
|  | 5894 |  | 
|  | 5895 | parent_emin = READ_ONCE(parent->memory.emin); | 
|  | 5896 | emin = min(emin, parent_emin); | 
|  | 5897 | if (emin && parent_emin) { | 
|  | 5898 | unsigned long min_usage, siblings_min_usage; | 
|  | 5899 |  | 
|  | 5900 | min_usage = min(usage, memcg->memory.min); | 
|  | 5901 | siblings_min_usage = atomic_long_read( | 
|  | 5902 | &parent->memory.children_min_usage); | 
|  | 5903 |  | 
|  | 5904 | if (min_usage && siblings_min_usage) | 
|  | 5905 | emin = min(emin, parent_emin * min_usage / | 
|  | 5906 | siblings_min_usage); | 
|  | 5907 | } | 
|  | 5908 |  | 
|  | 5909 | parent_elow = READ_ONCE(parent->memory.elow); | 
|  | 5910 | elow = min(elow, parent_elow); | 
|  | 5911 | if (elow && parent_elow) { | 
|  | 5912 | unsigned long low_usage, siblings_low_usage; | 
|  | 5913 |  | 
|  | 5914 | low_usage = min(usage, memcg->memory.low); | 
|  | 5915 | siblings_low_usage = atomic_long_read( | 
|  | 5916 | &parent->memory.children_low_usage); | 
|  | 5917 |  | 
|  | 5918 | if (low_usage && siblings_low_usage) | 
|  | 5919 | elow = min(elow, parent_elow * low_usage / | 
|  | 5920 | siblings_low_usage); | 
|  | 5921 | } | 
|  | 5922 |  | 
|  | 5923 | exit: | 
|  | 5924 | memcg->memory.emin = emin; | 
|  | 5925 | memcg->memory.elow = elow; | 
|  | 5926 |  | 
|  | 5927 | if (usage <= emin) | 
|  | 5928 | return MEMCG_PROT_MIN; | 
|  | 5929 | else if (usage <= elow) | 
|  | 5930 | return MEMCG_PROT_LOW; | 
|  | 5931 | else | 
|  | 5932 | return MEMCG_PROT_NONE; | 
|  | 5933 | } | 
|  | 5934 |  | 
|  | 5935 | /** | 
|  | 5936 | * mem_cgroup_try_charge - try charging a page | 
|  | 5937 | * @page: page to charge | 
|  | 5938 | * @mm: mm context of the victim | 
|  | 5939 | * @gfp_mask: reclaim mode | 
|  | 5940 | * @memcgp: charged memcg return | 
|  | 5941 | * @compound: charge the page as compound or small page | 
|  | 5942 | * | 
|  | 5943 | * Try to charge @page to the memcg that @mm belongs to, reclaiming | 
|  | 5944 | * pages according to @gfp_mask if necessary. | 
|  | 5945 | * | 
|  | 5946 | * Returns 0 on success, with *@memcgp pointing to the charged memcg. | 
|  | 5947 | * Otherwise, an error code is returned. | 
|  | 5948 | * | 
|  | 5949 | * After page->mapping has been set up, the caller must finalize the | 
|  | 5950 | * charge with mem_cgroup_commit_charge().  Or abort the transaction | 
|  | 5951 | * with mem_cgroup_cancel_charge() in case page instantiation fails. | 
|  | 5952 | */ | 
|  | 5953 | int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, | 
|  | 5954 | gfp_t gfp_mask, struct mem_cgroup **memcgp, | 
|  | 5955 | bool compound) | 
|  | 5956 | { | 
|  | 5957 | struct mem_cgroup *memcg = NULL; | 
|  | 5958 | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | 
|  | 5959 | int ret = 0; | 
|  | 5960 |  | 
|  | 5961 | if (mem_cgroup_disabled()) | 
|  | 5962 | goto out; | 
|  | 5963 |  | 
|  | 5964 | if (PageSwapCache(page)) { | 
|  | 5965 | /* | 
|  | 5966 | * Every swap fault against a single page tries to charge the | 
|  | 5967 | * page, bail as early as possible.  shmem_unuse() encounters | 
|  | 5968 | * already charged pages, too.  The USED bit is protected by | 
|  | 5969 | * the page lock, which serializes swap cache removal, which | 
|  | 5970 | * in turn serializes uncharging. | 
|  | 5971 | */ | 
|  | 5972 | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | 5973 | if (compound_head(page)->mem_cgroup) | 
|  | 5974 | goto out; | 
|  | 5975 |  | 
|  | 5976 | if (do_swap_account) { | 
|  | 5977 | swp_entry_t ent = { .val = page_private(page), }; | 
|  | 5978 | unsigned short id = lookup_swap_cgroup_id(ent); | 
|  | 5979 |  | 
|  | 5980 | rcu_read_lock(); | 
|  | 5981 | memcg = mem_cgroup_from_id(id); | 
|  | 5982 | if (memcg && !css_tryget_online(&memcg->css)) | 
|  | 5983 | memcg = NULL; | 
|  | 5984 | rcu_read_unlock(); | 
|  | 5985 | } | 
|  | 5986 | } | 
|  | 5987 |  | 
|  | 5988 | if (!memcg) | 
|  | 5989 | memcg = get_mem_cgroup_from_mm(mm); | 
|  | 5990 |  | 
|  | 5991 | ret = try_charge(memcg, gfp_mask, nr_pages); | 
|  | 5992 |  | 
|  | 5993 | css_put(&memcg->css); | 
|  | 5994 | out: | 
|  | 5995 | *memcgp = memcg; | 
|  | 5996 | return ret; | 
|  | 5997 | } | 
|  | 5998 |  | 
|  | 5999 | int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, | 
|  | 6000 | gfp_t gfp_mask, struct mem_cgroup **memcgp, | 
|  | 6001 | bool compound) | 
|  | 6002 | { | 
|  | 6003 | struct mem_cgroup *memcg; | 
|  | 6004 | int ret; | 
|  | 6005 |  | 
|  | 6006 | ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); | 
|  | 6007 | memcg = *memcgp; | 
|  | 6008 | mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); | 
|  | 6009 | return ret; | 
|  | 6010 | } | 
|  | 6011 |  | 
|  | 6012 | /** | 
|  | 6013 | * mem_cgroup_commit_charge - commit a page charge | 
|  | 6014 | * @page: page to charge | 
|  | 6015 | * @memcg: memcg to charge the page to | 
|  | 6016 | * @lrucare: page might be on LRU already | 
|  | 6017 | * @compound: charge the page as compound or small page | 
|  | 6018 | * | 
|  | 6019 | * Finalize a charge transaction started by mem_cgroup_try_charge(), | 
|  | 6020 | * after page->mapping has been set up.  This must happen atomically | 
|  | 6021 | * as part of the page instantiation, i.e. under the page table lock | 
|  | 6022 | * for anonymous pages, under the page lock for page and swap cache. | 
|  | 6023 | * | 
|  | 6024 | * In addition, the page must not be on the LRU during the commit, to | 
|  | 6025 | * prevent racing with task migration.  If it might be, use @lrucare. | 
|  | 6026 | * | 
|  | 6027 | * Use mem_cgroup_cancel_charge() to cancel the transaction instead. | 
|  | 6028 | */ | 
|  | 6029 | void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, | 
|  | 6030 | bool lrucare, bool compound) | 
|  | 6031 | { | 
|  | 6032 | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | 
|  | 6033 |  | 
|  | 6034 | VM_BUG_ON_PAGE(!page->mapping, page); | 
|  | 6035 | VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); | 
|  | 6036 |  | 
|  | 6037 | if (mem_cgroup_disabled()) | 
|  | 6038 | return; | 
|  | 6039 | /* | 
|  | 6040 | * Swap faults will attempt to charge the same page multiple | 
|  | 6041 | * times.  But reuse_swap_page() might have removed the page | 
|  | 6042 | * from swapcache already, so we can't check PageSwapCache(). | 
|  | 6043 | */ | 
|  | 6044 | if (!memcg) | 
|  | 6045 | return; | 
|  | 6046 |  | 
|  | 6047 | commit_charge(page, memcg, lrucare); | 
|  | 6048 |  | 
|  | 6049 | local_irq_disable(); | 
|  | 6050 | mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); | 
|  | 6051 | memcg_check_events(memcg, page); | 
|  | 6052 | local_irq_enable(); | 
|  | 6053 |  | 
|  | 6054 | if (do_memsw_account() && PageSwapCache(page)) { | 
|  | 6055 | swp_entry_t entry = { .val = page_private(page) }; | 
|  | 6056 | /* | 
|  | 6057 | * The swap entry might not get freed for a long time, | 
|  | 6058 | * let's not wait for it.  The page already received a | 
|  | 6059 | * memory+swap charge, drop the swap entry duplicate. | 
|  | 6060 | */ | 
|  | 6061 | mem_cgroup_uncharge_swap(entry, nr_pages); | 
|  | 6062 | } | 
|  | 6063 | } | 
|  | 6064 |  | 
|  | 6065 | /** | 
|  | 6066 | * mem_cgroup_cancel_charge - cancel a page charge | 
|  | 6067 | * @page: page to charge | 
|  | 6068 | * @memcg: memcg to charge the page to | 
|  | 6069 | * @compound: charge the page as compound or small page | 
|  | 6070 | * | 
|  | 6071 | * Cancel a charge transaction started by mem_cgroup_try_charge(). | 
|  | 6072 | */ | 
|  | 6073 | void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, | 
|  | 6074 | bool compound) | 
|  | 6075 | { | 
|  | 6076 | unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; | 
|  | 6077 |  | 
|  | 6078 | if (mem_cgroup_disabled()) | 
|  | 6079 | return; | 
|  | 6080 | /* | 
|  | 6081 | * Swap faults will attempt to charge the same page multiple | 
|  | 6082 | * times.  But reuse_swap_page() might have removed the page | 
|  | 6083 | * from swapcache already, so we can't check PageSwapCache(). | 
|  | 6084 | */ | 
|  | 6085 | if (!memcg) | 
|  | 6086 | return; | 
|  | 6087 |  | 
|  | 6088 | cancel_charge(memcg, nr_pages); | 
|  | 6089 | } | 
|  | 6090 |  | 
|  | 6091 | struct uncharge_gather { | 
|  | 6092 | struct mem_cgroup *memcg; | 
|  | 6093 | unsigned long pgpgout; | 
|  | 6094 | unsigned long nr_anon; | 
|  | 6095 | unsigned long nr_file; | 
|  | 6096 | unsigned long nr_kmem; | 
|  | 6097 | unsigned long nr_huge; | 
|  | 6098 | unsigned long nr_shmem; | 
|  | 6099 | struct page *dummy_page; | 
|  | 6100 | }; | 
|  | 6101 |  | 
|  | 6102 | static inline void uncharge_gather_clear(struct uncharge_gather *ug) | 
|  | 6103 | { | 
|  | 6104 | memset(ug, 0, sizeof(*ug)); | 
|  | 6105 | } | 
|  | 6106 |  | 
|  | 6107 | static void uncharge_batch(const struct uncharge_gather *ug) | 
|  | 6108 | { | 
|  | 6109 | unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; | 
|  | 6110 | unsigned long flags; | 
|  | 6111 |  | 
|  | 6112 | if (!mem_cgroup_is_root(ug->memcg)) { | 
|  | 6113 | page_counter_uncharge(&ug->memcg->memory, nr_pages); | 
|  | 6114 | if (do_memsw_account()) | 
|  | 6115 | page_counter_uncharge(&ug->memcg->memsw, nr_pages); | 
|  | 6116 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) | 
|  | 6117 | page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); | 
|  | 6118 | memcg_oom_recover(ug->memcg); | 
|  | 6119 | } | 
|  | 6120 |  | 
|  | 6121 | local_irq_save(flags); | 
|  | 6122 | __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); | 
|  | 6123 | __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); | 
|  | 6124 | __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); | 
|  | 6125 | __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); | 
|  | 6126 | __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); | 
|  | 6127 | __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages); | 
|  | 6128 | memcg_check_events(ug->memcg, ug->dummy_page); | 
|  | 6129 | local_irq_restore(flags); | 
|  | 6130 |  | 
|  | 6131 | if (!mem_cgroup_is_root(ug->memcg)) | 
|  | 6132 | css_put_many(&ug->memcg->css, nr_pages); | 
|  | 6133 | } | 
|  | 6134 |  | 
|  | 6135 | static void uncharge_page(struct page *page, struct uncharge_gather *ug) | 
|  | 6136 | { | 
|  | 6137 | VM_BUG_ON_PAGE(PageLRU(page), page); | 
|  | 6138 | VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && | 
|  | 6139 | !PageHWPoison(page) , page); | 
|  | 6140 |  | 
|  | 6141 | if (!page->mem_cgroup) | 
|  | 6142 | return; | 
|  | 6143 |  | 
|  | 6144 | /* | 
|  | 6145 | * Nobody should be changing or seriously looking at | 
|  | 6146 | * page->mem_cgroup at this point, we have fully | 
|  | 6147 | * exclusive access to the page. | 
|  | 6148 | */ | 
|  | 6149 |  | 
|  | 6150 | if (ug->memcg != page->mem_cgroup) { | 
|  | 6151 | if (ug->memcg) { | 
|  | 6152 | uncharge_batch(ug); | 
|  | 6153 | uncharge_gather_clear(ug); | 
|  | 6154 | } | 
|  | 6155 | ug->memcg = page->mem_cgroup; | 
|  | 6156 | } | 
|  | 6157 |  | 
|  | 6158 | if (!PageKmemcg(page)) { | 
|  | 6159 | unsigned int nr_pages = 1; | 
|  | 6160 |  | 
|  | 6161 | if (PageTransHuge(page)) { | 
|  | 6162 | nr_pages <<= compound_order(page); | 
|  | 6163 | ug->nr_huge += nr_pages; | 
|  | 6164 | } | 
|  | 6165 | if (PageAnon(page)) | 
|  | 6166 | ug->nr_anon += nr_pages; | 
|  | 6167 | else { | 
|  | 6168 | ug->nr_file += nr_pages; | 
|  | 6169 | if (PageSwapBacked(page)) | 
|  | 6170 | ug->nr_shmem += nr_pages; | 
|  | 6171 | } | 
|  | 6172 | ug->pgpgout++; | 
|  | 6173 | } else { | 
|  | 6174 | ug->nr_kmem += 1 << compound_order(page); | 
|  | 6175 | __ClearPageKmemcg(page); | 
|  | 6176 | } | 
|  | 6177 |  | 
|  | 6178 | ug->dummy_page = page; | 
|  | 6179 | page->mem_cgroup = NULL; | 
|  | 6180 | } | 
|  | 6181 |  | 
|  | 6182 | static void uncharge_list(struct list_head *page_list) | 
|  | 6183 | { | 
|  | 6184 | struct uncharge_gather ug; | 
|  | 6185 | struct list_head *next; | 
|  | 6186 |  | 
|  | 6187 | uncharge_gather_clear(&ug); | 
|  | 6188 |  | 
|  | 6189 | /* | 
|  | 6190 | * Note that the list can be a single page->lru; hence the | 
|  | 6191 | * do-while loop instead of a simple list_for_each_entry(). | 
|  | 6192 | */ | 
|  | 6193 | next = page_list->next; | 
|  | 6194 | do { | 
|  | 6195 | struct page *page; | 
|  | 6196 |  | 
|  | 6197 | page = list_entry(next, struct page, lru); | 
|  | 6198 | next = page->lru.next; | 
|  | 6199 |  | 
|  | 6200 | uncharge_page(page, &ug); | 
|  | 6201 | } while (next != page_list); | 
|  | 6202 |  | 
|  | 6203 | if (ug.memcg) | 
|  | 6204 | uncharge_batch(&ug); | 
|  | 6205 | } | 
|  | 6206 |  | 
|  | 6207 | /** | 
|  | 6208 | * mem_cgroup_uncharge - uncharge a page | 
|  | 6209 | * @page: page to uncharge | 
|  | 6210 | * | 
|  | 6211 | * Uncharge a page previously charged with mem_cgroup_try_charge() and | 
|  | 6212 | * mem_cgroup_commit_charge(). | 
|  | 6213 | */ | 
|  | 6214 | void mem_cgroup_uncharge(struct page *page) | 
|  | 6215 | { | 
|  | 6216 | struct uncharge_gather ug; | 
|  | 6217 |  | 
|  | 6218 | if (mem_cgroup_disabled()) | 
|  | 6219 | return; | 
|  | 6220 |  | 
|  | 6221 | /* Don't touch page->lru of any random page, pre-check: */ | 
|  | 6222 | if (!page->mem_cgroup) | 
|  | 6223 | return; | 
|  | 6224 |  | 
|  | 6225 | uncharge_gather_clear(&ug); | 
|  | 6226 | uncharge_page(page, &ug); | 
|  | 6227 | uncharge_batch(&ug); | 
|  | 6228 | } | 
|  | 6229 |  | 
|  | 6230 | /** | 
|  | 6231 | * mem_cgroup_uncharge_list - uncharge a list of page | 
|  | 6232 | * @page_list: list of pages to uncharge | 
|  | 6233 | * | 
|  | 6234 | * Uncharge a list of pages previously charged with | 
|  | 6235 | * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). | 
|  | 6236 | */ | 
|  | 6237 | void mem_cgroup_uncharge_list(struct list_head *page_list) | 
|  | 6238 | { | 
|  | 6239 | if (mem_cgroup_disabled()) | 
|  | 6240 | return; | 
|  | 6241 |  | 
|  | 6242 | if (!list_empty(page_list)) | 
|  | 6243 | uncharge_list(page_list); | 
|  | 6244 | } | 
|  | 6245 |  | 
|  | 6246 | /** | 
|  | 6247 | * mem_cgroup_migrate - charge a page's replacement | 
|  | 6248 | * @oldpage: currently circulating page | 
|  | 6249 | * @newpage: replacement page | 
|  | 6250 | * | 
|  | 6251 | * Charge @newpage as a replacement page for @oldpage. @oldpage will | 
|  | 6252 | * be uncharged upon free. | 
|  | 6253 | * | 
|  | 6254 | * Both pages must be locked, @newpage->mapping must be set up. | 
|  | 6255 | */ | 
|  | 6256 | void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) | 
|  | 6257 | { | 
|  | 6258 | struct mem_cgroup *memcg; | 
|  | 6259 | unsigned int nr_pages; | 
|  | 6260 | bool compound; | 
|  | 6261 | unsigned long flags; | 
|  | 6262 |  | 
|  | 6263 | VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); | 
|  | 6264 | VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); | 
|  | 6265 | VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); | 
|  | 6266 | VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), | 
|  | 6267 | newpage); | 
|  | 6268 |  | 
|  | 6269 | if (mem_cgroup_disabled()) | 
|  | 6270 | return; | 
|  | 6271 |  | 
|  | 6272 | /* Page cache replacement: new page already charged? */ | 
|  | 6273 | if (newpage->mem_cgroup) | 
|  | 6274 | return; | 
|  | 6275 |  | 
|  | 6276 | /* Swapcache readahead pages can get replaced before being charged */ | 
|  | 6277 | memcg = oldpage->mem_cgroup; | 
|  | 6278 | if (!memcg) | 
|  | 6279 | return; | 
|  | 6280 |  | 
|  | 6281 | /* Force-charge the new page. The old one will be freed soon */ | 
|  | 6282 | compound = PageTransHuge(newpage); | 
|  | 6283 | nr_pages = compound ? hpage_nr_pages(newpage) : 1; | 
|  | 6284 |  | 
|  | 6285 | page_counter_charge(&memcg->memory, nr_pages); | 
|  | 6286 | if (do_memsw_account()) | 
|  | 6287 | page_counter_charge(&memcg->memsw, nr_pages); | 
|  | 6288 | css_get_many(&memcg->css, nr_pages); | 
|  | 6289 |  | 
|  | 6290 | commit_charge(newpage, memcg, false); | 
|  | 6291 |  | 
|  | 6292 | local_irq_save(flags); | 
|  | 6293 | mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); | 
|  | 6294 | memcg_check_events(memcg, newpage); | 
|  | 6295 | local_irq_restore(flags); | 
|  | 6296 | } | 
|  | 6297 |  | 
|  | 6298 | DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); | 
|  | 6299 | EXPORT_SYMBOL(memcg_sockets_enabled_key); | 
|  | 6300 |  | 
|  | 6301 | void mem_cgroup_sk_alloc(struct sock *sk) | 
|  | 6302 | { | 
|  | 6303 | struct mem_cgroup *memcg; | 
|  | 6304 |  | 
|  | 6305 | if (!mem_cgroup_sockets_enabled) | 
|  | 6306 | return; | 
|  | 6307 |  | 
|  | 6308 | /* | 
|  | 6309 | * Socket cloning can throw us here with sk_memcg already | 
|  | 6310 | * filled. It won't however, necessarily happen from | 
|  | 6311 | * process context. So the test for root memcg given | 
|  | 6312 | * the current task's memcg won't help us in this case. | 
|  | 6313 | * | 
|  | 6314 | * Respecting the original socket's memcg is a better | 
|  | 6315 | * decision in this case. | 
|  | 6316 | */ | 
|  | 6317 | if (sk->sk_memcg) { | 
|  | 6318 | css_get(&sk->sk_memcg->css); | 
|  | 6319 | return; | 
|  | 6320 | } | 
|  | 6321 |  | 
|  | 6322 | rcu_read_lock(); | 
|  | 6323 | memcg = mem_cgroup_from_task(current); | 
|  | 6324 | if (memcg == root_mem_cgroup) | 
|  | 6325 | goto out; | 
|  | 6326 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) | 
|  | 6327 | goto out; | 
|  | 6328 | if (css_tryget_online(&memcg->css)) | 
|  | 6329 | sk->sk_memcg = memcg; | 
|  | 6330 | out: | 
|  | 6331 | rcu_read_unlock(); | 
|  | 6332 | } | 
|  | 6333 |  | 
|  | 6334 | void mem_cgroup_sk_free(struct sock *sk) | 
|  | 6335 | { | 
|  | 6336 | if (sk->sk_memcg) | 
|  | 6337 | css_put(&sk->sk_memcg->css); | 
|  | 6338 | } | 
|  | 6339 |  | 
|  | 6340 | /** | 
|  | 6341 | * mem_cgroup_charge_skmem - charge socket memory | 
|  | 6342 | * @memcg: memcg to charge | 
|  | 6343 | * @nr_pages: number of pages to charge | 
|  | 6344 | * | 
|  | 6345 | * Charges @nr_pages to @memcg. Returns %true if the charge fit within | 
|  | 6346 | * @memcg's configured limit, %false if the charge had to be forced. | 
|  | 6347 | */ | 
|  | 6348 | bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) | 
|  | 6349 | { | 
|  | 6350 | gfp_t gfp_mask = GFP_KERNEL; | 
|  | 6351 |  | 
|  | 6352 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { | 
|  | 6353 | struct page_counter *fail; | 
|  | 6354 |  | 
|  | 6355 | if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { | 
|  | 6356 | memcg->tcpmem_pressure = 0; | 
|  | 6357 | return true; | 
|  | 6358 | } | 
|  | 6359 | page_counter_charge(&memcg->tcpmem, nr_pages); | 
|  | 6360 | memcg->tcpmem_pressure = 1; | 
|  | 6361 | return false; | 
|  | 6362 | } | 
|  | 6363 |  | 
|  | 6364 | /* Don't block in the packet receive path */ | 
|  | 6365 | if (in_softirq()) | 
|  | 6366 | gfp_mask = GFP_NOWAIT; | 
|  | 6367 |  | 
|  | 6368 | mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); | 
|  | 6369 |  | 
|  | 6370 | if (try_charge(memcg, gfp_mask, nr_pages) == 0) | 
|  | 6371 | return true; | 
|  | 6372 |  | 
|  | 6373 | try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); | 
|  | 6374 | return false; | 
|  | 6375 | } | 
|  | 6376 |  | 
|  | 6377 | /** | 
|  | 6378 | * mem_cgroup_uncharge_skmem - uncharge socket memory | 
|  | 6379 | * @memcg: memcg to uncharge | 
|  | 6380 | * @nr_pages: number of pages to uncharge | 
|  | 6381 | */ | 
|  | 6382 | void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) | 
|  | 6383 | { | 
|  | 6384 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { | 
|  | 6385 | page_counter_uncharge(&memcg->tcpmem, nr_pages); | 
|  | 6386 | return; | 
|  | 6387 | } | 
|  | 6388 |  | 
|  | 6389 | mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); | 
|  | 6390 |  | 
|  | 6391 | refill_stock(memcg, nr_pages); | 
|  | 6392 | } | 
|  | 6393 |  | 
|  | 6394 | static int __init cgroup_memory(char *s) | 
|  | 6395 | { | 
|  | 6396 | char *token; | 
|  | 6397 |  | 
|  | 6398 | while ((token = strsep(&s, ",")) != NULL) { | 
|  | 6399 | if (!*token) | 
|  | 6400 | continue; | 
|  | 6401 | if (!strcmp(token, "nosocket")) | 
|  | 6402 | cgroup_memory_nosocket = true; | 
|  | 6403 | if (!strcmp(token, "nokmem")) | 
|  | 6404 | cgroup_memory_nokmem = true; | 
|  | 6405 | } | 
|  | 6406 | return 0; | 
|  | 6407 | } | 
|  | 6408 | __setup("cgroup.memory=", cgroup_memory); | 
|  | 6409 |  | 
|  | 6410 | /* | 
|  | 6411 | * subsys_initcall() for memory controller. | 
|  | 6412 | * | 
|  | 6413 | * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this | 
|  | 6414 | * context because of lock dependencies (cgroup_lock -> cpu hotplug) but | 
|  | 6415 | * basically everything that doesn't depend on a specific mem_cgroup structure | 
|  | 6416 | * should be initialized from here. | 
|  | 6417 | */ | 
|  | 6418 | static int __init mem_cgroup_init(void) | 
|  | 6419 | { | 
|  | 6420 | int cpu, node; | 
|  | 6421 |  | 
|  | 6422 | #ifdef CONFIG_MEMCG_KMEM | 
|  | 6423 | /* | 
|  | 6424 | * Kmem cache creation is mostly done with the slab_mutex held, | 
|  | 6425 | * so use a workqueue with limited concurrency to avoid stalling | 
|  | 6426 | * all worker threads in case lots of cgroups are created and | 
|  | 6427 | * destroyed simultaneously. | 
|  | 6428 | */ | 
|  | 6429 | memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); | 
|  | 6430 | BUG_ON(!memcg_kmem_cache_wq); | 
|  | 6431 | #endif | 
|  | 6432 |  | 
|  | 6433 | cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, | 
|  | 6434 | memcg_hotplug_cpu_dead); | 
|  | 6435 |  | 
|  | 6436 | for_each_possible_cpu(cpu) | 
|  | 6437 | INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, | 
|  | 6438 | drain_local_stock); | 
|  | 6439 |  | 
|  | 6440 | for_each_node(node) { | 
|  | 6441 | struct mem_cgroup_tree_per_node *rtpn; | 
|  | 6442 |  | 
|  | 6443 | rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, | 
|  | 6444 | node_online(node) ? node : NUMA_NO_NODE); | 
|  | 6445 |  | 
|  | 6446 | rtpn->rb_root = RB_ROOT; | 
|  | 6447 | rtpn->rb_rightmost = NULL; | 
|  | 6448 | spin_lock_init(&rtpn->lock); | 
|  | 6449 | soft_limit_tree.rb_tree_per_node[node] = rtpn; | 
|  | 6450 | } | 
|  | 6451 |  | 
|  | 6452 | return 0; | 
|  | 6453 | } | 
|  | 6454 | subsys_initcall(mem_cgroup_init); | 
|  | 6455 |  | 
|  | 6456 | #ifdef CONFIG_MEMCG_SWAP | 
|  | 6457 | static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) | 
|  | 6458 | { | 
|  | 6459 | while (!atomic_inc_not_zero(&memcg->id.ref)) { | 
|  | 6460 | /* | 
|  | 6461 | * The root cgroup cannot be destroyed, so it's refcount must | 
|  | 6462 | * always be >= 1. | 
|  | 6463 | */ | 
|  | 6464 | if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { | 
|  | 6465 | VM_BUG_ON(1); | 
|  | 6466 | break; | 
|  | 6467 | } | 
|  | 6468 | memcg = parent_mem_cgroup(memcg); | 
|  | 6469 | if (!memcg) | 
|  | 6470 | memcg = root_mem_cgroup; | 
|  | 6471 | } | 
|  | 6472 | return memcg; | 
|  | 6473 | } | 
|  | 6474 |  | 
|  | 6475 | /** | 
|  | 6476 | * mem_cgroup_swapout - transfer a memsw charge to swap | 
|  | 6477 | * @page: page whose memsw charge to transfer | 
|  | 6478 | * @entry: swap entry to move the charge to | 
|  | 6479 | * | 
|  | 6480 | * Transfer the memsw charge of @page to @entry. | 
|  | 6481 | */ | 
|  | 6482 | void mem_cgroup_swapout(struct page *page, swp_entry_t entry) | 
|  | 6483 | { | 
|  | 6484 | struct mem_cgroup *memcg, *swap_memcg; | 
|  | 6485 | unsigned int nr_entries; | 
|  | 6486 | unsigned short oldid; | 
|  | 6487 |  | 
|  | 6488 | VM_BUG_ON_PAGE(PageLRU(page), page); | 
|  | 6489 | VM_BUG_ON_PAGE(page_count(page), page); | 
|  | 6490 |  | 
|  | 6491 | if (!do_memsw_account()) | 
|  | 6492 | return; | 
|  | 6493 |  | 
|  | 6494 | memcg = page->mem_cgroup; | 
|  | 6495 |  | 
|  | 6496 | /* Readahead page, never charged */ | 
|  | 6497 | if (!memcg) | 
|  | 6498 | return; | 
|  | 6499 |  | 
|  | 6500 | /* | 
|  | 6501 | * In case the memcg owning these pages has been offlined and doesn't | 
|  | 6502 | * have an ID allocated to it anymore, charge the closest online | 
|  | 6503 | * ancestor for the swap instead and transfer the memory+swap charge. | 
|  | 6504 | */ | 
|  | 6505 | swap_memcg = mem_cgroup_id_get_online(memcg); | 
|  | 6506 | nr_entries = hpage_nr_pages(page); | 
|  | 6507 | /* Get references for the tail pages, too */ | 
|  | 6508 | if (nr_entries > 1) | 
|  | 6509 | mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); | 
|  | 6510 | oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), | 
|  | 6511 | nr_entries); | 
|  | 6512 | VM_BUG_ON_PAGE(oldid, page); | 
|  | 6513 | mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); | 
|  | 6514 |  | 
|  | 6515 | page->mem_cgroup = NULL; | 
|  | 6516 |  | 
|  | 6517 | if (!mem_cgroup_is_root(memcg)) | 
|  | 6518 | page_counter_uncharge(&memcg->memory, nr_entries); | 
|  | 6519 |  | 
|  | 6520 | if (memcg != swap_memcg) { | 
|  | 6521 | if (!mem_cgroup_is_root(swap_memcg)) | 
|  | 6522 | page_counter_charge(&swap_memcg->memsw, nr_entries); | 
|  | 6523 | page_counter_uncharge(&memcg->memsw, nr_entries); | 
|  | 6524 | } | 
|  | 6525 |  | 
|  | 6526 | /* | 
|  | 6527 | * Interrupts should be disabled here because the caller holds the | 
|  | 6528 | * i_pages lock which is taken with interrupts-off. It is | 
|  | 6529 | * important here to have the interrupts disabled because it is the | 
|  | 6530 | * only synchronisation we have for updating the per-CPU variables. | 
|  | 6531 | */ | 
|  | 6532 | VM_BUG_ON(!irqs_disabled()); | 
|  | 6533 | mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), | 
|  | 6534 | -nr_entries); | 
|  | 6535 | memcg_check_events(memcg, page); | 
|  | 6536 |  | 
|  | 6537 | if (!mem_cgroup_is_root(memcg)) | 
|  | 6538 | css_put_many(&memcg->css, nr_entries); | 
|  | 6539 | } | 
|  | 6540 |  | 
|  | 6541 | /** | 
|  | 6542 | * mem_cgroup_try_charge_swap - try charging swap space for a page | 
|  | 6543 | * @page: page being added to swap | 
|  | 6544 | * @entry: swap entry to charge | 
|  | 6545 | * | 
|  | 6546 | * Try to charge @page's memcg for the swap space at @entry. | 
|  | 6547 | * | 
|  | 6548 | * Returns 0 on success, -ENOMEM on failure. | 
|  | 6549 | */ | 
|  | 6550 | int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) | 
|  | 6551 | { | 
|  | 6552 | unsigned int nr_pages = hpage_nr_pages(page); | 
|  | 6553 | struct page_counter *counter; | 
|  | 6554 | struct mem_cgroup *memcg; | 
|  | 6555 | unsigned short oldid; | 
|  | 6556 |  | 
|  | 6557 | if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) | 
|  | 6558 | return 0; | 
|  | 6559 |  | 
|  | 6560 | memcg = page->mem_cgroup; | 
|  | 6561 |  | 
|  | 6562 | /* Readahead page, never charged */ | 
|  | 6563 | if (!memcg) | 
|  | 6564 | return 0; | 
|  | 6565 |  | 
|  | 6566 | if (!entry.val) { | 
|  | 6567 | memcg_memory_event(memcg, MEMCG_SWAP_FAIL); | 
|  | 6568 | return 0; | 
|  | 6569 | } | 
|  | 6570 |  | 
|  | 6571 | memcg = mem_cgroup_id_get_online(memcg); | 
|  | 6572 |  | 
|  | 6573 | if (!mem_cgroup_is_root(memcg) && | 
|  | 6574 | !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { | 
|  | 6575 | memcg_memory_event(memcg, MEMCG_SWAP_MAX); | 
|  | 6576 | memcg_memory_event(memcg, MEMCG_SWAP_FAIL); | 
|  | 6577 | mem_cgroup_id_put(memcg); | 
|  | 6578 | return -ENOMEM; | 
|  | 6579 | } | 
|  | 6580 |  | 
|  | 6581 | /* Get references for the tail pages, too */ | 
|  | 6582 | if (nr_pages > 1) | 
|  | 6583 | mem_cgroup_id_get_many(memcg, nr_pages - 1); | 
|  | 6584 | oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); | 
|  | 6585 | VM_BUG_ON_PAGE(oldid, page); | 
|  | 6586 | mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); | 
|  | 6587 |  | 
|  | 6588 | return 0; | 
|  | 6589 | } | 
|  | 6590 |  | 
|  | 6591 | /** | 
|  | 6592 | * mem_cgroup_uncharge_swap - uncharge swap space | 
|  | 6593 | * @entry: swap entry to uncharge | 
|  | 6594 | * @nr_pages: the amount of swap space to uncharge | 
|  | 6595 | */ | 
|  | 6596 | void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) | 
|  | 6597 | { | 
|  | 6598 | struct mem_cgroup *memcg; | 
|  | 6599 | unsigned short id; | 
|  | 6600 |  | 
|  | 6601 | if (!do_swap_account) | 
|  | 6602 | return; | 
|  | 6603 |  | 
|  | 6604 | id = swap_cgroup_record(entry, 0, nr_pages); | 
|  | 6605 | rcu_read_lock(); | 
|  | 6606 | memcg = mem_cgroup_from_id(id); | 
|  | 6607 | if (memcg) { | 
|  | 6608 | if (!mem_cgroup_is_root(memcg)) { | 
|  | 6609 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | 6610 | page_counter_uncharge(&memcg->swap, nr_pages); | 
|  | 6611 | else | 
|  | 6612 | page_counter_uncharge(&memcg->memsw, nr_pages); | 
|  | 6613 | } | 
|  | 6614 | mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); | 
|  | 6615 | mem_cgroup_id_put_many(memcg, nr_pages); | 
|  | 6616 | } | 
|  | 6617 | rcu_read_unlock(); | 
|  | 6618 | } | 
|  | 6619 |  | 
|  | 6620 | long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) | 
|  | 6621 | { | 
|  | 6622 | long nr_swap_pages = get_nr_swap_pages(); | 
|  | 6623 |  | 
|  | 6624 | if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | 6625 | return nr_swap_pages; | 
|  | 6626 | for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) | 
|  | 6627 | nr_swap_pages = min_t(long, nr_swap_pages, | 
|  | 6628 | READ_ONCE(memcg->swap.max) - | 
|  | 6629 | page_counter_read(&memcg->swap)); | 
|  | 6630 | return nr_swap_pages; | 
|  | 6631 | } | 
|  | 6632 |  | 
|  | 6633 | bool mem_cgroup_swap_full(struct page *page) | 
|  | 6634 | { | 
|  | 6635 | struct mem_cgroup *memcg; | 
|  | 6636 |  | 
|  | 6637 | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | 6638 |  | 
|  | 6639 | if (vm_swap_full()) | 
|  | 6640 | return true; | 
|  | 6641 | if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) | 
|  | 6642 | return false; | 
|  | 6643 |  | 
|  | 6644 | memcg = page->mem_cgroup; | 
|  | 6645 | if (!memcg) | 
|  | 6646 | return false; | 
|  | 6647 |  | 
|  | 6648 | for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) | 
|  | 6649 | if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) | 
|  | 6650 | return true; | 
|  | 6651 |  | 
|  | 6652 | return false; | 
|  | 6653 | } | 
|  | 6654 |  | 
|  | 6655 | /* for remember boot option*/ | 
|  | 6656 | #ifdef CONFIG_MEMCG_SWAP_ENABLED | 
|  | 6657 | static int really_do_swap_account __initdata = 1; | 
|  | 6658 | #else | 
|  | 6659 | static int really_do_swap_account __initdata; | 
|  | 6660 | #endif | 
|  | 6661 |  | 
|  | 6662 | static int __init enable_swap_account(char *s) | 
|  | 6663 | { | 
|  | 6664 | if (!strcmp(s, "1")) | 
|  | 6665 | really_do_swap_account = 1; | 
|  | 6666 | else if (!strcmp(s, "0")) | 
|  | 6667 | really_do_swap_account = 0; | 
|  | 6668 | return 1; | 
|  | 6669 | } | 
|  | 6670 | __setup("swapaccount=", enable_swap_account); | 
|  | 6671 |  | 
|  | 6672 | static u64 swap_current_read(struct cgroup_subsys_state *css, | 
|  | 6673 | struct cftype *cft) | 
|  | 6674 | { | 
|  | 6675 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | 
|  | 6676 |  | 
|  | 6677 | return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; | 
|  | 6678 | } | 
|  | 6679 |  | 
|  | 6680 | static int swap_max_show(struct seq_file *m, void *v) | 
|  | 6681 | { | 
|  | 6682 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | 6683 | unsigned long max = READ_ONCE(memcg->swap.max); | 
|  | 6684 |  | 
|  | 6685 | if (max == PAGE_COUNTER_MAX) | 
|  | 6686 | seq_puts(m, "max\n"); | 
|  | 6687 | else | 
|  | 6688 | seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); | 
|  | 6689 |  | 
|  | 6690 | return 0; | 
|  | 6691 | } | 
|  | 6692 |  | 
|  | 6693 | static ssize_t swap_max_write(struct kernfs_open_file *of, | 
|  | 6694 | char *buf, size_t nbytes, loff_t off) | 
|  | 6695 | { | 
|  | 6696 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); | 
|  | 6697 | unsigned long max; | 
|  | 6698 | int err; | 
|  | 6699 |  | 
|  | 6700 | buf = strstrip(buf); | 
|  | 6701 | err = page_counter_memparse(buf, "max", &max); | 
|  | 6702 | if (err) | 
|  | 6703 | return err; | 
|  | 6704 |  | 
|  | 6705 | xchg(&memcg->swap.max, max); | 
|  | 6706 |  | 
|  | 6707 | return nbytes; | 
|  | 6708 | } | 
|  | 6709 |  | 
|  | 6710 | static int swap_events_show(struct seq_file *m, void *v) | 
|  | 6711 | { | 
|  | 6712 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); | 
|  | 6713 |  | 
|  | 6714 | seq_printf(m, "max %lu\n", | 
|  | 6715 | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); | 
|  | 6716 | seq_printf(m, "fail %lu\n", | 
|  | 6717 | atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); | 
|  | 6718 |  | 
|  | 6719 | return 0; | 
|  | 6720 | } | 
|  | 6721 |  | 
|  | 6722 | static struct cftype swap_files[] = { | 
|  | 6723 | { | 
|  | 6724 | .name = "swap.current", | 
|  | 6725 | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | 6726 | .read_u64 = swap_current_read, | 
|  | 6727 | }, | 
|  | 6728 | { | 
|  | 6729 | .name = "swap.max", | 
|  | 6730 | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | 6731 | .seq_show = swap_max_show, | 
|  | 6732 | .write = swap_max_write, | 
|  | 6733 | }, | 
|  | 6734 | { | 
|  | 6735 | .name = "swap.events", | 
|  | 6736 | .flags = CFTYPE_NOT_ON_ROOT, | 
|  | 6737 | .file_offset = offsetof(struct mem_cgroup, swap_events_file), | 
|  | 6738 | .seq_show = swap_events_show, | 
|  | 6739 | }, | 
|  | 6740 | { }	/* terminate */ | 
|  | 6741 | }; | 
|  | 6742 |  | 
|  | 6743 | static struct cftype memsw_cgroup_files[] = { | 
|  | 6744 | { | 
|  | 6745 | .name = "memsw.usage_in_bytes", | 
|  | 6746 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | 
|  | 6747 | .read_u64 = mem_cgroup_read_u64, | 
|  | 6748 | }, | 
|  | 6749 | { | 
|  | 6750 | .name = "memsw.max_usage_in_bytes", | 
|  | 6751 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | 
|  | 6752 | .write = mem_cgroup_reset, | 
|  | 6753 | .read_u64 = mem_cgroup_read_u64, | 
|  | 6754 | }, | 
|  | 6755 | { | 
|  | 6756 | .name = "memsw.limit_in_bytes", | 
|  | 6757 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | 
|  | 6758 | .write = mem_cgroup_write, | 
|  | 6759 | .read_u64 = mem_cgroup_read_u64, | 
|  | 6760 | }, | 
|  | 6761 | { | 
|  | 6762 | .name = "memsw.failcnt", | 
|  | 6763 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | 
|  | 6764 | .write = mem_cgroup_reset, | 
|  | 6765 | .read_u64 = mem_cgroup_read_u64, | 
|  | 6766 | }, | 
|  | 6767 | { },	/* terminate */ | 
|  | 6768 | }; | 
|  | 6769 |  | 
|  | 6770 | static int __init mem_cgroup_swap_init(void) | 
|  | 6771 | { | 
|  | 6772 | if (!mem_cgroup_disabled() && really_do_swap_account) { | 
|  | 6773 | do_swap_account = 1; | 
|  | 6774 | WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, | 
|  | 6775 | swap_files)); | 
|  | 6776 | WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, | 
|  | 6777 | memsw_cgroup_files)); | 
|  | 6778 | } | 
|  | 6779 | return 0; | 
|  | 6780 | } | 
|  | 6781 | subsys_initcall(mem_cgroup_swap_init); | 
|  | 6782 |  | 
|  | 6783 | #endif /* CONFIG_MEMCG_SWAP */ |