| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
 | 2 | /* | 
 | 3 |  * SLUB: A slab allocator that limits cache line use instead of queuing | 
 | 4 |  * objects in per cpu and per node lists. | 
 | 5 |  * | 
 | 6 |  * The allocator synchronizes using per slab locks or atomic operatios | 
 | 7 |  * and only uses a centralized lock to manage a pool of partial slabs. | 
 | 8 |  * | 
 | 9 |  * (C) 2007 SGI, Christoph Lameter | 
 | 10 |  * (C) 2011 Linux Foundation, Christoph Lameter | 
 | 11 |  */ | 
 | 12 |  | 
 | 13 | #include <linux/mm.h> | 
 | 14 | #include <linux/swap.h> /* struct reclaim_state */ | 
 | 15 | #include <linux/module.h> | 
 | 16 | #include <linux/bit_spinlock.h> | 
 | 17 | #include <linux/interrupt.h> | 
 | 18 | #include <linux/bitops.h> | 
 | 19 | #include <linux/slab.h> | 
 | 20 | #include "slab.h" | 
 | 21 | #include <linux/proc_fs.h> | 
 | 22 | #include <linux/seq_file.h> | 
 | 23 | #include <linux/kasan.h> | 
 | 24 | #include <linux/cpu.h> | 
 | 25 | #include <linux/cpuset.h> | 
 | 26 | #include <linux/mempolicy.h> | 
 | 27 | #include <linux/ctype.h> | 
 | 28 | #include <linux/debugobjects.h> | 
 | 29 | #include <linux/kallsyms.h> | 
 | 30 | #include <linux/memory.h> | 
 | 31 | #include <linux/math64.h> | 
 | 32 | #include <linux/fault-inject.h> | 
 | 33 | #include <linux/stacktrace.h> | 
 | 34 | #include <linux/prefetch.h> | 
 | 35 | #include <linux/memcontrol.h> | 
 | 36 | #include <linux/random.h> | 
 | 37 |  | 
 | 38 | #include <trace/events/kmem.h> | 
 | 39 |  | 
 | 40 | #include "internal.h" | 
 | 41 |  | 
 | 42 | /* | 
 | 43 |  * Lock order: | 
 | 44 |  *   1. slab_mutex (Global Mutex) | 
 | 45 |  *   2. node->list_lock | 
 | 46 |  *   3. slab_lock(page) (Only on some arches and for debugging) | 
 | 47 |  * | 
 | 48 |  *   slab_mutex | 
 | 49 |  * | 
 | 50 |  *   The role of the slab_mutex is to protect the list of all the slabs | 
 | 51 |  *   and to synchronize major metadata changes to slab cache structures. | 
 | 52 |  * | 
 | 53 |  *   The slab_lock is only used for debugging and on arches that do not | 
 | 54 |  *   have the ability to do a cmpxchg_double. It only protects: | 
 | 55 |  *	A. page->freelist	-> List of object free in a page | 
 | 56 |  *	B. page->inuse		-> Number of objects in use | 
 | 57 |  *	C. page->objects	-> Number of objects in page | 
 | 58 |  *	D. page->frozen		-> frozen state | 
 | 59 |  * | 
 | 60 |  *   If a slab is frozen then it is exempt from list management. It is not | 
 | 61 |  *   on any list. The processor that froze the slab is the one who can | 
 | 62 |  *   perform list operations on the page. Other processors may put objects | 
 | 63 |  *   onto the freelist but the processor that froze the slab is the only | 
 | 64 |  *   one that can retrieve the objects from the page's freelist. | 
 | 65 |  * | 
 | 66 |  *   The list_lock protects the partial and full list on each node and | 
 | 67 |  *   the partial slab counter. If taken then no new slabs may be added or | 
 | 68 |  *   removed from the lists nor make the number of partial slabs be modified. | 
 | 69 |  *   (Note that the total number of slabs is an atomic value that may be | 
 | 70 |  *   modified without taking the list lock). | 
 | 71 |  * | 
 | 72 |  *   The list_lock is a centralized lock and thus we avoid taking it as | 
 | 73 |  *   much as possible. As long as SLUB does not have to handle partial | 
 | 74 |  *   slabs, operations can continue without any centralized lock. F.e. | 
 | 75 |  *   allocating a long series of objects that fill up slabs does not require | 
 | 76 |  *   the list lock. | 
 | 77 |  *   Interrupts are disabled during allocation and deallocation in order to | 
 | 78 |  *   make the slab allocator safe to use in the context of an irq. In addition | 
 | 79 |  *   interrupts are disabled to ensure that the processor does not change | 
 | 80 |  *   while handling per_cpu slabs, due to kernel preemption. | 
 | 81 |  * | 
 | 82 |  * SLUB assigns one slab for allocation to each processor. | 
 | 83 |  * Allocations only occur from these slabs called cpu slabs. | 
 | 84 |  * | 
 | 85 |  * Slabs with free elements are kept on a partial list and during regular | 
 | 86 |  * operations no list for full slabs is used. If an object in a full slab is | 
 | 87 |  * freed then the slab will show up again on the partial lists. | 
 | 88 |  * We track full slabs for debugging purposes though because otherwise we | 
 | 89 |  * cannot scan all objects. | 
 | 90 |  * | 
 | 91 |  * Slabs are freed when they become empty. Teardown and setup is | 
 | 92 |  * minimal so we rely on the page allocators per cpu caches for | 
 | 93 |  * fast frees and allocs. | 
 | 94 |  * | 
 | 95 |  * Overloading of page flags that are otherwise used for LRU management. | 
 | 96 |  * | 
 | 97 |  * PageActive 		The slab is frozen and exempt from list processing. | 
 | 98 |  * 			This means that the slab is dedicated to a purpose | 
 | 99 |  * 			such as satisfying allocations for a specific | 
 | 100 |  * 			processor. Objects may be freed in the slab while | 
 | 101 |  * 			it is frozen but slab_free will then skip the usual | 
 | 102 |  * 			list operations. It is up to the processor holding | 
 | 103 |  * 			the slab to integrate the slab into the slab lists | 
 | 104 |  * 			when the slab is no longer needed. | 
 | 105 |  * | 
 | 106 |  * 			One use of this flag is to mark slabs that are | 
 | 107 |  * 			used for allocations. Then such a slab becomes a cpu | 
 | 108 |  * 			slab. The cpu slab may be equipped with an additional | 
 | 109 |  * 			freelist that allows lockless access to | 
 | 110 |  * 			free objects in addition to the regular freelist | 
 | 111 |  * 			that requires the slab lock. | 
 | 112 |  * | 
 | 113 |  * PageError		Slab requires special handling due to debug | 
 | 114 |  * 			options set. This moves	slab handling out of | 
 | 115 |  * 			the fast path and disables lockless freelists. | 
 | 116 |  */ | 
 | 117 |  | 
 | 118 | static inline int kmem_cache_debug(struct kmem_cache *s) | 
 | 119 | { | 
 | 120 | #ifdef CONFIG_SLUB_DEBUG | 
 | 121 | 	return unlikely(s->flags & SLAB_DEBUG_FLAGS); | 
 | 122 | #else | 
 | 123 | 	return 0; | 
 | 124 | #endif | 
 | 125 | } | 
 | 126 |  | 
 | 127 | void *fixup_red_left(struct kmem_cache *s, void *p) | 
 | 128 | { | 
 | 129 | 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) | 
 | 130 | 		p += s->red_left_pad; | 
 | 131 |  | 
 | 132 | 	return p; | 
 | 133 | } | 
 | 134 |  | 
 | 135 | static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) | 
 | 136 | { | 
 | 137 | #ifdef CONFIG_SLUB_CPU_PARTIAL | 
 | 138 | 	return !kmem_cache_debug(s); | 
 | 139 | #else | 
 | 140 | 	return false; | 
 | 141 | #endif | 
 | 142 | } | 
 | 143 |  | 
 | 144 | /* | 
 | 145 |  * Issues still to be resolved: | 
 | 146 |  * | 
 | 147 |  * - Support PAGE_ALLOC_DEBUG. Should be easy to do. | 
 | 148 |  * | 
 | 149 |  * - Variable sizing of the per node arrays | 
 | 150 |  */ | 
 | 151 |  | 
 | 152 | /* Enable to test recovery from slab corruption on boot */ | 
 | 153 | #undef SLUB_RESILIENCY_TEST | 
 | 154 |  | 
 | 155 | /* Enable to log cmpxchg failures */ | 
 | 156 | #undef SLUB_DEBUG_CMPXCHG | 
 | 157 |  | 
 | 158 | /* | 
 | 159 |  * Mininum number of partial slabs. These will be left on the partial | 
 | 160 |  * lists even if they are empty. kmem_cache_shrink may reclaim them. | 
 | 161 |  */ | 
 | 162 | #define MIN_PARTIAL 5 | 
 | 163 |  | 
 | 164 | /* | 
 | 165 |  * Maximum number of desirable partial slabs. | 
 | 166 |  * The existence of more partial slabs makes kmem_cache_shrink | 
 | 167 |  * sort the partial list by the number of objects in use. | 
 | 168 |  */ | 
 | 169 | #define MAX_PARTIAL 10 | 
 | 170 |  | 
 | 171 | #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ | 
 | 172 | 				SLAB_POISON | SLAB_STORE_USER) | 
 | 173 |  | 
 | 174 | /* | 
 | 175 |  * These debug flags cannot use CMPXCHG because there might be consistency | 
 | 176 |  * issues when checking or reading debug information | 
 | 177 |  */ | 
 | 178 | #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ | 
 | 179 | 				SLAB_TRACE) | 
 | 180 |  | 
 | 181 |  | 
 | 182 | /* | 
 | 183 |  * Debugging flags that require metadata to be stored in the slab.  These get | 
 | 184 |  * disabled when slub_debug=O is used and a cache's min order increases with | 
 | 185 |  * metadata. | 
 | 186 |  */ | 
 | 187 | #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) | 
 | 188 |  | 
 | 189 | #define OO_SHIFT	16 | 
 | 190 | #define OO_MASK		((1 << OO_SHIFT) - 1) | 
 | 191 | #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */ | 
 | 192 |  | 
 | 193 | /* Internal SLUB flags */ | 
 | 194 | /* Poison object */ | 
 | 195 | #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U) | 
 | 196 | /* Use cmpxchg_double */ | 
 | 197 | #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U) | 
 | 198 |  | 
 | 199 | /* | 
 | 200 |  * Tracking user of a slab. | 
 | 201 |  */ | 
 | 202 | #define TRACK_ADDRS_COUNT 16 | 
 | 203 | struct track { | 
 | 204 | 	unsigned long addr;	/* Called from address */ | 
 | 205 | #ifdef CONFIG_STACKTRACE | 
 | 206 | 	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */ | 
 | 207 | #endif | 
 | 208 | 	int cpu;		/* Was running on cpu */ | 
 | 209 | 	int pid;		/* Pid context */ | 
 | 210 | 	unsigned long when;	/* When did the operation occur */ | 
 | 211 | }; | 
 | 212 |  | 
 | 213 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | 
 | 214 |  | 
 | 215 | #ifdef CONFIG_SYSFS | 
 | 216 | static int sysfs_slab_add(struct kmem_cache *); | 
 | 217 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | 
 | 218 | static void memcg_propagate_slab_attrs(struct kmem_cache *s); | 
 | 219 | static void sysfs_slab_remove(struct kmem_cache *s); | 
 | 220 | #else | 
 | 221 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } | 
 | 222 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | 
 | 223 | 							{ return 0; } | 
 | 224 | static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } | 
 | 225 | static inline void sysfs_slab_remove(struct kmem_cache *s) { } | 
 | 226 | #endif | 
 | 227 |  | 
 | 228 | static inline void stat(const struct kmem_cache *s, enum stat_item si) | 
 | 229 | { | 
 | 230 | #ifdef CONFIG_SLUB_STATS | 
 | 231 | 	/* | 
 | 232 | 	 * The rmw is racy on a preemptible kernel but this is acceptable, so | 
 | 233 | 	 * avoid this_cpu_add()'s irq-disable overhead. | 
 | 234 | 	 */ | 
 | 235 | 	raw_cpu_inc(s->cpu_slab->stat[si]); | 
 | 236 | #endif | 
 | 237 | } | 
 | 238 |  | 
 | 239 | /******************************************************************** | 
 | 240 |  * 			Core slab cache functions | 
 | 241 |  *******************************************************************/ | 
 | 242 |  | 
 | 243 | /* | 
 | 244 |  * Returns freelist pointer (ptr). With hardening, this is obfuscated | 
 | 245 |  * with an XOR of the address where the pointer is held and a per-cache | 
 | 246 |  * random number. | 
 | 247 |  */ | 
 | 248 | static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, | 
 | 249 | 				 unsigned long ptr_addr) | 
 | 250 | { | 
 | 251 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | 
 | 252 | 	/* | 
 | 253 | 	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged. | 
 | 254 | 	 * Normally, this doesn't cause any issues, as both set_freepointer() | 
 | 255 | 	 * and get_freepointer() are called with a pointer with the same tag. | 
 | 256 | 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For | 
 | 257 | 	 * example, when __free_slub() iterates over objects in a cache, it | 
 | 258 | 	 * passes untagged pointers to check_object(). check_object() in turns | 
 | 259 | 	 * calls get_freepointer() with an untagged pointer, which causes the | 
 | 260 | 	 * freepointer to be restored incorrectly. | 
 | 261 | 	 */ | 
 | 262 | 	return (void *)((unsigned long)ptr ^ s->random ^ | 
 | 263 | 			(unsigned long)kasan_reset_tag((void *)ptr_addr)); | 
 | 264 | #else | 
 | 265 | 	return ptr; | 
 | 266 | #endif | 
 | 267 | } | 
 | 268 |  | 
 | 269 | /* Returns the freelist pointer recorded at location ptr_addr. */ | 
 | 270 | static inline void *freelist_dereference(const struct kmem_cache *s, | 
 | 271 | 					 void *ptr_addr) | 
 | 272 | { | 
 | 273 | 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), | 
 | 274 | 			    (unsigned long)ptr_addr); | 
 | 275 | } | 
 | 276 |  | 
 | 277 | static inline void *get_freepointer(struct kmem_cache *s, void *object) | 
 | 278 | { | 
 | 279 | 	return freelist_dereference(s, object + s->offset); | 
 | 280 | } | 
 | 281 |  | 
 | 282 | static void prefetch_freepointer(const struct kmem_cache *s, void *object) | 
 | 283 | { | 
 | 284 | 	prefetch(object + s->offset); | 
 | 285 | } | 
 | 286 |  | 
 | 287 | static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) | 
 | 288 | { | 
 | 289 | 	unsigned long freepointer_addr; | 
 | 290 | 	void *p; | 
 | 291 |  | 
 | 292 | 	if (!debug_pagealloc_enabled()) | 
 | 293 | 		return get_freepointer(s, object); | 
 | 294 |  | 
 | 295 | 	freepointer_addr = (unsigned long)object + s->offset; | 
 | 296 | 	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); | 
 | 297 | 	return freelist_ptr(s, p, freepointer_addr); | 
 | 298 | } | 
 | 299 |  | 
 | 300 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) | 
 | 301 | { | 
 | 302 | 	unsigned long freeptr_addr = (unsigned long)object + s->offset; | 
 | 303 |  | 
 | 304 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | 
 | 305 | 	BUG_ON(object == fp); /* naive detection of double free or corruption */ | 
 | 306 | #endif | 
 | 307 |  | 
 | 308 | 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); | 
 | 309 | } | 
 | 310 |  | 
 | 311 | /* Loop over all objects in a slab */ | 
 | 312 | #define for_each_object(__p, __s, __addr, __objects) \ | 
 | 313 | 	for (__p = fixup_red_left(__s, __addr); \ | 
 | 314 | 		__p < (__addr) + (__objects) * (__s)->size; \ | 
 | 315 | 		__p += (__s)->size) | 
 | 316 |  | 
 | 317 | /* Determine object index from a given position */ | 
 | 318 | static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr) | 
 | 319 | { | 
 | 320 | 	return (kasan_reset_tag(p) - addr) / s->size; | 
 | 321 | } | 
 | 322 |  | 
 | 323 | static inline unsigned int order_objects(unsigned int order, unsigned int size) | 
 | 324 | { | 
 | 325 | 	return ((unsigned int)PAGE_SIZE << order) / size; | 
 | 326 | } | 
 | 327 |  | 
 | 328 | static inline struct kmem_cache_order_objects oo_make(unsigned int order, | 
 | 329 | 		unsigned int size) | 
 | 330 | { | 
 | 331 | 	struct kmem_cache_order_objects x = { | 
 | 332 | 		(order << OO_SHIFT) + order_objects(order, size) | 
 | 333 | 	}; | 
 | 334 |  | 
 | 335 | 	return x; | 
 | 336 | } | 
 | 337 |  | 
 | 338 | static inline unsigned int oo_order(struct kmem_cache_order_objects x) | 
 | 339 | { | 
 | 340 | 	return x.x >> OO_SHIFT; | 
 | 341 | } | 
 | 342 |  | 
 | 343 | static inline unsigned int oo_objects(struct kmem_cache_order_objects x) | 
 | 344 | { | 
 | 345 | 	return x.x & OO_MASK; | 
 | 346 | } | 
 | 347 |  | 
 | 348 | /* | 
 | 349 |  * Per slab locking using the pagelock | 
 | 350 |  */ | 
 | 351 | static __always_inline void slab_lock(struct page *page) | 
 | 352 | { | 
 | 353 | 	VM_BUG_ON_PAGE(PageTail(page), page); | 
 | 354 | 	bit_spin_lock(PG_locked, &page->flags); | 
 | 355 | } | 
 | 356 |  | 
 | 357 | static __always_inline void slab_unlock(struct page *page) | 
 | 358 | { | 
 | 359 | 	VM_BUG_ON_PAGE(PageTail(page), page); | 
 | 360 | 	__bit_spin_unlock(PG_locked, &page->flags); | 
 | 361 | } | 
 | 362 |  | 
 | 363 | /* Interrupts must be disabled (for the fallback code to work right) */ | 
 | 364 | static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, | 
 | 365 | 		void *freelist_old, unsigned long counters_old, | 
 | 366 | 		void *freelist_new, unsigned long counters_new, | 
 | 367 | 		const char *n) | 
 | 368 | { | 
 | 369 | 	VM_BUG_ON(!irqs_disabled()); | 
 | 370 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ | 
 | 371 |     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | 
 | 372 | 	if (s->flags & __CMPXCHG_DOUBLE) { | 
 | 373 | 		if (cmpxchg_double(&page->freelist, &page->counters, | 
 | 374 | 				   freelist_old, counters_old, | 
 | 375 | 				   freelist_new, counters_new)) | 
 | 376 | 			return true; | 
 | 377 | 	} else | 
 | 378 | #endif | 
 | 379 | 	{ | 
 | 380 | 		slab_lock(page); | 
 | 381 | 		if (page->freelist == freelist_old && | 
 | 382 | 					page->counters == counters_old) { | 
 | 383 | 			page->freelist = freelist_new; | 
 | 384 | 			page->counters = counters_new; | 
 | 385 | 			slab_unlock(page); | 
 | 386 | 			return true; | 
 | 387 | 		} | 
 | 388 | 		slab_unlock(page); | 
 | 389 | 	} | 
 | 390 |  | 
 | 391 | 	cpu_relax(); | 
 | 392 | 	stat(s, CMPXCHG_DOUBLE_FAIL); | 
 | 393 |  | 
 | 394 | #ifdef SLUB_DEBUG_CMPXCHG | 
 | 395 | 	pr_info("%s %s: cmpxchg double redo ", n, s->name); | 
 | 396 | #endif | 
 | 397 |  | 
 | 398 | 	return false; | 
 | 399 | } | 
 | 400 |  | 
 | 401 | static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, | 
 | 402 | 		void *freelist_old, unsigned long counters_old, | 
 | 403 | 		void *freelist_new, unsigned long counters_new, | 
 | 404 | 		const char *n) | 
 | 405 | { | 
 | 406 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ | 
 | 407 |     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | 
 | 408 | 	if (s->flags & __CMPXCHG_DOUBLE) { | 
 | 409 | 		if (cmpxchg_double(&page->freelist, &page->counters, | 
 | 410 | 				   freelist_old, counters_old, | 
 | 411 | 				   freelist_new, counters_new)) | 
 | 412 | 			return true; | 
 | 413 | 	} else | 
 | 414 | #endif | 
 | 415 | 	{ | 
 | 416 | 		unsigned long flags; | 
 | 417 |  | 
 | 418 | 		local_irq_save(flags); | 
 | 419 | 		slab_lock(page); | 
 | 420 | 		if (page->freelist == freelist_old && | 
 | 421 | 					page->counters == counters_old) { | 
 | 422 | 			page->freelist = freelist_new; | 
 | 423 | 			page->counters = counters_new; | 
 | 424 | 			slab_unlock(page); | 
 | 425 | 			local_irq_restore(flags); | 
 | 426 | 			return true; | 
 | 427 | 		} | 
 | 428 | 		slab_unlock(page); | 
 | 429 | 		local_irq_restore(flags); | 
 | 430 | 	} | 
 | 431 |  | 
 | 432 | 	cpu_relax(); | 
 | 433 | 	stat(s, CMPXCHG_DOUBLE_FAIL); | 
 | 434 |  | 
 | 435 | #ifdef SLUB_DEBUG_CMPXCHG | 
 | 436 | 	pr_info("%s %s: cmpxchg double redo ", n, s->name); | 
 | 437 | #endif | 
 | 438 |  | 
 | 439 | 	return false; | 
 | 440 | } | 
 | 441 |  | 
 | 442 | #ifdef CONFIG_SLUB_DEBUG | 
 | 443 | /* | 
 | 444 |  * Determine a map of object in use on a page. | 
 | 445 |  * | 
 | 446 |  * Node listlock must be held to guarantee that the page does | 
 | 447 |  * not vanish from under us. | 
 | 448 |  */ | 
 | 449 | static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) | 
 | 450 | { | 
 | 451 | 	void *p; | 
 | 452 | 	void *addr = page_address(page); | 
 | 453 |  | 
 | 454 | 	for (p = page->freelist; p; p = get_freepointer(s, p)) | 
 | 455 | 		set_bit(slab_index(p, s, addr), map); | 
 | 456 | } | 
 | 457 |  | 
 | 458 | static inline unsigned int size_from_object(struct kmem_cache *s) | 
 | 459 | { | 
 | 460 | 	if (s->flags & SLAB_RED_ZONE) | 
 | 461 | 		return s->size - s->red_left_pad; | 
 | 462 |  | 
 | 463 | 	return s->size; | 
 | 464 | } | 
 | 465 |  | 
 | 466 | static inline void *restore_red_left(struct kmem_cache *s, void *p) | 
 | 467 | { | 
 | 468 | 	if (s->flags & SLAB_RED_ZONE) | 
 | 469 | 		p -= s->red_left_pad; | 
 | 470 |  | 
 | 471 | 	return p; | 
 | 472 | } | 
 | 473 |  | 
 | 474 | /* | 
 | 475 |  * Debug settings: | 
 | 476 |  */ | 
 | 477 | #if defined(CONFIG_SLUB_DEBUG_ON) | 
 | 478 | static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS; | 
 | 479 | #else | 
 | 480 | static slab_flags_t slub_debug; | 
 | 481 | #endif | 
 | 482 |  | 
 | 483 | static char *slub_debug_slabs; | 
 | 484 | static int disable_higher_order_debug; | 
 | 485 |  | 
 | 486 | /* | 
 | 487 |  * slub is about to manipulate internal object metadata.  This memory lies | 
 | 488 |  * outside the range of the allocated object, so accessing it would normally | 
 | 489 |  * be reported by kasan as a bounds error.  metadata_access_enable() is used | 
 | 490 |  * to tell kasan that these accesses are OK. | 
 | 491 |  */ | 
 | 492 | static inline void metadata_access_enable(void) | 
 | 493 | { | 
 | 494 | 	kasan_disable_current(); | 
 | 495 | } | 
 | 496 |  | 
 | 497 | static inline void metadata_access_disable(void) | 
 | 498 | { | 
 | 499 | 	kasan_enable_current(); | 
 | 500 | } | 
 | 501 |  | 
 | 502 | /* | 
 | 503 |  * Object debugging | 
 | 504 |  */ | 
 | 505 |  | 
 | 506 | /* Verify that a pointer has an address that is valid within a slab page */ | 
 | 507 | static inline int check_valid_pointer(struct kmem_cache *s, | 
 | 508 | 				struct page *page, void *object) | 
 | 509 | { | 
 | 510 | 	void *base; | 
 | 511 |  | 
 | 512 | 	if (!object) | 
 | 513 | 		return 1; | 
 | 514 |  | 
 | 515 | 	base = page_address(page); | 
 | 516 | 	object = kasan_reset_tag(object); | 
 | 517 | 	object = restore_red_left(s, object); | 
 | 518 | 	if (object < base || object >= base + page->objects * s->size || | 
 | 519 | 		(object - base) % s->size) { | 
 | 520 | 		return 0; | 
 | 521 | 	} | 
 | 522 |  | 
 | 523 | 	return 1; | 
 | 524 | } | 
 | 525 |  | 
 | 526 | static void print_section(char *level, char *text, u8 *addr, | 
 | 527 | 			  unsigned int length) | 
 | 528 | { | 
 | 529 | 	metadata_access_enable(); | 
 | 530 | 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, | 
 | 531 | 			length, 1); | 
 | 532 | 	metadata_access_disable(); | 
 | 533 | } | 
 | 534 |  | 
 | 535 | static struct track *get_track(struct kmem_cache *s, void *object, | 
 | 536 | 	enum track_item alloc) | 
 | 537 | { | 
 | 538 | 	struct track *p; | 
 | 539 |  | 
 | 540 | 	if (s->offset) | 
 | 541 | 		p = object + s->offset + sizeof(void *); | 
 | 542 | 	else | 
 | 543 | 		p = object + s->inuse; | 
 | 544 |  | 
 | 545 | 	return p + alloc; | 
 | 546 | } | 
 | 547 |  | 
 | 548 | static void set_track(struct kmem_cache *s, void *object, | 
 | 549 | 			enum track_item alloc, unsigned long addr) | 
 | 550 | { | 
 | 551 | 	struct track *p = get_track(s, object, alloc); | 
 | 552 |  | 
 | 553 | 	if (addr) { | 
 | 554 | #ifdef CONFIG_STACKTRACE | 
 | 555 | 		struct stack_trace trace; | 
 | 556 | 		int i; | 
 | 557 |  | 
 | 558 | 		trace.nr_entries = 0; | 
 | 559 | 		trace.max_entries = TRACK_ADDRS_COUNT; | 
 | 560 | 		trace.entries = p->addrs; | 
 | 561 | 		trace.skip = 3; | 
 | 562 | 		metadata_access_enable(); | 
 | 563 | 		save_stack_trace(&trace); | 
 | 564 | 		metadata_access_disable(); | 
 | 565 |  | 
 | 566 | 		/* See rant in lockdep.c */ | 
 | 567 | 		if (trace.nr_entries != 0 && | 
 | 568 | 		    trace.entries[trace.nr_entries - 1] == ULONG_MAX) | 
 | 569 | 			trace.nr_entries--; | 
 | 570 |  | 
 | 571 | 		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) | 
 | 572 | 			p->addrs[i] = 0; | 
 | 573 | #endif | 
 | 574 | 		p->addr = addr; | 
 | 575 | 		p->cpu = smp_processor_id(); | 
 | 576 | 		p->pid = current->pid; | 
 | 577 | 		p->when = jiffies; | 
 | 578 | 	} else | 
 | 579 | 		memset(p, 0, sizeof(struct track)); | 
 | 580 | } | 
 | 581 |  | 
 | 582 | static void init_tracking(struct kmem_cache *s, void *object) | 
 | 583 | { | 
 | 584 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 585 | 		return; | 
 | 586 |  | 
 | 587 | 	set_track(s, object, TRACK_FREE, 0UL); | 
 | 588 | 	set_track(s, object, TRACK_ALLOC, 0UL); | 
 | 589 | } | 
 | 590 |  | 
 | 591 | static void print_track(const char *s, struct track *t, unsigned long pr_time) | 
 | 592 | { | 
 | 593 | 	if (!t->addr) | 
 | 594 | 		return; | 
 | 595 |  | 
 | 596 | 	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", | 
 | 597 | 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid); | 
 | 598 | #ifdef CONFIG_STACKTRACE | 
 | 599 | 	{ | 
 | 600 | 		int i; | 
 | 601 | 		for (i = 0; i < TRACK_ADDRS_COUNT; i++) | 
 | 602 | 			if (t->addrs[i]) | 
 | 603 | 				pr_err("\t%pS\n", (void *)t->addrs[i]); | 
 | 604 | 			else | 
 | 605 | 				break; | 
 | 606 | 	} | 
 | 607 | #endif | 
 | 608 | } | 
 | 609 |  | 
 | 610 | static void print_tracking(struct kmem_cache *s, void *object) | 
 | 611 | { | 
 | 612 | 	unsigned long pr_time = jiffies; | 
 | 613 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 614 | 		return; | 
 | 615 |  | 
 | 616 | 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time); | 
 | 617 | 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time); | 
 | 618 | } | 
 | 619 |  | 
 | 620 | static void print_page_info(struct page *page) | 
 | 621 | { | 
 | 622 | 	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", | 
 | 623 | 	       page, page->objects, page->inuse, page->freelist, page->flags); | 
 | 624 |  | 
 | 625 | } | 
 | 626 |  | 
 | 627 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | 
 | 628 | { | 
 | 629 | 	struct va_format vaf; | 
 | 630 | 	va_list args; | 
 | 631 |  | 
 | 632 | 	va_start(args, fmt); | 
 | 633 | 	vaf.fmt = fmt; | 
 | 634 | 	vaf.va = &args; | 
 | 635 | 	pr_err("=============================================================================\n"); | 
 | 636 | 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); | 
 | 637 | 	pr_err("-----------------------------------------------------------------------------\n\n"); | 
 | 638 |  | 
 | 639 | 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | 
 | 640 | 	va_end(args); | 
 | 641 | } | 
 | 642 |  | 
 | 643 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) | 
 | 644 | { | 
 | 645 | 	struct va_format vaf; | 
 | 646 | 	va_list args; | 
 | 647 |  | 
 | 648 | 	va_start(args, fmt); | 
 | 649 | 	vaf.fmt = fmt; | 
 | 650 | 	vaf.va = &args; | 
 | 651 | 	pr_err("FIX %s: %pV\n", s->name, &vaf); | 
 | 652 | 	va_end(args); | 
 | 653 | } | 
 | 654 |  | 
 | 655 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | 
 | 656 | { | 
 | 657 | 	unsigned int off;	/* Offset of last byte */ | 
 | 658 | 	u8 *addr = page_address(page); | 
 | 659 |  | 
 | 660 | 	print_tracking(s, p); | 
 | 661 |  | 
 | 662 | 	print_page_info(page); | 
 | 663 |  | 
 | 664 | 	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", | 
 | 665 | 	       p, p - addr, get_freepointer(s, p)); | 
 | 666 |  | 
 | 667 | 	if (s->flags & SLAB_RED_ZONE) | 
 | 668 | 		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, | 
 | 669 | 			      s->red_left_pad); | 
 | 670 | 	else if (p > addr + 16) | 
 | 671 | 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); | 
 | 672 |  | 
 | 673 | 	print_section(KERN_ERR, "Object ", p, | 
 | 674 | 		      min_t(unsigned int, s->object_size, PAGE_SIZE)); | 
 | 675 | 	if (s->flags & SLAB_RED_ZONE) | 
 | 676 | 		print_section(KERN_ERR, "Redzone ", p + s->object_size, | 
 | 677 | 			s->inuse - s->object_size); | 
 | 678 |  | 
 | 679 | 	if (s->offset) | 
 | 680 | 		off = s->offset + sizeof(void *); | 
 | 681 | 	else | 
 | 682 | 		off = s->inuse; | 
 | 683 |  | 
 | 684 | 	if (s->flags & SLAB_STORE_USER) | 
 | 685 | 		off += 2 * sizeof(struct track); | 
 | 686 |  | 
 | 687 | 	off += kasan_metadata_size(s); | 
 | 688 |  | 
 | 689 | 	if (off != size_from_object(s)) | 
 | 690 | 		/* Beginning of the filler is the free pointer */ | 
 | 691 | 		print_section(KERN_ERR, "Padding ", p + off, | 
 | 692 | 			      size_from_object(s) - off); | 
 | 693 |  | 
 | 694 | 	WARN_ON(1); | 
 | 695 | } | 
 | 696 |  | 
 | 697 | void object_err(struct kmem_cache *s, struct page *page, | 
 | 698 | 			u8 *object, char *reason) | 
 | 699 | { | 
 | 700 | 	slab_bug(s, "%s", reason); | 
 | 701 | 	print_trailer(s, page, object); | 
 | 702 | } | 
 | 703 |  | 
 | 704 | static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, | 
 | 705 | 			const char *fmt, ...) | 
 | 706 | { | 
 | 707 | 	va_list args; | 
 | 708 | 	char buf[100]; | 
 | 709 |  | 
 | 710 | 	va_start(args, fmt); | 
 | 711 | 	vsnprintf(buf, sizeof(buf), fmt, args); | 
 | 712 | 	va_end(args); | 
 | 713 | 	slab_bug(s, "%s", buf); | 
 | 714 | 	print_page_info(page); | 
 | 715 | 	WARN_ON(1); | 
 | 716 | } | 
 | 717 |  | 
 | 718 | static void init_object(struct kmem_cache *s, void *object, u8 val) | 
 | 719 | { | 
 | 720 | 	u8 *p = object; | 
 | 721 |  | 
 | 722 | 	if (s->flags & SLAB_RED_ZONE) | 
 | 723 | 		memset(p - s->red_left_pad, val, s->red_left_pad); | 
 | 724 |  | 
 | 725 | 	if (s->flags & __OBJECT_POISON) { | 
 | 726 | 		memset(p, POISON_FREE, s->object_size - 1); | 
 | 727 | 		p[s->object_size - 1] = POISON_END; | 
 | 728 | 	} | 
 | 729 |  | 
 | 730 | 	if (s->flags & SLAB_RED_ZONE) | 
 | 731 | 		memset(p + s->object_size, val, s->inuse - s->object_size); | 
 | 732 | } | 
 | 733 |  | 
 | 734 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, | 
 | 735 | 						void *from, void *to) | 
 | 736 | { | 
 | 737 | 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | 
 | 738 | 	memset(from, data, to - from); | 
 | 739 | } | 
 | 740 |  | 
 | 741 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | 
 | 742 | 			u8 *object, char *what, | 
 | 743 | 			u8 *start, unsigned int value, unsigned int bytes) | 
 | 744 | { | 
 | 745 | 	u8 *fault; | 
 | 746 | 	u8 *end; | 
 | 747 |  | 
 | 748 | 	metadata_access_enable(); | 
 | 749 | 	fault = memchr_inv(start, value, bytes); | 
 | 750 | 	metadata_access_disable(); | 
 | 751 | 	if (!fault) | 
 | 752 | 		return 1; | 
 | 753 |  | 
 | 754 | 	end = start + bytes; | 
 | 755 | 	while (end > fault && end[-1] == value) | 
 | 756 | 		end--; | 
 | 757 |  | 
 | 758 | 	slab_bug(s, "%s overwritten", what); | 
 | 759 | 	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", | 
 | 760 | 					fault, end - 1, fault[0], value); | 
 | 761 | 	print_trailer(s, page, object); | 
 | 762 |  | 
 | 763 | 	restore_bytes(s, what, value, fault, end); | 
 | 764 | 	return 0; | 
 | 765 | } | 
 | 766 |  | 
 | 767 | /* | 
 | 768 |  * Object layout: | 
 | 769 |  * | 
 | 770 |  * object address | 
 | 771 |  * 	Bytes of the object to be managed. | 
 | 772 |  * 	If the freepointer may overlay the object then the free | 
 | 773 |  * 	pointer is the first word of the object. | 
 | 774 |  * | 
 | 775 |  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is | 
 | 776 |  * 	0xa5 (POISON_END) | 
 | 777 |  * | 
 | 778 |  * object + s->object_size | 
 | 779 |  * 	Padding to reach word boundary. This is also used for Redzoning. | 
 | 780 |  * 	Padding is extended by another word if Redzoning is enabled and | 
 | 781 |  * 	object_size == inuse. | 
 | 782 |  * | 
 | 783 |  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with | 
 | 784 |  * 	0xcc (RED_ACTIVE) for objects in use. | 
 | 785 |  * | 
 | 786 |  * object + s->inuse | 
 | 787 |  * 	Meta data starts here. | 
 | 788 |  * | 
 | 789 |  * 	A. Free pointer (if we cannot overwrite object on free) | 
 | 790 |  * 	B. Tracking data for SLAB_STORE_USER | 
 | 791 |  * 	C. Padding to reach required alignment boundary or at mininum | 
 | 792 |  * 		one word if debugging is on to be able to detect writes | 
 | 793 |  * 		before the word boundary. | 
 | 794 |  * | 
 | 795 |  *	Padding is done using 0x5a (POISON_INUSE) | 
 | 796 |  * | 
 | 797 |  * object + s->size | 
 | 798 |  * 	Nothing is used beyond s->size. | 
 | 799 |  * | 
 | 800 |  * If slabcaches are merged then the object_size and inuse boundaries are mostly | 
 | 801 |  * ignored. And therefore no slab options that rely on these boundaries | 
 | 802 |  * may be used with merged slabcaches. | 
 | 803 |  */ | 
 | 804 |  | 
 | 805 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) | 
 | 806 | { | 
 | 807 | 	unsigned long off = s->inuse;	/* The end of info */ | 
 | 808 |  | 
 | 809 | 	if (s->offset) | 
 | 810 | 		/* Freepointer is placed after the object. */ | 
 | 811 | 		off += sizeof(void *); | 
 | 812 |  | 
 | 813 | 	if (s->flags & SLAB_STORE_USER) | 
 | 814 | 		/* We also have user information there */ | 
 | 815 | 		off += 2 * sizeof(struct track); | 
 | 816 |  | 
 | 817 | 	off += kasan_metadata_size(s); | 
 | 818 |  | 
 | 819 | 	if (size_from_object(s) == off) | 
 | 820 | 		return 1; | 
 | 821 |  | 
 | 822 | 	return check_bytes_and_report(s, page, p, "Object padding", | 
 | 823 | 			p + off, POISON_INUSE, size_from_object(s) - off); | 
 | 824 | } | 
 | 825 |  | 
 | 826 | /* Check the pad bytes at the end of a slab page */ | 
 | 827 | static int slab_pad_check(struct kmem_cache *s, struct page *page) | 
 | 828 | { | 
 | 829 | 	u8 *start; | 
 | 830 | 	u8 *fault; | 
 | 831 | 	u8 *end; | 
 | 832 | 	u8 *pad; | 
 | 833 | 	int length; | 
 | 834 | 	int remainder; | 
 | 835 |  | 
 | 836 | 	if (!(s->flags & SLAB_POISON)) | 
 | 837 | 		return 1; | 
 | 838 |  | 
 | 839 | 	start = page_address(page); | 
 | 840 | 	length = PAGE_SIZE << compound_order(page); | 
 | 841 | 	end = start + length; | 
 | 842 | 	remainder = length % s->size; | 
 | 843 | 	if (!remainder) | 
 | 844 | 		return 1; | 
 | 845 |  | 
 | 846 | 	pad = end - remainder; | 
 | 847 | 	metadata_access_enable(); | 
 | 848 | 	fault = memchr_inv(pad, POISON_INUSE, remainder); | 
 | 849 | 	metadata_access_disable(); | 
 | 850 | 	if (!fault) | 
 | 851 | 		return 1; | 
 | 852 | 	while (end > fault && end[-1] == POISON_INUSE) | 
 | 853 | 		end--; | 
 | 854 |  | 
 | 855 | 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | 
 | 856 | 	print_section(KERN_ERR, "Padding ", pad, remainder); | 
 | 857 |  | 
 | 858 | 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end); | 
 | 859 | 	return 0; | 
 | 860 | } | 
 | 861 |  | 
 | 862 | static int check_object(struct kmem_cache *s, struct page *page, | 
 | 863 | 					void *object, u8 val) | 
 | 864 | { | 
 | 865 | 	u8 *p = object; | 
 | 866 | 	u8 *endobject = object + s->object_size; | 
 | 867 |  | 
 | 868 | 	if (s->flags & SLAB_RED_ZONE) { | 
 | 869 | 		if (!check_bytes_and_report(s, page, object, "Redzone", | 
 | 870 | 			object - s->red_left_pad, val, s->red_left_pad)) | 
 | 871 | 			return 0; | 
 | 872 |  | 
 | 873 | 		if (!check_bytes_and_report(s, page, object, "Redzone", | 
 | 874 | 			endobject, val, s->inuse - s->object_size)) | 
 | 875 | 			return 0; | 
 | 876 | 	} else { | 
 | 877 | 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { | 
 | 878 | 			check_bytes_and_report(s, page, p, "Alignment padding", | 
 | 879 | 				endobject, POISON_INUSE, | 
 | 880 | 				s->inuse - s->object_size); | 
 | 881 | 		} | 
 | 882 | 	} | 
 | 883 |  | 
 | 884 | 	if (s->flags & SLAB_POISON) { | 
 | 885 | 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && | 
 | 886 | 			(!check_bytes_and_report(s, page, p, "Poison", p, | 
 | 887 | 					POISON_FREE, s->object_size - 1) || | 
 | 888 | 			 !check_bytes_and_report(s, page, p, "Poison", | 
 | 889 | 				p + s->object_size - 1, POISON_END, 1))) | 
 | 890 | 			return 0; | 
 | 891 | 		/* | 
 | 892 | 		 * check_pad_bytes cleans up on its own. | 
 | 893 | 		 */ | 
 | 894 | 		check_pad_bytes(s, page, p); | 
 | 895 | 	} | 
 | 896 |  | 
 | 897 | 	if (!s->offset && val == SLUB_RED_ACTIVE) | 
 | 898 | 		/* | 
 | 899 | 		 * Object and freepointer overlap. Cannot check | 
 | 900 | 		 * freepointer while object is allocated. | 
 | 901 | 		 */ | 
 | 902 | 		return 1; | 
 | 903 |  | 
 | 904 | 	/* Check free pointer validity */ | 
 | 905 | 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | 
 | 906 | 		object_err(s, page, p, "Freepointer corrupt"); | 
 | 907 | 		/* | 
 | 908 | 		 * No choice but to zap it and thus lose the remainder | 
 | 909 | 		 * of the free objects in this slab. May cause | 
 | 910 | 		 * another error because the object count is now wrong. | 
 | 911 | 		 */ | 
 | 912 | 		set_freepointer(s, p, NULL); | 
 | 913 | 		return 0; | 
 | 914 | 	} | 
 | 915 | 	return 1; | 
 | 916 | } | 
 | 917 |  | 
 | 918 | static int check_slab(struct kmem_cache *s, struct page *page) | 
 | 919 | { | 
 | 920 | 	int maxobj; | 
 | 921 |  | 
 | 922 | 	VM_BUG_ON(!irqs_disabled()); | 
 | 923 |  | 
 | 924 | 	if (!PageSlab(page)) { | 
 | 925 | 		slab_err(s, page, "Not a valid slab page"); | 
 | 926 | 		return 0; | 
 | 927 | 	} | 
 | 928 |  | 
 | 929 | 	maxobj = order_objects(compound_order(page), s->size); | 
 | 930 | 	if (page->objects > maxobj) { | 
 | 931 | 		slab_err(s, page, "objects %u > max %u", | 
 | 932 | 			page->objects, maxobj); | 
 | 933 | 		return 0; | 
 | 934 | 	} | 
 | 935 | 	if (page->inuse > page->objects) { | 
 | 936 | 		slab_err(s, page, "inuse %u > max %u", | 
 | 937 | 			page->inuse, page->objects); | 
 | 938 | 		return 0; | 
 | 939 | 	} | 
 | 940 | 	/* Slab_pad_check fixes things up after itself */ | 
 | 941 | 	slab_pad_check(s, page); | 
 | 942 | 	return 1; | 
 | 943 | } | 
 | 944 |  | 
 | 945 | /* | 
 | 946 |  * Determine if a certain object on a page is on the freelist. Must hold the | 
 | 947 |  * slab lock to guarantee that the chains are in a consistent state. | 
 | 948 |  */ | 
 | 949 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | 
 | 950 | { | 
 | 951 | 	int nr = 0; | 
 | 952 | 	void *fp; | 
 | 953 | 	void *object = NULL; | 
 | 954 | 	int max_objects; | 
 | 955 |  | 
 | 956 | 	fp = page->freelist; | 
 | 957 | 	while (fp && nr <= page->objects) { | 
 | 958 | 		if (fp == search) | 
 | 959 | 			return 1; | 
 | 960 | 		if (!check_valid_pointer(s, page, fp)) { | 
 | 961 | 			if (object) { | 
 | 962 | 				object_err(s, page, object, | 
 | 963 | 					"Freechain corrupt"); | 
 | 964 | 				set_freepointer(s, object, NULL); | 
 | 965 | 			} else { | 
 | 966 | 				slab_err(s, page, "Freepointer corrupt"); | 
 | 967 | 				page->freelist = NULL; | 
 | 968 | 				page->inuse = page->objects; | 
 | 969 | 				slab_fix(s, "Freelist cleared"); | 
 | 970 | 				return 0; | 
 | 971 | 			} | 
 | 972 | 			break; | 
 | 973 | 		} | 
 | 974 | 		object = fp; | 
 | 975 | 		fp = get_freepointer(s, object); | 
 | 976 | 		nr++; | 
 | 977 | 	} | 
 | 978 |  | 
 | 979 | 	max_objects = order_objects(compound_order(page), s->size); | 
 | 980 | 	if (max_objects > MAX_OBJS_PER_PAGE) | 
 | 981 | 		max_objects = MAX_OBJS_PER_PAGE; | 
 | 982 |  | 
 | 983 | 	if (page->objects != max_objects) { | 
 | 984 | 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d", | 
 | 985 | 			 page->objects, max_objects); | 
 | 986 | 		page->objects = max_objects; | 
 | 987 | 		slab_fix(s, "Number of objects adjusted."); | 
 | 988 | 	} | 
 | 989 | 	if (page->inuse != page->objects - nr) { | 
 | 990 | 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", | 
 | 991 | 			 page->inuse, page->objects - nr); | 
 | 992 | 		page->inuse = page->objects - nr; | 
 | 993 | 		slab_fix(s, "Object count adjusted."); | 
 | 994 | 	} | 
 | 995 | 	return search == NULL; | 
 | 996 | } | 
 | 997 |  | 
 | 998 | static void trace(struct kmem_cache *s, struct page *page, void *object, | 
 | 999 | 								int alloc) | 
 | 1000 | { | 
 | 1001 | 	if (s->flags & SLAB_TRACE) { | 
 | 1002 | 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", | 
 | 1003 | 			s->name, | 
 | 1004 | 			alloc ? "alloc" : "free", | 
 | 1005 | 			object, page->inuse, | 
 | 1006 | 			page->freelist); | 
 | 1007 |  | 
 | 1008 | 		if (!alloc) | 
 | 1009 | 			print_section(KERN_INFO, "Object ", (void *)object, | 
 | 1010 | 					s->object_size); | 
 | 1011 |  | 
 | 1012 | 		WARN_ON(1); | 
 | 1013 | 	} | 
 | 1014 | } | 
 | 1015 |  | 
 | 1016 | /* | 
 | 1017 |  * Tracking of fully allocated slabs for debugging purposes. | 
 | 1018 |  */ | 
 | 1019 | static void add_full(struct kmem_cache *s, | 
 | 1020 | 	struct kmem_cache_node *n, struct page *page) | 
 | 1021 | { | 
 | 1022 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 1023 | 		return; | 
 | 1024 |  | 
 | 1025 | 	lockdep_assert_held(&n->list_lock); | 
 | 1026 | 	list_add(&page->lru, &n->full); | 
 | 1027 | } | 
 | 1028 |  | 
 | 1029 | static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) | 
 | 1030 | { | 
 | 1031 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 1032 | 		return; | 
 | 1033 |  | 
 | 1034 | 	lockdep_assert_held(&n->list_lock); | 
 | 1035 | 	list_del(&page->lru); | 
 | 1036 | } | 
 | 1037 |  | 
 | 1038 | /* Tracking of the number of slabs for debugging purposes */ | 
 | 1039 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | 
 | 1040 | { | 
 | 1041 | 	struct kmem_cache_node *n = get_node(s, node); | 
 | 1042 |  | 
 | 1043 | 	return atomic_long_read(&n->nr_slabs); | 
 | 1044 | } | 
 | 1045 |  | 
 | 1046 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) | 
 | 1047 | { | 
 | 1048 | 	return atomic_long_read(&n->nr_slabs); | 
 | 1049 | } | 
 | 1050 |  | 
 | 1051 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) | 
 | 1052 | { | 
 | 1053 | 	struct kmem_cache_node *n = get_node(s, node); | 
 | 1054 |  | 
 | 1055 | 	/* | 
 | 1056 | 	 * May be called early in order to allocate a slab for the | 
 | 1057 | 	 * kmem_cache_node structure. Solve the chicken-egg | 
 | 1058 | 	 * dilemma by deferring the increment of the count during | 
 | 1059 | 	 * bootstrap (see early_kmem_cache_node_alloc). | 
 | 1060 | 	 */ | 
 | 1061 | 	if (likely(n)) { | 
 | 1062 | 		atomic_long_inc(&n->nr_slabs); | 
 | 1063 | 		atomic_long_add(objects, &n->total_objects); | 
 | 1064 | 	} | 
 | 1065 | } | 
 | 1066 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) | 
 | 1067 | { | 
 | 1068 | 	struct kmem_cache_node *n = get_node(s, node); | 
 | 1069 |  | 
 | 1070 | 	atomic_long_dec(&n->nr_slabs); | 
 | 1071 | 	atomic_long_sub(objects, &n->total_objects); | 
 | 1072 | } | 
 | 1073 |  | 
 | 1074 | /* Object debug checks for alloc/free paths */ | 
 | 1075 | static void setup_object_debug(struct kmem_cache *s, struct page *page, | 
 | 1076 | 								void *object) | 
 | 1077 | { | 
 | 1078 | 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | 
 | 1079 | 		return; | 
 | 1080 |  | 
 | 1081 | 	init_object(s, object, SLUB_RED_INACTIVE); | 
 | 1082 | 	init_tracking(s, object); | 
 | 1083 | } | 
 | 1084 |  | 
 | 1085 | static void setup_page_debug(struct kmem_cache *s, void *addr, int order) | 
 | 1086 | { | 
 | 1087 | 	if (!(s->flags & SLAB_POISON)) | 
 | 1088 | 		return; | 
 | 1089 |  | 
 | 1090 | 	metadata_access_enable(); | 
 | 1091 | 	memset(addr, POISON_INUSE, PAGE_SIZE << order); | 
 | 1092 | 	metadata_access_disable(); | 
 | 1093 | } | 
 | 1094 |  | 
 | 1095 | static inline int alloc_consistency_checks(struct kmem_cache *s, | 
 | 1096 | 					struct page *page, | 
 | 1097 | 					void *object, unsigned long addr) | 
 | 1098 | { | 
 | 1099 | 	if (!check_slab(s, page)) | 
 | 1100 | 		return 0; | 
 | 1101 |  | 
 | 1102 | 	if (!check_valid_pointer(s, page, object)) { | 
 | 1103 | 		object_err(s, page, object, "Freelist Pointer check fails"); | 
 | 1104 | 		return 0; | 
 | 1105 | 	} | 
 | 1106 |  | 
 | 1107 | 	if (!check_object(s, page, object, SLUB_RED_INACTIVE)) | 
 | 1108 | 		return 0; | 
 | 1109 |  | 
 | 1110 | 	return 1; | 
 | 1111 | } | 
 | 1112 |  | 
 | 1113 | static noinline int alloc_debug_processing(struct kmem_cache *s, | 
 | 1114 | 					struct page *page, | 
 | 1115 | 					void *object, unsigned long addr) | 
 | 1116 | { | 
 | 1117 | 	if (s->flags & SLAB_CONSISTENCY_CHECKS) { | 
 | 1118 | 		if (!alloc_consistency_checks(s, page, object, addr)) | 
 | 1119 | 			goto bad; | 
 | 1120 | 	} | 
 | 1121 |  | 
 | 1122 | 	/* Success perform special debug activities for allocs */ | 
 | 1123 | 	if (s->flags & SLAB_STORE_USER) | 
 | 1124 | 		set_track(s, object, TRACK_ALLOC, addr); | 
 | 1125 | 	trace(s, page, object, 1); | 
 | 1126 | 	init_object(s, object, SLUB_RED_ACTIVE); | 
 | 1127 | 	return 1; | 
 | 1128 |  | 
 | 1129 | bad: | 
 | 1130 | 	if (PageSlab(page)) { | 
 | 1131 | 		/* | 
 | 1132 | 		 * If this is a slab page then lets do the best we can | 
 | 1133 | 		 * to avoid issues in the future. Marking all objects | 
 | 1134 | 		 * as used avoids touching the remaining objects. | 
 | 1135 | 		 */ | 
 | 1136 | 		slab_fix(s, "Marking all objects used"); | 
 | 1137 | 		page->inuse = page->objects; | 
 | 1138 | 		page->freelist = NULL; | 
 | 1139 | 	} | 
 | 1140 | 	return 0; | 
 | 1141 | } | 
 | 1142 |  | 
 | 1143 | static inline int free_consistency_checks(struct kmem_cache *s, | 
 | 1144 | 		struct page *page, void *object, unsigned long addr) | 
 | 1145 | { | 
 | 1146 | 	if (!check_valid_pointer(s, page, object)) { | 
 | 1147 | 		slab_err(s, page, "Invalid object pointer 0x%p", object); | 
 | 1148 | 		return 0; | 
 | 1149 | 	} | 
 | 1150 |  | 
 | 1151 | 	if (on_freelist(s, page, object)) { | 
 | 1152 | 		object_err(s, page, object, "Object already free"); | 
 | 1153 | 		return 0; | 
 | 1154 | 	} | 
 | 1155 |  | 
 | 1156 | 	if (!check_object(s, page, object, SLUB_RED_ACTIVE)) | 
 | 1157 | 		return 0; | 
 | 1158 |  | 
 | 1159 | 	if (unlikely(s != page->slab_cache)) { | 
 | 1160 | 		if (!PageSlab(page)) { | 
 | 1161 | 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab", | 
 | 1162 | 				 object); | 
 | 1163 | 		} else if (!page->slab_cache) { | 
 | 1164 | 			pr_err("SLUB <none>: no slab for object 0x%p.\n", | 
 | 1165 | 			       object); | 
 | 1166 | 			dump_stack(); | 
 | 1167 | 		} else | 
 | 1168 | 			object_err(s, page, object, | 
 | 1169 | 					"page slab pointer corrupt."); | 
 | 1170 | 		return 0; | 
 | 1171 | 	} | 
 | 1172 | 	return 1; | 
 | 1173 | } | 
 | 1174 |  | 
 | 1175 | /* Supports checking bulk free of a constructed freelist */ | 
 | 1176 | static noinline int free_debug_processing( | 
 | 1177 | 	struct kmem_cache *s, struct page *page, | 
 | 1178 | 	void *head, void *tail, int bulk_cnt, | 
 | 1179 | 	unsigned long addr) | 
 | 1180 | { | 
 | 1181 | 	struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 
 | 1182 | 	void *object = head; | 
 | 1183 | 	int cnt = 0; | 
 | 1184 | 	unsigned long uninitialized_var(flags); | 
 | 1185 | 	int ret = 0; | 
 | 1186 |  | 
 | 1187 | 	spin_lock_irqsave(&n->list_lock, flags); | 
 | 1188 | 	slab_lock(page); | 
 | 1189 |  | 
 | 1190 | 	if (s->flags & SLAB_CONSISTENCY_CHECKS) { | 
 | 1191 | 		if (!check_slab(s, page)) | 
 | 1192 | 			goto out; | 
 | 1193 | 	} | 
 | 1194 |  | 
 | 1195 | next_object: | 
 | 1196 | 	cnt++; | 
 | 1197 |  | 
 | 1198 | 	if (s->flags & SLAB_CONSISTENCY_CHECKS) { | 
 | 1199 | 		if (!free_consistency_checks(s, page, object, addr)) | 
 | 1200 | 			goto out; | 
 | 1201 | 	} | 
 | 1202 |  | 
 | 1203 | 	if (s->flags & SLAB_STORE_USER) | 
 | 1204 | 		set_track(s, object, TRACK_FREE, addr); | 
 | 1205 | 	trace(s, page, object, 0); | 
 | 1206 | 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ | 
 | 1207 | 	init_object(s, object, SLUB_RED_INACTIVE); | 
 | 1208 |  | 
 | 1209 | 	/* Reached end of constructed freelist yet? */ | 
 | 1210 | 	if (object != tail) { | 
 | 1211 | 		object = get_freepointer(s, object); | 
 | 1212 | 		goto next_object; | 
 | 1213 | 	} | 
 | 1214 | 	ret = 1; | 
 | 1215 |  | 
 | 1216 | out: | 
 | 1217 | 	if (cnt != bulk_cnt) | 
 | 1218 | 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", | 
 | 1219 | 			 bulk_cnt, cnt); | 
 | 1220 |  | 
 | 1221 | 	slab_unlock(page); | 
 | 1222 | 	spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 1223 | 	if (!ret) | 
 | 1224 | 		slab_fix(s, "Object at 0x%p not freed", object); | 
 | 1225 | 	return ret; | 
 | 1226 | } | 
 | 1227 |  | 
 | 1228 | static int __init setup_slub_debug(char *str) | 
 | 1229 | { | 
 | 1230 | 	slub_debug = DEBUG_DEFAULT_FLAGS; | 
 | 1231 | 	if (*str++ != '=' || !*str) | 
 | 1232 | 		/* | 
 | 1233 | 		 * No options specified. Switch on full debugging. | 
 | 1234 | 		 */ | 
 | 1235 | 		goto out; | 
 | 1236 |  | 
 | 1237 | 	if (*str == ',') | 
 | 1238 | 		/* | 
 | 1239 | 		 * No options but restriction on slabs. This means full | 
 | 1240 | 		 * debugging for slabs matching a pattern. | 
 | 1241 | 		 */ | 
 | 1242 | 		goto check_slabs; | 
 | 1243 |  | 
 | 1244 | 	slub_debug = 0; | 
 | 1245 | 	if (*str == '-') | 
 | 1246 | 		/* | 
 | 1247 | 		 * Switch off all debugging measures. | 
 | 1248 | 		 */ | 
 | 1249 | 		goto out; | 
 | 1250 |  | 
 | 1251 | 	/* | 
 | 1252 | 	 * Determine which debug features should be switched on | 
 | 1253 | 	 */ | 
 | 1254 | 	for (; *str && *str != ','; str++) { | 
 | 1255 | 		switch (tolower(*str)) { | 
 | 1256 | 		case 'f': | 
 | 1257 | 			slub_debug |= SLAB_CONSISTENCY_CHECKS; | 
 | 1258 | 			break; | 
 | 1259 | 		case 'z': | 
 | 1260 | 			slub_debug |= SLAB_RED_ZONE; | 
 | 1261 | 			break; | 
 | 1262 | 		case 'p': | 
 | 1263 | 			slub_debug |= SLAB_POISON; | 
 | 1264 | 			break; | 
 | 1265 | 		case 'u': | 
 | 1266 | 			slub_debug |= SLAB_STORE_USER; | 
 | 1267 | 			break; | 
 | 1268 | 		case 't': | 
 | 1269 | 			slub_debug |= SLAB_TRACE; | 
 | 1270 | 			break; | 
 | 1271 | 		case 'a': | 
 | 1272 | 			slub_debug |= SLAB_FAILSLAB; | 
 | 1273 | 			break; | 
 | 1274 | 		case 'o': | 
 | 1275 | 			/* | 
 | 1276 | 			 * Avoid enabling debugging on caches if its minimum | 
 | 1277 | 			 * order would increase as a result. | 
 | 1278 | 			 */ | 
 | 1279 | 			disable_higher_order_debug = 1; | 
 | 1280 | 			break; | 
 | 1281 | 		default: | 
 | 1282 | 			pr_err("slub_debug option '%c' unknown. skipped\n", | 
 | 1283 | 			       *str); | 
 | 1284 | 		} | 
 | 1285 | 	} | 
 | 1286 |  | 
 | 1287 | check_slabs: | 
 | 1288 | 	if (*str == ',') | 
 | 1289 | 		slub_debug_slabs = str + 1; | 
 | 1290 | out: | 
 | 1291 | 	if ((static_branch_unlikely(&init_on_alloc) || | 
 | 1292 | 	     static_branch_unlikely(&init_on_free)) && | 
 | 1293 | 	    (slub_debug & SLAB_POISON)) | 
 | 1294 | 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n"); | 
 | 1295 | 	return 1; | 
 | 1296 | } | 
 | 1297 |  | 
 | 1298 | __setup("slub_debug", setup_slub_debug); | 
 | 1299 |  | 
 | 1300 | slab_flags_t kmem_cache_flags(unsigned int object_size, | 
 | 1301 | 	slab_flags_t flags, const char *name, | 
 | 1302 | 	void (*ctor)(void *)) | 
 | 1303 | { | 
 | 1304 | 	/* | 
 | 1305 | 	 * Enable debugging if selected on the kernel commandline. | 
 | 1306 | 	 */ | 
 | 1307 | 	if (slub_debug && (!slub_debug_slabs || (name && | 
 | 1308 | 		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) | 
 | 1309 | 		flags |= slub_debug; | 
 | 1310 |  | 
 | 1311 | 	return flags; | 
 | 1312 | } | 
 | 1313 | #else /* !CONFIG_SLUB_DEBUG */ | 
 | 1314 | static inline void setup_object_debug(struct kmem_cache *s, | 
 | 1315 | 			struct page *page, void *object) {} | 
 | 1316 | static inline void setup_page_debug(struct kmem_cache *s, | 
 | 1317 | 			void *addr, int order) {} | 
 | 1318 |  | 
 | 1319 | static inline int alloc_debug_processing(struct kmem_cache *s, | 
 | 1320 | 	struct page *page, void *object, unsigned long addr) { return 0; } | 
 | 1321 |  | 
 | 1322 | static inline int free_debug_processing( | 
 | 1323 | 	struct kmem_cache *s, struct page *page, | 
 | 1324 | 	void *head, void *tail, int bulk_cnt, | 
 | 1325 | 	unsigned long addr) { return 0; } | 
 | 1326 |  | 
 | 1327 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) | 
 | 1328 | 			{ return 1; } | 
 | 1329 | static inline int check_object(struct kmem_cache *s, struct page *page, | 
 | 1330 | 			void *object, u8 val) { return 1; } | 
 | 1331 | static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, | 
 | 1332 | 					struct page *page) {} | 
 | 1333 | static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, | 
 | 1334 | 					struct page *page) {} | 
 | 1335 | slab_flags_t kmem_cache_flags(unsigned int object_size, | 
 | 1336 | 	slab_flags_t flags, const char *name, | 
 | 1337 | 	void (*ctor)(void *)) | 
 | 1338 | { | 
 | 1339 | 	return flags; | 
 | 1340 | } | 
 | 1341 | #define slub_debug 0 | 
 | 1342 |  | 
 | 1343 | #define disable_higher_order_debug 0 | 
 | 1344 |  | 
 | 1345 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | 
 | 1346 | 							{ return 0; } | 
 | 1347 | static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) | 
 | 1348 | 							{ return 0; } | 
 | 1349 | static inline void inc_slabs_node(struct kmem_cache *s, int node, | 
 | 1350 | 							int objects) {} | 
 | 1351 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | 
 | 1352 | 							int objects) {} | 
 | 1353 |  | 
 | 1354 | #endif /* CONFIG_SLUB_DEBUG */ | 
 | 1355 |  | 
 | 1356 | /* | 
 | 1357 |  * Hooks for other subsystems that check memory allocations. In a typical | 
 | 1358 |  * production configuration these hooks all should produce no code at all. | 
 | 1359 |  */ | 
 | 1360 | static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) | 
 | 1361 | { | 
 | 1362 | 	ptr = kasan_kmalloc_large(ptr, size, flags); | 
 | 1363 | 	kmemleak_alloc(ptr, size, 1, flags); | 
 | 1364 | 	return ptr; | 
 | 1365 | } | 
 | 1366 |  | 
 | 1367 | static __always_inline void kfree_hook(void *x) | 
 | 1368 | { | 
 | 1369 | 	kmemleak_free(x); | 
 | 1370 | 	kasan_kfree_large(x, _RET_IP_); | 
 | 1371 | } | 
 | 1372 |  | 
 | 1373 | static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x) | 
 | 1374 | { | 
 | 1375 | 	kmemleak_free_recursive(x, s->flags); | 
 | 1376 |  | 
 | 1377 | 	/* | 
 | 1378 | 	 * Trouble is that we may no longer disable interrupts in the fast path | 
 | 1379 | 	 * So in order to make the debug calls that expect irqs to be | 
 | 1380 | 	 * disabled we need to disable interrupts temporarily. | 
 | 1381 | 	 */ | 
 | 1382 | #ifdef CONFIG_LOCKDEP | 
 | 1383 | 	{ | 
 | 1384 | 		unsigned long flags; | 
 | 1385 |  | 
 | 1386 | 		local_irq_save(flags); | 
 | 1387 | 		debug_check_no_locks_freed(x, s->object_size); | 
 | 1388 | 		local_irq_restore(flags); | 
 | 1389 | 	} | 
 | 1390 | #endif | 
 | 1391 | 	if (!(s->flags & SLAB_DEBUG_OBJECTS)) | 
 | 1392 | 		debug_check_no_obj_freed(x, s->object_size); | 
 | 1393 |  | 
 | 1394 | 	/* KASAN might put x into memory quarantine, delaying its reuse */ | 
 | 1395 | 	return kasan_slab_free(s, x, _RET_IP_); | 
 | 1396 | } | 
 | 1397 |  | 
 | 1398 | static inline bool slab_free_freelist_hook(struct kmem_cache *s, | 
 | 1399 | 					   void **head, void **tail) | 
 | 1400 | { | 
 | 1401 |  | 
 | 1402 | 	void *object; | 
 | 1403 | 	void *next = *head; | 
 | 1404 | 	void *old_tail = *tail ? *tail : *head; | 
 | 1405 | 	int rsize; | 
 | 1406 |  | 
 | 1407 | 	/* Head and tail of the reconstructed freelist */ | 
 | 1408 | 	*head = NULL; | 
 | 1409 | 	*tail = NULL; | 
 | 1410 |  | 
 | 1411 | 	do { | 
 | 1412 | 		object = next; | 
 | 1413 | 		next = get_freepointer(s, object); | 
 | 1414 |  | 
 | 1415 | 		if (slab_want_init_on_free(s)) { | 
 | 1416 | 			/* | 
 | 1417 | 			 * Clear the object and the metadata, but don't touch | 
 | 1418 | 			 * the redzone. | 
 | 1419 | 			 */ | 
 | 1420 | 			memset(object, 0, s->object_size); | 
 | 1421 | 			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad | 
 | 1422 | 							   : 0; | 
 | 1423 | 			memset((char *)object + s->inuse, 0, | 
 | 1424 | 			       s->size - s->inuse - rsize); | 
 | 1425 |  | 
 | 1426 | 		} | 
 | 1427 | 		/* If object's reuse doesn't have to be delayed */ | 
 | 1428 | 		if (!slab_free_hook(s, object)) { | 
 | 1429 | 			/* Move object to the new freelist */ | 
 | 1430 | 			set_freepointer(s, object, *head); | 
 | 1431 | 			*head = object; | 
 | 1432 | 			if (!*tail) | 
 | 1433 | 				*tail = object; | 
 | 1434 | 		} | 
 | 1435 | 	} while (object != old_tail); | 
 | 1436 |  | 
 | 1437 | 	if (*head == *tail) | 
 | 1438 | 		*tail = NULL; | 
 | 1439 |  | 
 | 1440 | 	return *head != NULL; | 
 | 1441 | } | 
 | 1442 |  | 
 | 1443 | static void *setup_object(struct kmem_cache *s, struct page *page, | 
 | 1444 | 				void *object) | 
 | 1445 | { | 
 | 1446 | 	setup_object_debug(s, page, object); | 
 | 1447 | 	object = kasan_init_slab_obj(s, object); | 
 | 1448 | 	if (unlikely(s->ctor)) { | 
 | 1449 | 		kasan_unpoison_object_data(s, object); | 
 | 1450 | 		s->ctor(object); | 
 | 1451 | 		kasan_poison_object_data(s, object); | 
 | 1452 | 	} | 
 | 1453 | 	return object; | 
 | 1454 | } | 
 | 1455 |  | 
 | 1456 | /* | 
 | 1457 |  * Slab allocation and freeing | 
 | 1458 |  */ | 
 | 1459 | static inline struct page *alloc_slab_page(struct kmem_cache *s, | 
 | 1460 | 		gfp_t flags, int node, struct kmem_cache_order_objects oo) | 
 | 1461 | { | 
 | 1462 | 	struct page *page; | 
 | 1463 | 	unsigned int order = oo_order(oo); | 
 | 1464 |  | 
 | 1465 | 	if (node == NUMA_NO_NODE) | 
 | 1466 | 		page = alloc_pages(flags, order); | 
 | 1467 | 	else | 
 | 1468 | 		page = __alloc_pages_node(node, flags, order); | 
 | 1469 |  | 
 | 1470 | 	if (page && memcg_charge_slab(page, flags, order, s)) { | 
 | 1471 | 		__free_pages(page, order); | 
 | 1472 | 		page = NULL; | 
 | 1473 | 	} | 
 | 1474 |  | 
 | 1475 | 	return page; | 
 | 1476 | } | 
 | 1477 |  | 
 | 1478 | #ifdef CONFIG_SLAB_FREELIST_RANDOM | 
 | 1479 | /* Pre-initialize the random sequence cache */ | 
 | 1480 | static int init_cache_random_seq(struct kmem_cache *s) | 
 | 1481 | { | 
 | 1482 | 	unsigned int count = oo_objects(s->oo); | 
 | 1483 | 	int err; | 
 | 1484 |  | 
 | 1485 | 	/* Bailout if already initialised */ | 
 | 1486 | 	if (s->random_seq) | 
 | 1487 | 		return 0; | 
 | 1488 |  | 
 | 1489 | 	err = cache_random_seq_create(s, count, GFP_KERNEL); | 
 | 1490 | 	if (err) { | 
 | 1491 | 		pr_err("SLUB: Unable to initialize free list for %s\n", | 
 | 1492 | 			s->name); | 
 | 1493 | 		return err; | 
 | 1494 | 	} | 
 | 1495 |  | 
 | 1496 | 	/* Transform to an offset on the set of pages */ | 
 | 1497 | 	if (s->random_seq) { | 
 | 1498 | 		unsigned int i; | 
 | 1499 |  | 
 | 1500 | 		for (i = 0; i < count; i++) | 
 | 1501 | 			s->random_seq[i] *= s->size; | 
 | 1502 | 	} | 
 | 1503 | 	return 0; | 
 | 1504 | } | 
 | 1505 |  | 
 | 1506 | /* Initialize each random sequence freelist per cache */ | 
 | 1507 | static void __init init_freelist_randomization(void) | 
 | 1508 | { | 
 | 1509 | 	struct kmem_cache *s; | 
 | 1510 |  | 
 | 1511 | 	mutex_lock(&slab_mutex); | 
 | 1512 |  | 
 | 1513 | 	list_for_each_entry(s, &slab_caches, list) | 
 | 1514 | 		init_cache_random_seq(s); | 
 | 1515 |  | 
 | 1516 | 	mutex_unlock(&slab_mutex); | 
 | 1517 | } | 
 | 1518 |  | 
 | 1519 | /* Get the next entry on the pre-computed freelist randomized */ | 
 | 1520 | static void *next_freelist_entry(struct kmem_cache *s, struct page *page, | 
 | 1521 | 				unsigned long *pos, void *start, | 
 | 1522 | 				unsigned long page_limit, | 
 | 1523 | 				unsigned long freelist_count) | 
 | 1524 | { | 
 | 1525 | 	unsigned int idx; | 
 | 1526 |  | 
 | 1527 | 	/* | 
 | 1528 | 	 * If the target page allocation failed, the number of objects on the | 
 | 1529 | 	 * page might be smaller than the usual size defined by the cache. | 
 | 1530 | 	 */ | 
 | 1531 | 	do { | 
 | 1532 | 		idx = s->random_seq[*pos]; | 
 | 1533 | 		*pos += 1; | 
 | 1534 | 		if (*pos >= freelist_count) | 
 | 1535 | 			*pos = 0; | 
 | 1536 | 	} while (unlikely(idx >= page_limit)); | 
 | 1537 |  | 
 | 1538 | 	return (char *)start + idx; | 
 | 1539 | } | 
 | 1540 |  | 
 | 1541 | /* Shuffle the single linked freelist based on a random pre-computed sequence */ | 
 | 1542 | static bool shuffle_freelist(struct kmem_cache *s, struct page *page) | 
 | 1543 | { | 
 | 1544 | 	void *start; | 
 | 1545 | 	void *cur; | 
 | 1546 | 	void *next; | 
 | 1547 | 	unsigned long idx, pos, page_limit, freelist_count; | 
 | 1548 |  | 
 | 1549 | 	if (page->objects < 2 || !s->random_seq) | 
 | 1550 | 		return false; | 
 | 1551 |  | 
 | 1552 | 	freelist_count = oo_objects(s->oo); | 
 | 1553 | 	pos = get_random_int() % freelist_count; | 
 | 1554 |  | 
 | 1555 | 	page_limit = page->objects * s->size; | 
 | 1556 | 	start = fixup_red_left(s, page_address(page)); | 
 | 1557 |  | 
 | 1558 | 	/* First entry is used as the base of the freelist */ | 
 | 1559 | 	cur = next_freelist_entry(s, page, &pos, start, page_limit, | 
 | 1560 | 				freelist_count); | 
 | 1561 | 	cur = setup_object(s, page, cur); | 
 | 1562 | 	page->freelist = cur; | 
 | 1563 |  | 
 | 1564 | 	for (idx = 1; idx < page->objects; idx++) { | 
 | 1565 | 		next = next_freelist_entry(s, page, &pos, start, page_limit, | 
 | 1566 | 			freelist_count); | 
 | 1567 | 		next = setup_object(s, page, next); | 
 | 1568 | 		set_freepointer(s, cur, next); | 
 | 1569 | 		cur = next; | 
 | 1570 | 	} | 
 | 1571 | 	set_freepointer(s, cur, NULL); | 
 | 1572 |  | 
 | 1573 | 	return true; | 
 | 1574 | } | 
 | 1575 | #else | 
 | 1576 | static inline int init_cache_random_seq(struct kmem_cache *s) | 
 | 1577 | { | 
 | 1578 | 	return 0; | 
 | 1579 | } | 
 | 1580 | static inline void init_freelist_randomization(void) { } | 
 | 1581 | static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) | 
 | 1582 | { | 
 | 1583 | 	return false; | 
 | 1584 | } | 
 | 1585 | #endif /* CONFIG_SLAB_FREELIST_RANDOM */ | 
 | 1586 |  | 
 | 1587 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) | 
 | 1588 | { | 
 | 1589 | 	struct page *page; | 
 | 1590 | 	struct kmem_cache_order_objects oo = s->oo; | 
 | 1591 | 	gfp_t alloc_gfp; | 
 | 1592 | 	void *start, *p, *next; | 
 | 1593 | 	int idx, order; | 
 | 1594 | 	bool shuffle; | 
 | 1595 |  | 
 | 1596 | 	flags &= gfp_allowed_mask; | 
 | 1597 |  | 
 | 1598 | 	if (gfpflags_allow_blocking(flags)) | 
 | 1599 | 		local_irq_enable(); | 
 | 1600 |  | 
 | 1601 | 	flags |= s->allocflags; | 
 | 1602 |  | 
 | 1603 | 	/* | 
 | 1604 | 	 * Let the initial higher-order allocation fail under memory pressure | 
 | 1605 | 	 * so we fall-back to the minimum order allocation. | 
 | 1606 | 	 */ | 
 | 1607 | 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; | 
 | 1608 | 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) | 
 | 1609 | 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); | 
 | 1610 |  | 
 | 1611 | 	page = alloc_slab_page(s, alloc_gfp, node, oo); | 
 | 1612 | 	if (unlikely(!page)) { | 
 | 1613 | 		oo = s->min; | 
 | 1614 | 		alloc_gfp = flags; | 
 | 1615 | 		/* | 
 | 1616 | 		 * Allocation may have failed due to fragmentation. | 
 | 1617 | 		 * Try a lower order alloc if possible | 
 | 1618 | 		 */ | 
 | 1619 | 		page = alloc_slab_page(s, alloc_gfp, node, oo); | 
 | 1620 | 		if (unlikely(!page)) | 
 | 1621 | 			goto out; | 
 | 1622 | 		stat(s, ORDER_FALLBACK); | 
 | 1623 | 	} | 
 | 1624 |  | 
 | 1625 | 	page->objects = oo_objects(oo); | 
 | 1626 |  | 
 | 1627 | 	order = compound_order(page); | 
 | 1628 | 	page->slab_cache = s; | 
 | 1629 | 	__SetPageSlab(page); | 
 | 1630 | 	if (page_is_pfmemalloc(page)) | 
 | 1631 | 		SetPageSlabPfmemalloc(page); | 
 | 1632 |  | 
 | 1633 | 	kasan_poison_slab(page); | 
 | 1634 |  | 
 | 1635 | 	start = page_address(page); | 
 | 1636 |  | 
 | 1637 | 	setup_page_debug(s, start, order); | 
 | 1638 |  | 
 | 1639 | 	shuffle = shuffle_freelist(s, page); | 
 | 1640 |  | 
 | 1641 | 	if (!shuffle) { | 
 | 1642 | 		start = fixup_red_left(s, start); | 
 | 1643 | 		start = setup_object(s, page, start); | 
 | 1644 | 		page->freelist = start; | 
 | 1645 | 		for (idx = 0, p = start; idx < page->objects - 1; idx++) { | 
 | 1646 | 			next = p + s->size; | 
 | 1647 | 			next = setup_object(s, page, next); | 
 | 1648 | 			set_freepointer(s, p, next); | 
 | 1649 | 			p = next; | 
 | 1650 | 		} | 
 | 1651 | 		set_freepointer(s, p, NULL); | 
 | 1652 | 	} | 
 | 1653 |  | 
 | 1654 | 	page->inuse = page->objects; | 
 | 1655 | 	page->frozen = 1; | 
 | 1656 |  | 
 | 1657 | out: | 
 | 1658 | 	if (gfpflags_allow_blocking(flags)) | 
 | 1659 | 		local_irq_disable(); | 
 | 1660 | 	if (!page) | 
 | 1661 | 		return NULL; | 
 | 1662 |  | 
 | 1663 | 	mod_lruvec_page_state(page, | 
 | 1664 | 		(s->flags & SLAB_RECLAIM_ACCOUNT) ? | 
 | 1665 | 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | 
 | 1666 | 		1 << oo_order(oo)); | 
 | 1667 |  | 
 | 1668 | 	inc_slabs_node(s, page_to_nid(page), page->objects); | 
 | 1669 |  | 
 | 1670 | 	return page; | 
 | 1671 | } | 
 | 1672 |  | 
 | 1673 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | 
 | 1674 | { | 
 | 1675 | 	if (unlikely(flags & GFP_SLAB_BUG_MASK)) { | 
 | 1676 | 		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; | 
 | 1677 | 		flags &= ~GFP_SLAB_BUG_MASK; | 
 | 1678 | 		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", | 
 | 1679 | 				invalid_mask, &invalid_mask, flags, &flags); | 
 | 1680 | 		dump_stack(); | 
 | 1681 | 	} | 
 | 1682 |  | 
 | 1683 | 	return allocate_slab(s, | 
 | 1684 | 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | 
 | 1685 | } | 
 | 1686 |  | 
 | 1687 | static void __free_slab(struct kmem_cache *s, struct page *page) | 
 | 1688 | { | 
 | 1689 | 	int order = compound_order(page); | 
 | 1690 | 	int pages = 1 << order; | 
 | 1691 |  | 
 | 1692 | 	if (s->flags & SLAB_CONSISTENCY_CHECKS) { | 
 | 1693 | 		void *p; | 
 | 1694 |  | 
 | 1695 | 		slab_pad_check(s, page); | 
 | 1696 | 		for_each_object(p, s, page_address(page), | 
 | 1697 | 						page->objects) | 
 | 1698 | 			check_object(s, page, p, SLUB_RED_INACTIVE); | 
 | 1699 | 	} | 
 | 1700 |  | 
 | 1701 | 	mod_lruvec_page_state(page, | 
 | 1702 | 		(s->flags & SLAB_RECLAIM_ACCOUNT) ? | 
 | 1703 | 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | 
 | 1704 | 		-pages); | 
 | 1705 |  | 
 | 1706 | 	__ClearPageSlabPfmemalloc(page); | 
 | 1707 | 	__ClearPageSlab(page); | 
 | 1708 |  | 
 | 1709 | 	page->mapping = NULL; | 
 | 1710 | 	if (current->reclaim_state) | 
 | 1711 | 		current->reclaim_state->reclaimed_slab += pages; | 
 | 1712 | 	memcg_uncharge_slab(page, order, s); | 
 | 1713 | 	__free_pages(page, order); | 
 | 1714 | } | 
 | 1715 |  | 
 | 1716 | static void rcu_free_slab(struct rcu_head *h) | 
 | 1717 | { | 
 | 1718 | 	struct page *page = container_of(h, struct page, rcu_head); | 
 | 1719 |  | 
 | 1720 | 	__free_slab(page->slab_cache, page); | 
 | 1721 | } | 
 | 1722 |  | 
 | 1723 | static void free_slab(struct kmem_cache *s, struct page *page) | 
 | 1724 | { | 
 | 1725 | 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { | 
 | 1726 | 		call_rcu(&page->rcu_head, rcu_free_slab); | 
 | 1727 | 	} else | 
 | 1728 | 		__free_slab(s, page); | 
 | 1729 | } | 
 | 1730 |  | 
 | 1731 | static void discard_slab(struct kmem_cache *s, struct page *page) | 
 | 1732 | { | 
 | 1733 | 	dec_slabs_node(s, page_to_nid(page), page->objects); | 
 | 1734 | 	free_slab(s, page); | 
 | 1735 | } | 
 | 1736 |  | 
 | 1737 | /* | 
 | 1738 |  * Management of partially allocated slabs. | 
 | 1739 |  */ | 
 | 1740 | static inline void | 
 | 1741 | __add_partial(struct kmem_cache_node *n, struct page *page, int tail) | 
 | 1742 | { | 
 | 1743 | 	n->nr_partial++; | 
 | 1744 | 	if (tail == DEACTIVATE_TO_TAIL) | 
 | 1745 | 		list_add_tail(&page->lru, &n->partial); | 
 | 1746 | 	else | 
 | 1747 | 		list_add(&page->lru, &n->partial); | 
 | 1748 | } | 
 | 1749 |  | 
 | 1750 | static inline void add_partial(struct kmem_cache_node *n, | 
 | 1751 | 				struct page *page, int tail) | 
 | 1752 | { | 
 | 1753 | 	lockdep_assert_held(&n->list_lock); | 
 | 1754 | 	__add_partial(n, page, tail); | 
 | 1755 | } | 
 | 1756 |  | 
 | 1757 | static inline void remove_partial(struct kmem_cache_node *n, | 
 | 1758 | 					struct page *page) | 
 | 1759 | { | 
 | 1760 | 	lockdep_assert_held(&n->list_lock); | 
 | 1761 | 	list_del(&page->lru); | 
 | 1762 | 	n->nr_partial--; | 
 | 1763 | } | 
 | 1764 |  | 
 | 1765 | /* | 
 | 1766 |  * Remove slab from the partial list, freeze it and | 
 | 1767 |  * return the pointer to the freelist. | 
 | 1768 |  * | 
 | 1769 |  * Returns a list of objects or NULL if it fails. | 
 | 1770 |  */ | 
 | 1771 | static inline void *acquire_slab(struct kmem_cache *s, | 
 | 1772 | 		struct kmem_cache_node *n, struct page *page, | 
 | 1773 | 		int mode, int *objects) | 
 | 1774 | { | 
 | 1775 | 	void *freelist; | 
 | 1776 | 	unsigned long counters; | 
 | 1777 | 	struct page new; | 
 | 1778 |  | 
 | 1779 | 	lockdep_assert_held(&n->list_lock); | 
 | 1780 |  | 
 | 1781 | 	/* | 
 | 1782 | 	 * Zap the freelist and set the frozen bit. | 
 | 1783 | 	 * The old freelist is the list of objects for the | 
 | 1784 | 	 * per cpu allocation list. | 
 | 1785 | 	 */ | 
 | 1786 | 	freelist = page->freelist; | 
 | 1787 | 	counters = page->counters; | 
 | 1788 | 	new.counters = counters; | 
 | 1789 | 	*objects = new.objects - new.inuse; | 
 | 1790 | 	if (mode) { | 
 | 1791 | 		new.inuse = page->objects; | 
 | 1792 | 		new.freelist = NULL; | 
 | 1793 | 	} else { | 
 | 1794 | 		new.freelist = freelist; | 
 | 1795 | 	} | 
 | 1796 |  | 
 | 1797 | 	VM_BUG_ON(new.frozen); | 
 | 1798 | 	new.frozen = 1; | 
 | 1799 |  | 
 | 1800 | 	if (!__cmpxchg_double_slab(s, page, | 
 | 1801 | 			freelist, counters, | 
 | 1802 | 			new.freelist, new.counters, | 
 | 1803 | 			"acquire_slab")) | 
 | 1804 | 		return NULL; | 
 | 1805 |  | 
 | 1806 | 	remove_partial(n, page); | 
 | 1807 | 	WARN_ON(!freelist); | 
 | 1808 | 	return freelist; | 
 | 1809 | } | 
 | 1810 |  | 
 | 1811 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); | 
 | 1812 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); | 
 | 1813 |  | 
 | 1814 | /* | 
 | 1815 |  * Try to allocate a partial slab from a specific node. | 
 | 1816 |  */ | 
 | 1817 | static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, | 
 | 1818 | 				struct kmem_cache_cpu *c, gfp_t flags) | 
 | 1819 | { | 
 | 1820 | 	struct page *page, *page2; | 
 | 1821 | 	void *object = NULL; | 
 | 1822 | 	unsigned int available = 0; | 
 | 1823 | 	int objects; | 
 | 1824 |  | 
 | 1825 | 	/* | 
 | 1826 | 	 * Racy check. If we mistakenly see no partial slabs then we | 
 | 1827 | 	 * just allocate an empty slab. If we mistakenly try to get a | 
 | 1828 | 	 * partial slab and there is none available then get_partials() | 
 | 1829 | 	 * will return NULL. | 
 | 1830 | 	 */ | 
 | 1831 | 	if (!n || !n->nr_partial) | 
 | 1832 | 		return NULL; | 
 | 1833 |  | 
 | 1834 | 	spin_lock(&n->list_lock); | 
 | 1835 | 	list_for_each_entry_safe(page, page2, &n->partial, lru) { | 
 | 1836 | 		void *t; | 
 | 1837 |  | 
 | 1838 | 		if (!pfmemalloc_match(page, flags)) | 
 | 1839 | 			continue; | 
 | 1840 |  | 
 | 1841 | 		t = acquire_slab(s, n, page, object == NULL, &objects); | 
 | 1842 | 		if (!t) | 
 | 1843 | 			break; | 
 | 1844 |  | 
 | 1845 | 		available += objects; | 
 | 1846 | 		if (!object) { | 
 | 1847 | 			c->page = page; | 
 | 1848 | 			stat(s, ALLOC_FROM_PARTIAL); | 
 | 1849 | 			object = t; | 
 | 1850 | 		} else { | 
 | 1851 | 			put_cpu_partial(s, page, 0); | 
 | 1852 | 			stat(s, CPU_PARTIAL_NODE); | 
 | 1853 | 		} | 
 | 1854 | 		if (!kmem_cache_has_cpu_partial(s) | 
 | 1855 | 			|| available > slub_cpu_partial(s) / 2) | 
 | 1856 | 			break; | 
 | 1857 |  | 
 | 1858 | 	} | 
 | 1859 | 	spin_unlock(&n->list_lock); | 
 | 1860 | 	return object; | 
 | 1861 | } | 
 | 1862 |  | 
 | 1863 | /* | 
 | 1864 |  * Get a page from somewhere. Search in increasing NUMA distances. | 
 | 1865 |  */ | 
 | 1866 | static void *get_any_partial(struct kmem_cache *s, gfp_t flags, | 
 | 1867 | 		struct kmem_cache_cpu *c) | 
 | 1868 | { | 
 | 1869 | #ifdef CONFIG_NUMA | 
 | 1870 | 	struct zonelist *zonelist; | 
 | 1871 | 	struct zoneref *z; | 
 | 1872 | 	struct zone *zone; | 
 | 1873 | 	enum zone_type high_zoneidx = gfp_zone(flags); | 
 | 1874 | 	void *object; | 
 | 1875 | 	unsigned int cpuset_mems_cookie; | 
 | 1876 |  | 
 | 1877 | 	/* | 
 | 1878 | 	 * The defrag ratio allows a configuration of the tradeoffs between | 
 | 1879 | 	 * inter node defragmentation and node local allocations. A lower | 
 | 1880 | 	 * defrag_ratio increases the tendency to do local allocations | 
 | 1881 | 	 * instead of attempting to obtain partial slabs from other nodes. | 
 | 1882 | 	 * | 
 | 1883 | 	 * If the defrag_ratio is set to 0 then kmalloc() always | 
 | 1884 | 	 * returns node local objects. If the ratio is higher then kmalloc() | 
 | 1885 | 	 * may return off node objects because partial slabs are obtained | 
 | 1886 | 	 * from other nodes and filled up. | 
 | 1887 | 	 * | 
 | 1888 | 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 | 
 | 1889 | 	 * (which makes defrag_ratio = 1000) then every (well almost) | 
 | 1890 | 	 * allocation will first attempt to defrag slab caches on other nodes. | 
 | 1891 | 	 * This means scanning over all nodes to look for partial slabs which | 
 | 1892 | 	 * may be expensive if we do it every time we are trying to find a slab | 
 | 1893 | 	 * with available objects. | 
 | 1894 | 	 */ | 
 | 1895 | 	if (!s->remote_node_defrag_ratio || | 
 | 1896 | 			get_cycles() % 1024 > s->remote_node_defrag_ratio) | 
 | 1897 | 		return NULL; | 
 | 1898 |  | 
 | 1899 | 	do { | 
 | 1900 | 		cpuset_mems_cookie = read_mems_allowed_begin(); | 
 | 1901 | 		zonelist = node_zonelist(mempolicy_slab_node(), flags); | 
 | 1902 | 		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { | 
 | 1903 | 			struct kmem_cache_node *n; | 
 | 1904 |  | 
 | 1905 | 			n = get_node(s, zone_to_nid(zone)); | 
 | 1906 |  | 
 | 1907 | 			if (n && cpuset_zone_allowed(zone, flags) && | 
 | 1908 | 					n->nr_partial > s->min_partial) { | 
 | 1909 | 				object = get_partial_node(s, n, c, flags); | 
 | 1910 | 				if (object) { | 
 | 1911 | 					/* | 
 | 1912 | 					 * Don't check read_mems_allowed_retry() | 
 | 1913 | 					 * here - if mems_allowed was updated in | 
 | 1914 | 					 * parallel, that was a harmless race | 
 | 1915 | 					 * between allocation and the cpuset | 
 | 1916 | 					 * update | 
 | 1917 | 					 */ | 
 | 1918 | 					return object; | 
 | 1919 | 				} | 
 | 1920 | 			} | 
 | 1921 | 		} | 
 | 1922 | 	} while (read_mems_allowed_retry(cpuset_mems_cookie)); | 
 | 1923 | #endif | 
 | 1924 | 	return NULL; | 
 | 1925 | } | 
 | 1926 |  | 
 | 1927 | /* | 
 | 1928 |  * Get a partial page, lock it and return it. | 
 | 1929 |  */ | 
 | 1930 | static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, | 
 | 1931 | 		struct kmem_cache_cpu *c) | 
 | 1932 | { | 
 | 1933 | 	void *object; | 
 | 1934 | 	int searchnode = node; | 
 | 1935 |  | 
 | 1936 | 	if (node == NUMA_NO_NODE) | 
 | 1937 | 		searchnode = numa_mem_id(); | 
 | 1938 | 	else if (!node_present_pages(node)) | 
 | 1939 | 		searchnode = node_to_mem_node(node); | 
 | 1940 |  | 
 | 1941 | 	object = get_partial_node(s, get_node(s, searchnode), c, flags); | 
 | 1942 | 	if (object || node != NUMA_NO_NODE) | 
 | 1943 | 		return object; | 
 | 1944 |  | 
 | 1945 | 	return get_any_partial(s, flags, c); | 
 | 1946 | } | 
 | 1947 |  | 
 | 1948 | #ifdef CONFIG_PREEMPT | 
 | 1949 | /* | 
 | 1950 |  * Calculate the next globally unique transaction for disambiguiation | 
 | 1951 |  * during cmpxchg. The transactions start with the cpu number and are then | 
 | 1952 |  * incremented by CONFIG_NR_CPUS. | 
 | 1953 |  */ | 
 | 1954 | #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS) | 
 | 1955 | #else | 
 | 1956 | /* | 
 | 1957 |  * No preemption supported therefore also no need to check for | 
 | 1958 |  * different cpus. | 
 | 1959 |  */ | 
 | 1960 | #define TID_STEP 1 | 
 | 1961 | #endif | 
 | 1962 |  | 
 | 1963 | static inline unsigned long next_tid(unsigned long tid) | 
 | 1964 | { | 
 | 1965 | 	return tid + TID_STEP; | 
 | 1966 | } | 
 | 1967 |  | 
 | 1968 | static inline unsigned int tid_to_cpu(unsigned long tid) | 
 | 1969 | { | 
 | 1970 | 	return tid % TID_STEP; | 
 | 1971 | } | 
 | 1972 |  | 
 | 1973 | static inline unsigned long tid_to_event(unsigned long tid) | 
 | 1974 | { | 
 | 1975 | 	return tid / TID_STEP; | 
 | 1976 | } | 
 | 1977 |  | 
 | 1978 | static inline unsigned int init_tid(int cpu) | 
 | 1979 | { | 
 | 1980 | 	return cpu; | 
 | 1981 | } | 
 | 1982 |  | 
 | 1983 | static inline void note_cmpxchg_failure(const char *n, | 
 | 1984 | 		const struct kmem_cache *s, unsigned long tid) | 
 | 1985 | { | 
 | 1986 | #ifdef SLUB_DEBUG_CMPXCHG | 
 | 1987 | 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); | 
 | 1988 |  | 
 | 1989 | 	pr_info("%s %s: cmpxchg redo ", n, s->name); | 
 | 1990 |  | 
 | 1991 | #ifdef CONFIG_PREEMPT | 
 | 1992 | 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) | 
 | 1993 | 		pr_warn("due to cpu change %d -> %d\n", | 
 | 1994 | 			tid_to_cpu(tid), tid_to_cpu(actual_tid)); | 
 | 1995 | 	else | 
 | 1996 | #endif | 
 | 1997 | 	if (tid_to_event(tid) != tid_to_event(actual_tid)) | 
 | 1998 | 		pr_warn("due to cpu running other code. Event %ld->%ld\n", | 
 | 1999 | 			tid_to_event(tid), tid_to_event(actual_tid)); | 
 | 2000 | 	else | 
 | 2001 | 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", | 
 | 2002 | 			actual_tid, tid, next_tid(tid)); | 
 | 2003 | #endif | 
 | 2004 | 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL); | 
 | 2005 | } | 
 | 2006 |  | 
 | 2007 | static void init_kmem_cache_cpus(struct kmem_cache *s) | 
 | 2008 | { | 
 | 2009 | 	int cpu; | 
 | 2010 |  | 
 | 2011 | 	for_each_possible_cpu(cpu) { | 
 | 2012 | #ifdef CONFIG_MTK_MM_DEBUG | 
 | 2013 | 		pr_info("s=%s, pcpuptr=%p\n", s->name, | 
 | 2014 | 				per_cpu_ptr(s->cpu_slab, cpu)); | 
 | 2015 | #endif | 
 | 2016 | 		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); | 
 | 2017 | 	} | 
 | 2018 | } | 
 | 2019 |  | 
 | 2020 | /* | 
 | 2021 |  * Remove the cpu slab | 
 | 2022 |  */ | 
 | 2023 | static void deactivate_slab(struct kmem_cache *s, struct page *page, | 
 | 2024 | 				void *freelist, struct kmem_cache_cpu *c) | 
 | 2025 | { | 
 | 2026 | 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; | 
 | 2027 | 	struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 
 | 2028 | 	int lock = 0; | 
 | 2029 | 	enum slab_modes l = M_NONE, m = M_NONE; | 
 | 2030 | 	void *nextfree; | 
 | 2031 | 	int tail = DEACTIVATE_TO_HEAD; | 
 | 2032 | 	struct page new; | 
 | 2033 | 	struct page old; | 
 | 2034 |  | 
 | 2035 | 	if (page->freelist) { | 
 | 2036 | 		stat(s, DEACTIVATE_REMOTE_FREES); | 
 | 2037 | 		tail = DEACTIVATE_TO_TAIL; | 
 | 2038 | 	} | 
 | 2039 |  | 
 | 2040 | 	/* | 
 | 2041 | 	 * Stage one: Free all available per cpu objects back | 
 | 2042 | 	 * to the page freelist while it is still frozen. Leave the | 
 | 2043 | 	 * last one. | 
 | 2044 | 	 * | 
 | 2045 | 	 * There is no need to take the list->lock because the page | 
 | 2046 | 	 * is still frozen. | 
 | 2047 | 	 */ | 
 | 2048 | 	while (freelist && (nextfree = get_freepointer(s, freelist))) { | 
 | 2049 | 		void *prior; | 
 | 2050 | 		unsigned long counters; | 
 | 2051 |  | 
 | 2052 | 		do { | 
 | 2053 | 			prior = page->freelist; | 
 | 2054 | 			counters = page->counters; | 
 | 2055 | 			set_freepointer(s, freelist, prior); | 
 | 2056 | 			new.counters = counters; | 
 | 2057 | 			new.inuse--; | 
 | 2058 | 			VM_BUG_ON(!new.frozen); | 
 | 2059 |  | 
 | 2060 | 		} while (!__cmpxchg_double_slab(s, page, | 
 | 2061 | 			prior, counters, | 
 | 2062 | 			freelist, new.counters, | 
 | 2063 | 			"drain percpu freelist")); | 
 | 2064 |  | 
 | 2065 | 		freelist = nextfree; | 
 | 2066 | 	} | 
 | 2067 |  | 
 | 2068 | 	/* | 
 | 2069 | 	 * Stage two: Ensure that the page is unfrozen while the | 
 | 2070 | 	 * list presence reflects the actual number of objects | 
 | 2071 | 	 * during unfreeze. | 
 | 2072 | 	 * | 
 | 2073 | 	 * We setup the list membership and then perform a cmpxchg | 
 | 2074 | 	 * with the count. If there is a mismatch then the page | 
 | 2075 | 	 * is not unfrozen but the page is on the wrong list. | 
 | 2076 | 	 * | 
 | 2077 | 	 * Then we restart the process which may have to remove | 
 | 2078 | 	 * the page from the list that we just put it on again | 
 | 2079 | 	 * because the number of objects in the slab may have | 
 | 2080 | 	 * changed. | 
 | 2081 | 	 */ | 
 | 2082 | redo: | 
 | 2083 |  | 
 | 2084 | 	old.freelist = page->freelist; | 
 | 2085 | 	old.counters = page->counters; | 
 | 2086 | 	VM_BUG_ON(!old.frozen); | 
 | 2087 |  | 
 | 2088 | 	/* Determine target state of the slab */ | 
 | 2089 | 	new.counters = old.counters; | 
 | 2090 | 	if (freelist) { | 
 | 2091 | 		new.inuse--; | 
 | 2092 | 		set_freepointer(s, freelist, old.freelist); | 
 | 2093 | 		new.freelist = freelist; | 
 | 2094 | 	} else | 
 | 2095 | 		new.freelist = old.freelist; | 
 | 2096 |  | 
 | 2097 | 	new.frozen = 0; | 
 | 2098 |  | 
 | 2099 | 	if (!new.inuse && n->nr_partial >= s->min_partial) | 
 | 2100 | 		m = M_FREE; | 
 | 2101 | 	else if (new.freelist) { | 
 | 2102 | 		m = M_PARTIAL; | 
 | 2103 | 		if (!lock) { | 
 | 2104 | 			lock = 1; | 
 | 2105 | 			/* | 
 | 2106 | 			 * Taking the spinlock removes the possiblity | 
 | 2107 | 			 * that acquire_slab() will see a slab page that | 
 | 2108 | 			 * is frozen | 
 | 2109 | 			 */ | 
 | 2110 | 			spin_lock(&n->list_lock); | 
 | 2111 | 		} | 
 | 2112 | 	} else { | 
 | 2113 | 		m = M_FULL; | 
 | 2114 | 		if (kmem_cache_debug(s) && !lock) { | 
 | 2115 | 			lock = 1; | 
 | 2116 | 			/* | 
 | 2117 | 			 * This also ensures that the scanning of full | 
 | 2118 | 			 * slabs from diagnostic functions will not see | 
 | 2119 | 			 * any frozen slabs. | 
 | 2120 | 			 */ | 
 | 2121 | 			spin_lock(&n->list_lock); | 
 | 2122 | 		} | 
 | 2123 | 	} | 
 | 2124 |  | 
 | 2125 | 	if (l != m) { | 
 | 2126 |  | 
 | 2127 | 		if (l == M_PARTIAL) | 
 | 2128 |  | 
 | 2129 | 			remove_partial(n, page); | 
 | 2130 |  | 
 | 2131 | 		else if (l == M_FULL) | 
 | 2132 |  | 
 | 2133 | 			remove_full(s, n, page); | 
 | 2134 |  | 
 | 2135 | 		if (m == M_PARTIAL) { | 
 | 2136 |  | 
 | 2137 | 			add_partial(n, page, tail); | 
 | 2138 | 			stat(s, tail); | 
 | 2139 |  | 
 | 2140 | 		} else if (m == M_FULL) { | 
 | 2141 |  | 
 | 2142 | 			stat(s, DEACTIVATE_FULL); | 
 | 2143 | 			add_full(s, n, page); | 
 | 2144 |  | 
 | 2145 | 		} | 
 | 2146 | 	} | 
 | 2147 |  | 
 | 2148 | 	l = m; | 
 | 2149 | 	if (!__cmpxchg_double_slab(s, page, | 
 | 2150 | 				old.freelist, old.counters, | 
 | 2151 | 				new.freelist, new.counters, | 
 | 2152 | 				"unfreezing slab")) | 
 | 2153 | 		goto redo; | 
 | 2154 |  | 
 | 2155 | 	if (lock) | 
 | 2156 | 		spin_unlock(&n->list_lock); | 
 | 2157 |  | 
 | 2158 | 	if (m == M_FREE) { | 
 | 2159 | 		stat(s, DEACTIVATE_EMPTY); | 
 | 2160 | 		discard_slab(s, page); | 
 | 2161 | 		stat(s, FREE_SLAB); | 
 | 2162 | 	} | 
 | 2163 |  | 
 | 2164 | 	c->page = NULL; | 
 | 2165 | 	c->freelist = NULL; | 
 | 2166 | } | 
 | 2167 |  | 
 | 2168 | /* | 
 | 2169 |  * Unfreeze all the cpu partial slabs. | 
 | 2170 |  * | 
 | 2171 |  * This function must be called with interrupts disabled | 
 | 2172 |  * for the cpu using c (or some other guarantee must be there | 
 | 2173 |  * to guarantee no concurrent accesses). | 
 | 2174 |  */ | 
 | 2175 | static void unfreeze_partials(struct kmem_cache *s, | 
 | 2176 | 		struct kmem_cache_cpu *c) | 
 | 2177 | { | 
 | 2178 | #ifdef CONFIG_SLUB_CPU_PARTIAL | 
 | 2179 | 	struct kmem_cache_node *n = NULL, *n2 = NULL; | 
 | 2180 | 	struct page *page, *discard_page = NULL; | 
 | 2181 |  | 
 | 2182 | 	while ((page = c->partial)) { | 
 | 2183 | 		struct page new; | 
 | 2184 | 		struct page old; | 
 | 2185 |  | 
 | 2186 | 		c->partial = page->next; | 
 | 2187 |  | 
 | 2188 | 		n2 = get_node(s, page_to_nid(page)); | 
 | 2189 | 		if (n != n2) { | 
 | 2190 | 			if (n) | 
 | 2191 | 				spin_unlock(&n->list_lock); | 
 | 2192 |  | 
 | 2193 | 			n = n2; | 
 | 2194 | 			spin_lock(&n->list_lock); | 
 | 2195 | 		} | 
 | 2196 |  | 
 | 2197 | 		do { | 
 | 2198 |  | 
 | 2199 | 			old.freelist = page->freelist; | 
 | 2200 | 			old.counters = page->counters; | 
 | 2201 | 			VM_BUG_ON(!old.frozen); | 
 | 2202 |  | 
 | 2203 | 			new.counters = old.counters; | 
 | 2204 | 			new.freelist = old.freelist; | 
 | 2205 |  | 
 | 2206 | 			new.frozen = 0; | 
 | 2207 |  | 
 | 2208 | 		} while (!__cmpxchg_double_slab(s, page, | 
 | 2209 | 				old.freelist, old.counters, | 
 | 2210 | 				new.freelist, new.counters, | 
 | 2211 | 				"unfreezing slab")); | 
 | 2212 |  | 
 | 2213 | 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { | 
 | 2214 | 			page->next = discard_page; | 
 | 2215 | 			discard_page = page; | 
 | 2216 | 		} else { | 
 | 2217 | 			add_partial(n, page, DEACTIVATE_TO_TAIL); | 
 | 2218 | 			stat(s, FREE_ADD_PARTIAL); | 
 | 2219 | 		} | 
 | 2220 | 	} | 
 | 2221 |  | 
 | 2222 | 	if (n) | 
 | 2223 | 		spin_unlock(&n->list_lock); | 
 | 2224 |  | 
 | 2225 | 	while (discard_page) { | 
 | 2226 | 		page = discard_page; | 
 | 2227 | 		discard_page = discard_page->next; | 
 | 2228 |  | 
 | 2229 | 		stat(s, DEACTIVATE_EMPTY); | 
 | 2230 | 		discard_slab(s, page); | 
 | 2231 | 		stat(s, FREE_SLAB); | 
 | 2232 | 	} | 
 | 2233 | #endif | 
 | 2234 | } | 
 | 2235 |  | 
 | 2236 | /* | 
 | 2237 |  * Put a page that was just frozen (in __slab_free) into a partial page | 
 | 2238 |  * slot if available. | 
 | 2239 |  * | 
 | 2240 |  * If we did not find a slot then simply move all the partials to the | 
 | 2241 |  * per node partial list. | 
 | 2242 |  */ | 
 | 2243 | static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) | 
 | 2244 | { | 
 | 2245 | #ifdef CONFIG_SLUB_CPU_PARTIAL | 
 | 2246 | 	struct page *oldpage; | 
 | 2247 | 	int pages; | 
 | 2248 | 	int pobjects; | 
 | 2249 |  | 
 | 2250 | 	preempt_disable(); | 
 | 2251 | 	do { | 
 | 2252 | 		pages = 0; | 
 | 2253 | 		pobjects = 0; | 
 | 2254 | 		oldpage = this_cpu_read(s->cpu_slab->partial); | 
 | 2255 |  | 
 | 2256 | 		if (oldpage) { | 
 | 2257 | 			pobjects = oldpage->pobjects; | 
 | 2258 | 			pages = oldpage->pages; | 
 | 2259 | 			if (drain && pobjects > s->cpu_partial) { | 
 | 2260 | 				unsigned long flags; | 
 | 2261 | 				/* | 
 | 2262 | 				 * partial array is full. Move the existing | 
 | 2263 | 				 * set to the per node partial list. | 
 | 2264 | 				 */ | 
 | 2265 | 				local_irq_save(flags); | 
 | 2266 | 				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); | 
 | 2267 | 				local_irq_restore(flags); | 
 | 2268 | 				oldpage = NULL; | 
 | 2269 | 				pobjects = 0; | 
 | 2270 | 				pages = 0; | 
 | 2271 | 				stat(s, CPU_PARTIAL_DRAIN); | 
 | 2272 | 			} | 
 | 2273 | 		} | 
 | 2274 |  | 
 | 2275 | 		pages++; | 
 | 2276 | 		pobjects += page->objects - page->inuse; | 
 | 2277 |  | 
 | 2278 | 		page->pages = pages; | 
 | 2279 | 		page->pobjects = pobjects; | 
 | 2280 | 		page->next = oldpage; | 
 | 2281 |  | 
 | 2282 | 	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) | 
 | 2283 | 								!= oldpage); | 
 | 2284 | 	if (unlikely(!s->cpu_partial)) { | 
 | 2285 | 		unsigned long flags; | 
 | 2286 |  | 
 | 2287 | 		local_irq_save(flags); | 
 | 2288 | 		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); | 
 | 2289 | 		local_irq_restore(flags); | 
 | 2290 | 	} | 
 | 2291 | 	preempt_enable(); | 
 | 2292 | #endif | 
 | 2293 | } | 
 | 2294 |  | 
 | 2295 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) | 
 | 2296 | { | 
 | 2297 | 	stat(s, CPUSLAB_FLUSH); | 
 | 2298 | 	deactivate_slab(s, c->page, c->freelist, c); | 
 | 2299 |  | 
 | 2300 | 	c->tid = next_tid(c->tid); | 
 | 2301 | } | 
 | 2302 |  | 
 | 2303 | /* | 
 | 2304 |  * Flush cpu slab. | 
 | 2305 |  * | 
 | 2306 |  * Called from IPI handler with interrupts disabled. | 
 | 2307 |  */ | 
 | 2308 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) | 
 | 2309 | { | 
 | 2310 | 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | 
 | 2311 |  | 
 | 2312 | 	if (likely(c)) { | 
 | 2313 | 		if (c->page) | 
 | 2314 | 			flush_slab(s, c); | 
 | 2315 |  | 
 | 2316 | 		unfreeze_partials(s, c); | 
 | 2317 | 	} | 
 | 2318 | } | 
 | 2319 |  | 
 | 2320 | static void flush_cpu_slab(void *d) | 
 | 2321 | { | 
 | 2322 | 	struct kmem_cache *s = d; | 
 | 2323 |  | 
 | 2324 | 	__flush_cpu_slab(s, smp_processor_id()); | 
 | 2325 | } | 
 | 2326 |  | 
 | 2327 | static bool has_cpu_slab(int cpu, void *info) | 
 | 2328 | { | 
 | 2329 | 	struct kmem_cache *s = info; | 
 | 2330 | 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); | 
 | 2331 |  | 
 | 2332 | 	return c->page || slub_percpu_partial(c); | 
 | 2333 | } | 
 | 2334 |  | 
 | 2335 | static void flush_all(struct kmem_cache *s) | 
 | 2336 | { | 
 | 2337 | 	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); | 
 | 2338 | } | 
 | 2339 |  | 
 | 2340 | /* | 
 | 2341 |  * Use the cpu notifier to insure that the cpu slabs are flushed when | 
 | 2342 |  * necessary. | 
 | 2343 |  */ | 
 | 2344 | static int slub_cpu_dead(unsigned int cpu) | 
 | 2345 | { | 
 | 2346 | 	struct kmem_cache *s; | 
 | 2347 | 	unsigned long flags; | 
 | 2348 |  | 
 | 2349 | 	mutex_lock(&slab_mutex); | 
 | 2350 | 	list_for_each_entry(s, &slab_caches, list) { | 
 | 2351 | 		local_irq_save(flags); | 
 | 2352 | 		__flush_cpu_slab(s, cpu); | 
 | 2353 | 		local_irq_restore(flags); | 
 | 2354 | 	} | 
 | 2355 | 	mutex_unlock(&slab_mutex); | 
 | 2356 | 	return 0; | 
 | 2357 | } | 
 | 2358 |  | 
 | 2359 | /* | 
 | 2360 |  * Check if the objects in a per cpu structure fit numa | 
 | 2361 |  * locality expectations. | 
 | 2362 |  */ | 
 | 2363 | static inline int node_match(struct page *page, int node) | 
 | 2364 | { | 
 | 2365 | #ifdef CONFIG_NUMA | 
 | 2366 | 	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) | 
 | 2367 | 		return 0; | 
 | 2368 | #endif | 
 | 2369 | 	return 1; | 
 | 2370 | } | 
 | 2371 |  | 
 | 2372 | #ifdef CONFIG_SLUB_DEBUG | 
 | 2373 | static int count_free(struct page *page) | 
 | 2374 | { | 
 | 2375 | 	return page->objects - page->inuse; | 
 | 2376 | } | 
 | 2377 |  | 
 | 2378 | static inline unsigned long node_nr_objs(struct kmem_cache_node *n) | 
 | 2379 | { | 
 | 2380 | 	return atomic_long_read(&n->total_objects); | 
 | 2381 | } | 
 | 2382 | #endif /* CONFIG_SLUB_DEBUG */ | 
 | 2383 |  | 
 | 2384 | #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) | 
 | 2385 | static unsigned long count_partial(struct kmem_cache_node *n, | 
 | 2386 | 					int (*get_count)(struct page *)) | 
 | 2387 | { | 
 | 2388 | 	unsigned long flags; | 
 | 2389 | 	unsigned long x = 0; | 
 | 2390 | 	struct page *page; | 
 | 2391 |  | 
 | 2392 | 	spin_lock_irqsave(&n->list_lock, flags); | 
 | 2393 | 	list_for_each_entry(page, &n->partial, lru) | 
 | 2394 | 		x += get_count(page); | 
 | 2395 | 	spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 2396 | 	return x; | 
 | 2397 | } | 
 | 2398 | #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ | 
 | 2399 |  | 
 | 2400 | static noinline void | 
 | 2401 | slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) | 
 | 2402 | { | 
 | 2403 | #ifdef CONFIG_SLUB_DEBUG | 
 | 2404 | 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, | 
 | 2405 | 				      DEFAULT_RATELIMIT_BURST); | 
 | 2406 | 	int node; | 
 | 2407 | 	struct kmem_cache_node *n; | 
 | 2408 |  | 
 | 2409 | 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) | 
 | 2410 | 		return; | 
 | 2411 |  | 
 | 2412 | 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", | 
 | 2413 | 		nid, gfpflags, &gfpflags); | 
 | 2414 | 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n", | 
 | 2415 | 		s->name, s->object_size, s->size, oo_order(s->oo), | 
 | 2416 | 		oo_order(s->min)); | 
 | 2417 |  | 
 | 2418 | 	if (oo_order(s->min) > get_order(s->object_size)) | 
 | 2419 | 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n", | 
 | 2420 | 			s->name); | 
 | 2421 |  | 
 | 2422 | 	for_each_kmem_cache_node(s, node, n) { | 
 | 2423 | 		unsigned long nr_slabs; | 
 | 2424 | 		unsigned long nr_objs; | 
 | 2425 | 		unsigned long nr_free; | 
 | 2426 |  | 
 | 2427 | 		nr_free  = count_partial(n, count_free); | 
 | 2428 | 		nr_slabs = node_nr_slabs(n); | 
 | 2429 | 		nr_objs  = node_nr_objs(n); | 
 | 2430 |  | 
 | 2431 | 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n", | 
 | 2432 | 			node, nr_slabs, nr_objs, nr_free); | 
 | 2433 | 	} | 
 | 2434 | #endif | 
 | 2435 | } | 
 | 2436 |  | 
 | 2437 | static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, | 
 | 2438 | 			int node, struct kmem_cache_cpu **pc) | 
 | 2439 | { | 
 | 2440 | 	void *freelist; | 
 | 2441 | 	struct kmem_cache_cpu *c = *pc; | 
 | 2442 | 	struct page *page; | 
 | 2443 |  | 
 | 2444 | 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO)); | 
 | 2445 |  | 
 | 2446 | 	freelist = get_partial(s, flags, node, c); | 
 | 2447 |  | 
 | 2448 | 	if (freelist) | 
 | 2449 | 		return freelist; | 
 | 2450 |  | 
 | 2451 | 	page = new_slab(s, flags, node); | 
 | 2452 | 	if (page) { | 
 | 2453 | 		c = raw_cpu_ptr(s->cpu_slab); | 
 | 2454 | 		if (c->page) | 
 | 2455 | 			flush_slab(s, c); | 
 | 2456 |  | 
 | 2457 | 		/* | 
 | 2458 | 		 * No other reference to the page yet so we can | 
 | 2459 | 		 * muck around with it freely without cmpxchg | 
 | 2460 | 		 */ | 
 | 2461 | 		freelist = page->freelist; | 
 | 2462 | 		page->freelist = NULL; | 
 | 2463 |  | 
 | 2464 | 		stat(s, ALLOC_SLAB); | 
 | 2465 | 		c->page = page; | 
 | 2466 | 		*pc = c; | 
 | 2467 | 	} else | 
 | 2468 | 		freelist = NULL; | 
 | 2469 |  | 
 | 2470 | 	return freelist; | 
 | 2471 | } | 
 | 2472 |  | 
 | 2473 | static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) | 
 | 2474 | { | 
 | 2475 | 	if (unlikely(PageSlabPfmemalloc(page))) | 
 | 2476 | 		return gfp_pfmemalloc_allowed(gfpflags); | 
 | 2477 |  | 
 | 2478 | 	return true; | 
 | 2479 | } | 
 | 2480 |  | 
 | 2481 | /* | 
 | 2482 |  * Check the page->freelist of a page and either transfer the freelist to the | 
 | 2483 |  * per cpu freelist or deactivate the page. | 
 | 2484 |  * | 
 | 2485 |  * The page is still frozen if the return value is not NULL. | 
 | 2486 |  * | 
 | 2487 |  * If this function returns NULL then the page has been unfrozen. | 
 | 2488 |  * | 
 | 2489 |  * This function must be called with interrupt disabled. | 
 | 2490 |  */ | 
 | 2491 | static inline void *get_freelist(struct kmem_cache *s, struct page *page) | 
 | 2492 | { | 
 | 2493 | 	struct page new; | 
 | 2494 | 	unsigned long counters; | 
 | 2495 | 	void *freelist; | 
 | 2496 |  | 
 | 2497 | 	do { | 
 | 2498 | 		freelist = page->freelist; | 
 | 2499 | 		counters = page->counters; | 
 | 2500 |  | 
 | 2501 | 		new.counters = counters; | 
 | 2502 | 		VM_BUG_ON(!new.frozen); | 
 | 2503 |  | 
 | 2504 | 		new.inuse = page->objects; | 
 | 2505 | 		new.frozen = freelist != NULL; | 
 | 2506 |  | 
 | 2507 | 	} while (!__cmpxchg_double_slab(s, page, | 
 | 2508 | 		freelist, counters, | 
 | 2509 | 		NULL, new.counters, | 
 | 2510 | 		"get_freelist")); | 
 | 2511 |  | 
 | 2512 | 	return freelist; | 
 | 2513 | } | 
 | 2514 |  | 
 | 2515 | /* | 
 | 2516 |  * Slow path. The lockless freelist is empty or we need to perform | 
 | 2517 |  * debugging duties. | 
 | 2518 |  * | 
 | 2519 |  * Processing is still very fast if new objects have been freed to the | 
 | 2520 |  * regular freelist. In that case we simply take over the regular freelist | 
 | 2521 |  * as the lockless freelist and zap the regular freelist. | 
 | 2522 |  * | 
 | 2523 |  * If that is not working then we fall back to the partial lists. We take the | 
 | 2524 |  * first element of the freelist as the object to allocate now and move the | 
 | 2525 |  * rest of the freelist to the lockless freelist. | 
 | 2526 |  * | 
 | 2527 |  * And if we were unable to get a new slab from the partial slab lists then | 
 | 2528 |  * we need to allocate a new slab. This is the slowest path since it involves | 
 | 2529 |  * a call to the page allocator and the setup of a new slab. | 
 | 2530 |  * | 
 | 2531 |  * Version of __slab_alloc to use when we know that interrupts are | 
 | 2532 |  * already disabled (which is the case for bulk allocation). | 
 | 2533 |  */ | 
 | 2534 | static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | 
 | 2535 | 			  unsigned long addr, struct kmem_cache_cpu *c) | 
 | 2536 | { | 
 | 2537 | 	void *freelist; | 
 | 2538 | 	struct page *page; | 
 | 2539 |  | 
 | 2540 | 	page = c->page; | 
 | 2541 | 	if (!page) | 
 | 2542 | 		goto new_slab; | 
 | 2543 | redo: | 
 | 2544 |  | 
 | 2545 | 	if (unlikely(!node_match(page, node))) { | 
 | 2546 | 		int searchnode = node; | 
 | 2547 |  | 
 | 2548 | 		if (node != NUMA_NO_NODE && !node_present_pages(node)) | 
 | 2549 | 			searchnode = node_to_mem_node(node); | 
 | 2550 |  | 
 | 2551 | 		if (unlikely(!node_match(page, searchnode))) { | 
 | 2552 | 			stat(s, ALLOC_NODE_MISMATCH); | 
 | 2553 | 			deactivate_slab(s, page, c->freelist, c); | 
 | 2554 | 			goto new_slab; | 
 | 2555 | 		} | 
 | 2556 | 	} | 
 | 2557 |  | 
 | 2558 | 	/* | 
 | 2559 | 	 * By rights, we should be searching for a slab page that was | 
 | 2560 | 	 * PFMEMALLOC but right now, we are losing the pfmemalloc | 
 | 2561 | 	 * information when the page leaves the per-cpu allocator | 
 | 2562 | 	 */ | 
 | 2563 | 	if (unlikely(!pfmemalloc_match(page, gfpflags))) { | 
 | 2564 | 		deactivate_slab(s, page, c->freelist, c); | 
 | 2565 | 		goto new_slab; | 
 | 2566 | 	} | 
 | 2567 |  | 
 | 2568 | 	/* must check again c->freelist in case of cpu migration or IRQ */ | 
 | 2569 | 	freelist = c->freelist; | 
 | 2570 | 	if (freelist) | 
 | 2571 | 		goto load_freelist; | 
 | 2572 |  | 
 | 2573 | 	freelist = get_freelist(s, page); | 
 | 2574 |  | 
 | 2575 | 	if (!freelist) { | 
 | 2576 | 		c->page = NULL; | 
 | 2577 | 		stat(s, DEACTIVATE_BYPASS); | 
 | 2578 | 		goto new_slab; | 
 | 2579 | 	} | 
 | 2580 |  | 
 | 2581 | 	stat(s, ALLOC_REFILL); | 
 | 2582 |  | 
 | 2583 | load_freelist: | 
 | 2584 | 	/* | 
 | 2585 | 	 * freelist is pointing to the list of objects to be used. | 
 | 2586 | 	 * page is pointing to the page from which the objects are obtained. | 
 | 2587 | 	 * That page must be frozen for per cpu allocations to work. | 
 | 2588 | 	 */ | 
 | 2589 | 	VM_BUG_ON(!c->page->frozen); | 
 | 2590 | 	c->freelist = get_freepointer(s, freelist); | 
 | 2591 | 	c->tid = next_tid(c->tid); | 
 | 2592 | 	return freelist; | 
 | 2593 |  | 
 | 2594 | new_slab: | 
 | 2595 |  | 
 | 2596 | 	if (slub_percpu_partial(c)) { | 
 | 2597 | 		page = c->page = slub_percpu_partial(c); | 
 | 2598 | 		slub_set_percpu_partial(c, page); | 
 | 2599 | 		stat(s, CPU_PARTIAL_ALLOC); | 
 | 2600 | 		goto redo; | 
 | 2601 | 	} | 
 | 2602 |  | 
 | 2603 | 	freelist = new_slab_objects(s, gfpflags, node, &c); | 
 | 2604 |  | 
 | 2605 | 	if (unlikely(!freelist)) { | 
 | 2606 | 		slab_out_of_memory(s, gfpflags, node); | 
 | 2607 | 		return NULL; | 
 | 2608 | 	} | 
 | 2609 |  | 
 | 2610 | 	page = c->page; | 
 | 2611 | 	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) | 
 | 2612 | 		goto load_freelist; | 
 | 2613 |  | 
 | 2614 | 	/* Only entered in the debug case */ | 
 | 2615 | 	if (kmem_cache_debug(s) && | 
 | 2616 | 			!alloc_debug_processing(s, page, freelist, addr)) | 
 | 2617 | 		goto new_slab;	/* Slab failed checks. Next slab needed */ | 
 | 2618 |  | 
 | 2619 | 	deactivate_slab(s, page, get_freepointer(s, freelist), c); | 
 | 2620 | 	return freelist; | 
 | 2621 | } | 
 | 2622 |  | 
 | 2623 | /* | 
 | 2624 |  * Another one that disabled interrupt and compensates for possible | 
 | 2625 |  * cpu changes by refetching the per cpu area pointer. | 
 | 2626 |  */ | 
 | 2627 | static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, | 
 | 2628 | 			  unsigned long addr, struct kmem_cache_cpu *c) | 
 | 2629 | { | 
 | 2630 | 	void *p; | 
 | 2631 | 	unsigned long flags; | 
 | 2632 |  | 
 | 2633 | 	local_irq_save(flags); | 
 | 2634 | #ifdef CONFIG_PREEMPT | 
 | 2635 | 	/* | 
 | 2636 | 	 * We may have been preempted and rescheduled on a different | 
 | 2637 | 	 * cpu before disabling interrupts. Need to reload cpu area | 
 | 2638 | 	 * pointer. | 
 | 2639 | 	 */ | 
 | 2640 | 	c = this_cpu_ptr(s->cpu_slab); | 
 | 2641 | #endif | 
 | 2642 |  | 
 | 2643 | 	p = ___slab_alloc(s, gfpflags, node, addr, c); | 
 | 2644 | 	local_irq_restore(flags); | 
 | 2645 | 	return p; | 
 | 2646 | } | 
 | 2647 |  | 
 | 2648 | /* | 
 | 2649 |  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | 
 | 2650 |  * have the fastpath folded into their functions. So no function call | 
 | 2651 |  * overhead for requests that can be satisfied on the fastpath. | 
 | 2652 |  * | 
 | 2653 |  * The fastpath works by first checking if the lockless freelist can be used. | 
 | 2654 |  * If not then __slab_alloc is called for slow processing. | 
 | 2655 |  * | 
 | 2656 |  * Otherwise we can simply pick the next object from the lockless free list. | 
 | 2657 |  */ | 
 | 2658 | static __always_inline void *slab_alloc_node(struct kmem_cache *s, | 
 | 2659 | 		gfp_t gfpflags, int node, unsigned long addr) | 
 | 2660 | { | 
 | 2661 | 	void *object; | 
 | 2662 | 	struct kmem_cache_cpu *c; | 
 | 2663 | 	struct page *page; | 
 | 2664 | 	unsigned long tid; | 
 | 2665 |  | 
 | 2666 | 	s = slab_pre_alloc_hook(s, gfpflags); | 
 | 2667 | 	if (!s) | 
 | 2668 | 		return NULL; | 
 | 2669 | redo: | 
 | 2670 | 	/* | 
 | 2671 | 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is | 
 | 2672 | 	 * enabled. We may switch back and forth between cpus while | 
 | 2673 | 	 * reading from one cpu area. That does not matter as long | 
 | 2674 | 	 * as we end up on the original cpu again when doing the cmpxchg. | 
 | 2675 | 	 * | 
 | 2676 | 	 * We should guarantee that tid and kmem_cache are retrieved on | 
 | 2677 | 	 * the same cpu. It could be different if CONFIG_PREEMPT so we need | 
 | 2678 | 	 * to check if it is matched or not. | 
 | 2679 | 	 */ | 
 | 2680 | 	do { | 
 | 2681 | 		tid = this_cpu_read(s->cpu_slab->tid); | 
 | 2682 | 		c = raw_cpu_ptr(s->cpu_slab); | 
 | 2683 | 	} while (IS_ENABLED(CONFIG_PREEMPT) && | 
 | 2684 | 		 unlikely(tid != READ_ONCE(c->tid))); | 
 | 2685 |  | 
 | 2686 | 	/* | 
 | 2687 | 	 * Irqless object alloc/free algorithm used here depends on sequence | 
 | 2688 | 	 * of fetching cpu_slab's data. tid should be fetched before anything | 
 | 2689 | 	 * on c to guarantee that object and page associated with previous tid | 
 | 2690 | 	 * won't be used with current tid. If we fetch tid first, object and | 
 | 2691 | 	 * page could be one associated with next tid and our alloc/free | 
 | 2692 | 	 * request will be failed. In this case, we will retry. So, no problem. | 
 | 2693 | 	 */ | 
 | 2694 | 	barrier(); | 
 | 2695 |  | 
 | 2696 | 	/* | 
 | 2697 | 	 * The transaction ids are globally unique per cpu and per operation on | 
 | 2698 | 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double | 
 | 2699 | 	 * occurs on the right processor and that there was no operation on the | 
 | 2700 | 	 * linked list in between. | 
 | 2701 | 	 */ | 
 | 2702 |  | 
 | 2703 | 	object = c->freelist; | 
 | 2704 | 	page = c->page; | 
 | 2705 | 	if (unlikely(!object || !node_match(page, node))) { | 
 | 2706 | 		object = __slab_alloc(s, gfpflags, node, addr, c); | 
 | 2707 | 		stat(s, ALLOC_SLOWPATH); | 
 | 2708 | 	} else { | 
 | 2709 | 		void *next_object = get_freepointer_safe(s, object); | 
 | 2710 |  | 
 | 2711 | 		/* | 
 | 2712 | 		 * The cmpxchg will only match if there was no additional | 
 | 2713 | 		 * operation and if we are on the right processor. | 
 | 2714 | 		 * | 
 | 2715 | 		 * The cmpxchg does the following atomically (without lock | 
 | 2716 | 		 * semantics!) | 
 | 2717 | 		 * 1. Relocate first pointer to the current per cpu area. | 
 | 2718 | 		 * 2. Verify that tid and freelist have not been changed | 
 | 2719 | 		 * 3. If they were not changed replace tid and freelist | 
 | 2720 | 		 * | 
 | 2721 | 		 * Since this is without lock semantics the protection is only | 
 | 2722 | 		 * against code executing on this cpu *not* from access by | 
 | 2723 | 		 * other cpus. | 
 | 2724 | 		 */ | 
 | 2725 | 		if (unlikely(!this_cpu_cmpxchg_double( | 
 | 2726 | 				s->cpu_slab->freelist, s->cpu_slab->tid, | 
 | 2727 | 				object, tid, | 
 | 2728 | 				next_object, next_tid(tid)))) { | 
 | 2729 |  | 
 | 2730 | 			note_cmpxchg_failure("slab_alloc", s, tid); | 
 | 2731 | 			goto redo; | 
 | 2732 | 		} | 
 | 2733 | 		prefetch_freepointer(s, next_object); | 
 | 2734 | 		stat(s, ALLOC_FASTPATH); | 
 | 2735 | 	} | 
 | 2736 | 	/* | 
 | 2737 | 	 * If the object has been wiped upon free, make sure it's fully | 
 | 2738 | 	 * initialized by zeroing out freelist pointer. | 
 | 2739 | 	 */ | 
 | 2740 | 	if (unlikely(slab_want_init_on_free(s)) && object) | 
 | 2741 | 		memset(object + s->offset, 0, sizeof(void *)); | 
 | 2742 |  | 
 | 2743 | 	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object) | 
 | 2744 | 		memset(object, 0, s->object_size); | 
 | 2745 |  | 
 | 2746 | 	slab_post_alloc_hook(s, gfpflags, 1, &object); | 
 | 2747 |  | 
 | 2748 | 	return object; | 
 | 2749 | } | 
 | 2750 |  | 
 | 2751 | static __always_inline void *slab_alloc(struct kmem_cache *s, | 
 | 2752 | 		gfp_t gfpflags, unsigned long addr) | 
 | 2753 | { | 
 | 2754 | 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); | 
 | 2755 | } | 
 | 2756 |  | 
 | 2757 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | 
 | 2758 | { | 
 | 2759 | 	void *ret = slab_alloc(s, gfpflags, _RET_IP_); | 
 | 2760 |  | 
 | 2761 | 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, | 
 | 2762 | 				s->size, gfpflags); | 
 | 2763 |  | 
 | 2764 | 	return ret; | 
 | 2765 | } | 
 | 2766 | EXPORT_SYMBOL(kmem_cache_alloc); | 
 | 2767 |  | 
 | 2768 | #ifdef CONFIG_TRACING | 
 | 2769 | void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) | 
 | 2770 | { | 
 | 2771 | 	void *ret = slab_alloc(s, gfpflags, _RET_IP_); | 
 | 2772 | 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); | 
 | 2773 | 	ret = kasan_kmalloc(s, ret, size, gfpflags); | 
 | 2774 | 	return ret; | 
 | 2775 | } | 
 | 2776 | EXPORT_SYMBOL(kmem_cache_alloc_trace); | 
 | 2777 | #endif | 
 | 2778 |  | 
 | 2779 | #ifdef CONFIG_NUMA | 
 | 2780 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | 
 | 2781 | { | 
 | 2782 | 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); | 
 | 2783 |  | 
 | 2784 | 	trace_kmem_cache_alloc_node(_RET_IP_, ret, | 
 | 2785 | 				    s->object_size, s->size, gfpflags, node); | 
 | 2786 |  | 
 | 2787 | 	return ret; | 
 | 2788 | } | 
 | 2789 | EXPORT_SYMBOL(kmem_cache_alloc_node); | 
 | 2790 |  | 
 | 2791 | #ifdef CONFIG_TRACING | 
 | 2792 | void *kmem_cache_alloc_node_trace(struct kmem_cache *s, | 
 | 2793 | 				    gfp_t gfpflags, | 
 | 2794 | 				    int node, size_t size) | 
 | 2795 | { | 
 | 2796 | 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); | 
 | 2797 |  | 
 | 2798 | 	trace_kmalloc_node(_RET_IP_, ret, | 
 | 2799 | 			   size, s->size, gfpflags, node); | 
 | 2800 |  | 
 | 2801 | 	ret = kasan_kmalloc(s, ret, size, gfpflags); | 
 | 2802 | 	return ret; | 
 | 2803 | } | 
 | 2804 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); | 
 | 2805 | #endif | 
 | 2806 | #endif | 
 | 2807 |  | 
 | 2808 | /* | 
 | 2809 |  * Slow path handling. This may still be called frequently since objects | 
 | 2810 |  * have a longer lifetime than the cpu slabs in most processing loads. | 
 | 2811 |  * | 
 | 2812 |  * So we still attempt to reduce cache line usage. Just take the slab | 
 | 2813 |  * lock and free the item. If there is no additional partial page | 
 | 2814 |  * handling required then we can return immediately. | 
 | 2815 |  */ | 
 | 2816 | static void __slab_free(struct kmem_cache *s, struct page *page, | 
 | 2817 | 			void *head, void *tail, int cnt, | 
 | 2818 | 			unsigned long addr) | 
 | 2819 |  | 
 | 2820 | { | 
 | 2821 | 	void *prior; | 
 | 2822 | 	int was_frozen; | 
 | 2823 | 	struct page new; | 
 | 2824 | 	unsigned long counters; | 
 | 2825 | 	struct kmem_cache_node *n = NULL; | 
 | 2826 | 	unsigned long uninitialized_var(flags); | 
 | 2827 |  | 
 | 2828 | 	stat(s, FREE_SLOWPATH); | 
 | 2829 |  | 
 | 2830 | 	if (kmem_cache_debug(s) && | 
 | 2831 | 	    !free_debug_processing(s, page, head, tail, cnt, addr)) | 
 | 2832 | 		return; | 
 | 2833 |  | 
 | 2834 | 	do { | 
 | 2835 | 		if (unlikely(n)) { | 
 | 2836 | 			spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 2837 | 			n = NULL; | 
 | 2838 | 		} | 
 | 2839 | 		prior = page->freelist; | 
 | 2840 | 		counters = page->counters; | 
 | 2841 | 		set_freepointer(s, tail, prior); | 
 | 2842 | 		new.counters = counters; | 
 | 2843 | 		was_frozen = new.frozen; | 
 | 2844 | 		new.inuse -= cnt; | 
 | 2845 | 		if ((!new.inuse || !prior) && !was_frozen) { | 
 | 2846 |  | 
 | 2847 | 			if (kmem_cache_has_cpu_partial(s) && !prior) { | 
 | 2848 |  | 
 | 2849 | 				/* | 
 | 2850 | 				 * Slab was on no list before and will be | 
 | 2851 | 				 * partially empty | 
 | 2852 | 				 * We can defer the list move and instead | 
 | 2853 | 				 * freeze it. | 
 | 2854 | 				 */ | 
 | 2855 | 				new.frozen = 1; | 
 | 2856 |  | 
 | 2857 | 			} else { /* Needs to be taken off a list */ | 
 | 2858 |  | 
 | 2859 | 				n = get_node(s, page_to_nid(page)); | 
 | 2860 | 				/* | 
 | 2861 | 				 * Speculatively acquire the list_lock. | 
 | 2862 | 				 * If the cmpxchg does not succeed then we may | 
 | 2863 | 				 * drop the list_lock without any processing. | 
 | 2864 | 				 * | 
 | 2865 | 				 * Otherwise the list_lock will synchronize with | 
 | 2866 | 				 * other processors updating the list of slabs. | 
 | 2867 | 				 */ | 
 | 2868 | 				spin_lock_irqsave(&n->list_lock, flags); | 
 | 2869 |  | 
 | 2870 | 			} | 
 | 2871 | 		} | 
 | 2872 |  | 
 | 2873 | 	} while (!cmpxchg_double_slab(s, page, | 
 | 2874 | 		prior, counters, | 
 | 2875 | 		head, new.counters, | 
 | 2876 | 		"__slab_free")); | 
 | 2877 |  | 
 | 2878 | 	if (likely(!n)) { | 
 | 2879 |  | 
 | 2880 | 		/* | 
 | 2881 | 		 * If we just froze the page then put it onto the | 
 | 2882 | 		 * per cpu partial list. | 
 | 2883 | 		 */ | 
 | 2884 | 		if (new.frozen && !was_frozen) { | 
 | 2885 | 			put_cpu_partial(s, page, 1); | 
 | 2886 | 			stat(s, CPU_PARTIAL_FREE); | 
 | 2887 | 		} | 
 | 2888 | 		/* | 
 | 2889 | 		 * The list lock was not taken therefore no list | 
 | 2890 | 		 * activity can be necessary. | 
 | 2891 | 		 */ | 
 | 2892 | 		if (was_frozen) | 
 | 2893 | 			stat(s, FREE_FROZEN); | 
 | 2894 | 		return; | 
 | 2895 | 	} | 
 | 2896 |  | 
 | 2897 | 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) | 
 | 2898 | 		goto slab_empty; | 
 | 2899 |  | 
 | 2900 | 	/* | 
 | 2901 | 	 * Objects left in the slab. If it was not on the partial list before | 
 | 2902 | 	 * then add it. | 
 | 2903 | 	 */ | 
 | 2904 | 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { | 
 | 2905 | 		if (kmem_cache_debug(s)) | 
 | 2906 | 			remove_full(s, n, page); | 
 | 2907 | 		add_partial(n, page, DEACTIVATE_TO_TAIL); | 
 | 2908 | 		stat(s, FREE_ADD_PARTIAL); | 
 | 2909 | 	} | 
 | 2910 | 	spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 2911 | 	return; | 
 | 2912 |  | 
 | 2913 | slab_empty: | 
 | 2914 | 	if (prior) { | 
 | 2915 | 		/* | 
 | 2916 | 		 * Slab on the partial list. | 
 | 2917 | 		 */ | 
 | 2918 | 		remove_partial(n, page); | 
 | 2919 | 		stat(s, FREE_REMOVE_PARTIAL); | 
 | 2920 | 	} else { | 
 | 2921 | 		/* Slab must be on the full list */ | 
 | 2922 | 		remove_full(s, n, page); | 
 | 2923 | 	} | 
 | 2924 |  | 
 | 2925 | 	spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 2926 | 	stat(s, FREE_SLAB); | 
 | 2927 | 	discard_slab(s, page); | 
 | 2928 | } | 
 | 2929 |  | 
 | 2930 | /* | 
 | 2931 |  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | 
 | 2932 |  * can perform fastpath freeing without additional function calls. | 
 | 2933 |  * | 
 | 2934 |  * The fastpath is only possible if we are freeing to the current cpu slab | 
 | 2935 |  * of this processor. This typically the case if we have just allocated | 
 | 2936 |  * the item before. | 
 | 2937 |  * | 
 | 2938 |  * If fastpath is not possible then fall back to __slab_free where we deal | 
 | 2939 |  * with all sorts of special processing. | 
 | 2940 |  * | 
 | 2941 |  * Bulk free of a freelist with several objects (all pointing to the | 
 | 2942 |  * same page) possible by specifying head and tail ptr, plus objects | 
 | 2943 |  * count (cnt). Bulk free indicated by tail pointer being set. | 
 | 2944 |  */ | 
 | 2945 | static __always_inline void do_slab_free(struct kmem_cache *s, | 
 | 2946 | 				struct page *page, void *head, void *tail, | 
 | 2947 | 				int cnt, unsigned long addr) | 
 | 2948 | { | 
 | 2949 | 	void *tail_obj = tail ? : head; | 
 | 2950 | 	struct kmem_cache_cpu *c; | 
 | 2951 | 	unsigned long tid; | 
 | 2952 | redo: | 
 | 2953 | 	/* | 
 | 2954 | 	 * Determine the currently cpus per cpu slab. | 
 | 2955 | 	 * The cpu may change afterward. However that does not matter since | 
 | 2956 | 	 * data is retrieved via this pointer. If we are on the same cpu | 
 | 2957 | 	 * during the cmpxchg then the free will succeed. | 
 | 2958 | 	 */ | 
 | 2959 | 	do { | 
 | 2960 | 		tid = this_cpu_read(s->cpu_slab->tid); | 
 | 2961 | 		c = raw_cpu_ptr(s->cpu_slab); | 
 | 2962 | 	} while (IS_ENABLED(CONFIG_PREEMPT) && | 
 | 2963 | 		 unlikely(tid != READ_ONCE(c->tid))); | 
 | 2964 |  | 
 | 2965 | 	/* Same with comment on barrier() in slab_alloc_node() */ | 
 | 2966 | 	barrier(); | 
 | 2967 |  | 
 | 2968 | 	if (likely(page == c->page)) { | 
 | 2969 | 		set_freepointer(s, tail_obj, c->freelist); | 
 | 2970 |  | 
 | 2971 | 		if (unlikely(!this_cpu_cmpxchg_double( | 
 | 2972 | 				s->cpu_slab->freelist, s->cpu_slab->tid, | 
 | 2973 | 				c->freelist, tid, | 
 | 2974 | 				head, next_tid(tid)))) { | 
 | 2975 |  | 
 | 2976 | 			note_cmpxchg_failure("slab_free", s, tid); | 
 | 2977 | 			goto redo; | 
 | 2978 | 		} | 
 | 2979 | 		stat(s, FREE_FASTPATH); | 
 | 2980 | 	} else | 
 | 2981 | 		__slab_free(s, page, head, tail_obj, cnt, addr); | 
 | 2982 |  | 
 | 2983 | } | 
 | 2984 |  | 
 | 2985 | static __always_inline void slab_free(struct kmem_cache *s, struct page *page, | 
 | 2986 | 				      void *head, void *tail, int cnt, | 
 | 2987 | 				      unsigned long addr) | 
 | 2988 | { | 
 | 2989 | 	/* | 
 | 2990 | 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist | 
 | 2991 | 	 * to remove objects, whose reuse must be delayed. | 
 | 2992 | 	 */ | 
 | 2993 | 	if (slab_free_freelist_hook(s, &head, &tail)) | 
 | 2994 | 		do_slab_free(s, page, head, tail, cnt, addr); | 
 | 2995 | } | 
 | 2996 |  | 
 | 2997 | #ifdef CONFIG_KASAN_GENERIC | 
 | 2998 | void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) | 
 | 2999 | { | 
 | 3000 | 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); | 
 | 3001 | } | 
 | 3002 | #endif | 
 | 3003 |  | 
 | 3004 | void kmem_cache_free(struct kmem_cache *s, void *x) | 
 | 3005 | { | 
 | 3006 | 	s = cache_from_obj(s, x); | 
 | 3007 | 	if (!s) | 
 | 3008 | 		return; | 
 | 3009 | 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); | 
 | 3010 | 	trace_kmem_cache_free(_RET_IP_, x); | 
 | 3011 | } | 
 | 3012 | EXPORT_SYMBOL(kmem_cache_free); | 
 | 3013 |  | 
 | 3014 | struct detached_freelist { | 
 | 3015 | 	struct page *page; | 
 | 3016 | 	void *tail; | 
 | 3017 | 	void *freelist; | 
 | 3018 | 	int cnt; | 
 | 3019 | 	struct kmem_cache *s; | 
 | 3020 | }; | 
 | 3021 |  | 
 | 3022 | /* | 
 | 3023 |  * This function progressively scans the array with free objects (with | 
 | 3024 |  * a limited look ahead) and extract objects belonging to the same | 
 | 3025 |  * page.  It builds a detached freelist directly within the given | 
 | 3026 |  * page/objects.  This can happen without any need for | 
 | 3027 |  * synchronization, because the objects are owned by running process. | 
 | 3028 |  * The freelist is build up as a single linked list in the objects. | 
 | 3029 |  * The idea is, that this detached freelist can then be bulk | 
 | 3030 |  * transferred to the real freelist(s), but only requiring a single | 
 | 3031 |  * synchronization primitive.  Look ahead in the array is limited due | 
 | 3032 |  * to performance reasons. | 
 | 3033 |  */ | 
 | 3034 | static inline | 
 | 3035 | int build_detached_freelist(struct kmem_cache *s, size_t size, | 
 | 3036 | 			    void **p, struct detached_freelist *df) | 
 | 3037 | { | 
 | 3038 | 	size_t first_skipped_index = 0; | 
 | 3039 | 	int lookahead = 3; | 
 | 3040 | 	void *object; | 
 | 3041 | 	struct page *page; | 
 | 3042 |  | 
 | 3043 | 	/* Always re-init detached_freelist */ | 
 | 3044 | 	df->page = NULL; | 
 | 3045 |  | 
 | 3046 | 	do { | 
 | 3047 | 		object = p[--size]; | 
 | 3048 | 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ | 
 | 3049 | 	} while (!object && size); | 
 | 3050 |  | 
 | 3051 | 	if (!object) | 
 | 3052 | 		return 0; | 
 | 3053 |  | 
 | 3054 | 	page = virt_to_head_page(object); | 
 | 3055 | 	if (!s) { | 
 | 3056 | 		/* Handle kalloc'ed objects */ | 
 | 3057 | 		if (unlikely(!PageSlab(page))) { | 
 | 3058 | 			BUG_ON(!PageCompound(page)); | 
 | 3059 | 			kfree_hook(object); | 
 | 3060 | 			__free_pages(page, compound_order(page)); | 
 | 3061 | 			p[size] = NULL; /* mark object processed */ | 
 | 3062 | 			return size; | 
 | 3063 | 		} | 
 | 3064 | 		/* Derive kmem_cache from object */ | 
 | 3065 | 		df->s = page->slab_cache; | 
 | 3066 | 	} else { | 
 | 3067 | 		df->s = cache_from_obj(s, object); /* Support for memcg */ | 
 | 3068 | 	} | 
 | 3069 |  | 
 | 3070 | 	/* Start new detached freelist */ | 
 | 3071 | 	df->page = page; | 
 | 3072 | 	set_freepointer(df->s, object, NULL); | 
 | 3073 | 	df->tail = object; | 
 | 3074 | 	df->freelist = object; | 
 | 3075 | 	p[size] = NULL; /* mark object processed */ | 
 | 3076 | 	df->cnt = 1; | 
 | 3077 |  | 
 | 3078 | 	while (size) { | 
 | 3079 | 		object = p[--size]; | 
 | 3080 | 		if (!object) | 
 | 3081 | 			continue; /* Skip processed objects */ | 
 | 3082 |  | 
 | 3083 | 		/* df->page is always set at this point */ | 
 | 3084 | 		if (df->page == virt_to_head_page(object)) { | 
 | 3085 | 			/* Opportunity build freelist */ | 
 | 3086 | 			set_freepointer(df->s, object, df->freelist); | 
 | 3087 | 			df->freelist = object; | 
 | 3088 | 			df->cnt++; | 
 | 3089 | 			p[size] = NULL; /* mark object processed */ | 
 | 3090 |  | 
 | 3091 | 			continue; | 
 | 3092 | 		} | 
 | 3093 |  | 
 | 3094 | 		/* Limit look ahead search */ | 
 | 3095 | 		if (!--lookahead) | 
 | 3096 | 			break; | 
 | 3097 |  | 
 | 3098 | 		if (!first_skipped_index) | 
 | 3099 | 			first_skipped_index = size + 1; | 
 | 3100 | 	} | 
 | 3101 |  | 
 | 3102 | 	return first_skipped_index; | 
 | 3103 | } | 
 | 3104 |  | 
 | 3105 | /* Note that interrupts must be enabled when calling this function. */ | 
 | 3106 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) | 
 | 3107 | { | 
 | 3108 | 	if (WARN_ON(!size)) | 
 | 3109 | 		return; | 
 | 3110 |  | 
 | 3111 | 	do { | 
 | 3112 | 		struct detached_freelist df; | 
 | 3113 |  | 
 | 3114 | 		size = build_detached_freelist(s, size, p, &df); | 
 | 3115 | 		if (!df.page) | 
 | 3116 | 			continue; | 
 | 3117 |  | 
 | 3118 | 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); | 
 | 3119 | 	} while (likely(size)); | 
 | 3120 | } | 
 | 3121 | EXPORT_SYMBOL(kmem_cache_free_bulk); | 
 | 3122 |  | 
 | 3123 | /* Note that interrupts must be enabled when calling this function. */ | 
 | 3124 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, | 
 | 3125 | 			  void **p) | 
 | 3126 | { | 
 | 3127 | 	struct kmem_cache_cpu *c; | 
 | 3128 | 	int i; | 
 | 3129 |  | 
 | 3130 | 	/* memcg and kmem_cache debug support */ | 
 | 3131 | 	s = slab_pre_alloc_hook(s, flags); | 
 | 3132 | 	if (unlikely(!s)) | 
 | 3133 | 		return false; | 
 | 3134 | 	/* | 
 | 3135 | 	 * Drain objects in the per cpu slab, while disabling local | 
 | 3136 | 	 * IRQs, which protects against PREEMPT and interrupts | 
 | 3137 | 	 * handlers invoking normal fastpath. | 
 | 3138 | 	 */ | 
 | 3139 | 	local_irq_disable(); | 
 | 3140 | 	c = this_cpu_ptr(s->cpu_slab); | 
 | 3141 |  | 
 | 3142 | 	for (i = 0; i < size; i++) { | 
 | 3143 | 		void *object = c->freelist; | 
 | 3144 |  | 
 | 3145 | 		if (unlikely(!object)) { | 
 | 3146 | 			/* | 
 | 3147 | 			 * Invoking slow path likely have side-effect | 
 | 3148 | 			 * of re-populating per CPU c->freelist | 
 | 3149 | 			 */ | 
 | 3150 | 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, | 
 | 3151 | 					    _RET_IP_, c); | 
 | 3152 | 			if (unlikely(!p[i])) | 
 | 3153 | 				goto error; | 
 | 3154 |  | 
 | 3155 | 			c = this_cpu_ptr(s->cpu_slab); | 
 | 3156 | 			continue; /* goto for-loop */ | 
 | 3157 | 		} | 
 | 3158 | 		c->freelist = get_freepointer(s, object); | 
 | 3159 | 		p[i] = object; | 
 | 3160 | 	} | 
 | 3161 | 	c->tid = next_tid(c->tid); | 
 | 3162 | 	local_irq_enable(); | 
 | 3163 |  | 
 | 3164 | 	/* Clear memory outside IRQ disabled fastpath loop */ | 
 | 3165 | 	if (unlikely(slab_want_init_on_alloc(flags, s))) { | 
 | 3166 | 		int j; | 
 | 3167 |  | 
 | 3168 | 		for (j = 0; j < i; j++) | 
 | 3169 | 			memset(p[j], 0, s->object_size); | 
 | 3170 | 	} | 
 | 3171 |  | 
 | 3172 | 	/* memcg and kmem_cache debug support */ | 
 | 3173 | 	slab_post_alloc_hook(s, flags, size, p); | 
 | 3174 | 	return i; | 
 | 3175 | error: | 
 | 3176 | 	local_irq_enable(); | 
 | 3177 | 	slab_post_alloc_hook(s, flags, i, p); | 
 | 3178 | 	__kmem_cache_free_bulk(s, i, p); | 
 | 3179 | 	return 0; | 
 | 3180 | } | 
 | 3181 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); | 
 | 3182 |  | 
 | 3183 |  | 
 | 3184 | /* | 
 | 3185 |  * Object placement in a slab is made very easy because we always start at | 
 | 3186 |  * offset 0. If we tune the size of the object to the alignment then we can | 
 | 3187 |  * get the required alignment by putting one properly sized object after | 
 | 3188 |  * another. | 
 | 3189 |  * | 
 | 3190 |  * Notice that the allocation order determines the sizes of the per cpu | 
 | 3191 |  * caches. Each processor has always one slab available for allocations. | 
 | 3192 |  * Increasing the allocation order reduces the number of times that slabs | 
 | 3193 |  * must be moved on and off the partial lists and is therefore a factor in | 
 | 3194 |  * locking overhead. | 
 | 3195 |  */ | 
 | 3196 |  | 
 | 3197 | /* | 
 | 3198 |  * Mininum / Maximum order of slab pages. This influences locking overhead | 
 | 3199 |  * and slab fragmentation. A higher order reduces the number of partial slabs | 
 | 3200 |  * and increases the number of allocations possible without having to | 
 | 3201 |  * take the list_lock. | 
 | 3202 |  */ | 
 | 3203 | static unsigned int slub_min_order; | 
 | 3204 | static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; | 
 | 3205 | static unsigned int slub_min_objects; | 
 | 3206 |  | 
 | 3207 | /* | 
 | 3208 |  * Calculate the order of allocation given an slab object size. | 
 | 3209 |  * | 
 | 3210 |  * The order of allocation has significant impact on performance and other | 
 | 3211 |  * system components. Generally order 0 allocations should be preferred since | 
 | 3212 |  * order 0 does not cause fragmentation in the page allocator. Larger objects | 
 | 3213 |  * be problematic to put into order 0 slabs because there may be too much | 
 | 3214 |  * unused space left. We go to a higher order if more than 1/16th of the slab | 
 | 3215 |  * would be wasted. | 
 | 3216 |  * | 
 | 3217 |  * In order to reach satisfactory performance we must ensure that a minimum | 
 | 3218 |  * number of objects is in one slab. Otherwise we may generate too much | 
 | 3219 |  * activity on the partial lists which requires taking the list_lock. This is | 
 | 3220 |  * less a concern for large slabs though which are rarely used. | 
 | 3221 |  * | 
 | 3222 |  * slub_max_order specifies the order where we begin to stop considering the | 
 | 3223 |  * number of objects in a slab as critical. If we reach slub_max_order then | 
 | 3224 |  * we try to keep the page order as low as possible. So we accept more waste | 
 | 3225 |  * of space in favor of a small page order. | 
 | 3226 |  * | 
 | 3227 |  * Higher order allocations also allow the placement of more objects in a | 
 | 3228 |  * slab and thereby reduce object handling overhead. If the user has | 
 | 3229 |  * requested a higher mininum order then we start with that one instead of | 
 | 3230 |  * the smallest order which will fit the object. | 
 | 3231 |  */ | 
 | 3232 | static inline unsigned int slab_order(unsigned int size, | 
 | 3233 | 		unsigned int min_objects, unsigned int max_order, | 
 | 3234 | 		unsigned int fract_leftover) | 
 | 3235 | { | 
 | 3236 | 	unsigned int min_order = slub_min_order; | 
 | 3237 | 	unsigned int order; | 
 | 3238 |  | 
 | 3239 | 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE) | 
 | 3240 | 		return get_order(size * MAX_OBJS_PER_PAGE) - 1; | 
 | 3241 |  | 
 | 3242 | 	for (order = max(min_order, (unsigned int)get_order(min_objects * size)); | 
 | 3243 | 			order <= max_order; order++) { | 
 | 3244 |  | 
 | 3245 | 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order; | 
 | 3246 | 		unsigned int rem; | 
 | 3247 |  | 
 | 3248 | 		rem = slab_size % size; | 
 | 3249 |  | 
 | 3250 | 		if (rem <= slab_size / fract_leftover) | 
 | 3251 | 			break; | 
 | 3252 | 	} | 
 | 3253 |  | 
 | 3254 | 	return order; | 
 | 3255 | } | 
 | 3256 |  | 
 | 3257 | static inline int calculate_order(unsigned int size) | 
 | 3258 | { | 
 | 3259 | 	unsigned int order; | 
 | 3260 | 	unsigned int min_objects; | 
 | 3261 | 	unsigned int max_objects; | 
 | 3262 |  | 
 | 3263 | 	/* | 
 | 3264 | 	 * Attempt to find best configuration for a slab. This | 
 | 3265 | 	 * works by first attempting to generate a layout with | 
 | 3266 | 	 * the best configuration and backing off gradually. | 
 | 3267 | 	 * | 
 | 3268 | 	 * First we increase the acceptable waste in a slab. Then | 
 | 3269 | 	 * we reduce the minimum objects required in a slab. | 
 | 3270 | 	 */ | 
 | 3271 | 	min_objects = slub_min_objects; | 
 | 3272 | 	if (!min_objects) | 
 | 3273 | 		min_objects = 4 * (fls(nr_cpu_ids) + 1); | 
 | 3274 | 	max_objects = order_objects(slub_max_order, size); | 
 | 3275 | 	min_objects = min(min_objects, max_objects); | 
 | 3276 |  | 
 | 3277 | 	while (min_objects > 1) { | 
 | 3278 | 		unsigned int fraction; | 
 | 3279 |  | 
 | 3280 | 		fraction = 16; | 
 | 3281 | 		while (fraction >= 4) { | 
 | 3282 | 			order = slab_order(size, min_objects, | 
 | 3283 | 					slub_max_order, fraction); | 
 | 3284 | 			if (order <= slub_max_order) | 
 | 3285 | 				return order; | 
 | 3286 | 			fraction /= 2; | 
 | 3287 | 		} | 
 | 3288 | 		min_objects--; | 
 | 3289 | 	} | 
 | 3290 |  | 
 | 3291 | 	/* | 
 | 3292 | 	 * We were unable to place multiple objects in a slab. Now | 
 | 3293 | 	 * lets see if we can place a single object there. | 
 | 3294 | 	 */ | 
 | 3295 | 	order = slab_order(size, 1, slub_max_order, 1); | 
 | 3296 | 	if (order <= slub_max_order) | 
 | 3297 | 		return order; | 
 | 3298 |  | 
 | 3299 | 	/* | 
 | 3300 | 	 * Doh this slab cannot be placed using slub_max_order. | 
 | 3301 | 	 */ | 
 | 3302 | 	order = slab_order(size, 1, MAX_ORDER, 1); | 
 | 3303 | 	if (order < MAX_ORDER) | 
 | 3304 | 		return order; | 
 | 3305 | 	return -ENOSYS; | 
 | 3306 | } | 
 | 3307 |  | 
 | 3308 | static void | 
 | 3309 | init_kmem_cache_node(struct kmem_cache_node *n) | 
 | 3310 | { | 
 | 3311 | 	n->nr_partial = 0; | 
 | 3312 | 	spin_lock_init(&n->list_lock); | 
 | 3313 | 	INIT_LIST_HEAD(&n->partial); | 
 | 3314 | #ifdef CONFIG_SLUB_DEBUG | 
 | 3315 | 	atomic_long_set(&n->nr_slabs, 0); | 
 | 3316 | 	atomic_long_set(&n->total_objects, 0); | 
 | 3317 | 	INIT_LIST_HEAD(&n->full); | 
 | 3318 | #endif | 
 | 3319 | } | 
 | 3320 |  | 
 | 3321 | #ifdef CONFIG_MTK_MM_DEBUG | 
 | 3322 | struct kmem_cache debug_kmem_cache = { | 
 | 3323 | 		.name = "debug_kmem_cache", | 
 | 3324 | 	}; | 
 | 3325 | #endif | 
 | 3326 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) | 
 | 3327 | { | 
 | 3328 | 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < | 
 | 3329 | 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); | 
 | 3330 |  | 
 | 3331 | 	/* | 
 | 3332 | 	 * Must align to double word boundary for the double cmpxchg | 
 | 3333 | 	 * instructions to work; see __pcpu_double_call_return_bool(). | 
 | 3334 | 	 */ | 
 | 3335 | #ifdef CONFIG_MTK_MM_DEBUG | 
 | 3336 | 	if (!strcmp(s->name, "kmalloc-256")) { | 
 | 3337 | 		debug_kmem_cache.cpu_slab = __alloc_percpu( | 
 | 3338 | 				sizeof(struct kmem_cache_cpu), | 
 | 3339 | 				2 * sizeof(void *)); | 
 | 3340 | 		init_kmem_cache_cpus(&debug_kmem_cache); | 
 | 3341 | 	} | 
 | 3342 | #endif | 
 | 3343 | 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), | 
 | 3344 | 				     2 * sizeof(void *)); | 
 | 3345 |  | 
 | 3346 | 	if (!s->cpu_slab) | 
 | 3347 | 		return 0; | 
 | 3348 |  | 
 | 3349 | 	init_kmem_cache_cpus(s); | 
 | 3350 |  | 
 | 3351 | 	return 1; | 
 | 3352 | } | 
 | 3353 |  | 
 | 3354 | static struct kmem_cache *kmem_cache_node; | 
 | 3355 |  | 
 | 3356 | /* | 
 | 3357 |  * No kmalloc_node yet so do it by hand. We know that this is the first | 
 | 3358 |  * slab on the node for this slabcache. There are no concurrent accesses | 
 | 3359 |  * possible. | 
 | 3360 |  * | 
 | 3361 |  * Note that this function only works on the kmem_cache_node | 
 | 3362 |  * when allocating for the kmem_cache_node. This is used for bootstrapping | 
 | 3363 |  * memory on a fresh node that has no slab structures yet. | 
 | 3364 |  */ | 
 | 3365 | static void early_kmem_cache_node_alloc(int node) | 
 | 3366 | { | 
 | 3367 | 	struct page *page; | 
 | 3368 | 	struct kmem_cache_node *n; | 
 | 3369 |  | 
 | 3370 | 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); | 
 | 3371 |  | 
 | 3372 | 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node); | 
 | 3373 |  | 
 | 3374 | 	BUG_ON(!page); | 
 | 3375 | 	if (page_to_nid(page) != node) { | 
 | 3376 | 		pr_err("SLUB: Unable to allocate memory from node %d\n", node); | 
 | 3377 | 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); | 
 | 3378 | 	} | 
 | 3379 |  | 
 | 3380 | 	n = page->freelist; | 
 | 3381 | 	BUG_ON(!n); | 
 | 3382 | #ifdef CONFIG_SLUB_DEBUG | 
 | 3383 | 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); | 
 | 3384 | 	init_tracking(kmem_cache_node, n); | 
 | 3385 | #endif | 
 | 3386 | 	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), | 
 | 3387 | 		      GFP_KERNEL); | 
 | 3388 | 	page->freelist = get_freepointer(kmem_cache_node, n); | 
 | 3389 | 	page->inuse = 1; | 
 | 3390 | 	page->frozen = 0; | 
 | 3391 | 	kmem_cache_node->node[node] = n; | 
 | 3392 | 	init_kmem_cache_node(n); | 
 | 3393 | 	inc_slabs_node(kmem_cache_node, node, page->objects); | 
 | 3394 |  | 
 | 3395 | 	/* | 
 | 3396 | 	 * No locks need to be taken here as it has just been | 
 | 3397 | 	 * initialized and there is no concurrent access. | 
 | 3398 | 	 */ | 
 | 3399 | 	__add_partial(n, page, DEACTIVATE_TO_HEAD); | 
 | 3400 | } | 
 | 3401 |  | 
 | 3402 | static void free_kmem_cache_nodes(struct kmem_cache *s) | 
 | 3403 | { | 
 | 3404 | 	int node; | 
 | 3405 | 	struct kmem_cache_node *n; | 
 | 3406 |  | 
 | 3407 | 	for_each_kmem_cache_node(s, node, n) { | 
 | 3408 | 		s->node[node] = NULL; | 
 | 3409 | 		kmem_cache_free(kmem_cache_node, n); | 
 | 3410 | 	} | 
 | 3411 | } | 
 | 3412 |  | 
 | 3413 | void __kmem_cache_release(struct kmem_cache *s) | 
 | 3414 | { | 
 | 3415 | 	cache_random_seq_destroy(s); | 
 | 3416 | 	free_percpu(s->cpu_slab); | 
 | 3417 | 	free_kmem_cache_nodes(s); | 
 | 3418 | } | 
 | 3419 |  | 
 | 3420 | static int init_kmem_cache_nodes(struct kmem_cache *s) | 
 | 3421 | { | 
 | 3422 | 	int node; | 
 | 3423 |  | 
 | 3424 | 	for_each_node_state(node, N_NORMAL_MEMORY) { | 
 | 3425 | 		struct kmem_cache_node *n; | 
 | 3426 |  | 
 | 3427 | 		if (slab_state == DOWN) { | 
 | 3428 | 			early_kmem_cache_node_alloc(node); | 
 | 3429 | 			continue; | 
 | 3430 | 		} | 
 | 3431 | 		n = kmem_cache_alloc_node(kmem_cache_node, | 
 | 3432 | 						GFP_KERNEL, node); | 
 | 3433 |  | 
 | 3434 | 		if (!n) { | 
 | 3435 | 			free_kmem_cache_nodes(s); | 
 | 3436 | 			return 0; | 
 | 3437 | 		} | 
 | 3438 |  | 
 | 3439 | 		init_kmem_cache_node(n); | 
 | 3440 | 		s->node[node] = n; | 
 | 3441 | 	} | 
 | 3442 | 	return 1; | 
 | 3443 | } | 
 | 3444 |  | 
 | 3445 | static void set_min_partial(struct kmem_cache *s, unsigned long min) | 
 | 3446 | { | 
 | 3447 | 	if (min < MIN_PARTIAL) | 
 | 3448 | 		min = MIN_PARTIAL; | 
 | 3449 | 	else if (min > MAX_PARTIAL) | 
 | 3450 | 		min = MAX_PARTIAL; | 
 | 3451 | 	s->min_partial = min; | 
 | 3452 | } | 
 | 3453 |  | 
 | 3454 | static void set_cpu_partial(struct kmem_cache *s) | 
 | 3455 | { | 
 | 3456 | #ifdef CONFIG_SLUB_CPU_PARTIAL | 
 | 3457 | 	/* | 
 | 3458 | 	 * cpu_partial determined the maximum number of objects kept in the | 
 | 3459 | 	 * per cpu partial lists of a processor. | 
 | 3460 | 	 * | 
 | 3461 | 	 * Per cpu partial lists mainly contain slabs that just have one | 
 | 3462 | 	 * object freed. If they are used for allocation then they can be | 
 | 3463 | 	 * filled up again with minimal effort. The slab will never hit the | 
 | 3464 | 	 * per node partial lists and therefore no locking will be required. | 
 | 3465 | 	 * | 
 | 3466 | 	 * This setting also determines | 
 | 3467 | 	 * | 
 | 3468 | 	 * A) The number of objects from per cpu partial slabs dumped to the | 
 | 3469 | 	 *    per node list when we reach the limit. | 
 | 3470 | 	 * B) The number of objects in cpu partial slabs to extract from the | 
 | 3471 | 	 *    per node list when we run out of per cpu objects. We only fetch | 
 | 3472 | 	 *    50% to keep some capacity around for frees. | 
 | 3473 | 	 */ | 
 | 3474 | 	if (!kmem_cache_has_cpu_partial(s)) | 
 | 3475 | 		s->cpu_partial = 0; | 
 | 3476 | 	else if (s->size >= PAGE_SIZE) | 
 | 3477 | 		s->cpu_partial = 2; | 
 | 3478 | 	else if (s->size >= 1024) | 
 | 3479 | 		s->cpu_partial = 6; | 
 | 3480 | 	else if (s->size >= 256) | 
 | 3481 | 		s->cpu_partial = 13; | 
 | 3482 | 	else | 
 | 3483 | 		s->cpu_partial = 30; | 
 | 3484 | #endif | 
 | 3485 | } | 
 | 3486 |  | 
 | 3487 | /* | 
 | 3488 |  * calculate_sizes() determines the order and the distribution of data within | 
 | 3489 |  * a slab object. | 
 | 3490 |  */ | 
 | 3491 | static int calculate_sizes(struct kmem_cache *s, int forced_order) | 
 | 3492 | { | 
 | 3493 | 	slab_flags_t flags = s->flags; | 
 | 3494 | 	unsigned int size = s->object_size; | 
 | 3495 | 	unsigned int order; | 
 | 3496 |  | 
 | 3497 | 	/* | 
 | 3498 | 	 * Round up object size to the next word boundary. We can only | 
 | 3499 | 	 * place the free pointer at word boundaries and this determines | 
 | 3500 | 	 * the possible location of the free pointer. | 
 | 3501 | 	 */ | 
 | 3502 | 	size = ALIGN(size, sizeof(void *)); | 
 | 3503 |  | 
 | 3504 | #ifdef CONFIG_SLUB_DEBUG | 
 | 3505 | 	/* | 
 | 3506 | 	 * Determine if we can poison the object itself. If the user of | 
 | 3507 | 	 * the slab may touch the object after free or before allocation | 
 | 3508 | 	 * then we should never poison the object itself. | 
 | 3509 | 	 */ | 
 | 3510 | 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && | 
 | 3511 | 			!s->ctor) | 
 | 3512 | 		s->flags |= __OBJECT_POISON; | 
 | 3513 | 	else | 
 | 3514 | 		s->flags &= ~__OBJECT_POISON; | 
 | 3515 |  | 
 | 3516 |  | 
 | 3517 | 	/* | 
 | 3518 | 	 * If we are Redzoning then check if there is some space between the | 
 | 3519 | 	 * end of the object and the free pointer. If not then add an | 
 | 3520 | 	 * additional word to have some bytes to store Redzone information. | 
 | 3521 | 	 */ | 
 | 3522 | 	if ((flags & SLAB_RED_ZONE) && size == s->object_size) | 
 | 3523 | 		size += sizeof(void *); | 
 | 3524 | #endif | 
 | 3525 |  | 
 | 3526 | 	/* | 
 | 3527 | 	 * With that we have determined the number of bytes in actual use | 
 | 3528 | 	 * by the object. This is the potential offset to the free pointer. | 
 | 3529 | 	 */ | 
 | 3530 | 	s->inuse = size; | 
 | 3531 |  | 
 | 3532 | 	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || | 
 | 3533 | 		s->ctor)) { | 
 | 3534 | 		/* | 
 | 3535 | 		 * Relocate free pointer after the object if it is not | 
 | 3536 | 		 * permitted to overwrite the first word of the object on | 
 | 3537 | 		 * kmem_cache_free. | 
 | 3538 | 		 * | 
 | 3539 | 		 * This is the case if we do RCU, have a constructor or | 
 | 3540 | 		 * destructor or are poisoning the objects. | 
 | 3541 | 		 */ | 
 | 3542 | 		s->offset = size; | 
 | 3543 | 		size += sizeof(void *); | 
 | 3544 | 	} | 
 | 3545 |  | 
 | 3546 | #ifdef CONFIG_SLUB_DEBUG | 
 | 3547 | 	if (flags & SLAB_STORE_USER) | 
 | 3548 | 		/* | 
 | 3549 | 		 * Need to store information about allocs and frees after | 
 | 3550 | 		 * the object. | 
 | 3551 | 		 */ | 
 | 3552 | 		size += 2 * sizeof(struct track); | 
 | 3553 | #endif | 
 | 3554 |  | 
 | 3555 | 	kasan_cache_create(s, &size, &s->flags); | 
 | 3556 | #ifdef CONFIG_SLUB_DEBUG | 
 | 3557 | 	if (flags & SLAB_RED_ZONE) { | 
 | 3558 | 		/* | 
 | 3559 | 		 * Add some empty padding so that we can catch | 
 | 3560 | 		 * overwrites from earlier objects rather than let | 
 | 3561 | 		 * tracking information or the free pointer be | 
 | 3562 | 		 * corrupted if a user writes before the start | 
 | 3563 | 		 * of the object. | 
 | 3564 | 		 */ | 
 | 3565 | 		size += sizeof(void *); | 
 | 3566 |  | 
 | 3567 | 		s->red_left_pad = sizeof(void *); | 
 | 3568 | 		s->red_left_pad = ALIGN(s->red_left_pad, s->align); | 
 | 3569 | 		size += s->red_left_pad; | 
 | 3570 | 	} | 
 | 3571 | #endif | 
 | 3572 |  | 
 | 3573 | 	/* | 
 | 3574 | 	 * SLUB stores one object immediately after another beginning from | 
 | 3575 | 	 * offset 0. In order to align the objects we have to simply size | 
 | 3576 | 	 * each object to conform to the alignment. | 
 | 3577 | 	 */ | 
 | 3578 | 	size = ALIGN(size, s->align); | 
 | 3579 | 	s->size = size; | 
 | 3580 | 	if (forced_order >= 0) | 
 | 3581 | 		order = forced_order; | 
 | 3582 | 	else | 
 | 3583 | 		order = calculate_order(size); | 
 | 3584 |  | 
 | 3585 | 	if ((int)order < 0) | 
 | 3586 | 		return 0; | 
 | 3587 |  | 
 | 3588 | 	s->allocflags = 0; | 
 | 3589 | 	if (order) | 
 | 3590 | 		s->allocflags |= __GFP_COMP; | 
 | 3591 |  | 
 | 3592 | 	if (s->flags & SLAB_CACHE_DMA) | 
 | 3593 | 		s->allocflags |= GFP_DMA; | 
 | 3594 |  | 
 | 3595 | 	if (s->flags & SLAB_CACHE_DMA32) | 
 | 3596 | 		s->allocflags |= GFP_DMA32; | 
 | 3597 |  | 
 | 3598 | 	if (s->flags & SLAB_RECLAIM_ACCOUNT) | 
 | 3599 | 		s->allocflags |= __GFP_RECLAIMABLE; | 
 | 3600 |  | 
 | 3601 | 	/* | 
 | 3602 | 	 * Determine the number of objects per slab | 
 | 3603 | 	 */ | 
 | 3604 | 	s->oo = oo_make(order, size); | 
 | 3605 | 	s->min = oo_make(get_order(size), size); | 
 | 3606 | 	if (oo_objects(s->oo) > oo_objects(s->max)) | 
 | 3607 | 		s->max = s->oo; | 
 | 3608 |  | 
 | 3609 | 	return !!oo_objects(s->oo); | 
 | 3610 | } | 
 | 3611 |  | 
 | 3612 | static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags) | 
 | 3613 | { | 
 | 3614 | 	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); | 
 | 3615 | #ifdef CONFIG_SLAB_FREELIST_HARDENED | 
 | 3616 | 	s->random = get_random_long(); | 
 | 3617 | #endif | 
 | 3618 |  | 
 | 3619 | 	if (!calculate_sizes(s, -1)) | 
 | 3620 | 		goto error; | 
 | 3621 | 	if (disable_higher_order_debug) { | 
 | 3622 | 		/* | 
 | 3623 | 		 * Disable debugging flags that store metadata if the min slab | 
 | 3624 | 		 * order increased. | 
 | 3625 | 		 */ | 
 | 3626 | 		if (get_order(s->size) > get_order(s->object_size)) { | 
 | 3627 | 			s->flags &= ~DEBUG_METADATA_FLAGS; | 
 | 3628 | 			s->offset = 0; | 
 | 3629 | 			if (!calculate_sizes(s, -1)) | 
 | 3630 | 				goto error; | 
 | 3631 | 		} | 
 | 3632 | 	} | 
 | 3633 |  | 
 | 3634 | #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ | 
 | 3635 |     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) | 
 | 3636 | 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) | 
 | 3637 | 		/* Enable fast mode */ | 
 | 3638 | 		s->flags |= __CMPXCHG_DOUBLE; | 
 | 3639 | #endif | 
 | 3640 |  | 
 | 3641 | 	/* | 
 | 3642 | 	 * The larger the object size is, the more pages we want on the partial | 
 | 3643 | 	 * list to avoid pounding the page allocator excessively. | 
 | 3644 | 	 */ | 
 | 3645 | 	set_min_partial(s, ilog2(s->size) / 2); | 
 | 3646 |  | 
 | 3647 | 	set_cpu_partial(s); | 
 | 3648 |  | 
 | 3649 | #ifdef CONFIG_NUMA | 
 | 3650 | 	s->remote_node_defrag_ratio = 1000; | 
 | 3651 | #endif | 
 | 3652 |  | 
 | 3653 | 	/* Initialize the pre-computed randomized freelist if slab is up */ | 
 | 3654 | 	if (slab_state >= UP) { | 
 | 3655 | 		if (init_cache_random_seq(s)) | 
 | 3656 | 			goto error; | 
 | 3657 | 	} | 
 | 3658 |  | 
 | 3659 | 	if (!init_kmem_cache_nodes(s)) | 
 | 3660 | 		goto error; | 
 | 3661 |  | 
 | 3662 | 	if (alloc_kmem_cache_cpus(s)) | 
 | 3663 | 		return 0; | 
 | 3664 |  | 
 | 3665 | 	free_kmem_cache_nodes(s); | 
 | 3666 | error: | 
 | 3667 | 	if (flags & SLAB_PANIC) | 
 | 3668 | 		panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n", | 
 | 3669 | 		      s->name, s->size, s->size, | 
 | 3670 | 		      oo_order(s->oo), s->offset, (unsigned long)flags); | 
 | 3671 | 	return -EINVAL; | 
 | 3672 | } | 
 | 3673 |  | 
 | 3674 | static void list_slab_objects(struct kmem_cache *s, struct page *page, | 
 | 3675 | 							const char *text) | 
 | 3676 | { | 
 | 3677 | #ifdef CONFIG_SLUB_DEBUG | 
 | 3678 | 	void *addr = page_address(page); | 
 | 3679 | 	void *p; | 
 | 3680 | 	unsigned long *map = kcalloc(BITS_TO_LONGS(page->objects), | 
 | 3681 | 				     sizeof(long), | 
 | 3682 | 				     GFP_ATOMIC); | 
 | 3683 | 	if (!map) | 
 | 3684 | 		return; | 
 | 3685 | 	slab_err(s, page, text, s->name); | 
 | 3686 | 	slab_lock(page); | 
 | 3687 |  | 
 | 3688 | 	get_map(s, page, map); | 
 | 3689 | 	for_each_object(p, s, addr, page->objects) { | 
 | 3690 |  | 
 | 3691 | 		if (!test_bit(slab_index(p, s, addr), map)) { | 
 | 3692 | 			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); | 
 | 3693 | 			print_tracking(s, p); | 
 | 3694 | 		} | 
 | 3695 | 	} | 
 | 3696 | 	slab_unlock(page); | 
 | 3697 | 	kfree(map); | 
 | 3698 | #endif | 
 | 3699 | } | 
 | 3700 |  | 
 | 3701 | /* | 
 | 3702 |  * Attempt to free all partial slabs on a node. | 
 | 3703 |  * This is called from __kmem_cache_shutdown(). We must take list_lock | 
 | 3704 |  * because sysfs file might still access partial list after the shutdowning. | 
 | 3705 |  */ | 
 | 3706 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) | 
 | 3707 | { | 
 | 3708 | 	LIST_HEAD(discard); | 
 | 3709 | 	struct page *page, *h; | 
 | 3710 |  | 
 | 3711 | 	BUG_ON(irqs_disabled()); | 
 | 3712 | 	spin_lock_irq(&n->list_lock); | 
 | 3713 | 	list_for_each_entry_safe(page, h, &n->partial, lru) { | 
 | 3714 | 		if (!page->inuse) { | 
 | 3715 | 			remove_partial(n, page); | 
 | 3716 | 			list_add(&page->lru, &discard); | 
 | 3717 | 		} else { | 
 | 3718 | 			list_slab_objects(s, page, | 
 | 3719 | 			"Objects remaining in %s on __kmem_cache_shutdown()"); | 
 | 3720 | 		} | 
 | 3721 | 	} | 
 | 3722 | 	spin_unlock_irq(&n->list_lock); | 
 | 3723 |  | 
 | 3724 | 	list_for_each_entry_safe(page, h, &discard, lru) | 
 | 3725 | 		discard_slab(s, page); | 
 | 3726 | } | 
 | 3727 |  | 
 | 3728 | bool __kmem_cache_empty(struct kmem_cache *s) | 
 | 3729 | { | 
 | 3730 | 	int node; | 
 | 3731 | 	struct kmem_cache_node *n; | 
 | 3732 |  | 
 | 3733 | 	for_each_kmem_cache_node(s, node, n) | 
 | 3734 | 		if (n->nr_partial || slabs_node(s, node)) | 
 | 3735 | 			return false; | 
 | 3736 | 	return true; | 
 | 3737 | } | 
 | 3738 |  | 
 | 3739 | /* | 
 | 3740 |  * Release all resources used by a slab cache. | 
 | 3741 |  */ | 
 | 3742 | int __kmem_cache_shutdown(struct kmem_cache *s) | 
 | 3743 | { | 
 | 3744 | 	int node; | 
 | 3745 | 	struct kmem_cache_node *n; | 
 | 3746 |  | 
 | 3747 | 	flush_all(s); | 
 | 3748 | 	/* Attempt to free all objects */ | 
 | 3749 | 	for_each_kmem_cache_node(s, node, n) { | 
 | 3750 | 		free_partial(s, n); | 
 | 3751 | 		if (n->nr_partial || slabs_node(s, node)) | 
 | 3752 | 			return 1; | 
 | 3753 | 	} | 
 | 3754 | 	sysfs_slab_remove(s); | 
 | 3755 | 	return 0; | 
 | 3756 | } | 
 | 3757 |  | 
 | 3758 | /******************************************************************** | 
 | 3759 |  *		Kmalloc subsystem | 
 | 3760 |  *******************************************************************/ | 
 | 3761 |  | 
 | 3762 | static int __init setup_slub_min_order(char *str) | 
 | 3763 | { | 
 | 3764 | 	get_option(&str, (int *)&slub_min_order); | 
 | 3765 |  | 
 | 3766 | 	return 1; | 
 | 3767 | } | 
 | 3768 |  | 
 | 3769 | __setup("slub_min_order=", setup_slub_min_order); | 
 | 3770 |  | 
 | 3771 | static int __init setup_slub_max_order(char *str) | 
 | 3772 | { | 
 | 3773 | 	get_option(&str, (int *)&slub_max_order); | 
 | 3774 | 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1); | 
 | 3775 |  | 
 | 3776 | 	return 1; | 
 | 3777 | } | 
 | 3778 |  | 
 | 3779 | __setup("slub_max_order=", setup_slub_max_order); | 
 | 3780 |  | 
 | 3781 | static int __init setup_slub_min_objects(char *str) | 
 | 3782 | { | 
 | 3783 | 	get_option(&str, (int *)&slub_min_objects); | 
 | 3784 |  | 
 | 3785 | 	return 1; | 
 | 3786 | } | 
 | 3787 |  | 
 | 3788 | __setup("slub_min_objects=", setup_slub_min_objects); | 
 | 3789 |  | 
 | 3790 | void *__kmalloc(size_t size, gfp_t flags) | 
 | 3791 | { | 
 | 3792 | 	struct kmem_cache *s; | 
 | 3793 | 	void *ret; | 
 | 3794 |  | 
 | 3795 | 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) | 
 | 3796 | 		return kmalloc_large(size, flags); | 
 | 3797 |  | 
 | 3798 | 	s = kmalloc_slab(size, flags); | 
 | 3799 |  | 
 | 3800 | 	if (unlikely(ZERO_OR_NULL_PTR(s))) | 
 | 3801 | 		return s; | 
 | 3802 |  | 
 | 3803 | 	ret = slab_alloc(s, flags, _RET_IP_); | 
 | 3804 |  | 
 | 3805 | 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags); | 
 | 3806 |  | 
 | 3807 | 	ret = kasan_kmalloc(s, ret, size, flags); | 
 | 3808 |  | 
 | 3809 | 	return ret; | 
 | 3810 | } | 
 | 3811 | EXPORT_SYMBOL(__kmalloc); | 
 | 3812 |  | 
 | 3813 | #ifdef CONFIG_NUMA | 
 | 3814 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) | 
 | 3815 | { | 
 | 3816 | 	struct page *page; | 
 | 3817 | 	void *ptr = NULL; | 
 | 3818 |  | 
 | 3819 | 	flags |= __GFP_COMP; | 
 | 3820 | 	page = alloc_pages_node(node, flags, get_order(size)); | 
 | 3821 | 	if (page) | 
 | 3822 | 		ptr = page_address(page); | 
 | 3823 |  | 
 | 3824 | 	return kmalloc_large_node_hook(ptr, size, flags); | 
 | 3825 | } | 
 | 3826 |  | 
 | 3827 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | 
 | 3828 | { | 
 | 3829 | 	struct kmem_cache *s; | 
 | 3830 | 	void *ret; | 
 | 3831 |  | 
 | 3832 | 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { | 
 | 3833 | 		ret = kmalloc_large_node(size, flags, node); | 
 | 3834 |  | 
 | 3835 | 		trace_kmalloc_node(_RET_IP_, ret, | 
 | 3836 | 				   size, PAGE_SIZE << get_order(size), | 
 | 3837 | 				   flags, node); | 
 | 3838 |  | 
 | 3839 | 		return ret; | 
 | 3840 | 	} | 
 | 3841 |  | 
 | 3842 | 	s = kmalloc_slab(size, flags); | 
 | 3843 |  | 
 | 3844 | 	if (unlikely(ZERO_OR_NULL_PTR(s))) | 
 | 3845 | 		return s; | 
 | 3846 |  | 
 | 3847 | 	ret = slab_alloc_node(s, flags, node, _RET_IP_); | 
 | 3848 |  | 
 | 3849 | 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); | 
 | 3850 |  | 
 | 3851 | 	ret = kasan_kmalloc(s, ret, size, flags); | 
 | 3852 |  | 
 | 3853 | 	return ret; | 
 | 3854 | } | 
 | 3855 | EXPORT_SYMBOL(__kmalloc_node); | 
 | 3856 | #endif | 
 | 3857 |  | 
 | 3858 | #ifdef CONFIG_HARDENED_USERCOPY | 
 | 3859 | /* | 
 | 3860 |  * Rejects incorrectly sized objects and objects that are to be copied | 
 | 3861 |  * to/from userspace but do not fall entirely within the containing slab | 
 | 3862 |  * cache's usercopy region. | 
 | 3863 |  * | 
 | 3864 |  * Returns NULL if check passes, otherwise const char * to name of cache | 
 | 3865 |  * to indicate an error. | 
 | 3866 |  */ | 
 | 3867 | void __check_heap_object(const void *ptr, unsigned long n, struct page *page, | 
 | 3868 | 			 bool to_user) | 
 | 3869 | { | 
 | 3870 | 	struct kmem_cache *s; | 
 | 3871 | 	unsigned int offset; | 
 | 3872 | 	size_t object_size; | 
 | 3873 |  | 
 | 3874 | 	ptr = kasan_reset_tag(ptr); | 
 | 3875 |  | 
 | 3876 | 	/* Find object and usable object size. */ | 
 | 3877 | 	s = page->slab_cache; | 
 | 3878 |  | 
 | 3879 | 	/* Reject impossible pointers. */ | 
 | 3880 | 	if (ptr < page_address(page)) | 
 | 3881 | 		usercopy_abort("SLUB object not in SLUB page?!", NULL, | 
 | 3882 | 			       to_user, 0, n); | 
 | 3883 |  | 
 | 3884 | 	/* Find offset within object. */ | 
 | 3885 | 	offset = (ptr - page_address(page)) % s->size; | 
 | 3886 |  | 
 | 3887 | 	/* Adjust for redzone and reject if within the redzone. */ | 
 | 3888 | 	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { | 
 | 3889 | 		if (offset < s->red_left_pad) | 
 | 3890 | 			usercopy_abort("SLUB object in left red zone", | 
 | 3891 | 				       s->name, to_user, offset, n); | 
 | 3892 | 		offset -= s->red_left_pad; | 
 | 3893 | 	} | 
 | 3894 |  | 
 | 3895 | 	/* Allow address range falling entirely within usercopy region. */ | 
 | 3896 | 	if (offset >= s->useroffset && | 
 | 3897 | 	    offset - s->useroffset <= s->usersize && | 
 | 3898 | 	    n <= s->useroffset - offset + s->usersize) | 
 | 3899 | 		return; | 
 | 3900 |  | 
 | 3901 | 	/* | 
 | 3902 | 	 * If the copy is still within the allocated object, produce | 
 | 3903 | 	 * a warning instead of rejecting the copy. This is intended | 
 | 3904 | 	 * to be a temporary method to find any missing usercopy | 
 | 3905 | 	 * whitelists. | 
 | 3906 | 	 */ | 
 | 3907 | 	object_size = slab_ksize(s); | 
 | 3908 | 	if (usercopy_fallback && | 
 | 3909 | 	    offset <= object_size && n <= object_size - offset) { | 
 | 3910 | 		usercopy_warn("SLUB object", s->name, to_user, offset, n); | 
 | 3911 | 		return; | 
 | 3912 | 	} | 
 | 3913 |  | 
 | 3914 | 	usercopy_abort("SLUB object", s->name, to_user, offset, n); | 
 | 3915 | } | 
 | 3916 | #endif /* CONFIG_HARDENED_USERCOPY */ | 
 | 3917 |  | 
 | 3918 | static size_t __ksize(const void *object) | 
 | 3919 | { | 
 | 3920 | 	struct page *page; | 
 | 3921 |  | 
 | 3922 | 	if (unlikely(object == ZERO_SIZE_PTR)) | 
 | 3923 | 		return 0; | 
 | 3924 |  | 
 | 3925 | 	page = virt_to_head_page(object); | 
 | 3926 |  | 
 | 3927 | 	if (unlikely(!PageSlab(page))) { | 
 | 3928 | 		WARN_ON(!PageCompound(page)); | 
 | 3929 | 		return PAGE_SIZE << compound_order(page); | 
 | 3930 | 	} | 
 | 3931 |  | 
 | 3932 | 	return slab_ksize(page->slab_cache); | 
 | 3933 | } | 
 | 3934 |  | 
 | 3935 | size_t ksize(const void *object) | 
 | 3936 | { | 
 | 3937 | 	size_t size = __ksize(object); | 
 | 3938 | 	/* We assume that ksize callers could use whole allocated area, | 
 | 3939 | 	 * so we need to unpoison this area. | 
 | 3940 | 	 */ | 
 | 3941 | 	kasan_unpoison_shadow(object, size); | 
 | 3942 | 	return size; | 
 | 3943 | } | 
 | 3944 | EXPORT_SYMBOL(ksize); | 
 | 3945 |  | 
 | 3946 | void kfree(const void *x) | 
 | 3947 | { | 
 | 3948 | 	struct page *page; | 
 | 3949 | 	void *object = (void *)x; | 
 | 3950 |  | 
 | 3951 | 	trace_kfree(_RET_IP_, x); | 
 | 3952 |  | 
 | 3953 | 	if (unlikely(ZERO_OR_NULL_PTR(x))) | 
 | 3954 | 		return; | 
 | 3955 |  | 
 | 3956 | 	page = virt_to_head_page(x); | 
 | 3957 | 	if (unlikely(!PageSlab(page))) { | 
 | 3958 | 		BUG_ON(!PageCompound(page)); | 
 | 3959 | 		kfree_hook(object); | 
 | 3960 | 		__free_pages(page, compound_order(page)); | 
 | 3961 | 		return; | 
 | 3962 | 	} | 
 | 3963 | 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); | 
 | 3964 | } | 
 | 3965 | EXPORT_SYMBOL(kfree); | 
 | 3966 |  | 
 | 3967 | #define SHRINK_PROMOTE_MAX 32 | 
 | 3968 |  | 
 | 3969 | /* | 
 | 3970 |  * kmem_cache_shrink discards empty slabs and promotes the slabs filled | 
 | 3971 |  * up most to the head of the partial lists. New allocations will then | 
 | 3972 |  * fill those up and thus they can be removed from the partial lists. | 
 | 3973 |  * | 
 | 3974 |  * The slabs with the least items are placed last. This results in them | 
 | 3975 |  * being allocated from last increasing the chance that the last objects | 
 | 3976 |  * are freed in them. | 
 | 3977 |  */ | 
 | 3978 | int __kmem_cache_shrink(struct kmem_cache *s) | 
 | 3979 | { | 
 | 3980 | 	int node; | 
 | 3981 | 	int i; | 
 | 3982 | 	struct kmem_cache_node *n; | 
 | 3983 | 	struct page *page; | 
 | 3984 | 	struct page *t; | 
 | 3985 | 	struct list_head discard; | 
 | 3986 | 	struct list_head promote[SHRINK_PROMOTE_MAX]; | 
 | 3987 | 	unsigned long flags; | 
 | 3988 | 	int ret = 0; | 
 | 3989 |  | 
 | 3990 | 	flush_all(s); | 
 | 3991 | 	for_each_kmem_cache_node(s, node, n) { | 
 | 3992 | 		INIT_LIST_HEAD(&discard); | 
 | 3993 | 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++) | 
 | 3994 | 			INIT_LIST_HEAD(promote + i); | 
 | 3995 |  | 
 | 3996 | 		spin_lock_irqsave(&n->list_lock, flags); | 
 | 3997 |  | 
 | 3998 | 		/* | 
 | 3999 | 		 * Build lists of slabs to discard or promote. | 
 | 4000 | 		 * | 
 | 4001 | 		 * Note that concurrent frees may occur while we hold the | 
 | 4002 | 		 * list_lock. page->inuse here is the upper limit. | 
 | 4003 | 		 */ | 
 | 4004 | 		list_for_each_entry_safe(page, t, &n->partial, lru) { | 
 | 4005 | 			int free = page->objects - page->inuse; | 
 | 4006 |  | 
 | 4007 | 			/* Do not reread page->inuse */ | 
 | 4008 | 			barrier(); | 
 | 4009 |  | 
 | 4010 | 			/* We do not keep full slabs on the list */ | 
 | 4011 | 			BUG_ON(free <= 0); | 
 | 4012 |  | 
 | 4013 | 			if (free == page->objects) { | 
 | 4014 | 				list_move(&page->lru, &discard); | 
 | 4015 | 				n->nr_partial--; | 
 | 4016 | 			} else if (free <= SHRINK_PROMOTE_MAX) | 
 | 4017 | 				list_move(&page->lru, promote + free - 1); | 
 | 4018 | 		} | 
 | 4019 |  | 
 | 4020 | 		/* | 
 | 4021 | 		 * Promote the slabs filled up most to the head of the | 
 | 4022 | 		 * partial list. | 
 | 4023 | 		 */ | 
 | 4024 | 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) | 
 | 4025 | 			list_splice(promote + i, &n->partial); | 
 | 4026 |  | 
 | 4027 | 		spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 4028 |  | 
 | 4029 | 		/* Release empty slabs */ | 
 | 4030 | 		list_for_each_entry_safe(page, t, &discard, lru) | 
 | 4031 | 			discard_slab(s, page); | 
 | 4032 |  | 
 | 4033 | 		if (slabs_node(s, node)) | 
 | 4034 | 			ret = 1; | 
 | 4035 | 	} | 
 | 4036 |  | 
 | 4037 | 	return ret; | 
 | 4038 | } | 
 | 4039 |  | 
 | 4040 | #ifdef CONFIG_MEMCG | 
 | 4041 | static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) | 
 | 4042 | { | 
 | 4043 | 	/* | 
 | 4044 | 	 * Called with all the locks held after a sched RCU grace period. | 
 | 4045 | 	 * Even if @s becomes empty after shrinking, we can't know that @s | 
 | 4046 | 	 * doesn't have allocations already in-flight and thus can't | 
 | 4047 | 	 * destroy @s until the associated memcg is released. | 
 | 4048 | 	 * | 
 | 4049 | 	 * However, let's remove the sysfs files for empty caches here. | 
 | 4050 | 	 * Each cache has a lot of interface files which aren't | 
 | 4051 | 	 * particularly useful for empty draining caches; otherwise, we can | 
 | 4052 | 	 * easily end up with millions of unnecessary sysfs files on | 
 | 4053 | 	 * systems which have a lot of memory and transient cgroups. | 
 | 4054 | 	 */ | 
 | 4055 | 	if (!__kmem_cache_shrink(s)) | 
 | 4056 | 		sysfs_slab_remove(s); | 
 | 4057 | } | 
 | 4058 |  | 
 | 4059 | void __kmemcg_cache_deactivate(struct kmem_cache *s) | 
 | 4060 | { | 
 | 4061 | 	/* | 
 | 4062 | 	 * Disable empty slabs caching. Used to avoid pinning offline | 
 | 4063 | 	 * memory cgroups by kmem pages that can be freed. | 
 | 4064 | 	 */ | 
 | 4065 | 	slub_set_cpu_partial(s, 0); | 
 | 4066 | 	s->min_partial = 0; | 
 | 4067 |  | 
 | 4068 | 	/* | 
 | 4069 | 	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so | 
 | 4070 | 	 * we have to make sure the change is visible before shrinking. | 
 | 4071 | 	 */ | 
 | 4072 | 	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); | 
 | 4073 | } | 
 | 4074 | #endif | 
 | 4075 |  | 
 | 4076 | static int slab_mem_going_offline_callback(void *arg) | 
 | 4077 | { | 
 | 4078 | 	struct kmem_cache *s; | 
 | 4079 |  | 
 | 4080 | 	mutex_lock(&slab_mutex); | 
 | 4081 | 	list_for_each_entry(s, &slab_caches, list) | 
 | 4082 | 		__kmem_cache_shrink(s); | 
 | 4083 | 	mutex_unlock(&slab_mutex); | 
 | 4084 |  | 
 | 4085 | 	return 0; | 
 | 4086 | } | 
 | 4087 |  | 
 | 4088 | static void slab_mem_offline_callback(void *arg) | 
 | 4089 | { | 
 | 4090 | 	struct kmem_cache_node *n; | 
 | 4091 | 	struct kmem_cache *s; | 
 | 4092 | 	struct memory_notify *marg = arg; | 
 | 4093 | 	int offline_node; | 
 | 4094 |  | 
 | 4095 | 	offline_node = marg->status_change_nid_normal; | 
 | 4096 |  | 
 | 4097 | 	/* | 
 | 4098 | 	 * If the node still has available memory. we need kmem_cache_node | 
 | 4099 | 	 * for it yet. | 
 | 4100 | 	 */ | 
 | 4101 | 	if (offline_node < 0) | 
 | 4102 | 		return; | 
 | 4103 |  | 
 | 4104 | 	mutex_lock(&slab_mutex); | 
 | 4105 | 	list_for_each_entry(s, &slab_caches, list) { | 
 | 4106 | 		n = get_node(s, offline_node); | 
 | 4107 | 		if (n) { | 
 | 4108 | 			/* | 
 | 4109 | 			 * if n->nr_slabs > 0, slabs still exist on the node | 
 | 4110 | 			 * that is going down. We were unable to free them, | 
 | 4111 | 			 * and offline_pages() function shouldn't call this | 
 | 4112 | 			 * callback. So, we must fail. | 
 | 4113 | 			 */ | 
 | 4114 | 			BUG_ON(slabs_node(s, offline_node)); | 
 | 4115 |  | 
 | 4116 | 			s->node[offline_node] = NULL; | 
 | 4117 | 			kmem_cache_free(kmem_cache_node, n); | 
 | 4118 | 		} | 
 | 4119 | 	} | 
 | 4120 | 	mutex_unlock(&slab_mutex); | 
 | 4121 | } | 
 | 4122 |  | 
 | 4123 | static int slab_mem_going_online_callback(void *arg) | 
 | 4124 | { | 
 | 4125 | 	struct kmem_cache_node *n; | 
 | 4126 | 	struct kmem_cache *s; | 
 | 4127 | 	struct memory_notify *marg = arg; | 
 | 4128 | 	int nid = marg->status_change_nid_normal; | 
 | 4129 | 	int ret = 0; | 
 | 4130 |  | 
 | 4131 | 	/* | 
 | 4132 | 	 * If the node's memory is already available, then kmem_cache_node is | 
 | 4133 | 	 * already created. Nothing to do. | 
 | 4134 | 	 */ | 
 | 4135 | 	if (nid < 0) | 
 | 4136 | 		return 0; | 
 | 4137 |  | 
 | 4138 | 	/* | 
 | 4139 | 	 * We are bringing a node online. No memory is available yet. We must | 
 | 4140 | 	 * allocate a kmem_cache_node structure in order to bring the node | 
 | 4141 | 	 * online. | 
 | 4142 | 	 */ | 
 | 4143 | 	mutex_lock(&slab_mutex); | 
 | 4144 | 	list_for_each_entry(s, &slab_caches, list) { | 
 | 4145 | 		/* | 
 | 4146 | 		 * XXX: kmem_cache_alloc_node will fallback to other nodes | 
 | 4147 | 		 *      since memory is not yet available from the node that | 
 | 4148 | 		 *      is brought up. | 
 | 4149 | 		 */ | 
 | 4150 | 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); | 
 | 4151 | 		if (!n) { | 
 | 4152 | 			ret = -ENOMEM; | 
 | 4153 | 			goto out; | 
 | 4154 | 		} | 
 | 4155 | 		init_kmem_cache_node(n); | 
 | 4156 | 		s->node[nid] = n; | 
 | 4157 | 	} | 
 | 4158 | out: | 
 | 4159 | 	mutex_unlock(&slab_mutex); | 
 | 4160 | 	return ret; | 
 | 4161 | } | 
 | 4162 |  | 
 | 4163 | static int slab_memory_callback(struct notifier_block *self, | 
 | 4164 | 				unsigned long action, void *arg) | 
 | 4165 | { | 
 | 4166 | 	int ret = 0; | 
 | 4167 |  | 
 | 4168 | 	switch (action) { | 
 | 4169 | 	case MEM_GOING_ONLINE: | 
 | 4170 | 		ret = slab_mem_going_online_callback(arg); | 
 | 4171 | 		break; | 
 | 4172 | 	case MEM_GOING_OFFLINE: | 
 | 4173 | 		ret = slab_mem_going_offline_callback(arg); | 
 | 4174 | 		break; | 
 | 4175 | 	case MEM_OFFLINE: | 
 | 4176 | 	case MEM_CANCEL_ONLINE: | 
 | 4177 | 		slab_mem_offline_callback(arg); | 
 | 4178 | 		break; | 
 | 4179 | 	case MEM_ONLINE: | 
 | 4180 | 	case MEM_CANCEL_OFFLINE: | 
 | 4181 | 		break; | 
 | 4182 | 	} | 
 | 4183 | 	if (ret) | 
 | 4184 | 		ret = notifier_from_errno(ret); | 
 | 4185 | 	else | 
 | 4186 | 		ret = NOTIFY_OK; | 
 | 4187 | 	return ret; | 
 | 4188 | } | 
 | 4189 |  | 
 | 4190 | static struct notifier_block slab_memory_callback_nb = { | 
 | 4191 | 	.notifier_call = slab_memory_callback, | 
 | 4192 | 	.priority = SLAB_CALLBACK_PRI, | 
 | 4193 | }; | 
 | 4194 |  | 
 | 4195 | /******************************************************************** | 
 | 4196 |  *			Basic setup of slabs | 
 | 4197 |  *******************************************************************/ | 
 | 4198 |  | 
 | 4199 | /* | 
 | 4200 |  * Used for early kmem_cache structures that were allocated using | 
 | 4201 |  * the page allocator. Allocate them properly then fix up the pointers | 
 | 4202 |  * that may be pointing to the wrong kmem_cache structure. | 
 | 4203 |  */ | 
 | 4204 |  | 
 | 4205 | static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) | 
 | 4206 | { | 
 | 4207 | 	int node; | 
 | 4208 | 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); | 
 | 4209 | 	struct kmem_cache_node *n; | 
 | 4210 |  | 
 | 4211 | 	memcpy(s, static_cache, kmem_cache->object_size); | 
 | 4212 |  | 
 | 4213 | 	/* | 
 | 4214 | 	 * This runs very early, and only the boot processor is supposed to be | 
 | 4215 | 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire | 
 | 4216 | 	 * IPIs around. | 
 | 4217 | 	 */ | 
 | 4218 | 	__flush_cpu_slab(s, smp_processor_id()); | 
 | 4219 | 	for_each_kmem_cache_node(s, node, n) { | 
 | 4220 | 		struct page *p; | 
 | 4221 |  | 
 | 4222 | 		list_for_each_entry(p, &n->partial, lru) | 
 | 4223 | 			p->slab_cache = s; | 
 | 4224 |  | 
 | 4225 | #ifdef CONFIG_SLUB_DEBUG | 
 | 4226 | 		list_for_each_entry(p, &n->full, lru) | 
 | 4227 | 			p->slab_cache = s; | 
 | 4228 | #endif | 
 | 4229 | 	} | 
 | 4230 | 	slab_init_memcg_params(s); | 
 | 4231 | 	list_add(&s->list, &slab_caches); | 
 | 4232 | 	memcg_link_cache(s); | 
 | 4233 | 	return s; | 
 | 4234 | } | 
 | 4235 |  | 
 | 4236 | void __init kmem_cache_init(void) | 
 | 4237 | { | 
 | 4238 | 	static __initdata struct kmem_cache boot_kmem_cache, | 
 | 4239 | 		boot_kmem_cache_node; | 
 | 4240 |  | 
 | 4241 | 	if (debug_guardpage_minorder()) | 
 | 4242 | 		slub_max_order = 0; | 
 | 4243 |  | 
 | 4244 | 	kmem_cache_node = &boot_kmem_cache_node; | 
 | 4245 | 	kmem_cache = &boot_kmem_cache; | 
 | 4246 |  | 
 | 4247 | 	create_boot_cache(kmem_cache_node, "kmem_cache_node", | 
 | 4248 | 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0); | 
 | 4249 |  | 
 | 4250 | 	register_hotmemory_notifier(&slab_memory_callback_nb); | 
 | 4251 |  | 
 | 4252 | 	/* Able to allocate the per node structures */ | 
 | 4253 | 	slab_state = PARTIAL; | 
 | 4254 |  | 
 | 4255 | 	create_boot_cache(kmem_cache, "kmem_cache", | 
 | 4256 | 			offsetof(struct kmem_cache, node) + | 
 | 4257 | 				nr_node_ids * sizeof(struct kmem_cache_node *), | 
 | 4258 | 		       SLAB_HWCACHE_ALIGN, 0, 0); | 
 | 4259 |  | 
 | 4260 | 	kmem_cache = bootstrap(&boot_kmem_cache); | 
 | 4261 | 	kmem_cache_node = bootstrap(&boot_kmem_cache_node); | 
 | 4262 |  | 
 | 4263 | 	/* Now we can use the kmem_cache to allocate kmalloc slabs */ | 
 | 4264 | 	setup_kmalloc_cache_index_table(); | 
 | 4265 | 	create_kmalloc_caches(0); | 
 | 4266 |  | 
 | 4267 | 	/* Setup random freelists for each cache */ | 
 | 4268 | 	init_freelist_randomization(); | 
 | 4269 |  | 
 | 4270 | 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, | 
 | 4271 | 				  slub_cpu_dead); | 
 | 4272 |  | 
 | 4273 | 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n", | 
 | 4274 | 		cache_line_size(), | 
 | 4275 | 		slub_min_order, slub_max_order, slub_min_objects, | 
 | 4276 | 		nr_cpu_ids, nr_node_ids); | 
 | 4277 | } | 
 | 4278 |  | 
 | 4279 | void __init kmem_cache_init_late(void) | 
 | 4280 | { | 
 | 4281 | } | 
 | 4282 |  | 
 | 4283 | struct kmem_cache * | 
 | 4284 | __kmem_cache_alias(const char *name, unsigned int size, unsigned int align, | 
 | 4285 | 		   slab_flags_t flags, void (*ctor)(void *)) | 
 | 4286 | { | 
 | 4287 | 	struct kmem_cache *s, *c; | 
 | 4288 |  | 
 | 4289 | 	s = find_mergeable(size, align, flags, name, ctor); | 
 | 4290 | 	if (s) { | 
 | 4291 | 		s->refcount++; | 
 | 4292 |  | 
 | 4293 | 		/* | 
 | 4294 | 		 * Adjust the object sizes so that we clear | 
 | 4295 | 		 * the complete object on kzalloc. | 
 | 4296 | 		 */ | 
 | 4297 | 		s->object_size = max(s->object_size, size); | 
 | 4298 | 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *))); | 
 | 4299 |  | 
 | 4300 | 		for_each_memcg_cache(c, s) { | 
 | 4301 | 			c->object_size = s->object_size; | 
 | 4302 | 			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *))); | 
 | 4303 | 		} | 
 | 4304 |  | 
 | 4305 | 		if (sysfs_slab_alias(s, name)) { | 
 | 4306 | 			s->refcount--; | 
 | 4307 | 			s = NULL; | 
 | 4308 | 		} | 
 | 4309 | 	} | 
 | 4310 |  | 
 | 4311 | 	return s; | 
 | 4312 | } | 
 | 4313 |  | 
 | 4314 | int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags) | 
 | 4315 | { | 
 | 4316 | 	int err; | 
 | 4317 |  | 
 | 4318 | 	err = kmem_cache_open(s, flags); | 
 | 4319 | 	if (err) | 
 | 4320 | 		return err; | 
 | 4321 |  | 
 | 4322 | 	/* Mutex is not taken during early boot */ | 
 | 4323 | 	if (slab_state <= UP) | 
 | 4324 | 		return 0; | 
 | 4325 |  | 
 | 4326 | 	memcg_propagate_slab_attrs(s); | 
 | 4327 | 	err = sysfs_slab_add(s); | 
 | 4328 | 	if (err) | 
 | 4329 | 		__kmem_cache_release(s); | 
 | 4330 |  | 
 | 4331 | 	return err; | 
 | 4332 | } | 
 | 4333 |  | 
 | 4334 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) | 
 | 4335 | { | 
 | 4336 | 	struct kmem_cache *s; | 
 | 4337 | 	void *ret; | 
 | 4338 |  | 
 | 4339 | 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) | 
 | 4340 | 		return kmalloc_large(size, gfpflags); | 
 | 4341 |  | 
 | 4342 | 	s = kmalloc_slab(size, gfpflags); | 
 | 4343 |  | 
 | 4344 | 	if (unlikely(ZERO_OR_NULL_PTR(s))) | 
 | 4345 | 		return s; | 
 | 4346 |  | 
 | 4347 | 	ret = slab_alloc(s, gfpflags, caller); | 
 | 4348 |  | 
 | 4349 | 	/* Honor the call site pointer we received. */ | 
 | 4350 | 	trace_kmalloc(caller, ret, size, s->size, gfpflags); | 
 | 4351 |  | 
 | 4352 | 	return ret; | 
 | 4353 | } | 
 | 4354 |  | 
 | 4355 | #ifdef CONFIG_NUMA | 
 | 4356 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | 
 | 4357 | 					int node, unsigned long caller) | 
 | 4358 | { | 
 | 4359 | 	struct kmem_cache *s; | 
 | 4360 | 	void *ret; | 
 | 4361 |  | 
 | 4362 | 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { | 
 | 4363 | 		ret = kmalloc_large_node(size, gfpflags, node); | 
 | 4364 |  | 
 | 4365 | 		trace_kmalloc_node(caller, ret, | 
 | 4366 | 				   size, PAGE_SIZE << get_order(size), | 
 | 4367 | 				   gfpflags, node); | 
 | 4368 |  | 
 | 4369 | 		return ret; | 
 | 4370 | 	} | 
 | 4371 |  | 
 | 4372 | 	s = kmalloc_slab(size, gfpflags); | 
 | 4373 |  | 
 | 4374 | 	if (unlikely(ZERO_OR_NULL_PTR(s))) | 
 | 4375 | 		return s; | 
 | 4376 |  | 
 | 4377 | 	ret = slab_alloc_node(s, gfpflags, node, caller); | 
 | 4378 |  | 
 | 4379 | 	/* Honor the call site pointer we received. */ | 
 | 4380 | 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); | 
 | 4381 |  | 
 | 4382 | 	return ret; | 
 | 4383 | } | 
 | 4384 | #endif | 
 | 4385 |  | 
 | 4386 | #ifdef CONFIG_SYSFS | 
 | 4387 | static int count_inuse(struct page *page) | 
 | 4388 | { | 
 | 4389 | 	return page->inuse; | 
 | 4390 | } | 
 | 4391 |  | 
 | 4392 | static int count_total(struct page *page) | 
 | 4393 | { | 
 | 4394 | 	return page->objects; | 
 | 4395 | } | 
 | 4396 | #endif | 
 | 4397 |  | 
 | 4398 | #ifdef CONFIG_SLUB_DEBUG | 
 | 4399 | static int validate_slab(struct kmem_cache *s, struct page *page, | 
 | 4400 | 						unsigned long *map) | 
 | 4401 | { | 
 | 4402 | 	void *p; | 
 | 4403 | 	void *addr = page_address(page); | 
 | 4404 |  | 
 | 4405 | 	if (!check_slab(s, page) || | 
 | 4406 | 			!on_freelist(s, page, NULL)) | 
 | 4407 | 		return 0; | 
 | 4408 |  | 
 | 4409 | 	/* Now we know that a valid freelist exists */ | 
 | 4410 | 	bitmap_zero(map, page->objects); | 
 | 4411 |  | 
 | 4412 | 	get_map(s, page, map); | 
 | 4413 | 	for_each_object(p, s, addr, page->objects) { | 
 | 4414 | 		if (test_bit(slab_index(p, s, addr), map)) | 
 | 4415 | 			if (!check_object(s, page, p, SLUB_RED_INACTIVE)) | 
 | 4416 | 				return 0; | 
 | 4417 | 	} | 
 | 4418 |  | 
 | 4419 | 	for_each_object(p, s, addr, page->objects) | 
 | 4420 | 		if (!test_bit(slab_index(p, s, addr), map)) | 
 | 4421 | 			if (!check_object(s, page, p, SLUB_RED_ACTIVE)) | 
 | 4422 | 				return 0; | 
 | 4423 | 	return 1; | 
 | 4424 | } | 
 | 4425 |  | 
 | 4426 | static void validate_slab_slab(struct kmem_cache *s, struct page *page, | 
 | 4427 | 						unsigned long *map) | 
 | 4428 | { | 
 | 4429 | 	slab_lock(page); | 
 | 4430 | 	validate_slab(s, page, map); | 
 | 4431 | 	slab_unlock(page); | 
 | 4432 | } | 
 | 4433 |  | 
 | 4434 | static int validate_slab_node(struct kmem_cache *s, | 
 | 4435 | 		struct kmem_cache_node *n, unsigned long *map) | 
 | 4436 | { | 
 | 4437 | 	unsigned long count = 0; | 
 | 4438 | 	struct page *page; | 
 | 4439 | 	unsigned long flags; | 
 | 4440 |  | 
 | 4441 | 	spin_lock_irqsave(&n->list_lock, flags); | 
 | 4442 |  | 
 | 4443 | 	list_for_each_entry(page, &n->partial, lru) { | 
 | 4444 | 		validate_slab_slab(s, page, map); | 
 | 4445 | 		count++; | 
 | 4446 | 	} | 
 | 4447 | 	if (count != n->nr_partial) | 
 | 4448 | 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", | 
 | 4449 | 		       s->name, count, n->nr_partial); | 
 | 4450 |  | 
 | 4451 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 4452 | 		goto out; | 
 | 4453 |  | 
 | 4454 | 	list_for_each_entry(page, &n->full, lru) { | 
 | 4455 | 		validate_slab_slab(s, page, map); | 
 | 4456 | 		count++; | 
 | 4457 | 	} | 
 | 4458 | 	if (count != atomic_long_read(&n->nr_slabs)) | 
 | 4459 | 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", | 
 | 4460 | 		       s->name, count, atomic_long_read(&n->nr_slabs)); | 
 | 4461 |  | 
 | 4462 | out: | 
 | 4463 | 	spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 4464 | 	return count; | 
 | 4465 | } | 
 | 4466 |  | 
 | 4467 | static long validate_slab_cache(struct kmem_cache *s) | 
 | 4468 | { | 
 | 4469 | 	int node; | 
 | 4470 | 	unsigned long count = 0; | 
 | 4471 | 	unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)), | 
 | 4472 | 					   sizeof(unsigned long), | 
 | 4473 | 					   GFP_KERNEL); | 
 | 4474 | 	struct kmem_cache_node *n; | 
 | 4475 |  | 
 | 4476 | 	if (!map) | 
 | 4477 | 		return -ENOMEM; | 
 | 4478 |  | 
 | 4479 | 	flush_all(s); | 
 | 4480 | 	for_each_kmem_cache_node(s, node, n) | 
 | 4481 | 		count += validate_slab_node(s, n, map); | 
 | 4482 | 	kfree(map); | 
 | 4483 | 	return count; | 
 | 4484 | } | 
 | 4485 | /* | 
 | 4486 |  * Generate lists of code addresses where slabcache objects are allocated | 
 | 4487 |  * and freed. | 
 | 4488 |  */ | 
 | 4489 |  | 
 | 4490 | struct location { | 
 | 4491 | 	unsigned long count; | 
 | 4492 | 	unsigned long addr; | 
 | 4493 | 	long long sum_time; | 
 | 4494 | 	long min_time; | 
 | 4495 | 	long max_time; | 
 | 4496 | 	long min_pid; | 
 | 4497 | 	long max_pid; | 
 | 4498 | 	DECLARE_BITMAP(cpus, NR_CPUS); | 
 | 4499 | 	nodemask_t nodes; | 
 | 4500 | }; | 
 | 4501 |  | 
 | 4502 | struct loc_track { | 
 | 4503 | 	unsigned long max; | 
 | 4504 | 	unsigned long count; | 
 | 4505 | 	struct location *loc; | 
 | 4506 | }; | 
 | 4507 |  | 
 | 4508 | static void free_loc_track(struct loc_track *t) | 
 | 4509 | { | 
 | 4510 | 	if (t->max) | 
 | 4511 | 		free_pages((unsigned long)t->loc, | 
 | 4512 | 			get_order(sizeof(struct location) * t->max)); | 
 | 4513 | } | 
 | 4514 |  | 
 | 4515 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) | 
 | 4516 | { | 
 | 4517 | 	struct location *l; | 
 | 4518 | 	int order; | 
 | 4519 |  | 
 | 4520 | 	order = get_order(sizeof(struct location) * max); | 
 | 4521 |  | 
 | 4522 | 	l = (void *)__get_free_pages(flags, order); | 
 | 4523 | 	if (!l) | 
 | 4524 | 		return 0; | 
 | 4525 |  | 
 | 4526 | 	if (t->count) { | 
 | 4527 | 		memcpy(l, t->loc, sizeof(struct location) * t->count); | 
 | 4528 | 		free_loc_track(t); | 
 | 4529 | 	} | 
 | 4530 | 	t->max = max; | 
 | 4531 | 	t->loc = l; | 
 | 4532 | 	return 1; | 
 | 4533 | } | 
 | 4534 |  | 
 | 4535 | static int add_location(struct loc_track *t, struct kmem_cache *s, | 
 | 4536 | 				const struct track *track) | 
 | 4537 | { | 
 | 4538 | 	long start, end, pos; | 
 | 4539 | 	struct location *l; | 
 | 4540 | 	unsigned long caddr; | 
 | 4541 | 	unsigned long age = jiffies - track->when; | 
 | 4542 |  | 
 | 4543 | 	start = -1; | 
 | 4544 | 	end = t->count; | 
 | 4545 |  | 
 | 4546 | 	for ( ; ; ) { | 
 | 4547 | 		pos = start + (end - start + 1) / 2; | 
 | 4548 |  | 
 | 4549 | 		/* | 
 | 4550 | 		 * There is nothing at "end". If we end up there | 
 | 4551 | 		 * we need to add something to before end. | 
 | 4552 | 		 */ | 
 | 4553 | 		if (pos == end) | 
 | 4554 | 			break; | 
 | 4555 |  | 
 | 4556 | 		caddr = t->loc[pos].addr; | 
 | 4557 | 		if (track->addr == caddr) { | 
 | 4558 |  | 
 | 4559 | 			l = &t->loc[pos]; | 
 | 4560 | 			l->count++; | 
 | 4561 | 			if (track->when) { | 
 | 4562 | 				l->sum_time += age; | 
 | 4563 | 				if (age < l->min_time) | 
 | 4564 | 					l->min_time = age; | 
 | 4565 | 				if (age > l->max_time) | 
 | 4566 | 					l->max_time = age; | 
 | 4567 |  | 
 | 4568 | 				if (track->pid < l->min_pid) | 
 | 4569 | 					l->min_pid = track->pid; | 
 | 4570 | 				if (track->pid > l->max_pid) | 
 | 4571 | 					l->max_pid = track->pid; | 
 | 4572 |  | 
 | 4573 | 				cpumask_set_cpu(track->cpu, | 
 | 4574 | 						to_cpumask(l->cpus)); | 
 | 4575 | 			} | 
 | 4576 | 			node_set(page_to_nid(virt_to_page(track)), l->nodes); | 
 | 4577 | 			return 1; | 
 | 4578 | 		} | 
 | 4579 |  | 
 | 4580 | 		if (track->addr < caddr) | 
 | 4581 | 			end = pos; | 
 | 4582 | 		else | 
 | 4583 | 			start = pos; | 
 | 4584 | 	} | 
 | 4585 |  | 
 | 4586 | 	/* | 
 | 4587 | 	 * Not found. Insert new tracking element. | 
 | 4588 | 	 */ | 
 | 4589 | 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) | 
 | 4590 | 		return 0; | 
 | 4591 |  | 
 | 4592 | 	l = t->loc + pos; | 
 | 4593 | 	if (pos < t->count) | 
 | 4594 | 		memmove(l + 1, l, | 
 | 4595 | 			(t->count - pos) * sizeof(struct location)); | 
 | 4596 | 	t->count++; | 
 | 4597 | 	l->count = 1; | 
 | 4598 | 	l->addr = track->addr; | 
 | 4599 | 	l->sum_time = age; | 
 | 4600 | 	l->min_time = age; | 
 | 4601 | 	l->max_time = age; | 
 | 4602 | 	l->min_pid = track->pid; | 
 | 4603 | 	l->max_pid = track->pid; | 
 | 4604 | 	cpumask_clear(to_cpumask(l->cpus)); | 
 | 4605 | 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); | 
 | 4606 | 	nodes_clear(l->nodes); | 
 | 4607 | 	node_set(page_to_nid(virt_to_page(track)), l->nodes); | 
 | 4608 | 	return 1; | 
 | 4609 | } | 
 | 4610 |  | 
 | 4611 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | 
 | 4612 | 		struct page *page, enum track_item alloc, | 
 | 4613 | 		unsigned long *map) | 
 | 4614 | { | 
 | 4615 | 	void *addr = page_address(page); | 
 | 4616 | 	void *p; | 
 | 4617 |  | 
 | 4618 | 	bitmap_zero(map, page->objects); | 
 | 4619 | 	get_map(s, page, map); | 
 | 4620 |  | 
 | 4621 | 	for_each_object(p, s, addr, page->objects) | 
 | 4622 | 		if (!test_bit(slab_index(p, s, addr), map)) | 
 | 4623 | 			add_location(t, s, get_track(s, p, alloc)); | 
 | 4624 | } | 
 | 4625 |  | 
 | 4626 | static int list_locations(struct kmem_cache *s, char *buf, | 
 | 4627 | 					enum track_item alloc) | 
 | 4628 | { | 
 | 4629 | 	int len = 0; | 
 | 4630 | 	unsigned long i; | 
 | 4631 | 	struct loc_track t = { 0, 0, NULL }; | 
 | 4632 | 	int node; | 
 | 4633 | 	unsigned long *map = kmalloc_array(BITS_TO_LONGS(oo_objects(s->max)), | 
 | 4634 | 					   sizeof(unsigned long), | 
 | 4635 | 					   GFP_KERNEL); | 
 | 4636 | 	struct kmem_cache_node *n; | 
 | 4637 |  | 
 | 4638 | 	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), | 
 | 4639 | 				     GFP_KERNEL)) { | 
 | 4640 | 		kfree(map); | 
 | 4641 | 		return sprintf(buf, "Out of memory\n"); | 
 | 4642 | 	} | 
 | 4643 | 	/* Push back cpu slabs */ | 
 | 4644 | 	flush_all(s); | 
 | 4645 |  | 
 | 4646 | 	for_each_kmem_cache_node(s, node, n) { | 
 | 4647 | 		unsigned long flags; | 
 | 4648 | 		struct page *page; | 
 | 4649 |  | 
 | 4650 | 		if (!atomic_long_read(&n->nr_slabs)) | 
 | 4651 | 			continue; | 
 | 4652 |  | 
 | 4653 | 		spin_lock_irqsave(&n->list_lock, flags); | 
 | 4654 | 		list_for_each_entry(page, &n->partial, lru) | 
 | 4655 | 			process_slab(&t, s, page, alloc, map); | 
 | 4656 | 		list_for_each_entry(page, &n->full, lru) | 
 | 4657 | 			process_slab(&t, s, page, alloc, map); | 
 | 4658 | 		spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 4659 | 	} | 
 | 4660 |  | 
 | 4661 | 	for (i = 0; i < t.count; i++) { | 
 | 4662 | 		struct location *l = &t.loc[i]; | 
 | 4663 |  | 
 | 4664 | 		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) | 
 | 4665 | 			break; | 
 | 4666 | 		len += sprintf(buf + len, "%7ld ", l->count); | 
 | 4667 |  | 
 | 4668 | 		if (l->addr) | 
 | 4669 | 			len += sprintf(buf + len, "%pS", (void *)l->addr); | 
 | 4670 | 		else | 
 | 4671 | 			len += sprintf(buf + len, "<not-available>"); | 
 | 4672 |  | 
 | 4673 | 		if (l->sum_time != l->min_time) { | 
 | 4674 | 			len += sprintf(buf + len, " age=%ld/%ld/%ld", | 
 | 4675 | 				l->min_time, | 
 | 4676 | 				(long)div_u64(l->sum_time, l->count), | 
 | 4677 | 				l->max_time); | 
 | 4678 | 		} else | 
 | 4679 | 			len += sprintf(buf + len, " age=%ld", | 
 | 4680 | 				l->min_time); | 
 | 4681 |  | 
 | 4682 | 		if (l->min_pid != l->max_pid) | 
 | 4683 | 			len += sprintf(buf + len, " pid=%ld-%ld", | 
 | 4684 | 				l->min_pid, l->max_pid); | 
 | 4685 | 		else | 
 | 4686 | 			len += sprintf(buf + len, " pid=%ld", | 
 | 4687 | 				l->min_pid); | 
 | 4688 |  | 
 | 4689 | 		if (num_online_cpus() > 1 && | 
 | 4690 | 				!cpumask_empty(to_cpumask(l->cpus)) && | 
 | 4691 | 				len < PAGE_SIZE - 60) | 
 | 4692 | 			len += scnprintf(buf + len, PAGE_SIZE - len - 50, | 
 | 4693 | 					 " cpus=%*pbl", | 
 | 4694 | 					 cpumask_pr_args(to_cpumask(l->cpus))); | 
 | 4695 |  | 
 | 4696 | 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && | 
 | 4697 | 				len < PAGE_SIZE - 60) | 
 | 4698 | 			len += scnprintf(buf + len, PAGE_SIZE - len - 50, | 
 | 4699 | 					 " nodes=%*pbl", | 
 | 4700 | 					 nodemask_pr_args(&l->nodes)); | 
 | 4701 |  | 
 | 4702 | 		len += sprintf(buf + len, "\n"); | 
 | 4703 | 	} | 
 | 4704 |  | 
 | 4705 | 	free_loc_track(&t); | 
 | 4706 | 	kfree(map); | 
 | 4707 | 	if (!t.count) | 
 | 4708 | 		len += sprintf(buf, "No data\n"); | 
 | 4709 | 	return len; | 
 | 4710 | } | 
 | 4711 | #endif | 
 | 4712 |  | 
 | 4713 | #ifdef SLUB_RESILIENCY_TEST | 
 | 4714 | static void __init resiliency_test(void) | 
 | 4715 | { | 
 | 4716 | 	u8 *p; | 
 | 4717 | 	int type = KMALLOC_NORMAL; | 
 | 4718 |  | 
 | 4719 | 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); | 
 | 4720 |  | 
 | 4721 | 	pr_err("SLUB resiliency testing\n"); | 
 | 4722 | 	pr_err("-----------------------\n"); | 
 | 4723 | 	pr_err("A. Corruption after allocation\n"); | 
 | 4724 |  | 
 | 4725 | 	p = kzalloc(16, GFP_KERNEL); | 
 | 4726 | 	p[16] = 0x12; | 
 | 4727 | 	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", | 
 | 4728 | 	       p + 16); | 
 | 4729 |  | 
 | 4730 | 	validate_slab_cache(kmalloc_caches[type][4]); | 
 | 4731 |  | 
 | 4732 | 	/* Hmmm... The next two are dangerous */ | 
 | 4733 | 	p = kzalloc(32, GFP_KERNEL); | 
 | 4734 | 	p[32 + sizeof(void *)] = 0x34; | 
 | 4735 | 	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", | 
 | 4736 | 	       p); | 
 | 4737 | 	pr_err("If allocated object is overwritten then not detectable\n\n"); | 
 | 4738 |  | 
 | 4739 | 	validate_slab_cache(kmalloc_caches[type][5]); | 
 | 4740 | 	p = kzalloc(64, GFP_KERNEL); | 
 | 4741 | 	p += 64 + (get_cycles() & 0xff) * sizeof(void *); | 
 | 4742 | 	*p = 0x56; | 
 | 4743 | 	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", | 
 | 4744 | 	       p); | 
 | 4745 | 	pr_err("If allocated object is overwritten then not detectable\n\n"); | 
 | 4746 | 	validate_slab_cache(kmalloc_caches[type][6]); | 
 | 4747 |  | 
 | 4748 | 	pr_err("\nB. Corruption after free\n"); | 
 | 4749 | 	p = kzalloc(128, GFP_KERNEL); | 
 | 4750 | 	kfree(p); | 
 | 4751 | 	*p = 0x78; | 
 | 4752 | 	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); | 
 | 4753 | 	validate_slab_cache(kmalloc_caches[type][7]); | 
 | 4754 |  | 
 | 4755 | 	p = kzalloc(256, GFP_KERNEL); | 
 | 4756 | 	kfree(p); | 
 | 4757 | 	p[50] = 0x9a; | 
 | 4758 | 	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); | 
 | 4759 | 	validate_slab_cache(kmalloc_caches[type][8]); | 
 | 4760 |  | 
 | 4761 | 	p = kzalloc(512, GFP_KERNEL); | 
 | 4762 | 	kfree(p); | 
 | 4763 | 	p[512] = 0xab; | 
 | 4764 | 	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); | 
 | 4765 | 	validate_slab_cache(kmalloc_caches[type][9]); | 
 | 4766 | } | 
 | 4767 | #else | 
 | 4768 | #ifdef CONFIG_SYSFS | 
 | 4769 | static void resiliency_test(void) {}; | 
 | 4770 | #endif | 
 | 4771 | #endif | 
 | 4772 |  | 
 | 4773 | #ifdef CONFIG_SYSFS | 
 | 4774 | enum slab_stat_type { | 
 | 4775 | 	SL_ALL,			/* All slabs */ | 
 | 4776 | 	SL_PARTIAL,		/* Only partially allocated slabs */ | 
 | 4777 | 	SL_CPU,			/* Only slabs used for cpu caches */ | 
 | 4778 | 	SL_OBJECTS,		/* Determine allocated objects not slabs */ | 
 | 4779 | 	SL_TOTAL		/* Determine object capacity not slabs */ | 
 | 4780 | }; | 
 | 4781 |  | 
 | 4782 | #define SO_ALL		(1 << SL_ALL) | 
 | 4783 | #define SO_PARTIAL	(1 << SL_PARTIAL) | 
 | 4784 | #define SO_CPU		(1 << SL_CPU) | 
 | 4785 | #define SO_OBJECTS	(1 << SL_OBJECTS) | 
 | 4786 | #define SO_TOTAL	(1 << SL_TOTAL) | 
 | 4787 |  | 
 | 4788 | #ifdef CONFIG_MEMCG | 
 | 4789 | static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); | 
 | 4790 |  | 
 | 4791 | static int __init setup_slub_memcg_sysfs(char *str) | 
 | 4792 | { | 
 | 4793 | 	int v; | 
 | 4794 |  | 
 | 4795 | 	if (get_option(&str, &v) > 0) | 
 | 4796 | 		memcg_sysfs_enabled = v; | 
 | 4797 |  | 
 | 4798 | 	return 1; | 
 | 4799 | } | 
 | 4800 |  | 
 | 4801 | __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); | 
 | 4802 | #endif | 
 | 4803 |  | 
 | 4804 | static ssize_t show_slab_objects(struct kmem_cache *s, | 
 | 4805 | 			    char *buf, unsigned long flags) | 
 | 4806 | { | 
 | 4807 | 	unsigned long total = 0; | 
 | 4808 | 	int node; | 
 | 4809 | 	int x; | 
 | 4810 | 	unsigned long *nodes; | 
 | 4811 |  | 
 | 4812 | 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL); | 
 | 4813 | 	if (!nodes) | 
 | 4814 | 		return -ENOMEM; | 
 | 4815 |  | 
 | 4816 | 	if (flags & SO_CPU) { | 
 | 4817 | 		int cpu; | 
 | 4818 |  | 
 | 4819 | 		for_each_possible_cpu(cpu) { | 
 | 4820 | 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, | 
 | 4821 | 							       cpu); | 
 | 4822 | 			int node; | 
 | 4823 | 			struct page *page; | 
 | 4824 |  | 
 | 4825 | 			page = READ_ONCE(c->page); | 
 | 4826 | 			if (!page) | 
 | 4827 | 				continue; | 
 | 4828 |  | 
 | 4829 | 			node = page_to_nid(page); | 
 | 4830 | 			if (flags & SO_TOTAL) | 
 | 4831 | 				x = page->objects; | 
 | 4832 | 			else if (flags & SO_OBJECTS) | 
 | 4833 | 				x = page->inuse; | 
 | 4834 | 			else | 
 | 4835 | 				x = 1; | 
 | 4836 |  | 
 | 4837 | 			total += x; | 
 | 4838 | 			nodes[node] += x; | 
 | 4839 |  | 
 | 4840 | 			page = slub_percpu_partial_read_once(c); | 
 | 4841 | 			if (page) { | 
 | 4842 | 				node = page_to_nid(page); | 
 | 4843 | 				if (flags & SO_TOTAL) | 
 | 4844 | 					WARN_ON_ONCE(1); | 
 | 4845 | 				else if (flags & SO_OBJECTS) | 
 | 4846 | 					WARN_ON_ONCE(1); | 
 | 4847 | 				else | 
 | 4848 | 					x = page->pages; | 
 | 4849 | 				total += x; | 
 | 4850 | 				nodes[node] += x; | 
 | 4851 | 			} | 
 | 4852 | 		} | 
 | 4853 | 	} | 
 | 4854 |  | 
 | 4855 | 	/* | 
 | 4856 | 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" | 
 | 4857 | 	 * already held which will conflict with an existing lock order: | 
 | 4858 | 	 * | 
 | 4859 | 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex | 
 | 4860 | 	 * | 
 | 4861 | 	 * We don't really need mem_hotplug_lock (to hold off | 
 | 4862 | 	 * slab_mem_going_offline_callback) here because slab's memory hot | 
 | 4863 | 	 * unplug code doesn't destroy the kmem_cache->node[] data. | 
 | 4864 | 	 */ | 
 | 4865 |  | 
 | 4866 | #ifdef CONFIG_SLUB_DEBUG | 
 | 4867 | 	if (flags & SO_ALL) { | 
 | 4868 | 		struct kmem_cache_node *n; | 
 | 4869 |  | 
 | 4870 | 		for_each_kmem_cache_node(s, node, n) { | 
 | 4871 |  | 
 | 4872 | 			if (flags & SO_TOTAL) | 
 | 4873 | 				x = atomic_long_read(&n->total_objects); | 
 | 4874 | 			else if (flags & SO_OBJECTS) | 
 | 4875 | 				x = atomic_long_read(&n->total_objects) - | 
 | 4876 | 					count_partial(n, count_free); | 
 | 4877 | 			else | 
 | 4878 | 				x = atomic_long_read(&n->nr_slabs); | 
 | 4879 | 			total += x; | 
 | 4880 | 			nodes[node] += x; | 
 | 4881 | 		} | 
 | 4882 |  | 
 | 4883 | 	} else | 
 | 4884 | #endif | 
 | 4885 | 	if (flags & SO_PARTIAL) { | 
 | 4886 | 		struct kmem_cache_node *n; | 
 | 4887 |  | 
 | 4888 | 		for_each_kmem_cache_node(s, node, n) { | 
 | 4889 | 			if (flags & SO_TOTAL) | 
 | 4890 | 				x = count_partial(n, count_total); | 
 | 4891 | 			else if (flags & SO_OBJECTS) | 
 | 4892 | 				x = count_partial(n, count_inuse); | 
 | 4893 | 			else | 
 | 4894 | 				x = n->nr_partial; | 
 | 4895 | 			total += x; | 
 | 4896 | 			nodes[node] += x; | 
 | 4897 | 		} | 
 | 4898 | 	} | 
 | 4899 | 	x = sprintf(buf, "%lu", total); | 
 | 4900 | #ifdef CONFIG_NUMA | 
 | 4901 | 	for (node = 0; node < nr_node_ids; node++) | 
 | 4902 | 		if (nodes[node]) | 
 | 4903 | 			x += sprintf(buf + x, " N%d=%lu", | 
 | 4904 | 					node, nodes[node]); | 
 | 4905 | #endif | 
 | 4906 | 	kfree(nodes); | 
 | 4907 | 	return x + sprintf(buf + x, "\n"); | 
 | 4908 | } | 
 | 4909 |  | 
 | 4910 | #ifdef CONFIG_SLUB_DEBUG | 
 | 4911 | static int any_slab_objects(struct kmem_cache *s) | 
 | 4912 | { | 
 | 4913 | 	int node; | 
 | 4914 | 	struct kmem_cache_node *n; | 
 | 4915 |  | 
 | 4916 | 	for_each_kmem_cache_node(s, node, n) | 
 | 4917 | 		if (atomic_long_read(&n->total_objects)) | 
 | 4918 | 			return 1; | 
 | 4919 |  | 
 | 4920 | 	return 0; | 
 | 4921 | } | 
 | 4922 | #endif | 
 | 4923 |  | 
 | 4924 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | 
 | 4925 | #define to_slab(n) container_of(n, struct kmem_cache, kobj) | 
 | 4926 |  | 
 | 4927 | struct slab_attribute { | 
 | 4928 | 	struct attribute attr; | 
 | 4929 | 	ssize_t (*show)(struct kmem_cache *s, char *buf); | 
 | 4930 | 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | 
 | 4931 | }; | 
 | 4932 |  | 
 | 4933 | #define SLAB_ATTR_RO(_name) \ | 
 | 4934 | 	static struct slab_attribute _name##_attr = \ | 
 | 4935 | 	__ATTR(_name, 0400, _name##_show, NULL) | 
 | 4936 |  | 
 | 4937 | #define SLAB_ATTR(_name) \ | 
 | 4938 | 	static struct slab_attribute _name##_attr =  \ | 
 | 4939 | 	__ATTR(_name, 0600, _name##_show, _name##_store) | 
 | 4940 |  | 
 | 4941 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) | 
 | 4942 | { | 
 | 4943 | 	return sprintf(buf, "%u\n", s->size); | 
 | 4944 | } | 
 | 4945 | SLAB_ATTR_RO(slab_size); | 
 | 4946 |  | 
 | 4947 | static ssize_t align_show(struct kmem_cache *s, char *buf) | 
 | 4948 | { | 
 | 4949 | 	return sprintf(buf, "%u\n", s->align); | 
 | 4950 | } | 
 | 4951 | SLAB_ATTR_RO(align); | 
 | 4952 |  | 
 | 4953 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | 
 | 4954 | { | 
 | 4955 | 	return sprintf(buf, "%u\n", s->object_size); | 
 | 4956 | } | 
 | 4957 | SLAB_ATTR_RO(object_size); | 
 | 4958 |  | 
 | 4959 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | 
 | 4960 | { | 
 | 4961 | 	return sprintf(buf, "%u\n", oo_objects(s->oo)); | 
 | 4962 | } | 
 | 4963 | SLAB_ATTR_RO(objs_per_slab); | 
 | 4964 |  | 
 | 4965 | static ssize_t order_store(struct kmem_cache *s, | 
 | 4966 | 				const char *buf, size_t length) | 
 | 4967 | { | 
 | 4968 | 	unsigned int order; | 
 | 4969 | 	int err; | 
 | 4970 |  | 
 | 4971 | 	err = kstrtouint(buf, 10, &order); | 
 | 4972 | 	if (err) | 
 | 4973 | 		return err; | 
 | 4974 |  | 
 | 4975 | 	if (order > slub_max_order || order < slub_min_order) | 
 | 4976 | 		return -EINVAL; | 
 | 4977 |  | 
 | 4978 | 	calculate_sizes(s, order); | 
 | 4979 | 	return length; | 
 | 4980 | } | 
 | 4981 |  | 
 | 4982 | static ssize_t order_show(struct kmem_cache *s, char *buf) | 
 | 4983 | { | 
 | 4984 | 	return sprintf(buf, "%u\n", oo_order(s->oo)); | 
 | 4985 | } | 
 | 4986 | SLAB_ATTR(order); | 
 | 4987 |  | 
 | 4988 | static ssize_t min_partial_show(struct kmem_cache *s, char *buf) | 
 | 4989 | { | 
 | 4990 | 	return sprintf(buf, "%lu\n", s->min_partial); | 
 | 4991 | } | 
 | 4992 |  | 
 | 4993 | static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, | 
 | 4994 | 				 size_t length) | 
 | 4995 | { | 
 | 4996 | 	unsigned long min; | 
 | 4997 | 	int err; | 
 | 4998 |  | 
 | 4999 | 	err = kstrtoul(buf, 10, &min); | 
 | 5000 | 	if (err) | 
 | 5001 | 		return err; | 
 | 5002 |  | 
 | 5003 | 	set_min_partial(s, min); | 
 | 5004 | 	return length; | 
 | 5005 | } | 
 | 5006 | SLAB_ATTR(min_partial); | 
 | 5007 |  | 
 | 5008 | static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) | 
 | 5009 | { | 
 | 5010 | 	return sprintf(buf, "%u\n", slub_cpu_partial(s)); | 
 | 5011 | } | 
 | 5012 |  | 
 | 5013 | static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, | 
 | 5014 | 				 size_t length) | 
 | 5015 | { | 
 | 5016 | 	unsigned int objects; | 
 | 5017 | 	int err; | 
 | 5018 |  | 
 | 5019 | 	err = kstrtouint(buf, 10, &objects); | 
 | 5020 | 	if (err) | 
 | 5021 | 		return err; | 
 | 5022 | 	if (objects && !kmem_cache_has_cpu_partial(s)) | 
 | 5023 | 		return -EINVAL; | 
 | 5024 |  | 
 | 5025 | 	slub_set_cpu_partial(s, objects); | 
 | 5026 | 	flush_all(s); | 
 | 5027 | 	return length; | 
 | 5028 | } | 
 | 5029 | SLAB_ATTR(cpu_partial); | 
 | 5030 |  | 
 | 5031 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) | 
 | 5032 | { | 
 | 5033 | 	if (!s->ctor) | 
 | 5034 | 		return 0; | 
 | 5035 | 	return sprintf(buf, "%pS\n", s->ctor); | 
 | 5036 | } | 
 | 5037 | SLAB_ATTR_RO(ctor); | 
 | 5038 |  | 
 | 5039 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) | 
 | 5040 | { | 
 | 5041 | 	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); | 
 | 5042 | } | 
 | 5043 | SLAB_ATTR_RO(aliases); | 
 | 5044 |  | 
 | 5045 | static ssize_t partial_show(struct kmem_cache *s, char *buf) | 
 | 5046 | { | 
 | 5047 | 	return show_slab_objects(s, buf, SO_PARTIAL); | 
 | 5048 | } | 
 | 5049 | SLAB_ATTR_RO(partial); | 
 | 5050 |  | 
 | 5051 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | 
 | 5052 | { | 
 | 5053 | 	return show_slab_objects(s, buf, SO_CPU); | 
 | 5054 | } | 
 | 5055 | SLAB_ATTR_RO(cpu_slabs); | 
 | 5056 |  | 
 | 5057 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | 
 | 5058 | { | 
 | 5059 | 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); | 
 | 5060 | } | 
 | 5061 | SLAB_ATTR_RO(objects); | 
 | 5062 |  | 
 | 5063 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) | 
 | 5064 | { | 
 | 5065 | 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | 
 | 5066 | } | 
 | 5067 | SLAB_ATTR_RO(objects_partial); | 
 | 5068 |  | 
 | 5069 | static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) | 
 | 5070 | { | 
 | 5071 | 	int objects = 0; | 
 | 5072 | 	int pages = 0; | 
 | 5073 | 	int cpu; | 
 | 5074 | 	int len; | 
 | 5075 |  | 
 | 5076 | 	for_each_online_cpu(cpu) { | 
 | 5077 | 		struct page *page; | 
 | 5078 |  | 
 | 5079 | 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | 
 | 5080 |  | 
 | 5081 | 		if (page) { | 
 | 5082 | 			pages += page->pages; | 
 | 5083 | 			objects += page->pobjects; | 
 | 5084 | 		} | 
 | 5085 | 	} | 
 | 5086 |  | 
 | 5087 | 	len = sprintf(buf, "%d(%d)", objects, pages); | 
 | 5088 |  | 
 | 5089 | #ifdef CONFIG_SMP | 
 | 5090 | 	for_each_online_cpu(cpu) { | 
 | 5091 | 		struct page *page; | 
 | 5092 |  | 
 | 5093 | 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); | 
 | 5094 |  | 
 | 5095 | 		if (page && len < PAGE_SIZE - 20) | 
 | 5096 | 			len += sprintf(buf + len, " C%d=%d(%d)", cpu, | 
 | 5097 | 				page->pobjects, page->pages); | 
 | 5098 | 	} | 
 | 5099 | #endif | 
 | 5100 | 	return len + sprintf(buf + len, "\n"); | 
 | 5101 | } | 
 | 5102 | SLAB_ATTR_RO(slabs_cpu_partial); | 
 | 5103 |  | 
 | 5104 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) | 
 | 5105 | { | 
 | 5106 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | 
 | 5107 | } | 
 | 5108 |  | 
 | 5109 | static ssize_t reclaim_account_store(struct kmem_cache *s, | 
 | 5110 | 				const char *buf, size_t length) | 
 | 5111 | { | 
 | 5112 | 	s->flags &= ~SLAB_RECLAIM_ACCOUNT; | 
 | 5113 | 	if (buf[0] == '1') | 
 | 5114 | 		s->flags |= SLAB_RECLAIM_ACCOUNT; | 
 | 5115 | 	return length; | 
 | 5116 | } | 
 | 5117 | SLAB_ATTR(reclaim_account); | 
 | 5118 |  | 
 | 5119 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | 
 | 5120 | { | 
 | 5121 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | 
 | 5122 | } | 
 | 5123 | SLAB_ATTR_RO(hwcache_align); | 
 | 5124 |  | 
 | 5125 | #ifdef CONFIG_ZONE_DMA | 
 | 5126 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | 
 | 5127 | { | 
 | 5128 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | 
 | 5129 | } | 
 | 5130 | SLAB_ATTR_RO(cache_dma); | 
 | 5131 | #endif | 
 | 5132 |  | 
 | 5133 | #ifdef CONFIG_ZONE_DMA32 | 
 | 5134 | static ssize_t cache_dma32_show(struct kmem_cache *s, char *buf) | 
 | 5135 | { | 
 | 5136 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA32)); | 
 | 5137 | } | 
 | 5138 | SLAB_ATTR_RO(cache_dma32); | 
 | 5139 | #endif | 
 | 5140 |  | 
 | 5141 | static ssize_t usersize_show(struct kmem_cache *s, char *buf) | 
 | 5142 | { | 
 | 5143 | 	return sprintf(buf, "%u\n", s->usersize); | 
 | 5144 | } | 
 | 5145 | SLAB_ATTR_RO(usersize); | 
 | 5146 |  | 
 | 5147 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | 
 | 5148 | { | 
 | 5149 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); | 
 | 5150 | } | 
 | 5151 | SLAB_ATTR_RO(destroy_by_rcu); | 
 | 5152 |  | 
 | 5153 | #ifdef CONFIG_SLUB_DEBUG | 
 | 5154 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) | 
 | 5155 | { | 
 | 5156 | 	return show_slab_objects(s, buf, SO_ALL); | 
 | 5157 | } | 
 | 5158 | SLAB_ATTR_RO(slabs); | 
 | 5159 |  | 
 | 5160 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) | 
 | 5161 | { | 
 | 5162 | 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | 
 | 5163 | } | 
 | 5164 | SLAB_ATTR_RO(total_objects); | 
 | 5165 |  | 
 | 5166 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) | 
 | 5167 | { | 
 | 5168 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); | 
 | 5169 | } | 
 | 5170 |  | 
 | 5171 | static ssize_t sanity_checks_store(struct kmem_cache *s, | 
 | 5172 | 				const char *buf, size_t length) | 
 | 5173 | { | 
 | 5174 | 	s->flags &= ~SLAB_CONSISTENCY_CHECKS; | 
 | 5175 | 	if (buf[0] == '1') { | 
 | 5176 | 		s->flags &= ~__CMPXCHG_DOUBLE; | 
 | 5177 | 		s->flags |= SLAB_CONSISTENCY_CHECKS; | 
 | 5178 | 	} | 
 | 5179 | 	return length; | 
 | 5180 | } | 
 | 5181 | SLAB_ATTR(sanity_checks); | 
 | 5182 |  | 
 | 5183 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | 
 | 5184 | { | 
 | 5185 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | 
 | 5186 | } | 
 | 5187 |  | 
 | 5188 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | 
 | 5189 | 							size_t length) | 
 | 5190 | { | 
 | 5191 | 	/* | 
 | 5192 | 	 * Tracing a merged cache is going to give confusing results | 
 | 5193 | 	 * as well as cause other issues like converting a mergeable | 
 | 5194 | 	 * cache into an umergeable one. | 
 | 5195 | 	 */ | 
 | 5196 | 	if (s->refcount > 1) | 
 | 5197 | 		return -EINVAL; | 
 | 5198 |  | 
 | 5199 | 	s->flags &= ~SLAB_TRACE; | 
 | 5200 | 	if (buf[0] == '1') { | 
 | 5201 | 		s->flags &= ~__CMPXCHG_DOUBLE; | 
 | 5202 | 		s->flags |= SLAB_TRACE; | 
 | 5203 | 	} | 
 | 5204 | 	return length; | 
 | 5205 | } | 
 | 5206 | SLAB_ATTR(trace); | 
 | 5207 |  | 
 | 5208 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) | 
 | 5209 | { | 
 | 5210 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | 
 | 5211 | } | 
 | 5212 |  | 
 | 5213 | static ssize_t red_zone_store(struct kmem_cache *s, | 
 | 5214 | 				const char *buf, size_t length) | 
 | 5215 | { | 
 | 5216 | 	if (any_slab_objects(s)) | 
 | 5217 | 		return -EBUSY; | 
 | 5218 |  | 
 | 5219 | 	s->flags &= ~SLAB_RED_ZONE; | 
 | 5220 | 	if (buf[0] == '1') { | 
 | 5221 | 		s->flags |= SLAB_RED_ZONE; | 
 | 5222 | 	} | 
 | 5223 | 	calculate_sizes(s, -1); | 
 | 5224 | 	return length; | 
 | 5225 | } | 
 | 5226 | SLAB_ATTR(red_zone); | 
 | 5227 |  | 
 | 5228 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | 
 | 5229 | { | 
 | 5230 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | 
 | 5231 | } | 
 | 5232 |  | 
 | 5233 | static ssize_t poison_store(struct kmem_cache *s, | 
 | 5234 | 				const char *buf, size_t length) | 
 | 5235 | { | 
 | 5236 | 	if (any_slab_objects(s)) | 
 | 5237 | 		return -EBUSY; | 
 | 5238 |  | 
 | 5239 | 	s->flags &= ~SLAB_POISON; | 
 | 5240 | 	if (buf[0] == '1') { | 
 | 5241 | 		s->flags |= SLAB_POISON; | 
 | 5242 | 	} | 
 | 5243 | 	calculate_sizes(s, -1); | 
 | 5244 | 	return length; | 
 | 5245 | } | 
 | 5246 | SLAB_ATTR(poison); | 
 | 5247 |  | 
 | 5248 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | 
 | 5249 | { | 
 | 5250 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | 
 | 5251 | } | 
 | 5252 |  | 
 | 5253 | static ssize_t store_user_store(struct kmem_cache *s, | 
 | 5254 | 				const char *buf, size_t length) | 
 | 5255 | { | 
 | 5256 | 	if (any_slab_objects(s)) | 
 | 5257 | 		return -EBUSY; | 
 | 5258 |  | 
 | 5259 | 	s->flags &= ~SLAB_STORE_USER; | 
 | 5260 | 	if (buf[0] == '1') { | 
 | 5261 | 		s->flags &= ~__CMPXCHG_DOUBLE; | 
 | 5262 | 		s->flags |= SLAB_STORE_USER; | 
 | 5263 | 	} | 
 | 5264 | 	calculate_sizes(s, -1); | 
 | 5265 | 	return length; | 
 | 5266 | } | 
 | 5267 | SLAB_ATTR(store_user); | 
 | 5268 |  | 
 | 5269 | static ssize_t validate_show(struct kmem_cache *s, char *buf) | 
 | 5270 | { | 
 | 5271 | 	return 0; | 
 | 5272 | } | 
 | 5273 |  | 
 | 5274 | static ssize_t validate_store(struct kmem_cache *s, | 
 | 5275 | 			const char *buf, size_t length) | 
 | 5276 | { | 
 | 5277 | 	int ret = -EINVAL; | 
 | 5278 |  | 
 | 5279 | 	if (buf[0] == '1') { | 
 | 5280 | 		ret = validate_slab_cache(s); | 
 | 5281 | 		if (ret >= 0) | 
 | 5282 | 			ret = length; | 
 | 5283 | 	} | 
 | 5284 | 	return ret; | 
 | 5285 | } | 
 | 5286 | SLAB_ATTR(validate); | 
 | 5287 |  | 
 | 5288 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) | 
 | 5289 | { | 
 | 5290 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 5291 | 		return -ENOSYS; | 
 | 5292 | 	return list_locations(s, buf, TRACK_ALLOC); | 
 | 5293 | } | 
 | 5294 | SLAB_ATTR_RO(alloc_calls); | 
 | 5295 |  | 
 | 5296 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | 
 | 5297 | { | 
 | 5298 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 5299 | 		return -ENOSYS; | 
 | 5300 | 	return list_locations(s, buf, TRACK_FREE); | 
 | 5301 | } | 
 | 5302 | SLAB_ATTR_RO(free_calls); | 
 | 5303 | #endif /* CONFIG_SLUB_DEBUG */ | 
 | 5304 |  | 
 | 5305 | #ifdef CONFIG_FAILSLAB | 
 | 5306 | static ssize_t failslab_show(struct kmem_cache *s, char *buf) | 
 | 5307 | { | 
 | 5308 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); | 
 | 5309 | } | 
 | 5310 |  | 
 | 5311 | static ssize_t failslab_store(struct kmem_cache *s, const char *buf, | 
 | 5312 | 							size_t length) | 
 | 5313 | { | 
 | 5314 | 	if (s->refcount > 1) | 
 | 5315 | 		return -EINVAL; | 
 | 5316 |  | 
 | 5317 | 	s->flags &= ~SLAB_FAILSLAB; | 
 | 5318 | 	if (buf[0] == '1') | 
 | 5319 | 		s->flags |= SLAB_FAILSLAB; | 
 | 5320 | 	return length; | 
 | 5321 | } | 
 | 5322 | SLAB_ATTR(failslab); | 
 | 5323 | #endif | 
 | 5324 |  | 
 | 5325 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) | 
 | 5326 | { | 
 | 5327 | 	return 0; | 
 | 5328 | } | 
 | 5329 |  | 
 | 5330 | static ssize_t shrink_store(struct kmem_cache *s, | 
 | 5331 | 			const char *buf, size_t length) | 
 | 5332 | { | 
 | 5333 | 	if (buf[0] == '1') | 
 | 5334 | 		kmem_cache_shrink(s); | 
 | 5335 | 	else | 
 | 5336 | 		return -EINVAL; | 
 | 5337 | 	return length; | 
 | 5338 | } | 
 | 5339 | SLAB_ATTR(shrink); | 
 | 5340 |  | 
 | 5341 | #ifdef CONFIG_NUMA | 
 | 5342 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) | 
 | 5343 | { | 
 | 5344 | 	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10); | 
 | 5345 | } | 
 | 5346 |  | 
 | 5347 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, | 
 | 5348 | 				const char *buf, size_t length) | 
 | 5349 | { | 
 | 5350 | 	unsigned int ratio; | 
 | 5351 | 	int err; | 
 | 5352 |  | 
 | 5353 | 	err = kstrtouint(buf, 10, &ratio); | 
 | 5354 | 	if (err) | 
 | 5355 | 		return err; | 
 | 5356 | 	if (ratio > 100) | 
 | 5357 | 		return -ERANGE; | 
 | 5358 |  | 
 | 5359 | 	s->remote_node_defrag_ratio = ratio * 10; | 
 | 5360 |  | 
 | 5361 | 	return length; | 
 | 5362 | } | 
 | 5363 | SLAB_ATTR(remote_node_defrag_ratio); | 
 | 5364 | #endif | 
 | 5365 |  | 
 | 5366 | #ifdef CONFIG_SLUB_STATS | 
 | 5367 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) | 
 | 5368 | { | 
 | 5369 | 	unsigned long sum  = 0; | 
 | 5370 | 	int cpu; | 
 | 5371 | 	int len; | 
 | 5372 | 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL); | 
 | 5373 |  | 
 | 5374 | 	if (!data) | 
 | 5375 | 		return -ENOMEM; | 
 | 5376 |  | 
 | 5377 | 	for_each_online_cpu(cpu) { | 
 | 5378 | 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; | 
 | 5379 |  | 
 | 5380 | 		data[cpu] = x; | 
 | 5381 | 		sum += x; | 
 | 5382 | 	} | 
 | 5383 |  | 
 | 5384 | 	len = sprintf(buf, "%lu", sum); | 
 | 5385 |  | 
 | 5386 | #ifdef CONFIG_SMP | 
 | 5387 | 	for_each_online_cpu(cpu) { | 
 | 5388 | 		if (data[cpu] && len < PAGE_SIZE - 20) | 
 | 5389 | 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); | 
 | 5390 | 	} | 
 | 5391 | #endif | 
 | 5392 | 	kfree(data); | 
 | 5393 | 	return len + sprintf(buf + len, "\n"); | 
 | 5394 | } | 
 | 5395 |  | 
 | 5396 | static void clear_stat(struct kmem_cache *s, enum stat_item si) | 
 | 5397 | { | 
 | 5398 | 	int cpu; | 
 | 5399 |  | 
 | 5400 | 	for_each_online_cpu(cpu) | 
 | 5401 | 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; | 
 | 5402 | } | 
 | 5403 |  | 
 | 5404 | #define STAT_ATTR(si, text) 					\ | 
 | 5405 | static ssize_t text##_show(struct kmem_cache *s, char *buf)	\ | 
 | 5406 | {								\ | 
 | 5407 | 	return show_stat(s, buf, si);				\ | 
 | 5408 | }								\ | 
 | 5409 | static ssize_t text##_store(struct kmem_cache *s,		\ | 
 | 5410 | 				const char *buf, size_t length)	\ | 
 | 5411 | {								\ | 
 | 5412 | 	if (buf[0] != '0')					\ | 
 | 5413 | 		return -EINVAL;					\ | 
 | 5414 | 	clear_stat(s, si);					\ | 
 | 5415 | 	return length;						\ | 
 | 5416 | }								\ | 
 | 5417 | SLAB_ATTR(text);						\ | 
 | 5418 |  | 
 | 5419 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | 
 | 5420 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | 
 | 5421 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | 
 | 5422 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | 
 | 5423 | STAT_ATTR(FREE_FROZEN, free_frozen); | 
 | 5424 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | 
 | 5425 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | 
 | 5426 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | 
 | 5427 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | 
 | 5428 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | 
 | 5429 | STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); | 
 | 5430 | STAT_ATTR(FREE_SLAB, free_slab); | 
 | 5431 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | 
 | 5432 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | 
 | 5433 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | 
 | 5434 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | 
 | 5435 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | 
 | 5436 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | 
 | 5437 | STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); | 
 | 5438 | STAT_ATTR(ORDER_FALLBACK, order_fallback); | 
 | 5439 | STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); | 
 | 5440 | STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); | 
 | 5441 | STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); | 
 | 5442 | STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); | 
 | 5443 | STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); | 
 | 5444 | STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); | 
 | 5445 | #endif | 
 | 5446 |  | 
 | 5447 | static struct attribute *slab_attrs[] = { | 
 | 5448 | 	&slab_size_attr.attr, | 
 | 5449 | 	&object_size_attr.attr, | 
 | 5450 | 	&objs_per_slab_attr.attr, | 
 | 5451 | 	&order_attr.attr, | 
 | 5452 | 	&min_partial_attr.attr, | 
 | 5453 | 	&cpu_partial_attr.attr, | 
 | 5454 | 	&objects_attr.attr, | 
 | 5455 | 	&objects_partial_attr.attr, | 
 | 5456 | 	&partial_attr.attr, | 
 | 5457 | 	&cpu_slabs_attr.attr, | 
 | 5458 | 	&ctor_attr.attr, | 
 | 5459 | 	&aliases_attr.attr, | 
 | 5460 | 	&align_attr.attr, | 
 | 5461 | 	&hwcache_align_attr.attr, | 
 | 5462 | 	&reclaim_account_attr.attr, | 
 | 5463 | 	&destroy_by_rcu_attr.attr, | 
 | 5464 | 	&shrink_attr.attr, | 
 | 5465 | 	&slabs_cpu_partial_attr.attr, | 
 | 5466 | #ifdef CONFIG_SLUB_DEBUG | 
 | 5467 | 	&total_objects_attr.attr, | 
 | 5468 | 	&slabs_attr.attr, | 
 | 5469 | 	&sanity_checks_attr.attr, | 
 | 5470 | 	&trace_attr.attr, | 
 | 5471 | 	&red_zone_attr.attr, | 
 | 5472 | 	&poison_attr.attr, | 
 | 5473 | 	&store_user_attr.attr, | 
 | 5474 | 	&validate_attr.attr, | 
 | 5475 | 	&alloc_calls_attr.attr, | 
 | 5476 | 	&free_calls_attr.attr, | 
 | 5477 | #endif | 
 | 5478 | #ifdef CONFIG_ZONE_DMA | 
 | 5479 | 	&cache_dma_attr.attr, | 
 | 5480 | #endif | 
 | 5481 | #ifdef CONFIG_ZONE_DMA32 | 
 | 5482 | 	&cache_dma32_attr.attr, | 
 | 5483 | #endif | 
 | 5484 | #ifdef CONFIG_NUMA | 
 | 5485 | 	&remote_node_defrag_ratio_attr.attr, | 
 | 5486 | #endif | 
 | 5487 | #ifdef CONFIG_SLUB_STATS | 
 | 5488 | 	&alloc_fastpath_attr.attr, | 
 | 5489 | 	&alloc_slowpath_attr.attr, | 
 | 5490 | 	&free_fastpath_attr.attr, | 
 | 5491 | 	&free_slowpath_attr.attr, | 
 | 5492 | 	&free_frozen_attr.attr, | 
 | 5493 | 	&free_add_partial_attr.attr, | 
 | 5494 | 	&free_remove_partial_attr.attr, | 
 | 5495 | 	&alloc_from_partial_attr.attr, | 
 | 5496 | 	&alloc_slab_attr.attr, | 
 | 5497 | 	&alloc_refill_attr.attr, | 
 | 5498 | 	&alloc_node_mismatch_attr.attr, | 
 | 5499 | 	&free_slab_attr.attr, | 
 | 5500 | 	&cpuslab_flush_attr.attr, | 
 | 5501 | 	&deactivate_full_attr.attr, | 
 | 5502 | 	&deactivate_empty_attr.attr, | 
 | 5503 | 	&deactivate_to_head_attr.attr, | 
 | 5504 | 	&deactivate_to_tail_attr.attr, | 
 | 5505 | 	&deactivate_remote_frees_attr.attr, | 
 | 5506 | 	&deactivate_bypass_attr.attr, | 
 | 5507 | 	&order_fallback_attr.attr, | 
 | 5508 | 	&cmpxchg_double_fail_attr.attr, | 
 | 5509 | 	&cmpxchg_double_cpu_fail_attr.attr, | 
 | 5510 | 	&cpu_partial_alloc_attr.attr, | 
 | 5511 | 	&cpu_partial_free_attr.attr, | 
 | 5512 | 	&cpu_partial_node_attr.attr, | 
 | 5513 | 	&cpu_partial_drain_attr.attr, | 
 | 5514 | #endif | 
 | 5515 | #ifdef CONFIG_FAILSLAB | 
 | 5516 | 	&failslab_attr.attr, | 
 | 5517 | #endif | 
 | 5518 | 	&usersize_attr.attr, | 
 | 5519 |  | 
 | 5520 | 	NULL | 
 | 5521 | }; | 
 | 5522 |  | 
 | 5523 | static const struct attribute_group slab_attr_group = { | 
 | 5524 | 	.attrs = slab_attrs, | 
 | 5525 | }; | 
 | 5526 |  | 
 | 5527 | static ssize_t slab_attr_show(struct kobject *kobj, | 
 | 5528 | 				struct attribute *attr, | 
 | 5529 | 				char *buf) | 
 | 5530 | { | 
 | 5531 | 	struct slab_attribute *attribute; | 
 | 5532 | 	struct kmem_cache *s; | 
 | 5533 | 	int err; | 
 | 5534 |  | 
 | 5535 | 	attribute = to_slab_attr(attr); | 
 | 5536 | 	s = to_slab(kobj); | 
 | 5537 |  | 
 | 5538 | 	if (!attribute->show) | 
 | 5539 | 		return -EIO; | 
 | 5540 |  | 
 | 5541 | 	err = attribute->show(s, buf); | 
 | 5542 |  | 
 | 5543 | 	return err; | 
 | 5544 | } | 
 | 5545 |  | 
 | 5546 | static ssize_t slab_attr_store(struct kobject *kobj, | 
 | 5547 | 				struct attribute *attr, | 
 | 5548 | 				const char *buf, size_t len) | 
 | 5549 | { | 
 | 5550 | 	struct slab_attribute *attribute; | 
 | 5551 | 	struct kmem_cache *s; | 
 | 5552 | 	int err; | 
 | 5553 |  | 
 | 5554 | 	attribute = to_slab_attr(attr); | 
 | 5555 | 	s = to_slab(kobj); | 
 | 5556 |  | 
 | 5557 | 	if (!attribute->store) | 
 | 5558 | 		return -EIO; | 
 | 5559 |  | 
 | 5560 | 	err = attribute->store(s, buf, len); | 
 | 5561 | #ifdef CONFIG_MEMCG | 
 | 5562 | 	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { | 
 | 5563 | 		struct kmem_cache *c; | 
 | 5564 |  | 
 | 5565 | 		mutex_lock(&slab_mutex); | 
 | 5566 | 		if (s->max_attr_size < len) | 
 | 5567 | 			s->max_attr_size = len; | 
 | 5568 |  | 
 | 5569 | 		/* | 
 | 5570 | 		 * This is a best effort propagation, so this function's return | 
 | 5571 | 		 * value will be determined by the parent cache only. This is | 
 | 5572 | 		 * basically because not all attributes will have a well | 
 | 5573 | 		 * defined semantics for rollbacks - most of the actions will | 
 | 5574 | 		 * have permanent effects. | 
 | 5575 | 		 * | 
 | 5576 | 		 * Returning the error value of any of the children that fail | 
 | 5577 | 		 * is not 100 % defined, in the sense that users seeing the | 
 | 5578 | 		 * error code won't be able to know anything about the state of | 
 | 5579 | 		 * the cache. | 
 | 5580 | 		 * | 
 | 5581 | 		 * Only returning the error code for the parent cache at least | 
 | 5582 | 		 * has well defined semantics. The cache being written to | 
 | 5583 | 		 * directly either failed or succeeded, in which case we loop | 
 | 5584 | 		 * through the descendants with best-effort propagation. | 
 | 5585 | 		 */ | 
 | 5586 | 		for_each_memcg_cache(c, s) | 
 | 5587 | 			attribute->store(c, buf, len); | 
 | 5588 | 		mutex_unlock(&slab_mutex); | 
 | 5589 | 	} | 
 | 5590 | #endif | 
 | 5591 | 	return err; | 
 | 5592 | } | 
 | 5593 |  | 
 | 5594 | static void memcg_propagate_slab_attrs(struct kmem_cache *s) | 
 | 5595 | { | 
 | 5596 | #ifdef CONFIG_MEMCG | 
 | 5597 | 	int i; | 
 | 5598 | 	char *buffer = NULL; | 
 | 5599 | 	struct kmem_cache *root_cache; | 
 | 5600 |  | 
 | 5601 | 	if (is_root_cache(s)) | 
 | 5602 | 		return; | 
 | 5603 |  | 
 | 5604 | 	root_cache = s->memcg_params.root_cache; | 
 | 5605 |  | 
 | 5606 | 	/* | 
 | 5607 | 	 * This mean this cache had no attribute written. Therefore, no point | 
 | 5608 | 	 * in copying default values around | 
 | 5609 | 	 */ | 
 | 5610 | 	if (!root_cache->max_attr_size) | 
 | 5611 | 		return; | 
 | 5612 |  | 
 | 5613 | 	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { | 
 | 5614 | 		char mbuf[64]; | 
 | 5615 | 		char *buf; | 
 | 5616 | 		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); | 
 | 5617 | 		ssize_t len; | 
 | 5618 |  | 
 | 5619 | 		if (!attr || !attr->store || !attr->show) | 
 | 5620 | 			continue; | 
 | 5621 |  | 
 | 5622 | 		/* | 
 | 5623 | 		 * It is really bad that we have to allocate here, so we will | 
 | 5624 | 		 * do it only as a fallback. If we actually allocate, though, | 
 | 5625 | 		 * we can just use the allocated buffer until the end. | 
 | 5626 | 		 * | 
 | 5627 | 		 * Most of the slub attributes will tend to be very small in | 
 | 5628 | 		 * size, but sysfs allows buffers up to a page, so they can | 
 | 5629 | 		 * theoretically happen. | 
 | 5630 | 		 */ | 
 | 5631 | 		if (buffer) | 
 | 5632 | 			buf = buffer; | 
 | 5633 | 		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) | 
 | 5634 | 			buf = mbuf; | 
 | 5635 | 		else { | 
 | 5636 | 			buffer = (char *) get_zeroed_page(GFP_KERNEL); | 
 | 5637 | 			if (WARN_ON(!buffer)) | 
 | 5638 | 				continue; | 
 | 5639 | 			buf = buffer; | 
 | 5640 | 		} | 
 | 5641 |  | 
 | 5642 | 		len = attr->show(root_cache, buf); | 
 | 5643 | 		if (len > 0) | 
 | 5644 | 			attr->store(s, buf, len); | 
 | 5645 | 	} | 
 | 5646 |  | 
 | 5647 | 	if (buffer) | 
 | 5648 | 		free_page((unsigned long)buffer); | 
 | 5649 | #endif | 
 | 5650 | } | 
 | 5651 |  | 
 | 5652 | static void kmem_cache_release(struct kobject *k) | 
 | 5653 | { | 
 | 5654 | 	slab_kmem_cache_release(to_slab(k)); | 
 | 5655 | } | 
 | 5656 |  | 
 | 5657 | static const struct sysfs_ops slab_sysfs_ops = { | 
 | 5658 | 	.show = slab_attr_show, | 
 | 5659 | 	.store = slab_attr_store, | 
 | 5660 | }; | 
 | 5661 |  | 
 | 5662 | static struct kobj_type slab_ktype = { | 
 | 5663 | 	.sysfs_ops = &slab_sysfs_ops, | 
 | 5664 | 	.release = kmem_cache_release, | 
 | 5665 | }; | 
 | 5666 |  | 
 | 5667 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | 
 | 5668 | { | 
 | 5669 | 	struct kobj_type *ktype = get_ktype(kobj); | 
 | 5670 |  | 
 | 5671 | 	if (ktype == &slab_ktype) | 
 | 5672 | 		return 1; | 
 | 5673 | 	return 0; | 
 | 5674 | } | 
 | 5675 |  | 
 | 5676 | static const struct kset_uevent_ops slab_uevent_ops = { | 
 | 5677 | 	.filter = uevent_filter, | 
 | 5678 | }; | 
 | 5679 |  | 
 | 5680 | static struct kset *slab_kset; | 
 | 5681 |  | 
 | 5682 | static inline struct kset *cache_kset(struct kmem_cache *s) | 
 | 5683 | { | 
 | 5684 | #ifdef CONFIG_MEMCG | 
 | 5685 | 	if (!is_root_cache(s)) | 
 | 5686 | 		return s->memcg_params.root_cache->memcg_kset; | 
 | 5687 | #endif | 
 | 5688 | 	return slab_kset; | 
 | 5689 | } | 
 | 5690 |  | 
 | 5691 | #define ID_STR_LENGTH 64 | 
 | 5692 |  | 
 | 5693 | /* Create a unique string id for a slab cache: | 
 | 5694 |  * | 
 | 5695 |  * Format	:[flags-]size | 
 | 5696 |  */ | 
 | 5697 | static char *create_unique_id(struct kmem_cache *s) | 
 | 5698 | { | 
 | 5699 | 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | 
 | 5700 | 	char *p = name; | 
 | 5701 |  | 
 | 5702 | 	BUG_ON(!name); | 
 | 5703 |  | 
 | 5704 | 	*p++ = ':'; | 
 | 5705 | 	/* | 
 | 5706 | 	 * First flags affecting slabcache operations. We will only | 
 | 5707 | 	 * get here for aliasable slabs so we do not need to support | 
 | 5708 | 	 * too many flags. The flags here must cover all flags that | 
 | 5709 | 	 * are matched during merging to guarantee that the id is | 
 | 5710 | 	 * unique. | 
 | 5711 | 	 */ | 
 | 5712 | 	if (s->flags & SLAB_CACHE_DMA) | 
 | 5713 | 		*p++ = 'd'; | 
 | 5714 | 	if (s->flags & SLAB_CACHE_DMA32) | 
 | 5715 | 		*p++ = 'D'; | 
 | 5716 | 	if (s->flags & SLAB_RECLAIM_ACCOUNT) | 
 | 5717 | 		*p++ = 'a'; | 
 | 5718 | 	if (s->flags & SLAB_CONSISTENCY_CHECKS) | 
 | 5719 | 		*p++ = 'F'; | 
 | 5720 | 	if (s->flags & SLAB_ACCOUNT) | 
 | 5721 | 		*p++ = 'A'; | 
 | 5722 | 	if (p != name + 1) | 
 | 5723 | 		*p++ = '-'; | 
 | 5724 | 	p += sprintf(p, "%07u", s->size); | 
 | 5725 |  | 
 | 5726 | 	BUG_ON(p > name + ID_STR_LENGTH - 1); | 
 | 5727 | 	return name; | 
 | 5728 | } | 
 | 5729 |  | 
 | 5730 | static void sysfs_slab_remove_workfn(struct work_struct *work) | 
 | 5731 | { | 
 | 5732 | 	struct kmem_cache *s = | 
 | 5733 | 		container_of(work, struct kmem_cache, kobj_remove_work); | 
 | 5734 |  | 
 | 5735 | 	if (!s->kobj.state_in_sysfs) | 
 | 5736 | 		/* | 
 | 5737 | 		 * For a memcg cache, this may be called during | 
 | 5738 | 		 * deactivation and again on shutdown.  Remove only once. | 
 | 5739 | 		 * A cache is never shut down before deactivation is | 
 | 5740 | 		 * complete, so no need to worry about synchronization. | 
 | 5741 | 		 */ | 
 | 5742 | 		goto out; | 
 | 5743 |  | 
 | 5744 | #ifdef CONFIG_MEMCG | 
 | 5745 | 	kset_unregister(s->memcg_kset); | 
 | 5746 | #endif | 
 | 5747 | 	kobject_uevent(&s->kobj, KOBJ_REMOVE); | 
 | 5748 | out: | 
 | 5749 | 	kobject_put(&s->kobj); | 
 | 5750 | } | 
 | 5751 |  | 
 | 5752 | static int sysfs_slab_add(struct kmem_cache *s) | 
 | 5753 | { | 
 | 5754 | 	int err; | 
 | 5755 | 	const char *name; | 
 | 5756 | 	struct kset *kset = cache_kset(s); | 
 | 5757 | 	int unmergeable = slab_unmergeable(s); | 
 | 5758 |  | 
 | 5759 | 	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); | 
 | 5760 |  | 
 | 5761 | 	if (!kset) { | 
 | 5762 | 		kobject_init(&s->kobj, &slab_ktype); | 
 | 5763 | 		return 0; | 
 | 5764 | 	} | 
 | 5765 |  | 
 | 5766 | 	if (!unmergeable && disable_higher_order_debug && | 
 | 5767 | 			(slub_debug & DEBUG_METADATA_FLAGS)) | 
 | 5768 | 		unmergeable = 1; | 
 | 5769 |  | 
 | 5770 | 	if (unmergeable) { | 
 | 5771 | 		/* | 
 | 5772 | 		 * Slabcache can never be merged so we can use the name proper. | 
 | 5773 | 		 * This is typically the case for debug situations. In that | 
 | 5774 | 		 * case we can catch duplicate names easily. | 
 | 5775 | 		 */ | 
 | 5776 | 		sysfs_remove_link(&slab_kset->kobj, s->name); | 
 | 5777 | 		name = s->name; | 
 | 5778 | 	} else { | 
 | 5779 | 		/* | 
 | 5780 | 		 * Create a unique name for the slab as a target | 
 | 5781 | 		 * for the symlinks. | 
 | 5782 | 		 */ | 
 | 5783 | 		name = create_unique_id(s); | 
 | 5784 | 	} | 
 | 5785 |  | 
 | 5786 | 	s->kobj.kset = kset; | 
 | 5787 | 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); | 
 | 5788 | 	if (err) | 
 | 5789 | 		goto out; | 
 | 5790 |  | 
 | 5791 | 	err = sysfs_create_group(&s->kobj, &slab_attr_group); | 
 | 5792 | 	if (err) | 
 | 5793 | 		goto out_del_kobj; | 
 | 5794 |  | 
 | 5795 | #ifdef CONFIG_MEMCG | 
 | 5796 | 	if (is_root_cache(s) && memcg_sysfs_enabled) { | 
 | 5797 | 		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); | 
 | 5798 | 		if (!s->memcg_kset) { | 
 | 5799 | 			err = -ENOMEM; | 
 | 5800 | 			goto out_del_kobj; | 
 | 5801 | 		} | 
 | 5802 | 	} | 
 | 5803 | #endif | 
 | 5804 |  | 
 | 5805 | 	kobject_uevent(&s->kobj, KOBJ_ADD); | 
 | 5806 | 	if (!unmergeable) { | 
 | 5807 | 		/* Setup first alias */ | 
 | 5808 | 		sysfs_slab_alias(s, s->name); | 
 | 5809 | 	} | 
 | 5810 | out: | 
 | 5811 | 	if (!unmergeable) | 
 | 5812 | 		kfree(name); | 
 | 5813 | 	return err; | 
 | 5814 | out_del_kobj: | 
 | 5815 | 	kobject_del(&s->kobj); | 
 | 5816 | 	goto out; | 
 | 5817 | } | 
 | 5818 |  | 
 | 5819 | static void sysfs_slab_remove(struct kmem_cache *s) | 
 | 5820 | { | 
 | 5821 | 	if (slab_state < FULL) | 
 | 5822 | 		/* | 
 | 5823 | 		 * Sysfs has not been setup yet so no need to remove the | 
 | 5824 | 		 * cache from sysfs. | 
 | 5825 | 		 */ | 
 | 5826 | 		return; | 
 | 5827 |  | 
 | 5828 | 	kobject_get(&s->kobj); | 
 | 5829 | 	schedule_work(&s->kobj_remove_work); | 
 | 5830 | } | 
 | 5831 |  | 
 | 5832 | void sysfs_slab_unlink(struct kmem_cache *s) | 
 | 5833 | { | 
 | 5834 | 	if (slab_state >= FULL) | 
 | 5835 | 		kobject_del(&s->kobj); | 
 | 5836 | } | 
 | 5837 |  | 
 | 5838 | void sysfs_slab_release(struct kmem_cache *s) | 
 | 5839 | { | 
 | 5840 | 	if (slab_state >= FULL) | 
 | 5841 | 		kobject_put(&s->kobj); | 
 | 5842 | } | 
 | 5843 |  | 
 | 5844 | /* | 
 | 5845 |  * Need to buffer aliases during bootup until sysfs becomes | 
 | 5846 |  * available lest we lose that information. | 
 | 5847 |  */ | 
 | 5848 | struct saved_alias { | 
 | 5849 | 	struct kmem_cache *s; | 
 | 5850 | 	const char *name; | 
 | 5851 | 	struct saved_alias *next; | 
 | 5852 | }; | 
 | 5853 |  | 
 | 5854 | static struct saved_alias *alias_list; | 
 | 5855 |  | 
 | 5856 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | 
 | 5857 | { | 
 | 5858 | 	struct saved_alias *al; | 
 | 5859 |  | 
 | 5860 | 	if (slab_state == FULL) { | 
 | 5861 | 		/* | 
 | 5862 | 		 * If we have a leftover link then remove it. | 
 | 5863 | 		 */ | 
 | 5864 | 		sysfs_remove_link(&slab_kset->kobj, name); | 
 | 5865 | 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | 
 | 5866 | 	} | 
 | 5867 |  | 
 | 5868 | 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | 
 | 5869 | 	if (!al) | 
 | 5870 | 		return -ENOMEM; | 
 | 5871 |  | 
 | 5872 | 	al->s = s; | 
 | 5873 | 	al->name = name; | 
 | 5874 | 	al->next = alias_list; | 
 | 5875 | 	alias_list = al; | 
 | 5876 | 	return 0; | 
 | 5877 | } | 
 | 5878 |  | 
 | 5879 | static int __init slab_sysfs_init(void) | 
 | 5880 | { | 
 | 5881 | 	struct kmem_cache *s; | 
 | 5882 | 	int err; | 
 | 5883 |  | 
 | 5884 | 	mutex_lock(&slab_mutex); | 
 | 5885 |  | 
 | 5886 | 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); | 
 | 5887 | 	if (!slab_kset) { | 
 | 5888 | 		mutex_unlock(&slab_mutex); | 
 | 5889 | 		pr_err("Cannot register slab subsystem.\n"); | 
 | 5890 | 		return -ENOSYS; | 
 | 5891 | 	} | 
 | 5892 |  | 
 | 5893 | 	slab_state = FULL; | 
 | 5894 |  | 
 | 5895 | 	list_for_each_entry(s, &slab_caches, list) { | 
 | 5896 | 		err = sysfs_slab_add(s); | 
 | 5897 | 		if (err) | 
 | 5898 | 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n", | 
 | 5899 | 			       s->name); | 
 | 5900 | 	} | 
 | 5901 |  | 
 | 5902 | 	while (alias_list) { | 
 | 5903 | 		struct saved_alias *al = alias_list; | 
 | 5904 |  | 
 | 5905 | 		alias_list = alias_list->next; | 
 | 5906 | 		err = sysfs_slab_alias(al->s, al->name); | 
 | 5907 | 		if (err) | 
 | 5908 | 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", | 
 | 5909 | 			       al->name); | 
 | 5910 | 		kfree(al); | 
 | 5911 | 	} | 
 | 5912 |  | 
 | 5913 | 	mutex_unlock(&slab_mutex); | 
 | 5914 | 	resiliency_test(); | 
 | 5915 | 	return 0; | 
 | 5916 | } | 
 | 5917 |  | 
 | 5918 | __initcall(slab_sysfs_init); | 
 | 5919 | #endif /* CONFIG_SYSFS */ | 
 | 5920 |  | 
 | 5921 | /* | 
 | 5922 |  * The /proc/slabinfo ABI | 
 | 5923 |  */ | 
 | 5924 | #ifdef CONFIG_SLUB_DEBUG | 
 | 5925 | void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) | 
 | 5926 | { | 
 | 5927 | 	unsigned long nr_slabs = 0; | 
 | 5928 | 	unsigned long nr_objs = 0; | 
 | 5929 | 	unsigned long nr_free = 0; | 
 | 5930 | 	int node; | 
 | 5931 | 	struct kmem_cache_node *n; | 
 | 5932 |  | 
 | 5933 | 	for_each_kmem_cache_node(s, node, n) { | 
 | 5934 | 		nr_slabs += node_nr_slabs(n); | 
 | 5935 | 		nr_objs += node_nr_objs(n); | 
 | 5936 | 		nr_free += count_partial(n, count_free); | 
 | 5937 | 	} | 
 | 5938 |  | 
 | 5939 | 	sinfo->active_objs = nr_objs - nr_free; | 
 | 5940 | 	sinfo->num_objs = nr_objs; | 
 | 5941 | 	sinfo->active_slabs = nr_slabs; | 
 | 5942 | 	sinfo->num_slabs = nr_slabs; | 
 | 5943 | 	sinfo->objects_per_slab = oo_objects(s->oo); | 
 | 5944 | 	sinfo->cache_order = oo_order(s->oo); | 
 | 5945 | } | 
 | 5946 |  | 
 | 5947 | void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) | 
 | 5948 | { | 
 | 5949 | } | 
 | 5950 |  | 
 | 5951 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, | 
 | 5952 | 		       size_t count, loff_t *ppos) | 
 | 5953 | { | 
 | 5954 | 	return -EIO; | 
 | 5955 | } | 
 | 5956 | #endif /* CONFIG_SLUB_DEBUG */ |