| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * Memory merging support. | 
|  | 3 | * | 
|  | 4 | * This code enables dynamic sharing of identical pages found in different | 
|  | 5 | * memory areas, even if they are not shared by fork() | 
|  | 6 | * | 
|  | 7 | * Copyright (C) 2008-2009 Red Hat, Inc. | 
|  | 8 | * Authors: | 
|  | 9 | *	Izik Eidus | 
|  | 10 | *	Andrea Arcangeli | 
|  | 11 | *	Chris Wright | 
|  | 12 | *	Hugh Dickins | 
|  | 13 | * | 
|  | 14 | * This work is licensed under the terms of the GNU GPL, version 2. | 
|  | 15 | */ | 
|  | 16 |  | 
|  | 17 | #include <linux/errno.h> | 
|  | 18 | #include <linux/mm.h> | 
|  | 19 | #include <linux/fs.h> | 
|  | 20 | #include <linux/mman.h> | 
|  | 21 | #include <linux/sched.h> | 
|  | 22 | #include <linux/sched/mm.h> | 
|  | 23 | #include <linux/sched/coredump.h> | 
|  | 24 | #include <linux/rwsem.h> | 
|  | 25 | #include <linux/pagemap.h> | 
|  | 26 | #include <linux/rmap.h> | 
|  | 27 | #include <linux/spinlock.h> | 
|  | 28 | #include <linux/jhash.h> | 
|  | 29 | #include <linux/delay.h> | 
|  | 30 | #include <linux/kthread.h> | 
|  | 31 | #include <linux/wait.h> | 
|  | 32 | #include <linux/slab.h> | 
|  | 33 | #include <linux/rbtree.h> | 
|  | 34 | #include <linux/memory.h> | 
|  | 35 | #include <linux/mmu_notifier.h> | 
|  | 36 | #include <linux/swap.h> | 
|  | 37 | #include <linux/ksm.h> | 
|  | 38 | #include <linux/hashtable.h> | 
|  | 39 | #include <linux/freezer.h> | 
|  | 40 | #include <linux/oom.h> | 
|  | 41 | #include <linux/numa.h> | 
|  | 42 |  | 
|  | 43 | #include <asm/tlbflush.h> | 
|  | 44 | #include "internal.h" | 
|  | 45 |  | 
|  | 46 | #ifdef CONFIG_NUMA | 
|  | 47 | #define NUMA(x)		(x) | 
|  | 48 | #define DO_NUMA(x)	do { (x); } while (0) | 
|  | 49 | #else | 
|  | 50 | #define NUMA(x)		(0) | 
|  | 51 | #define DO_NUMA(x)	do { } while (0) | 
|  | 52 | #endif | 
|  | 53 |  | 
|  | 54 | /** | 
|  | 55 | * DOC: Overview | 
|  | 56 | * | 
|  | 57 | * A few notes about the KSM scanning process, | 
|  | 58 | * to make it easier to understand the data structures below: | 
|  | 59 | * | 
|  | 60 | * In order to reduce excessive scanning, KSM sorts the memory pages by their | 
|  | 61 | * contents into a data structure that holds pointers to the pages' locations. | 
|  | 62 | * | 
|  | 63 | * Since the contents of the pages may change at any moment, KSM cannot just | 
|  | 64 | * insert the pages into a normal sorted tree and expect it to find anything. | 
|  | 65 | * Therefore KSM uses two data structures - the stable and the unstable tree. | 
|  | 66 | * | 
|  | 67 | * The stable tree holds pointers to all the merged pages (ksm pages), sorted | 
|  | 68 | * by their contents.  Because each such page is write-protected, searching on | 
|  | 69 | * this tree is fully assured to be working (except when pages are unmapped), | 
|  | 70 | * and therefore this tree is called the stable tree. | 
|  | 71 | * | 
|  | 72 | * The stable tree node includes information required for reverse | 
|  | 73 | * mapping from a KSM page to virtual addresses that map this page. | 
|  | 74 | * | 
|  | 75 | * In order to avoid large latencies of the rmap walks on KSM pages, | 
|  | 76 | * KSM maintains two types of nodes in the stable tree: | 
|  | 77 | * | 
|  | 78 | * * the regular nodes that keep the reverse mapping structures in a | 
|  | 79 | *   linked list | 
|  | 80 | * * the "chains" that link nodes ("dups") that represent the same | 
|  | 81 | *   write protected memory content, but each "dup" corresponds to a | 
|  | 82 | *   different KSM page copy of that content | 
|  | 83 | * | 
|  | 84 | * Internally, the regular nodes, "dups" and "chains" are represented | 
|  | 85 | * using the same :c:type:`struct stable_node` structure. | 
|  | 86 | * | 
|  | 87 | * In addition to the stable tree, KSM uses a second data structure called the | 
|  | 88 | * unstable tree: this tree holds pointers to pages which have been found to | 
|  | 89 | * be "unchanged for a period of time".  The unstable tree sorts these pages | 
|  | 90 | * by their contents, but since they are not write-protected, KSM cannot rely | 
|  | 91 | * upon the unstable tree to work correctly - the unstable tree is liable to | 
|  | 92 | * be corrupted as its contents are modified, and so it is called unstable. | 
|  | 93 | * | 
|  | 94 | * KSM solves this problem by several techniques: | 
|  | 95 | * | 
|  | 96 | * 1) The unstable tree is flushed every time KSM completes scanning all | 
|  | 97 | *    memory areas, and then the tree is rebuilt again from the beginning. | 
|  | 98 | * 2) KSM will only insert into the unstable tree, pages whose hash value | 
|  | 99 | *    has not changed since the previous scan of all memory areas. | 
|  | 100 | * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the | 
|  | 101 | *    colors of the nodes and not on their contents, assuring that even when | 
|  | 102 | *    the tree gets "corrupted" it won't get out of balance, so scanning time | 
|  | 103 | *    remains the same (also, searching and inserting nodes in an rbtree uses | 
|  | 104 | *    the same algorithm, so we have no overhead when we flush and rebuild). | 
|  | 105 | * 4) KSM never flushes the stable tree, which means that even if it were to | 
|  | 106 | *    take 10 attempts to find a page in the unstable tree, once it is found, | 
|  | 107 | *    it is secured in the stable tree.  (When we scan a new page, we first | 
|  | 108 | *    compare it against the stable tree, and then against the unstable tree.) | 
|  | 109 | * | 
|  | 110 | * If the merge_across_nodes tunable is unset, then KSM maintains multiple | 
|  | 111 | * stable trees and multiple unstable trees: one of each for each NUMA node. | 
|  | 112 | */ | 
|  | 113 |  | 
|  | 114 | /** | 
|  | 115 | * struct mm_slot - ksm information per mm that is being scanned | 
|  | 116 | * @link: link to the mm_slots hash list | 
|  | 117 | * @mm_list: link into the mm_slots list, rooted in ksm_mm_head | 
|  | 118 | * @rmap_list: head for this mm_slot's singly-linked list of rmap_items | 
|  | 119 | * @mm: the mm that this information is valid for | 
|  | 120 | */ | 
|  | 121 | struct mm_slot { | 
|  | 122 | struct hlist_node link; | 
|  | 123 | struct list_head mm_list; | 
|  | 124 | struct rmap_item *rmap_list; | 
|  | 125 | struct mm_struct *mm; | 
|  | 126 | }; | 
|  | 127 |  | 
|  | 128 | /** | 
|  | 129 | * struct ksm_scan - cursor for scanning | 
|  | 130 | * @mm_slot: the current mm_slot we are scanning | 
|  | 131 | * @address: the next address inside that to be scanned | 
|  | 132 | * @rmap_list: link to the next rmap to be scanned in the rmap_list | 
|  | 133 | * @seqnr: count of completed full scans (needed when removing unstable node) | 
|  | 134 | * | 
|  | 135 | * There is only the one ksm_scan instance of this cursor structure. | 
|  | 136 | */ | 
|  | 137 | struct ksm_scan { | 
|  | 138 | struct mm_slot *mm_slot; | 
|  | 139 | unsigned long address; | 
|  | 140 | struct rmap_item **rmap_list; | 
|  | 141 | unsigned long seqnr; | 
|  | 142 | }; | 
|  | 143 |  | 
|  | 144 | /** | 
|  | 145 | * struct stable_node - node of the stable rbtree | 
|  | 146 | * @node: rb node of this ksm page in the stable tree | 
|  | 147 | * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list | 
|  | 148 | * @hlist_dup: linked into the stable_node->hlist with a stable_node chain | 
|  | 149 | * @list: linked into migrate_nodes, pending placement in the proper node tree | 
|  | 150 | * @hlist: hlist head of rmap_items using this ksm page | 
|  | 151 | * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) | 
|  | 152 | * @chain_prune_time: time of the last full garbage collection | 
|  | 153 | * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN | 
|  | 154 | * @nid: NUMA node id of stable tree in which linked (may not match kpfn) | 
|  | 155 | */ | 
|  | 156 | struct stable_node { | 
|  | 157 | union { | 
|  | 158 | struct rb_node node;	/* when node of stable tree */ | 
|  | 159 | struct {		/* when listed for migration */ | 
|  | 160 | struct list_head *head; | 
|  | 161 | struct { | 
|  | 162 | struct hlist_node hlist_dup; | 
|  | 163 | struct list_head list; | 
|  | 164 | }; | 
|  | 165 | }; | 
|  | 166 | }; | 
|  | 167 | struct hlist_head hlist; | 
|  | 168 | union { | 
|  | 169 | unsigned long kpfn; | 
|  | 170 | unsigned long chain_prune_time; | 
|  | 171 | }; | 
|  | 172 | /* | 
|  | 173 | * STABLE_NODE_CHAIN can be any negative number in | 
|  | 174 | * rmap_hlist_len negative range, but better not -1 to be able | 
|  | 175 | * to reliably detect underflows. | 
|  | 176 | */ | 
|  | 177 | #define STABLE_NODE_CHAIN -1024 | 
|  | 178 | int rmap_hlist_len; | 
|  | 179 | #ifdef CONFIG_NUMA | 
|  | 180 | int nid; | 
|  | 181 | #endif | 
|  | 182 | }; | 
|  | 183 |  | 
|  | 184 | /** | 
|  | 185 | * struct rmap_item - reverse mapping item for virtual addresses | 
|  | 186 | * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list | 
|  | 187 | * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree | 
|  | 188 | * @nid: NUMA node id of unstable tree in which linked (may not match page) | 
|  | 189 | * @mm: the memory structure this rmap_item is pointing into | 
|  | 190 | * @address: the virtual address this rmap_item tracks (+ flags in low bits) | 
|  | 191 | * @oldchecksum: previous checksum of the page at that virtual address | 
|  | 192 | * @node: rb node of this rmap_item in the unstable tree | 
|  | 193 | * @head: pointer to stable_node heading this list in the stable tree | 
|  | 194 | * @hlist: link into hlist of rmap_items hanging off that stable_node | 
|  | 195 | */ | 
|  | 196 | struct rmap_item { | 
|  | 197 | struct rmap_item *rmap_list; | 
|  | 198 | union { | 
|  | 199 | struct anon_vma *anon_vma;	/* when stable */ | 
|  | 200 | #ifdef CONFIG_NUMA | 
|  | 201 | int nid;		/* when node of unstable tree */ | 
|  | 202 | #endif | 
|  | 203 | }; | 
|  | 204 | struct mm_struct *mm; | 
|  | 205 | unsigned long address;		/* + low bits used for flags below */ | 
|  | 206 | unsigned int oldchecksum;	/* when unstable */ | 
|  | 207 | union { | 
|  | 208 | struct rb_node node;	/* when node of unstable tree */ | 
|  | 209 | struct {		/* when listed from stable tree */ | 
|  | 210 | struct stable_node *head; | 
|  | 211 | struct hlist_node hlist; | 
|  | 212 | }; | 
|  | 213 | }; | 
|  | 214 | }; | 
|  | 215 |  | 
|  | 216 | #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */ | 
|  | 217 | #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */ | 
|  | 218 | #define STABLE_FLAG	0x200	/* is listed from the stable tree */ | 
|  | 219 | #define KSM_FLAG_MASK	(SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG) | 
|  | 220 | /* to mask all the flags */ | 
|  | 221 |  | 
|  | 222 | /* The stable and unstable tree heads */ | 
|  | 223 | static struct rb_root one_stable_tree[1] = { RB_ROOT }; | 
|  | 224 | static struct rb_root one_unstable_tree[1] = { RB_ROOT }; | 
|  | 225 | static struct rb_root *root_stable_tree = one_stable_tree; | 
|  | 226 | static struct rb_root *root_unstable_tree = one_unstable_tree; | 
|  | 227 |  | 
|  | 228 | /* Recently migrated nodes of stable tree, pending proper placement */ | 
|  | 229 | static LIST_HEAD(migrate_nodes); | 
|  | 230 | #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) | 
|  | 231 |  | 
|  | 232 | #define MM_SLOTS_HASH_BITS 10 | 
|  | 233 | static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); | 
|  | 234 |  | 
|  | 235 | static struct mm_slot ksm_mm_head = { | 
|  | 236 | .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), | 
|  | 237 | }; | 
|  | 238 | static struct ksm_scan ksm_scan = { | 
|  | 239 | .mm_slot = &ksm_mm_head, | 
|  | 240 | }; | 
|  | 241 |  | 
|  | 242 | static struct kmem_cache *rmap_item_cache; | 
|  | 243 | static struct kmem_cache *stable_node_cache; | 
|  | 244 | static struct kmem_cache *mm_slot_cache; | 
|  | 245 |  | 
|  | 246 | /* The number of nodes in the stable tree */ | 
|  | 247 | static unsigned long ksm_pages_shared; | 
|  | 248 |  | 
|  | 249 | /* The number of page slots additionally sharing those nodes */ | 
|  | 250 | static unsigned long ksm_pages_sharing; | 
|  | 251 |  | 
|  | 252 | /* The number of nodes in the unstable tree */ | 
|  | 253 | static unsigned long ksm_pages_unshared; | 
|  | 254 |  | 
|  | 255 | /* The number of rmap_items in use: to calculate pages_volatile */ | 
|  | 256 | static unsigned long ksm_rmap_items; | 
|  | 257 |  | 
|  | 258 | /* The number of stable_node chains */ | 
|  | 259 | static unsigned long ksm_stable_node_chains; | 
|  | 260 |  | 
|  | 261 | /* The number of stable_node dups linked to the stable_node chains */ | 
|  | 262 | static unsigned long ksm_stable_node_dups; | 
|  | 263 |  | 
|  | 264 | /* Delay in pruning stale stable_node_dups in the stable_node_chains */ | 
|  | 265 | static int ksm_stable_node_chains_prune_millisecs = 2000; | 
|  | 266 |  | 
|  | 267 | /* Maximum number of page slots sharing a stable node */ | 
|  | 268 | static int ksm_max_page_sharing = 256; | 
|  | 269 |  | 
|  | 270 | /* Number of pages ksmd should scan in one batch */ | 
|  | 271 | static unsigned int ksm_thread_pages_to_scan = 100; | 
|  | 272 |  | 
|  | 273 | /* Milliseconds ksmd should sleep between batches */ | 
|  | 274 | static unsigned int ksm_thread_sleep_millisecs = 20; | 
|  | 275 |  | 
|  | 276 | /* Checksum of an empty (zeroed) page */ | 
|  | 277 | static unsigned int zero_checksum __read_mostly; | 
|  | 278 |  | 
|  | 279 | /* Whether to merge empty (zeroed) pages with actual zero pages */ | 
|  | 280 | static bool ksm_use_zero_pages __read_mostly; | 
|  | 281 |  | 
|  | 282 | #ifdef CONFIG_NUMA | 
|  | 283 | /* Zeroed when merging across nodes is not allowed */ | 
|  | 284 | static unsigned int ksm_merge_across_nodes = 1; | 
|  | 285 | static int ksm_nr_node_ids = 1; | 
|  | 286 | #else | 
|  | 287 | #define ksm_merge_across_nodes	1U | 
|  | 288 | #define ksm_nr_node_ids		1 | 
|  | 289 | #endif | 
|  | 290 |  | 
|  | 291 | #define KSM_RUN_STOP	0 | 
|  | 292 | #define KSM_RUN_MERGE	1 | 
|  | 293 | #define KSM_RUN_UNMERGE	2 | 
|  | 294 | #define KSM_RUN_OFFLINE	4 | 
|  | 295 | static unsigned long ksm_run = KSM_RUN_STOP; | 
|  | 296 | static void wait_while_offlining(void); | 
|  | 297 |  | 
|  | 298 | static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); | 
|  | 299 | static DEFINE_MUTEX(ksm_thread_mutex); | 
|  | 300 | static DEFINE_SPINLOCK(ksm_mmlist_lock); | 
|  | 301 |  | 
|  | 302 | #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ | 
|  | 303 | sizeof(struct __struct), __alignof__(struct __struct),\ | 
|  | 304 | (__flags), NULL) | 
|  | 305 |  | 
|  | 306 | static int __init ksm_slab_init(void) | 
|  | 307 | { | 
|  | 308 | rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); | 
|  | 309 | if (!rmap_item_cache) | 
|  | 310 | goto out; | 
|  | 311 |  | 
|  | 312 | stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); | 
|  | 313 | if (!stable_node_cache) | 
|  | 314 | goto out_free1; | 
|  | 315 |  | 
|  | 316 | mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); | 
|  | 317 | if (!mm_slot_cache) | 
|  | 318 | goto out_free2; | 
|  | 319 |  | 
|  | 320 | return 0; | 
|  | 321 |  | 
|  | 322 | out_free2: | 
|  | 323 | kmem_cache_destroy(stable_node_cache); | 
|  | 324 | out_free1: | 
|  | 325 | kmem_cache_destroy(rmap_item_cache); | 
|  | 326 | out: | 
|  | 327 | return -ENOMEM; | 
|  | 328 | } | 
|  | 329 |  | 
|  | 330 | static void __init ksm_slab_free(void) | 
|  | 331 | { | 
|  | 332 | kmem_cache_destroy(mm_slot_cache); | 
|  | 333 | kmem_cache_destroy(stable_node_cache); | 
|  | 334 | kmem_cache_destroy(rmap_item_cache); | 
|  | 335 | mm_slot_cache = NULL; | 
|  | 336 | } | 
|  | 337 |  | 
|  | 338 | static __always_inline bool is_stable_node_chain(struct stable_node *chain) | 
|  | 339 | { | 
|  | 340 | return chain->rmap_hlist_len == STABLE_NODE_CHAIN; | 
|  | 341 | } | 
|  | 342 |  | 
|  | 343 | static __always_inline bool is_stable_node_dup(struct stable_node *dup) | 
|  | 344 | { | 
|  | 345 | return dup->head == STABLE_NODE_DUP_HEAD; | 
|  | 346 | } | 
|  | 347 |  | 
|  | 348 | static inline void stable_node_chain_add_dup(struct stable_node *dup, | 
|  | 349 | struct stable_node *chain) | 
|  | 350 | { | 
|  | 351 | VM_BUG_ON(is_stable_node_dup(dup)); | 
|  | 352 | dup->head = STABLE_NODE_DUP_HEAD; | 
|  | 353 | VM_BUG_ON(!is_stable_node_chain(chain)); | 
|  | 354 | hlist_add_head(&dup->hlist_dup, &chain->hlist); | 
|  | 355 | ksm_stable_node_dups++; | 
|  | 356 | } | 
|  | 357 |  | 
|  | 358 | static inline void __stable_node_dup_del(struct stable_node *dup) | 
|  | 359 | { | 
|  | 360 | VM_BUG_ON(!is_stable_node_dup(dup)); | 
|  | 361 | hlist_del(&dup->hlist_dup); | 
|  | 362 | ksm_stable_node_dups--; | 
|  | 363 | } | 
|  | 364 |  | 
|  | 365 | static inline void stable_node_dup_del(struct stable_node *dup) | 
|  | 366 | { | 
|  | 367 | VM_BUG_ON(is_stable_node_chain(dup)); | 
|  | 368 | if (is_stable_node_dup(dup)) | 
|  | 369 | __stable_node_dup_del(dup); | 
|  | 370 | else | 
|  | 371 | rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); | 
|  | 372 | #ifdef CONFIG_DEBUG_VM | 
|  | 373 | dup->head = NULL; | 
|  | 374 | #endif | 
|  | 375 | } | 
|  | 376 |  | 
|  | 377 | static inline struct rmap_item *alloc_rmap_item(void) | 
|  | 378 | { | 
|  | 379 | struct rmap_item *rmap_item; | 
|  | 380 |  | 
|  | 381 | rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | | 
|  | 382 | __GFP_NORETRY | __GFP_NOWARN); | 
|  | 383 | if (rmap_item) | 
|  | 384 | ksm_rmap_items++; | 
|  | 385 | return rmap_item; | 
|  | 386 | } | 
|  | 387 |  | 
|  | 388 | static inline void free_rmap_item(struct rmap_item *rmap_item) | 
|  | 389 | { | 
|  | 390 | ksm_rmap_items--; | 
|  | 391 | rmap_item->mm = NULL;	/* debug safety */ | 
|  | 392 | kmem_cache_free(rmap_item_cache, rmap_item); | 
|  | 393 | } | 
|  | 394 |  | 
|  | 395 | static inline struct stable_node *alloc_stable_node(void) | 
|  | 396 | { | 
|  | 397 | /* | 
|  | 398 | * The allocation can take too long with GFP_KERNEL when memory is under | 
|  | 399 | * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH | 
|  | 400 | * grants access to memory reserves, helping to avoid this problem. | 
|  | 401 | */ | 
|  | 402 | return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); | 
|  | 403 | } | 
|  | 404 |  | 
|  | 405 | static inline void free_stable_node(struct stable_node *stable_node) | 
|  | 406 | { | 
|  | 407 | VM_BUG_ON(stable_node->rmap_hlist_len && | 
|  | 408 | !is_stable_node_chain(stable_node)); | 
|  | 409 | kmem_cache_free(stable_node_cache, stable_node); | 
|  | 410 | } | 
|  | 411 |  | 
|  | 412 | static inline struct mm_slot *alloc_mm_slot(void) | 
|  | 413 | { | 
|  | 414 | if (!mm_slot_cache)	/* initialization failed */ | 
|  | 415 | return NULL; | 
|  | 416 | return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); | 
|  | 417 | } | 
|  | 418 |  | 
|  | 419 | static inline void free_mm_slot(struct mm_slot *mm_slot) | 
|  | 420 | { | 
|  | 421 | kmem_cache_free(mm_slot_cache, mm_slot); | 
|  | 422 | } | 
|  | 423 |  | 
|  | 424 | static struct mm_slot *get_mm_slot(struct mm_struct *mm) | 
|  | 425 | { | 
|  | 426 | struct mm_slot *slot; | 
|  | 427 |  | 
|  | 428 | hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) | 
|  | 429 | if (slot->mm == mm) | 
|  | 430 | return slot; | 
|  | 431 |  | 
|  | 432 | return NULL; | 
|  | 433 | } | 
|  | 434 |  | 
|  | 435 | static void insert_to_mm_slots_hash(struct mm_struct *mm, | 
|  | 436 | struct mm_slot *mm_slot) | 
|  | 437 | { | 
|  | 438 | mm_slot->mm = mm; | 
|  | 439 | hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); | 
|  | 440 | } | 
|  | 441 |  | 
|  | 442 | /* | 
|  | 443 | * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's | 
|  | 444 | * page tables after it has passed through ksm_exit() - which, if necessary, | 
|  | 445 | * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set | 
|  | 446 | * a special flag: they can just back out as soon as mm_users goes to zero. | 
|  | 447 | * ksm_test_exit() is used throughout to make this test for exit: in some | 
|  | 448 | * places for correctness, in some places just to avoid unnecessary work. | 
|  | 449 | */ | 
|  | 450 | static inline bool ksm_test_exit(struct mm_struct *mm) | 
|  | 451 | { | 
|  | 452 | return atomic_read(&mm->mm_users) == 0; | 
|  | 453 | } | 
|  | 454 |  | 
|  | 455 | /* | 
|  | 456 | * We use break_ksm to break COW on a ksm page: it's a stripped down | 
|  | 457 | * | 
|  | 458 | *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1) | 
|  | 459 | *		put_page(page); | 
|  | 460 | * | 
|  | 461 | * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, | 
|  | 462 | * in case the application has unmapped and remapped mm,addr meanwhile. | 
|  | 463 | * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP | 
|  | 464 | * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. | 
|  | 465 | * | 
|  | 466 | * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context | 
|  | 467 | * of the process that owns 'vma'.  We also do not want to enforce | 
|  | 468 | * protection keys here anyway. | 
|  | 469 | */ | 
|  | 470 | static int break_ksm(struct vm_area_struct *vma, unsigned long addr) | 
|  | 471 | { | 
|  | 472 | struct page *page; | 
|  | 473 | vm_fault_t ret = 0; | 
|  | 474 |  | 
|  | 475 | do { | 
|  | 476 | cond_resched(); | 
|  | 477 | page = follow_page(vma, addr, | 
|  | 478 | FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); | 
|  | 479 | if (IS_ERR_OR_NULL(page)) | 
|  | 480 | break; | 
|  | 481 | if (PageKsm(page)) | 
|  | 482 | ret = handle_mm_fault(vma, addr, | 
|  | 483 | FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE); | 
|  | 484 | else | 
|  | 485 | ret = VM_FAULT_WRITE; | 
|  | 486 | put_page(page); | 
|  | 487 | } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); | 
|  | 488 | /* | 
|  | 489 | * We must loop because handle_mm_fault() may back out if there's | 
|  | 490 | * any difficulty e.g. if pte accessed bit gets updated concurrently. | 
|  | 491 | * | 
|  | 492 | * VM_FAULT_WRITE is what we have been hoping for: it indicates that | 
|  | 493 | * COW has been broken, even if the vma does not permit VM_WRITE; | 
|  | 494 | * but note that a concurrent fault might break PageKsm for us. | 
|  | 495 | * | 
|  | 496 | * VM_FAULT_SIGBUS could occur if we race with truncation of the | 
|  | 497 | * backing file, which also invalidates anonymous pages: that's | 
|  | 498 | * okay, that truncation will have unmapped the PageKsm for us. | 
|  | 499 | * | 
|  | 500 | * VM_FAULT_OOM: at the time of writing (late July 2009), setting | 
|  | 501 | * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the | 
|  | 502 | * current task has TIF_MEMDIE set, and will be OOM killed on return | 
|  | 503 | * to user; and ksmd, having no mm, would never be chosen for that. | 
|  | 504 | * | 
|  | 505 | * But if the mm is in a limited mem_cgroup, then the fault may fail | 
|  | 506 | * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and | 
|  | 507 | * even ksmd can fail in this way - though it's usually breaking ksm | 
|  | 508 | * just to undo a merge it made a moment before, so unlikely to oom. | 
|  | 509 | * | 
|  | 510 | * That's a pity: we might therefore have more kernel pages allocated | 
|  | 511 | * than we're counting as nodes in the stable tree; but ksm_do_scan | 
|  | 512 | * will retry to break_cow on each pass, so should recover the page | 
|  | 513 | * in due course.  The important thing is to not let VM_MERGEABLE | 
|  | 514 | * be cleared while any such pages might remain in the area. | 
|  | 515 | */ | 
|  | 516 | return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; | 
|  | 517 | } | 
|  | 518 |  | 
|  | 519 | static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, | 
|  | 520 | unsigned long addr) | 
|  | 521 | { | 
|  | 522 | struct vm_area_struct *vma; | 
|  | 523 | if (ksm_test_exit(mm)) | 
|  | 524 | return NULL; | 
|  | 525 | vma = find_vma(mm, addr); | 
|  | 526 | if (!vma || vma->vm_start > addr) | 
|  | 527 | return NULL; | 
|  | 528 | if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) | 
|  | 529 | return NULL; | 
|  | 530 | return vma; | 
|  | 531 | } | 
|  | 532 |  | 
|  | 533 | static void break_cow(struct rmap_item *rmap_item) | 
|  | 534 | { | 
|  | 535 | struct mm_struct *mm = rmap_item->mm; | 
|  | 536 | unsigned long addr = rmap_item->address; | 
|  | 537 | struct vm_area_struct *vma; | 
|  | 538 |  | 
|  | 539 | /* | 
|  | 540 | * It is not an accident that whenever we want to break COW | 
|  | 541 | * to undo, we also need to drop a reference to the anon_vma. | 
|  | 542 | */ | 
|  | 543 | put_anon_vma(rmap_item->anon_vma); | 
|  | 544 |  | 
|  | 545 | down_read(&mm->mmap_sem); | 
|  | 546 | vma = find_mergeable_vma(mm, addr); | 
|  | 547 | if (vma) | 
|  | 548 | break_ksm(vma, addr); | 
|  | 549 | up_read(&mm->mmap_sem); | 
|  | 550 | } | 
|  | 551 |  | 
|  | 552 | static struct page *get_mergeable_page(struct rmap_item *rmap_item) | 
|  | 553 | { | 
|  | 554 | struct mm_struct *mm = rmap_item->mm; | 
|  | 555 | unsigned long addr = rmap_item->address; | 
|  | 556 | struct vm_area_struct *vma; | 
|  | 557 | struct page *page; | 
|  | 558 |  | 
|  | 559 | down_read(&mm->mmap_sem); | 
|  | 560 | vma = find_mergeable_vma(mm, addr); | 
|  | 561 | if (!vma) | 
|  | 562 | goto out; | 
|  | 563 |  | 
|  | 564 | page = follow_page(vma, addr, FOLL_GET); | 
|  | 565 | if (IS_ERR_OR_NULL(page)) | 
|  | 566 | goto out; | 
|  | 567 | if (PageAnon(page)) { | 
|  | 568 | flush_anon_page(vma, page, addr); | 
|  | 569 | flush_dcache_page(page); | 
|  | 570 | } else { | 
|  | 571 | put_page(page); | 
|  | 572 | out: | 
|  | 573 | page = NULL; | 
|  | 574 | } | 
|  | 575 | up_read(&mm->mmap_sem); | 
|  | 576 | return page; | 
|  | 577 | } | 
|  | 578 |  | 
|  | 579 | /* | 
|  | 580 | * This helper is used for getting right index into array of tree roots. | 
|  | 581 | * When merge_across_nodes knob is set to 1, there are only two rb-trees for | 
|  | 582 | * stable and unstable pages from all nodes with roots in index 0. Otherwise, | 
|  | 583 | * every node has its own stable and unstable tree. | 
|  | 584 | */ | 
|  | 585 | static inline int get_kpfn_nid(unsigned long kpfn) | 
|  | 586 | { | 
|  | 587 | return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); | 
|  | 588 | } | 
|  | 589 |  | 
|  | 590 | static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, | 
|  | 591 | struct rb_root *root) | 
|  | 592 | { | 
|  | 593 | struct stable_node *chain = alloc_stable_node(); | 
|  | 594 | VM_BUG_ON(is_stable_node_chain(dup)); | 
|  | 595 | if (likely(chain)) { | 
|  | 596 | INIT_HLIST_HEAD(&chain->hlist); | 
|  | 597 | chain->chain_prune_time = jiffies; | 
|  | 598 | chain->rmap_hlist_len = STABLE_NODE_CHAIN; | 
|  | 599 | #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) | 
|  | 600 | chain->nid = -1; /* debug */ | 
|  | 601 | #endif | 
|  | 602 | ksm_stable_node_chains++; | 
|  | 603 |  | 
|  | 604 | /* | 
|  | 605 | * Put the stable node chain in the first dimension of | 
|  | 606 | * the stable tree and at the same time remove the old | 
|  | 607 | * stable node. | 
|  | 608 | */ | 
|  | 609 | rb_replace_node(&dup->node, &chain->node, root); | 
|  | 610 |  | 
|  | 611 | /* | 
|  | 612 | * Move the old stable node to the second dimension | 
|  | 613 | * queued in the hlist_dup. The invariant is that all | 
|  | 614 | * dup stable_nodes in the chain->hlist point to pages | 
|  | 615 | * that are wrprotected and have the exact same | 
|  | 616 | * content. | 
|  | 617 | */ | 
|  | 618 | stable_node_chain_add_dup(dup, chain); | 
|  | 619 | } | 
|  | 620 | return chain; | 
|  | 621 | } | 
|  | 622 |  | 
|  | 623 | static inline void free_stable_node_chain(struct stable_node *chain, | 
|  | 624 | struct rb_root *root) | 
|  | 625 | { | 
|  | 626 | rb_erase(&chain->node, root); | 
|  | 627 | free_stable_node(chain); | 
|  | 628 | ksm_stable_node_chains--; | 
|  | 629 | } | 
|  | 630 |  | 
|  | 631 | static void remove_node_from_stable_tree(struct stable_node *stable_node) | 
|  | 632 | { | 
|  | 633 | struct rmap_item *rmap_item; | 
|  | 634 |  | 
|  | 635 | /* check it's not STABLE_NODE_CHAIN or negative */ | 
|  | 636 | BUG_ON(stable_node->rmap_hlist_len < 0); | 
|  | 637 |  | 
|  | 638 | hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { | 
|  | 639 | if (rmap_item->hlist.next) | 
|  | 640 | ksm_pages_sharing--; | 
|  | 641 | else | 
|  | 642 | ksm_pages_shared--; | 
|  | 643 | VM_BUG_ON(stable_node->rmap_hlist_len <= 0); | 
|  | 644 | stable_node->rmap_hlist_len--; | 
|  | 645 | put_anon_vma(rmap_item->anon_vma); | 
|  | 646 | rmap_item->address &= PAGE_MASK; | 
|  | 647 | cond_resched(); | 
|  | 648 | } | 
|  | 649 |  | 
|  | 650 | /* | 
|  | 651 | * We need the second aligned pointer of the migrate_nodes | 
|  | 652 | * list_head to stay clear from the rb_parent_color union | 
|  | 653 | * (aligned and different than any node) and also different | 
|  | 654 | * from &migrate_nodes. This will verify that future list.h changes | 
|  | 655 | * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. | 
|  | 656 | */ | 
|  | 657 | #if defined(GCC_VERSION) && GCC_VERSION >= 40903 | 
|  | 658 | BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); | 
|  | 659 | BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); | 
|  | 660 | #endif | 
|  | 661 |  | 
|  | 662 | if (stable_node->head == &migrate_nodes) | 
|  | 663 | list_del(&stable_node->list); | 
|  | 664 | else | 
|  | 665 | stable_node_dup_del(stable_node); | 
|  | 666 | free_stable_node(stable_node); | 
|  | 667 | } | 
|  | 668 |  | 
|  | 669 | /* | 
|  | 670 | * get_ksm_page: checks if the page indicated by the stable node | 
|  | 671 | * is still its ksm page, despite having held no reference to it. | 
|  | 672 | * In which case we can trust the content of the page, and it | 
|  | 673 | * returns the gotten page; but if the page has now been zapped, | 
|  | 674 | * remove the stale node from the stable tree and return NULL. | 
|  | 675 | * But beware, the stable node's page might be being migrated. | 
|  | 676 | * | 
|  | 677 | * You would expect the stable_node to hold a reference to the ksm page. | 
|  | 678 | * But if it increments the page's count, swapping out has to wait for | 
|  | 679 | * ksmd to come around again before it can free the page, which may take | 
|  | 680 | * seconds or even minutes: much too unresponsive.  So instead we use a | 
|  | 681 | * "keyhole reference": access to the ksm page from the stable node peeps | 
|  | 682 | * out through its keyhole to see if that page still holds the right key, | 
|  | 683 | * pointing back to this stable node.  This relies on freeing a PageAnon | 
|  | 684 | * page to reset its page->mapping to NULL, and relies on no other use of | 
|  | 685 | * a page to put something that might look like our key in page->mapping. | 
|  | 686 | * is on its way to being freed; but it is an anomaly to bear in mind. | 
|  | 687 | */ | 
|  | 688 | static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it) | 
|  | 689 | { | 
|  | 690 | struct page *page; | 
|  | 691 | void *expected_mapping; | 
|  | 692 | unsigned long kpfn; | 
|  | 693 |  | 
|  | 694 | expected_mapping = (void *)((unsigned long)stable_node | | 
|  | 695 | PAGE_MAPPING_KSM); | 
|  | 696 | again: | 
|  | 697 | kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ | 
|  | 698 | page = pfn_to_page(kpfn); | 
|  | 699 | if (READ_ONCE(page->mapping) != expected_mapping) | 
|  | 700 | goto stale; | 
|  | 701 |  | 
|  | 702 | /* | 
|  | 703 | * We cannot do anything with the page while its refcount is 0. | 
|  | 704 | * Usually 0 means free, or tail of a higher-order page: in which | 
|  | 705 | * case this node is no longer referenced, and should be freed; | 
|  | 706 | * however, it might mean that the page is under page_ref_freeze(). | 
|  | 707 | * The __remove_mapping() case is easy, again the node is now stale; | 
|  | 708 | * but if page is swapcache in migrate_page_move_mapping(), it might | 
|  | 709 | * still be our page, in which case it's essential to keep the node. | 
|  | 710 | */ | 
|  | 711 | while (!get_page_unless_zero(page)) { | 
|  | 712 | /* | 
|  | 713 | * Another check for page->mapping != expected_mapping would | 
|  | 714 | * work here too.  We have chosen the !PageSwapCache test to | 
|  | 715 | * optimize the common case, when the page is or is about to | 
|  | 716 | * be freed: PageSwapCache is cleared (under spin_lock_irq) | 
|  | 717 | * in the ref_freeze section of __remove_mapping(); but Anon | 
|  | 718 | * page->mapping reset to NULL later, in free_pages_prepare(). | 
|  | 719 | */ | 
|  | 720 | if (!PageSwapCache(page)) | 
|  | 721 | goto stale; | 
|  | 722 | cpu_relax(); | 
|  | 723 | } | 
|  | 724 |  | 
|  | 725 | if (READ_ONCE(page->mapping) != expected_mapping) { | 
|  | 726 | put_page(page); | 
|  | 727 | goto stale; | 
|  | 728 | } | 
|  | 729 |  | 
|  | 730 | if (lock_it) { | 
|  | 731 | lock_page(page); | 
|  | 732 | if (READ_ONCE(page->mapping) != expected_mapping) { | 
|  | 733 | unlock_page(page); | 
|  | 734 | put_page(page); | 
|  | 735 | goto stale; | 
|  | 736 | } | 
|  | 737 | } | 
|  | 738 | return page; | 
|  | 739 |  | 
|  | 740 | stale: | 
|  | 741 | /* | 
|  | 742 | * We come here from above when page->mapping or !PageSwapCache | 
|  | 743 | * suggests that the node is stale; but it might be under migration. | 
|  | 744 | * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), | 
|  | 745 | * before checking whether node->kpfn has been changed. | 
|  | 746 | */ | 
|  | 747 | smp_rmb(); | 
|  | 748 | if (READ_ONCE(stable_node->kpfn) != kpfn) | 
|  | 749 | goto again; | 
|  | 750 | remove_node_from_stable_tree(stable_node); | 
|  | 751 | return NULL; | 
|  | 752 | } | 
|  | 753 |  | 
|  | 754 | /* | 
|  | 755 | * Removing rmap_item from stable or unstable tree. | 
|  | 756 | * This function will clean the information from the stable/unstable tree. | 
|  | 757 | */ | 
|  | 758 | static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) | 
|  | 759 | { | 
|  | 760 | if (rmap_item->address & STABLE_FLAG) { | 
|  | 761 | struct stable_node *stable_node; | 
|  | 762 | struct page *page; | 
|  | 763 |  | 
|  | 764 | stable_node = rmap_item->head; | 
|  | 765 | page = get_ksm_page(stable_node, true); | 
|  | 766 | if (!page) | 
|  | 767 | goto out; | 
|  | 768 |  | 
|  | 769 | hlist_del(&rmap_item->hlist); | 
|  | 770 | unlock_page(page); | 
|  | 771 | put_page(page); | 
|  | 772 |  | 
|  | 773 | if (!hlist_empty(&stable_node->hlist)) | 
|  | 774 | ksm_pages_sharing--; | 
|  | 775 | else | 
|  | 776 | ksm_pages_shared--; | 
|  | 777 | VM_BUG_ON(stable_node->rmap_hlist_len <= 0); | 
|  | 778 | stable_node->rmap_hlist_len--; | 
|  | 779 |  | 
|  | 780 | put_anon_vma(rmap_item->anon_vma); | 
|  | 781 | rmap_item->address &= PAGE_MASK; | 
|  | 782 |  | 
|  | 783 | } else if (rmap_item->address & UNSTABLE_FLAG) { | 
|  | 784 | unsigned char age; | 
|  | 785 | /* | 
|  | 786 | * Usually ksmd can and must skip the rb_erase, because | 
|  | 787 | * root_unstable_tree was already reset to RB_ROOT. | 
|  | 788 | * But be careful when an mm is exiting: do the rb_erase | 
|  | 789 | * if this rmap_item was inserted by this scan, rather | 
|  | 790 | * than left over from before. | 
|  | 791 | */ | 
|  | 792 | age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); | 
|  | 793 | BUG_ON(age > 1); | 
|  | 794 | if (!age) | 
|  | 795 | rb_erase(&rmap_item->node, | 
|  | 796 | root_unstable_tree + NUMA(rmap_item->nid)); | 
|  | 797 | ksm_pages_unshared--; | 
|  | 798 | rmap_item->address &= PAGE_MASK; | 
|  | 799 | } | 
|  | 800 | out: | 
|  | 801 | cond_resched();		/* we're called from many long loops */ | 
|  | 802 | } | 
|  | 803 |  | 
|  | 804 | static void remove_trailing_rmap_items(struct mm_slot *mm_slot, | 
|  | 805 | struct rmap_item **rmap_list) | 
|  | 806 | { | 
|  | 807 | while (*rmap_list) { | 
|  | 808 | struct rmap_item *rmap_item = *rmap_list; | 
|  | 809 | *rmap_list = rmap_item->rmap_list; | 
|  | 810 | remove_rmap_item_from_tree(rmap_item); | 
|  | 811 | free_rmap_item(rmap_item); | 
|  | 812 | } | 
|  | 813 | } | 
|  | 814 |  | 
|  | 815 | /* | 
|  | 816 | * Though it's very tempting to unmerge rmap_items from stable tree rather | 
|  | 817 | * than check every pte of a given vma, the locking doesn't quite work for | 
|  | 818 | * that - an rmap_item is assigned to the stable tree after inserting ksm | 
|  | 819 | * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing | 
|  | 820 | * rmap_items from parent to child at fork time (so as not to waste time | 
|  | 821 | * if exit comes before the next scan reaches it). | 
|  | 822 | * | 
|  | 823 | * Similarly, although we'd like to remove rmap_items (so updating counts | 
|  | 824 | * and freeing memory) when unmerging an area, it's easier to leave that | 
|  | 825 | * to the next pass of ksmd - consider, for example, how ksmd might be | 
|  | 826 | * in cmp_and_merge_page on one of the rmap_items we would be removing. | 
|  | 827 | */ | 
|  | 828 | static int unmerge_ksm_pages(struct vm_area_struct *vma, | 
|  | 829 | unsigned long start, unsigned long end) | 
|  | 830 | { | 
|  | 831 | unsigned long addr; | 
|  | 832 | int err = 0; | 
|  | 833 |  | 
|  | 834 | for (addr = start; addr < end && !err; addr += PAGE_SIZE) { | 
|  | 835 | if (ksm_test_exit(vma->vm_mm)) | 
|  | 836 | break; | 
|  | 837 | if (signal_pending(current)) | 
|  | 838 | err = -ERESTARTSYS; | 
|  | 839 | else | 
|  | 840 | err = break_ksm(vma, addr); | 
|  | 841 | } | 
|  | 842 | return err; | 
|  | 843 | } | 
|  | 844 |  | 
|  | 845 | static inline struct stable_node *page_stable_node(struct page *page) | 
|  | 846 | { | 
|  | 847 | return PageKsm(page) ? page_rmapping(page) : NULL; | 
|  | 848 | } | 
|  | 849 |  | 
|  | 850 | static inline void set_page_stable_node(struct page *page, | 
|  | 851 | struct stable_node *stable_node) | 
|  | 852 | { | 
|  | 853 | page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); | 
|  | 854 | } | 
|  | 855 |  | 
|  | 856 | #ifdef CONFIG_SYSFS | 
|  | 857 | /* | 
|  | 858 | * Only called through the sysfs control interface: | 
|  | 859 | */ | 
|  | 860 | static int remove_stable_node(struct stable_node *stable_node) | 
|  | 861 | { | 
|  | 862 | struct page *page; | 
|  | 863 | int err; | 
|  | 864 |  | 
|  | 865 | page = get_ksm_page(stable_node, true); | 
|  | 866 | if (!page) { | 
|  | 867 | /* | 
|  | 868 | * get_ksm_page did remove_node_from_stable_tree itself. | 
|  | 869 | */ | 
|  | 870 | return 0; | 
|  | 871 | } | 
|  | 872 |  | 
|  | 873 | /* | 
|  | 874 | * Page could be still mapped if this races with __mmput() running in | 
|  | 875 | * between ksm_exit() and exit_mmap(). Just refuse to let | 
|  | 876 | * merge_across_nodes/max_page_sharing be switched. | 
|  | 877 | */ | 
|  | 878 | err = -EBUSY; | 
|  | 879 | if (!page_mapped(page)) { | 
|  | 880 | /* | 
|  | 881 | * The stable node did not yet appear stale to get_ksm_page(), | 
|  | 882 | * since that allows for an unmapped ksm page to be recognized | 
|  | 883 | * right up until it is freed; but the node is safe to remove. | 
|  | 884 | * This page might be in a pagevec waiting to be freed, | 
|  | 885 | * or it might be PageSwapCache (perhaps under writeback), | 
|  | 886 | * or it might have been removed from swapcache a moment ago. | 
|  | 887 | */ | 
|  | 888 | set_page_stable_node(page, NULL); | 
|  | 889 | remove_node_from_stable_tree(stable_node); | 
|  | 890 | err = 0; | 
|  | 891 | } | 
|  | 892 |  | 
|  | 893 | unlock_page(page); | 
|  | 894 | put_page(page); | 
|  | 895 | return err; | 
|  | 896 | } | 
|  | 897 |  | 
|  | 898 | static int remove_stable_node_chain(struct stable_node *stable_node, | 
|  | 899 | struct rb_root *root) | 
|  | 900 | { | 
|  | 901 | struct stable_node *dup; | 
|  | 902 | struct hlist_node *hlist_safe; | 
|  | 903 |  | 
|  | 904 | if (!is_stable_node_chain(stable_node)) { | 
|  | 905 | VM_BUG_ON(is_stable_node_dup(stable_node)); | 
|  | 906 | if (remove_stable_node(stable_node)) | 
|  | 907 | return true; | 
|  | 908 | else | 
|  | 909 | return false; | 
|  | 910 | } | 
|  | 911 |  | 
|  | 912 | hlist_for_each_entry_safe(dup, hlist_safe, | 
|  | 913 | &stable_node->hlist, hlist_dup) { | 
|  | 914 | VM_BUG_ON(!is_stable_node_dup(dup)); | 
|  | 915 | if (remove_stable_node(dup)) | 
|  | 916 | return true; | 
|  | 917 | } | 
|  | 918 | BUG_ON(!hlist_empty(&stable_node->hlist)); | 
|  | 919 | free_stable_node_chain(stable_node, root); | 
|  | 920 | return false; | 
|  | 921 | } | 
|  | 922 |  | 
|  | 923 | static int remove_all_stable_nodes(void) | 
|  | 924 | { | 
|  | 925 | struct stable_node *stable_node, *next; | 
|  | 926 | int nid; | 
|  | 927 | int err = 0; | 
|  | 928 |  | 
|  | 929 | for (nid = 0; nid < ksm_nr_node_ids; nid++) { | 
|  | 930 | while (root_stable_tree[nid].rb_node) { | 
|  | 931 | stable_node = rb_entry(root_stable_tree[nid].rb_node, | 
|  | 932 | struct stable_node, node); | 
|  | 933 | if (remove_stable_node_chain(stable_node, | 
|  | 934 | root_stable_tree + nid)) { | 
|  | 935 | err = -EBUSY; | 
|  | 936 | break;	/* proceed to next nid */ | 
|  | 937 | } | 
|  | 938 | cond_resched(); | 
|  | 939 | } | 
|  | 940 | } | 
|  | 941 | list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { | 
|  | 942 | if (remove_stable_node(stable_node)) | 
|  | 943 | err = -EBUSY; | 
|  | 944 | cond_resched(); | 
|  | 945 | } | 
|  | 946 | return err; | 
|  | 947 | } | 
|  | 948 |  | 
|  | 949 | static int unmerge_and_remove_all_rmap_items(void) | 
|  | 950 | { | 
|  | 951 | struct mm_slot *mm_slot; | 
|  | 952 | struct mm_struct *mm; | 
|  | 953 | struct vm_area_struct *vma; | 
|  | 954 | int err = 0; | 
|  | 955 |  | 
|  | 956 | spin_lock(&ksm_mmlist_lock); | 
|  | 957 | ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, | 
|  | 958 | struct mm_slot, mm_list); | 
|  | 959 | spin_unlock(&ksm_mmlist_lock); | 
|  | 960 |  | 
|  | 961 | for (mm_slot = ksm_scan.mm_slot; | 
|  | 962 | mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { | 
|  | 963 | mm = mm_slot->mm; | 
|  | 964 | down_read(&mm->mmap_sem); | 
|  | 965 | for (vma = mm->mmap; vma; vma = vma->vm_next) { | 
|  | 966 | if (ksm_test_exit(mm)) | 
|  | 967 | break; | 
|  | 968 | if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) | 
|  | 969 | continue; | 
|  | 970 | err = unmerge_ksm_pages(vma, | 
|  | 971 | vma->vm_start, vma->vm_end); | 
|  | 972 | if (err) | 
|  | 973 | goto error; | 
|  | 974 | } | 
|  | 975 |  | 
|  | 976 | remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); | 
|  | 977 | up_read(&mm->mmap_sem); | 
|  | 978 |  | 
|  | 979 | spin_lock(&ksm_mmlist_lock); | 
|  | 980 | ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, | 
|  | 981 | struct mm_slot, mm_list); | 
|  | 982 | if (ksm_test_exit(mm)) { | 
|  | 983 | hash_del(&mm_slot->link); | 
|  | 984 | list_del(&mm_slot->mm_list); | 
|  | 985 | spin_unlock(&ksm_mmlist_lock); | 
|  | 986 |  | 
|  | 987 | free_mm_slot(mm_slot); | 
|  | 988 | clear_bit(MMF_VM_MERGEABLE, &mm->flags); | 
|  | 989 | mmdrop(mm); | 
|  | 990 | } else | 
|  | 991 | spin_unlock(&ksm_mmlist_lock); | 
|  | 992 | } | 
|  | 993 |  | 
|  | 994 | /* Clean up stable nodes, but don't worry if some are still busy */ | 
|  | 995 | remove_all_stable_nodes(); | 
|  | 996 | ksm_scan.seqnr = 0; | 
|  | 997 | return 0; | 
|  | 998 |  | 
|  | 999 | error: | 
|  | 1000 | up_read(&mm->mmap_sem); | 
|  | 1001 | spin_lock(&ksm_mmlist_lock); | 
|  | 1002 | ksm_scan.mm_slot = &ksm_mm_head; | 
|  | 1003 | spin_unlock(&ksm_mmlist_lock); | 
|  | 1004 | return err; | 
|  | 1005 | } | 
|  | 1006 | #endif /* CONFIG_SYSFS */ | 
|  | 1007 |  | 
|  | 1008 | static u32 calc_checksum(struct page *page) | 
|  | 1009 | { | 
|  | 1010 | u32 checksum; | 
|  | 1011 | void *addr = kmap_atomic(page); | 
|  | 1012 | checksum = jhash2(addr, PAGE_SIZE / 4, 17); | 
|  | 1013 | kunmap_atomic(addr); | 
|  | 1014 | return checksum; | 
|  | 1015 | } | 
|  | 1016 |  | 
|  | 1017 | static int memcmp_pages(struct page *page1, struct page *page2) | 
|  | 1018 | { | 
|  | 1019 | char *addr1, *addr2; | 
|  | 1020 | int ret; | 
|  | 1021 |  | 
|  | 1022 | addr1 = kmap_atomic(page1); | 
|  | 1023 | addr2 = kmap_atomic(page2); | 
|  | 1024 | ret = memcmp(addr1, addr2, PAGE_SIZE); | 
|  | 1025 | kunmap_atomic(addr2); | 
|  | 1026 | kunmap_atomic(addr1); | 
|  | 1027 | return ret; | 
|  | 1028 | } | 
|  | 1029 |  | 
|  | 1030 | static inline int pages_identical(struct page *page1, struct page *page2) | 
|  | 1031 | { | 
|  | 1032 | return !memcmp_pages(page1, page2); | 
|  | 1033 | } | 
|  | 1034 |  | 
|  | 1035 | static int write_protect_page(struct vm_area_struct *vma, struct page *page, | 
|  | 1036 | pte_t *orig_pte) | 
|  | 1037 | { | 
|  | 1038 | struct mm_struct *mm = vma->vm_mm; | 
|  | 1039 | struct page_vma_mapped_walk pvmw = { | 
|  | 1040 | .page = page, | 
|  | 1041 | .vma = vma, | 
|  | 1042 | }; | 
|  | 1043 | int swapped; | 
|  | 1044 | int err = -EFAULT; | 
|  | 1045 | unsigned long mmun_start;	/* For mmu_notifiers */ | 
|  | 1046 | unsigned long mmun_end;		/* For mmu_notifiers */ | 
|  | 1047 |  | 
|  | 1048 | pvmw.address = page_address_in_vma(page, vma); | 
|  | 1049 | if (pvmw.address == -EFAULT) | 
|  | 1050 | goto out; | 
|  | 1051 |  | 
|  | 1052 | BUG_ON(PageTransCompound(page)); | 
|  | 1053 |  | 
|  | 1054 | mmun_start = pvmw.address; | 
|  | 1055 | mmun_end   = pvmw.address + PAGE_SIZE; | 
|  | 1056 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | 
|  | 1057 |  | 
|  | 1058 | if (!page_vma_mapped_walk(&pvmw)) | 
|  | 1059 | goto out_mn; | 
|  | 1060 | if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) | 
|  | 1061 | goto out_unlock; | 
|  | 1062 |  | 
|  | 1063 | if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || | 
|  | 1064 | (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || | 
|  | 1065 | mm_tlb_flush_pending(mm)) { | 
|  | 1066 | pte_t entry; | 
|  | 1067 |  | 
|  | 1068 | swapped = PageSwapCache(page); | 
|  | 1069 | flush_cache_page(vma, pvmw.address, page_to_pfn(page)); | 
|  | 1070 | /* | 
|  | 1071 | * Ok this is tricky, when get_user_pages_fast() run it doesn't | 
|  | 1072 | * take any lock, therefore the check that we are going to make | 
|  | 1073 | * with the pagecount against the mapcount is racey and | 
|  | 1074 | * O_DIRECT can happen right after the check. | 
|  | 1075 | * So we clear the pte and flush the tlb before the check | 
|  | 1076 | * this assure us that no O_DIRECT can happen after the check | 
|  | 1077 | * or in the middle of the check. | 
|  | 1078 | * | 
|  | 1079 | * No need to notify as we are downgrading page table to read | 
|  | 1080 | * only not changing it to point to a new page. | 
|  | 1081 | * | 
|  | 1082 | * See Documentation/vm/mmu_notifier.rst | 
|  | 1083 | */ | 
|  | 1084 | entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); | 
|  | 1085 | /* | 
|  | 1086 | * Check that no O_DIRECT or similar I/O is in progress on the | 
|  | 1087 | * page | 
|  | 1088 | */ | 
|  | 1089 | if (page_mapcount(page) + 1 + swapped != page_count(page)) { | 
|  | 1090 | set_pte_at(mm, pvmw.address, pvmw.pte, entry); | 
|  | 1091 | goto out_unlock; | 
|  | 1092 | } | 
|  | 1093 | if (pte_dirty(entry)) | 
|  | 1094 | set_page_dirty(page); | 
|  | 1095 |  | 
|  | 1096 | if (pte_protnone(entry)) | 
|  | 1097 | entry = pte_mkclean(pte_clear_savedwrite(entry)); | 
|  | 1098 | else | 
|  | 1099 | entry = pte_mkclean(pte_wrprotect(entry)); | 
|  | 1100 | set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); | 
|  | 1101 | } | 
|  | 1102 | *orig_pte = *pvmw.pte; | 
|  | 1103 | err = 0; | 
|  | 1104 |  | 
|  | 1105 | out_unlock: | 
|  | 1106 | page_vma_mapped_walk_done(&pvmw); | 
|  | 1107 | out_mn: | 
|  | 1108 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | 
|  | 1109 | out: | 
|  | 1110 | return err; | 
|  | 1111 | } | 
|  | 1112 |  | 
|  | 1113 | /** | 
|  | 1114 | * replace_page - replace page in vma by new ksm page | 
|  | 1115 | * @vma:      vma that holds the pte pointing to page | 
|  | 1116 | * @page:     the page we are replacing by kpage | 
|  | 1117 | * @kpage:    the ksm page we replace page by | 
|  | 1118 | * @orig_pte: the original value of the pte | 
|  | 1119 | * | 
|  | 1120 | * Returns 0 on success, -EFAULT on failure. | 
|  | 1121 | */ | 
|  | 1122 | static int replace_page(struct vm_area_struct *vma, struct page *page, | 
|  | 1123 | struct page *kpage, pte_t orig_pte) | 
|  | 1124 | { | 
|  | 1125 | struct mm_struct *mm = vma->vm_mm; | 
|  | 1126 | pmd_t *pmd; | 
|  | 1127 | pte_t *ptep; | 
|  | 1128 | pte_t newpte; | 
|  | 1129 | spinlock_t *ptl; | 
|  | 1130 | unsigned long addr; | 
|  | 1131 | int err = -EFAULT; | 
|  | 1132 | unsigned long mmun_start;	/* For mmu_notifiers */ | 
|  | 1133 | unsigned long mmun_end;		/* For mmu_notifiers */ | 
|  | 1134 |  | 
|  | 1135 | addr = page_address_in_vma(page, vma); | 
|  | 1136 | if (addr == -EFAULT) | 
|  | 1137 | goto out; | 
|  | 1138 |  | 
|  | 1139 | pmd = mm_find_pmd(mm, addr); | 
|  | 1140 | if (!pmd) | 
|  | 1141 | goto out; | 
|  | 1142 |  | 
|  | 1143 | mmun_start = addr; | 
|  | 1144 | mmun_end   = addr + PAGE_SIZE; | 
|  | 1145 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | 
|  | 1146 |  | 
|  | 1147 | ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); | 
|  | 1148 | if (!pte_same(*ptep, orig_pte)) { | 
|  | 1149 | pte_unmap_unlock(ptep, ptl); | 
|  | 1150 | goto out_mn; | 
|  | 1151 | } | 
|  | 1152 |  | 
|  | 1153 | /* | 
|  | 1154 | * No need to check ksm_use_zero_pages here: we can only have a | 
|  | 1155 | * zero_page here if ksm_use_zero_pages was enabled alreaady. | 
|  | 1156 | */ | 
|  | 1157 | if (!is_zero_pfn(page_to_pfn(kpage))) { | 
|  | 1158 | get_page(kpage); | 
|  | 1159 | page_add_anon_rmap(kpage, vma, addr, false); | 
|  | 1160 | newpte = mk_pte(kpage, vma->vm_page_prot); | 
|  | 1161 | } else { | 
|  | 1162 | newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), | 
|  | 1163 | vma->vm_page_prot)); | 
|  | 1164 | /* | 
|  | 1165 | * We're replacing an anonymous page with a zero page, which is | 
|  | 1166 | * not anonymous. We need to do proper accounting otherwise we | 
|  | 1167 | * will get wrong values in /proc, and a BUG message in dmesg | 
|  | 1168 | * when tearing down the mm. | 
|  | 1169 | */ | 
|  | 1170 | dec_mm_counter(mm, MM_ANONPAGES); | 
|  | 1171 | } | 
|  | 1172 |  | 
|  | 1173 | flush_cache_page(vma, addr, pte_pfn(*ptep)); | 
|  | 1174 | /* | 
|  | 1175 | * No need to notify as we are replacing a read only page with another | 
|  | 1176 | * read only page with the same content. | 
|  | 1177 | * | 
|  | 1178 | * See Documentation/vm/mmu_notifier.rst | 
|  | 1179 | */ | 
|  | 1180 | ptep_clear_flush(vma, addr, ptep); | 
|  | 1181 | set_pte_at_notify(mm, addr, ptep, newpte); | 
|  | 1182 |  | 
|  | 1183 | page_remove_rmap(page, false); | 
|  | 1184 | if (!page_mapped(page)) | 
|  | 1185 | try_to_free_swap(page); | 
|  | 1186 | put_page(page); | 
|  | 1187 |  | 
|  | 1188 | pte_unmap_unlock(ptep, ptl); | 
|  | 1189 | err = 0; | 
|  | 1190 | out_mn: | 
|  | 1191 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | 
|  | 1192 | out: | 
|  | 1193 | return err; | 
|  | 1194 | } | 
|  | 1195 |  | 
|  | 1196 | /* | 
|  | 1197 | * try_to_merge_one_page - take two pages and merge them into one | 
|  | 1198 | * @vma: the vma that holds the pte pointing to page | 
|  | 1199 | * @page: the PageAnon page that we want to replace with kpage | 
|  | 1200 | * @kpage: the PageKsm page that we want to map instead of page, | 
|  | 1201 | *         or NULL the first time when we want to use page as kpage. | 
|  | 1202 | * | 
|  | 1203 | * This function returns 0 if the pages were merged, -EFAULT otherwise. | 
|  | 1204 | */ | 
|  | 1205 | static int try_to_merge_one_page(struct vm_area_struct *vma, | 
|  | 1206 | struct page *page, struct page *kpage) | 
|  | 1207 | { | 
|  | 1208 | pte_t orig_pte = __pte(0); | 
|  | 1209 | int err = -EFAULT; | 
|  | 1210 |  | 
|  | 1211 | if (page == kpage)			/* ksm page forked */ | 
|  | 1212 | return 0; | 
|  | 1213 |  | 
|  | 1214 | if (!PageAnon(page)) | 
|  | 1215 | goto out; | 
|  | 1216 |  | 
|  | 1217 | /* | 
|  | 1218 | * We need the page lock to read a stable PageSwapCache in | 
|  | 1219 | * write_protect_page().  We use trylock_page() instead of | 
|  | 1220 | * lock_page() because we don't want to wait here - we | 
|  | 1221 | * prefer to continue scanning and merging different pages, | 
|  | 1222 | * then come back to this page when it is unlocked. | 
|  | 1223 | */ | 
|  | 1224 | if (!trylock_page(page)) | 
|  | 1225 | goto out; | 
|  | 1226 |  | 
|  | 1227 | if (PageTransCompound(page)) { | 
|  | 1228 | if (split_huge_page(page)) | 
|  | 1229 | goto out_unlock; | 
|  | 1230 | } | 
|  | 1231 |  | 
|  | 1232 | /* | 
|  | 1233 | * If this anonymous page is mapped only here, its pte may need | 
|  | 1234 | * to be write-protected.  If it's mapped elsewhere, all of its | 
|  | 1235 | * ptes are necessarily already write-protected.  But in either | 
|  | 1236 | * case, we need to lock and check page_count is not raised. | 
|  | 1237 | */ | 
|  | 1238 | if (write_protect_page(vma, page, &orig_pte) == 0) { | 
|  | 1239 | if (!kpage) { | 
|  | 1240 | /* | 
|  | 1241 | * While we hold page lock, upgrade page from | 
|  | 1242 | * PageAnon+anon_vma to PageKsm+NULL stable_node: | 
|  | 1243 | * stable_tree_insert() will update stable_node. | 
|  | 1244 | */ | 
|  | 1245 | set_page_stable_node(page, NULL); | 
|  | 1246 | mark_page_accessed(page); | 
|  | 1247 | /* | 
|  | 1248 | * Page reclaim just frees a clean page with no dirty | 
|  | 1249 | * ptes: make sure that the ksm page would be swapped. | 
|  | 1250 | */ | 
|  | 1251 | if (!PageDirty(page)) | 
|  | 1252 | SetPageDirty(page); | 
|  | 1253 | err = 0; | 
|  | 1254 | } else if (pages_identical(page, kpage)) | 
|  | 1255 | err = replace_page(vma, page, kpage, orig_pte); | 
|  | 1256 | } | 
|  | 1257 |  | 
|  | 1258 | if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { | 
|  | 1259 | munlock_vma_page(page); | 
|  | 1260 | if (!PageMlocked(kpage)) { | 
|  | 1261 | unlock_page(page); | 
|  | 1262 | lock_page(kpage); | 
|  | 1263 | mlock_vma_page(kpage); | 
|  | 1264 | page = kpage;		/* for final unlock */ | 
|  | 1265 | } | 
|  | 1266 | } | 
|  | 1267 |  | 
|  | 1268 | out_unlock: | 
|  | 1269 | unlock_page(page); | 
|  | 1270 | out: | 
|  | 1271 | return err; | 
|  | 1272 | } | 
|  | 1273 |  | 
|  | 1274 | /* | 
|  | 1275 | * try_to_merge_with_ksm_page - like try_to_merge_two_pages, | 
|  | 1276 | * but no new kernel page is allocated: kpage must already be a ksm page. | 
|  | 1277 | * | 
|  | 1278 | * This function returns 0 if the pages were merged, -EFAULT otherwise. | 
|  | 1279 | */ | 
|  | 1280 | static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, | 
|  | 1281 | struct page *page, struct page *kpage) | 
|  | 1282 | { | 
|  | 1283 | struct mm_struct *mm = rmap_item->mm; | 
|  | 1284 | struct vm_area_struct *vma; | 
|  | 1285 | int err = -EFAULT; | 
|  | 1286 |  | 
|  | 1287 | down_read(&mm->mmap_sem); | 
|  | 1288 | vma = find_mergeable_vma(mm, rmap_item->address); | 
|  | 1289 | if (!vma) | 
|  | 1290 | goto out; | 
|  | 1291 |  | 
|  | 1292 | err = try_to_merge_one_page(vma, page, kpage); | 
|  | 1293 | if (err) | 
|  | 1294 | goto out; | 
|  | 1295 |  | 
|  | 1296 | /* Unstable nid is in union with stable anon_vma: remove first */ | 
|  | 1297 | remove_rmap_item_from_tree(rmap_item); | 
|  | 1298 |  | 
|  | 1299 | /* Must get reference to anon_vma while still holding mmap_sem */ | 
|  | 1300 | rmap_item->anon_vma = vma->anon_vma; | 
|  | 1301 | get_anon_vma(vma->anon_vma); | 
|  | 1302 | out: | 
|  | 1303 | up_read(&mm->mmap_sem); | 
|  | 1304 | return err; | 
|  | 1305 | } | 
|  | 1306 |  | 
|  | 1307 | /* | 
|  | 1308 | * try_to_merge_two_pages - take two identical pages and prepare them | 
|  | 1309 | * to be merged into one page. | 
|  | 1310 | * | 
|  | 1311 | * This function returns the kpage if we successfully merged two identical | 
|  | 1312 | * pages into one ksm page, NULL otherwise. | 
|  | 1313 | * | 
|  | 1314 | * Note that this function upgrades page to ksm page: if one of the pages | 
|  | 1315 | * is already a ksm page, try_to_merge_with_ksm_page should be used. | 
|  | 1316 | */ | 
|  | 1317 | static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, | 
|  | 1318 | struct page *page, | 
|  | 1319 | struct rmap_item *tree_rmap_item, | 
|  | 1320 | struct page *tree_page) | 
|  | 1321 | { | 
|  | 1322 | int err; | 
|  | 1323 |  | 
|  | 1324 | err = try_to_merge_with_ksm_page(rmap_item, page, NULL); | 
|  | 1325 | if (!err) { | 
|  | 1326 | err = try_to_merge_with_ksm_page(tree_rmap_item, | 
|  | 1327 | tree_page, page); | 
|  | 1328 | /* | 
|  | 1329 | * If that fails, we have a ksm page with only one pte | 
|  | 1330 | * pointing to it: so break it. | 
|  | 1331 | */ | 
|  | 1332 | if (err) | 
|  | 1333 | break_cow(rmap_item); | 
|  | 1334 | } | 
|  | 1335 | return err ? NULL : page; | 
|  | 1336 | } | 
|  | 1337 |  | 
|  | 1338 | static __always_inline | 
|  | 1339 | bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) | 
|  | 1340 | { | 
|  | 1341 | VM_BUG_ON(stable_node->rmap_hlist_len < 0); | 
|  | 1342 | /* | 
|  | 1343 | * Check that at least one mapping still exists, otherwise | 
|  | 1344 | * there's no much point to merge and share with this | 
|  | 1345 | * stable_node, as the underlying tree_page of the other | 
|  | 1346 | * sharer is going to be freed soon. | 
|  | 1347 | */ | 
|  | 1348 | return stable_node->rmap_hlist_len && | 
|  | 1349 | stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; | 
|  | 1350 | } | 
|  | 1351 |  | 
|  | 1352 | static __always_inline | 
|  | 1353 | bool is_page_sharing_candidate(struct stable_node *stable_node) | 
|  | 1354 | { | 
|  | 1355 | return __is_page_sharing_candidate(stable_node, 0); | 
|  | 1356 | } | 
|  | 1357 |  | 
|  | 1358 | static struct page *stable_node_dup(struct stable_node **_stable_node_dup, | 
|  | 1359 | struct stable_node **_stable_node, | 
|  | 1360 | struct rb_root *root, | 
|  | 1361 | bool prune_stale_stable_nodes) | 
|  | 1362 | { | 
|  | 1363 | struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; | 
|  | 1364 | struct hlist_node *hlist_safe; | 
|  | 1365 | struct page *_tree_page, *tree_page = NULL; | 
|  | 1366 | int nr = 0; | 
|  | 1367 | int found_rmap_hlist_len; | 
|  | 1368 |  | 
|  | 1369 | if (!prune_stale_stable_nodes || | 
|  | 1370 | time_before(jiffies, stable_node->chain_prune_time + | 
|  | 1371 | msecs_to_jiffies( | 
|  | 1372 | ksm_stable_node_chains_prune_millisecs))) | 
|  | 1373 | prune_stale_stable_nodes = false; | 
|  | 1374 | else | 
|  | 1375 | stable_node->chain_prune_time = jiffies; | 
|  | 1376 |  | 
|  | 1377 | hlist_for_each_entry_safe(dup, hlist_safe, | 
|  | 1378 | &stable_node->hlist, hlist_dup) { | 
|  | 1379 | cond_resched(); | 
|  | 1380 | /* | 
|  | 1381 | * We must walk all stable_node_dup to prune the stale | 
|  | 1382 | * stable nodes during lookup. | 
|  | 1383 | * | 
|  | 1384 | * get_ksm_page can drop the nodes from the | 
|  | 1385 | * stable_node->hlist if they point to freed pages | 
|  | 1386 | * (that's why we do a _safe walk). The "dup" | 
|  | 1387 | * stable_node parameter itself will be freed from | 
|  | 1388 | * under us if it returns NULL. | 
|  | 1389 | */ | 
|  | 1390 | _tree_page = get_ksm_page(dup, false); | 
|  | 1391 | if (!_tree_page) | 
|  | 1392 | continue; | 
|  | 1393 | nr += 1; | 
|  | 1394 | if (is_page_sharing_candidate(dup)) { | 
|  | 1395 | if (!found || | 
|  | 1396 | dup->rmap_hlist_len > found_rmap_hlist_len) { | 
|  | 1397 | if (found) | 
|  | 1398 | put_page(tree_page); | 
|  | 1399 | found = dup; | 
|  | 1400 | found_rmap_hlist_len = found->rmap_hlist_len; | 
|  | 1401 | tree_page = _tree_page; | 
|  | 1402 |  | 
|  | 1403 | /* skip put_page for found dup */ | 
|  | 1404 | if (!prune_stale_stable_nodes) | 
|  | 1405 | break; | 
|  | 1406 | continue; | 
|  | 1407 | } | 
|  | 1408 | } | 
|  | 1409 | put_page(_tree_page); | 
|  | 1410 | } | 
|  | 1411 |  | 
|  | 1412 | if (found) { | 
|  | 1413 | /* | 
|  | 1414 | * nr is counting all dups in the chain only if | 
|  | 1415 | * prune_stale_stable_nodes is true, otherwise we may | 
|  | 1416 | * break the loop at nr == 1 even if there are | 
|  | 1417 | * multiple entries. | 
|  | 1418 | */ | 
|  | 1419 | if (prune_stale_stable_nodes && nr == 1) { | 
|  | 1420 | /* | 
|  | 1421 | * If there's not just one entry it would | 
|  | 1422 | * corrupt memory, better BUG_ON. In KSM | 
|  | 1423 | * context with no lock held it's not even | 
|  | 1424 | * fatal. | 
|  | 1425 | */ | 
|  | 1426 | BUG_ON(stable_node->hlist.first->next); | 
|  | 1427 |  | 
|  | 1428 | /* | 
|  | 1429 | * There's just one entry and it is below the | 
|  | 1430 | * deduplication limit so drop the chain. | 
|  | 1431 | */ | 
|  | 1432 | rb_replace_node(&stable_node->node, &found->node, | 
|  | 1433 | root); | 
|  | 1434 | free_stable_node(stable_node); | 
|  | 1435 | ksm_stable_node_chains--; | 
|  | 1436 | ksm_stable_node_dups--; | 
|  | 1437 | /* | 
|  | 1438 | * NOTE: the caller depends on the stable_node | 
|  | 1439 | * to be equal to stable_node_dup if the chain | 
|  | 1440 | * was collapsed. | 
|  | 1441 | */ | 
|  | 1442 | *_stable_node = found; | 
|  | 1443 | /* | 
|  | 1444 | * Just for robustneess as stable_node is | 
|  | 1445 | * otherwise left as a stable pointer, the | 
|  | 1446 | * compiler shall optimize it away at build | 
|  | 1447 | * time. | 
|  | 1448 | */ | 
|  | 1449 | stable_node = NULL; | 
|  | 1450 | } else if (stable_node->hlist.first != &found->hlist_dup && | 
|  | 1451 | __is_page_sharing_candidate(found, 1)) { | 
|  | 1452 | /* | 
|  | 1453 | * If the found stable_node dup can accept one | 
|  | 1454 | * more future merge (in addition to the one | 
|  | 1455 | * that is underway) and is not at the head of | 
|  | 1456 | * the chain, put it there so next search will | 
|  | 1457 | * be quicker in the !prune_stale_stable_nodes | 
|  | 1458 | * case. | 
|  | 1459 | * | 
|  | 1460 | * NOTE: it would be inaccurate to use nr > 1 | 
|  | 1461 | * instead of checking the hlist.first pointer | 
|  | 1462 | * directly, because in the | 
|  | 1463 | * prune_stale_stable_nodes case "nr" isn't | 
|  | 1464 | * the position of the found dup in the chain, | 
|  | 1465 | * but the total number of dups in the chain. | 
|  | 1466 | */ | 
|  | 1467 | hlist_del(&found->hlist_dup); | 
|  | 1468 | hlist_add_head(&found->hlist_dup, | 
|  | 1469 | &stable_node->hlist); | 
|  | 1470 | } | 
|  | 1471 | } | 
|  | 1472 |  | 
|  | 1473 | *_stable_node_dup = found; | 
|  | 1474 | return tree_page; | 
|  | 1475 | } | 
|  | 1476 |  | 
|  | 1477 | static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, | 
|  | 1478 | struct rb_root *root) | 
|  | 1479 | { | 
|  | 1480 | if (!is_stable_node_chain(stable_node)) | 
|  | 1481 | return stable_node; | 
|  | 1482 | if (hlist_empty(&stable_node->hlist)) { | 
|  | 1483 | free_stable_node_chain(stable_node, root); | 
|  | 1484 | return NULL; | 
|  | 1485 | } | 
|  | 1486 | return hlist_entry(stable_node->hlist.first, | 
|  | 1487 | typeof(*stable_node), hlist_dup); | 
|  | 1488 | } | 
|  | 1489 |  | 
|  | 1490 | /* | 
|  | 1491 | * Like for get_ksm_page, this function can free the *_stable_node and | 
|  | 1492 | * *_stable_node_dup if the returned tree_page is NULL. | 
|  | 1493 | * | 
|  | 1494 | * It can also free and overwrite *_stable_node with the found | 
|  | 1495 | * stable_node_dup if the chain is collapsed (in which case | 
|  | 1496 | * *_stable_node will be equal to *_stable_node_dup like if the chain | 
|  | 1497 | * never existed). It's up to the caller to verify tree_page is not | 
|  | 1498 | * NULL before dereferencing *_stable_node or *_stable_node_dup. | 
|  | 1499 | * | 
|  | 1500 | * *_stable_node_dup is really a second output parameter of this | 
|  | 1501 | * function and will be overwritten in all cases, the caller doesn't | 
|  | 1502 | * need to initialize it. | 
|  | 1503 | */ | 
|  | 1504 | static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, | 
|  | 1505 | struct stable_node **_stable_node, | 
|  | 1506 | struct rb_root *root, | 
|  | 1507 | bool prune_stale_stable_nodes) | 
|  | 1508 | { | 
|  | 1509 | struct stable_node *stable_node = *_stable_node; | 
|  | 1510 | if (!is_stable_node_chain(stable_node)) { | 
|  | 1511 | if (is_page_sharing_candidate(stable_node)) { | 
|  | 1512 | *_stable_node_dup = stable_node; | 
|  | 1513 | return get_ksm_page(stable_node, false); | 
|  | 1514 | } | 
|  | 1515 | /* | 
|  | 1516 | * _stable_node_dup set to NULL means the stable_node | 
|  | 1517 | * reached the ksm_max_page_sharing limit. | 
|  | 1518 | */ | 
|  | 1519 | *_stable_node_dup = NULL; | 
|  | 1520 | return NULL; | 
|  | 1521 | } | 
|  | 1522 | return stable_node_dup(_stable_node_dup, _stable_node, root, | 
|  | 1523 | prune_stale_stable_nodes); | 
|  | 1524 | } | 
|  | 1525 |  | 
|  | 1526 | static __always_inline struct page *chain_prune(struct stable_node **s_n_d, | 
|  | 1527 | struct stable_node **s_n, | 
|  | 1528 | struct rb_root *root) | 
|  | 1529 | { | 
|  | 1530 | return __stable_node_chain(s_n_d, s_n, root, true); | 
|  | 1531 | } | 
|  | 1532 |  | 
|  | 1533 | static __always_inline struct page *chain(struct stable_node **s_n_d, | 
|  | 1534 | struct stable_node *s_n, | 
|  | 1535 | struct rb_root *root) | 
|  | 1536 | { | 
|  | 1537 | struct stable_node *old_stable_node = s_n; | 
|  | 1538 | struct page *tree_page; | 
|  | 1539 |  | 
|  | 1540 | tree_page = __stable_node_chain(s_n_d, &s_n, root, false); | 
|  | 1541 | /* not pruning dups so s_n cannot have changed */ | 
|  | 1542 | VM_BUG_ON(s_n != old_stable_node); | 
|  | 1543 | return tree_page; | 
|  | 1544 | } | 
|  | 1545 |  | 
|  | 1546 | /* | 
|  | 1547 | * stable_tree_search - search for page inside the stable tree | 
|  | 1548 | * | 
|  | 1549 | * This function checks if there is a page inside the stable tree | 
|  | 1550 | * with identical content to the page that we are scanning right now. | 
|  | 1551 | * | 
|  | 1552 | * This function returns the stable tree node of identical content if found, | 
|  | 1553 | * NULL otherwise. | 
|  | 1554 | */ | 
|  | 1555 | static struct page *stable_tree_search(struct page *page) | 
|  | 1556 | { | 
|  | 1557 | int nid; | 
|  | 1558 | struct rb_root *root; | 
|  | 1559 | struct rb_node **new; | 
|  | 1560 | struct rb_node *parent; | 
|  | 1561 | struct stable_node *stable_node, *stable_node_dup, *stable_node_any; | 
|  | 1562 | struct stable_node *page_node; | 
|  | 1563 |  | 
|  | 1564 | page_node = page_stable_node(page); | 
|  | 1565 | if (page_node && page_node->head != &migrate_nodes) { | 
|  | 1566 | /* ksm page forked */ | 
|  | 1567 | get_page(page); | 
|  | 1568 | return page; | 
|  | 1569 | } | 
|  | 1570 |  | 
|  | 1571 | nid = get_kpfn_nid(page_to_pfn(page)); | 
|  | 1572 | root = root_stable_tree + nid; | 
|  | 1573 | again: | 
|  | 1574 | new = &root->rb_node; | 
|  | 1575 | parent = NULL; | 
|  | 1576 |  | 
|  | 1577 | while (*new) { | 
|  | 1578 | struct page *tree_page; | 
|  | 1579 | int ret; | 
|  | 1580 |  | 
|  | 1581 | cond_resched(); | 
|  | 1582 | stable_node = rb_entry(*new, struct stable_node, node); | 
|  | 1583 | stable_node_any = NULL; | 
|  | 1584 | tree_page = chain_prune(&stable_node_dup, &stable_node,	root); | 
|  | 1585 | /* | 
|  | 1586 | * NOTE: stable_node may have been freed by | 
|  | 1587 | * chain_prune() if the returned stable_node_dup is | 
|  | 1588 | * not NULL. stable_node_dup may have been inserted in | 
|  | 1589 | * the rbtree instead as a regular stable_node (in | 
|  | 1590 | * order to collapse the stable_node chain if a single | 
|  | 1591 | * stable_node dup was found in it). In such case the | 
|  | 1592 | * stable_node is overwritten by the calleee to point | 
|  | 1593 | * to the stable_node_dup that was collapsed in the | 
|  | 1594 | * stable rbtree and stable_node will be equal to | 
|  | 1595 | * stable_node_dup like if the chain never existed. | 
|  | 1596 | */ | 
|  | 1597 | if (!stable_node_dup) { | 
|  | 1598 | /* | 
|  | 1599 | * Either all stable_node dups were full in | 
|  | 1600 | * this stable_node chain, or this chain was | 
|  | 1601 | * empty and should be rb_erased. | 
|  | 1602 | */ | 
|  | 1603 | stable_node_any = stable_node_dup_any(stable_node, | 
|  | 1604 | root); | 
|  | 1605 | if (!stable_node_any) { | 
|  | 1606 | /* rb_erase just run */ | 
|  | 1607 | goto again; | 
|  | 1608 | } | 
|  | 1609 | /* | 
|  | 1610 | * Take any of the stable_node dups page of | 
|  | 1611 | * this stable_node chain to let the tree walk | 
|  | 1612 | * continue. All KSM pages belonging to the | 
|  | 1613 | * stable_node dups in a stable_node chain | 
|  | 1614 | * have the same content and they're | 
|  | 1615 | * wrprotected at all times. Any will work | 
|  | 1616 | * fine to continue the walk. | 
|  | 1617 | */ | 
|  | 1618 | tree_page = get_ksm_page(stable_node_any, false); | 
|  | 1619 | } | 
|  | 1620 | VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); | 
|  | 1621 | if (!tree_page) { | 
|  | 1622 | /* | 
|  | 1623 | * If we walked over a stale stable_node, | 
|  | 1624 | * get_ksm_page() will call rb_erase() and it | 
|  | 1625 | * may rebalance the tree from under us. So | 
|  | 1626 | * restart the search from scratch. Returning | 
|  | 1627 | * NULL would be safe too, but we'd generate | 
|  | 1628 | * false negative insertions just because some | 
|  | 1629 | * stable_node was stale. | 
|  | 1630 | */ | 
|  | 1631 | goto again; | 
|  | 1632 | } | 
|  | 1633 |  | 
|  | 1634 | ret = memcmp_pages(page, tree_page); | 
|  | 1635 | put_page(tree_page); | 
|  | 1636 |  | 
|  | 1637 | parent = *new; | 
|  | 1638 | if (ret < 0) | 
|  | 1639 | new = &parent->rb_left; | 
|  | 1640 | else if (ret > 0) | 
|  | 1641 | new = &parent->rb_right; | 
|  | 1642 | else { | 
|  | 1643 | if (page_node) { | 
|  | 1644 | VM_BUG_ON(page_node->head != &migrate_nodes); | 
|  | 1645 | /* | 
|  | 1646 | * Test if the migrated page should be merged | 
|  | 1647 | * into a stable node dup. If the mapcount is | 
|  | 1648 | * 1 we can migrate it with another KSM page | 
|  | 1649 | * without adding it to the chain. | 
|  | 1650 | */ | 
|  | 1651 | if (page_mapcount(page) > 1) | 
|  | 1652 | goto chain_append; | 
|  | 1653 | } | 
|  | 1654 |  | 
|  | 1655 | if (!stable_node_dup) { | 
|  | 1656 | /* | 
|  | 1657 | * If the stable_node is a chain and | 
|  | 1658 | * we got a payload match in memcmp | 
|  | 1659 | * but we cannot merge the scanned | 
|  | 1660 | * page in any of the existing | 
|  | 1661 | * stable_node dups because they're | 
|  | 1662 | * all full, we need to wait the | 
|  | 1663 | * scanned page to find itself a match | 
|  | 1664 | * in the unstable tree to create a | 
|  | 1665 | * brand new KSM page to add later to | 
|  | 1666 | * the dups of this stable_node. | 
|  | 1667 | */ | 
|  | 1668 | return NULL; | 
|  | 1669 | } | 
|  | 1670 |  | 
|  | 1671 | /* | 
|  | 1672 | * Lock and unlock the stable_node's page (which | 
|  | 1673 | * might already have been migrated) so that page | 
|  | 1674 | * migration is sure to notice its raised count. | 
|  | 1675 | * It would be more elegant to return stable_node | 
|  | 1676 | * than kpage, but that involves more changes. | 
|  | 1677 | */ | 
|  | 1678 | tree_page = get_ksm_page(stable_node_dup, true); | 
|  | 1679 | if (unlikely(!tree_page)) | 
|  | 1680 | /* | 
|  | 1681 | * The tree may have been rebalanced, | 
|  | 1682 | * so re-evaluate parent and new. | 
|  | 1683 | */ | 
|  | 1684 | goto again; | 
|  | 1685 | unlock_page(tree_page); | 
|  | 1686 |  | 
|  | 1687 | if (get_kpfn_nid(stable_node_dup->kpfn) != | 
|  | 1688 | NUMA(stable_node_dup->nid)) { | 
|  | 1689 | put_page(tree_page); | 
|  | 1690 | goto replace; | 
|  | 1691 | } | 
|  | 1692 | return tree_page; | 
|  | 1693 | } | 
|  | 1694 | } | 
|  | 1695 |  | 
|  | 1696 | if (!page_node) | 
|  | 1697 | return NULL; | 
|  | 1698 |  | 
|  | 1699 | list_del(&page_node->list); | 
|  | 1700 | DO_NUMA(page_node->nid = nid); | 
|  | 1701 | rb_link_node(&page_node->node, parent, new); | 
|  | 1702 | rb_insert_color(&page_node->node, root); | 
|  | 1703 | out: | 
|  | 1704 | if (is_page_sharing_candidate(page_node)) { | 
|  | 1705 | get_page(page); | 
|  | 1706 | return page; | 
|  | 1707 | } else | 
|  | 1708 | return NULL; | 
|  | 1709 |  | 
|  | 1710 | replace: | 
|  | 1711 | /* | 
|  | 1712 | * If stable_node was a chain and chain_prune collapsed it, | 
|  | 1713 | * stable_node has been updated to be the new regular | 
|  | 1714 | * stable_node. A collapse of the chain is indistinguishable | 
|  | 1715 | * from the case there was no chain in the stable | 
|  | 1716 | * rbtree. Otherwise stable_node is the chain and | 
|  | 1717 | * stable_node_dup is the dup to replace. | 
|  | 1718 | */ | 
|  | 1719 | if (stable_node_dup == stable_node) { | 
|  | 1720 | VM_BUG_ON(is_stable_node_chain(stable_node_dup)); | 
|  | 1721 | VM_BUG_ON(is_stable_node_dup(stable_node_dup)); | 
|  | 1722 | /* there is no chain */ | 
|  | 1723 | if (page_node) { | 
|  | 1724 | VM_BUG_ON(page_node->head != &migrate_nodes); | 
|  | 1725 | list_del(&page_node->list); | 
|  | 1726 | DO_NUMA(page_node->nid = nid); | 
|  | 1727 | rb_replace_node(&stable_node_dup->node, | 
|  | 1728 | &page_node->node, | 
|  | 1729 | root); | 
|  | 1730 | if (is_page_sharing_candidate(page_node)) | 
|  | 1731 | get_page(page); | 
|  | 1732 | else | 
|  | 1733 | page = NULL; | 
|  | 1734 | } else { | 
|  | 1735 | rb_erase(&stable_node_dup->node, root); | 
|  | 1736 | page = NULL; | 
|  | 1737 | } | 
|  | 1738 | } else { | 
|  | 1739 | VM_BUG_ON(!is_stable_node_chain(stable_node)); | 
|  | 1740 | __stable_node_dup_del(stable_node_dup); | 
|  | 1741 | if (page_node) { | 
|  | 1742 | VM_BUG_ON(page_node->head != &migrate_nodes); | 
|  | 1743 | list_del(&page_node->list); | 
|  | 1744 | DO_NUMA(page_node->nid = nid); | 
|  | 1745 | stable_node_chain_add_dup(page_node, stable_node); | 
|  | 1746 | if (is_page_sharing_candidate(page_node)) | 
|  | 1747 | get_page(page); | 
|  | 1748 | else | 
|  | 1749 | page = NULL; | 
|  | 1750 | } else { | 
|  | 1751 | page = NULL; | 
|  | 1752 | } | 
|  | 1753 | } | 
|  | 1754 | stable_node_dup->head = &migrate_nodes; | 
|  | 1755 | list_add(&stable_node_dup->list, stable_node_dup->head); | 
|  | 1756 | return page; | 
|  | 1757 |  | 
|  | 1758 | chain_append: | 
|  | 1759 | /* stable_node_dup could be null if it reached the limit */ | 
|  | 1760 | if (!stable_node_dup) | 
|  | 1761 | stable_node_dup = stable_node_any; | 
|  | 1762 | /* | 
|  | 1763 | * If stable_node was a chain and chain_prune collapsed it, | 
|  | 1764 | * stable_node has been updated to be the new regular | 
|  | 1765 | * stable_node. A collapse of the chain is indistinguishable | 
|  | 1766 | * from the case there was no chain in the stable | 
|  | 1767 | * rbtree. Otherwise stable_node is the chain and | 
|  | 1768 | * stable_node_dup is the dup to replace. | 
|  | 1769 | */ | 
|  | 1770 | if (stable_node_dup == stable_node) { | 
|  | 1771 | VM_BUG_ON(is_stable_node_chain(stable_node_dup)); | 
|  | 1772 | VM_BUG_ON(is_stable_node_dup(stable_node_dup)); | 
|  | 1773 | /* chain is missing so create it */ | 
|  | 1774 | stable_node = alloc_stable_node_chain(stable_node_dup, | 
|  | 1775 | root); | 
|  | 1776 | if (!stable_node) | 
|  | 1777 | return NULL; | 
|  | 1778 | } | 
|  | 1779 | /* | 
|  | 1780 | * Add this stable_node dup that was | 
|  | 1781 | * migrated to the stable_node chain | 
|  | 1782 | * of the current nid for this page | 
|  | 1783 | * content. | 
|  | 1784 | */ | 
|  | 1785 | VM_BUG_ON(!is_stable_node_chain(stable_node)); | 
|  | 1786 | VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); | 
|  | 1787 | VM_BUG_ON(page_node->head != &migrate_nodes); | 
|  | 1788 | list_del(&page_node->list); | 
|  | 1789 | DO_NUMA(page_node->nid = nid); | 
|  | 1790 | stable_node_chain_add_dup(page_node, stable_node); | 
|  | 1791 | goto out; | 
|  | 1792 | } | 
|  | 1793 |  | 
|  | 1794 | /* | 
|  | 1795 | * stable_tree_insert - insert stable tree node pointing to new ksm page | 
|  | 1796 | * into the stable tree. | 
|  | 1797 | * | 
|  | 1798 | * This function returns the stable tree node just allocated on success, | 
|  | 1799 | * NULL otherwise. | 
|  | 1800 | */ | 
|  | 1801 | static struct stable_node *stable_tree_insert(struct page *kpage) | 
|  | 1802 | { | 
|  | 1803 | int nid; | 
|  | 1804 | unsigned long kpfn; | 
|  | 1805 | struct rb_root *root; | 
|  | 1806 | struct rb_node **new; | 
|  | 1807 | struct rb_node *parent; | 
|  | 1808 | struct stable_node *stable_node, *stable_node_dup, *stable_node_any; | 
|  | 1809 | bool need_chain = false; | 
|  | 1810 |  | 
|  | 1811 | kpfn = page_to_pfn(kpage); | 
|  | 1812 | nid = get_kpfn_nid(kpfn); | 
|  | 1813 | root = root_stable_tree + nid; | 
|  | 1814 | again: | 
|  | 1815 | parent = NULL; | 
|  | 1816 | new = &root->rb_node; | 
|  | 1817 |  | 
|  | 1818 | while (*new) { | 
|  | 1819 | struct page *tree_page; | 
|  | 1820 | int ret; | 
|  | 1821 |  | 
|  | 1822 | cond_resched(); | 
|  | 1823 | stable_node = rb_entry(*new, struct stable_node, node); | 
|  | 1824 | stable_node_any = NULL; | 
|  | 1825 | tree_page = chain(&stable_node_dup, stable_node, root); | 
|  | 1826 | if (!stable_node_dup) { | 
|  | 1827 | /* | 
|  | 1828 | * Either all stable_node dups were full in | 
|  | 1829 | * this stable_node chain, or this chain was | 
|  | 1830 | * empty and should be rb_erased. | 
|  | 1831 | */ | 
|  | 1832 | stable_node_any = stable_node_dup_any(stable_node, | 
|  | 1833 | root); | 
|  | 1834 | if (!stable_node_any) { | 
|  | 1835 | /* rb_erase just run */ | 
|  | 1836 | goto again; | 
|  | 1837 | } | 
|  | 1838 | /* | 
|  | 1839 | * Take any of the stable_node dups page of | 
|  | 1840 | * this stable_node chain to let the tree walk | 
|  | 1841 | * continue. All KSM pages belonging to the | 
|  | 1842 | * stable_node dups in a stable_node chain | 
|  | 1843 | * have the same content and they're | 
|  | 1844 | * wrprotected at all times. Any will work | 
|  | 1845 | * fine to continue the walk. | 
|  | 1846 | */ | 
|  | 1847 | tree_page = get_ksm_page(stable_node_any, false); | 
|  | 1848 | } | 
|  | 1849 | VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); | 
|  | 1850 | if (!tree_page) { | 
|  | 1851 | /* | 
|  | 1852 | * If we walked over a stale stable_node, | 
|  | 1853 | * get_ksm_page() will call rb_erase() and it | 
|  | 1854 | * may rebalance the tree from under us. So | 
|  | 1855 | * restart the search from scratch. Returning | 
|  | 1856 | * NULL would be safe too, but we'd generate | 
|  | 1857 | * false negative insertions just because some | 
|  | 1858 | * stable_node was stale. | 
|  | 1859 | */ | 
|  | 1860 | goto again; | 
|  | 1861 | } | 
|  | 1862 |  | 
|  | 1863 | ret = memcmp_pages(kpage, tree_page); | 
|  | 1864 | put_page(tree_page); | 
|  | 1865 |  | 
|  | 1866 | parent = *new; | 
|  | 1867 | if (ret < 0) | 
|  | 1868 | new = &parent->rb_left; | 
|  | 1869 | else if (ret > 0) | 
|  | 1870 | new = &parent->rb_right; | 
|  | 1871 | else { | 
|  | 1872 | need_chain = true; | 
|  | 1873 | break; | 
|  | 1874 | } | 
|  | 1875 | } | 
|  | 1876 |  | 
|  | 1877 | stable_node_dup = alloc_stable_node(); | 
|  | 1878 | if (!stable_node_dup) | 
|  | 1879 | return NULL; | 
|  | 1880 |  | 
|  | 1881 | INIT_HLIST_HEAD(&stable_node_dup->hlist); | 
|  | 1882 | stable_node_dup->kpfn = kpfn; | 
|  | 1883 | set_page_stable_node(kpage, stable_node_dup); | 
|  | 1884 | stable_node_dup->rmap_hlist_len = 0; | 
|  | 1885 | DO_NUMA(stable_node_dup->nid = nid); | 
|  | 1886 | if (!need_chain) { | 
|  | 1887 | rb_link_node(&stable_node_dup->node, parent, new); | 
|  | 1888 | rb_insert_color(&stable_node_dup->node, root); | 
|  | 1889 | } else { | 
|  | 1890 | if (!is_stable_node_chain(stable_node)) { | 
|  | 1891 | struct stable_node *orig = stable_node; | 
|  | 1892 | /* chain is missing so create it */ | 
|  | 1893 | stable_node = alloc_stable_node_chain(orig, root); | 
|  | 1894 | if (!stable_node) { | 
|  | 1895 | free_stable_node(stable_node_dup); | 
|  | 1896 | return NULL; | 
|  | 1897 | } | 
|  | 1898 | } | 
|  | 1899 | stable_node_chain_add_dup(stable_node_dup, stable_node); | 
|  | 1900 | } | 
|  | 1901 |  | 
|  | 1902 | return stable_node_dup; | 
|  | 1903 | } | 
|  | 1904 |  | 
|  | 1905 | /* | 
|  | 1906 | * unstable_tree_search_insert - search for identical page, | 
|  | 1907 | * else insert rmap_item into the unstable tree. | 
|  | 1908 | * | 
|  | 1909 | * This function searches for a page in the unstable tree identical to the | 
|  | 1910 | * page currently being scanned; and if no identical page is found in the | 
|  | 1911 | * tree, we insert rmap_item as a new object into the unstable tree. | 
|  | 1912 | * | 
|  | 1913 | * This function returns pointer to rmap_item found to be identical | 
|  | 1914 | * to the currently scanned page, NULL otherwise. | 
|  | 1915 | * | 
|  | 1916 | * This function does both searching and inserting, because they share | 
|  | 1917 | * the same walking algorithm in an rbtree. | 
|  | 1918 | */ | 
|  | 1919 | static | 
|  | 1920 | struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, | 
|  | 1921 | struct page *page, | 
|  | 1922 | struct page **tree_pagep) | 
|  | 1923 | { | 
|  | 1924 | struct rb_node **new; | 
|  | 1925 | struct rb_root *root; | 
|  | 1926 | struct rb_node *parent = NULL; | 
|  | 1927 | int nid; | 
|  | 1928 |  | 
|  | 1929 | nid = get_kpfn_nid(page_to_pfn(page)); | 
|  | 1930 | root = root_unstable_tree + nid; | 
|  | 1931 | new = &root->rb_node; | 
|  | 1932 |  | 
|  | 1933 | while (*new) { | 
|  | 1934 | struct rmap_item *tree_rmap_item; | 
|  | 1935 | struct page *tree_page; | 
|  | 1936 | int ret; | 
|  | 1937 |  | 
|  | 1938 | cond_resched(); | 
|  | 1939 | tree_rmap_item = rb_entry(*new, struct rmap_item, node); | 
|  | 1940 | tree_page = get_mergeable_page(tree_rmap_item); | 
|  | 1941 | if (!tree_page) | 
|  | 1942 | return NULL; | 
|  | 1943 |  | 
|  | 1944 | /* | 
|  | 1945 | * Don't substitute a ksm page for a forked page. | 
|  | 1946 | */ | 
|  | 1947 | if (page == tree_page) { | 
|  | 1948 | put_page(tree_page); | 
|  | 1949 | return NULL; | 
|  | 1950 | } | 
|  | 1951 |  | 
|  | 1952 | ret = memcmp_pages(page, tree_page); | 
|  | 1953 |  | 
|  | 1954 | parent = *new; | 
|  | 1955 | if (ret < 0) { | 
|  | 1956 | put_page(tree_page); | 
|  | 1957 | new = &parent->rb_left; | 
|  | 1958 | } else if (ret > 0) { | 
|  | 1959 | put_page(tree_page); | 
|  | 1960 | new = &parent->rb_right; | 
|  | 1961 | } else if (!ksm_merge_across_nodes && | 
|  | 1962 | page_to_nid(tree_page) != nid) { | 
|  | 1963 | /* | 
|  | 1964 | * If tree_page has been migrated to another NUMA node, | 
|  | 1965 | * it will be flushed out and put in the right unstable | 
|  | 1966 | * tree next time: only merge with it when across_nodes. | 
|  | 1967 | */ | 
|  | 1968 | put_page(tree_page); | 
|  | 1969 | return NULL; | 
|  | 1970 | } else { | 
|  | 1971 | *tree_pagep = tree_page; | 
|  | 1972 | return tree_rmap_item; | 
|  | 1973 | } | 
|  | 1974 | } | 
|  | 1975 |  | 
|  | 1976 | rmap_item->address |= UNSTABLE_FLAG; | 
|  | 1977 | rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); | 
|  | 1978 | DO_NUMA(rmap_item->nid = nid); | 
|  | 1979 | rb_link_node(&rmap_item->node, parent, new); | 
|  | 1980 | rb_insert_color(&rmap_item->node, root); | 
|  | 1981 |  | 
|  | 1982 | ksm_pages_unshared++; | 
|  | 1983 | return NULL; | 
|  | 1984 | } | 
|  | 1985 |  | 
|  | 1986 | /* | 
|  | 1987 | * stable_tree_append - add another rmap_item to the linked list of | 
|  | 1988 | * rmap_items hanging off a given node of the stable tree, all sharing | 
|  | 1989 | * the same ksm page. | 
|  | 1990 | */ | 
|  | 1991 | static void stable_tree_append(struct rmap_item *rmap_item, | 
|  | 1992 | struct stable_node *stable_node, | 
|  | 1993 | bool max_page_sharing_bypass) | 
|  | 1994 | { | 
|  | 1995 | /* | 
|  | 1996 | * rmap won't find this mapping if we don't insert the | 
|  | 1997 | * rmap_item in the right stable_node | 
|  | 1998 | * duplicate. page_migration could break later if rmap breaks, | 
|  | 1999 | * so we can as well crash here. We really need to check for | 
|  | 2000 | * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check | 
|  | 2001 | * for other negative values as an undeflow if detected here | 
|  | 2002 | * for the first time (and not when decreasing rmap_hlist_len) | 
|  | 2003 | * would be sign of memory corruption in the stable_node. | 
|  | 2004 | */ | 
|  | 2005 | BUG_ON(stable_node->rmap_hlist_len < 0); | 
|  | 2006 |  | 
|  | 2007 | stable_node->rmap_hlist_len++; | 
|  | 2008 | if (!max_page_sharing_bypass) | 
|  | 2009 | /* possibly non fatal but unexpected overflow, only warn */ | 
|  | 2010 | WARN_ON_ONCE(stable_node->rmap_hlist_len > | 
|  | 2011 | ksm_max_page_sharing); | 
|  | 2012 |  | 
|  | 2013 | rmap_item->head = stable_node; | 
|  | 2014 | rmap_item->address |= STABLE_FLAG; | 
|  | 2015 | hlist_add_head(&rmap_item->hlist, &stable_node->hlist); | 
|  | 2016 |  | 
|  | 2017 | if (rmap_item->hlist.next) | 
|  | 2018 | ksm_pages_sharing++; | 
|  | 2019 | else | 
|  | 2020 | ksm_pages_shared++; | 
|  | 2021 | } | 
|  | 2022 |  | 
|  | 2023 | /* | 
|  | 2024 | * cmp_and_merge_page - first see if page can be merged into the stable tree; | 
|  | 2025 | * if not, compare checksum to previous and if it's the same, see if page can | 
|  | 2026 | * be inserted into the unstable tree, or merged with a page already there and | 
|  | 2027 | * both transferred to the stable tree. | 
|  | 2028 | * | 
|  | 2029 | * @page: the page that we are searching identical page to. | 
|  | 2030 | * @rmap_item: the reverse mapping into the virtual address of this page | 
|  | 2031 | */ | 
|  | 2032 | static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) | 
|  | 2033 | { | 
|  | 2034 | struct mm_struct *mm = rmap_item->mm; | 
|  | 2035 | struct rmap_item *tree_rmap_item; | 
|  | 2036 | struct page *tree_page = NULL; | 
|  | 2037 | struct stable_node *stable_node; | 
|  | 2038 | struct page *kpage; | 
|  | 2039 | unsigned int checksum; | 
|  | 2040 | int err; | 
|  | 2041 | bool max_page_sharing_bypass = false; | 
|  | 2042 |  | 
|  | 2043 | stable_node = page_stable_node(page); | 
|  | 2044 | if (stable_node) { | 
|  | 2045 | if (stable_node->head != &migrate_nodes && | 
|  | 2046 | get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != | 
|  | 2047 | NUMA(stable_node->nid)) { | 
|  | 2048 | stable_node_dup_del(stable_node); | 
|  | 2049 | stable_node->head = &migrate_nodes; | 
|  | 2050 | list_add(&stable_node->list, stable_node->head); | 
|  | 2051 | } | 
|  | 2052 | if (stable_node->head != &migrate_nodes && | 
|  | 2053 | rmap_item->head == stable_node) | 
|  | 2054 | return; | 
|  | 2055 | /* | 
|  | 2056 | * If it's a KSM fork, allow it to go over the sharing limit | 
|  | 2057 | * without warnings. | 
|  | 2058 | */ | 
|  | 2059 | if (!is_page_sharing_candidate(stable_node)) | 
|  | 2060 | max_page_sharing_bypass = true; | 
|  | 2061 | } | 
|  | 2062 |  | 
|  | 2063 | /* We first start with searching the page inside the stable tree */ | 
|  | 2064 | kpage = stable_tree_search(page); | 
|  | 2065 | if (kpage == page && rmap_item->head == stable_node) { | 
|  | 2066 | put_page(kpage); | 
|  | 2067 | return; | 
|  | 2068 | } | 
|  | 2069 |  | 
|  | 2070 | remove_rmap_item_from_tree(rmap_item); | 
|  | 2071 |  | 
|  | 2072 | if (kpage) { | 
|  | 2073 | err = try_to_merge_with_ksm_page(rmap_item, page, kpage); | 
|  | 2074 | if (!err) { | 
|  | 2075 | /* | 
|  | 2076 | * The page was successfully merged: | 
|  | 2077 | * add its rmap_item to the stable tree. | 
|  | 2078 | */ | 
|  | 2079 | lock_page(kpage); | 
|  | 2080 | stable_tree_append(rmap_item, page_stable_node(kpage), | 
|  | 2081 | max_page_sharing_bypass); | 
|  | 2082 | unlock_page(kpage); | 
|  | 2083 | } | 
|  | 2084 | put_page(kpage); | 
|  | 2085 | return; | 
|  | 2086 | } | 
|  | 2087 |  | 
|  | 2088 | /* | 
|  | 2089 | * If the hash value of the page has changed from the last time | 
|  | 2090 | * we calculated it, this page is changing frequently: therefore we | 
|  | 2091 | * don't want to insert it in the unstable tree, and we don't want | 
|  | 2092 | * to waste our time searching for something identical to it there. | 
|  | 2093 | */ | 
|  | 2094 | checksum = calc_checksum(page); | 
|  | 2095 | if (rmap_item->oldchecksum != checksum) { | 
|  | 2096 | rmap_item->oldchecksum = checksum; | 
|  | 2097 | return; | 
|  | 2098 | } | 
|  | 2099 |  | 
|  | 2100 | /* | 
|  | 2101 | * Same checksum as an empty page. We attempt to merge it with the | 
|  | 2102 | * appropriate zero page if the user enabled this via sysfs. | 
|  | 2103 | */ | 
|  | 2104 | if (ksm_use_zero_pages && (checksum == zero_checksum)) { | 
|  | 2105 | struct vm_area_struct *vma; | 
|  | 2106 |  | 
|  | 2107 | down_read(&mm->mmap_sem); | 
|  | 2108 | vma = find_mergeable_vma(mm, rmap_item->address); | 
|  | 2109 | err = try_to_merge_one_page(vma, page, | 
|  | 2110 | ZERO_PAGE(rmap_item->address)); | 
|  | 2111 | up_read(&mm->mmap_sem); | 
|  | 2112 | /* | 
|  | 2113 | * In case of failure, the page was not really empty, so we | 
|  | 2114 | * need to continue. Otherwise we're done. | 
|  | 2115 | */ | 
|  | 2116 | if (!err) | 
|  | 2117 | return; | 
|  | 2118 | } | 
|  | 2119 | tree_rmap_item = | 
|  | 2120 | unstable_tree_search_insert(rmap_item, page, &tree_page); | 
|  | 2121 | if (tree_rmap_item) { | 
|  | 2122 | bool split; | 
|  | 2123 |  | 
|  | 2124 | kpage = try_to_merge_two_pages(rmap_item, page, | 
|  | 2125 | tree_rmap_item, tree_page); | 
|  | 2126 | /* | 
|  | 2127 | * If both pages we tried to merge belong to the same compound | 
|  | 2128 | * page, then we actually ended up increasing the reference | 
|  | 2129 | * count of the same compound page twice, and split_huge_page | 
|  | 2130 | * failed. | 
|  | 2131 | * Here we set a flag if that happened, and we use it later to | 
|  | 2132 | * try split_huge_page again. Since we call put_page right | 
|  | 2133 | * afterwards, the reference count will be correct and | 
|  | 2134 | * split_huge_page should succeed. | 
|  | 2135 | */ | 
|  | 2136 | split = PageTransCompound(page) | 
|  | 2137 | && compound_head(page) == compound_head(tree_page); | 
|  | 2138 | put_page(tree_page); | 
|  | 2139 | if (kpage) { | 
|  | 2140 | /* | 
|  | 2141 | * The pages were successfully merged: insert new | 
|  | 2142 | * node in the stable tree and add both rmap_items. | 
|  | 2143 | */ | 
|  | 2144 | lock_page(kpage); | 
|  | 2145 | stable_node = stable_tree_insert(kpage); | 
|  | 2146 | if (stable_node) { | 
|  | 2147 | stable_tree_append(tree_rmap_item, stable_node, | 
|  | 2148 | false); | 
|  | 2149 | stable_tree_append(rmap_item, stable_node, | 
|  | 2150 | false); | 
|  | 2151 | } | 
|  | 2152 | unlock_page(kpage); | 
|  | 2153 |  | 
|  | 2154 | /* | 
|  | 2155 | * If we fail to insert the page into the stable tree, | 
|  | 2156 | * we will have 2 virtual addresses that are pointing | 
|  | 2157 | * to a ksm page left outside the stable tree, | 
|  | 2158 | * in which case we need to break_cow on both. | 
|  | 2159 | */ | 
|  | 2160 | if (!stable_node) { | 
|  | 2161 | break_cow(tree_rmap_item); | 
|  | 2162 | break_cow(rmap_item); | 
|  | 2163 | } | 
|  | 2164 | } else if (split) { | 
|  | 2165 | /* | 
|  | 2166 | * We are here if we tried to merge two pages and | 
|  | 2167 | * failed because they both belonged to the same | 
|  | 2168 | * compound page. We will split the page now, but no | 
|  | 2169 | * merging will take place. | 
|  | 2170 | * We do not want to add the cost of a full lock; if | 
|  | 2171 | * the page is locked, it is better to skip it and | 
|  | 2172 | * perhaps try again later. | 
|  | 2173 | */ | 
|  | 2174 | if (!trylock_page(page)) | 
|  | 2175 | return; | 
|  | 2176 | split_huge_page(page); | 
|  | 2177 | unlock_page(page); | 
|  | 2178 | } | 
|  | 2179 | } | 
|  | 2180 | } | 
|  | 2181 |  | 
|  | 2182 | static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, | 
|  | 2183 | struct rmap_item **rmap_list, | 
|  | 2184 | unsigned long addr) | 
|  | 2185 | { | 
|  | 2186 | struct rmap_item *rmap_item; | 
|  | 2187 |  | 
|  | 2188 | while (*rmap_list) { | 
|  | 2189 | rmap_item = *rmap_list; | 
|  | 2190 | if ((rmap_item->address & PAGE_MASK) == addr) | 
|  | 2191 | return rmap_item; | 
|  | 2192 | if (rmap_item->address > addr) | 
|  | 2193 | break; | 
|  | 2194 | *rmap_list = rmap_item->rmap_list; | 
|  | 2195 | remove_rmap_item_from_tree(rmap_item); | 
|  | 2196 | free_rmap_item(rmap_item); | 
|  | 2197 | } | 
|  | 2198 |  | 
|  | 2199 | rmap_item = alloc_rmap_item(); | 
|  | 2200 | if (rmap_item) { | 
|  | 2201 | /* It has already been zeroed */ | 
|  | 2202 | rmap_item->mm = mm_slot->mm; | 
|  | 2203 | rmap_item->address = addr; | 
|  | 2204 | rmap_item->rmap_list = *rmap_list; | 
|  | 2205 | *rmap_list = rmap_item; | 
|  | 2206 | } | 
|  | 2207 | return rmap_item; | 
|  | 2208 | } | 
|  | 2209 |  | 
|  | 2210 | static struct rmap_item *scan_get_next_rmap_item(struct page **page) | 
|  | 2211 | { | 
|  | 2212 | struct mm_struct *mm; | 
|  | 2213 | struct mm_slot *slot; | 
|  | 2214 | struct vm_area_struct *vma; | 
|  | 2215 | struct rmap_item *rmap_item; | 
|  | 2216 | int nid; | 
|  | 2217 |  | 
|  | 2218 | if (list_empty(&ksm_mm_head.mm_list)) | 
|  | 2219 | return NULL; | 
|  | 2220 |  | 
|  | 2221 | slot = ksm_scan.mm_slot; | 
|  | 2222 | if (slot == &ksm_mm_head) { | 
|  | 2223 | /* | 
|  | 2224 | * A number of pages can hang around indefinitely on per-cpu | 
|  | 2225 | * pagevecs, raised page count preventing write_protect_page | 
|  | 2226 | * from merging them.  Though it doesn't really matter much, | 
|  | 2227 | * it is puzzling to see some stuck in pages_volatile until | 
|  | 2228 | * other activity jostles them out, and they also prevented | 
|  | 2229 | * LTP's KSM test from succeeding deterministically; so drain | 
|  | 2230 | * them here (here rather than on entry to ksm_do_scan(), | 
|  | 2231 | * so we don't IPI too often when pages_to_scan is set low). | 
|  | 2232 | */ | 
|  | 2233 | lru_add_drain_all(); | 
|  | 2234 |  | 
|  | 2235 | /* | 
|  | 2236 | * Whereas stale stable_nodes on the stable_tree itself | 
|  | 2237 | * get pruned in the regular course of stable_tree_search(), | 
|  | 2238 | * those moved out to the migrate_nodes list can accumulate: | 
|  | 2239 | * so prune them once before each full scan. | 
|  | 2240 | */ | 
|  | 2241 | if (!ksm_merge_across_nodes) { | 
|  | 2242 | struct stable_node *stable_node, *next; | 
|  | 2243 | struct page *page; | 
|  | 2244 |  | 
|  | 2245 | list_for_each_entry_safe(stable_node, next, | 
|  | 2246 | &migrate_nodes, list) { | 
|  | 2247 | page = get_ksm_page(stable_node, false); | 
|  | 2248 | if (page) | 
|  | 2249 | put_page(page); | 
|  | 2250 | cond_resched(); | 
|  | 2251 | } | 
|  | 2252 | } | 
|  | 2253 |  | 
|  | 2254 | for (nid = 0; nid < ksm_nr_node_ids; nid++) | 
|  | 2255 | root_unstable_tree[nid] = RB_ROOT; | 
|  | 2256 |  | 
|  | 2257 | spin_lock(&ksm_mmlist_lock); | 
|  | 2258 | slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); | 
|  | 2259 | ksm_scan.mm_slot = slot; | 
|  | 2260 | spin_unlock(&ksm_mmlist_lock); | 
|  | 2261 | /* | 
|  | 2262 | * Although we tested list_empty() above, a racing __ksm_exit | 
|  | 2263 | * of the last mm on the list may have removed it since then. | 
|  | 2264 | */ | 
|  | 2265 | if (slot == &ksm_mm_head) | 
|  | 2266 | return NULL; | 
|  | 2267 | next_mm: | 
|  | 2268 | ksm_scan.address = 0; | 
|  | 2269 | ksm_scan.rmap_list = &slot->rmap_list; | 
|  | 2270 | } | 
|  | 2271 |  | 
|  | 2272 | mm = slot->mm; | 
|  | 2273 | down_read(&mm->mmap_sem); | 
|  | 2274 | if (ksm_test_exit(mm)) | 
|  | 2275 | vma = NULL; | 
|  | 2276 | else | 
|  | 2277 | vma = find_vma(mm, ksm_scan.address); | 
|  | 2278 |  | 
|  | 2279 | for (; vma; vma = vma->vm_next) { | 
|  | 2280 | if (!(vma->vm_flags & VM_MERGEABLE)) | 
|  | 2281 | continue; | 
|  | 2282 | if (ksm_scan.address < vma->vm_start) | 
|  | 2283 | ksm_scan.address = vma->vm_start; | 
|  | 2284 | if (!vma->anon_vma) | 
|  | 2285 | ksm_scan.address = vma->vm_end; | 
|  | 2286 |  | 
|  | 2287 | while (ksm_scan.address < vma->vm_end) { | 
|  | 2288 | if (ksm_test_exit(mm)) | 
|  | 2289 | break; | 
|  | 2290 | *page = follow_page(vma, ksm_scan.address, FOLL_GET); | 
|  | 2291 | if (IS_ERR_OR_NULL(*page)) { | 
|  | 2292 | ksm_scan.address += PAGE_SIZE; | 
|  | 2293 | cond_resched(); | 
|  | 2294 | continue; | 
|  | 2295 | } | 
|  | 2296 | if (PageAnon(*page)) { | 
|  | 2297 | flush_anon_page(vma, *page, ksm_scan.address); | 
|  | 2298 | flush_dcache_page(*page); | 
|  | 2299 | rmap_item = get_next_rmap_item(slot, | 
|  | 2300 | ksm_scan.rmap_list, ksm_scan.address); | 
|  | 2301 | if (rmap_item) { | 
|  | 2302 | ksm_scan.rmap_list = | 
|  | 2303 | &rmap_item->rmap_list; | 
|  | 2304 | ksm_scan.address += PAGE_SIZE; | 
|  | 2305 | } else | 
|  | 2306 | put_page(*page); | 
|  | 2307 | up_read(&mm->mmap_sem); | 
|  | 2308 | return rmap_item; | 
|  | 2309 | } | 
|  | 2310 | put_page(*page); | 
|  | 2311 | ksm_scan.address += PAGE_SIZE; | 
|  | 2312 | cond_resched(); | 
|  | 2313 | } | 
|  | 2314 | } | 
|  | 2315 |  | 
|  | 2316 | if (ksm_test_exit(mm)) { | 
|  | 2317 | ksm_scan.address = 0; | 
|  | 2318 | ksm_scan.rmap_list = &slot->rmap_list; | 
|  | 2319 | } | 
|  | 2320 | /* | 
|  | 2321 | * Nuke all the rmap_items that are above this current rmap: | 
|  | 2322 | * because there were no VM_MERGEABLE vmas with such addresses. | 
|  | 2323 | */ | 
|  | 2324 | remove_trailing_rmap_items(slot, ksm_scan.rmap_list); | 
|  | 2325 |  | 
|  | 2326 | spin_lock(&ksm_mmlist_lock); | 
|  | 2327 | ksm_scan.mm_slot = list_entry(slot->mm_list.next, | 
|  | 2328 | struct mm_slot, mm_list); | 
|  | 2329 | if (ksm_scan.address == 0) { | 
|  | 2330 | /* | 
|  | 2331 | * We've completed a full scan of all vmas, holding mmap_sem | 
|  | 2332 | * throughout, and found no VM_MERGEABLE: so do the same as | 
|  | 2333 | * __ksm_exit does to remove this mm from all our lists now. | 
|  | 2334 | * This applies either when cleaning up after __ksm_exit | 
|  | 2335 | * (but beware: we can reach here even before __ksm_exit), | 
|  | 2336 | * or when all VM_MERGEABLE areas have been unmapped (and | 
|  | 2337 | * mmap_sem then protects against race with MADV_MERGEABLE). | 
|  | 2338 | */ | 
|  | 2339 | hash_del(&slot->link); | 
|  | 2340 | list_del(&slot->mm_list); | 
|  | 2341 | spin_unlock(&ksm_mmlist_lock); | 
|  | 2342 |  | 
|  | 2343 | free_mm_slot(slot); | 
|  | 2344 | clear_bit(MMF_VM_MERGEABLE, &mm->flags); | 
|  | 2345 | up_read(&mm->mmap_sem); | 
|  | 2346 | mmdrop(mm); | 
|  | 2347 | } else { | 
|  | 2348 | up_read(&mm->mmap_sem); | 
|  | 2349 | /* | 
|  | 2350 | * up_read(&mm->mmap_sem) first because after | 
|  | 2351 | * spin_unlock(&ksm_mmlist_lock) run, the "mm" may | 
|  | 2352 | * already have been freed under us by __ksm_exit() | 
|  | 2353 | * because the "mm_slot" is still hashed and | 
|  | 2354 | * ksm_scan.mm_slot doesn't point to it anymore. | 
|  | 2355 | */ | 
|  | 2356 | spin_unlock(&ksm_mmlist_lock); | 
|  | 2357 | } | 
|  | 2358 |  | 
|  | 2359 | /* Repeat until we've completed scanning the whole list */ | 
|  | 2360 | slot = ksm_scan.mm_slot; | 
|  | 2361 | if (slot != &ksm_mm_head) | 
|  | 2362 | goto next_mm; | 
|  | 2363 |  | 
|  | 2364 | ksm_scan.seqnr++; | 
|  | 2365 | return NULL; | 
|  | 2366 | } | 
|  | 2367 |  | 
|  | 2368 | /** | 
|  | 2369 | * ksm_do_scan  - the ksm scanner main worker function. | 
|  | 2370 | * @scan_npages:  number of pages we want to scan before we return. | 
|  | 2371 | */ | 
|  | 2372 | static void ksm_do_scan(unsigned int scan_npages) | 
|  | 2373 | { | 
|  | 2374 | struct rmap_item *rmap_item; | 
|  | 2375 | struct page *uninitialized_var(page); | 
|  | 2376 |  | 
|  | 2377 | while (scan_npages-- && likely(!freezing(current))) { | 
|  | 2378 | cond_resched(); | 
|  | 2379 | rmap_item = scan_get_next_rmap_item(&page); | 
|  | 2380 | if (!rmap_item) | 
|  | 2381 | return; | 
|  | 2382 | cmp_and_merge_page(page, rmap_item); | 
|  | 2383 | put_page(page); | 
|  | 2384 | } | 
|  | 2385 | } | 
|  | 2386 |  | 
|  | 2387 | static int ksmd_should_run(void) | 
|  | 2388 | { | 
|  | 2389 | return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); | 
|  | 2390 | } | 
|  | 2391 |  | 
|  | 2392 | static int ksm_scan_thread(void *nothing) | 
|  | 2393 | { | 
|  | 2394 | set_freezable(); | 
|  | 2395 | set_user_nice(current, 5); | 
|  | 2396 |  | 
|  | 2397 | while (!kthread_should_stop()) { | 
|  | 2398 | mutex_lock(&ksm_thread_mutex); | 
|  | 2399 | wait_while_offlining(); | 
|  | 2400 | if (ksmd_should_run()) | 
|  | 2401 | ksm_do_scan(ksm_thread_pages_to_scan); | 
|  | 2402 | mutex_unlock(&ksm_thread_mutex); | 
|  | 2403 |  | 
|  | 2404 | try_to_freeze(); | 
|  | 2405 |  | 
|  | 2406 | if (ksmd_should_run()) { | 
|  | 2407 | schedule_timeout_interruptible( | 
|  | 2408 | msecs_to_jiffies(ksm_thread_sleep_millisecs)); | 
|  | 2409 | } else { | 
|  | 2410 | wait_event_freezable(ksm_thread_wait, | 
|  | 2411 | ksmd_should_run() || kthread_should_stop()); | 
|  | 2412 | } | 
|  | 2413 | } | 
|  | 2414 | return 0; | 
|  | 2415 | } | 
|  | 2416 |  | 
|  | 2417 | int ksm_madvise(struct vm_area_struct *vma, unsigned long start, | 
|  | 2418 | unsigned long end, int advice, unsigned long *vm_flags) | 
|  | 2419 | { | 
|  | 2420 | struct mm_struct *mm = vma->vm_mm; | 
|  | 2421 | int err; | 
|  | 2422 |  | 
|  | 2423 | switch (advice) { | 
|  | 2424 | case MADV_MERGEABLE: | 
|  | 2425 | /* | 
|  | 2426 | * Be somewhat over-protective for now! | 
|  | 2427 | */ | 
|  | 2428 | if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   | | 
|  | 2429 | VM_PFNMAP    | VM_IO      | VM_DONTEXPAND | | 
|  | 2430 | VM_HUGETLB | VM_MIXEDMAP)) | 
|  | 2431 | return 0;		/* just ignore the advice */ | 
|  | 2432 |  | 
|  | 2433 | if (vma_is_dax(vma)) | 
|  | 2434 | return 0; | 
|  | 2435 |  | 
|  | 2436 | #ifdef VM_SAO | 
|  | 2437 | if (*vm_flags & VM_SAO) | 
|  | 2438 | return 0; | 
|  | 2439 | #endif | 
|  | 2440 | #ifdef VM_SPARC_ADI | 
|  | 2441 | if (*vm_flags & VM_SPARC_ADI) | 
|  | 2442 | return 0; | 
|  | 2443 | #endif | 
|  | 2444 |  | 
|  | 2445 | if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { | 
|  | 2446 | err = __ksm_enter(mm); | 
|  | 2447 | if (err) | 
|  | 2448 | return err; | 
|  | 2449 | } | 
|  | 2450 |  | 
|  | 2451 | *vm_flags |= VM_MERGEABLE; | 
|  | 2452 | break; | 
|  | 2453 |  | 
|  | 2454 | case MADV_UNMERGEABLE: | 
|  | 2455 | if (!(*vm_flags & VM_MERGEABLE)) | 
|  | 2456 | return 0;		/* just ignore the advice */ | 
|  | 2457 |  | 
|  | 2458 | if (vma->anon_vma) { | 
|  | 2459 | err = unmerge_ksm_pages(vma, start, end); | 
|  | 2460 | if (err) | 
|  | 2461 | return err; | 
|  | 2462 | } | 
|  | 2463 |  | 
|  | 2464 | *vm_flags &= ~VM_MERGEABLE; | 
|  | 2465 | break; | 
|  | 2466 | } | 
|  | 2467 |  | 
|  | 2468 | return 0; | 
|  | 2469 | } | 
|  | 2470 |  | 
|  | 2471 | int __ksm_enter(struct mm_struct *mm) | 
|  | 2472 | { | 
|  | 2473 | struct mm_slot *mm_slot; | 
|  | 2474 | int needs_wakeup; | 
|  | 2475 |  | 
|  | 2476 | mm_slot = alloc_mm_slot(); | 
|  | 2477 | if (!mm_slot) | 
|  | 2478 | return -ENOMEM; | 
|  | 2479 |  | 
|  | 2480 | /* Check ksm_run too?  Would need tighter locking */ | 
|  | 2481 | needs_wakeup = list_empty(&ksm_mm_head.mm_list); | 
|  | 2482 |  | 
|  | 2483 | spin_lock(&ksm_mmlist_lock); | 
|  | 2484 | insert_to_mm_slots_hash(mm, mm_slot); | 
|  | 2485 | /* | 
|  | 2486 | * When KSM_RUN_MERGE (or KSM_RUN_STOP), | 
|  | 2487 | * insert just behind the scanning cursor, to let the area settle | 
|  | 2488 | * down a little; when fork is followed by immediate exec, we don't | 
|  | 2489 | * want ksmd to waste time setting up and tearing down an rmap_list. | 
|  | 2490 | * | 
|  | 2491 | * But when KSM_RUN_UNMERGE, it's important to insert ahead of its | 
|  | 2492 | * scanning cursor, otherwise KSM pages in newly forked mms will be | 
|  | 2493 | * missed: then we might as well insert at the end of the list. | 
|  | 2494 | */ | 
|  | 2495 | if (ksm_run & KSM_RUN_UNMERGE) | 
|  | 2496 | list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); | 
|  | 2497 | else | 
|  | 2498 | list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); | 
|  | 2499 | spin_unlock(&ksm_mmlist_lock); | 
|  | 2500 |  | 
|  | 2501 | set_bit(MMF_VM_MERGEABLE, &mm->flags); | 
|  | 2502 | mmgrab(mm); | 
|  | 2503 |  | 
|  | 2504 | if (needs_wakeup) | 
|  | 2505 | wake_up_interruptible(&ksm_thread_wait); | 
|  | 2506 |  | 
|  | 2507 | return 0; | 
|  | 2508 | } | 
|  | 2509 |  | 
|  | 2510 | void __ksm_exit(struct mm_struct *mm) | 
|  | 2511 | { | 
|  | 2512 | struct mm_slot *mm_slot; | 
|  | 2513 | int easy_to_free = 0; | 
|  | 2514 |  | 
|  | 2515 | /* | 
|  | 2516 | * This process is exiting: if it's straightforward (as is the | 
|  | 2517 | * case when ksmd was never running), free mm_slot immediately. | 
|  | 2518 | * But if it's at the cursor or has rmap_items linked to it, use | 
|  | 2519 | * mmap_sem to synchronize with any break_cows before pagetables | 
|  | 2520 | * are freed, and leave the mm_slot on the list for ksmd to free. | 
|  | 2521 | * Beware: ksm may already have noticed it exiting and freed the slot. | 
|  | 2522 | */ | 
|  | 2523 |  | 
|  | 2524 | spin_lock(&ksm_mmlist_lock); | 
|  | 2525 | mm_slot = get_mm_slot(mm); | 
|  | 2526 | if (mm_slot && ksm_scan.mm_slot != mm_slot) { | 
|  | 2527 | if (!mm_slot->rmap_list) { | 
|  | 2528 | hash_del(&mm_slot->link); | 
|  | 2529 | list_del(&mm_slot->mm_list); | 
|  | 2530 | easy_to_free = 1; | 
|  | 2531 | } else { | 
|  | 2532 | list_move(&mm_slot->mm_list, | 
|  | 2533 | &ksm_scan.mm_slot->mm_list); | 
|  | 2534 | } | 
|  | 2535 | } | 
|  | 2536 | spin_unlock(&ksm_mmlist_lock); | 
|  | 2537 |  | 
|  | 2538 | if (easy_to_free) { | 
|  | 2539 | free_mm_slot(mm_slot); | 
|  | 2540 | clear_bit(MMF_VM_MERGEABLE, &mm->flags); | 
|  | 2541 | mmdrop(mm); | 
|  | 2542 | } else if (mm_slot) { | 
|  | 2543 | down_write(&mm->mmap_sem); | 
|  | 2544 | up_write(&mm->mmap_sem); | 
|  | 2545 | } | 
|  | 2546 | } | 
|  | 2547 |  | 
|  | 2548 | struct page *ksm_might_need_to_copy(struct page *page, | 
|  | 2549 | struct vm_area_struct *vma, unsigned long address) | 
|  | 2550 | { | 
|  | 2551 | struct anon_vma *anon_vma = page_anon_vma(page); | 
|  | 2552 | struct page *new_page; | 
|  | 2553 |  | 
|  | 2554 | if (PageKsm(page)) { | 
|  | 2555 | if (page_stable_node(page) && | 
|  | 2556 | !(ksm_run & KSM_RUN_UNMERGE)) | 
|  | 2557 | return page;	/* no need to copy it */ | 
|  | 2558 | } else if (!anon_vma) { | 
|  | 2559 | return page;		/* no need to copy it */ | 
|  | 2560 | } else if (anon_vma->root == vma->anon_vma->root && | 
|  | 2561 | page->index == linear_page_index(vma, address)) { | 
|  | 2562 | return page;		/* still no need to copy it */ | 
|  | 2563 | } | 
|  | 2564 | if (!PageUptodate(page)) | 
|  | 2565 | return page;		/* let do_swap_page report the error */ | 
|  | 2566 |  | 
|  | 2567 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); | 
|  | 2568 | if (new_page) { | 
|  | 2569 | copy_user_highpage(new_page, page, address, vma); | 
|  | 2570 |  | 
|  | 2571 | SetPageDirty(new_page); | 
|  | 2572 | __SetPageUptodate(new_page); | 
|  | 2573 | __SetPageLocked(new_page); | 
|  | 2574 | } | 
|  | 2575 |  | 
|  | 2576 | return new_page; | 
|  | 2577 | } | 
|  | 2578 |  | 
|  | 2579 | void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) | 
|  | 2580 | { | 
|  | 2581 | struct stable_node *stable_node; | 
|  | 2582 | struct rmap_item *rmap_item; | 
|  | 2583 | int search_new_forks = 0; | 
|  | 2584 |  | 
|  | 2585 | VM_BUG_ON_PAGE(!PageKsm(page), page); | 
|  | 2586 |  | 
|  | 2587 | /* | 
|  | 2588 | * Rely on the page lock to protect against concurrent modifications | 
|  | 2589 | * to that page's node of the stable tree. | 
|  | 2590 | */ | 
|  | 2591 | VM_BUG_ON_PAGE(!PageLocked(page), page); | 
|  | 2592 |  | 
|  | 2593 | stable_node = page_stable_node(page); | 
|  | 2594 | if (!stable_node) | 
|  | 2595 | return; | 
|  | 2596 | again: | 
|  | 2597 | hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { | 
|  | 2598 | struct anon_vma *anon_vma = rmap_item->anon_vma; | 
|  | 2599 | struct anon_vma_chain *vmac; | 
|  | 2600 | struct vm_area_struct *vma; | 
|  | 2601 |  | 
|  | 2602 | cond_resched(); | 
|  | 2603 | anon_vma_lock_read(anon_vma); | 
|  | 2604 | anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, | 
|  | 2605 | 0, ULONG_MAX) { | 
|  | 2606 | unsigned long addr; | 
|  | 2607 |  | 
|  | 2608 | cond_resched(); | 
|  | 2609 | vma = vmac->vma; | 
|  | 2610 |  | 
|  | 2611 | /* Ignore the stable/unstable/sqnr flags */ | 
|  | 2612 | addr = rmap_item->address & ~KSM_FLAG_MASK; | 
|  | 2613 |  | 
|  | 2614 | if (addr < vma->vm_start || addr >= vma->vm_end) | 
|  | 2615 | continue; | 
|  | 2616 | /* | 
|  | 2617 | * Initially we examine only the vma which covers this | 
|  | 2618 | * rmap_item; but later, if there is still work to do, | 
|  | 2619 | * we examine covering vmas in other mms: in case they | 
|  | 2620 | * were forked from the original since ksmd passed. | 
|  | 2621 | */ | 
|  | 2622 | if ((rmap_item->mm == vma->vm_mm) == search_new_forks) | 
|  | 2623 | continue; | 
|  | 2624 |  | 
|  | 2625 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) | 
|  | 2626 | continue; | 
|  | 2627 |  | 
|  | 2628 | if (!rwc->rmap_one(page, vma, addr, rwc->arg)) { | 
|  | 2629 | anon_vma_unlock_read(anon_vma); | 
|  | 2630 | return; | 
|  | 2631 | } | 
|  | 2632 | if (rwc->done && rwc->done(page)) { | 
|  | 2633 | anon_vma_unlock_read(anon_vma); | 
|  | 2634 | return; | 
|  | 2635 | } | 
|  | 2636 | } | 
|  | 2637 | anon_vma_unlock_read(anon_vma); | 
|  | 2638 | } | 
|  | 2639 | if (!search_new_forks++) | 
|  | 2640 | goto again; | 
|  | 2641 | } | 
|  | 2642 |  | 
|  | 2643 | #ifdef CONFIG_MIGRATION | 
|  | 2644 | void ksm_migrate_page(struct page *newpage, struct page *oldpage) | 
|  | 2645 | { | 
|  | 2646 | struct stable_node *stable_node; | 
|  | 2647 |  | 
|  | 2648 | VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); | 
|  | 2649 | VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); | 
|  | 2650 | VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); | 
|  | 2651 |  | 
|  | 2652 | stable_node = page_stable_node(newpage); | 
|  | 2653 | if (stable_node) { | 
|  | 2654 | VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); | 
|  | 2655 | stable_node->kpfn = page_to_pfn(newpage); | 
|  | 2656 | /* | 
|  | 2657 | * newpage->mapping was set in advance; now we need smp_wmb() | 
|  | 2658 | * to make sure that the new stable_node->kpfn is visible | 
|  | 2659 | * to get_ksm_page() before it can see that oldpage->mapping | 
|  | 2660 | * has gone stale (or that PageSwapCache has been cleared). | 
|  | 2661 | */ | 
|  | 2662 | smp_wmb(); | 
|  | 2663 | set_page_stable_node(oldpage, NULL); | 
|  | 2664 | } | 
|  | 2665 | } | 
|  | 2666 | #endif /* CONFIG_MIGRATION */ | 
|  | 2667 |  | 
|  | 2668 | #ifdef CONFIG_MEMORY_HOTREMOVE | 
|  | 2669 | static void wait_while_offlining(void) | 
|  | 2670 | { | 
|  | 2671 | while (ksm_run & KSM_RUN_OFFLINE) { | 
|  | 2672 | mutex_unlock(&ksm_thread_mutex); | 
|  | 2673 | wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), | 
|  | 2674 | TASK_UNINTERRUPTIBLE); | 
|  | 2675 | mutex_lock(&ksm_thread_mutex); | 
|  | 2676 | } | 
|  | 2677 | } | 
|  | 2678 |  | 
|  | 2679 | static bool stable_node_dup_remove_range(struct stable_node *stable_node, | 
|  | 2680 | unsigned long start_pfn, | 
|  | 2681 | unsigned long end_pfn) | 
|  | 2682 | { | 
|  | 2683 | if (stable_node->kpfn >= start_pfn && | 
|  | 2684 | stable_node->kpfn < end_pfn) { | 
|  | 2685 | /* | 
|  | 2686 | * Don't get_ksm_page, page has already gone: | 
|  | 2687 | * which is why we keep kpfn instead of page* | 
|  | 2688 | */ | 
|  | 2689 | remove_node_from_stable_tree(stable_node); | 
|  | 2690 | return true; | 
|  | 2691 | } | 
|  | 2692 | return false; | 
|  | 2693 | } | 
|  | 2694 |  | 
|  | 2695 | static bool stable_node_chain_remove_range(struct stable_node *stable_node, | 
|  | 2696 | unsigned long start_pfn, | 
|  | 2697 | unsigned long end_pfn, | 
|  | 2698 | struct rb_root *root) | 
|  | 2699 | { | 
|  | 2700 | struct stable_node *dup; | 
|  | 2701 | struct hlist_node *hlist_safe; | 
|  | 2702 |  | 
|  | 2703 | if (!is_stable_node_chain(stable_node)) { | 
|  | 2704 | VM_BUG_ON(is_stable_node_dup(stable_node)); | 
|  | 2705 | return stable_node_dup_remove_range(stable_node, start_pfn, | 
|  | 2706 | end_pfn); | 
|  | 2707 | } | 
|  | 2708 |  | 
|  | 2709 | hlist_for_each_entry_safe(dup, hlist_safe, | 
|  | 2710 | &stable_node->hlist, hlist_dup) { | 
|  | 2711 | VM_BUG_ON(!is_stable_node_dup(dup)); | 
|  | 2712 | stable_node_dup_remove_range(dup, start_pfn, end_pfn); | 
|  | 2713 | } | 
|  | 2714 | if (hlist_empty(&stable_node->hlist)) { | 
|  | 2715 | free_stable_node_chain(stable_node, root); | 
|  | 2716 | return true; /* notify caller that tree was rebalanced */ | 
|  | 2717 | } else | 
|  | 2718 | return false; | 
|  | 2719 | } | 
|  | 2720 |  | 
|  | 2721 | static void ksm_check_stable_tree(unsigned long start_pfn, | 
|  | 2722 | unsigned long end_pfn) | 
|  | 2723 | { | 
|  | 2724 | struct stable_node *stable_node, *next; | 
|  | 2725 | struct rb_node *node; | 
|  | 2726 | int nid; | 
|  | 2727 |  | 
|  | 2728 | for (nid = 0; nid < ksm_nr_node_ids; nid++) { | 
|  | 2729 | node = rb_first(root_stable_tree + nid); | 
|  | 2730 | while (node) { | 
|  | 2731 | stable_node = rb_entry(node, struct stable_node, node); | 
|  | 2732 | if (stable_node_chain_remove_range(stable_node, | 
|  | 2733 | start_pfn, end_pfn, | 
|  | 2734 | root_stable_tree + | 
|  | 2735 | nid)) | 
|  | 2736 | node = rb_first(root_stable_tree + nid); | 
|  | 2737 | else | 
|  | 2738 | node = rb_next(node); | 
|  | 2739 | cond_resched(); | 
|  | 2740 | } | 
|  | 2741 | } | 
|  | 2742 | list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { | 
|  | 2743 | if (stable_node->kpfn >= start_pfn && | 
|  | 2744 | stable_node->kpfn < end_pfn) | 
|  | 2745 | remove_node_from_stable_tree(stable_node); | 
|  | 2746 | cond_resched(); | 
|  | 2747 | } | 
|  | 2748 | } | 
|  | 2749 |  | 
|  | 2750 | static int ksm_memory_callback(struct notifier_block *self, | 
|  | 2751 | unsigned long action, void *arg) | 
|  | 2752 | { | 
|  | 2753 | struct memory_notify *mn = arg; | 
|  | 2754 |  | 
|  | 2755 | switch (action) { | 
|  | 2756 | case MEM_GOING_OFFLINE: | 
|  | 2757 | /* | 
|  | 2758 | * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() | 
|  | 2759 | * and remove_all_stable_nodes() while memory is going offline: | 
|  | 2760 | * it is unsafe for them to touch the stable tree at this time. | 
|  | 2761 | * But unmerge_ksm_pages(), rmap lookups and other entry points | 
|  | 2762 | * which do not need the ksm_thread_mutex are all safe. | 
|  | 2763 | */ | 
|  | 2764 | mutex_lock(&ksm_thread_mutex); | 
|  | 2765 | ksm_run |= KSM_RUN_OFFLINE; | 
|  | 2766 | mutex_unlock(&ksm_thread_mutex); | 
|  | 2767 | break; | 
|  | 2768 |  | 
|  | 2769 | case MEM_OFFLINE: | 
|  | 2770 | /* | 
|  | 2771 | * Most of the work is done by page migration; but there might | 
|  | 2772 | * be a few stable_nodes left over, still pointing to struct | 
|  | 2773 | * pages which have been offlined: prune those from the tree, | 
|  | 2774 | * otherwise get_ksm_page() might later try to access a | 
|  | 2775 | * non-existent struct page. | 
|  | 2776 | */ | 
|  | 2777 | ksm_check_stable_tree(mn->start_pfn, | 
|  | 2778 | mn->start_pfn + mn->nr_pages); | 
|  | 2779 | /* fallthrough */ | 
|  | 2780 |  | 
|  | 2781 | case MEM_CANCEL_OFFLINE: | 
|  | 2782 | mutex_lock(&ksm_thread_mutex); | 
|  | 2783 | ksm_run &= ~KSM_RUN_OFFLINE; | 
|  | 2784 | mutex_unlock(&ksm_thread_mutex); | 
|  | 2785 |  | 
|  | 2786 | smp_mb();	/* wake_up_bit advises this */ | 
|  | 2787 | wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); | 
|  | 2788 | break; | 
|  | 2789 | } | 
|  | 2790 | return NOTIFY_OK; | 
|  | 2791 | } | 
|  | 2792 | #else | 
|  | 2793 | static void wait_while_offlining(void) | 
|  | 2794 | { | 
|  | 2795 | } | 
|  | 2796 | #endif /* CONFIG_MEMORY_HOTREMOVE */ | 
|  | 2797 |  | 
|  | 2798 | #ifdef CONFIG_SYSFS | 
|  | 2799 | /* | 
|  | 2800 | * This all compiles without CONFIG_SYSFS, but is a waste of space. | 
|  | 2801 | */ | 
|  | 2802 |  | 
|  | 2803 | #define KSM_ATTR_RO(_name) \ | 
|  | 2804 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | 
|  | 2805 | #define KSM_ATTR(_name) \ | 
|  | 2806 | static struct kobj_attribute _name##_attr = \ | 
|  | 2807 | __ATTR(_name, 0644, _name##_show, _name##_store) | 
|  | 2808 |  | 
|  | 2809 | static ssize_t sleep_millisecs_show(struct kobject *kobj, | 
|  | 2810 | struct kobj_attribute *attr, char *buf) | 
|  | 2811 | { | 
|  | 2812 | return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); | 
|  | 2813 | } | 
|  | 2814 |  | 
|  | 2815 | static ssize_t sleep_millisecs_store(struct kobject *kobj, | 
|  | 2816 | struct kobj_attribute *attr, | 
|  | 2817 | const char *buf, size_t count) | 
|  | 2818 | { | 
|  | 2819 | unsigned long msecs; | 
|  | 2820 | int err; | 
|  | 2821 |  | 
|  | 2822 | err = kstrtoul(buf, 10, &msecs); | 
|  | 2823 | if (err || msecs > UINT_MAX) | 
|  | 2824 | return -EINVAL; | 
|  | 2825 |  | 
|  | 2826 | ksm_thread_sleep_millisecs = msecs; | 
|  | 2827 |  | 
|  | 2828 | return count; | 
|  | 2829 | } | 
|  | 2830 | KSM_ATTR(sleep_millisecs); | 
|  | 2831 |  | 
|  | 2832 | static ssize_t pages_to_scan_show(struct kobject *kobj, | 
|  | 2833 | struct kobj_attribute *attr, char *buf) | 
|  | 2834 | { | 
|  | 2835 | return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); | 
|  | 2836 | } | 
|  | 2837 |  | 
|  | 2838 | static ssize_t pages_to_scan_store(struct kobject *kobj, | 
|  | 2839 | struct kobj_attribute *attr, | 
|  | 2840 | const char *buf, size_t count) | 
|  | 2841 | { | 
|  | 2842 | int err; | 
|  | 2843 | unsigned long nr_pages; | 
|  | 2844 |  | 
|  | 2845 | err = kstrtoul(buf, 10, &nr_pages); | 
|  | 2846 | if (err || nr_pages > UINT_MAX) | 
|  | 2847 | return -EINVAL; | 
|  | 2848 |  | 
|  | 2849 | ksm_thread_pages_to_scan = nr_pages; | 
|  | 2850 |  | 
|  | 2851 | return count; | 
|  | 2852 | } | 
|  | 2853 | KSM_ATTR(pages_to_scan); | 
|  | 2854 |  | 
|  | 2855 | static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, | 
|  | 2856 | char *buf) | 
|  | 2857 | { | 
|  | 2858 | return sprintf(buf, "%lu\n", ksm_run); | 
|  | 2859 | } | 
|  | 2860 |  | 
|  | 2861 | static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, | 
|  | 2862 | const char *buf, size_t count) | 
|  | 2863 | { | 
|  | 2864 | int err; | 
|  | 2865 | unsigned long flags; | 
|  | 2866 |  | 
|  | 2867 | err = kstrtoul(buf, 10, &flags); | 
|  | 2868 | if (err || flags > UINT_MAX) | 
|  | 2869 | return -EINVAL; | 
|  | 2870 | if (flags > KSM_RUN_UNMERGE) | 
|  | 2871 | return -EINVAL; | 
|  | 2872 |  | 
|  | 2873 | /* | 
|  | 2874 | * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. | 
|  | 2875 | * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, | 
|  | 2876 | * breaking COW to free the pages_shared (but leaves mm_slots | 
|  | 2877 | * on the list for when ksmd may be set running again). | 
|  | 2878 | */ | 
|  | 2879 |  | 
|  | 2880 | mutex_lock(&ksm_thread_mutex); | 
|  | 2881 | wait_while_offlining(); | 
|  | 2882 | if (ksm_run != flags) { | 
|  | 2883 | ksm_run = flags; | 
|  | 2884 | if (flags & KSM_RUN_UNMERGE) { | 
|  | 2885 | set_current_oom_origin(); | 
|  | 2886 | err = unmerge_and_remove_all_rmap_items(); | 
|  | 2887 | clear_current_oom_origin(); | 
|  | 2888 | if (err) { | 
|  | 2889 | ksm_run = KSM_RUN_STOP; | 
|  | 2890 | count = err; | 
|  | 2891 | } | 
|  | 2892 | } | 
|  | 2893 | } | 
|  | 2894 | mutex_unlock(&ksm_thread_mutex); | 
|  | 2895 |  | 
|  | 2896 | if (flags & KSM_RUN_MERGE) | 
|  | 2897 | wake_up_interruptible(&ksm_thread_wait); | 
|  | 2898 |  | 
|  | 2899 | return count; | 
|  | 2900 | } | 
|  | 2901 | KSM_ATTR(run); | 
|  | 2902 |  | 
|  | 2903 | #ifdef CONFIG_NUMA | 
|  | 2904 | static ssize_t merge_across_nodes_show(struct kobject *kobj, | 
|  | 2905 | struct kobj_attribute *attr, char *buf) | 
|  | 2906 | { | 
|  | 2907 | return sprintf(buf, "%u\n", ksm_merge_across_nodes); | 
|  | 2908 | } | 
|  | 2909 |  | 
|  | 2910 | static ssize_t merge_across_nodes_store(struct kobject *kobj, | 
|  | 2911 | struct kobj_attribute *attr, | 
|  | 2912 | const char *buf, size_t count) | 
|  | 2913 | { | 
|  | 2914 | int err; | 
|  | 2915 | unsigned long knob; | 
|  | 2916 |  | 
|  | 2917 | err = kstrtoul(buf, 10, &knob); | 
|  | 2918 | if (err) | 
|  | 2919 | return err; | 
|  | 2920 | if (knob > 1) | 
|  | 2921 | return -EINVAL; | 
|  | 2922 |  | 
|  | 2923 | mutex_lock(&ksm_thread_mutex); | 
|  | 2924 | wait_while_offlining(); | 
|  | 2925 | if (ksm_merge_across_nodes != knob) { | 
|  | 2926 | if (ksm_pages_shared || remove_all_stable_nodes()) | 
|  | 2927 | err = -EBUSY; | 
|  | 2928 | else if (root_stable_tree == one_stable_tree) { | 
|  | 2929 | struct rb_root *buf; | 
|  | 2930 | /* | 
|  | 2931 | * This is the first time that we switch away from the | 
|  | 2932 | * default of merging across nodes: must now allocate | 
|  | 2933 | * a buffer to hold as many roots as may be needed. | 
|  | 2934 | * Allocate stable and unstable together: | 
|  | 2935 | * MAXSMP NODES_SHIFT 10 will use 16kB. | 
|  | 2936 | */ | 
|  | 2937 | buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), | 
|  | 2938 | GFP_KERNEL); | 
|  | 2939 | /* Let us assume that RB_ROOT is NULL is zero */ | 
|  | 2940 | if (!buf) | 
|  | 2941 | err = -ENOMEM; | 
|  | 2942 | else { | 
|  | 2943 | root_stable_tree = buf; | 
|  | 2944 | root_unstable_tree = buf + nr_node_ids; | 
|  | 2945 | /* Stable tree is empty but not the unstable */ | 
|  | 2946 | root_unstable_tree[0] = one_unstable_tree[0]; | 
|  | 2947 | } | 
|  | 2948 | } | 
|  | 2949 | if (!err) { | 
|  | 2950 | ksm_merge_across_nodes = knob; | 
|  | 2951 | ksm_nr_node_ids = knob ? 1 : nr_node_ids; | 
|  | 2952 | } | 
|  | 2953 | } | 
|  | 2954 | mutex_unlock(&ksm_thread_mutex); | 
|  | 2955 |  | 
|  | 2956 | return err ? err : count; | 
|  | 2957 | } | 
|  | 2958 | KSM_ATTR(merge_across_nodes); | 
|  | 2959 | #endif | 
|  | 2960 |  | 
|  | 2961 | static ssize_t use_zero_pages_show(struct kobject *kobj, | 
|  | 2962 | struct kobj_attribute *attr, char *buf) | 
|  | 2963 | { | 
|  | 2964 | return sprintf(buf, "%u\n", ksm_use_zero_pages); | 
|  | 2965 | } | 
|  | 2966 | static ssize_t use_zero_pages_store(struct kobject *kobj, | 
|  | 2967 | struct kobj_attribute *attr, | 
|  | 2968 | const char *buf, size_t count) | 
|  | 2969 | { | 
|  | 2970 | int err; | 
|  | 2971 | bool value; | 
|  | 2972 |  | 
|  | 2973 | err = kstrtobool(buf, &value); | 
|  | 2974 | if (err) | 
|  | 2975 | return -EINVAL; | 
|  | 2976 |  | 
|  | 2977 | ksm_use_zero_pages = value; | 
|  | 2978 |  | 
|  | 2979 | return count; | 
|  | 2980 | } | 
|  | 2981 | KSM_ATTR(use_zero_pages); | 
|  | 2982 |  | 
|  | 2983 | static ssize_t max_page_sharing_show(struct kobject *kobj, | 
|  | 2984 | struct kobj_attribute *attr, char *buf) | 
|  | 2985 | { | 
|  | 2986 | return sprintf(buf, "%u\n", ksm_max_page_sharing); | 
|  | 2987 | } | 
|  | 2988 |  | 
|  | 2989 | static ssize_t max_page_sharing_store(struct kobject *kobj, | 
|  | 2990 | struct kobj_attribute *attr, | 
|  | 2991 | const char *buf, size_t count) | 
|  | 2992 | { | 
|  | 2993 | int err; | 
|  | 2994 | int knob; | 
|  | 2995 |  | 
|  | 2996 | err = kstrtoint(buf, 10, &knob); | 
|  | 2997 | if (err) | 
|  | 2998 | return err; | 
|  | 2999 | /* | 
|  | 3000 | * When a KSM page is created it is shared by 2 mappings. This | 
|  | 3001 | * being a signed comparison, it implicitly verifies it's not | 
|  | 3002 | * negative. | 
|  | 3003 | */ | 
|  | 3004 | if (knob < 2) | 
|  | 3005 | return -EINVAL; | 
|  | 3006 |  | 
|  | 3007 | if (READ_ONCE(ksm_max_page_sharing) == knob) | 
|  | 3008 | return count; | 
|  | 3009 |  | 
|  | 3010 | mutex_lock(&ksm_thread_mutex); | 
|  | 3011 | wait_while_offlining(); | 
|  | 3012 | if (ksm_max_page_sharing != knob) { | 
|  | 3013 | if (ksm_pages_shared || remove_all_stable_nodes()) | 
|  | 3014 | err = -EBUSY; | 
|  | 3015 | else | 
|  | 3016 | ksm_max_page_sharing = knob; | 
|  | 3017 | } | 
|  | 3018 | mutex_unlock(&ksm_thread_mutex); | 
|  | 3019 |  | 
|  | 3020 | return err ? err : count; | 
|  | 3021 | } | 
|  | 3022 | KSM_ATTR(max_page_sharing); | 
|  | 3023 |  | 
|  | 3024 | static ssize_t pages_shared_show(struct kobject *kobj, | 
|  | 3025 | struct kobj_attribute *attr, char *buf) | 
|  | 3026 | { | 
|  | 3027 | return sprintf(buf, "%lu\n", ksm_pages_shared); | 
|  | 3028 | } | 
|  | 3029 | KSM_ATTR_RO(pages_shared); | 
|  | 3030 |  | 
|  | 3031 | static ssize_t pages_sharing_show(struct kobject *kobj, | 
|  | 3032 | struct kobj_attribute *attr, char *buf) | 
|  | 3033 | { | 
|  | 3034 | return sprintf(buf, "%lu\n", ksm_pages_sharing); | 
|  | 3035 | } | 
|  | 3036 | KSM_ATTR_RO(pages_sharing); | 
|  | 3037 |  | 
|  | 3038 | static ssize_t pages_unshared_show(struct kobject *kobj, | 
|  | 3039 | struct kobj_attribute *attr, char *buf) | 
|  | 3040 | { | 
|  | 3041 | return sprintf(buf, "%lu\n", ksm_pages_unshared); | 
|  | 3042 | } | 
|  | 3043 | KSM_ATTR_RO(pages_unshared); | 
|  | 3044 |  | 
|  | 3045 | static ssize_t pages_volatile_show(struct kobject *kobj, | 
|  | 3046 | struct kobj_attribute *attr, char *buf) | 
|  | 3047 | { | 
|  | 3048 | long ksm_pages_volatile; | 
|  | 3049 |  | 
|  | 3050 | ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared | 
|  | 3051 | - ksm_pages_sharing - ksm_pages_unshared; | 
|  | 3052 | /* | 
|  | 3053 | * It was not worth any locking to calculate that statistic, | 
|  | 3054 | * but it might therefore sometimes be negative: conceal that. | 
|  | 3055 | */ | 
|  | 3056 | if (ksm_pages_volatile < 0) | 
|  | 3057 | ksm_pages_volatile = 0; | 
|  | 3058 | return sprintf(buf, "%ld\n", ksm_pages_volatile); | 
|  | 3059 | } | 
|  | 3060 | KSM_ATTR_RO(pages_volatile); | 
|  | 3061 |  | 
|  | 3062 | static ssize_t stable_node_dups_show(struct kobject *kobj, | 
|  | 3063 | struct kobj_attribute *attr, char *buf) | 
|  | 3064 | { | 
|  | 3065 | return sprintf(buf, "%lu\n", ksm_stable_node_dups); | 
|  | 3066 | } | 
|  | 3067 | KSM_ATTR_RO(stable_node_dups); | 
|  | 3068 |  | 
|  | 3069 | static ssize_t stable_node_chains_show(struct kobject *kobj, | 
|  | 3070 | struct kobj_attribute *attr, char *buf) | 
|  | 3071 | { | 
|  | 3072 | return sprintf(buf, "%lu\n", ksm_stable_node_chains); | 
|  | 3073 | } | 
|  | 3074 | KSM_ATTR_RO(stable_node_chains); | 
|  | 3075 |  | 
|  | 3076 | static ssize_t | 
|  | 3077 | stable_node_chains_prune_millisecs_show(struct kobject *kobj, | 
|  | 3078 | struct kobj_attribute *attr, | 
|  | 3079 | char *buf) | 
|  | 3080 | { | 
|  | 3081 | return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); | 
|  | 3082 | } | 
|  | 3083 |  | 
|  | 3084 | static ssize_t | 
|  | 3085 | stable_node_chains_prune_millisecs_store(struct kobject *kobj, | 
|  | 3086 | struct kobj_attribute *attr, | 
|  | 3087 | const char *buf, size_t count) | 
|  | 3088 | { | 
|  | 3089 | unsigned long msecs; | 
|  | 3090 | int err; | 
|  | 3091 |  | 
|  | 3092 | err = kstrtoul(buf, 10, &msecs); | 
|  | 3093 | if (err || msecs > UINT_MAX) | 
|  | 3094 | return -EINVAL; | 
|  | 3095 |  | 
|  | 3096 | ksm_stable_node_chains_prune_millisecs = msecs; | 
|  | 3097 |  | 
|  | 3098 | return count; | 
|  | 3099 | } | 
|  | 3100 | KSM_ATTR(stable_node_chains_prune_millisecs); | 
|  | 3101 |  | 
|  | 3102 | static ssize_t full_scans_show(struct kobject *kobj, | 
|  | 3103 | struct kobj_attribute *attr, char *buf) | 
|  | 3104 | { | 
|  | 3105 | return sprintf(buf, "%lu\n", ksm_scan.seqnr); | 
|  | 3106 | } | 
|  | 3107 | KSM_ATTR_RO(full_scans); | 
|  | 3108 |  | 
|  | 3109 | static struct attribute *ksm_attrs[] = { | 
|  | 3110 | &sleep_millisecs_attr.attr, | 
|  | 3111 | &pages_to_scan_attr.attr, | 
|  | 3112 | &run_attr.attr, | 
|  | 3113 | &pages_shared_attr.attr, | 
|  | 3114 | &pages_sharing_attr.attr, | 
|  | 3115 | &pages_unshared_attr.attr, | 
|  | 3116 | &pages_volatile_attr.attr, | 
|  | 3117 | &full_scans_attr.attr, | 
|  | 3118 | #ifdef CONFIG_NUMA | 
|  | 3119 | &merge_across_nodes_attr.attr, | 
|  | 3120 | #endif | 
|  | 3121 | &max_page_sharing_attr.attr, | 
|  | 3122 | &stable_node_chains_attr.attr, | 
|  | 3123 | &stable_node_dups_attr.attr, | 
|  | 3124 | &stable_node_chains_prune_millisecs_attr.attr, | 
|  | 3125 | &use_zero_pages_attr.attr, | 
|  | 3126 | NULL, | 
|  | 3127 | }; | 
|  | 3128 |  | 
|  | 3129 | static const struct attribute_group ksm_attr_group = { | 
|  | 3130 | .attrs = ksm_attrs, | 
|  | 3131 | .name = "ksm", | 
|  | 3132 | }; | 
|  | 3133 | #endif /* CONFIG_SYSFS */ | 
|  | 3134 |  | 
|  | 3135 | static int __init ksm_init(void) | 
|  | 3136 | { | 
|  | 3137 | struct task_struct *ksm_thread; | 
|  | 3138 | int err; | 
|  | 3139 |  | 
|  | 3140 | /* The correct value depends on page size and endianness */ | 
|  | 3141 | zero_checksum = calc_checksum(ZERO_PAGE(0)); | 
|  | 3142 | /* Default to false for backwards compatibility */ | 
|  | 3143 | ksm_use_zero_pages = false; | 
|  | 3144 |  | 
|  | 3145 | err = ksm_slab_init(); | 
|  | 3146 | if (err) | 
|  | 3147 | goto out; | 
|  | 3148 |  | 
|  | 3149 | ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); | 
|  | 3150 | if (IS_ERR(ksm_thread)) { | 
|  | 3151 | pr_err("ksm: creating kthread failed\n"); | 
|  | 3152 | err = PTR_ERR(ksm_thread); | 
|  | 3153 | goto out_free; | 
|  | 3154 | } | 
|  | 3155 |  | 
|  | 3156 | #ifdef CONFIG_SYSFS | 
|  | 3157 | err = sysfs_create_group(mm_kobj, &ksm_attr_group); | 
|  | 3158 | if (err) { | 
|  | 3159 | pr_err("ksm: register sysfs failed\n"); | 
|  | 3160 | kthread_stop(ksm_thread); | 
|  | 3161 | goto out_free; | 
|  | 3162 | } | 
|  | 3163 | #else | 
|  | 3164 | ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */ | 
|  | 3165 |  | 
|  | 3166 | #endif /* CONFIG_SYSFS */ | 
|  | 3167 |  | 
|  | 3168 | #ifdef CONFIG_MEMORY_HOTREMOVE | 
|  | 3169 | /* There is no significance to this priority 100 */ | 
|  | 3170 | hotplug_memory_notifier(ksm_memory_callback, 100); | 
|  | 3171 | #endif | 
|  | 3172 | return 0; | 
|  | 3173 |  | 
|  | 3174 | out_free: | 
|  | 3175 | ksm_slab_free(); | 
|  | 3176 | out: | 
|  | 3177 | return err; | 
|  | 3178 | } | 
|  | 3179 | subsys_initcall(ksm_init); |