| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
 | 2 | /* | 
 | 3 |  * background writeback - scan btree for dirty data and write it to the backing | 
 | 4 |  * device | 
 | 5 |  * | 
 | 6 |  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> | 
 | 7 |  * Copyright 2012 Google, Inc. | 
 | 8 |  */ | 
 | 9 |  | 
 | 10 | #include "bcache.h" | 
 | 11 | #include "btree.h" | 
 | 12 | #include "debug.h" | 
 | 13 | #include "writeback.h" | 
 | 14 |  | 
 | 15 | #include <linux/delay.h> | 
 | 16 | #include <linux/kthread.h> | 
 | 17 | #include <linux/sched/clock.h> | 
 | 18 | #include <trace/events/bcache.h> | 
 | 19 |  | 
 | 20 | /* Rate limiting */ | 
 | 21 | static uint64_t __calc_target_rate(struct cached_dev *dc) | 
 | 22 | { | 
 | 23 | 	struct cache_set *c = dc->disk.c; | 
 | 24 |  | 
 | 25 | 	/* | 
 | 26 | 	 * This is the size of the cache, minus the amount used for | 
 | 27 | 	 * flash-only devices | 
 | 28 | 	 */ | 
 | 29 | 	uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size - | 
 | 30 | 				atomic_long_read(&c->flash_dev_dirty_sectors); | 
 | 31 |  | 
 | 32 | 	/* | 
 | 33 | 	 * Unfortunately there is no control of global dirty data.  If the | 
 | 34 | 	 * user states that they want 10% dirty data in the cache, and has, | 
 | 35 | 	 * e.g., 5 backing volumes of equal size, we try and ensure each | 
 | 36 | 	 * backing volume uses about 2% of the cache for dirty data. | 
 | 37 | 	 */ | 
 | 38 | 	uint32_t bdev_share = | 
 | 39 | 		div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT, | 
 | 40 | 				c->cached_dev_sectors); | 
 | 41 |  | 
 | 42 | 	uint64_t cache_dirty_target = | 
 | 43 | 		div_u64(cache_sectors * dc->writeback_percent, 100); | 
 | 44 |  | 
 | 45 | 	/* Ensure each backing dev gets at least one dirty share */ | 
 | 46 | 	if (bdev_share < 1) | 
 | 47 | 		bdev_share = 1; | 
 | 48 |  | 
 | 49 | 	return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT; | 
 | 50 | } | 
 | 51 |  | 
 | 52 | static void __update_writeback_rate(struct cached_dev *dc) | 
 | 53 | { | 
 | 54 | 	/* | 
 | 55 | 	 * PI controller: | 
 | 56 | 	 * Figures out the amount that should be written per second. | 
 | 57 | 	 * | 
 | 58 | 	 * First, the error (number of sectors that are dirty beyond our | 
 | 59 | 	 * target) is calculated.  The error is accumulated (numerically | 
 | 60 | 	 * integrated). | 
 | 61 | 	 * | 
 | 62 | 	 * Then, the proportional value and integral value are scaled | 
 | 63 | 	 * based on configured values.  These are stored as inverses to | 
 | 64 | 	 * avoid fixed point math and to make configuration easy-- e.g. | 
 | 65 | 	 * the default value of 40 for writeback_rate_p_term_inverse | 
 | 66 | 	 * attempts to write at a rate that would retire all the dirty | 
 | 67 | 	 * blocks in 40 seconds. | 
 | 68 | 	 * | 
 | 69 | 	 * The writeback_rate_i_inverse value of 10000 means that 1/10000th | 
 | 70 | 	 * of the error is accumulated in the integral term per second. | 
 | 71 | 	 * This acts as a slow, long-term average that is not subject to | 
 | 72 | 	 * variations in usage like the p term. | 
 | 73 | 	 */ | 
 | 74 | 	int64_t target = __calc_target_rate(dc); | 
 | 75 | 	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk); | 
 | 76 | 	int64_t error = dirty - target; | 
 | 77 | 	int64_t proportional_scaled = | 
 | 78 | 		div_s64(error, dc->writeback_rate_p_term_inverse); | 
 | 79 | 	int64_t integral_scaled; | 
 | 80 | 	uint32_t new_rate; | 
 | 81 |  | 
 | 82 | 	if ((error < 0 && dc->writeback_rate_integral > 0) || | 
 | 83 | 	    (error > 0 && time_before64(local_clock(), | 
 | 84 | 			 dc->writeback_rate.next + NSEC_PER_MSEC))) { | 
 | 85 | 		/* | 
 | 86 | 		 * Only decrease the integral term if it's more than | 
 | 87 | 		 * zero.  Only increase the integral term if the device | 
 | 88 | 		 * is keeping up.  (Don't wind up the integral | 
 | 89 | 		 * ineffectively in either case). | 
 | 90 | 		 * | 
 | 91 | 		 * It's necessary to scale this by | 
 | 92 | 		 * writeback_rate_update_seconds to keep the integral | 
 | 93 | 		 * term dimensioned properly. | 
 | 94 | 		 */ | 
 | 95 | 		dc->writeback_rate_integral += error * | 
 | 96 | 			dc->writeback_rate_update_seconds; | 
 | 97 | 	} | 
 | 98 |  | 
 | 99 | 	integral_scaled = div_s64(dc->writeback_rate_integral, | 
 | 100 | 			dc->writeback_rate_i_term_inverse); | 
 | 101 |  | 
 | 102 | 	new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled), | 
 | 103 | 			dc->writeback_rate_minimum, NSEC_PER_SEC); | 
 | 104 |  | 
 | 105 | 	dc->writeback_rate_proportional = proportional_scaled; | 
 | 106 | 	dc->writeback_rate_integral_scaled = integral_scaled; | 
 | 107 | 	dc->writeback_rate_change = new_rate - | 
 | 108 | 			atomic_long_read(&dc->writeback_rate.rate); | 
 | 109 | 	atomic_long_set(&dc->writeback_rate.rate, new_rate); | 
 | 110 | 	dc->writeback_rate_target = target; | 
 | 111 | } | 
 | 112 |  | 
 | 113 | static bool set_at_max_writeback_rate(struct cache_set *c, | 
 | 114 | 				       struct cached_dev *dc) | 
 | 115 | { | 
 | 116 | 	/* | 
 | 117 | 	 * Idle_counter is increased everytime when update_writeback_rate() is | 
 | 118 | 	 * called. If all backing devices attached to the same cache set have | 
 | 119 | 	 * identical dc->writeback_rate_update_seconds values, it is about 6 | 
 | 120 | 	 * rounds of update_writeback_rate() on each backing device before | 
 | 121 | 	 * c->at_max_writeback_rate is set to 1, and then max wrteback rate set | 
 | 122 | 	 * to each dc->writeback_rate.rate. | 
 | 123 | 	 * In order to avoid extra locking cost for counting exact dirty cached | 
 | 124 | 	 * devices number, c->attached_dev_nr is used to calculate the idle | 
 | 125 | 	 * throushold. It might be bigger if not all cached device are in write- | 
 | 126 | 	 * back mode, but it still works well with limited extra rounds of | 
 | 127 | 	 * update_writeback_rate(). | 
 | 128 | 	 */ | 
 | 129 | 	if (atomic_inc_return(&c->idle_counter) < | 
 | 130 | 	    atomic_read(&c->attached_dev_nr) * 6) | 
 | 131 | 		return false; | 
 | 132 |  | 
 | 133 | 	if (atomic_read(&c->at_max_writeback_rate) != 1) | 
 | 134 | 		atomic_set(&c->at_max_writeback_rate, 1); | 
 | 135 |  | 
 | 136 | 	atomic_long_set(&dc->writeback_rate.rate, INT_MAX); | 
 | 137 |  | 
 | 138 | 	/* keep writeback_rate_target as existing value */ | 
 | 139 | 	dc->writeback_rate_proportional = 0; | 
 | 140 | 	dc->writeback_rate_integral_scaled = 0; | 
 | 141 | 	dc->writeback_rate_change = 0; | 
 | 142 |  | 
 | 143 | 	/* | 
 | 144 | 	 * Check c->idle_counter and c->at_max_writeback_rate agagain in case | 
 | 145 | 	 * new I/O arrives during before set_at_max_writeback_rate() returns. | 
 | 146 | 	 * Then the writeback rate is set to 1, and its new value should be | 
 | 147 | 	 * decided via __update_writeback_rate(). | 
 | 148 | 	 */ | 
 | 149 | 	if ((atomic_read(&c->idle_counter) < | 
 | 150 | 	     atomic_read(&c->attached_dev_nr) * 6) || | 
 | 151 | 	    !atomic_read(&c->at_max_writeback_rate)) | 
 | 152 | 		return false; | 
 | 153 |  | 
 | 154 | 	return true; | 
 | 155 | } | 
 | 156 |  | 
 | 157 | static void update_writeback_rate(struct work_struct *work) | 
 | 158 | { | 
 | 159 | 	struct cached_dev *dc = container_of(to_delayed_work(work), | 
 | 160 | 					     struct cached_dev, | 
 | 161 | 					     writeback_rate_update); | 
 | 162 | 	struct cache_set *c = dc->disk.c; | 
 | 163 |  | 
 | 164 | 	/* | 
 | 165 | 	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling | 
 | 166 | 	 * cancel_delayed_work_sync(). | 
 | 167 | 	 */ | 
 | 168 | 	set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); | 
 | 169 | 	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ | 
 | 170 | 	smp_mb(); | 
 | 171 |  | 
 | 172 | 	/* | 
 | 173 | 	 * CACHE_SET_IO_DISABLE might be set via sysfs interface, | 
 | 174 | 	 * check it here too. | 
 | 175 | 	 */ | 
 | 176 | 	if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) || | 
 | 177 | 	    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { | 
 | 178 | 		clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); | 
 | 179 | 		/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ | 
 | 180 | 		smp_mb(); | 
 | 181 | 		return; | 
 | 182 | 	} | 
 | 183 |  | 
 | 184 | 	if (atomic_read(&dc->has_dirty) && dc->writeback_percent) { | 
 | 185 | 		/* | 
 | 186 | 		 * If the whole cache set is idle, set_at_max_writeback_rate() | 
 | 187 | 		 * will set writeback rate to a max number. Then it is | 
 | 188 | 		 * unncessary to update writeback rate for an idle cache set | 
 | 189 | 		 * in maximum writeback rate number(s). | 
 | 190 | 		 */ | 
 | 191 | 		if (!set_at_max_writeback_rate(c, dc)) { | 
 | 192 | 			down_read(&dc->writeback_lock); | 
 | 193 | 			__update_writeback_rate(dc); | 
 | 194 | 			up_read(&dc->writeback_lock); | 
 | 195 | 		} | 
 | 196 | 	} | 
 | 197 |  | 
 | 198 |  | 
 | 199 | 	/* | 
 | 200 | 	 * CACHE_SET_IO_DISABLE might be set via sysfs interface, | 
 | 201 | 	 * check it here too. | 
 | 202 | 	 */ | 
 | 203 | 	if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) && | 
 | 204 | 	    !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { | 
 | 205 | 		schedule_delayed_work(&dc->writeback_rate_update, | 
 | 206 | 			      dc->writeback_rate_update_seconds * HZ); | 
 | 207 | 	} | 
 | 208 |  | 
 | 209 | 	/* | 
 | 210 | 	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling | 
 | 211 | 	 * cancel_delayed_work_sync(). | 
 | 212 | 	 */ | 
 | 213 | 	clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); | 
 | 214 | 	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ | 
 | 215 | 	smp_mb(); | 
 | 216 | } | 
 | 217 |  | 
 | 218 | static unsigned int writeback_delay(struct cached_dev *dc, | 
 | 219 | 				    unsigned int sectors) | 
 | 220 | { | 
 | 221 | 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || | 
 | 222 | 	    !dc->writeback_percent) | 
 | 223 | 		return 0; | 
 | 224 |  | 
 | 225 | 	return bch_next_delay(&dc->writeback_rate, sectors); | 
 | 226 | } | 
 | 227 |  | 
 | 228 | struct dirty_io { | 
 | 229 | 	struct closure		cl; | 
 | 230 | 	struct cached_dev	*dc; | 
 | 231 | 	uint16_t		sequence; | 
 | 232 | 	struct bio		bio; | 
 | 233 | }; | 
 | 234 |  | 
 | 235 | static void dirty_init(struct keybuf_key *w) | 
 | 236 | { | 
 | 237 | 	struct dirty_io *io = w->private; | 
 | 238 | 	struct bio *bio = &io->bio; | 
 | 239 |  | 
 | 240 | 	bio_init(bio, bio->bi_inline_vecs, | 
 | 241 | 		 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)); | 
 | 242 | 	if (!io->dc->writeback_percent) | 
 | 243 | 		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); | 
 | 244 |  | 
 | 245 | 	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9; | 
 | 246 | 	bio->bi_private		= w; | 
 | 247 | 	bch_bio_map(bio, NULL); | 
 | 248 | } | 
 | 249 |  | 
 | 250 | static void dirty_io_destructor(struct closure *cl) | 
 | 251 | { | 
 | 252 | 	struct dirty_io *io = container_of(cl, struct dirty_io, cl); | 
 | 253 |  | 
 | 254 | 	kfree(io); | 
 | 255 | } | 
 | 256 |  | 
 | 257 | static void write_dirty_finish(struct closure *cl) | 
 | 258 | { | 
 | 259 | 	struct dirty_io *io = container_of(cl, struct dirty_io, cl); | 
 | 260 | 	struct keybuf_key *w = io->bio.bi_private; | 
 | 261 | 	struct cached_dev *dc = io->dc; | 
 | 262 |  | 
 | 263 | 	bio_free_pages(&io->bio); | 
 | 264 |  | 
 | 265 | 	/* This is kind of a dumb way of signalling errors. */ | 
 | 266 | 	if (KEY_DIRTY(&w->key)) { | 
 | 267 | 		int ret; | 
 | 268 | 		unsigned int i; | 
 | 269 | 		struct keylist keys; | 
 | 270 |  | 
 | 271 | 		bch_keylist_init(&keys); | 
 | 272 |  | 
 | 273 | 		bkey_copy(keys.top, &w->key); | 
 | 274 | 		SET_KEY_DIRTY(keys.top, false); | 
 | 275 | 		bch_keylist_push(&keys); | 
 | 276 |  | 
 | 277 | 		for (i = 0; i < KEY_PTRS(&w->key); i++) | 
 | 278 | 			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin); | 
 | 279 |  | 
 | 280 | 		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key); | 
 | 281 |  | 
 | 282 | 		if (ret) | 
 | 283 | 			trace_bcache_writeback_collision(&w->key); | 
 | 284 |  | 
 | 285 | 		atomic_long_inc(ret | 
 | 286 | 				? &dc->disk.c->writeback_keys_failed | 
 | 287 | 				: &dc->disk.c->writeback_keys_done); | 
 | 288 | 	} | 
 | 289 |  | 
 | 290 | 	bch_keybuf_del(&dc->writeback_keys, w); | 
 | 291 | 	up(&dc->in_flight); | 
 | 292 |  | 
 | 293 | 	closure_return_with_destructor(cl, dirty_io_destructor); | 
 | 294 | } | 
 | 295 |  | 
 | 296 | static void dirty_endio(struct bio *bio) | 
 | 297 | { | 
 | 298 | 	struct keybuf_key *w = bio->bi_private; | 
 | 299 | 	struct dirty_io *io = w->private; | 
 | 300 |  | 
 | 301 | 	if (bio->bi_status) { | 
 | 302 | 		SET_KEY_DIRTY(&w->key, false); | 
 | 303 | 		bch_count_backing_io_errors(io->dc, bio); | 
 | 304 | 	} | 
 | 305 |  | 
 | 306 | 	closure_put(&io->cl); | 
 | 307 | } | 
 | 308 |  | 
 | 309 | static void write_dirty(struct closure *cl) | 
 | 310 | { | 
 | 311 | 	struct dirty_io *io = container_of(cl, struct dirty_io, cl); | 
 | 312 | 	struct keybuf_key *w = io->bio.bi_private; | 
 | 313 | 	struct cached_dev *dc = io->dc; | 
 | 314 |  | 
 | 315 | 	uint16_t next_sequence; | 
 | 316 |  | 
 | 317 | 	if (atomic_read(&dc->writeback_sequence_next) != io->sequence) { | 
 | 318 | 		/* Not our turn to write; wait for a write to complete */ | 
 | 319 | 		closure_wait(&dc->writeback_ordering_wait, cl); | 
 | 320 |  | 
 | 321 | 		if (atomic_read(&dc->writeback_sequence_next) == io->sequence) { | 
 | 322 | 			/* | 
 | 323 | 			 * Edge case-- it happened in indeterminate order | 
 | 324 | 			 * relative to when we were added to wait list.. | 
 | 325 | 			 */ | 
 | 326 | 			closure_wake_up(&dc->writeback_ordering_wait); | 
 | 327 | 		} | 
 | 328 |  | 
 | 329 | 		continue_at(cl, write_dirty, io->dc->writeback_write_wq); | 
 | 330 | 		return; | 
 | 331 | 	} | 
 | 332 |  | 
 | 333 | 	next_sequence = io->sequence + 1; | 
 | 334 |  | 
 | 335 | 	/* | 
 | 336 | 	 * IO errors are signalled using the dirty bit on the key. | 
 | 337 | 	 * If we failed to read, we should not attempt to write to the | 
 | 338 | 	 * backing device.  Instead, immediately go to write_dirty_finish | 
 | 339 | 	 * to clean up. | 
 | 340 | 	 */ | 
 | 341 | 	if (KEY_DIRTY(&w->key)) { | 
 | 342 | 		dirty_init(w); | 
 | 343 | 		bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0); | 
 | 344 | 		io->bio.bi_iter.bi_sector = KEY_START(&w->key); | 
 | 345 | 		bio_set_dev(&io->bio, io->dc->bdev); | 
 | 346 | 		io->bio.bi_end_io	= dirty_endio; | 
 | 347 |  | 
 | 348 | 		/* I/O request sent to backing device */ | 
 | 349 | 		closure_bio_submit(io->dc->disk.c, &io->bio, cl); | 
 | 350 | 	} | 
 | 351 |  | 
 | 352 | 	atomic_set(&dc->writeback_sequence_next, next_sequence); | 
 | 353 | 	closure_wake_up(&dc->writeback_ordering_wait); | 
 | 354 |  | 
 | 355 | 	continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq); | 
 | 356 | } | 
 | 357 |  | 
 | 358 | static void read_dirty_endio(struct bio *bio) | 
 | 359 | { | 
 | 360 | 	struct keybuf_key *w = bio->bi_private; | 
 | 361 | 	struct dirty_io *io = w->private; | 
 | 362 |  | 
 | 363 | 	/* is_read = 1 */ | 
 | 364 | 	bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0), | 
 | 365 | 			    bio->bi_status, 1, | 
 | 366 | 			    "reading dirty data from cache"); | 
 | 367 |  | 
 | 368 | 	dirty_endio(bio); | 
 | 369 | } | 
 | 370 |  | 
 | 371 | static void read_dirty_submit(struct closure *cl) | 
 | 372 | { | 
 | 373 | 	struct dirty_io *io = container_of(cl, struct dirty_io, cl); | 
 | 374 |  | 
 | 375 | 	closure_bio_submit(io->dc->disk.c, &io->bio, cl); | 
 | 376 |  | 
 | 377 | 	continue_at(cl, write_dirty, io->dc->writeback_write_wq); | 
 | 378 | } | 
 | 379 |  | 
 | 380 | static void read_dirty(struct cached_dev *dc) | 
 | 381 | { | 
 | 382 | 	unsigned int delay = 0; | 
 | 383 | 	struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w; | 
 | 384 | 	size_t size; | 
 | 385 | 	int nk, i; | 
 | 386 | 	struct dirty_io *io; | 
 | 387 | 	struct closure cl; | 
 | 388 | 	uint16_t sequence = 0; | 
 | 389 |  | 
 | 390 | 	BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list)); | 
 | 391 | 	atomic_set(&dc->writeback_sequence_next, sequence); | 
 | 392 | 	closure_init_stack(&cl); | 
 | 393 |  | 
 | 394 | 	/* | 
 | 395 | 	 * XXX: if we error, background writeback just spins. Should use some | 
 | 396 | 	 * mempools. | 
 | 397 | 	 */ | 
 | 398 |  | 
 | 399 | 	next = bch_keybuf_next(&dc->writeback_keys); | 
 | 400 |  | 
 | 401 | 	while (!kthread_should_stop() && | 
 | 402 | 	       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) && | 
 | 403 | 	       next) { | 
 | 404 | 		size = 0; | 
 | 405 | 		nk = 0; | 
 | 406 |  | 
 | 407 | 		do { | 
 | 408 | 			BUG_ON(ptr_stale(dc->disk.c, &next->key, 0)); | 
 | 409 |  | 
 | 410 | 			/* | 
 | 411 | 			 * Don't combine too many operations, even if they | 
 | 412 | 			 * are all small. | 
 | 413 | 			 */ | 
 | 414 | 			if (nk >= MAX_WRITEBACKS_IN_PASS) | 
 | 415 | 				break; | 
 | 416 |  | 
 | 417 | 			/* | 
 | 418 | 			 * If the current operation is very large, don't | 
 | 419 | 			 * further combine operations. | 
 | 420 | 			 */ | 
 | 421 | 			if (size >= MAX_WRITESIZE_IN_PASS) | 
 | 422 | 				break; | 
 | 423 |  | 
 | 424 | 			/* | 
 | 425 | 			 * Operations are only eligible to be combined | 
 | 426 | 			 * if they are contiguous. | 
 | 427 | 			 * | 
 | 428 | 			 * TODO: add a heuristic willing to fire a | 
 | 429 | 			 * certain amount of non-contiguous IO per pass, | 
 | 430 | 			 * so that we can benefit from backing device | 
 | 431 | 			 * command queueing. | 
 | 432 | 			 */ | 
 | 433 | 			if ((nk != 0) && bkey_cmp(&keys[nk-1]->key, | 
 | 434 | 						&START_KEY(&next->key))) | 
 | 435 | 				break; | 
 | 436 |  | 
 | 437 | 			size += KEY_SIZE(&next->key); | 
 | 438 | 			keys[nk++] = next; | 
 | 439 | 		} while ((next = bch_keybuf_next(&dc->writeback_keys))); | 
 | 440 |  | 
 | 441 | 		/* Now we have gathered a set of 1..5 keys to write back. */ | 
 | 442 | 		for (i = 0; i < nk; i++) { | 
 | 443 | 			w = keys[i]; | 
 | 444 |  | 
 | 445 | 			io = kzalloc(sizeof(struct dirty_io) + | 
 | 446 | 				     sizeof(struct bio_vec) * | 
 | 447 | 				     DIV_ROUND_UP(KEY_SIZE(&w->key), | 
 | 448 | 						  PAGE_SECTORS), | 
 | 449 | 				     GFP_KERNEL); | 
 | 450 | 			if (!io) | 
 | 451 | 				goto err; | 
 | 452 |  | 
 | 453 | 			w->private	= io; | 
 | 454 | 			io->dc		= dc; | 
 | 455 | 			io->sequence    = sequence++; | 
 | 456 |  | 
 | 457 | 			dirty_init(w); | 
 | 458 | 			bio_set_op_attrs(&io->bio, REQ_OP_READ, 0); | 
 | 459 | 			io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0); | 
 | 460 | 			bio_set_dev(&io->bio, | 
 | 461 | 				    PTR_CACHE(dc->disk.c, &w->key, 0)->bdev); | 
 | 462 | 			io->bio.bi_end_io	= read_dirty_endio; | 
 | 463 |  | 
 | 464 | 			if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL)) | 
 | 465 | 				goto err_free; | 
 | 466 |  | 
 | 467 | 			trace_bcache_writeback(&w->key); | 
 | 468 |  | 
 | 469 | 			down(&dc->in_flight); | 
 | 470 |  | 
 | 471 | 			/* | 
 | 472 | 			 * We've acquired a semaphore for the maximum | 
 | 473 | 			 * simultaneous number of writebacks; from here | 
 | 474 | 			 * everything happens asynchronously. | 
 | 475 | 			 */ | 
 | 476 | 			closure_call(&io->cl, read_dirty_submit, NULL, &cl); | 
 | 477 | 		} | 
 | 478 |  | 
 | 479 | 		delay = writeback_delay(dc, size); | 
 | 480 |  | 
 | 481 | 		while (!kthread_should_stop() && | 
 | 482 | 		       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) && | 
 | 483 | 		       delay) { | 
 | 484 | 			schedule_timeout_interruptible(delay); | 
 | 485 | 			delay = writeback_delay(dc, 0); | 
 | 486 | 		} | 
 | 487 | 	} | 
 | 488 |  | 
 | 489 | 	if (0) { | 
 | 490 | err_free: | 
 | 491 | 		kfree(w->private); | 
 | 492 | err: | 
 | 493 | 		bch_keybuf_del(&dc->writeback_keys, w); | 
 | 494 | 	} | 
 | 495 |  | 
 | 496 | 	/* | 
 | 497 | 	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be | 
 | 498 | 	 * freed) before refilling again | 
 | 499 | 	 */ | 
 | 500 | 	closure_sync(&cl); | 
 | 501 | } | 
 | 502 |  | 
 | 503 | /* Scan for dirty data */ | 
 | 504 |  | 
 | 505 | void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode, | 
 | 506 | 				  uint64_t offset, int nr_sectors) | 
 | 507 | { | 
 | 508 | 	struct bcache_device *d = c->devices[inode]; | 
 | 509 | 	unsigned int stripe_offset, stripe, sectors_dirty; | 
 | 510 |  | 
 | 511 | 	if (!d) | 
 | 512 | 		return; | 
 | 513 |  | 
 | 514 | 	if (UUID_FLASH_ONLY(&c->uuids[inode])) | 
 | 515 | 		atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors); | 
 | 516 |  | 
 | 517 | 	stripe = offset_to_stripe(d, offset); | 
 | 518 | 	stripe_offset = offset & (d->stripe_size - 1); | 
 | 519 |  | 
 | 520 | 	while (nr_sectors) { | 
 | 521 | 		int s = min_t(unsigned int, abs(nr_sectors), | 
 | 522 | 			      d->stripe_size - stripe_offset); | 
 | 523 |  | 
 | 524 | 		if (nr_sectors < 0) | 
 | 525 | 			s = -s; | 
 | 526 |  | 
 | 527 | 		if (stripe >= d->nr_stripes) | 
 | 528 | 			return; | 
 | 529 |  | 
 | 530 | 		sectors_dirty = atomic_add_return(s, | 
 | 531 | 					d->stripe_sectors_dirty + stripe); | 
 | 532 | 		if (sectors_dirty == d->stripe_size) | 
 | 533 | 			set_bit(stripe, d->full_dirty_stripes); | 
 | 534 | 		else | 
 | 535 | 			clear_bit(stripe, d->full_dirty_stripes); | 
 | 536 |  | 
 | 537 | 		nr_sectors -= s; | 
 | 538 | 		stripe_offset = 0; | 
 | 539 | 		stripe++; | 
 | 540 | 	} | 
 | 541 | } | 
 | 542 |  | 
 | 543 | static bool dirty_pred(struct keybuf *buf, struct bkey *k) | 
 | 544 | { | 
 | 545 | 	struct cached_dev *dc = container_of(buf, | 
 | 546 | 					     struct cached_dev, | 
 | 547 | 					     writeback_keys); | 
 | 548 |  | 
 | 549 | 	BUG_ON(KEY_INODE(k) != dc->disk.id); | 
 | 550 |  | 
 | 551 | 	return KEY_DIRTY(k); | 
 | 552 | } | 
 | 553 |  | 
 | 554 | static void refill_full_stripes(struct cached_dev *dc) | 
 | 555 | { | 
 | 556 | 	struct keybuf *buf = &dc->writeback_keys; | 
 | 557 | 	unsigned int start_stripe, stripe, next_stripe; | 
 | 558 | 	bool wrapped = false; | 
 | 559 |  | 
 | 560 | 	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned)); | 
 | 561 |  | 
 | 562 | 	if (stripe >= dc->disk.nr_stripes) | 
 | 563 | 		stripe = 0; | 
 | 564 |  | 
 | 565 | 	start_stripe = stripe; | 
 | 566 |  | 
 | 567 | 	while (1) { | 
 | 568 | 		stripe = find_next_bit(dc->disk.full_dirty_stripes, | 
 | 569 | 				       dc->disk.nr_stripes, stripe); | 
 | 570 |  | 
 | 571 | 		if (stripe == dc->disk.nr_stripes) | 
 | 572 | 			goto next; | 
 | 573 |  | 
 | 574 | 		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes, | 
 | 575 | 						 dc->disk.nr_stripes, stripe); | 
 | 576 |  | 
 | 577 | 		buf->last_scanned = KEY(dc->disk.id, | 
 | 578 | 					stripe * dc->disk.stripe_size, 0); | 
 | 579 |  | 
 | 580 | 		bch_refill_keybuf(dc->disk.c, buf, | 
 | 581 | 				  &KEY(dc->disk.id, | 
 | 582 | 				       next_stripe * dc->disk.stripe_size, 0), | 
 | 583 | 				  dirty_pred); | 
 | 584 |  | 
 | 585 | 		if (array_freelist_empty(&buf->freelist)) | 
 | 586 | 			return; | 
 | 587 |  | 
 | 588 | 		stripe = next_stripe; | 
 | 589 | next: | 
 | 590 | 		if (wrapped && stripe > start_stripe) | 
 | 591 | 			return; | 
 | 592 |  | 
 | 593 | 		if (stripe == dc->disk.nr_stripes) { | 
 | 594 | 			stripe = 0; | 
 | 595 | 			wrapped = true; | 
 | 596 | 		} | 
 | 597 | 	} | 
 | 598 | } | 
 | 599 |  | 
 | 600 | /* | 
 | 601 |  * Returns true if we scanned the entire disk | 
 | 602 |  */ | 
 | 603 | static bool refill_dirty(struct cached_dev *dc) | 
 | 604 | { | 
 | 605 | 	struct keybuf *buf = &dc->writeback_keys; | 
 | 606 | 	struct bkey start = KEY(dc->disk.id, 0, 0); | 
 | 607 | 	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0); | 
 | 608 | 	struct bkey start_pos; | 
 | 609 |  | 
 | 610 | 	/* | 
 | 611 | 	 * make sure keybuf pos is inside the range for this disk - at bringup | 
 | 612 | 	 * we might not be attached yet so this disk's inode nr isn't | 
 | 613 | 	 * initialized then | 
 | 614 | 	 */ | 
 | 615 | 	if (bkey_cmp(&buf->last_scanned, &start) < 0 || | 
 | 616 | 	    bkey_cmp(&buf->last_scanned, &end) > 0) | 
 | 617 | 		buf->last_scanned = start; | 
 | 618 |  | 
 | 619 | 	if (dc->partial_stripes_expensive) { | 
 | 620 | 		refill_full_stripes(dc); | 
 | 621 | 		if (array_freelist_empty(&buf->freelist)) | 
 | 622 | 			return false; | 
 | 623 | 	} | 
 | 624 |  | 
 | 625 | 	start_pos = buf->last_scanned; | 
 | 626 | 	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred); | 
 | 627 |  | 
 | 628 | 	if (bkey_cmp(&buf->last_scanned, &end) < 0) | 
 | 629 | 		return false; | 
 | 630 |  | 
 | 631 | 	/* | 
 | 632 | 	 * If we get to the end start scanning again from the beginning, and | 
 | 633 | 	 * only scan up to where we initially started scanning from: | 
 | 634 | 	 */ | 
 | 635 | 	buf->last_scanned = start; | 
 | 636 | 	bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred); | 
 | 637 |  | 
 | 638 | 	return bkey_cmp(&buf->last_scanned, &start_pos) >= 0; | 
 | 639 | } | 
 | 640 |  | 
 | 641 | static int bch_writeback_thread(void *arg) | 
 | 642 | { | 
 | 643 | 	struct cached_dev *dc = arg; | 
 | 644 | 	struct cache_set *c = dc->disk.c; | 
 | 645 | 	bool searched_full_index; | 
 | 646 |  | 
 | 647 | 	bch_ratelimit_reset(&dc->writeback_rate); | 
 | 648 |  | 
 | 649 | 	while (!kthread_should_stop() && | 
 | 650 | 	       !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { | 
 | 651 | 		down_write(&dc->writeback_lock); | 
 | 652 | 		set_current_state(TASK_INTERRUPTIBLE); | 
 | 653 | 		/* | 
 | 654 | 		 * If the bache device is detaching, skip here and continue | 
 | 655 | 		 * to perform writeback. Otherwise, if no dirty data on cache, | 
 | 656 | 		 * or there is dirty data on cache but writeback is disabled, | 
 | 657 | 		 * the writeback thread should sleep here and wait for others | 
 | 658 | 		 * to wake up it. | 
 | 659 | 		 */ | 
 | 660 | 		if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) && | 
 | 661 | 		    (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) { | 
 | 662 | 			up_write(&dc->writeback_lock); | 
 | 663 |  | 
 | 664 | 			if (kthread_should_stop() || | 
 | 665 | 			    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { | 
 | 666 | 				set_current_state(TASK_RUNNING); | 
 | 667 | 				break; | 
 | 668 | 			} | 
 | 669 |  | 
 | 670 | 			schedule(); | 
 | 671 | 			continue; | 
 | 672 | 		} | 
 | 673 | 		set_current_state(TASK_RUNNING); | 
 | 674 |  | 
 | 675 | 		searched_full_index = refill_dirty(dc); | 
 | 676 |  | 
 | 677 | 		if (searched_full_index && | 
 | 678 | 		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) { | 
 | 679 | 			atomic_set(&dc->has_dirty, 0); | 
 | 680 | 			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); | 
 | 681 | 			bch_write_bdev_super(dc, NULL); | 
 | 682 | 			/* | 
 | 683 | 			 * If bcache device is detaching via sysfs interface, | 
 | 684 | 			 * writeback thread should stop after there is no dirty | 
 | 685 | 			 * data on cache. BCACHE_DEV_DETACHING flag is set in | 
 | 686 | 			 * bch_cached_dev_detach(). | 
 | 687 | 			 */ | 
 | 688 | 			if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) { | 
 | 689 | 				up_write(&dc->writeback_lock); | 
 | 690 | 				break; | 
 | 691 | 			} | 
 | 692 | 		} | 
 | 693 |  | 
 | 694 | 		up_write(&dc->writeback_lock); | 
 | 695 |  | 
 | 696 | 		read_dirty(dc); | 
 | 697 |  | 
 | 698 | 		if (searched_full_index) { | 
 | 699 | 			unsigned int delay = dc->writeback_delay * HZ; | 
 | 700 |  | 
 | 701 | 			while (delay && | 
 | 702 | 			       !kthread_should_stop() && | 
 | 703 | 			       !test_bit(CACHE_SET_IO_DISABLE, &c->flags) && | 
 | 704 | 			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) | 
 | 705 | 				delay = schedule_timeout_interruptible(delay); | 
 | 706 |  | 
 | 707 | 			bch_ratelimit_reset(&dc->writeback_rate); | 
 | 708 | 		} | 
 | 709 | 	} | 
 | 710 |  | 
 | 711 | 	if (dc->writeback_write_wq) { | 
 | 712 | 		flush_workqueue(dc->writeback_write_wq); | 
 | 713 | 		destroy_workqueue(dc->writeback_write_wq); | 
 | 714 | 	} | 
 | 715 | 	cached_dev_put(dc); | 
 | 716 | 	wait_for_kthread_stop(); | 
 | 717 |  | 
 | 718 | 	return 0; | 
 | 719 | } | 
 | 720 |  | 
 | 721 | /* Init */ | 
 | 722 | #define INIT_KEYS_EACH_TIME	500000 | 
 | 723 | #define INIT_KEYS_SLEEP_MS	100 | 
 | 724 |  | 
 | 725 | struct sectors_dirty_init { | 
 | 726 | 	struct btree_op	op; | 
 | 727 | 	unsigned int	inode; | 
 | 728 | 	size_t		count; | 
 | 729 | 	struct bkey	start; | 
 | 730 | }; | 
 | 731 |  | 
 | 732 | static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b, | 
 | 733 | 				 struct bkey *k) | 
 | 734 | { | 
 | 735 | 	struct sectors_dirty_init *op = container_of(_op, | 
 | 736 | 						struct sectors_dirty_init, op); | 
 | 737 | 	if (KEY_INODE(k) > op->inode) | 
 | 738 | 		return MAP_DONE; | 
 | 739 |  | 
 | 740 | 	if (KEY_DIRTY(k)) | 
 | 741 | 		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k), | 
 | 742 | 					     KEY_START(k), KEY_SIZE(k)); | 
 | 743 |  | 
 | 744 | 	op->count++; | 
 | 745 | 	if (atomic_read(&b->c->search_inflight) && | 
 | 746 | 	    !(op->count % INIT_KEYS_EACH_TIME)) { | 
 | 747 | 		bkey_copy_key(&op->start, k); | 
 | 748 | 		return -EAGAIN; | 
 | 749 | 	} | 
 | 750 |  | 
 | 751 | 	return MAP_CONTINUE; | 
 | 752 | } | 
 | 753 |  | 
 | 754 | void bch_sectors_dirty_init(struct bcache_device *d) | 
 | 755 | { | 
 | 756 | 	struct sectors_dirty_init op; | 
 | 757 | 	int ret; | 
 | 758 |  | 
 | 759 | 	bch_btree_op_init(&op.op, -1); | 
 | 760 | 	op.inode = d->id; | 
 | 761 | 	op.count = 0; | 
 | 762 | 	op.start = KEY(op.inode, 0, 0); | 
 | 763 |  | 
 | 764 | 	do { | 
 | 765 | 		ret = bch_btree_map_keys(&op.op, d->c, &op.start, | 
 | 766 | 					 sectors_dirty_init_fn, 0); | 
 | 767 | 		if (ret == -EAGAIN) | 
 | 768 | 			schedule_timeout_interruptible( | 
 | 769 | 				msecs_to_jiffies(INIT_KEYS_SLEEP_MS)); | 
 | 770 | 		else if (ret < 0) { | 
 | 771 | 			pr_warn("sectors dirty init failed, ret=%d!", ret); | 
 | 772 | 			break; | 
 | 773 | 		} | 
 | 774 | 	} while (ret == -EAGAIN); | 
 | 775 | } | 
 | 776 |  | 
 | 777 | void bch_cached_dev_writeback_init(struct cached_dev *dc) | 
 | 778 | { | 
 | 779 | 	sema_init(&dc->in_flight, 64); | 
 | 780 | 	init_rwsem(&dc->writeback_lock); | 
 | 781 | 	bch_keybuf_init(&dc->writeback_keys); | 
 | 782 |  | 
 | 783 | 	dc->writeback_metadata		= true; | 
 | 784 | 	dc->writeback_running		= false; | 
 | 785 | 	dc->writeback_percent		= 10; | 
 | 786 | 	dc->writeback_delay		= 30; | 
 | 787 | 	atomic_long_set(&dc->writeback_rate.rate, 1024); | 
 | 788 | 	dc->writeback_rate_minimum	= 8; | 
 | 789 |  | 
 | 790 | 	dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT; | 
 | 791 | 	dc->writeback_rate_p_term_inverse = 40; | 
 | 792 | 	dc->writeback_rate_i_term_inverse = 10000; | 
 | 793 |  | 
 | 794 | 	WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)); | 
 | 795 | 	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate); | 
 | 796 | } | 
 | 797 |  | 
 | 798 | int bch_cached_dev_writeback_start(struct cached_dev *dc) | 
 | 799 | { | 
 | 800 | 	dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq", | 
 | 801 | 						WQ_MEM_RECLAIM, 0); | 
 | 802 | 	if (!dc->writeback_write_wq) | 
 | 803 | 		return -ENOMEM; | 
 | 804 |  | 
 | 805 | 	cached_dev_get(dc); | 
 | 806 | 	dc->writeback_thread = kthread_create(bch_writeback_thread, dc, | 
 | 807 | 					      "bcache_writeback"); | 
 | 808 | 	if (IS_ERR(dc->writeback_thread)) { | 
 | 809 | 		cached_dev_put(dc); | 
 | 810 | 		destroy_workqueue(dc->writeback_write_wq); | 
 | 811 | 		return PTR_ERR(dc->writeback_thread); | 
 | 812 | 	} | 
 | 813 | 	dc->writeback_running = true; | 
 | 814 |  | 
 | 815 | 	WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)); | 
 | 816 | 	schedule_delayed_work(&dc->writeback_rate_update, | 
 | 817 | 			      dc->writeback_rate_update_seconds * HZ); | 
 | 818 |  | 
 | 819 | 	bch_writeback_queue(dc); | 
 | 820 |  | 
 | 821 | 	return 0; | 
 | 822 | } |