blob: 7f5ee6bb4430063d45a6e83ecbfe95fd5969ba1f [file] [log] [blame]
xjb04a4022021-11-25 15:01:52 +08001/*
2 * vrf.c: device driver to encapsulate a VRF space
3 *
4 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
7 *
8 * Based on dummy, team and ipvlan drivers
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 */
15
16#include <linux/module.h>
17#include <linux/kernel.h>
18#include <linux/netdevice.h>
19#include <linux/etherdevice.h>
20#include <linux/ip.h>
21#include <linux/init.h>
22#include <linux/moduleparam.h>
23#include <linux/netfilter.h>
24#include <linux/rtnetlink.h>
25#include <net/rtnetlink.h>
26#include <linux/u64_stats_sync.h>
27#include <linux/hashtable.h>
28
29#include <linux/inetdevice.h>
30#include <net/arp.h>
31#include <net/ip.h>
32#include <net/ip_fib.h>
33#include <net/ip6_fib.h>
34#include <net/ip6_route.h>
35#include <net/route.h>
36#include <net/addrconf.h>
37#include <net/l3mdev.h>
38#include <net/fib_rules.h>
39#include <net/netns/generic.h>
40
41#define DRV_NAME "vrf"
42#define DRV_VERSION "1.0"
43
44#define FIB_RULE_PREF 1000 /* default preference for FIB rules */
45
46static unsigned int vrf_net_id;
47
48struct net_vrf {
49 struct rtable __rcu *rth;
50 struct rt6_info __rcu *rt6;
51#if IS_ENABLED(CONFIG_IPV6)
52 struct fib6_table *fib6_table;
53#endif
54 u32 tb_id;
55};
56
57struct pcpu_dstats {
58 u64 tx_pkts;
59 u64 tx_bytes;
60 u64 tx_drps;
61 u64 rx_pkts;
62 u64 rx_bytes;
63 u64 rx_drps;
64 struct u64_stats_sync syncp;
65};
66
67static void vrf_rx_stats(struct net_device *dev, int len)
68{
69 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
70
71 u64_stats_update_begin(&dstats->syncp);
72 dstats->rx_pkts++;
73 dstats->rx_bytes += len;
74 u64_stats_update_end(&dstats->syncp);
75}
76
77static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
78{
79 vrf_dev->stats.tx_errors++;
80 kfree_skb(skb);
81}
82
83static void vrf_get_stats64(struct net_device *dev,
84 struct rtnl_link_stats64 *stats)
85{
86 int i;
87
88 for_each_possible_cpu(i) {
89 const struct pcpu_dstats *dstats;
90 u64 tbytes, tpkts, tdrops, rbytes, rpkts;
91 unsigned int start;
92
93 dstats = per_cpu_ptr(dev->dstats, i);
94 do {
95 start = u64_stats_fetch_begin_irq(&dstats->syncp);
96 tbytes = dstats->tx_bytes;
97 tpkts = dstats->tx_pkts;
98 tdrops = dstats->tx_drps;
99 rbytes = dstats->rx_bytes;
100 rpkts = dstats->rx_pkts;
101 } while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
102 stats->tx_bytes += tbytes;
103 stats->tx_packets += tpkts;
104 stats->tx_dropped += tdrops;
105 stats->rx_bytes += rbytes;
106 stats->rx_packets += rpkts;
107 }
108}
109
110/* by default VRF devices do not have a qdisc and are expected
111 * to be created with only a single queue.
112 */
113static bool qdisc_tx_is_default(const struct net_device *dev)
114{
115 struct netdev_queue *txq;
116 struct Qdisc *qdisc;
117
118 if (dev->num_tx_queues > 1)
119 return false;
120
121 txq = netdev_get_tx_queue(dev, 0);
122 qdisc = rcu_access_pointer(txq->qdisc);
123
124 return !qdisc->enqueue;
125}
126
127/* Local traffic destined to local address. Reinsert the packet to rx
128 * path, similar to loopback handling.
129 */
130static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
131 struct dst_entry *dst)
132{
133 int len = skb->len;
134
135 skb_orphan(skb);
136
137 skb_dst_set(skb, dst);
138
139 /* set pkt_type to avoid skb hitting packet taps twice -
140 * once on Tx and again in Rx processing
141 */
142 skb->pkt_type = PACKET_LOOPBACK;
143
144 skb->protocol = eth_type_trans(skb, dev);
145
146 if (likely(netif_rx(skb) == NET_RX_SUCCESS))
147 vrf_rx_stats(dev, len);
148 else
149 this_cpu_inc(dev->dstats->rx_drps);
150
151 return NETDEV_TX_OK;
152}
153
154#if IS_ENABLED(CONFIG_IPV6)
155static int vrf_ip6_local_out(struct net *net, struct sock *sk,
156 struct sk_buff *skb)
157{
158 int err;
159
160 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
161 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
162
163 if (likely(err == 1))
164 err = dst_output(net, sk, skb);
165
166 return err;
167}
168
169static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
170 struct net_device *dev)
171{
172 const struct ipv6hdr *iph;
173 struct net *net = dev_net(skb->dev);
174 struct flowi6 fl6;
175 int ret = NET_XMIT_DROP;
176 struct dst_entry *dst;
177 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
178
179 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
180 goto err;
181
182 iph = ipv6_hdr(skb);
183
184 memset(&fl6, 0, sizeof(fl6));
185 /* needed to match OIF rule */
186 fl6.flowi6_oif = dev->ifindex;
187 fl6.flowi6_iif = LOOPBACK_IFINDEX;
188 fl6.daddr = iph->daddr;
189 fl6.saddr = iph->saddr;
190 fl6.flowlabel = ip6_flowinfo(iph);
191 fl6.flowi6_mark = skb->mark;
192 fl6.flowi6_proto = iph->nexthdr;
193 fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
194
195 dst = ip6_route_output(net, NULL, &fl6);
196 if (dst == dst_null)
197 goto err;
198
199 skb_dst_drop(skb);
200
201 /* if dst.dev is loopback or the VRF device again this is locally
202 * originated traffic destined to a local address. Short circuit
203 * to Rx path
204 */
205 if (dst->dev == dev)
206 return vrf_local_xmit(skb, dev, dst);
207
208 skb_dst_set(skb, dst);
209
210 /* strip the ethernet header added for pass through VRF device */
211 __skb_pull(skb, skb_network_offset(skb));
212
213 ret = vrf_ip6_local_out(net, skb->sk, skb);
214 if (unlikely(net_xmit_eval(ret)))
215 dev->stats.tx_errors++;
216 else
217 ret = NET_XMIT_SUCCESS;
218
219 return ret;
220err:
221 vrf_tx_error(dev, skb);
222 return NET_XMIT_DROP;
223}
224#else
225static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
226 struct net_device *dev)
227{
228 vrf_tx_error(dev, skb);
229 return NET_XMIT_DROP;
230}
231#endif
232
233/* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
234static int vrf_ip_local_out(struct net *net, struct sock *sk,
235 struct sk_buff *skb)
236{
237 int err;
238
239 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
240 skb, NULL, skb_dst(skb)->dev, dst_output);
241 if (likely(err == 1))
242 err = dst_output(net, sk, skb);
243
244 return err;
245}
246
247static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
248 struct net_device *vrf_dev)
249{
250 struct iphdr *ip4h;
251 int ret = NET_XMIT_DROP;
252 struct flowi4 fl4;
253 struct net *net = dev_net(vrf_dev);
254 struct rtable *rt;
255
256 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
257 goto err;
258
259 ip4h = ip_hdr(skb);
260
261 memset(&fl4, 0, sizeof(fl4));
262 /* needed to match OIF rule */
263 fl4.flowi4_oif = vrf_dev->ifindex;
264 fl4.flowi4_iif = LOOPBACK_IFINDEX;
265 fl4.flowi4_tos = RT_TOS(ip4h->tos);
266 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
267 fl4.flowi4_proto = ip4h->protocol;
268 fl4.daddr = ip4h->daddr;
269 fl4.saddr = ip4h->saddr;
270
271 rt = ip_route_output_flow(net, &fl4, NULL);
272 if (IS_ERR(rt))
273 goto err;
274
275 skb_dst_drop(skb);
276
277 /* if dst.dev is loopback or the VRF device again this is locally
278 * originated traffic destined to a local address. Short circuit
279 * to Rx path
280 */
281 if (rt->dst.dev == vrf_dev)
282 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
283
284 skb_dst_set(skb, &rt->dst);
285
286 /* strip the ethernet header added for pass through VRF device */
287 __skb_pull(skb, skb_network_offset(skb));
288
289 if (!ip4h->saddr) {
290 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
291 RT_SCOPE_LINK);
292 }
293
294 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
295 if (unlikely(net_xmit_eval(ret)))
296 vrf_dev->stats.tx_errors++;
297 else
298 ret = NET_XMIT_SUCCESS;
299
300out:
301 return ret;
302err:
303 vrf_tx_error(vrf_dev, skb);
304 goto out;
305}
306
307static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
308{
309 switch (skb->protocol) {
310 case htons(ETH_P_IP):
311 return vrf_process_v4_outbound(skb, dev);
312 case htons(ETH_P_IPV6):
313 return vrf_process_v6_outbound(skb, dev);
314 default:
315 vrf_tx_error(dev, skb);
316 return NET_XMIT_DROP;
317 }
318}
319
320static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
321{
322 int len = skb->len;
323 netdev_tx_t ret = is_ip_tx_frame(skb, dev);
324
325 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
326 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
327
328 u64_stats_update_begin(&dstats->syncp);
329 dstats->tx_pkts++;
330 dstats->tx_bytes += len;
331 u64_stats_update_end(&dstats->syncp);
332 } else {
333 this_cpu_inc(dev->dstats->tx_drps);
334 }
335
336 return ret;
337}
338
339static int vrf_finish_direct(struct net *net, struct sock *sk,
340 struct sk_buff *skb)
341{
342 struct net_device *vrf_dev = skb->dev;
343
344 if (!list_empty(&vrf_dev->ptype_all) &&
345 likely(skb_headroom(skb) >= ETH_HLEN)) {
346 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
347
348 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
349 eth_zero_addr(eth->h_dest);
350 eth->h_proto = skb->protocol;
351
352 rcu_read_lock_bh();
353 dev_queue_xmit_nit(skb, vrf_dev);
354 rcu_read_unlock_bh();
355
356 skb_pull(skb, ETH_HLEN);
357 }
358
359 return 1;
360}
361
362#if IS_ENABLED(CONFIG_IPV6)
363/* modelled after ip6_finish_output2 */
364static int vrf_finish_output6(struct net *net, struct sock *sk,
365 struct sk_buff *skb)
366{
367 struct dst_entry *dst = skb_dst(skb);
368 struct net_device *dev = dst->dev;
369 struct neighbour *neigh;
370 struct in6_addr *nexthop;
371 int ret;
372
373 nf_reset(skb);
374
375 skb->protocol = htons(ETH_P_IPV6);
376 skb->dev = dev;
377
378 rcu_read_lock_bh();
379 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
380 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
381 if (unlikely(!neigh))
382 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
383 if (!IS_ERR(neigh)) {
384 sock_confirm_neigh(skb, neigh);
385 ret = neigh_output(neigh, skb);
386 rcu_read_unlock_bh();
387 return ret;
388 }
389 rcu_read_unlock_bh();
390
391 IP6_INC_STATS(dev_net(dst->dev),
392 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
393 kfree_skb(skb);
394 return -EINVAL;
395}
396
397/* modelled after ip6_output */
398static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
399{
400 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
401 net, sk, skb, NULL, skb_dst(skb)->dev,
402 vrf_finish_output6,
403 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
404}
405
406/* set dst on skb to send packet to us via dev_xmit path. Allows
407 * packet to go through device based features such as qdisc, netfilter
408 * hooks and packet sockets with skb->dev set to vrf device.
409 */
410static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
411 struct sk_buff *skb)
412{
413 struct net_vrf *vrf = netdev_priv(vrf_dev);
414 struct dst_entry *dst = NULL;
415 struct rt6_info *rt6;
416
417 rcu_read_lock();
418
419 rt6 = rcu_dereference(vrf->rt6);
420 if (likely(rt6)) {
421 dst = &rt6->dst;
422 dst_hold(dst);
423 }
424
425 rcu_read_unlock();
426
427 if (unlikely(!dst)) {
428 vrf_tx_error(vrf_dev, skb);
429 return NULL;
430 }
431
432 skb_dst_drop(skb);
433 skb_dst_set(skb, dst);
434
435 return skb;
436}
437
438static int vrf_output6_direct(struct net *net, struct sock *sk,
439 struct sk_buff *skb)
440{
441 skb->protocol = htons(ETH_P_IPV6);
442
443 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
444 net, sk, skb, NULL, skb->dev,
445 vrf_finish_direct,
446 !(IPCB(skb)->flags & IPSKB_REROUTED));
447}
448
449static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
450 struct sock *sk,
451 struct sk_buff *skb)
452{
453 struct net *net = dev_net(vrf_dev);
454 int err;
455
456 skb->dev = vrf_dev;
457
458 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
459 skb, NULL, vrf_dev, vrf_output6_direct);
460
461 if (likely(err == 1))
462 err = vrf_output6_direct(net, sk, skb);
463
464 /* reset skb device */
465 if (likely(err == 1))
466 nf_reset(skb);
467 else
468 skb = NULL;
469
470 return skb;
471}
472
473static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
474 struct sock *sk,
475 struct sk_buff *skb)
476{
477 /* don't divert link scope packets */
478 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
479 return skb;
480
481 if (qdisc_tx_is_default(vrf_dev))
482 return vrf_ip6_out_direct(vrf_dev, sk, skb);
483
484 return vrf_ip6_out_redirect(vrf_dev, skb);
485}
486
487/* holding rtnl */
488static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
489{
490 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
491 struct net *net = dev_net(dev);
492 struct dst_entry *dst;
493
494 RCU_INIT_POINTER(vrf->rt6, NULL);
495 synchronize_rcu();
496
497 /* move dev in dst's to loopback so this VRF device can be deleted
498 * - based on dst_ifdown
499 */
500 if (rt6) {
501 dst = &rt6->dst;
502 dev_put(dst->dev);
503 dst->dev = net->loopback_dev;
504 dev_hold(dst->dev);
505 dst_release(dst);
506 }
507}
508
509static int vrf_rt6_create(struct net_device *dev)
510{
511 int flags = DST_HOST | DST_NOPOLICY | DST_NOXFRM;
512 struct net_vrf *vrf = netdev_priv(dev);
513 struct net *net = dev_net(dev);
514 struct rt6_info *rt6;
515 int rc = -ENOMEM;
516
517 /* IPv6 can be CONFIG enabled and then disabled runtime */
518 if (!ipv6_mod_enabled())
519 return 0;
520
521 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
522 if (!vrf->fib6_table)
523 goto out;
524
525 /* create a dst for routing packets out a VRF device */
526 rt6 = ip6_dst_alloc(net, dev, flags);
527 if (!rt6)
528 goto out;
529
530 rt6->dst.output = vrf_output6;
531
532 rcu_assign_pointer(vrf->rt6, rt6);
533
534 rc = 0;
535out:
536 return rc;
537}
538#else
539static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
540 struct sock *sk,
541 struct sk_buff *skb)
542{
543 return skb;
544}
545
546static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
547{
548}
549
550static int vrf_rt6_create(struct net_device *dev)
551{
552 return 0;
553}
554#endif
555
556/* modelled after ip_finish_output2 */
557static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
558{
559 struct dst_entry *dst = skb_dst(skb);
560 struct rtable *rt = (struct rtable *)dst;
561 struct net_device *dev = dst->dev;
562 unsigned int hh_len = LL_RESERVED_SPACE(dev);
563 struct neighbour *neigh;
564 u32 nexthop;
565 int ret = -EINVAL;
566
567 nf_reset(skb);
568
569 /* Be paranoid, rather than too clever. */
570 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
571 struct sk_buff *skb2;
572
573 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
574 if (!skb2) {
575 ret = -ENOMEM;
576 goto err;
577 }
578 if (skb->sk)
579 skb_set_owner_w(skb2, skb->sk);
580
581 consume_skb(skb);
582 skb = skb2;
583 }
584
585 rcu_read_lock_bh();
586
587 nexthop = (__force u32)rt_nexthop(rt, ip_hdr(skb)->daddr);
588 neigh = __ipv4_neigh_lookup_noref(dev, nexthop);
589 if (unlikely(!neigh))
590 neigh = __neigh_create(&arp_tbl, &nexthop, dev, false);
591 if (!IS_ERR(neigh)) {
592 sock_confirm_neigh(skb, neigh);
593 ret = neigh_output(neigh, skb);
594 rcu_read_unlock_bh();
595 return ret;
596 }
597
598 rcu_read_unlock_bh();
599err:
600 vrf_tx_error(skb->dev, skb);
601 return ret;
602}
603
604static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
605{
606 struct net_device *dev = skb_dst(skb)->dev;
607
608 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
609
610 skb->dev = dev;
611 skb->protocol = htons(ETH_P_IP);
612
613 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
614 net, sk, skb, NULL, dev,
615 vrf_finish_output,
616 !(IPCB(skb)->flags & IPSKB_REROUTED));
617}
618
619/* set dst on skb to send packet to us via dev_xmit path. Allows
620 * packet to go through device based features such as qdisc, netfilter
621 * hooks and packet sockets with skb->dev set to vrf device.
622 */
623static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
624 struct sk_buff *skb)
625{
626 struct net_vrf *vrf = netdev_priv(vrf_dev);
627 struct dst_entry *dst = NULL;
628 struct rtable *rth;
629
630 rcu_read_lock();
631
632 rth = rcu_dereference(vrf->rth);
633 if (likely(rth)) {
634 dst = &rth->dst;
635 dst_hold(dst);
636 }
637
638 rcu_read_unlock();
639
640 if (unlikely(!dst)) {
641 vrf_tx_error(vrf_dev, skb);
642 return NULL;
643 }
644
645 skb_dst_drop(skb);
646 skb_dst_set(skb, dst);
647
648 return skb;
649}
650
651static int vrf_output_direct(struct net *net, struct sock *sk,
652 struct sk_buff *skb)
653{
654 skb->protocol = htons(ETH_P_IP);
655
656 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
657 net, sk, skb, NULL, skb->dev,
658 vrf_finish_direct,
659 !(IPCB(skb)->flags & IPSKB_REROUTED));
660}
661
662static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
663 struct sock *sk,
664 struct sk_buff *skb)
665{
666 struct net *net = dev_net(vrf_dev);
667 int err;
668
669 skb->dev = vrf_dev;
670
671 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
672 skb, NULL, vrf_dev, vrf_output_direct);
673
674 if (likely(err == 1))
675 err = vrf_output_direct(net, sk, skb);
676
677 /* reset skb device */
678 if (likely(err == 1))
679 nf_reset(skb);
680 else
681 skb = NULL;
682
683 return skb;
684}
685
686static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
687 struct sock *sk,
688 struct sk_buff *skb)
689{
690 /* don't divert multicast or local broadcast */
691 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
692 ipv4_is_lbcast(ip_hdr(skb)->daddr))
693 return skb;
694
695 if (qdisc_tx_is_default(vrf_dev))
696 return vrf_ip_out_direct(vrf_dev, sk, skb);
697
698 return vrf_ip_out_redirect(vrf_dev, skb);
699}
700
701/* called with rcu lock held */
702static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
703 struct sock *sk,
704 struct sk_buff *skb,
705 u16 proto)
706{
707 switch (proto) {
708 case AF_INET:
709 return vrf_ip_out(vrf_dev, sk, skb);
710 case AF_INET6:
711 return vrf_ip6_out(vrf_dev, sk, skb);
712 }
713
714 return skb;
715}
716
717/* holding rtnl */
718static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
719{
720 struct rtable *rth = rtnl_dereference(vrf->rth);
721 struct net *net = dev_net(dev);
722 struct dst_entry *dst;
723
724 RCU_INIT_POINTER(vrf->rth, NULL);
725 synchronize_rcu();
726
727 /* move dev in dst's to loopback so this VRF device can be deleted
728 * - based on dst_ifdown
729 */
730 if (rth) {
731 dst = &rth->dst;
732 dev_put(dst->dev);
733 dst->dev = net->loopback_dev;
734 dev_hold(dst->dev);
735 dst_release(dst);
736 }
737}
738
739static int vrf_rtable_create(struct net_device *dev)
740{
741 struct net_vrf *vrf = netdev_priv(dev);
742 struct rtable *rth;
743
744 if (!fib_new_table(dev_net(dev), vrf->tb_id))
745 return -ENOMEM;
746
747 /* create a dst for routing packets out through a VRF device */
748 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1, 0);
749 if (!rth)
750 return -ENOMEM;
751
752 rth->dst.output = vrf_output;
753
754 rcu_assign_pointer(vrf->rth, rth);
755
756 return 0;
757}
758
759/**************************** device handling ********************/
760
761/* cycle interface to flush neighbor cache and move routes across tables */
762static void cycle_netdev(struct net_device *dev)
763{
764 unsigned int flags = dev->flags;
765 int ret;
766
767 if (!netif_running(dev))
768 return;
769
770 ret = dev_change_flags(dev, flags & ~IFF_UP);
771 if (ret >= 0)
772 ret = dev_change_flags(dev, flags);
773
774 if (ret < 0) {
775 netdev_err(dev,
776 "Failed to cycle device %s; route tables might be wrong!\n",
777 dev->name);
778 }
779}
780
781static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
782 struct netlink_ext_ack *extack)
783{
784 int ret;
785
786 /* do not allow loopback device to be enslaved to a VRF.
787 * The vrf device acts as the loopback for the vrf.
788 */
789 if (port_dev == dev_net(dev)->loopback_dev) {
790 NL_SET_ERR_MSG(extack,
791 "Can not enslave loopback device to a VRF");
792 return -EOPNOTSUPP;
793 }
794
795 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
796 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
797 if (ret < 0)
798 goto err;
799
800 cycle_netdev(port_dev);
801
802 return 0;
803
804err:
805 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
806 return ret;
807}
808
809static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
810 struct netlink_ext_ack *extack)
811{
812 if (netif_is_l3_master(port_dev)) {
813 NL_SET_ERR_MSG(extack,
814 "Can not enslave an L3 master device to a VRF");
815 return -EINVAL;
816 }
817
818 if (netif_is_l3_slave(port_dev))
819 return -EINVAL;
820
821 return do_vrf_add_slave(dev, port_dev, extack);
822}
823
824/* inverse of do_vrf_add_slave */
825static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
826{
827 netdev_upper_dev_unlink(port_dev, dev);
828 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
829
830 cycle_netdev(port_dev);
831
832 return 0;
833}
834
835static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
836{
837 return do_vrf_del_slave(dev, port_dev);
838}
839
840static void vrf_dev_uninit(struct net_device *dev)
841{
842 struct net_vrf *vrf = netdev_priv(dev);
843
844 vrf_rtable_release(dev, vrf);
845 vrf_rt6_release(dev, vrf);
846
847 free_percpu(dev->dstats);
848 dev->dstats = NULL;
849}
850
851static int vrf_dev_init(struct net_device *dev)
852{
853 struct net_vrf *vrf = netdev_priv(dev);
854
855 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
856 if (!dev->dstats)
857 goto out_nomem;
858
859 /* create the default dst which points back to us */
860 if (vrf_rtable_create(dev) != 0)
861 goto out_stats;
862
863 if (vrf_rt6_create(dev) != 0)
864 goto out_rth;
865
866 dev->flags = IFF_MASTER | IFF_NOARP;
867
868 /* MTU is irrelevant for VRF device; set to 64k similar to lo */
869 dev->mtu = 64 * 1024;
870
871 /* similarly, oper state is irrelevant; set to up to avoid confusion */
872 dev->operstate = IF_OPER_UP;
873 netdev_lockdep_set_classes(dev);
874 return 0;
875
876out_rth:
877 vrf_rtable_release(dev, vrf);
878out_stats:
879 free_percpu(dev->dstats);
880 dev->dstats = NULL;
881out_nomem:
882 return -ENOMEM;
883}
884
885static const struct net_device_ops vrf_netdev_ops = {
886 .ndo_init = vrf_dev_init,
887 .ndo_uninit = vrf_dev_uninit,
888 .ndo_start_xmit = vrf_xmit,
889 .ndo_get_stats64 = vrf_get_stats64,
890 .ndo_add_slave = vrf_add_slave,
891 .ndo_del_slave = vrf_del_slave,
892};
893
894static u32 vrf_fib_table(const struct net_device *dev)
895{
896 struct net_vrf *vrf = netdev_priv(dev);
897
898 return vrf->tb_id;
899}
900
901static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
902{
903 kfree_skb(skb);
904 return 0;
905}
906
907static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
908 struct sk_buff *skb,
909 struct net_device *dev)
910{
911 struct net *net = dev_net(dev);
912
913 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
914 skb = NULL; /* kfree_skb(skb) handled by nf code */
915
916 return skb;
917}
918
919#if IS_ENABLED(CONFIG_IPV6)
920/* neighbor handling is done with actual device; do not want
921 * to flip skb->dev for those ndisc packets. This really fails
922 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
923 * a start.
924 */
925static bool ipv6_ndisc_frame(const struct sk_buff *skb)
926{
927 const struct ipv6hdr *iph = ipv6_hdr(skb);
928 bool rc = false;
929
930 if (iph->nexthdr == NEXTHDR_ICMP) {
931 const struct icmp6hdr *icmph;
932 struct icmp6hdr _icmph;
933
934 icmph = skb_header_pointer(skb, sizeof(*iph),
935 sizeof(_icmph), &_icmph);
936 if (!icmph)
937 goto out;
938
939 switch (icmph->icmp6_type) {
940 case NDISC_ROUTER_SOLICITATION:
941 case NDISC_ROUTER_ADVERTISEMENT:
942 case NDISC_NEIGHBOUR_SOLICITATION:
943 case NDISC_NEIGHBOUR_ADVERTISEMENT:
944 case NDISC_REDIRECT:
945 rc = true;
946 break;
947 }
948 }
949
950out:
951 return rc;
952}
953
954static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
955 const struct net_device *dev,
956 struct flowi6 *fl6,
957 int ifindex,
958 const struct sk_buff *skb,
959 int flags)
960{
961 struct net_vrf *vrf = netdev_priv(dev);
962
963 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
964}
965
966static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
967 int ifindex)
968{
969 const struct ipv6hdr *iph = ipv6_hdr(skb);
970 struct flowi6 fl6 = {
971 .flowi6_iif = ifindex,
972 .flowi6_mark = skb->mark,
973 .flowi6_proto = iph->nexthdr,
974 .daddr = iph->daddr,
975 .saddr = iph->saddr,
976 .flowlabel = ip6_flowinfo(iph),
977 };
978 struct net *net = dev_net(vrf_dev);
979 struct rt6_info *rt6;
980
981 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
982 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
983 if (unlikely(!rt6))
984 return;
985
986 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
987 return;
988
989 skb_dst_set(skb, &rt6->dst);
990}
991
992static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
993 struct sk_buff *skb)
994{
995 int orig_iif = skb->skb_iif;
996 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
997 bool is_ndisc = ipv6_ndisc_frame(skb);
998
999 /* loopback, multicast & non-ND link-local traffic; do not push through
1000 * packet taps again. Reset pkt_type for upper layers to process skb
1001 */
1002 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1003 skb->dev = vrf_dev;
1004 skb->skb_iif = vrf_dev->ifindex;
1005 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1006 if (skb->pkt_type == PACKET_LOOPBACK)
1007 skb->pkt_type = PACKET_HOST;
1008 goto out;
1009 }
1010
1011 /* if packet is NDISC then keep the ingress interface */
1012 if (!is_ndisc) {
1013 vrf_rx_stats(vrf_dev, skb->len);
1014 skb->dev = vrf_dev;
1015 skb->skb_iif = vrf_dev->ifindex;
1016
1017 if (!list_empty(&vrf_dev->ptype_all)) {
1018 skb_push(skb, skb->mac_len);
1019 dev_queue_xmit_nit(skb, vrf_dev);
1020 skb_pull(skb, skb->mac_len);
1021 }
1022
1023 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1024 }
1025
1026 if (need_strict)
1027 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1028
1029 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1030out:
1031 return skb;
1032}
1033
1034#else
1035static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1036 struct sk_buff *skb)
1037{
1038 return skb;
1039}
1040#endif
1041
1042static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1043 struct sk_buff *skb)
1044{
1045 skb->dev = vrf_dev;
1046 skb->skb_iif = vrf_dev->ifindex;
1047 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1048
1049 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1050 goto out;
1051
1052 /* loopback traffic; do not push through packet taps again.
1053 * Reset pkt_type for upper layers to process skb
1054 */
1055 if (skb->pkt_type == PACKET_LOOPBACK) {
1056 skb->pkt_type = PACKET_HOST;
1057 goto out;
1058 }
1059
1060 vrf_rx_stats(vrf_dev, skb->len);
1061
1062 if (!list_empty(&vrf_dev->ptype_all)) {
1063 skb_push(skb, skb->mac_len);
1064 dev_queue_xmit_nit(skb, vrf_dev);
1065 skb_pull(skb, skb->mac_len);
1066 }
1067
1068 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1069out:
1070 return skb;
1071}
1072
1073/* called with rcu lock held */
1074static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1075 struct sk_buff *skb,
1076 u16 proto)
1077{
1078 switch (proto) {
1079 case AF_INET:
1080 return vrf_ip_rcv(vrf_dev, skb);
1081 case AF_INET6:
1082 return vrf_ip6_rcv(vrf_dev, skb);
1083 }
1084
1085 return skb;
1086}
1087
1088#if IS_ENABLED(CONFIG_IPV6)
1089/* send to link-local or multicast address via interface enslaved to
1090 * VRF device. Force lookup to VRF table without changing flow struct
1091 */
1092static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1093 struct flowi6 *fl6)
1094{
1095 struct net *net = dev_net(dev);
1096 int flags = RT6_LOOKUP_F_IFACE;
1097 struct dst_entry *dst = NULL;
1098 struct rt6_info *rt;
1099
1100 /* VRF device does not have a link-local address and
1101 * sending packets to link-local or mcast addresses over
1102 * a VRF device does not make sense
1103 */
1104 if (fl6->flowi6_oif == dev->ifindex) {
1105 dst = &net->ipv6.ip6_null_entry->dst;
1106 dst_hold(dst);
1107 return dst;
1108 }
1109
1110 if (!ipv6_addr_any(&fl6->saddr))
1111 flags |= RT6_LOOKUP_F_HAS_SADDR;
1112
1113 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1114 if (rt)
1115 dst = &rt->dst;
1116
1117 return dst;
1118}
1119#endif
1120
1121static const struct l3mdev_ops vrf_l3mdev_ops = {
1122 .l3mdev_fib_table = vrf_fib_table,
1123 .l3mdev_l3_rcv = vrf_l3_rcv,
1124 .l3mdev_l3_out = vrf_l3_out,
1125#if IS_ENABLED(CONFIG_IPV6)
1126 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1127#endif
1128};
1129
1130static void vrf_get_drvinfo(struct net_device *dev,
1131 struct ethtool_drvinfo *info)
1132{
1133 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1134 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1135}
1136
1137static const struct ethtool_ops vrf_ethtool_ops = {
1138 .get_drvinfo = vrf_get_drvinfo,
1139};
1140
1141static inline size_t vrf_fib_rule_nl_size(void)
1142{
1143 size_t sz;
1144
1145 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1146 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1147 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1148 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1149
1150 return sz;
1151}
1152
1153static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1154{
1155 struct fib_rule_hdr *frh;
1156 struct nlmsghdr *nlh;
1157 struct sk_buff *skb;
1158 int err;
1159
1160 if (family == AF_INET6 && !ipv6_mod_enabled())
1161 return 0;
1162
1163 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1164 if (!skb)
1165 return -ENOMEM;
1166
1167 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1168 if (!nlh)
1169 goto nla_put_failure;
1170
1171 /* rule only needs to appear once */
1172 nlh->nlmsg_flags |= NLM_F_EXCL;
1173
1174 frh = nlmsg_data(nlh);
1175 memset(frh, 0, sizeof(*frh));
1176 frh->family = family;
1177 frh->action = FR_ACT_TO_TBL;
1178
1179 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1180 goto nla_put_failure;
1181
1182 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1183 goto nla_put_failure;
1184
1185 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1186 goto nla_put_failure;
1187
1188 nlmsg_end(skb, nlh);
1189
1190 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1191 skb->sk = dev_net(dev)->rtnl;
1192 if (add_it) {
1193 err = fib_nl_newrule(skb, nlh, NULL);
1194 if (err == -EEXIST)
1195 err = 0;
1196 } else {
1197 err = fib_nl_delrule(skb, nlh, NULL);
1198 if (err == -ENOENT)
1199 err = 0;
1200 }
1201 nlmsg_free(skb);
1202
1203 return err;
1204
1205nla_put_failure:
1206 nlmsg_free(skb);
1207
1208 return -EMSGSIZE;
1209}
1210
1211static int vrf_add_fib_rules(const struct net_device *dev)
1212{
1213 int err;
1214
1215 err = vrf_fib_rule(dev, AF_INET, true);
1216 if (err < 0)
1217 goto out_err;
1218
1219 err = vrf_fib_rule(dev, AF_INET6, true);
1220 if (err < 0)
1221 goto ipv6_err;
1222
1223#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1224 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1225 if (err < 0)
1226 goto ipmr_err;
1227#endif
1228
1229 return 0;
1230
1231#if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1232ipmr_err:
1233 vrf_fib_rule(dev, AF_INET6, false);
1234#endif
1235
1236ipv6_err:
1237 vrf_fib_rule(dev, AF_INET, false);
1238
1239out_err:
1240 netdev_err(dev, "Failed to add FIB rules.\n");
1241 return err;
1242}
1243
1244static void vrf_setup(struct net_device *dev)
1245{
1246 ether_setup(dev);
1247
1248 /* Initialize the device structure. */
1249 dev->netdev_ops = &vrf_netdev_ops;
1250 dev->l3mdev_ops = &vrf_l3mdev_ops;
1251 dev->ethtool_ops = &vrf_ethtool_ops;
1252 dev->needs_free_netdev = true;
1253
1254 /* Fill in device structure with ethernet-generic values. */
1255 eth_hw_addr_random(dev);
1256
1257 /* don't acquire vrf device's netif_tx_lock when transmitting */
1258 dev->features |= NETIF_F_LLTX;
1259
1260 /* don't allow vrf devices to change network namespaces. */
1261 dev->features |= NETIF_F_NETNS_LOCAL;
1262
1263 /* does not make sense for a VLAN to be added to a vrf device */
1264 dev->features |= NETIF_F_VLAN_CHALLENGED;
1265
1266 /* enable offload features */
1267 dev->features |= NETIF_F_GSO_SOFTWARE;
1268 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1269 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1270
1271 dev->hw_features = dev->features;
1272 dev->hw_enc_features = dev->features;
1273
1274 /* default to no qdisc; user can add if desired */
1275 dev->priv_flags |= IFF_NO_QUEUE;
1276 dev->priv_flags |= IFF_NO_RX_HANDLER;
1277}
1278
1279static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1280 struct netlink_ext_ack *extack)
1281{
1282 if (tb[IFLA_ADDRESS]) {
1283 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1284 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1285 return -EINVAL;
1286 }
1287 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1288 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1289 return -EADDRNOTAVAIL;
1290 }
1291 }
1292 return 0;
1293}
1294
1295static void vrf_dellink(struct net_device *dev, struct list_head *head)
1296{
1297 struct net_device *port_dev;
1298 struct list_head *iter;
1299
1300 netdev_for_each_lower_dev(dev, port_dev, iter)
1301 vrf_del_slave(dev, port_dev);
1302
1303 unregister_netdevice_queue(dev, head);
1304}
1305
1306static int vrf_newlink(struct net *src_net, struct net_device *dev,
1307 struct nlattr *tb[], struct nlattr *data[],
1308 struct netlink_ext_ack *extack)
1309{
1310 struct net_vrf *vrf = netdev_priv(dev);
1311 bool *add_fib_rules;
1312 struct net *net;
1313 int err;
1314
1315 if (!data || !data[IFLA_VRF_TABLE]) {
1316 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1317 return -EINVAL;
1318 }
1319
1320 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1321 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1322 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1323 "Invalid VRF table id");
1324 return -EINVAL;
1325 }
1326
1327 dev->priv_flags |= IFF_L3MDEV_MASTER;
1328
1329 err = register_netdevice(dev);
1330 if (err)
1331 goto out;
1332
1333 net = dev_net(dev);
1334 add_fib_rules = net_generic(net, vrf_net_id);
1335 if (*add_fib_rules) {
1336 err = vrf_add_fib_rules(dev);
1337 if (err) {
1338 unregister_netdevice(dev);
1339 goto out;
1340 }
1341 *add_fib_rules = false;
1342 }
1343
1344out:
1345 return err;
1346}
1347
1348static size_t vrf_nl_getsize(const struct net_device *dev)
1349{
1350 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1351}
1352
1353static int vrf_fillinfo(struct sk_buff *skb,
1354 const struct net_device *dev)
1355{
1356 struct net_vrf *vrf = netdev_priv(dev);
1357
1358 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1359}
1360
1361static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1362 const struct net_device *slave_dev)
1363{
1364 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1365}
1366
1367static int vrf_fill_slave_info(struct sk_buff *skb,
1368 const struct net_device *vrf_dev,
1369 const struct net_device *slave_dev)
1370{
1371 struct net_vrf *vrf = netdev_priv(vrf_dev);
1372
1373 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1374 return -EMSGSIZE;
1375
1376 return 0;
1377}
1378
1379static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1380 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1381};
1382
1383static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1384 .kind = DRV_NAME,
1385 .priv_size = sizeof(struct net_vrf),
1386
1387 .get_size = vrf_nl_getsize,
1388 .policy = vrf_nl_policy,
1389 .validate = vrf_validate,
1390 .fill_info = vrf_fillinfo,
1391
1392 .get_slave_size = vrf_get_slave_size,
1393 .fill_slave_info = vrf_fill_slave_info,
1394
1395 .newlink = vrf_newlink,
1396 .dellink = vrf_dellink,
1397 .setup = vrf_setup,
1398 .maxtype = IFLA_VRF_MAX,
1399};
1400
1401static int vrf_device_event(struct notifier_block *unused,
1402 unsigned long event, void *ptr)
1403{
1404 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1405
1406 /* only care about unregister events to drop slave references */
1407 if (event == NETDEV_UNREGISTER) {
1408 struct net_device *vrf_dev;
1409
1410 if (!netif_is_l3_slave(dev))
1411 goto out;
1412
1413 vrf_dev = netdev_master_upper_dev_get(dev);
1414 vrf_del_slave(vrf_dev, dev);
1415 }
1416out:
1417 return NOTIFY_DONE;
1418}
1419
1420static struct notifier_block vrf_notifier_block __read_mostly = {
1421 .notifier_call = vrf_device_event,
1422};
1423
1424/* Initialize per network namespace state */
1425static int __net_init vrf_netns_init(struct net *net)
1426{
1427 bool *add_fib_rules = net_generic(net, vrf_net_id);
1428
1429 *add_fib_rules = true;
1430
1431 return 0;
1432}
1433
1434static struct pernet_operations vrf_net_ops __net_initdata = {
1435 .init = vrf_netns_init,
1436 .id = &vrf_net_id,
1437 .size = sizeof(bool),
1438};
1439
1440static int __init vrf_init_module(void)
1441{
1442 int rc;
1443
1444 register_netdevice_notifier(&vrf_notifier_block);
1445
1446 rc = register_pernet_subsys(&vrf_net_ops);
1447 if (rc < 0)
1448 goto error;
1449
1450 rc = rtnl_link_register(&vrf_link_ops);
1451 if (rc < 0) {
1452 unregister_pernet_subsys(&vrf_net_ops);
1453 goto error;
1454 }
1455
1456 return 0;
1457
1458error:
1459 unregister_netdevice_notifier(&vrf_notifier_block);
1460 return rc;
1461}
1462
1463module_init(vrf_init_module);
1464MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1465MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1466MODULE_LICENSE("GPL");
1467MODULE_ALIAS_RTNL_LINK(DRV_NAME);
1468MODULE_VERSION(DRV_VERSION);