blob: a4a538abcaf9a4c31ace90976b14fcf800204f1e [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11#include <linux/sched.h>
12#include <linux/fs.h>
13#include <linux/namei.h>
14#include <linux/idr.h>
15#include <linux/slab.h>
16#include <linux/security.h>
17#include <linux/hash.h>
18
19#include "kernfs-internal.h"
20
21DEFINE_MUTEX(kernfs_mutex);
22static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
24static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
25
26#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27
28static bool kernfs_active(struct kernfs_node *kn)
29{
30 lockdep_assert_held(&kernfs_mutex);
31 return atomic_read(&kn->active) >= 0;
32}
33
34static bool kernfs_lockdep(struct kernfs_node *kn)
35{
36#ifdef CONFIG_DEBUG_LOCK_ALLOC
37 return kn->flags & KERNFS_LOCKDEP;
38#else
39 return false;
40#endif
41}
42
43static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
44{
45 if (!kn)
46 return strlcpy(buf, "(null)", buflen);
47
48 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
49}
50
51/* kernfs_node_depth - compute depth from @from to @to */
52static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
53{
54 size_t depth = 0;
55
56 while (to->parent && to != from) {
57 depth++;
58 to = to->parent;
59 }
60 return depth;
61}
62
63static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
64 struct kernfs_node *b)
65{
66 size_t da, db;
67 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
68
69 if (ra != rb)
70 return NULL;
71
72 da = kernfs_depth(ra->kn, a);
73 db = kernfs_depth(rb->kn, b);
74
75 while (da > db) {
76 a = a->parent;
77 da--;
78 }
79 while (db > da) {
80 b = b->parent;
81 db--;
82 }
83
84 /* worst case b and a will be the same at root */
85 while (b != a) {
86 b = b->parent;
87 a = a->parent;
88 }
89
90 return a;
91}
92
93/**
94 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
95 * where kn_from is treated as root of the path.
96 * @kn_from: kernfs node which should be treated as root for the path
97 * @kn_to: kernfs node to which path is needed
98 * @buf: buffer to copy the path into
99 * @buflen: size of @buf
100 *
101 * We need to handle couple of scenarios here:
102 * [1] when @kn_from is an ancestor of @kn_to at some level
103 * kn_from: /n1/n2/n3
104 * kn_to: /n1/n2/n3/n4/n5
105 * result: /n4/n5
106 *
107 * [2] when @kn_from is on a different hierarchy and we need to find common
108 * ancestor between @kn_from and @kn_to.
109 * kn_from: /n1/n2/n3/n4
110 * kn_to: /n1/n2/n5
111 * result: /../../n5
112 * OR
113 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
114 * kn_to: /n1/n2/n3 [depth=3]
115 * result: /../..
116 *
117 * [3] when @kn_to is NULL result will be "(null)"
118 *
119 * Returns the length of the full path. If the full length is equal to or
120 * greater than @buflen, @buf contains the truncated path with the trailing
121 * '\0'. On error, -errno is returned.
122 */
123static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
124 struct kernfs_node *kn_from,
125 char *buf, size_t buflen)
126{
127 struct kernfs_node *kn, *common;
128 const char parent_str[] = "/..";
129 size_t depth_from, depth_to, len = 0;
130 int i, j;
131
132 if (!kn_to)
133 return strlcpy(buf, "(null)", buflen);
134
135 if (!kn_from)
136 kn_from = kernfs_root(kn_to)->kn;
137
138 if (kn_from == kn_to)
139 return strlcpy(buf, "/", buflen);
140
141 common = kernfs_common_ancestor(kn_from, kn_to);
142 if (WARN_ON(!common))
143 return -EINVAL;
144
145 depth_to = kernfs_depth(common, kn_to);
146 depth_from = kernfs_depth(common, kn_from);
147
148 if (buf)
149 buf[0] = '\0';
150
151 for (i = 0; i < depth_from; i++)
152 len += strlcpy(buf + len, parent_str,
153 len < buflen ? buflen - len : 0);
154
155 /* Calculate how many bytes we need for the rest */
156 for (i = depth_to - 1; i >= 0; i--) {
157 for (kn = kn_to, j = 0; j < i; j++)
158 kn = kn->parent;
159 len += strlcpy(buf + len, "/",
160 len < buflen ? buflen - len : 0);
161 len += strlcpy(buf + len, kn->name,
162 len < buflen ? buflen - len : 0);
163 }
164
165 return len;
166}
167
168/**
169 * kernfs_name - obtain the name of a given node
170 * @kn: kernfs_node of interest
171 * @buf: buffer to copy @kn's name into
172 * @buflen: size of @buf
173 *
174 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
175 * similar to strlcpy(). It returns the length of @kn's name and if @buf
176 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
177 *
178 * Fills buffer with "(null)" if @kn is NULL.
179 *
180 * This function can be called from any context.
181 */
182int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
183{
184 unsigned long flags;
185 int ret;
186
187 spin_lock_irqsave(&kernfs_rename_lock, flags);
188 ret = kernfs_name_locked(kn, buf, buflen);
189 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
190 return ret;
191}
192
193/**
194 * kernfs_path_from_node - build path of node @to relative to @from.
195 * @from: parent kernfs_node relative to which we need to build the path
196 * @to: kernfs_node of interest
197 * @buf: buffer to copy @to's path into
198 * @buflen: size of @buf
199 *
200 * Builds @to's path relative to @from in @buf. @from and @to must
201 * be on the same kernfs-root. If @from is not parent of @to, then a relative
202 * path (which includes '..'s) as needed to reach from @from to @to is
203 * returned.
204 *
205 * Returns the length of the full path. If the full length is equal to or
206 * greater than @buflen, @buf contains the truncated path with the trailing
207 * '\0'. On error, -errno is returned.
208 */
209int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
210 char *buf, size_t buflen)
211{
212 unsigned long flags;
213 int ret;
214
215 spin_lock_irqsave(&kernfs_rename_lock, flags);
216 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
217 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
218 return ret;
219}
220EXPORT_SYMBOL_GPL(kernfs_path_from_node);
221
222/**
223 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
224 * @kn: kernfs_node of interest
225 *
226 * This function can be called from any context.
227 */
228void pr_cont_kernfs_name(struct kernfs_node *kn)
229{
230 unsigned long flags;
231
232 spin_lock_irqsave(&kernfs_rename_lock, flags);
233
234 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
235 pr_cont("%s", kernfs_pr_cont_buf);
236
237 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
238}
239
240/**
241 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
242 * @kn: kernfs_node of interest
243 *
244 * This function can be called from any context.
245 */
246void pr_cont_kernfs_path(struct kernfs_node *kn)
247{
248 unsigned long flags;
249 int sz;
250
251 spin_lock_irqsave(&kernfs_rename_lock, flags);
252
253 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
254 sizeof(kernfs_pr_cont_buf));
255 if (sz < 0) {
256 pr_cont("(error)");
257 goto out;
258 }
259
260 if (sz >= sizeof(kernfs_pr_cont_buf)) {
261 pr_cont("(name too long)");
262 goto out;
263 }
264
265 pr_cont("%s", kernfs_pr_cont_buf);
266
267out:
268 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
269}
270
271/**
272 * kernfs_get_parent - determine the parent node and pin it
273 * @kn: kernfs_node of interest
274 *
275 * Determines @kn's parent, pins and returns it. This function can be
276 * called from any context.
277 */
278struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
279{
280 struct kernfs_node *parent;
281 unsigned long flags;
282
283 spin_lock_irqsave(&kernfs_rename_lock, flags);
284 parent = kn->parent;
285 kernfs_get(parent);
286 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
287
288 return parent;
289}
290
291/**
292 * kernfs_name_hash
293 * @name: Null terminated string to hash
294 * @ns: Namespace tag to hash
295 *
296 * Returns 31 bit hash of ns + name (so it fits in an off_t )
297 */
298static unsigned int kernfs_name_hash(const char *name, const void *ns)
299{
300 unsigned long hash = init_name_hash(ns);
301 unsigned int len = strlen(name);
302 while (len--)
303 hash = partial_name_hash(*name++, hash);
304 hash = end_name_hash(hash);
305 hash &= 0x7fffffffU;
306 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
307 if (hash < 2)
308 hash += 2;
309 if (hash >= INT_MAX)
310 hash = INT_MAX - 1;
311 return hash;
312}
313
314static int kernfs_name_compare(unsigned int hash, const char *name,
315 const void *ns, const struct kernfs_node *kn)
316{
317 if (hash < kn->hash)
318 return -1;
319 if (hash > kn->hash)
320 return 1;
321 if (ns < kn->ns)
322 return -1;
323 if (ns > kn->ns)
324 return 1;
325 return strcmp(name, kn->name);
326}
327
328static int kernfs_sd_compare(const struct kernfs_node *left,
329 const struct kernfs_node *right)
330{
331 return kernfs_name_compare(left->hash, left->name, left->ns, right);
332}
333
334/**
335 * kernfs_link_sibling - link kernfs_node into sibling rbtree
336 * @kn: kernfs_node of interest
337 *
338 * Link @kn into its sibling rbtree which starts from
339 * @kn->parent->dir.children.
340 *
341 * Locking:
342 * mutex_lock(kernfs_mutex)
343 *
344 * RETURNS:
345 * 0 on susccess -EEXIST on failure.
346 */
347static int kernfs_link_sibling(struct kernfs_node *kn)
348{
349 struct rb_node **node = &kn->parent->dir.children.rb_node;
350 struct rb_node *parent = NULL;
351
352 while (*node) {
353 struct kernfs_node *pos;
354 int result;
355
356 pos = rb_to_kn(*node);
357 parent = *node;
358 result = kernfs_sd_compare(kn, pos);
359 if (result < 0)
360 node = &pos->rb.rb_left;
361 else if (result > 0)
362 node = &pos->rb.rb_right;
363 else
364 return -EEXIST;
365 }
366
367 /* add new node and rebalance the tree */
368 rb_link_node(&kn->rb, parent, node);
369 rb_insert_color(&kn->rb, &kn->parent->dir.children);
370
371 /* successfully added, account subdir number */
372 if (kernfs_type(kn) == KERNFS_DIR)
373 kn->parent->dir.subdirs++;
374
375 return 0;
376}
377
378/**
379 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
380 * @kn: kernfs_node of interest
381 *
382 * Try to unlink @kn from its sibling rbtree which starts from
383 * kn->parent->dir.children. Returns %true if @kn was actually
384 * removed, %false if @kn wasn't on the rbtree.
385 *
386 * Locking:
387 * mutex_lock(kernfs_mutex)
388 */
389static bool kernfs_unlink_sibling(struct kernfs_node *kn)
390{
391 if (RB_EMPTY_NODE(&kn->rb))
392 return false;
393
394 if (kernfs_type(kn) == KERNFS_DIR)
395 kn->parent->dir.subdirs--;
396
397 rb_erase(&kn->rb, &kn->parent->dir.children);
398 RB_CLEAR_NODE(&kn->rb);
399 return true;
400}
401
402/**
403 * kernfs_get_active - get an active reference to kernfs_node
404 * @kn: kernfs_node to get an active reference to
405 *
406 * Get an active reference of @kn. This function is noop if @kn
407 * is NULL.
408 *
409 * RETURNS:
410 * Pointer to @kn on success, NULL on failure.
411 */
412struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
413{
414 if (unlikely(!kn))
415 return NULL;
416
417 if (!atomic_inc_unless_negative(&kn->active))
418 return NULL;
419
420 if (kernfs_lockdep(kn))
421 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
422 return kn;
423}
424
425/**
426 * kernfs_put_active - put an active reference to kernfs_node
427 * @kn: kernfs_node to put an active reference to
428 *
429 * Put an active reference to @kn. This function is noop if @kn
430 * is NULL.
431 */
432void kernfs_put_active(struct kernfs_node *kn)
433{
434 struct kernfs_root *root = kernfs_root(kn);
435 int v;
436
437 if (unlikely(!kn))
438 return;
439
440 if (kernfs_lockdep(kn))
441 rwsem_release(&kn->dep_map, 1, _RET_IP_);
442 v = atomic_dec_return(&kn->active);
443 if (likely(v != KN_DEACTIVATED_BIAS))
444 return;
445
446 wake_up_all(&root->deactivate_waitq);
447}
448
449/**
450 * kernfs_drain - drain kernfs_node
451 * @kn: kernfs_node to drain
452 *
453 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
454 * removers may invoke this function concurrently on @kn and all will
455 * return after draining is complete.
456 */
457static void kernfs_drain(struct kernfs_node *kn)
458 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
459{
460 struct kernfs_root *root = kernfs_root(kn);
461
462 lockdep_assert_held(&kernfs_mutex);
463 WARN_ON_ONCE(kernfs_active(kn));
464
465 mutex_unlock(&kernfs_mutex);
466
467 if (kernfs_lockdep(kn)) {
468 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
469 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
470 lock_contended(&kn->dep_map, _RET_IP_);
471 }
472
473 /* but everyone should wait for draining */
474 wait_event(root->deactivate_waitq,
475 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
476
477 if (kernfs_lockdep(kn)) {
478 lock_acquired(&kn->dep_map, _RET_IP_);
479 rwsem_release(&kn->dep_map, 1, _RET_IP_);
480 }
481
482 kernfs_drain_open_files(kn);
483
484 mutex_lock(&kernfs_mutex);
485}
486
487/**
488 * kernfs_get - get a reference count on a kernfs_node
489 * @kn: the target kernfs_node
490 */
491void kernfs_get(struct kernfs_node *kn)
492{
493 if (kn) {
494 WARN_ON(!atomic_read(&kn->count));
495 atomic_inc(&kn->count);
496 }
497}
498EXPORT_SYMBOL_GPL(kernfs_get);
499
500/**
501 * kernfs_put - put a reference count on a kernfs_node
502 * @kn: the target kernfs_node
503 *
504 * Put a reference count of @kn and destroy it if it reached zero.
505 */
506void kernfs_put(struct kernfs_node *kn)
507{
508 struct kernfs_node *parent;
509 struct kernfs_root *root;
510
511 /*
512 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
513 * depends on this to filter reused stale node
514 */
515 if (!kn || !atomic_dec_and_test(&kn->count))
516 return;
517 root = kernfs_root(kn);
518 repeat:
519 /*
520 * Moving/renaming is always done while holding reference.
521 * kn->parent won't change beneath us.
522 */
523 parent = kn->parent;
524
525 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
526 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
527 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
528
529 if (kernfs_type(kn) == KERNFS_LINK)
530 kernfs_put(kn->symlink.target_kn);
531
532 kfree_const(kn->name);
533
534 if (kn->iattr) {
535 if (kn->iattr->ia_secdata)
536 security_release_secctx(kn->iattr->ia_secdata,
537 kn->iattr->ia_secdata_len);
538 simple_xattrs_free(&kn->iattr->xattrs);
539 }
540 kfree(kn->iattr);
541 spin_lock(&kernfs_idr_lock);
542 idr_remove(&root->ino_idr, kn->id.ino);
543 spin_unlock(&kernfs_idr_lock);
544 kmem_cache_free(kernfs_node_cache, kn);
545
546 kn = parent;
547 if (kn) {
548 if (atomic_dec_and_test(&kn->count))
549 goto repeat;
550 } else {
551 /* just released the root kn, free @root too */
552 idr_destroy(&root->ino_idr);
553 kfree(root);
554 }
555}
556EXPORT_SYMBOL_GPL(kernfs_put);
557
558static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
559{
560 struct kernfs_node *kn;
561
562 if (flags & LOOKUP_RCU)
563 return -ECHILD;
564
565 /* Always perform fresh lookup for negatives */
566 if (d_really_is_negative(dentry))
567 goto out_bad_unlocked;
568
569 kn = kernfs_dentry_node(dentry);
570 mutex_lock(&kernfs_mutex);
571
572 /* The kernfs node has been deactivated */
573 if (!kernfs_active(kn))
574 goto out_bad;
575
576 /* The kernfs node has been moved? */
577 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
578 goto out_bad;
579
580 /* The kernfs node has been renamed */
581 if (strcmp(dentry->d_name.name, kn->name) != 0)
582 goto out_bad;
583
584 /* The kernfs node has been moved to a different namespace */
585 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
586 kernfs_info(dentry->d_sb)->ns != kn->ns)
587 goto out_bad;
588
589 mutex_unlock(&kernfs_mutex);
590 return 1;
591out_bad:
592 mutex_unlock(&kernfs_mutex);
593out_bad_unlocked:
594 return 0;
595}
596
597const struct dentry_operations kernfs_dops = {
598 .d_revalidate = kernfs_dop_revalidate,
599};
600
601/**
602 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
603 * @dentry: the dentry in question
604 *
605 * Return the kernfs_node associated with @dentry. If @dentry is not a
606 * kernfs one, %NULL is returned.
607 *
608 * While the returned kernfs_node will stay accessible as long as @dentry
609 * is accessible, the returned node can be in any state and the caller is
610 * fully responsible for determining what's accessible.
611 */
612struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
613{
614 if (dentry->d_sb->s_op == &kernfs_sops &&
615 !d_really_is_negative(dentry))
616 return kernfs_dentry_node(dentry);
617 return NULL;
618}
619
620static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
621 const char *name, umode_t mode,
622 kuid_t uid, kgid_t gid,
623 unsigned flags)
624{
625 struct kernfs_node *kn;
626 u32 gen;
627 int ret;
628
629 name = kstrdup_const(name, GFP_KERNEL);
630 if (!name)
631 return NULL;
632
633 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
634 if (!kn)
635 goto err_out1;
636
637 idr_preload(GFP_KERNEL);
638 spin_lock(&kernfs_idr_lock);
639 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
640 if (ret >= 0 && ret < root->last_ino)
641 root->next_generation++;
642 gen = root->next_generation;
643 root->last_ino = ret;
644 spin_unlock(&kernfs_idr_lock);
645 idr_preload_end();
646 if (ret < 0)
647 goto err_out2;
648 kn->id.ino = ret;
649 kn->id.generation = gen;
650
651 /*
652 * set ino first. This RELEASE is paired with atomic_inc_not_zero in
653 * kernfs_find_and_get_node_by_ino
654 */
655 atomic_set_release(&kn->count, 1);
656 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
657 RB_CLEAR_NODE(&kn->rb);
658
659 kn->name = name;
660 kn->mode = mode;
661 kn->flags = flags;
662
663 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
664 struct iattr iattr = {
665 .ia_valid = ATTR_UID | ATTR_GID,
666 .ia_uid = uid,
667 .ia_gid = gid,
668 };
669
670 ret = __kernfs_setattr(kn, &iattr);
671 if (ret < 0)
672 goto err_out3;
673 }
674
675 return kn;
676
677 err_out3:
678 idr_remove(&root->ino_idr, kn->id.ino);
679 err_out2:
680 kmem_cache_free(kernfs_node_cache, kn);
681 err_out1:
682 kfree_const(name);
683 return NULL;
684}
685
686struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
687 const char *name, umode_t mode,
688 kuid_t uid, kgid_t gid,
689 unsigned flags)
690{
691 struct kernfs_node *kn;
692
693 kn = __kernfs_new_node(kernfs_root(parent),
694 name, mode, uid, gid, flags);
695 if (kn) {
696 kernfs_get(parent);
697 kn->parent = parent;
698 }
699 return kn;
700}
701
702/*
703 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
704 * @root: the kernfs root
705 * @ino: inode number
706 *
707 * RETURNS:
708 * NULL on failure. Return a kernfs node with reference counter incremented
709 */
710struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
711 unsigned int ino)
712{
713 struct kernfs_node *kn;
714
715 rcu_read_lock();
716 kn = idr_find(&root->ino_idr, ino);
717 if (!kn)
718 goto out;
719
720 /*
721 * Since kernfs_node is freed in RCU, it's possible an old node for ino
722 * is freed, but reused before RCU grace period. But a freed node (see
723 * kernfs_put) or an incompletedly initialized node (see
724 * __kernfs_new_node) should have 'count' 0. We can use this fact to
725 * filter out such node.
726 */
727 if (!atomic_inc_not_zero(&kn->count)) {
728 kn = NULL;
729 goto out;
730 }
731
732 /*
733 * The node could be a new node or a reused node. If it's a new node,
734 * we are ok. If it's reused because of RCU (because of
735 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
736 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
737 * hence we can use 'ino' to filter stale node.
738 */
739 if (kn->id.ino != ino)
740 goto out;
741 rcu_read_unlock();
742
743 return kn;
744out:
745 rcu_read_unlock();
746 kernfs_put(kn);
747 return NULL;
748}
749
750/**
751 * kernfs_add_one - add kernfs_node to parent without warning
752 * @kn: kernfs_node to be added
753 *
754 * The caller must already have initialized @kn->parent. This
755 * function increments nlink of the parent's inode if @kn is a
756 * directory and link into the children list of the parent.
757 *
758 * RETURNS:
759 * 0 on success, -EEXIST if entry with the given name already
760 * exists.
761 */
762int kernfs_add_one(struct kernfs_node *kn)
763{
764 struct kernfs_node *parent = kn->parent;
765 struct kernfs_iattrs *ps_iattr;
766 bool has_ns;
767 int ret;
768
769 mutex_lock(&kernfs_mutex);
770
771 ret = -EINVAL;
772 has_ns = kernfs_ns_enabled(parent);
773 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
774 has_ns ? "required" : "invalid", parent->name, kn->name))
775 goto out_unlock;
776
777 if (kernfs_type(parent) != KERNFS_DIR)
778 goto out_unlock;
779
780 ret = -ENOENT;
781 if (parent->flags & KERNFS_EMPTY_DIR)
782 goto out_unlock;
783
784 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
785 goto out_unlock;
786
787 kn->hash = kernfs_name_hash(kn->name, kn->ns);
788
789 ret = kernfs_link_sibling(kn);
790 if (ret)
791 goto out_unlock;
792
793 /* Update timestamps on the parent */
794 ps_iattr = parent->iattr;
795 if (ps_iattr) {
796 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
797 ktime_get_real_ts64(&ps_iattrs->ia_ctime);
798 ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
799 }
800
801 mutex_unlock(&kernfs_mutex);
802
803 /*
804 * Activate the new node unless CREATE_DEACTIVATED is requested.
805 * If not activated here, the kernfs user is responsible for
806 * activating the node with kernfs_activate(). A node which hasn't
807 * been activated is not visible to userland and its removal won't
808 * trigger deactivation.
809 */
810 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
811 kernfs_activate(kn);
812 return 0;
813
814out_unlock:
815 mutex_unlock(&kernfs_mutex);
816 return ret;
817}
818
819/**
820 * kernfs_find_ns - find kernfs_node with the given name
821 * @parent: kernfs_node to search under
822 * @name: name to look for
823 * @ns: the namespace tag to use
824 *
825 * Look for kernfs_node with name @name under @parent. Returns pointer to
826 * the found kernfs_node on success, %NULL on failure.
827 */
828static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
829 const unsigned char *name,
830 const void *ns)
831{
832 struct rb_node *node = parent->dir.children.rb_node;
833 bool has_ns = kernfs_ns_enabled(parent);
834 unsigned int hash;
835
836 lockdep_assert_held(&kernfs_mutex);
837
838 if (has_ns != (bool)ns) {
839 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
840 has_ns ? "required" : "invalid", parent->name, name);
841 return NULL;
842 }
843
844 hash = kernfs_name_hash(name, ns);
845 while (node) {
846 struct kernfs_node *kn;
847 int result;
848
849 kn = rb_to_kn(node);
850 result = kernfs_name_compare(hash, name, ns, kn);
851 if (result < 0)
852 node = node->rb_left;
853 else if (result > 0)
854 node = node->rb_right;
855 else
856 return kn;
857 }
858 return NULL;
859}
860
861static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
862 const unsigned char *path,
863 const void *ns)
864{
865 size_t len;
866 char *p, *name;
867
868 lockdep_assert_held(&kernfs_mutex);
869
870 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
871 spin_lock_irq(&kernfs_rename_lock);
872
873 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
874
875 if (len >= sizeof(kernfs_pr_cont_buf)) {
876 spin_unlock_irq(&kernfs_rename_lock);
877 return NULL;
878 }
879
880 p = kernfs_pr_cont_buf;
881
882 while ((name = strsep(&p, "/")) && parent) {
883 if (*name == '\0')
884 continue;
885 parent = kernfs_find_ns(parent, name, ns);
886 }
887
888 spin_unlock_irq(&kernfs_rename_lock);
889
890 return parent;
891}
892
893/**
894 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
895 * @parent: kernfs_node to search under
896 * @name: name to look for
897 * @ns: the namespace tag to use
898 *
899 * Look for kernfs_node with name @name under @parent and get a reference
900 * if found. This function may sleep and returns pointer to the found
901 * kernfs_node on success, %NULL on failure.
902 */
903struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
904 const char *name, const void *ns)
905{
906 struct kernfs_node *kn;
907
908 mutex_lock(&kernfs_mutex);
909 kn = kernfs_find_ns(parent, name, ns);
910 kernfs_get(kn);
911 mutex_unlock(&kernfs_mutex);
912
913 return kn;
914}
915EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
916
917/**
918 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
919 * @parent: kernfs_node to search under
920 * @path: path to look for
921 * @ns: the namespace tag to use
922 *
923 * Look for kernfs_node with path @path under @parent and get a reference
924 * if found. This function may sleep and returns pointer to the found
925 * kernfs_node on success, %NULL on failure.
926 */
927struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
928 const char *path, const void *ns)
929{
930 struct kernfs_node *kn;
931
932 mutex_lock(&kernfs_mutex);
933 kn = kernfs_walk_ns(parent, path, ns);
934 kernfs_get(kn);
935 mutex_unlock(&kernfs_mutex);
936
937 return kn;
938}
939
940/**
941 * kernfs_create_root - create a new kernfs hierarchy
942 * @scops: optional syscall operations for the hierarchy
943 * @flags: KERNFS_ROOT_* flags
944 * @priv: opaque data associated with the new directory
945 *
946 * Returns the root of the new hierarchy on success, ERR_PTR() value on
947 * failure.
948 */
949struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
950 unsigned int flags, void *priv)
951{
952 struct kernfs_root *root;
953 struct kernfs_node *kn;
954
955 root = kzalloc(sizeof(*root), GFP_KERNEL);
956 if (!root)
957 return ERR_PTR(-ENOMEM);
958
959 idr_init(&root->ino_idr);
960 INIT_LIST_HEAD(&root->supers);
961 root->next_generation = 1;
962
963 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
964 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
965 KERNFS_DIR);
966 if (!kn) {
967 idr_destroy(&root->ino_idr);
968 kfree(root);
969 return ERR_PTR(-ENOMEM);
970 }
971
972 kn->priv = priv;
973 kn->dir.root = root;
974
975 root->syscall_ops = scops;
976 root->flags = flags;
977 root->kn = kn;
978 init_waitqueue_head(&root->deactivate_waitq);
979
980 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
981 kernfs_activate(kn);
982
983 return root;
984}
985
986/**
987 * kernfs_destroy_root - destroy a kernfs hierarchy
988 * @root: root of the hierarchy to destroy
989 *
990 * Destroy the hierarchy anchored at @root by removing all existing
991 * directories and destroying @root.
992 */
993void kernfs_destroy_root(struct kernfs_root *root)
994{
995 kernfs_remove(root->kn); /* will also free @root */
996}
997
998/**
999 * kernfs_create_dir_ns - create a directory
1000 * @parent: parent in which to create a new directory
1001 * @name: name of the new directory
1002 * @mode: mode of the new directory
1003 * @uid: uid of the new directory
1004 * @gid: gid of the new directory
1005 * @priv: opaque data associated with the new directory
1006 * @ns: optional namespace tag of the directory
1007 *
1008 * Returns the created node on success, ERR_PTR() value on failure.
1009 */
1010struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1011 const char *name, umode_t mode,
1012 kuid_t uid, kgid_t gid,
1013 void *priv, const void *ns)
1014{
1015 struct kernfs_node *kn;
1016 int rc;
1017
1018 /* allocate */
1019 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1020 uid, gid, KERNFS_DIR);
1021 if (!kn)
1022 return ERR_PTR(-ENOMEM);
1023
1024 kn->dir.root = parent->dir.root;
1025 kn->ns = ns;
1026 kn->priv = priv;
1027
1028 /* link in */
1029 rc = kernfs_add_one(kn);
1030 if (!rc)
1031 return kn;
1032
1033 kernfs_put(kn);
1034 return ERR_PTR(rc);
1035}
1036
1037/**
1038 * kernfs_create_empty_dir - create an always empty directory
1039 * @parent: parent in which to create a new directory
1040 * @name: name of the new directory
1041 *
1042 * Returns the created node on success, ERR_PTR() value on failure.
1043 */
1044struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1045 const char *name)
1046{
1047 struct kernfs_node *kn;
1048 int rc;
1049
1050 /* allocate */
1051 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1052 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1053 if (!kn)
1054 return ERR_PTR(-ENOMEM);
1055
1056 kn->flags |= KERNFS_EMPTY_DIR;
1057 kn->dir.root = parent->dir.root;
1058 kn->ns = NULL;
1059 kn->priv = NULL;
1060
1061 /* link in */
1062 rc = kernfs_add_one(kn);
1063 if (!rc)
1064 return kn;
1065
1066 kernfs_put(kn);
1067 return ERR_PTR(rc);
1068}
1069
1070static struct dentry *kernfs_iop_lookup(struct inode *dir,
1071 struct dentry *dentry,
1072 unsigned int flags)
1073{
1074 struct dentry *ret;
1075 struct kernfs_node *parent = dir->i_private;
1076 struct kernfs_node *kn;
1077 struct inode *inode;
1078 const void *ns = NULL;
1079
1080 mutex_lock(&kernfs_mutex);
1081
1082 if (kernfs_ns_enabled(parent))
1083 ns = kernfs_info(dir->i_sb)->ns;
1084
1085 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1086
1087 /* no such entry */
1088 if (!kn || !kernfs_active(kn)) {
1089 ret = NULL;
1090 goto out_unlock;
1091 }
1092
1093 /* attach dentry and inode */
1094 inode = kernfs_get_inode(dir->i_sb, kn);
1095 if (!inode) {
1096 ret = ERR_PTR(-ENOMEM);
1097 goto out_unlock;
1098 }
1099
1100 /* instantiate and hash dentry */
1101 ret = d_splice_alias(inode, dentry);
1102 out_unlock:
1103 mutex_unlock(&kernfs_mutex);
1104 return ret;
1105}
1106
1107static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1108 umode_t mode)
1109{
1110 struct kernfs_node *parent = dir->i_private;
1111 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1112 int ret;
1113
1114 if (!scops || !scops->mkdir)
1115 return -EPERM;
1116
1117 if (!kernfs_get_active(parent))
1118 return -ENODEV;
1119
1120 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1121
1122 kernfs_put_active(parent);
1123 return ret;
1124}
1125
1126static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1127{
1128 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1129 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1130 int ret;
1131
1132 if (!scops || !scops->rmdir)
1133 return -EPERM;
1134
1135 if (!kernfs_get_active(kn))
1136 return -ENODEV;
1137
1138 ret = scops->rmdir(kn);
1139
1140 kernfs_put_active(kn);
1141 return ret;
1142}
1143
1144static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1145 struct inode *new_dir, struct dentry *new_dentry,
1146 unsigned int flags)
1147{
1148 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1149 struct kernfs_node *new_parent = new_dir->i_private;
1150 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1151 int ret;
1152
1153 if (flags)
1154 return -EINVAL;
1155
1156 if (!scops || !scops->rename)
1157 return -EPERM;
1158
1159 if (!kernfs_get_active(kn))
1160 return -ENODEV;
1161
1162 if (!kernfs_get_active(new_parent)) {
1163 kernfs_put_active(kn);
1164 return -ENODEV;
1165 }
1166
1167 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1168
1169 kernfs_put_active(new_parent);
1170 kernfs_put_active(kn);
1171 return ret;
1172}
1173
1174const struct inode_operations kernfs_dir_iops = {
1175 .lookup = kernfs_iop_lookup,
1176 .permission = kernfs_iop_permission,
1177 .setattr = kernfs_iop_setattr,
1178 .getattr = kernfs_iop_getattr,
1179 .listxattr = kernfs_iop_listxattr,
1180
1181 .mkdir = kernfs_iop_mkdir,
1182 .rmdir = kernfs_iop_rmdir,
1183 .rename = kernfs_iop_rename,
1184};
1185
1186static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1187{
1188 struct kernfs_node *last;
1189
1190 while (true) {
1191 struct rb_node *rbn;
1192
1193 last = pos;
1194
1195 if (kernfs_type(pos) != KERNFS_DIR)
1196 break;
1197
1198 rbn = rb_first(&pos->dir.children);
1199 if (!rbn)
1200 break;
1201
1202 pos = rb_to_kn(rbn);
1203 }
1204
1205 return last;
1206}
1207
1208/**
1209 * kernfs_next_descendant_post - find the next descendant for post-order walk
1210 * @pos: the current position (%NULL to initiate traversal)
1211 * @root: kernfs_node whose descendants to walk
1212 *
1213 * Find the next descendant to visit for post-order traversal of @root's
1214 * descendants. @root is included in the iteration and the last node to be
1215 * visited.
1216 */
1217static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1218 struct kernfs_node *root)
1219{
1220 struct rb_node *rbn;
1221
1222 lockdep_assert_held(&kernfs_mutex);
1223
1224 /* if first iteration, visit leftmost descendant which may be root */
1225 if (!pos)
1226 return kernfs_leftmost_descendant(root);
1227
1228 /* if we visited @root, we're done */
1229 if (pos == root)
1230 return NULL;
1231
1232 /* if there's an unvisited sibling, visit its leftmost descendant */
1233 rbn = rb_next(&pos->rb);
1234 if (rbn)
1235 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1236
1237 /* no sibling left, visit parent */
1238 return pos->parent;
1239}
1240
1241/**
1242 * kernfs_activate - activate a node which started deactivated
1243 * @kn: kernfs_node whose subtree is to be activated
1244 *
1245 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1246 * needs to be explicitly activated. A node which hasn't been activated
1247 * isn't visible to userland and deactivation is skipped during its
1248 * removal. This is useful to construct atomic init sequences where
1249 * creation of multiple nodes should either succeed or fail atomically.
1250 *
1251 * The caller is responsible for ensuring that this function is not called
1252 * after kernfs_remove*() is invoked on @kn.
1253 */
1254void kernfs_activate(struct kernfs_node *kn)
1255{
1256 struct kernfs_node *pos;
1257
1258 mutex_lock(&kernfs_mutex);
1259
1260 pos = NULL;
1261 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1262 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1263 continue;
1264
1265 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1266 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1267
1268 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1269 pos->flags |= KERNFS_ACTIVATED;
1270 }
1271
1272 mutex_unlock(&kernfs_mutex);
1273}
1274
1275static void __kernfs_remove(struct kernfs_node *kn)
1276{
1277 struct kernfs_node *pos;
1278
1279 lockdep_assert_held(&kernfs_mutex);
1280
1281 /*
1282 * Short-circuit if non-root @kn has already finished removal.
1283 * This is for kernfs_remove_self() which plays with active ref
1284 * after removal.
1285 */
1286 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1287 return;
1288
1289 pr_debug("kernfs %s: removing\n", kn->name);
1290
1291 /* prevent any new usage under @kn by deactivating all nodes */
1292 pos = NULL;
1293 while ((pos = kernfs_next_descendant_post(pos, kn)))
1294 if (kernfs_active(pos))
1295 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1296
1297 /* deactivate and unlink the subtree node-by-node */
1298 do {
1299 pos = kernfs_leftmost_descendant(kn);
1300
1301 /*
1302 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1303 * base ref could have been put by someone else by the time
1304 * the function returns. Make sure it doesn't go away
1305 * underneath us.
1306 */
1307 kernfs_get(pos);
1308
1309 /*
1310 * Drain iff @kn was activated. This avoids draining and
1311 * its lockdep annotations for nodes which have never been
1312 * activated and allows embedding kernfs_remove() in create
1313 * error paths without worrying about draining.
1314 */
1315 if (kn->flags & KERNFS_ACTIVATED)
1316 kernfs_drain(pos);
1317 else
1318 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1319
1320 /*
1321 * kernfs_unlink_sibling() succeeds once per node. Use it
1322 * to decide who's responsible for cleanups.
1323 */
1324 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1325 struct kernfs_iattrs *ps_iattr =
1326 pos->parent ? pos->parent->iattr : NULL;
1327
1328 /* update timestamps on the parent */
1329 if (ps_iattr) {
1330 ktime_get_real_ts64(&ps_iattr->ia_iattr.ia_ctime);
1331 ps_iattr->ia_iattr.ia_mtime =
1332 ps_iattr->ia_iattr.ia_ctime;
1333 }
1334
1335 kernfs_put(pos);
1336 }
1337
1338 kernfs_put(pos);
1339 } while (pos != kn);
1340}
1341
1342/**
1343 * kernfs_remove - remove a kernfs_node recursively
1344 * @kn: the kernfs_node to remove
1345 *
1346 * Remove @kn along with all its subdirectories and files.
1347 */
1348void kernfs_remove(struct kernfs_node *kn)
1349{
1350 mutex_lock(&kernfs_mutex);
1351 __kernfs_remove(kn);
1352 mutex_unlock(&kernfs_mutex);
1353}
1354
1355/**
1356 * kernfs_break_active_protection - break out of active protection
1357 * @kn: the self kernfs_node
1358 *
1359 * The caller must be running off of a kernfs operation which is invoked
1360 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1361 * this function must also be matched with an invocation of
1362 * kernfs_unbreak_active_protection().
1363 *
1364 * This function releases the active reference of @kn the caller is
1365 * holding. Once this function is called, @kn may be removed at any point
1366 * and the caller is solely responsible for ensuring that the objects it
1367 * dereferences are accessible.
1368 */
1369void kernfs_break_active_protection(struct kernfs_node *kn)
1370{
1371 /*
1372 * Take out ourself out of the active ref dependency chain. If
1373 * we're called without an active ref, lockdep will complain.
1374 */
1375 kernfs_put_active(kn);
1376}
1377
1378/**
1379 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1380 * @kn: the self kernfs_node
1381 *
1382 * If kernfs_break_active_protection() was called, this function must be
1383 * invoked before finishing the kernfs operation. Note that while this
1384 * function restores the active reference, it doesn't and can't actually
1385 * restore the active protection - @kn may already or be in the process of
1386 * being removed. Once kernfs_break_active_protection() is invoked, that
1387 * protection is irreversibly gone for the kernfs operation instance.
1388 *
1389 * While this function may be called at any point after
1390 * kernfs_break_active_protection() is invoked, its most useful location
1391 * would be right before the enclosing kernfs operation returns.
1392 */
1393void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1394{
1395 /*
1396 * @kn->active could be in any state; however, the increment we do
1397 * here will be undone as soon as the enclosing kernfs operation
1398 * finishes and this temporary bump can't break anything. If @kn
1399 * is alive, nothing changes. If @kn is being deactivated, the
1400 * soon-to-follow put will either finish deactivation or restore
1401 * deactivated state. If @kn is already removed, the temporary
1402 * bump is guaranteed to be gone before @kn is released.
1403 */
1404 atomic_inc(&kn->active);
1405 if (kernfs_lockdep(kn))
1406 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1407}
1408
1409/**
1410 * kernfs_remove_self - remove a kernfs_node from its own method
1411 * @kn: the self kernfs_node to remove
1412 *
1413 * The caller must be running off of a kernfs operation which is invoked
1414 * with an active reference - e.g. one of kernfs_ops. This can be used to
1415 * implement a file operation which deletes itself.
1416 *
1417 * For example, the "delete" file for a sysfs device directory can be
1418 * implemented by invoking kernfs_remove_self() on the "delete" file
1419 * itself. This function breaks the circular dependency of trying to
1420 * deactivate self while holding an active ref itself. It isn't necessary
1421 * to modify the usual removal path to use kernfs_remove_self(). The
1422 * "delete" implementation can simply invoke kernfs_remove_self() on self
1423 * before proceeding with the usual removal path. kernfs will ignore later
1424 * kernfs_remove() on self.
1425 *
1426 * kernfs_remove_self() can be called multiple times concurrently on the
1427 * same kernfs_node. Only the first one actually performs removal and
1428 * returns %true. All others will wait until the kernfs operation which
1429 * won self-removal finishes and return %false. Note that the losers wait
1430 * for the completion of not only the winning kernfs_remove_self() but also
1431 * the whole kernfs_ops which won the arbitration. This can be used to
1432 * guarantee, for example, all concurrent writes to a "delete" file to
1433 * finish only after the whole operation is complete.
1434 */
1435bool kernfs_remove_self(struct kernfs_node *kn)
1436{
1437 bool ret;
1438
1439 mutex_lock(&kernfs_mutex);
1440 kernfs_break_active_protection(kn);
1441
1442 /*
1443 * SUICIDAL is used to arbitrate among competing invocations. Only
1444 * the first one will actually perform removal. When the removal
1445 * is complete, SUICIDED is set and the active ref is restored
1446 * while holding kernfs_mutex. The ones which lost arbitration
1447 * waits for SUICDED && drained which can happen only after the
1448 * enclosing kernfs operation which executed the winning instance
1449 * of kernfs_remove_self() finished.
1450 */
1451 if (!(kn->flags & KERNFS_SUICIDAL)) {
1452 kn->flags |= KERNFS_SUICIDAL;
1453 __kernfs_remove(kn);
1454 kn->flags |= KERNFS_SUICIDED;
1455 ret = true;
1456 } else {
1457 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1458 DEFINE_WAIT(wait);
1459
1460 while (true) {
1461 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1462
1463 if ((kn->flags & KERNFS_SUICIDED) &&
1464 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1465 break;
1466
1467 mutex_unlock(&kernfs_mutex);
1468 schedule();
1469 mutex_lock(&kernfs_mutex);
1470 }
1471 finish_wait(waitq, &wait);
1472 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1473 ret = false;
1474 }
1475
1476 /*
1477 * This must be done while holding kernfs_mutex; otherwise, waiting
1478 * for SUICIDED && deactivated could finish prematurely.
1479 */
1480 kernfs_unbreak_active_protection(kn);
1481
1482 mutex_unlock(&kernfs_mutex);
1483 return ret;
1484}
1485
1486/**
1487 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1488 * @parent: parent of the target
1489 * @name: name of the kernfs_node to remove
1490 * @ns: namespace tag of the kernfs_node to remove
1491 *
1492 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1493 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1494 */
1495int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1496 const void *ns)
1497{
1498 struct kernfs_node *kn;
1499
1500 if (!parent) {
1501 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1502 name);
1503 return -ENOENT;
1504 }
1505
1506 mutex_lock(&kernfs_mutex);
1507
1508 kn = kernfs_find_ns(parent, name, ns);
1509 if (kn)
1510 __kernfs_remove(kn);
1511
1512 mutex_unlock(&kernfs_mutex);
1513
1514 if (kn)
1515 return 0;
1516 else
1517 return -ENOENT;
1518}
1519
1520/**
1521 * kernfs_rename_ns - move and rename a kernfs_node
1522 * @kn: target node
1523 * @new_parent: new parent to put @sd under
1524 * @new_name: new name
1525 * @new_ns: new namespace tag
1526 */
1527int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1528 const char *new_name, const void *new_ns)
1529{
1530 struct kernfs_node *old_parent;
1531 const char *old_name = NULL;
1532 int error;
1533
1534 /* can't move or rename root */
1535 if (!kn->parent)
1536 return -EINVAL;
1537
1538 mutex_lock(&kernfs_mutex);
1539
1540 error = -ENOENT;
1541 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1542 (new_parent->flags & KERNFS_EMPTY_DIR))
1543 goto out;
1544
1545 error = 0;
1546 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1547 (strcmp(kn->name, new_name) == 0))
1548 goto out; /* nothing to rename */
1549
1550 error = -EEXIST;
1551 if (kernfs_find_ns(new_parent, new_name, new_ns))
1552 goto out;
1553
1554 /* rename kernfs_node */
1555 if (strcmp(kn->name, new_name) != 0) {
1556 error = -ENOMEM;
1557 new_name = kstrdup_const(new_name, GFP_KERNEL);
1558 if (!new_name)
1559 goto out;
1560 } else {
1561 new_name = NULL;
1562 }
1563
1564 /*
1565 * Move to the appropriate place in the appropriate directories rbtree.
1566 */
1567 kernfs_unlink_sibling(kn);
1568 kernfs_get(new_parent);
1569
1570 /* rename_lock protects ->parent and ->name accessors */
1571 spin_lock_irq(&kernfs_rename_lock);
1572
1573 old_parent = kn->parent;
1574 kn->parent = new_parent;
1575
1576 kn->ns = new_ns;
1577 if (new_name) {
1578 old_name = kn->name;
1579 kn->name = new_name;
1580 }
1581
1582 spin_unlock_irq(&kernfs_rename_lock);
1583
1584 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1585 kernfs_link_sibling(kn);
1586
1587 kernfs_put(old_parent);
1588 kfree_const(old_name);
1589
1590 error = 0;
1591 out:
1592 mutex_unlock(&kernfs_mutex);
1593 return error;
1594}
1595
1596/* Relationship between s_mode and the DT_xxx types */
1597static inline unsigned char dt_type(struct kernfs_node *kn)
1598{
1599 return (kn->mode >> 12) & 15;
1600}
1601
1602static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1603{
1604 kernfs_put(filp->private_data);
1605 return 0;
1606}
1607
1608static struct kernfs_node *kernfs_dir_pos(const void *ns,
1609 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1610{
1611 if (pos) {
1612 int valid = kernfs_active(pos) &&
1613 pos->parent == parent && hash == pos->hash;
1614 kernfs_put(pos);
1615 if (!valid)
1616 pos = NULL;
1617 }
1618 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1619 struct rb_node *node = parent->dir.children.rb_node;
1620 while (node) {
1621 pos = rb_to_kn(node);
1622
1623 if (hash < pos->hash)
1624 node = node->rb_left;
1625 else if (hash > pos->hash)
1626 node = node->rb_right;
1627 else
1628 break;
1629 }
1630 }
1631 /* Skip over entries which are dying/dead or in the wrong namespace */
1632 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1633 struct rb_node *node = rb_next(&pos->rb);
1634 if (!node)
1635 pos = NULL;
1636 else
1637 pos = rb_to_kn(node);
1638 }
1639 return pos;
1640}
1641
1642static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1643 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1644{
1645 pos = kernfs_dir_pos(ns, parent, ino, pos);
1646 if (pos) {
1647 do {
1648 struct rb_node *node = rb_next(&pos->rb);
1649 if (!node)
1650 pos = NULL;
1651 else
1652 pos = rb_to_kn(node);
1653 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1654 }
1655 return pos;
1656}
1657
1658static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1659{
1660 struct dentry *dentry = file->f_path.dentry;
1661 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1662 struct kernfs_node *pos = file->private_data;
1663 const void *ns = NULL;
1664
1665 if (!dir_emit_dots(file, ctx))
1666 return 0;
1667 mutex_lock(&kernfs_mutex);
1668
1669 if (kernfs_ns_enabled(parent))
1670 ns = kernfs_info(dentry->d_sb)->ns;
1671
1672 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1673 pos;
1674 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1675 const char *name = pos->name;
1676 unsigned int type = dt_type(pos);
1677 int len = strlen(name);
1678 ino_t ino = pos->id.ino;
1679
1680 ctx->pos = pos->hash;
1681 file->private_data = pos;
1682 kernfs_get(pos);
1683
1684 mutex_unlock(&kernfs_mutex);
1685 if (!dir_emit(ctx, name, len, ino, type))
1686 return 0;
1687 mutex_lock(&kernfs_mutex);
1688 }
1689 mutex_unlock(&kernfs_mutex);
1690 file->private_data = NULL;
1691 ctx->pos = INT_MAX;
1692 return 0;
1693}
1694
1695const struct file_operations kernfs_dir_fops = {
1696 .read = generic_read_dir,
1697 .iterate_shared = kernfs_fop_readdir,
1698 .release = kernfs_dir_fop_release,
1699 .llseek = generic_file_llseek,
1700};