blob: 405ff7bc17b6af7771297942218b86925853d059 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/export.h>
16#include <linux/module.h>
17#include <linux/mutex.h>
18#include <linux/err.h>
19#include <linux/of.h>
20#include <linux/rbtree.h>
21#include <linux/sched.h>
22#include <linux/delay.h>
23#include <linux/log2.h>
24#include <linux/hwspinlock.h>
25
26#define CREATE_TRACE_POINTS
27#include "trace.h"
28
29#include "internal.h"
30
31/*
32 * Sometimes for failures during very early init the trace
33 * infrastructure isn't available early enough to be used. For this
34 * sort of problem defining LOG_DEVICE will add printks for basic
35 * register I/O on a specific device.
36 */
37#undef LOG_DEVICE
38
39static int _regmap_update_bits(struct regmap *map, unsigned int reg,
40 unsigned int mask, unsigned int val,
41 bool *change, bool force_write);
42
43static int _regmap_bus_reg_read(void *context, unsigned int reg,
44 unsigned int *val);
45static int _regmap_bus_read(void *context, unsigned int reg,
46 unsigned int *val);
47static int _regmap_bus_formatted_write(void *context, unsigned int reg,
48 unsigned int val);
49static int _regmap_bus_reg_write(void *context, unsigned int reg,
50 unsigned int val);
51static int _regmap_bus_raw_write(void *context, unsigned int reg,
52 unsigned int val);
53
54bool regmap_reg_in_ranges(unsigned int reg,
55 const struct regmap_range *ranges,
56 unsigned int nranges)
57{
58 const struct regmap_range *r;
59 int i;
60
61 for (i = 0, r = ranges; i < nranges; i++, r++)
62 if (regmap_reg_in_range(reg, r))
63 return true;
64 return false;
65}
66EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
67
68bool regmap_check_range_table(struct regmap *map, unsigned int reg,
69 const struct regmap_access_table *table)
70{
71 /* Check "no ranges" first */
72 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
73 return false;
74
75 /* In case zero "yes ranges" are supplied, any reg is OK */
76 if (!table->n_yes_ranges)
77 return true;
78
79 return regmap_reg_in_ranges(reg, table->yes_ranges,
80 table->n_yes_ranges);
81}
82EXPORT_SYMBOL_GPL(regmap_check_range_table);
83
84bool regmap_writeable(struct regmap *map, unsigned int reg)
85{
86 if (map->max_register && reg > map->max_register)
87 return false;
88
89 if (map->writeable_reg)
90 return map->writeable_reg(map->dev, reg);
91
92 if (map->wr_table)
93 return regmap_check_range_table(map, reg, map->wr_table);
94
95 return true;
96}
97
98bool regmap_cached(struct regmap *map, unsigned int reg)
99{
100 int ret;
101 unsigned int val;
102
103 if (map->cache_type == REGCACHE_NONE)
104 return false;
105
106 if (!map->cache_ops)
107 return false;
108
109 if (map->max_register && reg > map->max_register)
110 return false;
111
112 map->lock(map->lock_arg);
113 ret = regcache_read(map, reg, &val);
114 map->unlock(map->lock_arg);
115 if (ret)
116 return false;
117
118 return true;
119}
120
121bool regmap_readable(struct regmap *map, unsigned int reg)
122{
123 if (!map->reg_read)
124 return false;
125
126 if (map->max_register && reg > map->max_register)
127 return false;
128
129 if (map->format.format_write)
130 return false;
131
132 if (map->readable_reg)
133 return map->readable_reg(map->dev, reg);
134
135 if (map->rd_table)
136 return regmap_check_range_table(map, reg, map->rd_table);
137
138 return true;
139}
140
141bool regmap_volatile(struct regmap *map, unsigned int reg)
142{
143 if (!map->format.format_write && !regmap_readable(map, reg))
144 return false;
145
146 if (map->volatile_reg)
147 return map->volatile_reg(map->dev, reg);
148
149 if (map->volatile_table)
150 return regmap_check_range_table(map, reg, map->volatile_table);
151
152 if (map->cache_ops)
153 return false;
154 else
155 return true;
156}
157
158bool regmap_precious(struct regmap *map, unsigned int reg)
159{
160 if (!regmap_readable(map, reg))
161 return false;
162
163 if (map->precious_reg)
164 return map->precious_reg(map->dev, reg);
165
166 if (map->precious_table)
167 return regmap_check_range_table(map, reg, map->precious_table);
168
169 return false;
170}
171
172bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
173{
174 if (map->readable_noinc_reg)
175 return map->readable_noinc_reg(map->dev, reg);
176
177 if (map->rd_noinc_table)
178 return regmap_check_range_table(map, reg, map->rd_noinc_table);
179
180 return true;
181}
182
183static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
184 size_t num)
185{
186 unsigned int i;
187
188 for (i = 0; i < num; i++)
189 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
190 return false;
191
192 return true;
193}
194
195static void regmap_format_2_6_write(struct regmap *map,
196 unsigned int reg, unsigned int val)
197{
198 u8 *out = map->work_buf;
199
200 *out = (reg << 6) | val;
201}
202
203static void regmap_format_4_12_write(struct regmap *map,
204 unsigned int reg, unsigned int val)
205{
206 __be16 *out = map->work_buf;
207 *out = cpu_to_be16((reg << 12) | val);
208}
209
210static void regmap_format_7_9_write(struct regmap *map,
211 unsigned int reg, unsigned int val)
212{
213 __be16 *out = map->work_buf;
214 *out = cpu_to_be16((reg << 9) | val);
215}
216
217static void regmap_format_10_14_write(struct regmap *map,
218 unsigned int reg, unsigned int val)
219{
220 u8 *out = map->work_buf;
221
222 out[2] = val;
223 out[1] = (val >> 8) | (reg << 6);
224 out[0] = reg >> 2;
225}
226
227static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
228{
229 u8 *b = buf;
230
231 b[0] = val << shift;
232}
233
234static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
235{
236 __be16 *b = buf;
237
238 b[0] = cpu_to_be16(val << shift);
239}
240
241static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
242{
243 __le16 *b = buf;
244
245 b[0] = cpu_to_le16(val << shift);
246}
247
248static void regmap_format_16_native(void *buf, unsigned int val,
249 unsigned int shift)
250{
251 *(u16 *)buf = val << shift;
252}
253
254static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
255{
256 u8 *b = buf;
257
258 val <<= shift;
259
260 b[0] = val >> 16;
261 b[1] = val >> 8;
262 b[2] = val;
263}
264
265static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
266{
267 __be32 *b = buf;
268
269 b[0] = cpu_to_be32(val << shift);
270}
271
272static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
273{
274 __le32 *b = buf;
275
276 b[0] = cpu_to_le32(val << shift);
277}
278
279static void regmap_format_32_native(void *buf, unsigned int val,
280 unsigned int shift)
281{
282 *(u32 *)buf = val << shift;
283}
284
285#ifdef CONFIG_64BIT
286static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
287{
288 __be64 *b = buf;
289
290 b[0] = cpu_to_be64((u64)val << shift);
291}
292
293static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
294{
295 __le64 *b = buf;
296
297 b[0] = cpu_to_le64((u64)val << shift);
298}
299
300static void regmap_format_64_native(void *buf, unsigned int val,
301 unsigned int shift)
302{
303 *(u64 *)buf = (u64)val << shift;
304}
305#endif
306
307static void regmap_parse_inplace_noop(void *buf)
308{
309}
310
311static unsigned int regmap_parse_8(const void *buf)
312{
313 const u8 *b = buf;
314
315 return b[0];
316}
317
318static unsigned int regmap_parse_16_be(const void *buf)
319{
320 const __be16 *b = buf;
321
322 return be16_to_cpu(b[0]);
323}
324
325static unsigned int regmap_parse_16_le(const void *buf)
326{
327 const __le16 *b = buf;
328
329 return le16_to_cpu(b[0]);
330}
331
332static void regmap_parse_16_be_inplace(void *buf)
333{
334 __be16 *b = buf;
335
336 b[0] = be16_to_cpu(b[0]);
337}
338
339static void regmap_parse_16_le_inplace(void *buf)
340{
341 __le16 *b = buf;
342
343 b[0] = le16_to_cpu(b[0]);
344}
345
346static unsigned int regmap_parse_16_native(const void *buf)
347{
348 return *(u16 *)buf;
349}
350
351static unsigned int regmap_parse_24(const void *buf)
352{
353 const u8 *b = buf;
354 unsigned int ret = b[2];
355 ret |= ((unsigned int)b[1]) << 8;
356 ret |= ((unsigned int)b[0]) << 16;
357
358 return ret;
359}
360
361static unsigned int regmap_parse_32_be(const void *buf)
362{
363 const __be32 *b = buf;
364
365 return be32_to_cpu(b[0]);
366}
367
368static unsigned int regmap_parse_32_le(const void *buf)
369{
370 const __le32 *b = buf;
371
372 return le32_to_cpu(b[0]);
373}
374
375static void regmap_parse_32_be_inplace(void *buf)
376{
377 __be32 *b = buf;
378
379 b[0] = be32_to_cpu(b[0]);
380}
381
382static void regmap_parse_32_le_inplace(void *buf)
383{
384 __le32 *b = buf;
385
386 b[0] = le32_to_cpu(b[0]);
387}
388
389static unsigned int regmap_parse_32_native(const void *buf)
390{
391 return *(u32 *)buf;
392}
393
394#ifdef CONFIG_64BIT
395static unsigned int regmap_parse_64_be(const void *buf)
396{
397 const __be64 *b = buf;
398
399 return be64_to_cpu(b[0]);
400}
401
402static unsigned int regmap_parse_64_le(const void *buf)
403{
404 const __le64 *b = buf;
405
406 return le64_to_cpu(b[0]);
407}
408
409static void regmap_parse_64_be_inplace(void *buf)
410{
411 __be64 *b = buf;
412
413 b[0] = be64_to_cpu(b[0]);
414}
415
416static void regmap_parse_64_le_inplace(void *buf)
417{
418 __le64 *b = buf;
419
420 b[0] = le64_to_cpu(b[0]);
421}
422
423static unsigned int regmap_parse_64_native(const void *buf)
424{
425 return *(u64 *)buf;
426}
427#endif
428
429static void regmap_lock_hwlock(void *__map)
430{
431 struct regmap *map = __map;
432
433 hwspin_lock_timeout(map->hwlock, UINT_MAX);
434}
435
436static void regmap_lock_hwlock_irq(void *__map)
437{
438 struct regmap *map = __map;
439
440 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
441}
442
443static void regmap_lock_hwlock_irqsave(void *__map)
444{
445 struct regmap *map = __map;
446
447 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
448 &map->spinlock_flags);
449}
450
451static void regmap_unlock_hwlock(void *__map)
452{
453 struct regmap *map = __map;
454
455 hwspin_unlock(map->hwlock);
456}
457
458static void regmap_unlock_hwlock_irq(void *__map)
459{
460 struct regmap *map = __map;
461
462 hwspin_unlock_irq(map->hwlock);
463}
464
465static void regmap_unlock_hwlock_irqrestore(void *__map)
466{
467 struct regmap *map = __map;
468
469 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
470}
471
472static void regmap_lock_unlock_none(void *__map)
473{
474
475}
476
477static void regmap_lock_mutex(void *__map)
478{
479 struct regmap *map = __map;
480 mutex_lock(&map->mutex);
481}
482
483static void regmap_unlock_mutex(void *__map)
484{
485 struct regmap *map = __map;
486 mutex_unlock(&map->mutex);
487}
488
489static void regmap_lock_spinlock(void *__map)
490__acquires(&map->spinlock)
491{
492 struct regmap *map = __map;
493 unsigned long flags;
494
495 spin_lock_irqsave(&map->spinlock, flags);
496 map->spinlock_flags = flags;
497}
498
499static void regmap_unlock_spinlock(void *__map)
500__releases(&map->spinlock)
501{
502 struct regmap *map = __map;
503 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
504}
505
506static void dev_get_regmap_release(struct device *dev, void *res)
507{
508 /*
509 * We don't actually have anything to do here; the goal here
510 * is not to manage the regmap but to provide a simple way to
511 * get the regmap back given a struct device.
512 */
513}
514
515static bool _regmap_range_add(struct regmap *map,
516 struct regmap_range_node *data)
517{
518 struct rb_root *root = &map->range_tree;
519 struct rb_node **new = &(root->rb_node), *parent = NULL;
520
521 while (*new) {
522 struct regmap_range_node *this =
523 rb_entry(*new, struct regmap_range_node, node);
524
525 parent = *new;
526 if (data->range_max < this->range_min)
527 new = &((*new)->rb_left);
528 else if (data->range_min > this->range_max)
529 new = &((*new)->rb_right);
530 else
531 return false;
532 }
533
534 rb_link_node(&data->node, parent, new);
535 rb_insert_color(&data->node, root);
536
537 return true;
538}
539
540static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
541 unsigned int reg)
542{
543 struct rb_node *node = map->range_tree.rb_node;
544
545 while (node) {
546 struct regmap_range_node *this =
547 rb_entry(node, struct regmap_range_node, node);
548
549 if (reg < this->range_min)
550 node = node->rb_left;
551 else if (reg > this->range_max)
552 node = node->rb_right;
553 else
554 return this;
555 }
556
557 return NULL;
558}
559
560static void regmap_range_exit(struct regmap *map)
561{
562 struct rb_node *next;
563 struct regmap_range_node *range_node;
564
565 next = rb_first(&map->range_tree);
566 while (next) {
567 range_node = rb_entry(next, struct regmap_range_node, node);
568 next = rb_next(&range_node->node);
569 rb_erase(&range_node->node, &map->range_tree);
570 kfree(range_node);
571 }
572
573 kfree(map->selector_work_buf);
574}
575
576int regmap_attach_dev(struct device *dev, struct regmap *map,
577 const struct regmap_config *config)
578{
579 struct regmap **m;
580
581 map->dev = dev;
582
583 regmap_debugfs_init(map, config->name);
584
585 /* Add a devres resource for dev_get_regmap() */
586 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
587 if (!m) {
588 regmap_debugfs_exit(map);
589 return -ENOMEM;
590 }
591 *m = map;
592 devres_add(dev, m);
593
594 return 0;
595}
596EXPORT_SYMBOL_GPL(regmap_attach_dev);
597
598static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
599 const struct regmap_config *config)
600{
601 enum regmap_endian endian;
602
603 /* Retrieve the endianness specification from the regmap config */
604 endian = config->reg_format_endian;
605
606 /* If the regmap config specified a non-default value, use that */
607 if (endian != REGMAP_ENDIAN_DEFAULT)
608 return endian;
609
610 /* Retrieve the endianness specification from the bus config */
611 if (bus && bus->reg_format_endian_default)
612 endian = bus->reg_format_endian_default;
613
614 /* If the bus specified a non-default value, use that */
615 if (endian != REGMAP_ENDIAN_DEFAULT)
616 return endian;
617
618 /* Use this if no other value was found */
619 return REGMAP_ENDIAN_BIG;
620}
621
622enum regmap_endian regmap_get_val_endian(struct device *dev,
623 const struct regmap_bus *bus,
624 const struct regmap_config *config)
625{
626 struct device_node *np;
627 enum regmap_endian endian;
628
629 /* Retrieve the endianness specification from the regmap config */
630 endian = config->val_format_endian;
631
632 /* If the regmap config specified a non-default value, use that */
633 if (endian != REGMAP_ENDIAN_DEFAULT)
634 return endian;
635
636 /* If the dev and dev->of_node exist try to get endianness from DT */
637 if (dev && dev->of_node) {
638 np = dev->of_node;
639
640 /* Parse the device's DT node for an endianness specification */
641 if (of_property_read_bool(np, "big-endian"))
642 endian = REGMAP_ENDIAN_BIG;
643 else if (of_property_read_bool(np, "little-endian"))
644 endian = REGMAP_ENDIAN_LITTLE;
645 else if (of_property_read_bool(np, "native-endian"))
646 endian = REGMAP_ENDIAN_NATIVE;
647
648 /* If the endianness was specified in DT, use that */
649 if (endian != REGMAP_ENDIAN_DEFAULT)
650 return endian;
651 }
652
653 /* Retrieve the endianness specification from the bus config */
654 if (bus && bus->val_format_endian_default)
655 endian = bus->val_format_endian_default;
656
657 /* If the bus specified a non-default value, use that */
658 if (endian != REGMAP_ENDIAN_DEFAULT)
659 return endian;
660
661 /* Use this if no other value was found */
662 return REGMAP_ENDIAN_BIG;
663}
664EXPORT_SYMBOL_GPL(regmap_get_val_endian);
665
666struct regmap *__regmap_init(struct device *dev,
667 const struct regmap_bus *bus,
668 void *bus_context,
669 const struct regmap_config *config,
670 struct lock_class_key *lock_key,
671 const char *lock_name)
672{
673 struct regmap *map;
674 int ret = -EINVAL;
675 enum regmap_endian reg_endian, val_endian;
676 int i, j;
677
678 if (!config)
679 goto err;
680
681 map = kzalloc(sizeof(*map), GFP_KERNEL);
682 if (map == NULL) {
683 ret = -ENOMEM;
684 goto err;
685 }
686
687 if (config->name) {
688 map->name = kstrdup_const(config->name, GFP_KERNEL);
689 if (!map->name) {
690 ret = -ENOMEM;
691 goto err_map;
692 }
693 }
694
695 if (config->disable_locking) {
696 map->lock = map->unlock = regmap_lock_unlock_none;
697 regmap_debugfs_disable(map);
698 } else if (config->lock && config->unlock) {
699 map->lock = config->lock;
700 map->unlock = config->unlock;
701 map->lock_arg = config->lock_arg;
702 } else if (config->use_hwlock) {
703 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
704 if (!map->hwlock) {
705 ret = -ENXIO;
706 goto err_name;
707 }
708
709 switch (config->hwlock_mode) {
710 case HWLOCK_IRQSTATE:
711 map->lock = regmap_lock_hwlock_irqsave;
712 map->unlock = regmap_unlock_hwlock_irqrestore;
713 break;
714 case HWLOCK_IRQ:
715 map->lock = regmap_lock_hwlock_irq;
716 map->unlock = regmap_unlock_hwlock_irq;
717 break;
718 default:
719 map->lock = regmap_lock_hwlock;
720 map->unlock = regmap_unlock_hwlock;
721 break;
722 }
723
724 map->lock_arg = map;
725 } else {
726 if ((bus && bus->fast_io) ||
727 config->fast_io) {
728 spin_lock_init(&map->spinlock);
729 map->lock = regmap_lock_spinlock;
730 map->unlock = regmap_unlock_spinlock;
731 lockdep_set_class_and_name(&map->spinlock,
732 lock_key, lock_name);
733 } else {
734 mutex_init(&map->mutex);
735 map->lock = regmap_lock_mutex;
736 map->unlock = regmap_unlock_mutex;
737 lockdep_set_class_and_name(&map->mutex,
738 lock_key, lock_name);
739 }
740 map->lock_arg = map;
741 }
742
743 /*
744 * When we write in fast-paths with regmap_bulk_write() don't allocate
745 * scratch buffers with sleeping allocations.
746 */
747 if ((bus && bus->fast_io) || config->fast_io)
748 map->alloc_flags = GFP_ATOMIC;
749 else
750 map->alloc_flags = GFP_KERNEL;
751
752 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
753 map->format.pad_bytes = config->pad_bits / 8;
754 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
755 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
756 config->val_bits + config->pad_bits, 8);
757 map->reg_shift = config->pad_bits % 8;
758 if (config->reg_stride)
759 map->reg_stride = config->reg_stride;
760 else
761 map->reg_stride = 1;
762 if (is_power_of_2(map->reg_stride))
763 map->reg_stride_order = ilog2(map->reg_stride);
764 else
765 map->reg_stride_order = -1;
766 map->use_single_read = config->use_single_rw || !bus || !bus->read;
767 map->use_single_write = config->use_single_rw || !bus || !bus->write;
768 map->can_multi_write = config->can_multi_write && bus && bus->write;
769 if (bus) {
770 map->max_raw_read = bus->max_raw_read;
771 map->max_raw_write = bus->max_raw_write;
772 }
773 map->dev = dev;
774 map->bus = bus;
775 map->bus_context = bus_context;
776 map->max_register = config->max_register;
777 map->wr_table = config->wr_table;
778 map->rd_table = config->rd_table;
779 map->volatile_table = config->volatile_table;
780 map->precious_table = config->precious_table;
781 map->rd_noinc_table = config->rd_noinc_table;
782 map->writeable_reg = config->writeable_reg;
783 map->readable_reg = config->readable_reg;
784 map->volatile_reg = config->volatile_reg;
785 map->precious_reg = config->precious_reg;
786 map->readable_noinc_reg = config->readable_noinc_reg;
787 map->cache_type = config->cache_type;
788
789 spin_lock_init(&map->async_lock);
790 INIT_LIST_HEAD(&map->async_list);
791 INIT_LIST_HEAD(&map->async_free);
792 init_waitqueue_head(&map->async_waitq);
793
794 if (config->read_flag_mask ||
795 config->write_flag_mask ||
796 config->zero_flag_mask) {
797 map->read_flag_mask = config->read_flag_mask;
798 map->write_flag_mask = config->write_flag_mask;
799 } else if (bus) {
800 map->read_flag_mask = bus->read_flag_mask;
801 }
802
803 if (!bus) {
804 map->reg_read = config->reg_read;
805 map->reg_write = config->reg_write;
806
807 map->defer_caching = false;
808 goto skip_format_initialization;
809 } else if (!bus->read || !bus->write) {
810 map->reg_read = _regmap_bus_reg_read;
811 map->reg_write = _regmap_bus_reg_write;
812
813 map->defer_caching = false;
814 goto skip_format_initialization;
815 } else {
816 map->reg_read = _regmap_bus_read;
817 map->reg_update_bits = bus->reg_update_bits;
818 }
819
820 reg_endian = regmap_get_reg_endian(bus, config);
821 val_endian = regmap_get_val_endian(dev, bus, config);
822
823 switch (config->reg_bits + map->reg_shift) {
824 case 2:
825 switch (config->val_bits) {
826 case 6:
827 map->format.format_write = regmap_format_2_6_write;
828 break;
829 default:
830 goto err_hwlock;
831 }
832 break;
833
834 case 4:
835 switch (config->val_bits) {
836 case 12:
837 map->format.format_write = regmap_format_4_12_write;
838 break;
839 default:
840 goto err_hwlock;
841 }
842 break;
843
844 case 7:
845 switch (config->val_bits) {
846 case 9:
847 map->format.format_write = regmap_format_7_9_write;
848 break;
849 default:
850 goto err_hwlock;
851 }
852 break;
853
854 case 10:
855 switch (config->val_bits) {
856 case 14:
857 map->format.format_write = regmap_format_10_14_write;
858 break;
859 default:
860 goto err_hwlock;
861 }
862 break;
863
864 case 8:
865 map->format.format_reg = regmap_format_8;
866 break;
867
868 case 16:
869 switch (reg_endian) {
870 case REGMAP_ENDIAN_BIG:
871 map->format.format_reg = regmap_format_16_be;
872 break;
873 case REGMAP_ENDIAN_LITTLE:
874 map->format.format_reg = regmap_format_16_le;
875 break;
876 case REGMAP_ENDIAN_NATIVE:
877 map->format.format_reg = regmap_format_16_native;
878 break;
879 default:
880 goto err_hwlock;
881 }
882 break;
883
884 case 24:
885 if (reg_endian != REGMAP_ENDIAN_BIG)
886 goto err_hwlock;
887 map->format.format_reg = regmap_format_24;
888 break;
889
890 case 32:
891 switch (reg_endian) {
892 case REGMAP_ENDIAN_BIG:
893 map->format.format_reg = regmap_format_32_be;
894 break;
895 case REGMAP_ENDIAN_LITTLE:
896 map->format.format_reg = regmap_format_32_le;
897 break;
898 case REGMAP_ENDIAN_NATIVE:
899 map->format.format_reg = regmap_format_32_native;
900 break;
901 default:
902 goto err_hwlock;
903 }
904 break;
905
906#ifdef CONFIG_64BIT
907 case 64:
908 switch (reg_endian) {
909 case REGMAP_ENDIAN_BIG:
910 map->format.format_reg = regmap_format_64_be;
911 break;
912 case REGMAP_ENDIAN_LITTLE:
913 map->format.format_reg = regmap_format_64_le;
914 break;
915 case REGMAP_ENDIAN_NATIVE:
916 map->format.format_reg = regmap_format_64_native;
917 break;
918 default:
919 goto err_hwlock;
920 }
921 break;
922#endif
923
924 default:
925 goto err_hwlock;
926 }
927
928 if (val_endian == REGMAP_ENDIAN_NATIVE)
929 map->format.parse_inplace = regmap_parse_inplace_noop;
930
931 switch (config->val_bits) {
932 case 8:
933 map->format.format_val = regmap_format_8;
934 map->format.parse_val = regmap_parse_8;
935 map->format.parse_inplace = regmap_parse_inplace_noop;
936 break;
937 case 16:
938 switch (val_endian) {
939 case REGMAP_ENDIAN_BIG:
940 map->format.format_val = regmap_format_16_be;
941 map->format.parse_val = regmap_parse_16_be;
942 map->format.parse_inplace = regmap_parse_16_be_inplace;
943 break;
944 case REGMAP_ENDIAN_LITTLE:
945 map->format.format_val = regmap_format_16_le;
946 map->format.parse_val = regmap_parse_16_le;
947 map->format.parse_inplace = regmap_parse_16_le_inplace;
948 break;
949 case REGMAP_ENDIAN_NATIVE:
950 map->format.format_val = regmap_format_16_native;
951 map->format.parse_val = regmap_parse_16_native;
952 break;
953 default:
954 goto err_hwlock;
955 }
956 break;
957 case 24:
958 if (val_endian != REGMAP_ENDIAN_BIG)
959 goto err_hwlock;
960 map->format.format_val = regmap_format_24;
961 map->format.parse_val = regmap_parse_24;
962 break;
963 case 32:
964 switch (val_endian) {
965 case REGMAP_ENDIAN_BIG:
966 map->format.format_val = regmap_format_32_be;
967 map->format.parse_val = regmap_parse_32_be;
968 map->format.parse_inplace = regmap_parse_32_be_inplace;
969 break;
970 case REGMAP_ENDIAN_LITTLE:
971 map->format.format_val = regmap_format_32_le;
972 map->format.parse_val = regmap_parse_32_le;
973 map->format.parse_inplace = regmap_parse_32_le_inplace;
974 break;
975 case REGMAP_ENDIAN_NATIVE:
976 map->format.format_val = regmap_format_32_native;
977 map->format.parse_val = regmap_parse_32_native;
978 break;
979 default:
980 goto err_hwlock;
981 }
982 break;
983#ifdef CONFIG_64BIT
984 case 64:
985 switch (val_endian) {
986 case REGMAP_ENDIAN_BIG:
987 map->format.format_val = regmap_format_64_be;
988 map->format.parse_val = regmap_parse_64_be;
989 map->format.parse_inplace = regmap_parse_64_be_inplace;
990 break;
991 case REGMAP_ENDIAN_LITTLE:
992 map->format.format_val = regmap_format_64_le;
993 map->format.parse_val = regmap_parse_64_le;
994 map->format.parse_inplace = regmap_parse_64_le_inplace;
995 break;
996 case REGMAP_ENDIAN_NATIVE:
997 map->format.format_val = regmap_format_64_native;
998 map->format.parse_val = regmap_parse_64_native;
999 break;
1000 default:
1001 goto err_hwlock;
1002 }
1003 break;
1004#endif
1005 }
1006
1007 if (map->format.format_write) {
1008 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1009 (val_endian != REGMAP_ENDIAN_BIG))
1010 goto err_hwlock;
1011 map->use_single_write = true;
1012 }
1013
1014 if (!map->format.format_write &&
1015 !(map->format.format_reg && map->format.format_val))
1016 goto err_hwlock;
1017
1018 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1019 if (map->work_buf == NULL) {
1020 ret = -ENOMEM;
1021 goto err_hwlock;
1022 }
1023
1024 if (map->format.format_write) {
1025 map->defer_caching = false;
1026 map->reg_write = _regmap_bus_formatted_write;
1027 } else if (map->format.format_val) {
1028 map->defer_caching = true;
1029 map->reg_write = _regmap_bus_raw_write;
1030 }
1031
1032skip_format_initialization:
1033
1034 map->range_tree = RB_ROOT;
1035 for (i = 0; i < config->num_ranges; i++) {
1036 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1037 struct regmap_range_node *new;
1038
1039 /* Sanity check */
1040 if (range_cfg->range_max < range_cfg->range_min) {
1041 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1042 range_cfg->range_max, range_cfg->range_min);
1043 goto err_range;
1044 }
1045
1046 if (range_cfg->range_max > map->max_register) {
1047 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1048 range_cfg->range_max, map->max_register);
1049 goto err_range;
1050 }
1051
1052 if (range_cfg->selector_reg > map->max_register) {
1053 dev_err(map->dev,
1054 "Invalid range %d: selector out of map\n", i);
1055 goto err_range;
1056 }
1057
1058 if (range_cfg->window_len == 0) {
1059 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1060 i);
1061 goto err_range;
1062 }
1063
1064 /* Make sure, that this register range has no selector
1065 or data window within its boundary */
1066 for (j = 0; j < config->num_ranges; j++) {
1067 unsigned sel_reg = config->ranges[j].selector_reg;
1068 unsigned win_min = config->ranges[j].window_start;
1069 unsigned win_max = win_min +
1070 config->ranges[j].window_len - 1;
1071
1072 /* Allow data window inside its own virtual range */
1073 if (j == i)
1074 continue;
1075
1076 if (range_cfg->range_min <= sel_reg &&
1077 sel_reg <= range_cfg->range_max) {
1078 dev_err(map->dev,
1079 "Range %d: selector for %d in window\n",
1080 i, j);
1081 goto err_range;
1082 }
1083
1084 if (!(win_max < range_cfg->range_min ||
1085 win_min > range_cfg->range_max)) {
1086 dev_err(map->dev,
1087 "Range %d: window for %d in window\n",
1088 i, j);
1089 goto err_range;
1090 }
1091 }
1092
1093 new = kzalloc(sizeof(*new), GFP_KERNEL);
1094 if (new == NULL) {
1095 ret = -ENOMEM;
1096 goto err_range;
1097 }
1098
1099 new->map = map;
1100 new->name = range_cfg->name;
1101 new->range_min = range_cfg->range_min;
1102 new->range_max = range_cfg->range_max;
1103 new->selector_reg = range_cfg->selector_reg;
1104 new->selector_mask = range_cfg->selector_mask;
1105 new->selector_shift = range_cfg->selector_shift;
1106 new->window_start = range_cfg->window_start;
1107 new->window_len = range_cfg->window_len;
1108
1109 if (!_regmap_range_add(map, new)) {
1110 dev_err(map->dev, "Failed to add range %d\n", i);
1111 kfree(new);
1112 goto err_range;
1113 }
1114
1115 if (map->selector_work_buf == NULL) {
1116 map->selector_work_buf =
1117 kzalloc(map->format.buf_size, GFP_KERNEL);
1118 if (map->selector_work_buf == NULL) {
1119 ret = -ENOMEM;
1120 goto err_range;
1121 }
1122 }
1123 }
1124
1125 ret = regcache_init(map, config);
1126 if (ret != 0)
1127 goto err_range;
1128
1129 if (dev) {
1130 ret = regmap_attach_dev(dev, map, config);
1131 if (ret != 0)
1132 goto err_regcache;
1133 } else {
1134 regmap_debugfs_init(map, config->name);
1135 }
1136
1137 return map;
1138
1139err_regcache:
1140 regcache_exit(map);
1141err_range:
1142 regmap_range_exit(map);
1143 kfree(map->work_buf);
1144err_hwlock:
1145 if (map->hwlock)
1146 hwspin_lock_free(map->hwlock);
1147err_name:
1148 kfree_const(map->name);
1149err_map:
1150 kfree(map);
1151err:
1152 return ERR_PTR(ret);
1153}
1154EXPORT_SYMBOL_GPL(__regmap_init);
1155
1156static void devm_regmap_release(struct device *dev, void *res)
1157{
1158 regmap_exit(*(struct regmap **)res);
1159}
1160
1161struct regmap *__devm_regmap_init(struct device *dev,
1162 const struct regmap_bus *bus,
1163 void *bus_context,
1164 const struct regmap_config *config,
1165 struct lock_class_key *lock_key,
1166 const char *lock_name)
1167{
1168 struct regmap **ptr, *regmap;
1169
1170 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1171 if (!ptr)
1172 return ERR_PTR(-ENOMEM);
1173
1174 regmap = __regmap_init(dev, bus, bus_context, config,
1175 lock_key, lock_name);
1176 if (!IS_ERR(regmap)) {
1177 *ptr = regmap;
1178 devres_add(dev, ptr);
1179 } else {
1180 devres_free(ptr);
1181 }
1182
1183 return regmap;
1184}
1185EXPORT_SYMBOL_GPL(__devm_regmap_init);
1186
1187static void regmap_field_init(struct regmap_field *rm_field,
1188 struct regmap *regmap, struct reg_field reg_field)
1189{
1190 rm_field->regmap = regmap;
1191 rm_field->reg = reg_field.reg;
1192 rm_field->shift = reg_field.lsb;
1193 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1194 rm_field->id_size = reg_field.id_size;
1195 rm_field->id_offset = reg_field.id_offset;
1196}
1197
1198/**
1199 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1200 *
1201 * @dev: Device that will be interacted with
1202 * @regmap: regmap bank in which this register field is located.
1203 * @reg_field: Register field with in the bank.
1204 *
1205 * The return value will be an ERR_PTR() on error or a valid pointer
1206 * to a struct regmap_field. The regmap_field will be automatically freed
1207 * by the device management code.
1208 */
1209struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1210 struct regmap *regmap, struct reg_field reg_field)
1211{
1212 struct regmap_field *rm_field = devm_kzalloc(dev,
1213 sizeof(*rm_field), GFP_KERNEL);
1214 if (!rm_field)
1215 return ERR_PTR(-ENOMEM);
1216
1217 regmap_field_init(rm_field, regmap, reg_field);
1218
1219 return rm_field;
1220
1221}
1222EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1223
1224/**
1225 * devm_regmap_field_free() - Free a register field allocated using
1226 * devm_regmap_field_alloc.
1227 *
1228 * @dev: Device that will be interacted with
1229 * @field: regmap field which should be freed.
1230 *
1231 * Free register field allocated using devm_regmap_field_alloc(). Usually
1232 * drivers need not call this function, as the memory allocated via devm
1233 * will be freed as per device-driver life-cyle.
1234 */
1235void devm_regmap_field_free(struct device *dev,
1236 struct regmap_field *field)
1237{
1238 devm_kfree(dev, field);
1239}
1240EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1241
1242/**
1243 * regmap_field_alloc() - Allocate and initialise a register field.
1244 *
1245 * @regmap: regmap bank in which this register field is located.
1246 * @reg_field: Register field with in the bank.
1247 *
1248 * The return value will be an ERR_PTR() on error or a valid pointer
1249 * to a struct regmap_field. The regmap_field should be freed by the
1250 * user once its finished working with it using regmap_field_free().
1251 */
1252struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1253 struct reg_field reg_field)
1254{
1255 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1256
1257 if (!rm_field)
1258 return ERR_PTR(-ENOMEM);
1259
1260 regmap_field_init(rm_field, regmap, reg_field);
1261
1262 return rm_field;
1263}
1264EXPORT_SYMBOL_GPL(regmap_field_alloc);
1265
1266/**
1267 * regmap_field_free() - Free register field allocated using
1268 * regmap_field_alloc.
1269 *
1270 * @field: regmap field which should be freed.
1271 */
1272void regmap_field_free(struct regmap_field *field)
1273{
1274 kfree(field);
1275}
1276EXPORT_SYMBOL_GPL(regmap_field_free);
1277
1278/**
1279 * regmap_reinit_cache() - Reinitialise the current register cache
1280 *
1281 * @map: Register map to operate on.
1282 * @config: New configuration. Only the cache data will be used.
1283 *
1284 * Discard any existing register cache for the map and initialize a
1285 * new cache. This can be used to restore the cache to defaults or to
1286 * update the cache configuration to reflect runtime discovery of the
1287 * hardware.
1288 *
1289 * No explicit locking is done here, the user needs to ensure that
1290 * this function will not race with other calls to regmap.
1291 */
1292int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1293{
1294 regcache_exit(map);
1295 regmap_debugfs_exit(map);
1296
1297 map->max_register = config->max_register;
1298 map->writeable_reg = config->writeable_reg;
1299 map->readable_reg = config->readable_reg;
1300 map->volatile_reg = config->volatile_reg;
1301 map->precious_reg = config->precious_reg;
1302 map->readable_noinc_reg = config->readable_noinc_reg;
1303 map->cache_type = config->cache_type;
1304
1305 regmap_debugfs_init(map, config->name);
1306
1307 map->cache_bypass = false;
1308 map->cache_only = false;
1309
1310 return regcache_init(map, config);
1311}
1312EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1313
1314/**
1315 * regmap_exit() - Free a previously allocated register map
1316 *
1317 * @map: Register map to operate on.
1318 */
1319void regmap_exit(struct regmap *map)
1320{
1321 struct regmap_async *async;
1322
1323 regcache_exit(map);
1324 regmap_debugfs_exit(map);
1325 regmap_range_exit(map);
1326 if (map->bus && map->bus->free_context)
1327 map->bus->free_context(map->bus_context);
1328 kfree(map->work_buf);
1329 while (!list_empty(&map->async_free)) {
1330 async = list_first_entry_or_null(&map->async_free,
1331 struct regmap_async,
1332 list);
1333 list_del(&async->list);
1334 kfree(async->work_buf);
1335 kfree(async);
1336 }
1337 if (map->hwlock)
1338 hwspin_lock_free(map->hwlock);
1339 kfree_const(map->name);
1340 kfree(map);
1341}
1342EXPORT_SYMBOL_GPL(regmap_exit);
1343
1344static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1345{
1346 struct regmap **r = res;
1347 if (!r || !*r) {
1348 WARN_ON(!r || !*r);
1349 return 0;
1350 }
1351
1352 /* If the user didn't specify a name match any */
1353 if (data)
1354 return (*r)->name == data;
1355 else
1356 return 1;
1357}
1358
1359/**
1360 * dev_get_regmap() - Obtain the regmap (if any) for a device
1361 *
1362 * @dev: Device to retrieve the map for
1363 * @name: Optional name for the register map, usually NULL.
1364 *
1365 * Returns the regmap for the device if one is present, or NULL. If
1366 * name is specified then it must match the name specified when
1367 * registering the device, if it is NULL then the first regmap found
1368 * will be used. Devices with multiple register maps are very rare,
1369 * generic code should normally not need to specify a name.
1370 */
1371struct regmap *dev_get_regmap(struct device *dev, const char *name)
1372{
1373 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1374 dev_get_regmap_match, (void *)name);
1375
1376 if (!r)
1377 return NULL;
1378 return *r;
1379}
1380EXPORT_SYMBOL_GPL(dev_get_regmap);
1381
1382/**
1383 * regmap_get_device() - Obtain the device from a regmap
1384 *
1385 * @map: Register map to operate on.
1386 *
1387 * Returns the underlying device that the regmap has been created for.
1388 */
1389struct device *regmap_get_device(struct regmap *map)
1390{
1391 return map->dev;
1392}
1393EXPORT_SYMBOL_GPL(regmap_get_device);
1394
1395static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1396 struct regmap_range_node *range,
1397 unsigned int val_num)
1398{
1399 void *orig_work_buf;
1400 unsigned int win_offset;
1401 unsigned int win_page;
1402 bool page_chg;
1403 int ret;
1404
1405 win_offset = (*reg - range->range_min) % range->window_len;
1406 win_page = (*reg - range->range_min) / range->window_len;
1407
1408 if (val_num > 1) {
1409 /* Bulk write shouldn't cross range boundary */
1410 if (*reg + val_num - 1 > range->range_max)
1411 return -EINVAL;
1412
1413 /* ... or single page boundary */
1414 if (val_num > range->window_len - win_offset)
1415 return -EINVAL;
1416 }
1417
1418 /* It is possible to have selector register inside data window.
1419 In that case, selector register is located on every page and
1420 it needs no page switching, when accessed alone. */
1421 if (val_num > 1 ||
1422 range->window_start + win_offset != range->selector_reg) {
1423 /* Use separate work_buf during page switching */
1424 orig_work_buf = map->work_buf;
1425 map->work_buf = map->selector_work_buf;
1426
1427 ret = _regmap_update_bits(map, range->selector_reg,
1428 range->selector_mask,
1429 win_page << range->selector_shift,
1430 &page_chg, false);
1431
1432 map->work_buf = orig_work_buf;
1433
1434 if (ret != 0)
1435 return ret;
1436 }
1437
1438 *reg = range->window_start + win_offset;
1439
1440 return 0;
1441}
1442
1443static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1444 unsigned long mask)
1445{
1446 u8 *buf;
1447 int i;
1448
1449 if (!mask || !map->work_buf)
1450 return;
1451
1452 buf = map->work_buf;
1453
1454 for (i = 0; i < max_bytes; i++)
1455 buf[i] |= (mask >> (8 * i)) & 0xff;
1456}
1457
1458static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1459 const void *val, size_t val_len)
1460{
1461 struct regmap_range_node *range;
1462 unsigned long flags;
1463 void *work_val = map->work_buf + map->format.reg_bytes +
1464 map->format.pad_bytes;
1465 void *buf;
1466 int ret = -ENOTSUPP;
1467 size_t len;
1468 int i;
1469
1470 WARN_ON(!map->bus);
1471
1472 /* Check for unwritable registers before we start */
1473 if (map->writeable_reg)
1474 for (i = 0; i < val_len / map->format.val_bytes; i++)
1475 if (!map->writeable_reg(map->dev,
1476 reg + regmap_get_offset(map, i)))
1477 return -EINVAL;
1478
1479 if (!map->cache_bypass && map->format.parse_val) {
1480 unsigned int ival;
1481 int val_bytes = map->format.val_bytes;
1482 for (i = 0; i < val_len / val_bytes; i++) {
1483 ival = map->format.parse_val(val + (i * val_bytes));
1484 ret = regcache_write(map,
1485 reg + regmap_get_offset(map, i),
1486 ival);
1487 if (ret) {
1488 dev_err(map->dev,
1489 "Error in caching of register: %x ret: %d\n",
1490 reg + i, ret);
1491 return ret;
1492 }
1493 }
1494 if (map->cache_only) {
1495 map->cache_dirty = true;
1496 return 0;
1497 }
1498 }
1499
1500 range = _regmap_range_lookup(map, reg);
1501 if (range) {
1502 int val_num = val_len / map->format.val_bytes;
1503 int win_offset = (reg - range->range_min) % range->window_len;
1504 int win_residue = range->window_len - win_offset;
1505
1506 /* If the write goes beyond the end of the window split it */
1507 while (val_num > win_residue) {
1508 dev_dbg(map->dev, "Writing window %d/%zu\n",
1509 win_residue, val_len / map->format.val_bytes);
1510 ret = _regmap_raw_write_impl(map, reg, val,
1511 win_residue *
1512 map->format.val_bytes);
1513 if (ret != 0)
1514 return ret;
1515
1516 reg += win_residue;
1517 val_num -= win_residue;
1518 val += win_residue * map->format.val_bytes;
1519 val_len -= win_residue * map->format.val_bytes;
1520
1521 win_offset = (reg - range->range_min) %
1522 range->window_len;
1523 win_residue = range->window_len - win_offset;
1524 }
1525
1526 ret = _regmap_select_page(map, &reg, range, val_num);
1527 if (ret != 0)
1528 return ret;
1529 }
1530
1531 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1532 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1533 map->write_flag_mask);
1534
1535 /*
1536 * Essentially all I/O mechanisms will be faster with a single
1537 * buffer to write. Since register syncs often generate raw
1538 * writes of single registers optimise that case.
1539 */
1540 if (val != work_val && val_len == map->format.val_bytes) {
1541 memcpy(work_val, val, map->format.val_bytes);
1542 val = work_val;
1543 }
1544
1545 if (map->async && map->bus->async_write) {
1546 struct regmap_async *async;
1547
1548 trace_regmap_async_write_start(map, reg, val_len);
1549
1550 spin_lock_irqsave(&map->async_lock, flags);
1551 async = list_first_entry_or_null(&map->async_free,
1552 struct regmap_async,
1553 list);
1554 if (async)
1555 list_del(&async->list);
1556 spin_unlock_irqrestore(&map->async_lock, flags);
1557
1558 if (!async) {
1559 async = map->bus->async_alloc();
1560 if (!async)
1561 return -ENOMEM;
1562
1563 async->work_buf = kzalloc(map->format.buf_size,
1564 GFP_KERNEL | GFP_DMA);
1565 if (!async->work_buf) {
1566 kfree(async);
1567 return -ENOMEM;
1568 }
1569 }
1570
1571 async->map = map;
1572
1573 /* If the caller supplied the value we can use it safely. */
1574 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1575 map->format.reg_bytes + map->format.val_bytes);
1576
1577 spin_lock_irqsave(&map->async_lock, flags);
1578 list_add_tail(&async->list, &map->async_list);
1579 spin_unlock_irqrestore(&map->async_lock, flags);
1580
1581 if (val != work_val)
1582 ret = map->bus->async_write(map->bus_context,
1583 async->work_buf,
1584 map->format.reg_bytes +
1585 map->format.pad_bytes,
1586 val, val_len, async);
1587 else
1588 ret = map->bus->async_write(map->bus_context,
1589 async->work_buf,
1590 map->format.reg_bytes +
1591 map->format.pad_bytes +
1592 val_len, NULL, 0, async);
1593
1594 if (ret != 0) {
1595 dev_err(map->dev, "Failed to schedule write: %d\n",
1596 ret);
1597
1598 spin_lock_irqsave(&map->async_lock, flags);
1599 list_move(&async->list, &map->async_free);
1600 spin_unlock_irqrestore(&map->async_lock, flags);
1601 }
1602
1603 return ret;
1604 }
1605
1606 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1607
1608 /* If we're doing a single register write we can probably just
1609 * send the work_buf directly, otherwise try to do a gather
1610 * write.
1611 */
1612 if (val == work_val)
1613 ret = map->bus->write(map->bus_context, map->work_buf,
1614 map->format.reg_bytes +
1615 map->format.pad_bytes +
1616 val_len);
1617 else if (map->bus->gather_write)
1618 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1619 map->format.reg_bytes +
1620 map->format.pad_bytes,
1621 val, val_len);
1622 else
1623 ret = -ENOTSUPP;
1624
1625 /* If that didn't work fall back on linearising by hand. */
1626 if (ret == -ENOTSUPP) {
1627 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1628 buf = kzalloc(len, GFP_KERNEL);
1629 if (!buf)
1630 return -ENOMEM;
1631
1632 memcpy(buf, map->work_buf, map->format.reg_bytes);
1633 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1634 val, val_len);
1635 ret = map->bus->write(map->bus_context, buf, len);
1636
1637 kfree(buf);
1638 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1639 /* regcache_drop_region() takes lock that we already have,
1640 * thus call map->cache_ops->drop() directly
1641 */
1642 if (map->cache_ops && map->cache_ops->drop)
1643 map->cache_ops->drop(map, reg, reg + 1);
1644 }
1645
1646 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1647
1648 return ret;
1649}
1650
1651/**
1652 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1653 *
1654 * @map: Map to check.
1655 */
1656bool regmap_can_raw_write(struct regmap *map)
1657{
1658 return map->bus && map->bus->write && map->format.format_val &&
1659 map->format.format_reg;
1660}
1661EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1662
1663/**
1664 * regmap_get_raw_read_max - Get the maximum size we can read
1665 *
1666 * @map: Map to check.
1667 */
1668size_t regmap_get_raw_read_max(struct regmap *map)
1669{
1670 return map->max_raw_read;
1671}
1672EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1673
1674/**
1675 * regmap_get_raw_write_max - Get the maximum size we can read
1676 *
1677 * @map: Map to check.
1678 */
1679size_t regmap_get_raw_write_max(struct regmap *map)
1680{
1681 return map->max_raw_write;
1682}
1683EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1684
1685static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1686 unsigned int val)
1687{
1688 int ret;
1689 struct regmap_range_node *range;
1690 struct regmap *map = context;
1691
1692 WARN_ON(!map->bus || !map->format.format_write);
1693
1694 range = _regmap_range_lookup(map, reg);
1695 if (range) {
1696 ret = _regmap_select_page(map, &reg, range, 1);
1697 if (ret != 0)
1698 return ret;
1699 }
1700
1701 map->format.format_write(map, reg, val);
1702
1703 trace_regmap_hw_write_start(map, reg, 1);
1704
1705 ret = map->bus->write(map->bus_context, map->work_buf,
1706 map->format.buf_size);
1707
1708 trace_regmap_hw_write_done(map, reg, 1);
1709
1710 return ret;
1711}
1712
1713static int _regmap_bus_reg_write(void *context, unsigned int reg,
1714 unsigned int val)
1715{
1716 struct regmap *map = context;
1717
1718 return map->bus->reg_write(map->bus_context, reg, val);
1719}
1720
1721static int _regmap_bus_raw_write(void *context, unsigned int reg,
1722 unsigned int val)
1723{
1724 struct regmap *map = context;
1725
1726 WARN_ON(!map->bus || !map->format.format_val);
1727
1728 map->format.format_val(map->work_buf + map->format.reg_bytes
1729 + map->format.pad_bytes, val, 0);
1730 return _regmap_raw_write_impl(map, reg,
1731 map->work_buf +
1732 map->format.reg_bytes +
1733 map->format.pad_bytes,
1734 map->format.val_bytes);
1735}
1736
1737static inline void *_regmap_map_get_context(struct regmap *map)
1738{
1739 return (map->bus) ? map : map->bus_context;
1740}
1741
1742int _regmap_write(struct regmap *map, unsigned int reg,
1743 unsigned int val)
1744{
1745 int ret;
1746 void *context = _regmap_map_get_context(map);
1747
1748 if (!regmap_writeable(map, reg))
1749 return -EIO;
1750
1751 if (!map->cache_bypass && !map->defer_caching) {
1752 ret = regcache_write(map, reg, val);
1753 if (ret != 0)
1754 return ret;
1755 if (map->cache_only) {
1756 map->cache_dirty = true;
1757 return 0;
1758 }
1759 }
1760
1761#ifdef LOG_DEVICE
1762 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1763 dev_info(map->dev, "%x <= %x\n", reg, val);
1764#endif
1765
1766 trace_regmap_reg_write(map, reg, val);
1767
1768 return map->reg_write(context, reg, val);
1769}
1770
1771/**
1772 * regmap_write() - Write a value to a single register
1773 *
1774 * @map: Register map to write to
1775 * @reg: Register to write to
1776 * @val: Value to be written
1777 *
1778 * A value of zero will be returned on success, a negative errno will
1779 * be returned in error cases.
1780 */
1781int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1782{
1783 int ret;
1784
1785 if (!IS_ALIGNED(reg, map->reg_stride))
1786 return -EINVAL;
1787
1788 map->lock(map->lock_arg);
1789
1790 ret = _regmap_write(map, reg, val);
1791
1792 map->unlock(map->lock_arg);
1793
1794 return ret;
1795}
1796EXPORT_SYMBOL_GPL(regmap_write);
1797
1798/**
1799 * regmap_write_async() - Write a value to a single register asynchronously
1800 *
1801 * @map: Register map to write to
1802 * @reg: Register to write to
1803 * @val: Value to be written
1804 *
1805 * A value of zero will be returned on success, a negative errno will
1806 * be returned in error cases.
1807 */
1808int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1809{
1810 int ret;
1811
1812 if (!IS_ALIGNED(reg, map->reg_stride))
1813 return -EINVAL;
1814
1815 map->lock(map->lock_arg);
1816
1817 map->async = true;
1818
1819 ret = _regmap_write(map, reg, val);
1820
1821 map->async = false;
1822
1823 map->unlock(map->lock_arg);
1824
1825 return ret;
1826}
1827EXPORT_SYMBOL_GPL(regmap_write_async);
1828
1829int _regmap_raw_write(struct regmap *map, unsigned int reg,
1830 const void *val, size_t val_len)
1831{
1832 size_t val_bytes = map->format.val_bytes;
1833 size_t val_count = val_len / val_bytes;
1834 size_t chunk_count, chunk_bytes;
1835 size_t chunk_regs = val_count;
1836 int ret, i;
1837
1838 if (!val_count)
1839 return -EINVAL;
1840
1841 if (map->use_single_write)
1842 chunk_regs = 1;
1843 else if (map->max_raw_write && val_len > map->max_raw_write)
1844 chunk_regs = map->max_raw_write / val_bytes;
1845
1846 chunk_count = val_count / chunk_regs;
1847 chunk_bytes = chunk_regs * val_bytes;
1848
1849 /* Write as many bytes as possible with chunk_size */
1850 for (i = 0; i < chunk_count; i++) {
1851 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1852 if (ret)
1853 return ret;
1854
1855 reg += regmap_get_offset(map, chunk_regs);
1856 val += chunk_bytes;
1857 val_len -= chunk_bytes;
1858 }
1859
1860 /* Write remaining bytes */
1861 if (val_len)
1862 ret = _regmap_raw_write_impl(map, reg, val, val_len);
1863
1864 return ret;
1865}
1866
1867/**
1868 * regmap_raw_write() - Write raw values to one or more registers
1869 *
1870 * @map: Register map to write to
1871 * @reg: Initial register to write to
1872 * @val: Block of data to be written, laid out for direct transmission to the
1873 * device
1874 * @val_len: Length of data pointed to by val.
1875 *
1876 * This function is intended to be used for things like firmware
1877 * download where a large block of data needs to be transferred to the
1878 * device. No formatting will be done on the data provided.
1879 *
1880 * A value of zero will be returned on success, a negative errno will
1881 * be returned in error cases.
1882 */
1883int regmap_raw_write(struct regmap *map, unsigned int reg,
1884 const void *val, size_t val_len)
1885{
1886 int ret;
1887
1888 if (!regmap_can_raw_write(map))
1889 return -EINVAL;
1890 if (val_len % map->format.val_bytes)
1891 return -EINVAL;
1892
1893 map->lock(map->lock_arg);
1894
1895 ret = _regmap_raw_write(map, reg, val, val_len);
1896
1897 map->unlock(map->lock_arg);
1898
1899 return ret;
1900}
1901EXPORT_SYMBOL_GPL(regmap_raw_write);
1902
1903/**
1904 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1905 * register field.
1906 *
1907 * @field: Register field to write to
1908 * @mask: Bitmask to change
1909 * @val: Value to be written
1910 * @change: Boolean indicating if a write was done
1911 * @async: Boolean indicating asynchronously
1912 * @force: Boolean indicating use force update
1913 *
1914 * Perform a read/modify/write cycle on the register field with change,
1915 * async, force option.
1916 *
1917 * A value of zero will be returned on success, a negative errno will
1918 * be returned in error cases.
1919 */
1920int regmap_field_update_bits_base(struct regmap_field *field,
1921 unsigned int mask, unsigned int val,
1922 bool *change, bool async, bool force)
1923{
1924 mask = (mask << field->shift) & field->mask;
1925
1926 return regmap_update_bits_base(field->regmap, field->reg,
1927 mask, val << field->shift,
1928 change, async, force);
1929}
1930EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1931
1932/**
1933 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
1934 * register field with port ID
1935 *
1936 * @field: Register field to write to
1937 * @id: port ID
1938 * @mask: Bitmask to change
1939 * @val: Value to be written
1940 * @change: Boolean indicating if a write was done
1941 * @async: Boolean indicating asynchronously
1942 * @force: Boolean indicating use force update
1943 *
1944 * A value of zero will be returned on success, a negative errno will
1945 * be returned in error cases.
1946 */
1947int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
1948 unsigned int mask, unsigned int val,
1949 bool *change, bool async, bool force)
1950{
1951 if (id >= field->id_size)
1952 return -EINVAL;
1953
1954 mask = (mask << field->shift) & field->mask;
1955
1956 return regmap_update_bits_base(field->regmap,
1957 field->reg + (field->id_offset * id),
1958 mask, val << field->shift,
1959 change, async, force);
1960}
1961EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1962
1963/**
1964 * regmap_bulk_write() - Write multiple registers to the device
1965 *
1966 * @map: Register map to write to
1967 * @reg: First register to be write from
1968 * @val: Block of data to be written, in native register size for device
1969 * @val_count: Number of registers to write
1970 *
1971 * This function is intended to be used for writing a large block of
1972 * data to the device either in single transfer or multiple transfer.
1973 *
1974 * A value of zero will be returned on success, a negative errno will
1975 * be returned in error cases.
1976 */
1977int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1978 size_t val_count)
1979{
1980 int ret = 0, i;
1981 size_t val_bytes = map->format.val_bytes;
1982
1983 if (!IS_ALIGNED(reg, map->reg_stride))
1984 return -EINVAL;
1985
1986 /*
1987 * Some devices don't support bulk write, for them we have a series of
1988 * single write operations.
1989 */
1990 if (!map->bus || !map->format.parse_inplace) {
1991 map->lock(map->lock_arg);
1992 for (i = 0; i < val_count; i++) {
1993 unsigned int ival;
1994
1995 switch (val_bytes) {
1996 case 1:
1997 ival = *(u8 *)(val + (i * val_bytes));
1998 break;
1999 case 2:
2000 ival = *(u16 *)(val + (i * val_bytes));
2001 break;
2002 case 4:
2003 ival = *(u32 *)(val + (i * val_bytes));
2004 break;
2005#ifdef CONFIG_64BIT
2006 case 8:
2007 ival = *(u64 *)(val + (i * val_bytes));
2008 break;
2009#endif
2010 default:
2011 ret = -EINVAL;
2012 goto out;
2013 }
2014
2015 ret = _regmap_write(map,
2016 reg + regmap_get_offset(map, i),
2017 ival);
2018 if (ret != 0)
2019 goto out;
2020 }
2021out:
2022 map->unlock(map->lock_arg);
2023 } else {
2024 void *wval;
2025
2026 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2027 if (!wval)
2028 return -ENOMEM;
2029
2030 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2031 map->format.parse_inplace(wval + i);
2032
2033 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2034
2035 kfree(wval);
2036 }
2037 return ret;
2038}
2039EXPORT_SYMBOL_GPL(regmap_bulk_write);
2040
2041/*
2042 * _regmap_raw_multi_reg_write()
2043 *
2044 * the (register,newvalue) pairs in regs have not been formatted, but
2045 * they are all in the same page and have been changed to being page
2046 * relative. The page register has been written if that was necessary.
2047 */
2048static int _regmap_raw_multi_reg_write(struct regmap *map,
2049 const struct reg_sequence *regs,
2050 size_t num_regs)
2051{
2052 int ret;
2053 void *buf;
2054 int i;
2055 u8 *u8;
2056 size_t val_bytes = map->format.val_bytes;
2057 size_t reg_bytes = map->format.reg_bytes;
2058 size_t pad_bytes = map->format.pad_bytes;
2059 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2060 size_t len = pair_size * num_regs;
2061
2062 if (!len)
2063 return -EINVAL;
2064
2065 buf = kzalloc(len, GFP_KERNEL);
2066 if (!buf)
2067 return -ENOMEM;
2068
2069 /* We have to linearise by hand. */
2070
2071 u8 = buf;
2072
2073 for (i = 0; i < num_regs; i++) {
2074 unsigned int reg = regs[i].reg;
2075 unsigned int val = regs[i].def;
2076 trace_regmap_hw_write_start(map, reg, 1);
2077 map->format.format_reg(u8, reg, map->reg_shift);
2078 u8 += reg_bytes + pad_bytes;
2079 map->format.format_val(u8, val, 0);
2080 u8 += val_bytes;
2081 }
2082 u8 = buf;
2083 *u8 |= map->write_flag_mask;
2084
2085 ret = map->bus->write(map->bus_context, buf, len);
2086
2087 kfree(buf);
2088
2089 for (i = 0; i < num_regs; i++) {
2090 int reg = regs[i].reg;
2091 trace_regmap_hw_write_done(map, reg, 1);
2092 }
2093 return ret;
2094}
2095
2096static unsigned int _regmap_register_page(struct regmap *map,
2097 unsigned int reg,
2098 struct regmap_range_node *range)
2099{
2100 unsigned int win_page = (reg - range->range_min) / range->window_len;
2101
2102 return win_page;
2103}
2104
2105static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2106 struct reg_sequence *regs,
2107 size_t num_regs)
2108{
2109 int ret;
2110 int i, n;
2111 struct reg_sequence *base;
2112 unsigned int this_page = 0;
2113 unsigned int page_change = 0;
2114 /*
2115 * the set of registers are not neccessarily in order, but
2116 * since the order of write must be preserved this algorithm
2117 * chops the set each time the page changes. This also applies
2118 * if there is a delay required at any point in the sequence.
2119 */
2120 base = regs;
2121 for (i = 0, n = 0; i < num_regs; i++, n++) {
2122 unsigned int reg = regs[i].reg;
2123 struct regmap_range_node *range;
2124
2125 range = _regmap_range_lookup(map, reg);
2126 if (range) {
2127 unsigned int win_page = _regmap_register_page(map, reg,
2128 range);
2129
2130 if (i == 0)
2131 this_page = win_page;
2132 if (win_page != this_page) {
2133 this_page = win_page;
2134 page_change = 1;
2135 }
2136 }
2137
2138 /* If we have both a page change and a delay make sure to
2139 * write the regs and apply the delay before we change the
2140 * page.
2141 */
2142
2143 if (page_change || regs[i].delay_us) {
2144
2145 /* For situations where the first write requires
2146 * a delay we need to make sure we don't call
2147 * raw_multi_reg_write with n=0
2148 * This can't occur with page breaks as we
2149 * never write on the first iteration
2150 */
2151 if (regs[i].delay_us && i == 0)
2152 n = 1;
2153
2154 ret = _regmap_raw_multi_reg_write(map, base, n);
2155 if (ret != 0)
2156 return ret;
2157
2158 if (regs[i].delay_us)
2159 udelay(regs[i].delay_us);
2160
2161 base += n;
2162 n = 0;
2163
2164 if (page_change) {
2165 ret = _regmap_select_page(map,
2166 &base[n].reg,
2167 range, 1);
2168 if (ret != 0)
2169 return ret;
2170
2171 page_change = 0;
2172 }
2173
2174 }
2175
2176 }
2177 if (n > 0)
2178 return _regmap_raw_multi_reg_write(map, base, n);
2179 return 0;
2180}
2181
2182static int _regmap_multi_reg_write(struct regmap *map,
2183 const struct reg_sequence *regs,
2184 size_t num_regs)
2185{
2186 int i;
2187 int ret;
2188
2189 if (!map->can_multi_write) {
2190 for (i = 0; i < num_regs; i++) {
2191 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2192 if (ret != 0)
2193 return ret;
2194
2195 if (regs[i].delay_us)
2196 udelay(regs[i].delay_us);
2197 }
2198 return 0;
2199 }
2200
2201 if (!map->format.parse_inplace)
2202 return -EINVAL;
2203
2204 if (map->writeable_reg)
2205 for (i = 0; i < num_regs; i++) {
2206 int reg = regs[i].reg;
2207 if (!map->writeable_reg(map->dev, reg))
2208 return -EINVAL;
2209 if (!IS_ALIGNED(reg, map->reg_stride))
2210 return -EINVAL;
2211 }
2212
2213 if (!map->cache_bypass) {
2214 for (i = 0; i < num_regs; i++) {
2215 unsigned int val = regs[i].def;
2216 unsigned int reg = regs[i].reg;
2217 ret = regcache_write(map, reg, val);
2218 if (ret) {
2219 dev_err(map->dev,
2220 "Error in caching of register: %x ret: %d\n",
2221 reg, ret);
2222 return ret;
2223 }
2224 }
2225 if (map->cache_only) {
2226 map->cache_dirty = true;
2227 return 0;
2228 }
2229 }
2230
2231 WARN_ON(!map->bus);
2232
2233 for (i = 0; i < num_regs; i++) {
2234 unsigned int reg = regs[i].reg;
2235 struct regmap_range_node *range;
2236
2237 /* Coalesce all the writes between a page break or a delay
2238 * in a sequence
2239 */
2240 range = _regmap_range_lookup(map, reg);
2241 if (range || regs[i].delay_us) {
2242 size_t len = sizeof(struct reg_sequence)*num_regs;
2243 struct reg_sequence *base = kmemdup(regs, len,
2244 GFP_KERNEL);
2245 if (!base)
2246 return -ENOMEM;
2247 ret = _regmap_range_multi_paged_reg_write(map, base,
2248 num_regs);
2249 kfree(base);
2250
2251 return ret;
2252 }
2253 }
2254 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2255}
2256
2257/**
2258 * regmap_multi_reg_write() - Write multiple registers to the device
2259 *
2260 * @map: Register map to write to
2261 * @regs: Array of structures containing register,value to be written
2262 * @num_regs: Number of registers to write
2263 *
2264 * Write multiple registers to the device where the set of register, value
2265 * pairs are supplied in any order, possibly not all in a single range.
2266 *
2267 * The 'normal' block write mode will send ultimately send data on the
2268 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2269 * addressed. However, this alternative block multi write mode will send
2270 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2271 * must of course support the mode.
2272 *
2273 * A value of zero will be returned on success, a negative errno will be
2274 * returned in error cases.
2275 */
2276int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2277 int num_regs)
2278{
2279 int ret;
2280
2281 map->lock(map->lock_arg);
2282
2283 ret = _regmap_multi_reg_write(map, regs, num_regs);
2284
2285 map->unlock(map->lock_arg);
2286
2287 return ret;
2288}
2289EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2290
2291/**
2292 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2293 * device but not the cache
2294 *
2295 * @map: Register map to write to
2296 * @regs: Array of structures containing register,value to be written
2297 * @num_regs: Number of registers to write
2298 *
2299 * Write multiple registers to the device but not the cache where the set
2300 * of register are supplied in any order.
2301 *
2302 * This function is intended to be used for writing a large block of data
2303 * atomically to the device in single transfer for those I2C client devices
2304 * that implement this alternative block write mode.
2305 *
2306 * A value of zero will be returned on success, a negative errno will
2307 * be returned in error cases.
2308 */
2309int regmap_multi_reg_write_bypassed(struct regmap *map,
2310 const struct reg_sequence *regs,
2311 int num_regs)
2312{
2313 int ret;
2314 bool bypass;
2315
2316 map->lock(map->lock_arg);
2317
2318 bypass = map->cache_bypass;
2319 map->cache_bypass = true;
2320
2321 ret = _regmap_multi_reg_write(map, regs, num_regs);
2322
2323 map->cache_bypass = bypass;
2324
2325 map->unlock(map->lock_arg);
2326
2327 return ret;
2328}
2329EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2330
2331/**
2332 * regmap_raw_write_async() - Write raw values to one or more registers
2333 * asynchronously
2334 *
2335 * @map: Register map to write to
2336 * @reg: Initial register to write to
2337 * @val: Block of data to be written, laid out for direct transmission to the
2338 * device. Must be valid until regmap_async_complete() is called.
2339 * @val_len: Length of data pointed to by val.
2340 *
2341 * This function is intended to be used for things like firmware
2342 * download where a large block of data needs to be transferred to the
2343 * device. No formatting will be done on the data provided.
2344 *
2345 * If supported by the underlying bus the write will be scheduled
2346 * asynchronously, helping maximise I/O speed on higher speed buses
2347 * like SPI. regmap_async_complete() can be called to ensure that all
2348 * asynchrnous writes have been completed.
2349 *
2350 * A value of zero will be returned on success, a negative errno will
2351 * be returned in error cases.
2352 */
2353int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2354 const void *val, size_t val_len)
2355{
2356 int ret;
2357
2358 if (val_len % map->format.val_bytes)
2359 return -EINVAL;
2360 if (!IS_ALIGNED(reg, map->reg_stride))
2361 return -EINVAL;
2362
2363 map->lock(map->lock_arg);
2364
2365 map->async = true;
2366
2367 ret = _regmap_raw_write(map, reg, val, val_len);
2368
2369 map->async = false;
2370
2371 map->unlock(map->lock_arg);
2372
2373 return ret;
2374}
2375EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2376
2377static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2378 unsigned int val_len)
2379{
2380 struct regmap_range_node *range;
2381 int ret;
2382
2383 WARN_ON(!map->bus);
2384
2385 if (!map->bus || !map->bus->read)
2386 return -EINVAL;
2387
2388 range = _regmap_range_lookup(map, reg);
2389 if (range) {
2390 ret = _regmap_select_page(map, &reg, range,
2391 val_len / map->format.val_bytes);
2392 if (ret != 0)
2393 return ret;
2394 }
2395
2396 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2397 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2398 map->read_flag_mask);
2399 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2400
2401 ret = map->bus->read(map->bus_context, map->work_buf,
2402 map->format.reg_bytes + map->format.pad_bytes,
2403 val, val_len);
2404
2405 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2406
2407 return ret;
2408}
2409
2410static int _regmap_bus_reg_read(void *context, unsigned int reg,
2411 unsigned int *val)
2412{
2413 struct regmap *map = context;
2414
2415 return map->bus->reg_read(map->bus_context, reg, val);
2416}
2417
2418static int _regmap_bus_read(void *context, unsigned int reg,
2419 unsigned int *val)
2420{
2421 int ret;
2422 struct regmap *map = context;
2423 void *work_val = map->work_buf + map->format.reg_bytes +
2424 map->format.pad_bytes;
2425
2426 if (!map->format.parse_val)
2427 return -EINVAL;
2428
2429 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2430 if (ret == 0)
2431 *val = map->format.parse_val(work_val);
2432
2433 return ret;
2434}
2435
2436static int _regmap_read(struct regmap *map, unsigned int reg,
2437 unsigned int *val)
2438{
2439 int ret;
2440 void *context = _regmap_map_get_context(map);
2441
2442 if (!map->cache_bypass) {
2443 ret = regcache_read(map, reg, val);
2444 if (ret == 0)
2445 return 0;
2446 }
2447
2448 if (map->cache_only)
2449 return -EBUSY;
2450
2451 if (!regmap_readable(map, reg))
2452 return -EIO;
2453
2454 ret = map->reg_read(context, reg, val);
2455 if (ret == 0) {
2456#ifdef LOG_DEVICE
2457 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2458 dev_info(map->dev, "%x => %x\n", reg, *val);
2459#endif
2460
2461 trace_regmap_reg_read(map, reg, *val);
2462
2463 if (!map->cache_bypass)
2464 regcache_write(map, reg, *val);
2465 }
2466
2467 return ret;
2468}
2469
2470/**
2471 * regmap_read() - Read a value from a single register
2472 *
2473 * @map: Register map to read from
2474 * @reg: Register to be read from
2475 * @val: Pointer to store read value
2476 *
2477 * A value of zero will be returned on success, a negative errno will
2478 * be returned in error cases.
2479 */
2480int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2481{
2482 int ret;
2483
2484 if (!IS_ALIGNED(reg, map->reg_stride))
2485 return -EINVAL;
2486
2487 map->lock(map->lock_arg);
2488
2489 ret = _regmap_read(map, reg, val);
2490
2491 map->unlock(map->lock_arg);
2492
2493 return ret;
2494}
2495EXPORT_SYMBOL_GPL(regmap_read);
2496
2497/**
2498 * regmap_raw_read() - Read raw data from the device
2499 *
2500 * @map: Register map to read from
2501 * @reg: First register to be read from
2502 * @val: Pointer to store read value
2503 * @val_len: Size of data to read
2504 *
2505 * A value of zero will be returned on success, a negative errno will
2506 * be returned in error cases.
2507 */
2508int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2509 size_t val_len)
2510{
2511 size_t val_bytes = map->format.val_bytes;
2512 size_t val_count = val_len / val_bytes;
2513 unsigned int v;
2514 int ret, i;
2515
2516 if (!map->bus)
2517 return -EINVAL;
2518 if (val_len % map->format.val_bytes)
2519 return -EINVAL;
2520 if (!IS_ALIGNED(reg, map->reg_stride))
2521 return -EINVAL;
2522 if (val_count == 0)
2523 return -EINVAL;
2524
2525 map->lock(map->lock_arg);
2526
2527 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2528 map->cache_type == REGCACHE_NONE) {
2529 size_t chunk_count, chunk_bytes;
2530 size_t chunk_regs = val_count;
2531
2532 if (!map->bus->read) {
2533 ret = -ENOTSUPP;
2534 goto out;
2535 }
2536
2537 if (map->use_single_read)
2538 chunk_regs = 1;
2539 else if (map->max_raw_read && val_len > map->max_raw_read)
2540 chunk_regs = map->max_raw_read / val_bytes;
2541
2542 chunk_count = val_count / chunk_regs;
2543 chunk_bytes = chunk_regs * val_bytes;
2544
2545 /* Read bytes that fit into whole chunks */
2546 for (i = 0; i < chunk_count; i++) {
2547 ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2548 if (ret != 0)
2549 goto out;
2550
2551 reg += regmap_get_offset(map, chunk_regs);
2552 val += chunk_bytes;
2553 val_len -= chunk_bytes;
2554 }
2555
2556 /* Read remaining bytes */
2557 if (val_len) {
2558 ret = _regmap_raw_read(map, reg, val, val_len);
2559 if (ret != 0)
2560 goto out;
2561 }
2562 } else {
2563 /* Otherwise go word by word for the cache; should be low
2564 * cost as we expect to hit the cache.
2565 */
2566 for (i = 0; i < val_count; i++) {
2567 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2568 &v);
2569 if (ret != 0)
2570 goto out;
2571
2572 map->format.format_val(val + (i * val_bytes), v, 0);
2573 }
2574 }
2575
2576 out:
2577 map->unlock(map->lock_arg);
2578
2579 return ret;
2580}
2581EXPORT_SYMBOL_GPL(regmap_raw_read);
2582
2583/**
2584 * regmap_noinc_read(): Read data from a register without incrementing the
2585 * register number
2586 *
2587 * @map: Register map to read from
2588 * @reg: Register to read from
2589 * @val: Pointer to data buffer
2590 * @val_len: Length of output buffer in bytes.
2591 *
2592 * The regmap API usually assumes that bulk bus read operations will read a
2593 * range of registers. Some devices have certain registers for which a read
2594 * operation read will read from an internal FIFO.
2595 *
2596 * The target register must be volatile but registers after it can be
2597 * completely unrelated cacheable registers.
2598 *
2599 * This will attempt multiple reads as required to read val_len bytes.
2600 *
2601 * A value of zero will be returned on success, a negative errno will be
2602 * returned in error cases.
2603 */
2604int regmap_noinc_read(struct regmap *map, unsigned int reg,
2605 void *val, size_t val_len)
2606{
2607 size_t read_len;
2608 int ret;
2609
2610 if (!map->bus)
2611 return -EINVAL;
2612 if (!map->bus->read)
2613 return -ENOTSUPP;
2614 if (val_len % map->format.val_bytes)
2615 return -EINVAL;
2616 if (!IS_ALIGNED(reg, map->reg_stride))
2617 return -EINVAL;
2618 if (val_len == 0)
2619 return -EINVAL;
2620
2621 map->lock(map->lock_arg);
2622
2623 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2624 ret = -EINVAL;
2625 goto out_unlock;
2626 }
2627
2628 while (val_len) {
2629 if (map->max_raw_read && map->max_raw_read < val_len)
2630 read_len = map->max_raw_read;
2631 else
2632 read_len = val_len;
2633 ret = _regmap_raw_read(map, reg, val, read_len);
2634 if (ret)
2635 goto out_unlock;
2636 val = ((u8 *)val) + read_len;
2637 val_len -= read_len;
2638 }
2639
2640out_unlock:
2641 map->unlock(map->lock_arg);
2642 return ret;
2643}
2644EXPORT_SYMBOL_GPL(regmap_noinc_read);
2645
2646/**
2647 * regmap_field_read(): Read a value to a single register field
2648 *
2649 * @field: Register field to read from
2650 * @val: Pointer to store read value
2651 *
2652 * A value of zero will be returned on success, a negative errno will
2653 * be returned in error cases.
2654 */
2655int regmap_field_read(struct regmap_field *field, unsigned int *val)
2656{
2657 int ret;
2658 unsigned int reg_val;
2659 ret = regmap_read(field->regmap, field->reg, &reg_val);
2660 if (ret != 0)
2661 return ret;
2662
2663 reg_val &= field->mask;
2664 reg_val >>= field->shift;
2665 *val = reg_val;
2666
2667 return ret;
2668}
2669EXPORT_SYMBOL_GPL(regmap_field_read);
2670
2671/**
2672 * regmap_fields_read() - Read a value to a single register field with port ID
2673 *
2674 * @field: Register field to read from
2675 * @id: port ID
2676 * @val: Pointer to store read value
2677 *
2678 * A value of zero will be returned on success, a negative errno will
2679 * be returned in error cases.
2680 */
2681int regmap_fields_read(struct regmap_field *field, unsigned int id,
2682 unsigned int *val)
2683{
2684 int ret;
2685 unsigned int reg_val;
2686
2687 if (id >= field->id_size)
2688 return -EINVAL;
2689
2690 ret = regmap_read(field->regmap,
2691 field->reg + (field->id_offset * id),
2692 &reg_val);
2693 if (ret != 0)
2694 return ret;
2695
2696 reg_val &= field->mask;
2697 reg_val >>= field->shift;
2698 *val = reg_val;
2699
2700 return ret;
2701}
2702EXPORT_SYMBOL_GPL(regmap_fields_read);
2703
2704/**
2705 * regmap_bulk_read() - Read multiple registers from the device
2706 *
2707 * @map: Register map to read from
2708 * @reg: First register to be read from
2709 * @val: Pointer to store read value, in native register size for device
2710 * @val_count: Number of registers to read
2711 *
2712 * A value of zero will be returned on success, a negative errno will
2713 * be returned in error cases.
2714 */
2715int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2716 size_t val_count)
2717{
2718 int ret, i;
2719 size_t val_bytes = map->format.val_bytes;
2720 bool vol = regmap_volatile_range(map, reg, val_count);
2721
2722 if (!IS_ALIGNED(reg, map->reg_stride))
2723 return -EINVAL;
2724 if (val_count == 0)
2725 return -EINVAL;
2726
2727 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2728 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2729 if (ret != 0)
2730 return ret;
2731
2732 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2733 map->format.parse_inplace(val + i);
2734 } else {
2735#ifdef CONFIG_64BIT
2736 u64 *u64 = val;
2737#endif
2738 u32 *u32 = val;
2739 u16 *u16 = val;
2740 u8 *u8 = val;
2741
2742 map->lock(map->lock_arg);
2743
2744 for (i = 0; i < val_count; i++) {
2745 unsigned int ival;
2746
2747 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2748 &ival);
2749 if (ret != 0)
2750 goto out;
2751
2752 switch (map->format.val_bytes) {
2753#ifdef CONFIG_64BIT
2754 case 8:
2755 u64[i] = ival;
2756 break;
2757#endif
2758 case 4:
2759 u32[i] = ival;
2760 break;
2761 case 2:
2762 u16[i] = ival;
2763 break;
2764 case 1:
2765 u8[i] = ival;
2766 break;
2767 default:
2768 ret = -EINVAL;
2769 goto out;
2770 }
2771 }
2772
2773out:
2774 map->unlock(map->lock_arg);
2775 }
2776
2777 return ret;
2778}
2779EXPORT_SYMBOL_GPL(regmap_bulk_read);
2780
2781static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2782 unsigned int mask, unsigned int val,
2783 bool *change, bool force_write)
2784{
2785 int ret;
2786 unsigned int tmp, orig;
2787
2788 if (change)
2789 *change = false;
2790
2791 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2792 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2793 if (ret == 0 && change)
2794 *change = true;
2795 } else {
2796 ret = _regmap_read(map, reg, &orig);
2797 if (ret != 0)
2798 return ret;
2799
2800 tmp = orig & ~mask;
2801 tmp |= val & mask;
2802
2803 if (force_write || (tmp != orig)) {
2804 ret = _regmap_write(map, reg, tmp);
2805 if (ret == 0 && change)
2806 *change = true;
2807 }
2808 }
2809
2810 return ret;
2811}
2812
2813/**
2814 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2815 *
2816 * @map: Register map to update
2817 * @reg: Register to update
2818 * @mask: Bitmask to change
2819 * @val: New value for bitmask
2820 * @change: Boolean indicating if a write was done
2821 * @async: Boolean indicating asynchronously
2822 * @force: Boolean indicating use force update
2823 *
2824 * Perform a read/modify/write cycle on a register map with change, async, force
2825 * options.
2826 *
2827 * If async is true:
2828 *
2829 * With most buses the read must be done synchronously so this is most useful
2830 * for devices with a cache which do not need to interact with the hardware to
2831 * determine the current register value.
2832 *
2833 * Returns zero for success, a negative number on error.
2834 */
2835int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2836 unsigned int mask, unsigned int val,
2837 bool *change, bool async, bool force)
2838{
2839 int ret;
2840
2841 map->lock(map->lock_arg);
2842
2843 map->async = async;
2844
2845 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2846
2847 map->async = false;
2848
2849 map->unlock(map->lock_arg);
2850
2851 return ret;
2852}
2853EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2854
2855void regmap_async_complete_cb(struct regmap_async *async, int ret)
2856{
2857 struct regmap *map = async->map;
2858 bool wake;
2859
2860 trace_regmap_async_io_complete(map);
2861
2862 spin_lock(&map->async_lock);
2863 list_move(&async->list, &map->async_free);
2864 wake = list_empty(&map->async_list);
2865
2866 if (ret != 0)
2867 map->async_ret = ret;
2868
2869 spin_unlock(&map->async_lock);
2870
2871 if (wake)
2872 wake_up(&map->async_waitq);
2873}
2874EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2875
2876static int regmap_async_is_done(struct regmap *map)
2877{
2878 unsigned long flags;
2879 int ret;
2880
2881 spin_lock_irqsave(&map->async_lock, flags);
2882 ret = list_empty(&map->async_list);
2883 spin_unlock_irqrestore(&map->async_lock, flags);
2884
2885 return ret;
2886}
2887
2888/**
2889 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2890 *
2891 * @map: Map to operate on.
2892 *
2893 * Blocks until any pending asynchronous I/O has completed. Returns
2894 * an error code for any failed I/O operations.
2895 */
2896int regmap_async_complete(struct regmap *map)
2897{
2898 unsigned long flags;
2899 int ret;
2900
2901 /* Nothing to do with no async support */
2902 if (!map->bus || !map->bus->async_write)
2903 return 0;
2904
2905 trace_regmap_async_complete_start(map);
2906
2907 wait_event(map->async_waitq, regmap_async_is_done(map));
2908
2909 spin_lock_irqsave(&map->async_lock, flags);
2910 ret = map->async_ret;
2911 map->async_ret = 0;
2912 spin_unlock_irqrestore(&map->async_lock, flags);
2913
2914 trace_regmap_async_complete_done(map);
2915
2916 return ret;
2917}
2918EXPORT_SYMBOL_GPL(regmap_async_complete);
2919
2920/**
2921 * regmap_register_patch - Register and apply register updates to be applied
2922 * on device initialistion
2923 *
2924 * @map: Register map to apply updates to.
2925 * @regs: Values to update.
2926 * @num_regs: Number of entries in regs.
2927 *
2928 * Register a set of register updates to be applied to the device
2929 * whenever the device registers are synchronised with the cache and
2930 * apply them immediately. Typically this is used to apply
2931 * corrections to be applied to the device defaults on startup, such
2932 * as the updates some vendors provide to undocumented registers.
2933 *
2934 * The caller must ensure that this function cannot be called
2935 * concurrently with either itself or regcache_sync().
2936 */
2937int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2938 int num_regs)
2939{
2940 struct reg_sequence *p;
2941 int ret;
2942 bool bypass;
2943
2944 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2945 num_regs))
2946 return 0;
2947
2948 p = krealloc(map->patch,
2949 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2950 GFP_KERNEL);
2951 if (p) {
2952 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2953 map->patch = p;
2954 map->patch_regs += num_regs;
2955 } else {
2956 return -ENOMEM;
2957 }
2958
2959 map->lock(map->lock_arg);
2960
2961 bypass = map->cache_bypass;
2962
2963 map->cache_bypass = true;
2964 map->async = true;
2965
2966 ret = _regmap_multi_reg_write(map, regs, num_regs);
2967
2968 map->async = false;
2969 map->cache_bypass = bypass;
2970
2971 map->unlock(map->lock_arg);
2972
2973 regmap_async_complete(map);
2974
2975 return ret;
2976}
2977EXPORT_SYMBOL_GPL(regmap_register_patch);
2978
2979/**
2980 * regmap_get_val_bytes() - Report the size of a register value
2981 *
2982 * @map: Register map to operate on.
2983 *
2984 * Report the size of a register value, mainly intended to for use by
2985 * generic infrastructure built on top of regmap.
2986 */
2987int regmap_get_val_bytes(struct regmap *map)
2988{
2989 if (map->format.format_write)
2990 return -EINVAL;
2991
2992 return map->format.val_bytes;
2993}
2994EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2995
2996/**
2997 * regmap_get_max_register() - Report the max register value
2998 *
2999 * @map: Register map to operate on.
3000 *
3001 * Report the max register value, mainly intended to for use by
3002 * generic infrastructure built on top of regmap.
3003 */
3004int regmap_get_max_register(struct regmap *map)
3005{
3006 return map->max_register ? map->max_register : -EINVAL;
3007}
3008EXPORT_SYMBOL_GPL(regmap_get_max_register);
3009
3010/**
3011 * regmap_get_reg_stride() - Report the register address stride
3012 *
3013 * @map: Register map to operate on.
3014 *
3015 * Report the register address stride, mainly intended to for use by
3016 * generic infrastructure built on top of regmap.
3017 */
3018int regmap_get_reg_stride(struct regmap *map)
3019{
3020 return map->reg_stride;
3021}
3022EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3023
3024int regmap_parse_val(struct regmap *map, const void *buf,
3025 unsigned int *val)
3026{
3027 if (!map->format.parse_val)
3028 return -EINVAL;
3029
3030 *val = map->format.parse_val(buf);
3031
3032 return 0;
3033}
3034EXPORT_SYMBOL_GPL(regmap_parse_val);
3035
3036static int __init regmap_initcall(void)
3037{
3038 regmap_debugfs_initcall();
3039
3040 return 0;
3041}
3042postcore_initcall(regmap_initcall);
3043
3044MODULE_LICENSE("GPL");