| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* net/sched/sch_hhf.c		Heavy-Hitter Filter (HHF) | 
 | 2 |  * | 
 | 3 |  * Copyright (C) 2013 Terry Lam <vtlam@google.com> | 
 | 4 |  * Copyright (C) 2013 Nandita Dukkipati <nanditad@google.com> | 
 | 5 |  */ | 
 | 6 |  | 
 | 7 | #include <linux/jiffies.h> | 
 | 8 | #include <linux/module.h> | 
 | 9 | #include <linux/skbuff.h> | 
 | 10 | #include <linux/vmalloc.h> | 
 | 11 | #include <linux/siphash.h> | 
 | 12 | #include <net/pkt_sched.h> | 
 | 13 | #include <net/sock.h> | 
 | 14 |  | 
 | 15 | /*	Heavy-Hitter Filter (HHF) | 
 | 16 |  * | 
 | 17 |  * Principles : | 
 | 18 |  * Flows are classified into two buckets: non-heavy-hitter and heavy-hitter | 
 | 19 |  * buckets. Initially, a new flow starts as non-heavy-hitter. Once classified | 
 | 20 |  * as heavy-hitter, it is immediately switched to the heavy-hitter bucket. | 
 | 21 |  * The buckets are dequeued by a Weighted Deficit Round Robin (WDRR) scheduler, | 
 | 22 |  * in which the heavy-hitter bucket is served with less weight. | 
 | 23 |  * In other words, non-heavy-hitters (e.g., short bursts of critical traffic) | 
 | 24 |  * are isolated from heavy-hitters (e.g., persistent bulk traffic) and also have | 
 | 25 |  * higher share of bandwidth. | 
 | 26 |  * | 
 | 27 |  * To capture heavy-hitters, we use the "multi-stage filter" algorithm in the | 
 | 28 |  * following paper: | 
 | 29 |  * [EV02] C. Estan and G. Varghese, "New Directions in Traffic Measurement and | 
 | 30 |  * Accounting", in ACM SIGCOMM, 2002. | 
 | 31 |  * | 
 | 32 |  * Conceptually, a multi-stage filter comprises k independent hash functions | 
 | 33 |  * and k counter arrays. Packets are indexed into k counter arrays by k hash | 
 | 34 |  * functions, respectively. The counters are then increased by the packet sizes. | 
 | 35 |  * Therefore, | 
 | 36 |  *    - For a heavy-hitter flow: *all* of its k array counters must be large. | 
 | 37 |  *    - For a non-heavy-hitter flow: some of its k array counters can be large | 
 | 38 |  *      due to hash collision with other small flows; however, with high | 
 | 39 |  *      probability, not *all* k counters are large. | 
 | 40 |  * | 
 | 41 |  * By the design of the multi-stage filter algorithm, the false negative rate | 
 | 42 |  * (heavy-hitters getting away uncaptured) is zero. However, the algorithm is | 
 | 43 |  * susceptible to false positives (non-heavy-hitters mistakenly classified as | 
 | 44 |  * heavy-hitters). | 
 | 45 |  * Therefore, we also implement the following optimizations to reduce false | 
 | 46 |  * positives by avoiding unnecessary increment of the counter values: | 
 | 47 |  *    - Optimization O1: once a heavy-hitter is identified, its bytes are not | 
 | 48 |  *        accounted in the array counters. This technique is called "shielding" | 
 | 49 |  *        in Section 3.3.1 of [EV02]. | 
 | 50 |  *    - Optimization O2: conservative update of counters | 
 | 51 |  *                       (Section 3.3.2 of [EV02]), | 
 | 52 |  *        New counter value = max {old counter value, | 
 | 53 |  *                                 smallest counter value + packet bytes} | 
 | 54 |  * | 
 | 55 |  * Finally, we refresh the counters periodically since otherwise the counter | 
 | 56 |  * values will keep accumulating. | 
 | 57 |  * | 
 | 58 |  * Once a flow is classified as heavy-hitter, we also save its per-flow state | 
 | 59 |  * in an exact-matching flow table so that its subsequent packets can be | 
 | 60 |  * dispatched to the heavy-hitter bucket accordingly. | 
 | 61 |  * | 
 | 62 |  * | 
 | 63 |  * At a high level, this qdisc works as follows: | 
 | 64 |  * Given a packet p: | 
 | 65 |  *   - If the flow-id of p (e.g., TCP 5-tuple) is already in the exact-matching | 
 | 66 |  *     heavy-hitter flow table, denoted table T, then send p to the heavy-hitter | 
 | 67 |  *     bucket. | 
 | 68 |  *   - Otherwise, forward p to the multi-stage filter, denoted filter F | 
 | 69 |  *        + If F decides that p belongs to a non-heavy-hitter flow, then send p | 
 | 70 |  *          to the non-heavy-hitter bucket. | 
 | 71 |  *        + Otherwise, if F decides that p belongs to a new heavy-hitter flow, | 
 | 72 |  *          then set up a new flow entry for the flow-id of p in the table T and | 
 | 73 |  *          send p to the heavy-hitter bucket. | 
 | 74 |  * | 
 | 75 |  * In this implementation: | 
 | 76 |  *   - T is a fixed-size hash-table with 1024 entries. Hash collision is | 
 | 77 |  *     resolved by linked-list chaining. | 
 | 78 |  *   - F has four counter arrays, each array containing 1024 32-bit counters. | 
 | 79 |  *     That means 4 * 1024 * 32 bits = 16KB of memory. | 
 | 80 |  *   - Since each array in F contains 1024 counters, 10 bits are sufficient to | 
 | 81 |  *     index into each array. | 
 | 82 |  *     Hence, instead of having four hash functions, we chop the 32-bit | 
 | 83 |  *     skb-hash into three 10-bit chunks, and the remaining 10-bit chunk is | 
 | 84 |  *     computed as XOR sum of those three chunks. | 
 | 85 |  *   - We need to clear the counter arrays periodically; however, directly | 
 | 86 |  *     memsetting 16KB of memory can lead to cache eviction and unwanted delay. | 
 | 87 |  *     So by representing each counter by a valid bit, we only need to reset | 
 | 88 |  *     4K of 1 bit (i.e. 512 bytes) instead of 16KB of memory. | 
 | 89 |  *   - The Deficit Round Robin engine is taken from fq_codel implementation | 
 | 90 |  *     (net/sched/sch_fq_codel.c). Note that wdrr_bucket corresponds to | 
 | 91 |  *     fq_codel_flow in fq_codel implementation. | 
 | 92 |  * | 
 | 93 |  */ | 
 | 94 |  | 
 | 95 | /* Non-configurable parameters */ | 
 | 96 | #define HH_FLOWS_CNT	 1024  /* number of entries in exact-matching table T */ | 
 | 97 | #define HHF_ARRAYS_CNT	 4     /* number of arrays in multi-stage filter F */ | 
 | 98 | #define HHF_ARRAYS_LEN	 1024  /* number of counters in each array of F */ | 
 | 99 | #define HHF_BIT_MASK_LEN 10    /* masking 10 bits */ | 
 | 100 | #define HHF_BIT_MASK	 0x3FF /* bitmask of 10 bits */ | 
 | 101 |  | 
 | 102 | #define WDRR_BUCKET_CNT  2     /* two buckets for Weighted DRR */ | 
 | 103 | enum wdrr_bucket_idx { | 
 | 104 | 	WDRR_BUCKET_FOR_HH	= 0, /* bucket id for heavy-hitters */ | 
 | 105 | 	WDRR_BUCKET_FOR_NON_HH	= 1  /* bucket id for non-heavy-hitters */ | 
 | 106 | }; | 
 | 107 |  | 
 | 108 | #define hhf_time_before(a, b)	\ | 
 | 109 | 	(typecheck(u32, a) && typecheck(u32, b) && ((s32)((a) - (b)) < 0)) | 
 | 110 |  | 
 | 111 | /* Heavy-hitter per-flow state */ | 
 | 112 | struct hh_flow_state { | 
 | 113 | 	u32		 hash_id;	/* hash of flow-id (e.g. TCP 5-tuple) */ | 
 | 114 | 	u32		 hit_timestamp;	/* last time heavy-hitter was seen */ | 
 | 115 | 	struct list_head flowchain;	/* chaining under hash collision */ | 
 | 116 | }; | 
 | 117 |  | 
 | 118 | /* Weighted Deficit Round Robin (WDRR) scheduler */ | 
 | 119 | struct wdrr_bucket { | 
 | 120 | 	struct sk_buff	  *head; | 
 | 121 | 	struct sk_buff	  *tail; | 
 | 122 | 	struct list_head  bucketchain; | 
 | 123 | 	int		  deficit; | 
 | 124 | }; | 
 | 125 |  | 
 | 126 | struct hhf_sched_data { | 
 | 127 | 	struct wdrr_bucket buckets[WDRR_BUCKET_CNT]; | 
 | 128 | 	siphash_key_t	   perturbation;   /* hash perturbation */ | 
 | 129 | 	u32		   quantum;        /* psched_mtu(qdisc_dev(sch)); */ | 
 | 130 | 	u32		   drop_overlimit; /* number of times max qdisc packet | 
 | 131 | 					    * limit was hit | 
 | 132 | 					    */ | 
 | 133 | 	struct list_head   *hh_flows;       /* table T (currently active HHs) */ | 
 | 134 | 	u32		   hh_flows_limit;            /* max active HH allocs */ | 
 | 135 | 	u32		   hh_flows_overlimit; /* num of disallowed HH allocs */ | 
 | 136 | 	u32		   hh_flows_total_cnt;          /* total admitted HHs */ | 
 | 137 | 	u32		   hh_flows_current_cnt;        /* total current HHs  */ | 
 | 138 | 	u32		   *hhf_arrays[HHF_ARRAYS_CNT]; /* HH filter F */ | 
 | 139 | 	u32		   hhf_arrays_reset_timestamp;  /* last time hhf_arrays | 
 | 140 | 							 * was reset | 
 | 141 | 							 */ | 
 | 142 | 	unsigned long	   *hhf_valid_bits[HHF_ARRAYS_CNT]; /* shadow valid bits | 
 | 143 | 							     * of hhf_arrays | 
 | 144 | 							     */ | 
 | 145 | 	/* Similar to the "new_flows" vs. "old_flows" concept in fq_codel DRR */ | 
 | 146 | 	struct list_head   new_buckets; /* list of new buckets */ | 
 | 147 | 	struct list_head   old_buckets; /* list of old buckets */ | 
 | 148 |  | 
 | 149 | 	/* Configurable HHF parameters */ | 
 | 150 | 	u32		   hhf_reset_timeout; /* interval to reset counter | 
 | 151 | 					       * arrays in filter F | 
 | 152 | 					       * (default 40ms) | 
 | 153 | 					       */ | 
 | 154 | 	u32		   hhf_admit_bytes;   /* counter thresh to classify as | 
 | 155 | 					       * HH (default 128KB). | 
 | 156 | 					       * With these default values, | 
 | 157 | 					       * 128KB / 40ms = 25 Mbps | 
 | 158 | 					       * i.e., we expect to capture HHs | 
 | 159 | 					       * sending > 25 Mbps. | 
 | 160 | 					       */ | 
 | 161 | 	u32		   hhf_evict_timeout; /* aging threshold to evict idle | 
 | 162 | 					       * HHs out of table T. This should | 
 | 163 | 					       * be large enough to avoid | 
 | 164 | 					       * reordering during HH eviction. | 
 | 165 | 					       * (default 1s) | 
 | 166 | 					       */ | 
 | 167 | 	u32		   hhf_non_hh_weight; /* WDRR weight for non-HHs | 
 | 168 | 					       * (default 2, | 
 | 169 | 					       *  i.e., non-HH : HH = 2 : 1) | 
 | 170 | 					       */ | 
 | 171 | }; | 
 | 172 |  | 
 | 173 | static u32 hhf_time_stamp(void) | 
 | 174 | { | 
 | 175 | 	return jiffies; | 
 | 176 | } | 
 | 177 |  | 
 | 178 | /* Looks up a heavy-hitter flow in a chaining list of table T. */ | 
 | 179 | static struct hh_flow_state *seek_list(const u32 hash, | 
 | 180 | 				       struct list_head *head, | 
 | 181 | 				       struct hhf_sched_data *q) | 
 | 182 | { | 
 | 183 | 	struct hh_flow_state *flow, *next; | 
 | 184 | 	u32 now = hhf_time_stamp(); | 
 | 185 |  | 
 | 186 | 	if (list_empty(head)) | 
 | 187 | 		return NULL; | 
 | 188 |  | 
 | 189 | 	list_for_each_entry_safe(flow, next, head, flowchain) { | 
 | 190 | 		u32 prev = flow->hit_timestamp + q->hhf_evict_timeout; | 
 | 191 |  | 
 | 192 | 		if (hhf_time_before(prev, now)) { | 
 | 193 | 			/* Delete expired heavy-hitters, but preserve one entry | 
 | 194 | 			 * to avoid kzalloc() when next time this slot is hit. | 
 | 195 | 			 */ | 
 | 196 | 			if (list_is_last(&flow->flowchain, head)) | 
 | 197 | 				return NULL; | 
 | 198 | 			list_del(&flow->flowchain); | 
 | 199 | 			kfree(flow); | 
 | 200 | 			q->hh_flows_current_cnt--; | 
 | 201 | 		} else if (flow->hash_id == hash) { | 
 | 202 | 			return flow; | 
 | 203 | 		} | 
 | 204 | 	} | 
 | 205 | 	return NULL; | 
 | 206 | } | 
 | 207 |  | 
 | 208 | /* Returns a flow state entry for a new heavy-hitter.  Either reuses an expired | 
 | 209 |  * entry or dynamically alloc a new entry. | 
 | 210 |  */ | 
 | 211 | static struct hh_flow_state *alloc_new_hh(struct list_head *head, | 
 | 212 | 					  struct hhf_sched_data *q) | 
 | 213 | { | 
 | 214 | 	struct hh_flow_state *flow; | 
 | 215 | 	u32 now = hhf_time_stamp(); | 
 | 216 |  | 
 | 217 | 	if (!list_empty(head)) { | 
 | 218 | 		/* Find an expired heavy-hitter flow entry. */ | 
 | 219 | 		list_for_each_entry(flow, head, flowchain) { | 
 | 220 | 			u32 prev = flow->hit_timestamp + q->hhf_evict_timeout; | 
 | 221 |  | 
 | 222 | 			if (hhf_time_before(prev, now)) | 
 | 223 | 				return flow; | 
 | 224 | 		} | 
 | 225 | 	} | 
 | 226 |  | 
 | 227 | 	if (q->hh_flows_current_cnt >= q->hh_flows_limit) { | 
 | 228 | 		q->hh_flows_overlimit++; | 
 | 229 | 		return NULL; | 
 | 230 | 	} | 
 | 231 | 	/* Create new entry. */ | 
 | 232 | 	flow = kzalloc(sizeof(struct hh_flow_state), GFP_ATOMIC); | 
 | 233 | 	if (!flow) | 
 | 234 | 		return NULL; | 
 | 235 |  | 
 | 236 | 	q->hh_flows_current_cnt++; | 
 | 237 | 	INIT_LIST_HEAD(&flow->flowchain); | 
 | 238 | 	list_add_tail(&flow->flowchain, head); | 
 | 239 |  | 
 | 240 | 	return flow; | 
 | 241 | } | 
 | 242 |  | 
 | 243 | /* Assigns packets to WDRR buckets.  Implements a multi-stage filter to | 
 | 244 |  * classify heavy-hitters. | 
 | 245 |  */ | 
 | 246 | static enum wdrr_bucket_idx hhf_classify(struct sk_buff *skb, struct Qdisc *sch) | 
 | 247 | { | 
 | 248 | 	struct hhf_sched_data *q = qdisc_priv(sch); | 
 | 249 | 	u32 tmp_hash, hash; | 
 | 250 | 	u32 xorsum, filter_pos[HHF_ARRAYS_CNT], flow_pos; | 
 | 251 | 	struct hh_flow_state *flow; | 
 | 252 | 	u32 pkt_len, min_hhf_val; | 
 | 253 | 	int i; | 
 | 254 | 	u32 prev; | 
 | 255 | 	u32 now = hhf_time_stamp(); | 
 | 256 |  | 
 | 257 | 	/* Reset the HHF counter arrays if this is the right time. */ | 
 | 258 | 	prev = q->hhf_arrays_reset_timestamp + q->hhf_reset_timeout; | 
 | 259 | 	if (hhf_time_before(prev, now)) { | 
 | 260 | 		for (i = 0; i < HHF_ARRAYS_CNT; i++) | 
 | 261 | 			bitmap_zero(q->hhf_valid_bits[i], HHF_ARRAYS_LEN); | 
 | 262 | 		q->hhf_arrays_reset_timestamp = now; | 
 | 263 | 	} | 
 | 264 |  | 
 | 265 | 	/* Get hashed flow-id of the skb. */ | 
 | 266 | 	hash = skb_get_hash_perturb(skb, &q->perturbation); | 
 | 267 |  | 
 | 268 | 	/* Check if this packet belongs to an already established HH flow. */ | 
 | 269 | 	flow_pos = hash & HHF_BIT_MASK; | 
 | 270 | 	flow = seek_list(hash, &q->hh_flows[flow_pos], q); | 
 | 271 | 	if (flow) { /* found its HH flow */ | 
 | 272 | 		flow->hit_timestamp = now; | 
 | 273 | 		return WDRR_BUCKET_FOR_HH; | 
 | 274 | 	} | 
 | 275 |  | 
 | 276 | 	/* Now pass the packet through the multi-stage filter. */ | 
 | 277 | 	tmp_hash = hash; | 
 | 278 | 	xorsum = 0; | 
 | 279 | 	for (i = 0; i < HHF_ARRAYS_CNT - 1; i++) { | 
 | 280 | 		/* Split the skb_hash into three 10-bit chunks. */ | 
 | 281 | 		filter_pos[i] = tmp_hash & HHF_BIT_MASK; | 
 | 282 | 		xorsum ^= filter_pos[i]; | 
 | 283 | 		tmp_hash >>= HHF_BIT_MASK_LEN; | 
 | 284 | 	} | 
 | 285 | 	/* The last chunk is computed as XOR sum of other chunks. */ | 
 | 286 | 	filter_pos[HHF_ARRAYS_CNT - 1] = xorsum ^ tmp_hash; | 
 | 287 |  | 
 | 288 | 	pkt_len = qdisc_pkt_len(skb); | 
 | 289 | 	min_hhf_val = ~0U; | 
 | 290 | 	for (i = 0; i < HHF_ARRAYS_CNT; i++) { | 
 | 291 | 		u32 val; | 
 | 292 |  | 
 | 293 | 		if (!test_bit(filter_pos[i], q->hhf_valid_bits[i])) { | 
 | 294 | 			q->hhf_arrays[i][filter_pos[i]] = 0; | 
 | 295 | 			__set_bit(filter_pos[i], q->hhf_valid_bits[i]); | 
 | 296 | 		} | 
 | 297 |  | 
 | 298 | 		val = q->hhf_arrays[i][filter_pos[i]] + pkt_len; | 
 | 299 | 		if (min_hhf_val > val) | 
 | 300 | 			min_hhf_val = val; | 
 | 301 | 	} | 
 | 302 |  | 
 | 303 | 	/* Found a new HH iff all counter values > HH admit threshold. */ | 
 | 304 | 	if (min_hhf_val > q->hhf_admit_bytes) { | 
 | 305 | 		/* Just captured a new heavy-hitter. */ | 
 | 306 | 		flow = alloc_new_hh(&q->hh_flows[flow_pos], q); | 
 | 307 | 		if (!flow) /* memory alloc problem */ | 
 | 308 | 			return WDRR_BUCKET_FOR_NON_HH; | 
 | 309 | 		flow->hash_id = hash; | 
 | 310 | 		flow->hit_timestamp = now; | 
 | 311 | 		q->hh_flows_total_cnt++; | 
 | 312 |  | 
 | 313 | 		/* By returning without updating counters in q->hhf_arrays, | 
 | 314 | 		 * we implicitly implement "shielding" (see Optimization O1). | 
 | 315 | 		 */ | 
 | 316 | 		return WDRR_BUCKET_FOR_HH; | 
 | 317 | 	} | 
 | 318 |  | 
 | 319 | 	/* Conservative update of HHF arrays (see Optimization O2). */ | 
 | 320 | 	for (i = 0; i < HHF_ARRAYS_CNT; i++) { | 
 | 321 | 		if (q->hhf_arrays[i][filter_pos[i]] < min_hhf_val) | 
 | 322 | 			q->hhf_arrays[i][filter_pos[i]] = min_hhf_val; | 
 | 323 | 	} | 
 | 324 | 	return WDRR_BUCKET_FOR_NON_HH; | 
 | 325 | } | 
 | 326 |  | 
 | 327 | /* Removes one skb from head of bucket. */ | 
 | 328 | static struct sk_buff *dequeue_head(struct wdrr_bucket *bucket) | 
 | 329 | { | 
 | 330 | 	struct sk_buff *skb = bucket->head; | 
 | 331 |  | 
 | 332 | 	bucket->head = skb->next; | 
 | 333 | 	skb->next = NULL; | 
 | 334 | 	return skb; | 
 | 335 | } | 
 | 336 |  | 
 | 337 | /* Tail-adds skb to bucket. */ | 
 | 338 | static void bucket_add(struct wdrr_bucket *bucket, struct sk_buff *skb) | 
 | 339 | { | 
 | 340 | 	if (bucket->head == NULL) | 
 | 341 | 		bucket->head = skb; | 
 | 342 | 	else | 
 | 343 | 		bucket->tail->next = skb; | 
 | 344 | 	bucket->tail = skb; | 
 | 345 | 	skb->next = NULL; | 
 | 346 | } | 
 | 347 |  | 
 | 348 | static unsigned int hhf_drop(struct Qdisc *sch, struct sk_buff **to_free) | 
 | 349 | { | 
 | 350 | 	struct hhf_sched_data *q = qdisc_priv(sch); | 
 | 351 | 	struct wdrr_bucket *bucket; | 
 | 352 |  | 
 | 353 | 	/* Always try to drop from heavy-hitters first. */ | 
 | 354 | 	bucket = &q->buckets[WDRR_BUCKET_FOR_HH]; | 
 | 355 | 	if (!bucket->head) | 
 | 356 | 		bucket = &q->buckets[WDRR_BUCKET_FOR_NON_HH]; | 
 | 357 |  | 
 | 358 | 	if (bucket->head) { | 
 | 359 | 		struct sk_buff *skb = dequeue_head(bucket); | 
 | 360 |  | 
 | 361 | 		sch->q.qlen--; | 
 | 362 | 		qdisc_qstats_backlog_dec(sch, skb); | 
 | 363 | 		qdisc_drop(skb, sch, to_free); | 
 | 364 | 	} | 
 | 365 |  | 
 | 366 | 	/* Return id of the bucket from which the packet was dropped. */ | 
 | 367 | 	return bucket - q->buckets; | 
 | 368 | } | 
 | 369 |  | 
 | 370 | static int hhf_enqueue(struct sk_buff *skb, struct Qdisc *sch, | 
 | 371 | 		       struct sk_buff **to_free) | 
 | 372 | { | 
 | 373 | 	struct hhf_sched_data *q = qdisc_priv(sch); | 
 | 374 | 	enum wdrr_bucket_idx idx; | 
 | 375 | 	struct wdrr_bucket *bucket; | 
 | 376 | 	unsigned int prev_backlog; | 
 | 377 |  | 
 | 378 | 	idx = hhf_classify(skb, sch); | 
 | 379 |  | 
 | 380 | 	bucket = &q->buckets[idx]; | 
 | 381 | 	bucket_add(bucket, skb); | 
 | 382 | 	qdisc_qstats_backlog_inc(sch, skb); | 
 | 383 |  | 
 | 384 | 	if (list_empty(&bucket->bucketchain)) { | 
 | 385 | 		unsigned int weight; | 
 | 386 |  | 
 | 387 | 		/* The logic of new_buckets vs. old_buckets is the same as | 
 | 388 | 		 * new_flows vs. old_flows in the implementation of fq_codel, | 
 | 389 | 		 * i.e., short bursts of non-HHs should have strict priority. | 
 | 390 | 		 */ | 
 | 391 | 		if (idx == WDRR_BUCKET_FOR_HH) { | 
 | 392 | 			/* Always move heavy-hitters to old bucket. */ | 
 | 393 | 			weight = 1; | 
 | 394 | 			list_add_tail(&bucket->bucketchain, &q->old_buckets); | 
 | 395 | 		} else { | 
 | 396 | 			weight = q->hhf_non_hh_weight; | 
 | 397 | 			list_add_tail(&bucket->bucketchain, &q->new_buckets); | 
 | 398 | 		} | 
 | 399 | 		bucket->deficit = weight * q->quantum; | 
 | 400 | 	} | 
 | 401 | 	if (++sch->q.qlen <= sch->limit) | 
 | 402 | 		return NET_XMIT_SUCCESS; | 
 | 403 |  | 
 | 404 | 	prev_backlog = sch->qstats.backlog; | 
 | 405 | 	q->drop_overlimit++; | 
 | 406 | 	/* Return Congestion Notification only if we dropped a packet from this | 
 | 407 | 	 * bucket. | 
 | 408 | 	 */ | 
 | 409 | 	if (hhf_drop(sch, to_free) == idx) | 
 | 410 | 		return NET_XMIT_CN; | 
 | 411 |  | 
 | 412 | 	/* As we dropped a packet, better let upper stack know this. */ | 
 | 413 | 	qdisc_tree_reduce_backlog(sch, 1, prev_backlog - sch->qstats.backlog); | 
 | 414 | 	return NET_XMIT_SUCCESS; | 
 | 415 | } | 
 | 416 |  | 
 | 417 | static struct sk_buff *hhf_dequeue(struct Qdisc *sch) | 
 | 418 | { | 
 | 419 | 	struct hhf_sched_data *q = qdisc_priv(sch); | 
 | 420 | 	struct sk_buff *skb = NULL; | 
 | 421 | 	struct wdrr_bucket *bucket; | 
 | 422 | 	struct list_head *head; | 
 | 423 |  | 
 | 424 | begin: | 
 | 425 | 	head = &q->new_buckets; | 
 | 426 | 	if (list_empty(head)) { | 
 | 427 | 		head = &q->old_buckets; | 
 | 428 | 		if (list_empty(head)) | 
 | 429 | 			return NULL; | 
 | 430 | 	} | 
 | 431 | 	bucket = list_first_entry(head, struct wdrr_bucket, bucketchain); | 
 | 432 |  | 
 | 433 | 	if (bucket->deficit <= 0) { | 
 | 434 | 		int weight = (bucket - q->buckets == WDRR_BUCKET_FOR_HH) ? | 
 | 435 | 			      1 : q->hhf_non_hh_weight; | 
 | 436 |  | 
 | 437 | 		bucket->deficit += weight * q->quantum; | 
 | 438 | 		list_move_tail(&bucket->bucketchain, &q->old_buckets); | 
 | 439 | 		goto begin; | 
 | 440 | 	} | 
 | 441 |  | 
 | 442 | 	if (bucket->head) { | 
 | 443 | 		skb = dequeue_head(bucket); | 
 | 444 | 		sch->q.qlen--; | 
 | 445 | 		qdisc_qstats_backlog_dec(sch, skb); | 
 | 446 | 	} | 
 | 447 |  | 
 | 448 | 	if (!skb) { | 
 | 449 | 		/* Force a pass through old_buckets to prevent starvation. */ | 
 | 450 | 		if ((head == &q->new_buckets) && !list_empty(&q->old_buckets)) | 
 | 451 | 			list_move_tail(&bucket->bucketchain, &q->old_buckets); | 
 | 452 | 		else | 
 | 453 | 			list_del_init(&bucket->bucketchain); | 
 | 454 | 		goto begin; | 
 | 455 | 	} | 
 | 456 | 	qdisc_bstats_update(sch, skb); | 
 | 457 | 	bucket->deficit -= qdisc_pkt_len(skb); | 
 | 458 |  | 
 | 459 | 	return skb; | 
 | 460 | } | 
 | 461 |  | 
 | 462 | static void hhf_reset(struct Qdisc *sch) | 
 | 463 | { | 
 | 464 | 	struct sk_buff *skb; | 
 | 465 |  | 
 | 466 | 	while ((skb = hhf_dequeue(sch)) != NULL) | 
 | 467 | 		rtnl_kfree_skbs(skb, skb); | 
 | 468 | } | 
 | 469 |  | 
 | 470 | static void hhf_destroy(struct Qdisc *sch) | 
 | 471 | { | 
 | 472 | 	int i; | 
 | 473 | 	struct hhf_sched_data *q = qdisc_priv(sch); | 
 | 474 |  | 
 | 475 | 	for (i = 0; i < HHF_ARRAYS_CNT; i++) { | 
 | 476 | 		kvfree(q->hhf_arrays[i]); | 
 | 477 | 		kvfree(q->hhf_valid_bits[i]); | 
 | 478 | 	} | 
 | 479 |  | 
 | 480 | 	if (!q->hh_flows) | 
 | 481 | 		return; | 
 | 482 |  | 
 | 483 | 	for (i = 0; i < HH_FLOWS_CNT; i++) { | 
 | 484 | 		struct hh_flow_state *flow, *next; | 
 | 485 | 		struct list_head *head = &q->hh_flows[i]; | 
 | 486 |  | 
 | 487 | 		if (list_empty(head)) | 
 | 488 | 			continue; | 
 | 489 | 		list_for_each_entry_safe(flow, next, head, flowchain) { | 
 | 490 | 			list_del(&flow->flowchain); | 
 | 491 | 			kfree(flow); | 
 | 492 | 		} | 
 | 493 | 	} | 
 | 494 | 	kvfree(q->hh_flows); | 
 | 495 | } | 
 | 496 |  | 
 | 497 | static const struct nla_policy hhf_policy[TCA_HHF_MAX + 1] = { | 
 | 498 | 	[TCA_HHF_BACKLOG_LIMIT]	 = { .type = NLA_U32 }, | 
 | 499 | 	[TCA_HHF_QUANTUM]	 = { .type = NLA_U32 }, | 
 | 500 | 	[TCA_HHF_HH_FLOWS_LIMIT] = { .type = NLA_U32 }, | 
 | 501 | 	[TCA_HHF_RESET_TIMEOUT]	 = { .type = NLA_U32 }, | 
 | 502 | 	[TCA_HHF_ADMIT_BYTES]	 = { .type = NLA_U32 }, | 
 | 503 | 	[TCA_HHF_EVICT_TIMEOUT]	 = { .type = NLA_U32 }, | 
 | 504 | 	[TCA_HHF_NON_HH_WEIGHT]	 = { .type = NLA_U32 }, | 
 | 505 | }; | 
 | 506 |  | 
 | 507 | static int hhf_change(struct Qdisc *sch, struct nlattr *opt, | 
 | 508 | 		      struct netlink_ext_ack *extack) | 
 | 509 | { | 
 | 510 | 	struct hhf_sched_data *q = qdisc_priv(sch); | 
 | 511 | 	struct nlattr *tb[TCA_HHF_MAX + 1]; | 
 | 512 | 	unsigned int qlen, prev_backlog; | 
 | 513 | 	int err; | 
 | 514 | 	u64 non_hh_quantum; | 
 | 515 | 	u32 new_quantum = q->quantum; | 
 | 516 | 	u32 new_hhf_non_hh_weight = q->hhf_non_hh_weight; | 
 | 517 |  | 
 | 518 | 	if (!opt) | 
 | 519 | 		return -EINVAL; | 
 | 520 |  | 
 | 521 | 	err = nla_parse_nested(tb, TCA_HHF_MAX, opt, hhf_policy, NULL); | 
 | 522 | 	if (err < 0) | 
 | 523 | 		return err; | 
 | 524 |  | 
 | 525 | 	if (tb[TCA_HHF_QUANTUM]) | 
 | 526 | 		new_quantum = nla_get_u32(tb[TCA_HHF_QUANTUM]); | 
 | 527 |  | 
 | 528 | 	if (tb[TCA_HHF_NON_HH_WEIGHT]) | 
 | 529 | 		new_hhf_non_hh_weight = nla_get_u32(tb[TCA_HHF_NON_HH_WEIGHT]); | 
 | 530 |  | 
 | 531 | 	non_hh_quantum = (u64)new_quantum * new_hhf_non_hh_weight; | 
 | 532 | 	if (non_hh_quantum == 0 || non_hh_quantum > INT_MAX) | 
 | 533 | 		return -EINVAL; | 
 | 534 |  | 
 | 535 | 	sch_tree_lock(sch); | 
 | 536 |  | 
 | 537 | 	if (tb[TCA_HHF_BACKLOG_LIMIT]) | 
 | 538 | 		sch->limit = nla_get_u32(tb[TCA_HHF_BACKLOG_LIMIT]); | 
 | 539 |  | 
 | 540 | 	q->quantum = new_quantum; | 
 | 541 | 	q->hhf_non_hh_weight = new_hhf_non_hh_weight; | 
 | 542 |  | 
 | 543 | 	if (tb[TCA_HHF_HH_FLOWS_LIMIT]) | 
 | 544 | 		q->hh_flows_limit = nla_get_u32(tb[TCA_HHF_HH_FLOWS_LIMIT]); | 
 | 545 |  | 
 | 546 | 	if (tb[TCA_HHF_RESET_TIMEOUT]) { | 
 | 547 | 		u32 us = nla_get_u32(tb[TCA_HHF_RESET_TIMEOUT]); | 
 | 548 |  | 
 | 549 | 		q->hhf_reset_timeout = usecs_to_jiffies(us); | 
 | 550 | 	} | 
 | 551 |  | 
 | 552 | 	if (tb[TCA_HHF_ADMIT_BYTES]) | 
 | 553 | 		q->hhf_admit_bytes = nla_get_u32(tb[TCA_HHF_ADMIT_BYTES]); | 
 | 554 |  | 
 | 555 | 	if (tb[TCA_HHF_EVICT_TIMEOUT]) { | 
 | 556 | 		u32 us = nla_get_u32(tb[TCA_HHF_EVICT_TIMEOUT]); | 
 | 557 |  | 
 | 558 | 		q->hhf_evict_timeout = usecs_to_jiffies(us); | 
 | 559 | 	} | 
 | 560 |  | 
 | 561 | 	qlen = sch->q.qlen; | 
 | 562 | 	prev_backlog = sch->qstats.backlog; | 
 | 563 | 	while (sch->q.qlen > sch->limit) { | 
 | 564 | 		struct sk_buff *skb = hhf_dequeue(sch); | 
 | 565 |  | 
 | 566 | 		rtnl_kfree_skbs(skb, skb); | 
 | 567 | 	} | 
 | 568 | 	qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, | 
 | 569 | 				  prev_backlog - sch->qstats.backlog); | 
 | 570 |  | 
 | 571 | 	sch_tree_unlock(sch); | 
 | 572 | 	return 0; | 
 | 573 | } | 
 | 574 |  | 
 | 575 | static int hhf_init(struct Qdisc *sch, struct nlattr *opt, | 
 | 576 | 		    struct netlink_ext_ack *extack) | 
 | 577 | { | 
 | 578 | 	struct hhf_sched_data *q = qdisc_priv(sch); | 
 | 579 | 	int i; | 
 | 580 |  | 
 | 581 | 	sch->limit = 1000; | 
 | 582 | 	q->quantum = psched_mtu(qdisc_dev(sch)); | 
 | 583 | 	get_random_bytes(&q->perturbation, sizeof(q->perturbation)); | 
 | 584 | 	INIT_LIST_HEAD(&q->new_buckets); | 
 | 585 | 	INIT_LIST_HEAD(&q->old_buckets); | 
 | 586 |  | 
 | 587 | 	/* Configurable HHF parameters */ | 
 | 588 | 	q->hhf_reset_timeout = HZ / 25; /* 40  ms */ | 
 | 589 | 	q->hhf_admit_bytes = 131072;    /* 128 KB */ | 
 | 590 | 	q->hhf_evict_timeout = HZ;      /* 1  sec */ | 
 | 591 | 	q->hhf_non_hh_weight = 2; | 
 | 592 |  | 
 | 593 | 	if (opt) { | 
 | 594 | 		int err = hhf_change(sch, opt, extack); | 
 | 595 |  | 
 | 596 | 		if (err) | 
 | 597 | 			return err; | 
 | 598 | 	} | 
 | 599 |  | 
 | 600 | 	if (!q->hh_flows) { | 
 | 601 | 		/* Initialize heavy-hitter flow table. */ | 
 | 602 | 		q->hh_flows = kvcalloc(HH_FLOWS_CNT, sizeof(struct list_head), | 
 | 603 | 				       GFP_KERNEL); | 
 | 604 | 		if (!q->hh_flows) | 
 | 605 | 			return -ENOMEM; | 
 | 606 | 		for (i = 0; i < HH_FLOWS_CNT; i++) | 
 | 607 | 			INIT_LIST_HEAD(&q->hh_flows[i]); | 
 | 608 |  | 
 | 609 | 		/* Cap max active HHs at twice len of hh_flows table. */ | 
 | 610 | 		q->hh_flows_limit = 2 * HH_FLOWS_CNT; | 
 | 611 | 		q->hh_flows_overlimit = 0; | 
 | 612 | 		q->hh_flows_total_cnt = 0; | 
 | 613 | 		q->hh_flows_current_cnt = 0; | 
 | 614 |  | 
 | 615 | 		/* Initialize heavy-hitter filter arrays. */ | 
 | 616 | 		for (i = 0; i < HHF_ARRAYS_CNT; i++) { | 
 | 617 | 			q->hhf_arrays[i] = kvcalloc(HHF_ARRAYS_LEN, | 
 | 618 | 						    sizeof(u32), | 
 | 619 | 						    GFP_KERNEL); | 
 | 620 | 			if (!q->hhf_arrays[i]) { | 
 | 621 | 				/* Note: hhf_destroy() will be called | 
 | 622 | 				 * by our caller. | 
 | 623 | 				 */ | 
 | 624 | 				return -ENOMEM; | 
 | 625 | 			} | 
 | 626 | 		} | 
 | 627 | 		q->hhf_arrays_reset_timestamp = hhf_time_stamp(); | 
 | 628 |  | 
 | 629 | 		/* Initialize valid bits of heavy-hitter filter arrays. */ | 
 | 630 | 		for (i = 0; i < HHF_ARRAYS_CNT; i++) { | 
 | 631 | 			q->hhf_valid_bits[i] = kvzalloc(HHF_ARRAYS_LEN / | 
 | 632 | 							  BITS_PER_BYTE, GFP_KERNEL); | 
 | 633 | 			if (!q->hhf_valid_bits[i]) { | 
 | 634 | 				/* Note: hhf_destroy() will be called | 
 | 635 | 				 * by our caller. | 
 | 636 | 				 */ | 
 | 637 | 				return -ENOMEM; | 
 | 638 | 			} | 
 | 639 | 		} | 
 | 640 |  | 
 | 641 | 		/* Initialize Weighted DRR buckets. */ | 
 | 642 | 		for (i = 0; i < WDRR_BUCKET_CNT; i++) { | 
 | 643 | 			struct wdrr_bucket *bucket = q->buckets + i; | 
 | 644 |  | 
 | 645 | 			INIT_LIST_HEAD(&bucket->bucketchain); | 
 | 646 | 		} | 
 | 647 | 	} | 
 | 648 |  | 
 | 649 | 	return 0; | 
 | 650 | } | 
 | 651 |  | 
 | 652 | static int hhf_dump(struct Qdisc *sch, struct sk_buff *skb) | 
 | 653 | { | 
 | 654 | 	struct hhf_sched_data *q = qdisc_priv(sch); | 
 | 655 | 	struct nlattr *opts; | 
 | 656 |  | 
 | 657 | 	opts = nla_nest_start(skb, TCA_OPTIONS); | 
 | 658 | 	if (opts == NULL) | 
 | 659 | 		goto nla_put_failure; | 
 | 660 |  | 
 | 661 | 	if (nla_put_u32(skb, TCA_HHF_BACKLOG_LIMIT, sch->limit) || | 
 | 662 | 	    nla_put_u32(skb, TCA_HHF_QUANTUM, q->quantum) || | 
 | 663 | 	    nla_put_u32(skb, TCA_HHF_HH_FLOWS_LIMIT, q->hh_flows_limit) || | 
 | 664 | 	    nla_put_u32(skb, TCA_HHF_RESET_TIMEOUT, | 
 | 665 | 			jiffies_to_usecs(q->hhf_reset_timeout)) || | 
 | 666 | 	    nla_put_u32(skb, TCA_HHF_ADMIT_BYTES, q->hhf_admit_bytes) || | 
 | 667 | 	    nla_put_u32(skb, TCA_HHF_EVICT_TIMEOUT, | 
 | 668 | 			jiffies_to_usecs(q->hhf_evict_timeout)) || | 
 | 669 | 	    nla_put_u32(skb, TCA_HHF_NON_HH_WEIGHT, q->hhf_non_hh_weight)) | 
 | 670 | 		goto nla_put_failure; | 
 | 671 |  | 
 | 672 | 	return nla_nest_end(skb, opts); | 
 | 673 |  | 
 | 674 | nla_put_failure: | 
 | 675 | 	return -1; | 
 | 676 | } | 
 | 677 |  | 
 | 678 | static int hhf_dump_stats(struct Qdisc *sch, struct gnet_dump *d) | 
 | 679 | { | 
 | 680 | 	struct hhf_sched_data *q = qdisc_priv(sch); | 
 | 681 | 	struct tc_hhf_xstats st = { | 
 | 682 | 		.drop_overlimit = q->drop_overlimit, | 
 | 683 | 		.hh_overlimit	= q->hh_flows_overlimit, | 
 | 684 | 		.hh_tot_count	= q->hh_flows_total_cnt, | 
 | 685 | 		.hh_cur_count	= q->hh_flows_current_cnt, | 
 | 686 | 	}; | 
 | 687 |  | 
 | 688 | 	return gnet_stats_copy_app(d, &st, sizeof(st)); | 
 | 689 | } | 
 | 690 |  | 
 | 691 | static struct Qdisc_ops hhf_qdisc_ops __read_mostly = { | 
 | 692 | 	.id		=	"hhf", | 
 | 693 | 	.priv_size	=	sizeof(struct hhf_sched_data), | 
 | 694 |  | 
 | 695 | 	.enqueue	=	hhf_enqueue, | 
 | 696 | 	.dequeue	=	hhf_dequeue, | 
 | 697 | 	.peek		=	qdisc_peek_dequeued, | 
 | 698 | 	.init		=	hhf_init, | 
 | 699 | 	.reset		=	hhf_reset, | 
 | 700 | 	.destroy	=	hhf_destroy, | 
 | 701 | 	.change		=	hhf_change, | 
 | 702 | 	.dump		=	hhf_dump, | 
 | 703 | 	.dump_stats	=	hhf_dump_stats, | 
 | 704 | 	.owner		=	THIS_MODULE, | 
 | 705 | }; | 
 | 706 |  | 
 | 707 | static int __init hhf_module_init(void) | 
 | 708 | { | 
 | 709 | 	return register_qdisc(&hhf_qdisc_ops); | 
 | 710 | } | 
 | 711 |  | 
 | 712 | static void __exit hhf_module_exit(void) | 
 | 713 | { | 
 | 714 | 	unregister_qdisc(&hhf_qdisc_ops); | 
 | 715 | } | 
 | 716 |  | 
 | 717 | module_init(hhf_module_init) | 
 | 718 | module_exit(hhf_module_exit) | 
 | 719 | MODULE_AUTHOR("Terry Lam"); | 
 | 720 | MODULE_AUTHOR("Nandita Dukkipati"); | 
 | 721 | MODULE_LICENSE("GPL"); |