blob: b2b41157bb4954fee794c61c9b71684913156833 [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file contains common generic and tag-based KASAN code.
4 *
5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7 *
8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
9 * Andrey Konovalov <andreyknvl@gmail.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 */
16
17#define __KASAN_INTERNAL
18
19#include <linux/export.h>
20#include <linux/interrupt.h>
21#include <linux/init.h>
22#include <linux/kasan.h>
23#include <linux/kernel.h>
24#include <linux/kmemleak.h>
25#include <linux/linkage.h>
26#include <linux/memblock.h>
27#include <linux/memory.h>
28#include <linux/mm.h>
29#include <linux/module.h>
30#include <linux/printk.h>
31#include <linux/sched.h>
32#include <linux/sched/task_stack.h>
33#include <linux/slab.h>
34#include <linux/stacktrace.h>
35#include <linux/string.h>
36#include <linux/types.h>
37#include <linux/vmalloc.h>
38#include <linux/bug.h>
39#include <linux/uaccess.h>
40
41#include "kasan.h"
42#include "../slab.h"
43
44static inline int in_irqentry_text(unsigned long ptr)
45{
46 return (ptr >= (unsigned long)&__irqentry_text_start &&
47 ptr < (unsigned long)&__irqentry_text_end) ||
48 (ptr >= (unsigned long)&__softirqentry_text_start &&
49 ptr < (unsigned long)&__softirqentry_text_end);
50}
51
52static inline void filter_irq_stacks(struct stack_trace *trace)
53{
54 int i;
55
56 if (!trace->nr_entries)
57 return;
58 for (i = 0; i < trace->nr_entries; i++)
59 if (in_irqentry_text(trace->entries[i])) {
60 /* Include the irqentry function into the stack. */
61 trace->nr_entries = i + 1;
62 break;
63 }
64}
65
66static inline depot_stack_handle_t save_stack(gfp_t flags)
67{
68 unsigned long entries[KASAN_STACK_DEPTH];
69 struct stack_trace trace = {
70 .nr_entries = 0,
71 .entries = entries,
72 .max_entries = KASAN_STACK_DEPTH,
73 .skip = 0
74 };
75
76 save_stack_trace(&trace);
77 filter_irq_stacks(&trace);
78 if (trace.nr_entries != 0 &&
79 trace.entries[trace.nr_entries-1] == ULONG_MAX)
80 trace.nr_entries--;
81
82 return depot_save_stack(&trace, flags);
83}
84
85static inline void set_track(struct kasan_track *track, gfp_t flags)
86{
87 track->pid = current->pid;
88 track->stack = save_stack(flags);
89}
90
91void kasan_enable_current(void)
92{
93 current->kasan_depth++;
94}
95
96void kasan_disable_current(void)
97{
98 current->kasan_depth--;
99}
100
101void kasan_check_read(const volatile void *p, unsigned int size)
102{
103 check_memory_region((unsigned long)p, size, false, _RET_IP_);
104}
105EXPORT_SYMBOL(kasan_check_read);
106
107void kasan_check_write(const volatile void *p, unsigned int size)
108{
109 check_memory_region((unsigned long)p, size, true, _RET_IP_);
110}
111EXPORT_SYMBOL(kasan_check_write);
112
113#undef memset
114void *memset(void *addr, int c, size_t len)
115{
116 check_memory_region((unsigned long)addr, len, true, _RET_IP_);
117
118 return __memset(addr, c, len);
119}
120
121#undef memmove
122void *memmove(void *dest, const void *src, size_t len)
123{
124 check_memory_region((unsigned long)src, len, false, _RET_IP_);
125 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
126
127 return __memmove(dest, src, len);
128}
129
130#undef memcpy
131void *memcpy(void *dest, const void *src, size_t len)
132{
133 check_memory_region((unsigned long)src, len, false, _RET_IP_);
134 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
135
136 return __memcpy(dest, src, len);
137}
138
139/*
140 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
141 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
142 */
143void kasan_poison_shadow(const void *address, size_t size, u8 value)
144{
145 void *shadow_start, *shadow_end;
146
147 /*
148 * Perform shadow offset calculation based on untagged address, as
149 * some of the callers (e.g. kasan_poison_object_data) pass tagged
150 * addresses to this function.
151 */
152 address = reset_tag(address);
153
154 shadow_start = kasan_mem_to_shadow(address);
155 shadow_end = kasan_mem_to_shadow(address + size);
156
157 __memset(shadow_start, value, shadow_end - shadow_start);
158}
159
160void kasan_unpoison_shadow(const void *address, size_t size)
161{
162 u8 tag = get_tag(address);
163
164 /*
165 * Perform shadow offset calculation based on untagged address, as
166 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
167 * addresses to this function.
168 */
169 address = reset_tag(address);
170
171 kasan_poison_shadow(address, size, tag);
172
173 if (size & KASAN_SHADOW_MASK) {
174 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
175
176 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
177 *shadow = tag;
178 else
179 *shadow = size & KASAN_SHADOW_MASK;
180 }
181}
182
183static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
184{
185 void *base = task_stack_page(task);
186 size_t size = sp - base;
187
188 kasan_unpoison_shadow(base, size);
189}
190
191/* Unpoison the entire stack for a task. */
192void kasan_unpoison_task_stack(struct task_struct *task)
193{
194 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
195}
196
197/* Unpoison the stack for the current task beyond a watermark sp value. */
198asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
199{
200 /*
201 * Calculate the task stack base address. Avoid using 'current'
202 * because this function is called by early resume code which hasn't
203 * yet set up the percpu register (%gs).
204 */
205 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
206
207 kasan_unpoison_shadow(base, watermark - base);
208}
209
210/*
211 * Clear all poison for the region between the current SP and a provided
212 * watermark value, as is sometimes required prior to hand-crafted asm function
213 * returns in the middle of functions.
214 */
215void kasan_unpoison_stack_above_sp_to(const void *watermark)
216{
217 const void *sp = __builtin_frame_address(0);
218 size_t size = watermark - sp;
219
220 if (WARN_ON(sp > watermark))
221 return;
222 kasan_unpoison_shadow(sp, size);
223}
224
225void kasan_alloc_pages(struct page *page, unsigned int order)
226{
227 u8 tag;
228 unsigned long i;
229
230 if (unlikely(PageHighMem(page)))
231 return;
232
233 tag = random_tag();
234 for (i = 0; i < (1 << order); i++)
235 page_kasan_tag_set(page + i, tag);
236 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
237}
238
239void kasan_free_pages(struct page *page, unsigned int order)
240{
241 if (likely(!PageHighMem(page)))
242 kasan_poison_shadow(page_address(page),
243 PAGE_SIZE << order,
244 KASAN_FREE_PAGE);
245}
246
247/*
248 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
249 * For larger allocations larger redzones are used.
250 */
251static inline unsigned int optimal_redzone(unsigned int object_size)
252{
253 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
254 return 0;
255
256 return
257 object_size <= 64 - 16 ? 16 :
258 object_size <= 128 - 32 ? 32 :
259 object_size <= 512 - 64 ? 64 :
260 object_size <= 4096 - 128 ? 128 :
261 object_size <= (1 << 14) - 256 ? 256 :
262 object_size <= (1 << 15) - 512 ? 512 :
263 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
264}
265
266void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
267 slab_flags_t *flags)
268{
269 unsigned int orig_size = *size;
270 unsigned int redzone_size;
271 int redzone_adjust;
272
273 /* Add alloc meta. */
274 cache->kasan_info.alloc_meta_offset = *size;
275 *size += sizeof(struct kasan_alloc_meta);
276
277 /* Add free meta. */
278 if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
279 (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
280 cache->object_size < sizeof(struct kasan_free_meta))) {
281 cache->kasan_info.free_meta_offset = *size;
282 *size += sizeof(struct kasan_free_meta);
283 }
284
285 redzone_size = optimal_redzone(cache->object_size);
286 redzone_adjust = redzone_size - (*size - cache->object_size);
287 if (redzone_adjust > 0)
288 *size += redzone_adjust;
289
290 *size = min_t(unsigned int, KMALLOC_MAX_SIZE,
291 max(*size, cache->object_size + redzone_size));
292
293 /*
294 * If the metadata doesn't fit, don't enable KASAN at all.
295 */
296 if (*size <= cache->kasan_info.alloc_meta_offset ||
297 *size <= cache->kasan_info.free_meta_offset) {
298 cache->kasan_info.alloc_meta_offset = 0;
299 cache->kasan_info.free_meta_offset = 0;
300 *size = orig_size;
301 return;
302 }
303
304 *flags |= SLAB_KASAN;
305}
306
307size_t kasan_metadata_size(struct kmem_cache *cache)
308{
309 return (cache->kasan_info.alloc_meta_offset ?
310 sizeof(struct kasan_alloc_meta) : 0) +
311 (cache->kasan_info.free_meta_offset ?
312 sizeof(struct kasan_free_meta) : 0);
313}
314
315struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
316 const void *object)
317{
318 return (void *)object + cache->kasan_info.alloc_meta_offset;
319}
320
321struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
322 const void *object)
323{
324 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
325 return (void *)object + cache->kasan_info.free_meta_offset;
326}
327
328
329static void kasan_set_free_info(struct kmem_cache *cache,
330 void *object, u8 tag)
331{
332 struct kasan_alloc_meta *alloc_meta;
333 u8 idx = 0;
334
335 alloc_meta = get_alloc_info(cache, object);
336
337#ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY
338 idx = alloc_meta->free_track_idx;
339 alloc_meta->free_pointer_tag[idx] = tag;
340 alloc_meta->free_track_idx = (idx + 1) % KASAN_NR_FREE_STACKS;
341#endif
342
343 set_track(&alloc_meta->free_track[idx], GFP_NOWAIT);
344}
345
346void kasan_poison_slab(struct page *page)
347{
348 unsigned long i;
349
350 for (i = 0; i < (1 << compound_order(page)); i++)
351 page_kasan_tag_reset(page + i);
352 kasan_poison_shadow(page_address(page),
353 PAGE_SIZE << compound_order(page),
354 KASAN_KMALLOC_REDZONE);
355}
356
357void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
358{
359 kasan_unpoison_shadow(object, cache->object_size);
360}
361
362void kasan_poison_object_data(struct kmem_cache *cache, void *object)
363{
364 kasan_poison_shadow(object,
365 round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
366 KASAN_KMALLOC_REDZONE);
367}
368
369/*
370 * This function assigns a tag to an object considering the following:
371 * 1. A cache might have a constructor, which might save a pointer to a slab
372 * object somewhere (e.g. in the object itself). We preassign a tag for
373 * each object in caches with constructors during slab creation and reuse
374 * the same tag each time a particular object is allocated.
375 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
376 * accessed after being freed. We preassign tags for objects in these
377 * caches as well.
378 * 3. For SLAB allocator we can't preassign tags randomly since the freelist
379 * is stored as an array of indexes instead of a linked list. Assign tags
380 * based on objects indexes, so that objects that are next to each other
381 * get different tags.
382 */
383static u8 assign_tag(struct kmem_cache *cache, const void *object,
384 bool init, bool keep_tag)
385{
386 /*
387 * 1. When an object is kmalloc()'ed, two hooks are called:
388 * kasan_slab_alloc() and kasan_kmalloc(). We assign the
389 * tag only in the first one.
390 * 2. We reuse the same tag for krealloc'ed objects.
391 */
392 if (keep_tag)
393 return get_tag(object);
394
395 /*
396 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
397 * set, assign a tag when the object is being allocated (init == false).
398 */
399 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
400 return init ? KASAN_TAG_KERNEL : random_tag();
401
402 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
403#ifdef CONFIG_SLAB
404 /* For SLAB assign tags based on the object index in the freelist. */
405 return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
406#else
407 /*
408 * For SLUB assign a random tag during slab creation, otherwise reuse
409 * the already assigned tag.
410 */
411 return init ? random_tag() : get_tag(object);
412#endif
413}
414
415void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
416 const void *object)
417{
418 struct kasan_alloc_meta *alloc_info;
419
420 if (!(cache->flags & SLAB_KASAN))
421 return (void *)object;
422
423 alloc_info = get_alloc_info(cache, object);
424 __memset(alloc_info, 0, sizeof(*alloc_info));
425
426 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
427 object = set_tag(object,
428 assign_tag(cache, object, true, false));
429
430 return (void *)object;
431}
432
433static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
434{
435 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
436 return shadow_byte < 0 ||
437 shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
438
439 /* else CONFIG_KASAN_SW_TAGS: */
440 if ((u8)shadow_byte == KASAN_TAG_INVALID)
441 return true;
442 if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte))
443 return true;
444
445 return false;
446}
447
448static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
449 unsigned long ip, bool quarantine)
450{
451 s8 shadow_byte;
452 u8 tag;
453 void *tagged_object;
454 unsigned long rounded_up_size;
455
456 tag = get_tag(object);
457 tagged_object = object;
458 object = reset_tag(object);
459
460 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
461 object)) {
462 kasan_report_invalid_free(tagged_object, ip);
463 return true;
464 }
465
466 /* RCU slabs could be legally used after free within the RCU period */
467 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
468 return false;
469
470 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
471 if (shadow_invalid(tag, shadow_byte)) {
472 kasan_report_invalid_free(tagged_object, ip);
473 return true;
474 }
475
476 rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
477 kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
478
479 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
480 unlikely(!(cache->flags & SLAB_KASAN)))
481 return false;
482
483 kasan_set_free_info(cache, object, tag);
484
485 quarantine_put(get_free_info(cache, object), cache);
486
487 return IS_ENABLED(CONFIG_KASAN_GENERIC);
488}
489
490bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
491{
492 return __kasan_slab_free(cache, object, ip, true);
493}
494
495static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
496 size_t size, gfp_t flags, bool keep_tag)
497{
498 unsigned long redzone_start;
499 unsigned long redzone_end;
500 u8 tag = 0xff;
501
502 if (gfpflags_allow_blocking(flags))
503 quarantine_reduce();
504
505 if (unlikely(object == NULL))
506 return NULL;
507
508 redzone_start = round_up((unsigned long)(object + size),
509 KASAN_SHADOW_SCALE_SIZE);
510 redzone_end = round_up((unsigned long)object + cache->object_size,
511 KASAN_SHADOW_SCALE_SIZE);
512
513 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
514 tag = assign_tag(cache, object, false, keep_tag);
515
516 /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
517 kasan_unpoison_shadow(set_tag(object, tag), size);
518 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
519 KASAN_KMALLOC_REDZONE);
520
521 if (cache->flags & SLAB_KASAN)
522 set_track(&get_alloc_info(cache, object)->alloc_track, flags);
523
524 return set_tag(object, tag);
525}
526
527void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
528 gfp_t flags)
529{
530 return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
531}
532
533void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
534 size_t size, gfp_t flags)
535{
536 return __kasan_kmalloc(cache, object, size, flags, true);
537}
538EXPORT_SYMBOL(kasan_kmalloc);
539
540void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
541 gfp_t flags)
542{
543 struct page *page;
544 unsigned long redzone_start;
545 unsigned long redzone_end;
546
547 if (gfpflags_allow_blocking(flags))
548 quarantine_reduce();
549
550 if (unlikely(ptr == NULL))
551 return NULL;
552
553 page = virt_to_page(ptr);
554 redzone_start = round_up((unsigned long)(ptr + size),
555 KASAN_SHADOW_SCALE_SIZE);
556 redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
557
558 kasan_unpoison_shadow(ptr, size);
559 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
560 KASAN_PAGE_REDZONE);
561
562 return (void *)ptr;
563}
564
565void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
566{
567 struct page *page;
568
569 if (unlikely(object == ZERO_SIZE_PTR))
570 return (void *)object;
571
572 page = virt_to_head_page(object);
573
574 if (unlikely(!PageSlab(page)))
575 return kasan_kmalloc_large(object, size, flags);
576 else
577 return __kasan_kmalloc(page->slab_cache, object, size,
578 flags, true);
579}
580
581void kasan_poison_kfree(void *ptr, unsigned long ip)
582{
583 struct page *page;
584
585 page = virt_to_head_page(ptr);
586
587 if (unlikely(!PageSlab(page))) {
588 if (ptr != page_address(page)) {
589 kasan_report_invalid_free(ptr, ip);
590 return;
591 }
592 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
593 KASAN_FREE_PAGE);
594 } else {
595 __kasan_slab_free(page->slab_cache, ptr, ip, false);
596 }
597}
598
599void kasan_kfree_large(void *ptr, unsigned long ip)
600{
601 if (ptr != page_address(virt_to_head_page(ptr)))
602 kasan_report_invalid_free(ptr, ip);
603 /* The object will be poisoned by page_alloc. */
604}
605
606int kasan_module_alloc(void *addr, size_t size)
607{
608 void *ret;
609 size_t scaled_size;
610 size_t shadow_size;
611 unsigned long shadow_start;
612
613 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
614 scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
615 shadow_size = round_up(scaled_size, PAGE_SIZE);
616
617 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
618 return -EINVAL;
619
620 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
621 shadow_start + shadow_size,
622 GFP_KERNEL,
623 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
624 __builtin_return_address(0));
625
626 if (ret) {
627 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
628 find_vm_area(addr)->flags |= VM_KASAN;
629 kmemleak_ignore(ret);
630 return 0;
631 }
632
633 return -ENOMEM;
634}
635
636void kasan_free_shadow(const struct vm_struct *vm)
637{
638 if (vm->flags & VM_KASAN)
639 vfree(kasan_mem_to_shadow(vm->addr));
640}
641
642extern void __kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip);
643
644void kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip)
645{
646 unsigned long flags = user_access_save();
647 __kasan_report(addr, size, is_write, ip);
648 user_access_restore(flags);
649}
650
651#ifdef CONFIG_MEMORY_HOTPLUG
652static bool shadow_mapped(unsigned long addr)
653{
654 pgd_t *pgd = pgd_offset_k(addr);
655 p4d_t *p4d;
656 pud_t *pud;
657 pmd_t *pmd;
658 pte_t *pte;
659
660 if (pgd_none(*pgd))
661 return false;
662 p4d = p4d_offset(pgd, addr);
663 if (p4d_none(*p4d))
664 return false;
665 pud = pud_offset(p4d, addr);
666 if (pud_none(*pud))
667 return false;
668
669 /*
670 * We can't use pud_large() or pud_huge(), the first one is
671 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
672 * pud_bad(), if pud is bad then it's bad because it's huge.
673 */
674 if (pud_bad(*pud))
675 return true;
676 pmd = pmd_offset(pud, addr);
677 if (pmd_none(*pmd))
678 return false;
679
680 if (pmd_bad(*pmd))
681 return true;
682 pte = pte_offset_kernel(pmd, addr);
683 return !pte_none(*pte);
684}
685
686static int __meminit kasan_mem_notifier(struct notifier_block *nb,
687 unsigned long action, void *data)
688{
689 struct memory_notify *mem_data = data;
690 unsigned long nr_shadow_pages, start_kaddr, shadow_start;
691 unsigned long shadow_end, shadow_size;
692
693 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
694 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
695 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
696 shadow_size = nr_shadow_pages << PAGE_SHIFT;
697 shadow_end = shadow_start + shadow_size;
698
699 if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
700 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
701 return NOTIFY_BAD;
702
703 switch (action) {
704 case MEM_GOING_ONLINE: {
705 void *ret;
706
707 /*
708 * If shadow is mapped already than it must have been mapped
709 * during the boot. This could happen if we onlining previously
710 * offlined memory.
711 */
712 if (shadow_mapped(shadow_start))
713 return NOTIFY_OK;
714
715 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
716 shadow_end, GFP_KERNEL,
717 PAGE_KERNEL, VM_NO_GUARD,
718 pfn_to_nid(mem_data->start_pfn),
719 __builtin_return_address(0));
720 if (!ret)
721 return NOTIFY_BAD;
722
723 kmemleak_ignore(ret);
724 return NOTIFY_OK;
725 }
726 case MEM_CANCEL_ONLINE:
727 case MEM_OFFLINE: {
728 struct vm_struct *vm;
729
730 /*
731 * shadow_start was either mapped during boot by kasan_init()
732 * or during memory online by __vmalloc_node_range().
733 * In the latter case we can use vfree() to free shadow.
734 * Non-NULL result of the find_vm_area() will tell us if
735 * that was the second case.
736 *
737 * Currently it's not possible to free shadow mapped
738 * during boot by kasan_init(). It's because the code
739 * to do that hasn't been written yet. So we'll just
740 * leak the memory.
741 */
742 vm = find_vm_area((void *)shadow_start);
743 if (vm)
744 vfree((void *)shadow_start);
745 }
746 }
747
748 return NOTIFY_OK;
749}
750
751static int __init kasan_memhotplug_init(void)
752{
753 hotplug_memory_notifier(kasan_mem_notifier, 0);
754
755 return 0;
756}
757
758core_initcall(kasan_memhotplug_init);
759#endif