| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (c) 2003-2012 Broadcom Corporation | 
|  | 3 | * All Rights Reserved | 
|  | 4 | * | 
|  | 5 | * This software is available to you under a choice of one of two | 
|  | 6 | * licenses.  You may choose to be licensed under the terms of the GNU | 
|  | 7 | * General Public License (GPL) Version 2, available from the file | 
|  | 8 | * COPYING in the main directory of this source tree, or the Broadcom | 
|  | 9 | * license below: | 
|  | 10 | * | 
|  | 11 | * Redistribution and use in source and binary forms, with or without | 
|  | 12 | * modification, are permitted provided that the following conditions | 
|  | 13 | * are met: | 
|  | 14 | * | 
|  | 15 | * 1. Redistributions of source code must retain the above copyright | 
|  | 16 | *    notice, this list of conditions and the following disclaimer. | 
|  | 17 | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | 18 | *    notice, this list of conditions and the following disclaimer in | 
|  | 19 | *    the documentation and/or other materials provided with the | 
|  | 20 | *    distribution. | 
|  | 21 | * | 
|  | 22 | * THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR | 
|  | 23 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | 
|  | 24 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | 25 | * ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE | 
|  | 26 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | 27 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
|  | 28 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | 
|  | 29 | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | 
|  | 30 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE | 
|  | 31 | * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN | 
|  | 32 | * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | 33 | */ | 
|  | 34 |  | 
|  | 35 | #include <linux/types.h> | 
|  | 36 | #include <linux/pci.h> | 
|  | 37 | #include <linux/kernel.h> | 
|  | 38 | #include <linux/init.h> | 
|  | 39 | #include <linux/msi.h> | 
|  | 40 | #include <linux/mm.h> | 
|  | 41 | #include <linux/irq.h> | 
|  | 42 | #include <linux/irqdesc.h> | 
|  | 43 | #include <linux/console.h> | 
|  | 44 |  | 
|  | 45 | #include <asm/io.h> | 
|  | 46 |  | 
|  | 47 | #include <asm/netlogic/interrupt.h> | 
|  | 48 | #include <asm/netlogic/haldefs.h> | 
|  | 49 | #include <asm/netlogic/common.h> | 
|  | 50 | #include <asm/netlogic/mips-extns.h> | 
|  | 51 |  | 
|  | 52 | #include <asm/netlogic/xlp-hal/iomap.h> | 
|  | 53 | #include <asm/netlogic/xlp-hal/xlp.h> | 
|  | 54 | #include <asm/netlogic/xlp-hal/pic.h> | 
|  | 55 | #include <asm/netlogic/xlp-hal/pcibus.h> | 
|  | 56 | #include <asm/netlogic/xlp-hal/bridge.h> | 
|  | 57 |  | 
|  | 58 | #define XLP_MSIVEC_PER_LINK	32 | 
|  | 59 | #define XLP_MSIXVEC_TOTAL	(cpu_is_xlp9xx() ? 128 : 32) | 
|  | 60 | #define XLP_MSIXVEC_PER_LINK	(cpu_is_xlp9xx() ? 32 : 8) | 
|  | 61 |  | 
|  | 62 | /* 128 MSI irqs per node, mapped starting at NLM_MSI_VEC_BASE */ | 
|  | 63 | static inline int nlm_link_msiirq(int link, int msivec) | 
|  | 64 | { | 
|  | 65 | return NLM_MSI_VEC_BASE + link * XLP_MSIVEC_PER_LINK + msivec; | 
|  | 66 | } | 
|  | 67 |  | 
|  | 68 | /* get the link MSI vector from irq number */ | 
|  | 69 | static inline int nlm_irq_msivec(int irq) | 
|  | 70 | { | 
|  | 71 | return (irq - NLM_MSI_VEC_BASE) % XLP_MSIVEC_PER_LINK; | 
|  | 72 | } | 
|  | 73 |  | 
|  | 74 | /* get the link from the irq number */ | 
|  | 75 | static inline int nlm_irq_msilink(int irq) | 
|  | 76 | { | 
|  | 77 | int total_msivec = XLP_MSIVEC_PER_LINK * PCIE_NLINKS; | 
|  | 78 |  | 
|  | 79 | return ((irq - NLM_MSI_VEC_BASE) % total_msivec) / | 
|  | 80 | XLP_MSIVEC_PER_LINK; | 
|  | 81 | } | 
|  | 82 |  | 
|  | 83 | /* | 
|  | 84 | * For XLP 8xx/4xx/3xx/2xx, only 32 MSI-X vectors are possible because | 
|  | 85 | * there are only 32 PIC interrupts for MSI. We split them statically | 
|  | 86 | * and use 8 MSI-X vectors per link - this keeps the allocation and | 
|  | 87 | * lookup simple. | 
|  | 88 | * On XLP 9xx, there are 32 vectors per link, and the interrupts are | 
|  | 89 | * not routed thru PIC, so we can use all 128 MSI-X vectors. | 
|  | 90 | */ | 
|  | 91 | static inline int nlm_link_msixirq(int link, int bit) | 
|  | 92 | { | 
|  | 93 | return NLM_MSIX_VEC_BASE + link * XLP_MSIXVEC_PER_LINK + bit; | 
|  | 94 | } | 
|  | 95 |  | 
|  | 96 | /* get the link MSI vector from irq number */ | 
|  | 97 | static inline int nlm_irq_msixvec(int irq) | 
|  | 98 | { | 
|  | 99 | return (irq - NLM_MSIX_VEC_BASE) % XLP_MSIXVEC_TOTAL; | 
|  | 100 | } | 
|  | 101 |  | 
|  | 102 | /* get the link from MSIX vec */ | 
|  | 103 | static inline int nlm_irq_msixlink(int msixvec) | 
|  | 104 | { | 
|  | 105 | return msixvec / XLP_MSIXVEC_PER_LINK; | 
|  | 106 | } | 
|  | 107 |  | 
|  | 108 | /* | 
|  | 109 | * Per link MSI and MSI-X information, set as IRQ handler data for | 
|  | 110 | * MSI and MSI-X interrupts. | 
|  | 111 | */ | 
|  | 112 | struct xlp_msi_data { | 
|  | 113 | struct nlm_soc_info *node; | 
|  | 114 | uint64_t	lnkbase; | 
|  | 115 | uint32_t	msi_enabled_mask; | 
|  | 116 | uint32_t	msi_alloc_mask; | 
|  | 117 | uint32_t	msix_alloc_mask; | 
|  | 118 | spinlock_t	msi_lock; | 
|  | 119 | }; | 
|  | 120 |  | 
|  | 121 | /* | 
|  | 122 | * MSI Chip definitions | 
|  | 123 | * | 
|  | 124 | * On XLP, there is a PIC interrupt associated with each PCIe link on the | 
|  | 125 | * chip (which appears as a PCI bridge to us). This gives us 32 MSI irqa | 
|  | 126 | * per link and 128 overall. | 
|  | 127 | * | 
|  | 128 | * When a device connected to the link raises a MSI interrupt, we get a | 
|  | 129 | * link interrupt and we then have to look at PCIE_MSI_STATUS register at | 
|  | 130 | * the bridge to map it to the IRQ | 
|  | 131 | */ | 
|  | 132 | static void xlp_msi_enable(struct irq_data *d) | 
|  | 133 | { | 
|  | 134 | struct xlp_msi_data *md = irq_data_get_irq_chip_data(d); | 
|  | 135 | unsigned long flags; | 
|  | 136 | int vec; | 
|  | 137 |  | 
|  | 138 | vec = nlm_irq_msivec(d->irq); | 
|  | 139 | spin_lock_irqsave(&md->msi_lock, flags); | 
|  | 140 | md->msi_enabled_mask |= 1u << vec; | 
|  | 141 | if (cpu_is_xlp9xx()) | 
|  | 142 | nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_EN, | 
|  | 143 | md->msi_enabled_mask); | 
|  | 144 | else | 
|  | 145 | nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask); | 
|  | 146 | spin_unlock_irqrestore(&md->msi_lock, flags); | 
|  | 147 | } | 
|  | 148 |  | 
|  | 149 | static void xlp_msi_disable(struct irq_data *d) | 
|  | 150 | { | 
|  | 151 | struct xlp_msi_data *md = irq_data_get_irq_chip_data(d); | 
|  | 152 | unsigned long flags; | 
|  | 153 | int vec; | 
|  | 154 |  | 
|  | 155 | vec = nlm_irq_msivec(d->irq); | 
|  | 156 | spin_lock_irqsave(&md->msi_lock, flags); | 
|  | 157 | md->msi_enabled_mask &= ~(1u << vec); | 
|  | 158 | if (cpu_is_xlp9xx()) | 
|  | 159 | nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_EN, | 
|  | 160 | md->msi_enabled_mask); | 
|  | 161 | else | 
|  | 162 | nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask); | 
|  | 163 | spin_unlock_irqrestore(&md->msi_lock, flags); | 
|  | 164 | } | 
|  | 165 |  | 
|  | 166 | static void xlp_msi_mask_ack(struct irq_data *d) | 
|  | 167 | { | 
|  | 168 | struct xlp_msi_data *md = irq_data_get_irq_chip_data(d); | 
|  | 169 | int link, vec; | 
|  | 170 |  | 
|  | 171 | link = nlm_irq_msilink(d->irq); | 
|  | 172 | vec = nlm_irq_msivec(d->irq); | 
|  | 173 | xlp_msi_disable(d); | 
|  | 174 |  | 
|  | 175 | /* Ack MSI on bridge */ | 
|  | 176 | if (cpu_is_xlp9xx()) | 
|  | 177 | nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_STATUS, 1u << vec); | 
|  | 178 | else | 
|  | 179 | nlm_write_reg(md->lnkbase, PCIE_MSI_STATUS, 1u << vec); | 
|  | 180 |  | 
|  | 181 | } | 
|  | 182 |  | 
|  | 183 | static struct irq_chip xlp_msi_chip = { | 
|  | 184 | .name		= "XLP-MSI", | 
|  | 185 | .irq_enable	= xlp_msi_enable, | 
|  | 186 | .irq_disable	= xlp_msi_disable, | 
|  | 187 | .irq_mask_ack	= xlp_msi_mask_ack, | 
|  | 188 | .irq_unmask	= xlp_msi_enable, | 
|  | 189 | }; | 
|  | 190 |  | 
|  | 191 | /* | 
|  | 192 | * XLP8XX/4XX/3XX/2XX: | 
|  | 193 | * The MSI-X interrupt handling is different from MSI, there are 32 MSI-X | 
|  | 194 | * interrupts generated by the PIC and each of these correspond to a MSI-X | 
|  | 195 | * vector (0-31) that can be assigned. | 
|  | 196 | * | 
|  | 197 | * We divide the MSI-X vectors to 8 per link and do a per-link allocation | 
|  | 198 | * | 
|  | 199 | * XLP9XX: | 
|  | 200 | * 32 MSI-X vectors are available per link, and the interrupts are not routed | 
|  | 201 | * thru the PIC. PIC ack not needed. | 
|  | 202 | * | 
|  | 203 | * Enable and disable done using standard MSI functions. | 
|  | 204 | */ | 
|  | 205 | static void xlp_msix_mask_ack(struct irq_data *d) | 
|  | 206 | { | 
|  | 207 | struct xlp_msi_data *md; | 
|  | 208 | int link, msixvec; | 
|  | 209 | uint32_t status_reg, bit; | 
|  | 210 |  | 
|  | 211 | msixvec = nlm_irq_msixvec(d->irq); | 
|  | 212 | link = nlm_irq_msixlink(msixvec); | 
|  | 213 | pci_msi_mask_irq(d); | 
|  | 214 | md = irq_data_get_irq_chip_data(d); | 
|  | 215 |  | 
|  | 216 | /* Ack MSI on bridge */ | 
|  | 217 | if (cpu_is_xlp9xx()) { | 
|  | 218 | status_reg = PCIE_9XX_MSIX_STATUSX(link); | 
|  | 219 | bit = msixvec % XLP_MSIXVEC_PER_LINK; | 
|  | 220 | } else { | 
|  | 221 | status_reg = PCIE_MSIX_STATUS; | 
|  | 222 | bit = msixvec; | 
|  | 223 | } | 
|  | 224 | nlm_write_reg(md->lnkbase, status_reg, 1u << bit); | 
|  | 225 |  | 
|  | 226 | if (!cpu_is_xlp9xx()) | 
|  | 227 | nlm_pic_ack(md->node->picbase, | 
|  | 228 | PIC_IRT_PCIE_MSIX_INDEX(msixvec)); | 
|  | 229 | } | 
|  | 230 |  | 
|  | 231 | static struct irq_chip xlp_msix_chip = { | 
|  | 232 | .name		= "XLP-MSIX", | 
|  | 233 | .irq_enable	= pci_msi_unmask_irq, | 
|  | 234 | .irq_disable	= pci_msi_mask_irq, | 
|  | 235 | .irq_mask_ack	= xlp_msix_mask_ack, | 
|  | 236 | .irq_unmask	= pci_msi_unmask_irq, | 
|  | 237 | }; | 
|  | 238 |  | 
|  | 239 | void arch_teardown_msi_irq(unsigned int irq) | 
|  | 240 | { | 
|  | 241 | } | 
|  | 242 |  | 
|  | 243 | /* | 
|  | 244 | * Setup a PCIe link for MSI.  By default, the links are in | 
|  | 245 | * legacy interrupt mode.  We will switch them to MSI mode | 
|  | 246 | * at the first MSI request. | 
|  | 247 | */ | 
|  | 248 | static void xlp_config_link_msi(uint64_t lnkbase, int lirq, uint64_t msiaddr) | 
|  | 249 | { | 
|  | 250 | u32 val; | 
|  | 251 |  | 
|  | 252 | if (cpu_is_xlp9xx()) { | 
|  | 253 | val = nlm_read_reg(lnkbase, PCIE_9XX_INT_EN0); | 
|  | 254 | if ((val & 0x200) == 0) { | 
|  | 255 | val |= 0x200;		/* MSI Interrupt enable */ | 
|  | 256 | nlm_write_reg(lnkbase, PCIE_9XX_INT_EN0, val); | 
|  | 257 | } | 
|  | 258 | } else { | 
|  | 259 | val = nlm_read_reg(lnkbase, PCIE_INT_EN0); | 
|  | 260 | if ((val & 0x200) == 0) { | 
|  | 261 | val |= 0x200; | 
|  | 262 | nlm_write_reg(lnkbase, PCIE_INT_EN0, val); | 
|  | 263 | } | 
|  | 264 | } | 
|  | 265 |  | 
|  | 266 | val = nlm_read_reg(lnkbase, 0x1);	/* CMD */ | 
|  | 267 | if ((val & 0x0400) == 0) { | 
|  | 268 | val |= 0x0400; | 
|  | 269 | nlm_write_reg(lnkbase, 0x1, val); | 
|  | 270 | } | 
|  | 271 |  | 
|  | 272 | /* Update IRQ in the PCI irq reg */ | 
|  | 273 | val = nlm_read_pci_reg(lnkbase, 0xf); | 
|  | 274 | val &= ~0x1fu; | 
|  | 275 | val |= (1 << 8) | lirq; | 
|  | 276 | nlm_write_pci_reg(lnkbase, 0xf, val); | 
|  | 277 |  | 
|  | 278 | /* MSI addr */ | 
|  | 279 | nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRH, msiaddr >> 32); | 
|  | 280 | nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRL, msiaddr & 0xffffffff); | 
|  | 281 |  | 
|  | 282 | /* MSI cap for bridge */ | 
|  | 283 | val = nlm_read_reg(lnkbase, PCIE_BRIDGE_MSI_CAP); | 
|  | 284 | if ((val & (1 << 16)) == 0) { | 
|  | 285 | val |= 0xb << 16;		/* mmc32, msi enable */ | 
|  | 286 | nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_CAP, val); | 
|  | 287 | } | 
|  | 288 | } | 
|  | 289 |  | 
|  | 290 | /* | 
|  | 291 | * Allocate a MSI vector on a link | 
|  | 292 | */ | 
|  | 293 | static int xlp_setup_msi(uint64_t lnkbase, int node, int link, | 
|  | 294 | struct msi_desc *desc) | 
|  | 295 | { | 
|  | 296 | struct xlp_msi_data *md; | 
|  | 297 | struct msi_msg msg; | 
|  | 298 | unsigned long flags; | 
|  | 299 | int msivec, irt, lirq, xirq, ret; | 
|  | 300 | uint64_t msiaddr; | 
|  | 301 |  | 
|  | 302 | /* Get MSI data for the link */ | 
|  | 303 | lirq = PIC_PCIE_LINK_MSI_IRQ(link); | 
|  | 304 | xirq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0)); | 
|  | 305 | md = irq_get_chip_data(xirq); | 
|  | 306 | msiaddr = MSI_LINK_ADDR(node, link); | 
|  | 307 |  | 
|  | 308 | spin_lock_irqsave(&md->msi_lock, flags); | 
|  | 309 | if (md->msi_alloc_mask == 0) { | 
|  | 310 | xlp_config_link_msi(lnkbase, lirq, msiaddr); | 
|  | 311 | /* switch the link IRQ to MSI range */ | 
|  | 312 | if (cpu_is_xlp9xx()) | 
|  | 313 | irt = PIC_9XX_IRT_PCIE_LINK_INDEX(link); | 
|  | 314 | else | 
|  | 315 | irt = PIC_IRT_PCIE_LINK_INDEX(link); | 
|  | 316 | nlm_setup_pic_irq(node, lirq, lirq, irt); | 
|  | 317 | nlm_pic_init_irt(nlm_get_node(node)->picbase, irt, lirq, | 
|  | 318 | node * nlm_threads_per_node(), 1 /*en */); | 
|  | 319 | } | 
|  | 320 |  | 
|  | 321 | /* allocate a MSI vec, and tell the bridge about it */ | 
|  | 322 | msivec = fls(md->msi_alloc_mask); | 
|  | 323 | if (msivec == XLP_MSIVEC_PER_LINK) { | 
|  | 324 | spin_unlock_irqrestore(&md->msi_lock, flags); | 
|  | 325 | return -ENOMEM; | 
|  | 326 | } | 
|  | 327 | md->msi_alloc_mask |= (1u << msivec); | 
|  | 328 | spin_unlock_irqrestore(&md->msi_lock, flags); | 
|  | 329 |  | 
|  | 330 | msg.address_hi = msiaddr >> 32; | 
|  | 331 | msg.address_lo = msiaddr & 0xffffffff; | 
|  | 332 | msg.data = 0xc00 | msivec; | 
|  | 333 |  | 
|  | 334 | xirq = xirq + msivec;		/* msi mapped to global irq space */ | 
|  | 335 | ret = irq_set_msi_desc(xirq, desc); | 
|  | 336 | if (ret < 0) | 
|  | 337 | return ret; | 
|  | 338 |  | 
|  | 339 | pci_write_msi_msg(xirq, &msg); | 
|  | 340 | return 0; | 
|  | 341 | } | 
|  | 342 |  | 
|  | 343 | /* | 
|  | 344 | * Switch a link to MSI-X mode | 
|  | 345 | */ | 
|  | 346 | static void xlp_config_link_msix(uint64_t lnkbase, int lirq, uint64_t msixaddr) | 
|  | 347 | { | 
|  | 348 | u32 val; | 
|  | 349 |  | 
|  | 350 | val = nlm_read_reg(lnkbase, 0x2C); | 
|  | 351 | if ((val & 0x80000000U) == 0) { | 
|  | 352 | val |= 0x80000000U; | 
|  | 353 | nlm_write_reg(lnkbase, 0x2C, val); | 
|  | 354 | } | 
|  | 355 |  | 
|  | 356 | if (cpu_is_xlp9xx()) { | 
|  | 357 | val = nlm_read_reg(lnkbase, PCIE_9XX_INT_EN0); | 
|  | 358 | if ((val & 0x200) == 0) { | 
|  | 359 | val |= 0x200;		/* MSI Interrupt enable */ | 
|  | 360 | nlm_write_reg(lnkbase, PCIE_9XX_INT_EN0, val); | 
|  | 361 | } | 
|  | 362 | } else { | 
|  | 363 | val = nlm_read_reg(lnkbase, PCIE_INT_EN0); | 
|  | 364 | if ((val & 0x200) == 0) { | 
|  | 365 | val |= 0x200;		/* MSI Interrupt enable */ | 
|  | 366 | nlm_write_reg(lnkbase, PCIE_INT_EN0, val); | 
|  | 367 | } | 
|  | 368 | } | 
|  | 369 |  | 
|  | 370 | val = nlm_read_reg(lnkbase, 0x1);	/* CMD */ | 
|  | 371 | if ((val & 0x0400) == 0) { | 
|  | 372 | val |= 0x0400; | 
|  | 373 | nlm_write_reg(lnkbase, 0x1, val); | 
|  | 374 | } | 
|  | 375 |  | 
|  | 376 | /* Update IRQ in the PCI irq reg */ | 
|  | 377 | val = nlm_read_pci_reg(lnkbase, 0xf); | 
|  | 378 | val &= ~0x1fu; | 
|  | 379 | val |= (1 << 8) | lirq; | 
|  | 380 | nlm_write_pci_reg(lnkbase, 0xf, val); | 
|  | 381 |  | 
|  | 382 | if (cpu_is_xlp9xx()) { | 
|  | 383 | /* MSI-X addresses */ | 
|  | 384 | nlm_write_reg(lnkbase, PCIE_9XX_BRIDGE_MSIX_ADDR_BASE, | 
|  | 385 | msixaddr >> 8); | 
|  | 386 | nlm_write_reg(lnkbase, PCIE_9XX_BRIDGE_MSIX_ADDR_LIMIT, | 
|  | 387 | (msixaddr + MSI_ADDR_SZ) >> 8); | 
|  | 388 | } else { | 
|  | 389 | /* MSI-X addresses */ | 
|  | 390 | nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_BASE, | 
|  | 391 | msixaddr >> 8); | 
|  | 392 | nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_LIMIT, | 
|  | 393 | (msixaddr + MSI_ADDR_SZ) >> 8); | 
|  | 394 | } | 
|  | 395 | } | 
|  | 396 |  | 
|  | 397 | /* | 
|  | 398 | *  Allocate a MSI-X vector | 
|  | 399 | */ | 
|  | 400 | static int xlp_setup_msix(uint64_t lnkbase, int node, int link, | 
|  | 401 | struct msi_desc *desc) | 
|  | 402 | { | 
|  | 403 | struct xlp_msi_data *md; | 
|  | 404 | struct msi_msg msg; | 
|  | 405 | unsigned long flags; | 
|  | 406 | int t, msixvec, lirq, xirq, ret; | 
|  | 407 | uint64_t msixaddr; | 
|  | 408 |  | 
|  | 409 | /* Get MSI data for the link */ | 
|  | 410 | lirq = PIC_PCIE_MSIX_IRQ(link); | 
|  | 411 | xirq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0)); | 
|  | 412 | md = irq_get_chip_data(xirq); | 
|  | 413 | msixaddr = MSIX_LINK_ADDR(node, link); | 
|  | 414 |  | 
|  | 415 | spin_lock_irqsave(&md->msi_lock, flags); | 
|  | 416 | /* switch the PCIe link to MSI-X mode at the first alloc */ | 
|  | 417 | if (md->msix_alloc_mask == 0) | 
|  | 418 | xlp_config_link_msix(lnkbase, lirq, msixaddr); | 
|  | 419 |  | 
|  | 420 | /* allocate a MSI-X vec, and tell the bridge about it */ | 
|  | 421 | t = fls(md->msix_alloc_mask); | 
|  | 422 | if (t == XLP_MSIXVEC_PER_LINK) { | 
|  | 423 | spin_unlock_irqrestore(&md->msi_lock, flags); | 
|  | 424 | return -ENOMEM; | 
|  | 425 | } | 
|  | 426 | md->msix_alloc_mask |= (1u << t); | 
|  | 427 | spin_unlock_irqrestore(&md->msi_lock, flags); | 
|  | 428 |  | 
|  | 429 | xirq += t; | 
|  | 430 | msixvec = nlm_irq_msixvec(xirq); | 
|  | 431 |  | 
|  | 432 | msg.address_hi = msixaddr >> 32; | 
|  | 433 | msg.address_lo = msixaddr & 0xffffffff; | 
|  | 434 | msg.data = 0xc00 | msixvec; | 
|  | 435 |  | 
|  | 436 | ret = irq_set_msi_desc(xirq, desc); | 
|  | 437 | if (ret < 0) | 
|  | 438 | return ret; | 
|  | 439 |  | 
|  | 440 | pci_write_msi_msg(xirq, &msg); | 
|  | 441 | return 0; | 
|  | 442 | } | 
|  | 443 |  | 
|  | 444 | int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc) | 
|  | 445 | { | 
|  | 446 | struct pci_dev *lnkdev; | 
|  | 447 | uint64_t lnkbase; | 
|  | 448 | int node, link, slot; | 
|  | 449 |  | 
|  | 450 | lnkdev = xlp_get_pcie_link(dev); | 
|  | 451 | if (lnkdev == NULL) { | 
|  | 452 | dev_err(&dev->dev, "Could not find bridge\n"); | 
|  | 453 | return 1; | 
|  | 454 | } | 
|  | 455 | slot = PCI_SLOT(lnkdev->devfn); | 
|  | 456 | link = PCI_FUNC(lnkdev->devfn); | 
|  | 457 | node = slot / 8; | 
|  | 458 | lnkbase = nlm_get_pcie_base(node, link); | 
|  | 459 |  | 
|  | 460 | if (desc->msi_attrib.is_msix) | 
|  | 461 | return xlp_setup_msix(lnkbase, node, link, desc); | 
|  | 462 | else | 
|  | 463 | return xlp_setup_msi(lnkbase, node, link, desc); | 
|  | 464 | } | 
|  | 465 |  | 
|  | 466 | void __init xlp_init_node_msi_irqs(int node, int link) | 
|  | 467 | { | 
|  | 468 | struct nlm_soc_info *nodep; | 
|  | 469 | struct xlp_msi_data *md; | 
|  | 470 | int irq, i, irt, msixvec, val; | 
|  | 471 |  | 
|  | 472 | pr_info("[%d %d] Init node PCI IRT\n", node, link); | 
|  | 473 | nodep = nlm_get_node(node); | 
|  | 474 |  | 
|  | 475 | /* Alloc an MSI block for the link */ | 
|  | 476 | md = kzalloc(sizeof(*md), GFP_KERNEL); | 
|  | 477 | spin_lock_init(&md->msi_lock); | 
|  | 478 | md->msi_enabled_mask = 0; | 
|  | 479 | md->msi_alloc_mask = 0; | 
|  | 480 | md->msix_alloc_mask = 0; | 
|  | 481 | md->node = nodep; | 
|  | 482 | md->lnkbase = nlm_get_pcie_base(node, link); | 
|  | 483 |  | 
|  | 484 | /* extended space for MSI interrupts */ | 
|  | 485 | irq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0)); | 
|  | 486 | for (i = irq; i < irq + XLP_MSIVEC_PER_LINK; i++) { | 
|  | 487 | irq_set_chip_and_handler(i, &xlp_msi_chip, handle_level_irq); | 
|  | 488 | irq_set_chip_data(i, md); | 
|  | 489 | } | 
|  | 490 |  | 
|  | 491 | for (i = 0; i < XLP_MSIXVEC_PER_LINK ; i++) { | 
|  | 492 | if (cpu_is_xlp9xx()) { | 
|  | 493 | val = ((node * nlm_threads_per_node()) << 7 | | 
|  | 494 | PIC_PCIE_MSIX_IRQ(link) << 1 | 0 << 0); | 
|  | 495 | nlm_write_pcie_reg(md->lnkbase, PCIE_9XX_MSIX_VECX(i + | 
|  | 496 | (link * XLP_MSIXVEC_PER_LINK)), val); | 
|  | 497 | } else { | 
|  | 498 | /* Initialize MSI-X irts to generate one interrupt | 
|  | 499 | * per link | 
|  | 500 | */ | 
|  | 501 | msixvec = link * XLP_MSIXVEC_PER_LINK + i; | 
|  | 502 | irt = PIC_IRT_PCIE_MSIX_INDEX(msixvec); | 
|  | 503 | nlm_pic_init_irt(nodep->picbase, irt, | 
|  | 504 | PIC_PCIE_MSIX_IRQ(link), | 
|  | 505 | node * nlm_threads_per_node(), 1); | 
|  | 506 | } | 
|  | 507 |  | 
|  | 508 | /* Initialize MSI-X extended irq space for the link  */ | 
|  | 509 | irq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, i)); | 
|  | 510 | irq_set_chip_and_handler(irq, &xlp_msix_chip, handle_level_irq); | 
|  | 511 | irq_set_chip_data(irq, md); | 
|  | 512 | } | 
|  | 513 | } | 
|  | 514 |  | 
|  | 515 | void nlm_dispatch_msi(int node, int lirq) | 
|  | 516 | { | 
|  | 517 | struct xlp_msi_data *md; | 
|  | 518 | int link, i, irqbase; | 
|  | 519 | u32 status; | 
|  | 520 |  | 
|  | 521 | link = lirq - PIC_PCIE_LINK_MSI_IRQ_BASE; | 
|  | 522 | irqbase = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0)); | 
|  | 523 | md = irq_get_chip_data(irqbase); | 
|  | 524 | if (cpu_is_xlp9xx()) | 
|  | 525 | status = nlm_read_reg(md->lnkbase, PCIE_9XX_MSI_STATUS) & | 
|  | 526 | md->msi_enabled_mask; | 
|  | 527 | else | 
|  | 528 | status = nlm_read_reg(md->lnkbase, PCIE_MSI_STATUS) & | 
|  | 529 | md->msi_enabled_mask; | 
|  | 530 | while (status) { | 
|  | 531 | i = __ffs(status); | 
|  | 532 | do_IRQ(irqbase + i); | 
|  | 533 | status &= status - 1; | 
|  | 534 | } | 
|  | 535 |  | 
|  | 536 | /* Ack at eirr and PIC */ | 
|  | 537 | ack_c0_eirr(PIC_PCIE_LINK_MSI_IRQ(link)); | 
|  | 538 | if (cpu_is_xlp9xx()) | 
|  | 539 | nlm_pic_ack(md->node->picbase, | 
|  | 540 | PIC_9XX_IRT_PCIE_LINK_INDEX(link)); | 
|  | 541 | else | 
|  | 542 | nlm_pic_ack(md->node->picbase, PIC_IRT_PCIE_LINK_INDEX(link)); | 
|  | 543 | } | 
|  | 544 |  | 
|  | 545 | void nlm_dispatch_msix(int node, int lirq) | 
|  | 546 | { | 
|  | 547 | struct xlp_msi_data *md; | 
|  | 548 | int link, i, irqbase; | 
|  | 549 | u32 status; | 
|  | 550 |  | 
|  | 551 | link = lirq - PIC_PCIE_MSIX_IRQ_BASE; | 
|  | 552 | irqbase = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0)); | 
|  | 553 | md = irq_get_chip_data(irqbase); | 
|  | 554 | if (cpu_is_xlp9xx()) | 
|  | 555 | status = nlm_read_reg(md->lnkbase, PCIE_9XX_MSIX_STATUSX(link)); | 
|  | 556 | else | 
|  | 557 | status = nlm_read_reg(md->lnkbase, PCIE_MSIX_STATUS); | 
|  | 558 |  | 
|  | 559 | /* narrow it down to the MSI-x vectors for our link */ | 
|  | 560 | if (!cpu_is_xlp9xx()) | 
|  | 561 | status = (status >> (link * XLP_MSIXVEC_PER_LINK)) & | 
|  | 562 | ((1 << XLP_MSIXVEC_PER_LINK) - 1); | 
|  | 563 |  | 
|  | 564 | while (status) { | 
|  | 565 | i = __ffs(status); | 
|  | 566 | do_IRQ(irqbase + i); | 
|  | 567 | status &= status - 1; | 
|  | 568 | } | 
|  | 569 | /* Ack at eirr and PIC */ | 
|  | 570 | ack_c0_eirr(PIC_PCIE_MSIX_IRQ(link)); | 
|  | 571 | } |