| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 | 
 | 2 | /* | 
 | 3 |  * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
 | 4 |  * All Rights Reserved. | 
 | 5 |  */ | 
 | 6 | #include "xfs.h" | 
 | 7 | #include "xfs_fs.h" | 
 | 8 | #include "xfs_shared.h" | 
 | 9 | #include "xfs_format.h" | 
 | 10 | #include "xfs_log_format.h" | 
 | 11 | #include "xfs_trans_resv.h" | 
 | 12 | #include "xfs_bit.h" | 
 | 13 | #include "xfs_sb.h" | 
 | 14 | #include "xfs_mount.h" | 
 | 15 | #include "xfs_defer.h" | 
 | 16 | #include "xfs_da_format.h" | 
 | 17 | #include "xfs_da_btree.h" | 
 | 18 | #include "xfs_inode.h" | 
 | 19 | #include "xfs_dir2.h" | 
 | 20 | #include "xfs_ialloc.h" | 
 | 21 | #include "xfs_alloc.h" | 
 | 22 | #include "xfs_rtalloc.h" | 
 | 23 | #include "xfs_bmap.h" | 
 | 24 | #include "xfs_trans.h" | 
 | 25 | #include "xfs_trans_priv.h" | 
 | 26 | #include "xfs_log.h" | 
 | 27 | #include "xfs_error.h" | 
 | 28 | #include "xfs_quota.h" | 
 | 29 | #include "xfs_fsops.h" | 
 | 30 | #include "xfs_trace.h" | 
 | 31 | #include "xfs_icache.h" | 
 | 32 | #include "xfs_sysfs.h" | 
 | 33 | #include "xfs_rmap_btree.h" | 
 | 34 | #include "xfs_refcount_btree.h" | 
 | 35 | #include "xfs_reflink.h" | 
 | 36 | #include "xfs_extent_busy.h" | 
 | 37 |  | 
 | 38 |  | 
 | 39 | static DEFINE_MUTEX(xfs_uuid_table_mutex); | 
 | 40 | static int xfs_uuid_table_size; | 
 | 41 | static uuid_t *xfs_uuid_table; | 
 | 42 |  | 
 | 43 | void | 
 | 44 | xfs_uuid_table_free(void) | 
 | 45 | { | 
 | 46 | 	if (xfs_uuid_table_size == 0) | 
 | 47 | 		return; | 
 | 48 | 	kmem_free(xfs_uuid_table); | 
 | 49 | 	xfs_uuid_table = NULL; | 
 | 50 | 	xfs_uuid_table_size = 0; | 
 | 51 | } | 
 | 52 |  | 
 | 53 | /* | 
 | 54 |  * See if the UUID is unique among mounted XFS filesystems. | 
 | 55 |  * Mount fails if UUID is nil or a FS with the same UUID is already mounted. | 
 | 56 |  */ | 
 | 57 | STATIC int | 
 | 58 | xfs_uuid_mount( | 
 | 59 | 	struct xfs_mount	*mp) | 
 | 60 | { | 
 | 61 | 	uuid_t			*uuid = &mp->m_sb.sb_uuid; | 
 | 62 | 	int			hole, i; | 
 | 63 |  | 
 | 64 | 	/* Publish UUID in struct super_block */ | 
 | 65 | 	uuid_copy(&mp->m_super->s_uuid, uuid); | 
 | 66 |  | 
 | 67 | 	if (mp->m_flags & XFS_MOUNT_NOUUID) | 
 | 68 | 		return 0; | 
 | 69 |  | 
 | 70 | 	if (uuid_is_null(uuid)) { | 
 | 71 | 		xfs_warn(mp, "Filesystem has null UUID - can't mount"); | 
 | 72 | 		return -EINVAL; | 
 | 73 | 	} | 
 | 74 |  | 
 | 75 | 	mutex_lock(&xfs_uuid_table_mutex); | 
 | 76 | 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { | 
 | 77 | 		if (uuid_is_null(&xfs_uuid_table[i])) { | 
 | 78 | 			hole = i; | 
 | 79 | 			continue; | 
 | 80 | 		} | 
 | 81 | 		if (uuid_equal(uuid, &xfs_uuid_table[i])) | 
 | 82 | 			goto out_duplicate; | 
 | 83 | 	} | 
 | 84 |  | 
 | 85 | 	if (hole < 0) { | 
 | 86 | 		xfs_uuid_table = kmem_realloc(xfs_uuid_table, | 
 | 87 | 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), | 
 | 88 | 			KM_SLEEP); | 
 | 89 | 		hole = xfs_uuid_table_size++; | 
 | 90 | 	} | 
 | 91 | 	xfs_uuid_table[hole] = *uuid; | 
 | 92 | 	mutex_unlock(&xfs_uuid_table_mutex); | 
 | 93 |  | 
 | 94 | 	return 0; | 
 | 95 |  | 
 | 96 |  out_duplicate: | 
 | 97 | 	mutex_unlock(&xfs_uuid_table_mutex); | 
 | 98 | 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); | 
 | 99 | 	return -EINVAL; | 
 | 100 | } | 
 | 101 |  | 
 | 102 | STATIC void | 
 | 103 | xfs_uuid_unmount( | 
 | 104 | 	struct xfs_mount	*mp) | 
 | 105 | { | 
 | 106 | 	uuid_t			*uuid = &mp->m_sb.sb_uuid; | 
 | 107 | 	int			i; | 
 | 108 |  | 
 | 109 | 	if (mp->m_flags & XFS_MOUNT_NOUUID) | 
 | 110 | 		return; | 
 | 111 |  | 
 | 112 | 	mutex_lock(&xfs_uuid_table_mutex); | 
 | 113 | 	for (i = 0; i < xfs_uuid_table_size; i++) { | 
 | 114 | 		if (uuid_is_null(&xfs_uuid_table[i])) | 
 | 115 | 			continue; | 
 | 116 | 		if (!uuid_equal(uuid, &xfs_uuid_table[i])) | 
 | 117 | 			continue; | 
 | 118 | 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); | 
 | 119 | 		break; | 
 | 120 | 	} | 
 | 121 | 	ASSERT(i < xfs_uuid_table_size); | 
 | 122 | 	mutex_unlock(&xfs_uuid_table_mutex); | 
 | 123 | } | 
 | 124 |  | 
 | 125 |  | 
 | 126 | STATIC void | 
 | 127 | __xfs_free_perag( | 
 | 128 | 	struct rcu_head	*head) | 
 | 129 | { | 
 | 130 | 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); | 
 | 131 |  | 
 | 132 | 	ASSERT(atomic_read(&pag->pag_ref) == 0); | 
 | 133 | 	kmem_free(pag); | 
 | 134 | } | 
 | 135 |  | 
 | 136 | /* | 
 | 137 |  * Free up the per-ag resources associated with the mount structure. | 
 | 138 |  */ | 
 | 139 | STATIC void | 
 | 140 | xfs_free_perag( | 
 | 141 | 	xfs_mount_t	*mp) | 
 | 142 | { | 
 | 143 | 	xfs_agnumber_t	agno; | 
 | 144 | 	struct xfs_perag *pag; | 
 | 145 |  | 
 | 146 | 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { | 
 | 147 | 		spin_lock(&mp->m_perag_lock); | 
 | 148 | 		pag = radix_tree_delete(&mp->m_perag_tree, agno); | 
 | 149 | 		spin_unlock(&mp->m_perag_lock); | 
 | 150 | 		ASSERT(pag); | 
 | 151 | 		ASSERT(atomic_read(&pag->pag_ref) == 0); | 
 | 152 | 		xfs_buf_hash_destroy(pag); | 
 | 153 | 		mutex_destroy(&pag->pag_ici_reclaim_lock); | 
 | 154 | 		call_rcu(&pag->rcu_head, __xfs_free_perag); | 
 | 155 | 	} | 
 | 156 | } | 
 | 157 |  | 
 | 158 | /* | 
 | 159 |  * Check size of device based on the (data/realtime) block count. | 
 | 160 |  * Note: this check is used by the growfs code as well as mount. | 
 | 161 |  */ | 
 | 162 | int | 
 | 163 | xfs_sb_validate_fsb_count( | 
 | 164 | 	xfs_sb_t	*sbp, | 
 | 165 | 	uint64_t	nblocks) | 
 | 166 | { | 
 | 167 | 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); | 
 | 168 | 	ASSERT(sbp->sb_blocklog >= BBSHIFT); | 
 | 169 |  | 
 | 170 | 	/* Limited by ULONG_MAX of page cache index */ | 
 | 171 | 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) | 
 | 172 | 		return -EFBIG; | 
 | 173 | 	return 0; | 
 | 174 | } | 
 | 175 |  | 
 | 176 | int | 
 | 177 | xfs_initialize_perag( | 
 | 178 | 	xfs_mount_t	*mp, | 
 | 179 | 	xfs_agnumber_t	agcount, | 
 | 180 | 	xfs_agnumber_t	*maxagi) | 
 | 181 | { | 
 | 182 | 	xfs_agnumber_t	index; | 
 | 183 | 	xfs_agnumber_t	first_initialised = NULLAGNUMBER; | 
 | 184 | 	xfs_perag_t	*pag; | 
 | 185 | 	int		error = -ENOMEM; | 
 | 186 |  | 
 | 187 | 	/* | 
 | 188 | 	 * Walk the current per-ag tree so we don't try to initialise AGs | 
 | 189 | 	 * that already exist (growfs case). Allocate and insert all the | 
 | 190 | 	 * AGs we don't find ready for initialisation. | 
 | 191 | 	 */ | 
 | 192 | 	for (index = 0; index < agcount; index++) { | 
 | 193 | 		pag = xfs_perag_get(mp, index); | 
 | 194 | 		if (pag) { | 
 | 195 | 			xfs_perag_put(pag); | 
 | 196 | 			continue; | 
 | 197 | 		} | 
 | 198 |  | 
 | 199 | 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); | 
 | 200 | 		if (!pag) | 
 | 201 | 			goto out_unwind_new_pags; | 
 | 202 | 		pag->pag_agno = index; | 
 | 203 | 		pag->pag_mount = mp; | 
 | 204 | 		spin_lock_init(&pag->pag_ici_lock); | 
 | 205 | 		mutex_init(&pag->pag_ici_reclaim_lock); | 
 | 206 | 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); | 
 | 207 | 		if (xfs_buf_hash_init(pag)) | 
 | 208 | 			goto out_free_pag; | 
 | 209 | 		init_waitqueue_head(&pag->pagb_wait); | 
 | 210 | 		spin_lock_init(&pag->pagb_lock); | 
 | 211 | 		pag->pagb_count = 0; | 
 | 212 | 		pag->pagb_tree = RB_ROOT; | 
 | 213 |  | 
 | 214 | 		if (radix_tree_preload(GFP_NOFS)) | 
 | 215 | 			goto out_hash_destroy; | 
 | 216 |  | 
 | 217 | 		spin_lock(&mp->m_perag_lock); | 
 | 218 | 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { | 
 | 219 | 			BUG(); | 
 | 220 | 			spin_unlock(&mp->m_perag_lock); | 
 | 221 | 			radix_tree_preload_end(); | 
 | 222 | 			error = -EEXIST; | 
 | 223 | 			goto out_hash_destroy; | 
 | 224 | 		} | 
 | 225 | 		spin_unlock(&mp->m_perag_lock); | 
 | 226 | 		radix_tree_preload_end(); | 
 | 227 | 		/* first new pag is fully initialized */ | 
 | 228 | 		if (first_initialised == NULLAGNUMBER) | 
 | 229 | 			first_initialised = index; | 
 | 230 | 	} | 
 | 231 |  | 
 | 232 | 	index = xfs_set_inode_alloc(mp, agcount); | 
 | 233 |  | 
 | 234 | 	if (maxagi) | 
 | 235 | 		*maxagi = index; | 
 | 236 |  | 
 | 237 | 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); | 
 | 238 | 	return 0; | 
 | 239 |  | 
 | 240 | out_hash_destroy: | 
 | 241 | 	xfs_buf_hash_destroy(pag); | 
 | 242 | out_free_pag: | 
 | 243 | 	mutex_destroy(&pag->pag_ici_reclaim_lock); | 
 | 244 | 	kmem_free(pag); | 
 | 245 | out_unwind_new_pags: | 
 | 246 | 	/* unwind any prior newly initialized pags */ | 
 | 247 | 	for (index = first_initialised; index < agcount; index++) { | 
 | 248 | 		pag = radix_tree_delete(&mp->m_perag_tree, index); | 
 | 249 | 		if (!pag) | 
 | 250 | 			break; | 
 | 251 | 		xfs_buf_hash_destroy(pag); | 
 | 252 | 		mutex_destroy(&pag->pag_ici_reclaim_lock); | 
 | 253 | 		kmem_free(pag); | 
 | 254 | 	} | 
 | 255 | 	return error; | 
 | 256 | } | 
 | 257 |  | 
 | 258 | /* | 
 | 259 |  * xfs_readsb | 
 | 260 |  * | 
 | 261 |  * Does the initial read of the superblock. | 
 | 262 |  */ | 
 | 263 | int | 
 | 264 | xfs_readsb( | 
 | 265 | 	struct xfs_mount *mp, | 
 | 266 | 	int		flags) | 
 | 267 | { | 
 | 268 | 	unsigned int	sector_size; | 
 | 269 | 	struct xfs_buf	*bp; | 
 | 270 | 	struct xfs_sb	*sbp = &mp->m_sb; | 
 | 271 | 	int		error; | 
 | 272 | 	int		loud = !(flags & XFS_MFSI_QUIET); | 
 | 273 | 	const struct xfs_buf_ops *buf_ops; | 
 | 274 |  | 
 | 275 | 	ASSERT(mp->m_sb_bp == NULL); | 
 | 276 | 	ASSERT(mp->m_ddev_targp != NULL); | 
 | 277 |  | 
 | 278 | 	/* | 
 | 279 | 	 * For the initial read, we must guess at the sector | 
 | 280 | 	 * size based on the block device.  It's enough to | 
 | 281 | 	 * get the sb_sectsize out of the superblock and | 
 | 282 | 	 * then reread with the proper length. | 
 | 283 | 	 * We don't verify it yet, because it may not be complete. | 
 | 284 | 	 */ | 
 | 285 | 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); | 
 | 286 | 	buf_ops = NULL; | 
 | 287 |  | 
 | 288 | 	/* | 
 | 289 | 	 * Allocate a (locked) buffer to hold the superblock. This will be kept | 
 | 290 | 	 * around at all times to optimize access to the superblock. Therefore, | 
 | 291 | 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count | 
 | 292 | 	 * elevated. | 
 | 293 | 	 */ | 
 | 294 | reread: | 
 | 295 | 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, | 
 | 296 | 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp, | 
 | 297 | 				      buf_ops); | 
 | 298 | 	if (error) { | 
 | 299 | 		if (loud) | 
 | 300 | 			xfs_warn(mp, "SB validate failed with error %d.", error); | 
 | 301 | 		/* bad CRC means corrupted metadata */ | 
 | 302 | 		if (error == -EFSBADCRC) | 
 | 303 | 			error = -EFSCORRUPTED; | 
 | 304 | 		return error; | 
 | 305 | 	} | 
 | 306 |  | 
 | 307 | 	/* | 
 | 308 | 	 * Initialize the mount structure from the superblock. | 
 | 309 | 	 */ | 
 | 310 | 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); | 
 | 311 |  | 
 | 312 | 	/* | 
 | 313 | 	 * If we haven't validated the superblock, do so now before we try | 
 | 314 | 	 * to check the sector size and reread the superblock appropriately. | 
 | 315 | 	 */ | 
 | 316 | 	if (sbp->sb_magicnum != XFS_SB_MAGIC) { | 
 | 317 | 		if (loud) | 
 | 318 | 			xfs_warn(mp, "Invalid superblock magic number"); | 
 | 319 | 		error = -EINVAL; | 
 | 320 | 		goto release_buf; | 
 | 321 | 	} | 
 | 322 |  | 
 | 323 | 	/* | 
 | 324 | 	 * We must be able to do sector-sized and sector-aligned IO. | 
 | 325 | 	 */ | 
 | 326 | 	if (sector_size > sbp->sb_sectsize) { | 
 | 327 | 		if (loud) | 
 | 328 | 			xfs_warn(mp, "device supports %u byte sectors (not %u)", | 
 | 329 | 				sector_size, sbp->sb_sectsize); | 
 | 330 | 		error = -ENOSYS; | 
 | 331 | 		goto release_buf; | 
 | 332 | 	} | 
 | 333 |  | 
 | 334 | 	if (buf_ops == NULL) { | 
 | 335 | 		/* | 
 | 336 | 		 * Re-read the superblock so the buffer is correctly sized, | 
 | 337 | 		 * and properly verified. | 
 | 338 | 		 */ | 
 | 339 | 		xfs_buf_relse(bp); | 
 | 340 | 		sector_size = sbp->sb_sectsize; | 
 | 341 | 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; | 
 | 342 | 		goto reread; | 
 | 343 | 	} | 
 | 344 |  | 
 | 345 | 	xfs_reinit_percpu_counters(mp); | 
 | 346 |  | 
 | 347 | 	/* no need to be quiet anymore, so reset the buf ops */ | 
 | 348 | 	bp->b_ops = &xfs_sb_buf_ops; | 
 | 349 |  | 
 | 350 | 	mp->m_sb_bp = bp; | 
 | 351 | 	xfs_buf_unlock(bp); | 
 | 352 | 	return 0; | 
 | 353 |  | 
 | 354 | release_buf: | 
 | 355 | 	xfs_buf_relse(bp); | 
 | 356 | 	return error; | 
 | 357 | } | 
 | 358 |  | 
 | 359 | /* | 
 | 360 |  * Update alignment values based on mount options and sb values | 
 | 361 |  */ | 
 | 362 | STATIC int | 
 | 363 | xfs_update_alignment(xfs_mount_t *mp) | 
 | 364 | { | 
 | 365 | 	xfs_sb_t	*sbp = &(mp->m_sb); | 
 | 366 |  | 
 | 367 | 	if (mp->m_dalign) { | 
 | 368 | 		/* | 
 | 369 | 		 * If stripe unit and stripe width are not multiples | 
 | 370 | 		 * of the fs blocksize turn off alignment. | 
 | 371 | 		 */ | 
 | 372 | 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || | 
 | 373 | 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) { | 
 | 374 | 			xfs_warn(mp, | 
 | 375 | 		"alignment check failed: sunit/swidth vs. blocksize(%d)", | 
 | 376 | 				sbp->sb_blocksize); | 
 | 377 | 			return -EINVAL; | 
 | 378 | 		} else { | 
 | 379 | 			/* | 
 | 380 | 			 * Convert the stripe unit and width to FSBs. | 
 | 381 | 			 */ | 
 | 382 | 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); | 
 | 383 | 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { | 
 | 384 | 				xfs_warn(mp, | 
 | 385 | 			"alignment check failed: sunit/swidth vs. agsize(%d)", | 
 | 386 | 					 sbp->sb_agblocks); | 
 | 387 | 				return -EINVAL; | 
 | 388 | 			} else if (mp->m_dalign) { | 
 | 389 | 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); | 
 | 390 | 			} else { | 
 | 391 | 				xfs_warn(mp, | 
 | 392 | 			"alignment check failed: sunit(%d) less than bsize(%d)", | 
 | 393 | 					 mp->m_dalign, sbp->sb_blocksize); | 
 | 394 | 				return -EINVAL; | 
 | 395 | 			} | 
 | 396 | 		} | 
 | 397 |  | 
 | 398 | 		/* | 
 | 399 | 		 * Update superblock with new values | 
 | 400 | 		 * and log changes | 
 | 401 | 		 */ | 
 | 402 | 		if (xfs_sb_version_hasdalign(sbp)) { | 
 | 403 | 			if (sbp->sb_unit != mp->m_dalign) { | 
 | 404 | 				sbp->sb_unit = mp->m_dalign; | 
 | 405 | 				mp->m_update_sb = true; | 
 | 406 | 			} | 
 | 407 | 			if (sbp->sb_width != mp->m_swidth) { | 
 | 408 | 				sbp->sb_width = mp->m_swidth; | 
 | 409 | 				mp->m_update_sb = true; | 
 | 410 | 			} | 
 | 411 | 		} else { | 
 | 412 | 			xfs_warn(mp, | 
 | 413 | 	"cannot change alignment: superblock does not support data alignment"); | 
 | 414 | 			return -EINVAL; | 
 | 415 | 		} | 
 | 416 | 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && | 
 | 417 | 		    xfs_sb_version_hasdalign(&mp->m_sb)) { | 
 | 418 | 			mp->m_dalign = sbp->sb_unit; | 
 | 419 | 			mp->m_swidth = sbp->sb_width; | 
 | 420 | 	} | 
 | 421 |  | 
 | 422 | 	return 0; | 
 | 423 | } | 
 | 424 |  | 
 | 425 | /* | 
 | 426 |  * Set the maximum inode count for this filesystem | 
 | 427 |  */ | 
 | 428 | STATIC void | 
 | 429 | xfs_set_maxicount(xfs_mount_t *mp) | 
 | 430 | { | 
 | 431 | 	xfs_sb_t	*sbp = &(mp->m_sb); | 
 | 432 | 	uint64_t	icount; | 
 | 433 |  | 
 | 434 | 	if (sbp->sb_imax_pct) { | 
 | 435 | 		/* | 
 | 436 | 		 * Make sure the maximum inode count is a multiple | 
 | 437 | 		 * of the units we allocate inodes in. | 
 | 438 | 		 */ | 
 | 439 | 		icount = sbp->sb_dblocks * sbp->sb_imax_pct; | 
 | 440 | 		do_div(icount, 100); | 
 | 441 | 		do_div(icount, mp->m_ialloc_blks); | 
 | 442 | 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  << | 
 | 443 | 				   sbp->sb_inopblog; | 
 | 444 | 	} else { | 
 | 445 | 		mp->m_maxicount = 0; | 
 | 446 | 	} | 
 | 447 | } | 
 | 448 |  | 
 | 449 | /* | 
 | 450 |  * Set the default minimum read and write sizes unless | 
 | 451 |  * already specified in a mount option. | 
 | 452 |  * We use smaller I/O sizes when the file system | 
 | 453 |  * is being used for NFS service (wsync mount option). | 
 | 454 |  */ | 
 | 455 | STATIC void | 
 | 456 | xfs_set_rw_sizes(xfs_mount_t *mp) | 
 | 457 | { | 
 | 458 | 	xfs_sb_t	*sbp = &(mp->m_sb); | 
 | 459 | 	int		readio_log, writeio_log; | 
 | 460 |  | 
 | 461 | 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { | 
 | 462 | 		if (mp->m_flags & XFS_MOUNT_WSYNC) { | 
 | 463 | 			readio_log = XFS_WSYNC_READIO_LOG; | 
 | 464 | 			writeio_log = XFS_WSYNC_WRITEIO_LOG; | 
 | 465 | 		} else { | 
 | 466 | 			readio_log = XFS_READIO_LOG_LARGE; | 
 | 467 | 			writeio_log = XFS_WRITEIO_LOG_LARGE; | 
 | 468 | 		} | 
 | 469 | 	} else { | 
 | 470 | 		readio_log = mp->m_readio_log; | 
 | 471 | 		writeio_log = mp->m_writeio_log; | 
 | 472 | 	} | 
 | 473 |  | 
 | 474 | 	if (sbp->sb_blocklog > readio_log) { | 
 | 475 | 		mp->m_readio_log = sbp->sb_blocklog; | 
 | 476 | 	} else { | 
 | 477 | 		mp->m_readio_log = readio_log; | 
 | 478 | 	} | 
 | 479 | 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); | 
 | 480 | 	if (sbp->sb_blocklog > writeio_log) { | 
 | 481 | 		mp->m_writeio_log = sbp->sb_blocklog; | 
 | 482 | 	} else { | 
 | 483 | 		mp->m_writeio_log = writeio_log; | 
 | 484 | 	} | 
 | 485 | 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); | 
 | 486 | } | 
 | 487 |  | 
 | 488 | /* | 
 | 489 |  * precalculate the low space thresholds for dynamic speculative preallocation. | 
 | 490 |  */ | 
 | 491 | void | 
 | 492 | xfs_set_low_space_thresholds( | 
 | 493 | 	struct xfs_mount	*mp) | 
 | 494 | { | 
 | 495 | 	int i; | 
 | 496 |  | 
 | 497 | 	for (i = 0; i < XFS_LOWSP_MAX; i++) { | 
 | 498 | 		uint64_t space = mp->m_sb.sb_dblocks; | 
 | 499 |  | 
 | 500 | 		do_div(space, 100); | 
 | 501 | 		mp->m_low_space[i] = space * (i + 1); | 
 | 502 | 	} | 
 | 503 | } | 
 | 504 |  | 
 | 505 |  | 
 | 506 | /* | 
 | 507 |  * Set whether we're using inode alignment. | 
 | 508 |  */ | 
 | 509 | STATIC void | 
 | 510 | xfs_set_inoalignment(xfs_mount_t *mp) | 
 | 511 | { | 
 | 512 | 	if (xfs_sb_version_hasalign(&mp->m_sb) && | 
 | 513 | 		mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) | 
 | 514 | 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; | 
 | 515 | 	else | 
 | 516 | 		mp->m_inoalign_mask = 0; | 
 | 517 | 	/* | 
 | 518 | 	 * If we are using stripe alignment, check whether | 
 | 519 | 	 * the stripe unit is a multiple of the inode alignment | 
 | 520 | 	 */ | 
 | 521 | 	if (mp->m_dalign && mp->m_inoalign_mask && | 
 | 522 | 	    !(mp->m_dalign & mp->m_inoalign_mask)) | 
 | 523 | 		mp->m_sinoalign = mp->m_dalign; | 
 | 524 | 	else | 
 | 525 | 		mp->m_sinoalign = 0; | 
 | 526 | } | 
 | 527 |  | 
 | 528 | /* | 
 | 529 |  * Check that the data (and log if separate) is an ok size. | 
 | 530 |  */ | 
 | 531 | STATIC int | 
 | 532 | xfs_check_sizes( | 
 | 533 | 	struct xfs_mount *mp) | 
 | 534 | { | 
 | 535 | 	struct xfs_buf	*bp; | 
 | 536 | 	xfs_daddr_t	d; | 
 | 537 | 	int		error; | 
 | 538 |  | 
 | 539 | 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); | 
 | 540 | 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { | 
 | 541 | 		xfs_warn(mp, "filesystem size mismatch detected"); | 
 | 542 | 		return -EFBIG; | 
 | 543 | 	} | 
 | 544 | 	error = xfs_buf_read_uncached(mp->m_ddev_targp, | 
 | 545 | 					d - XFS_FSS_TO_BB(mp, 1), | 
 | 546 | 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); | 
 | 547 | 	if (error) { | 
 | 548 | 		xfs_warn(mp, "last sector read failed"); | 
 | 549 | 		return error; | 
 | 550 | 	} | 
 | 551 | 	xfs_buf_relse(bp); | 
 | 552 |  | 
 | 553 | 	if (mp->m_logdev_targp == mp->m_ddev_targp) | 
 | 554 | 		return 0; | 
 | 555 |  | 
 | 556 | 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); | 
 | 557 | 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { | 
 | 558 | 		xfs_warn(mp, "log size mismatch detected"); | 
 | 559 | 		return -EFBIG; | 
 | 560 | 	} | 
 | 561 | 	error = xfs_buf_read_uncached(mp->m_logdev_targp, | 
 | 562 | 					d - XFS_FSB_TO_BB(mp, 1), | 
 | 563 | 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); | 
 | 564 | 	if (error) { | 
 | 565 | 		xfs_warn(mp, "log device read failed"); | 
 | 566 | 		return error; | 
 | 567 | 	} | 
 | 568 | 	xfs_buf_relse(bp); | 
 | 569 | 	return 0; | 
 | 570 | } | 
 | 571 |  | 
 | 572 | /* | 
 | 573 |  * Clear the quotaflags in memory and in the superblock. | 
 | 574 |  */ | 
 | 575 | int | 
 | 576 | xfs_mount_reset_sbqflags( | 
 | 577 | 	struct xfs_mount	*mp) | 
 | 578 | { | 
 | 579 | 	mp->m_qflags = 0; | 
 | 580 |  | 
 | 581 | 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ | 
 | 582 | 	if (mp->m_sb.sb_qflags == 0) | 
 | 583 | 		return 0; | 
 | 584 | 	spin_lock(&mp->m_sb_lock); | 
 | 585 | 	mp->m_sb.sb_qflags = 0; | 
 | 586 | 	spin_unlock(&mp->m_sb_lock); | 
 | 587 |  | 
 | 588 | 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) | 
 | 589 | 		return 0; | 
 | 590 |  | 
 | 591 | 	return xfs_sync_sb(mp, false); | 
 | 592 | } | 
 | 593 |  | 
 | 594 | uint64_t | 
 | 595 | xfs_default_resblks(xfs_mount_t *mp) | 
 | 596 | { | 
 | 597 | 	uint64_t resblks; | 
 | 598 |  | 
 | 599 | 	/* | 
 | 600 | 	 * We default to 5% or 8192 fsbs of space reserved, whichever is | 
 | 601 | 	 * smaller.  This is intended to cover concurrent allocation | 
 | 602 | 	 * transactions when we initially hit enospc. These each require a 4 | 
 | 603 | 	 * block reservation. Hence by default we cover roughly 2000 concurrent | 
 | 604 | 	 * allocation reservations. | 
 | 605 | 	 */ | 
 | 606 | 	resblks = mp->m_sb.sb_dblocks; | 
 | 607 | 	do_div(resblks, 20); | 
 | 608 | 	resblks = min_t(uint64_t, resblks, 8192); | 
 | 609 | 	return resblks; | 
 | 610 | } | 
 | 611 |  | 
 | 612 | /* Ensure the summary counts are correct. */ | 
 | 613 | STATIC int | 
 | 614 | xfs_check_summary_counts( | 
 | 615 | 	struct xfs_mount	*mp) | 
 | 616 | { | 
 | 617 | 	/* | 
 | 618 | 	 * The AG0 superblock verifier rejects in-progress filesystems, | 
 | 619 | 	 * so we should never see the flag set this far into mounting. | 
 | 620 | 	 */ | 
 | 621 | 	if (mp->m_sb.sb_inprogress) { | 
 | 622 | 		xfs_err(mp, "sb_inprogress set after log recovery??"); | 
 | 623 | 		WARN_ON(1); | 
 | 624 | 		return -EFSCORRUPTED; | 
 | 625 | 	} | 
 | 626 |  | 
 | 627 | 	/* | 
 | 628 | 	 * Now the log is mounted, we know if it was an unclean shutdown or | 
 | 629 | 	 * not. If it was, with the first phase of recovery has completed, we | 
 | 630 | 	 * have consistent AG blocks on disk. We have not recovered EFIs yet, | 
 | 631 | 	 * but they are recovered transactionally in the second recovery phase | 
 | 632 | 	 * later. | 
 | 633 | 	 * | 
 | 634 | 	 * If the log was clean when we mounted, we can check the summary | 
 | 635 | 	 * counters.  If any of them are obviously incorrect, we can recompute | 
 | 636 | 	 * them from the AGF headers in the next step. | 
 | 637 | 	 */ | 
 | 638 | 	if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && | 
 | 639 | 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || | 
 | 640 | 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) || | 
 | 641 | 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) | 
 | 642 | 		mp->m_flags |= XFS_MOUNT_BAD_SUMMARY; | 
 | 643 |  | 
 | 644 | 	/* | 
 | 645 | 	 * We can safely re-initialise incore superblock counters from the | 
 | 646 | 	 * per-ag data. These may not be correct if the filesystem was not | 
 | 647 | 	 * cleanly unmounted, so we waited for recovery to finish before doing | 
 | 648 | 	 * this. | 
 | 649 | 	 * | 
 | 650 | 	 * If the filesystem was cleanly unmounted or the previous check did | 
 | 651 | 	 * not flag anything weird, then we can trust the values in the | 
 | 652 | 	 * superblock to be correct and we don't need to do anything here. | 
 | 653 | 	 * Otherwise, recalculate the summary counters. | 
 | 654 | 	 */ | 
 | 655 | 	if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) || | 
 | 656 | 	     XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) && | 
 | 657 | 	    !(mp->m_flags & XFS_MOUNT_BAD_SUMMARY)) | 
 | 658 | 		return 0; | 
 | 659 |  | 
 | 660 | 	return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); | 
 | 661 | } | 
 | 662 |  | 
 | 663 | /* | 
 | 664 |  * This function does the following on an initial mount of a file system: | 
 | 665 |  *	- reads the superblock from disk and init the mount struct | 
 | 666 |  *	- if we're a 32-bit kernel, do a size check on the superblock | 
 | 667 |  *		so we don't mount terabyte filesystems | 
 | 668 |  *	- init mount struct realtime fields | 
 | 669 |  *	- allocate inode hash table for fs | 
 | 670 |  *	- init directory manager | 
 | 671 |  *	- perform recovery and init the log manager | 
 | 672 |  */ | 
 | 673 | int | 
 | 674 | xfs_mountfs( | 
 | 675 | 	struct xfs_mount	*mp) | 
 | 676 | { | 
 | 677 | 	struct xfs_sb		*sbp = &(mp->m_sb); | 
 | 678 | 	struct xfs_inode	*rip; | 
 | 679 | 	uint64_t		resblks; | 
 | 680 | 	uint			quotamount = 0; | 
 | 681 | 	uint			quotaflags = 0; | 
 | 682 | 	int			error = 0; | 
 | 683 |  | 
 | 684 | 	xfs_sb_mount_common(mp, sbp); | 
 | 685 |  | 
 | 686 | 	/* | 
 | 687 | 	 * Check for a mismatched features2 values.  Older kernels read & wrote | 
 | 688 | 	 * into the wrong sb offset for sb_features2 on some platforms due to | 
 | 689 | 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, | 
 | 690 | 	 * which made older superblock reading/writing routines swap it as a | 
 | 691 | 	 * 64-bit value. | 
 | 692 | 	 * | 
 | 693 | 	 * For backwards compatibility, we make both slots equal. | 
 | 694 | 	 * | 
 | 695 | 	 * If we detect a mismatched field, we OR the set bits into the existing | 
 | 696 | 	 * features2 field in case it has already been modified; we don't want | 
 | 697 | 	 * to lose any features.  We then update the bad location with the ORed | 
 | 698 | 	 * value so that older kernels will see any features2 flags. The | 
 | 699 | 	 * superblock writeback code ensures the new sb_features2 is copied to | 
 | 700 | 	 * sb_bad_features2 before it is logged or written to disk. | 
 | 701 | 	 */ | 
 | 702 | 	if (xfs_sb_has_mismatched_features2(sbp)) { | 
 | 703 | 		xfs_warn(mp, "correcting sb_features alignment problem"); | 
 | 704 | 		sbp->sb_features2 |= sbp->sb_bad_features2; | 
 | 705 | 		mp->m_update_sb = true; | 
 | 706 |  | 
 | 707 | 		/* | 
 | 708 | 		 * Re-check for ATTR2 in case it was found in bad_features2 | 
 | 709 | 		 * slot. | 
 | 710 | 		 */ | 
 | 711 | 		if (xfs_sb_version_hasattr2(&mp->m_sb) && | 
 | 712 | 		   !(mp->m_flags & XFS_MOUNT_NOATTR2)) | 
 | 713 | 			mp->m_flags |= XFS_MOUNT_ATTR2; | 
 | 714 | 	} | 
 | 715 |  | 
 | 716 | 	if (xfs_sb_version_hasattr2(&mp->m_sb) && | 
 | 717 | 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) { | 
 | 718 | 		xfs_sb_version_removeattr2(&mp->m_sb); | 
 | 719 | 		mp->m_update_sb = true; | 
 | 720 |  | 
 | 721 | 		/* update sb_versionnum for the clearing of the morebits */ | 
 | 722 | 		if (!sbp->sb_features2) | 
 | 723 | 			mp->m_update_sb = true; | 
 | 724 | 	} | 
 | 725 |  | 
 | 726 | 	/* always use v2 inodes by default now */ | 
 | 727 | 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { | 
 | 728 | 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; | 
 | 729 | 		mp->m_update_sb = true; | 
 | 730 | 	} | 
 | 731 |  | 
 | 732 | 	/* | 
 | 733 | 	 * Check if sb_agblocks is aligned at stripe boundary | 
 | 734 | 	 * If sb_agblocks is NOT aligned turn off m_dalign since | 
 | 735 | 	 * allocator alignment is within an ag, therefore ag has | 
 | 736 | 	 * to be aligned at stripe boundary. | 
 | 737 | 	 */ | 
 | 738 | 	error = xfs_update_alignment(mp); | 
 | 739 | 	if (error) | 
 | 740 | 		goto out; | 
 | 741 |  | 
 | 742 | 	xfs_alloc_compute_maxlevels(mp); | 
 | 743 | 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); | 
 | 744 | 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); | 
 | 745 | 	xfs_ialloc_compute_maxlevels(mp); | 
 | 746 | 	xfs_rmapbt_compute_maxlevels(mp); | 
 | 747 | 	xfs_refcountbt_compute_maxlevels(mp); | 
 | 748 |  | 
 | 749 | 	xfs_set_maxicount(mp); | 
 | 750 |  | 
 | 751 | 	/* enable fail_at_unmount as default */ | 
 | 752 | 	mp->m_fail_unmount = true; | 
 | 753 |  | 
 | 754 | 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); | 
 | 755 | 	if (error) | 
 | 756 | 		goto out; | 
 | 757 |  | 
 | 758 | 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, | 
 | 759 | 			       &mp->m_kobj, "stats"); | 
 | 760 | 	if (error) | 
 | 761 | 		goto out_remove_sysfs; | 
 | 762 |  | 
 | 763 | 	error = xfs_error_sysfs_init(mp); | 
 | 764 | 	if (error) | 
 | 765 | 		goto out_del_stats; | 
 | 766 |  | 
 | 767 | 	error = xfs_errortag_init(mp); | 
 | 768 | 	if (error) | 
 | 769 | 		goto out_remove_error_sysfs; | 
 | 770 |  | 
 | 771 | 	error = xfs_uuid_mount(mp); | 
 | 772 | 	if (error) | 
 | 773 | 		goto out_remove_errortag; | 
 | 774 |  | 
 | 775 | 	/* | 
 | 776 | 	 * Set the minimum read and write sizes | 
 | 777 | 	 */ | 
 | 778 | 	xfs_set_rw_sizes(mp); | 
 | 779 |  | 
 | 780 | 	/* set the low space thresholds for dynamic preallocation */ | 
 | 781 | 	xfs_set_low_space_thresholds(mp); | 
 | 782 |  | 
 | 783 | 	/* | 
 | 784 | 	 * Set the inode cluster size. | 
 | 785 | 	 * This may still be overridden by the file system | 
 | 786 | 	 * block size if it is larger than the chosen cluster size. | 
 | 787 | 	 * | 
 | 788 | 	 * For v5 filesystems, scale the cluster size with the inode size to | 
 | 789 | 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs | 
 | 790 | 	 * has set the inode alignment value appropriately for larger cluster | 
 | 791 | 	 * sizes. | 
 | 792 | 	 */ | 
 | 793 | 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; | 
 | 794 | 	if (xfs_sb_version_hascrc(&mp->m_sb)) { | 
 | 795 | 		int	new_size = mp->m_inode_cluster_size; | 
 | 796 |  | 
 | 797 | 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; | 
 | 798 | 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) | 
 | 799 | 			mp->m_inode_cluster_size = new_size; | 
 | 800 | 	} | 
 | 801 |  | 
 | 802 | 	/* | 
 | 803 | 	 * If enabled, sparse inode chunk alignment is expected to match the | 
 | 804 | 	 * cluster size. Full inode chunk alignment must match the chunk size, | 
 | 805 | 	 * but that is checked on sb read verification... | 
 | 806 | 	 */ | 
 | 807 | 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) && | 
 | 808 | 	    mp->m_sb.sb_spino_align != | 
 | 809 | 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) { | 
 | 810 | 		xfs_warn(mp, | 
 | 811 | 	"Sparse inode block alignment (%u) must match cluster size (%llu).", | 
 | 812 | 			 mp->m_sb.sb_spino_align, | 
 | 813 | 			 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)); | 
 | 814 | 		error = -EINVAL; | 
 | 815 | 		goto out_remove_uuid; | 
 | 816 | 	} | 
 | 817 |  | 
 | 818 | 	/* | 
 | 819 | 	 * Set inode alignment fields | 
 | 820 | 	 */ | 
 | 821 | 	xfs_set_inoalignment(mp); | 
 | 822 |  | 
 | 823 | 	/* | 
 | 824 | 	 * Check that the data (and log if separate) is an ok size. | 
 | 825 | 	 */ | 
 | 826 | 	error = xfs_check_sizes(mp); | 
 | 827 | 	if (error) | 
 | 828 | 		goto out_remove_uuid; | 
 | 829 |  | 
 | 830 | 	/* | 
 | 831 | 	 * Initialize realtime fields in the mount structure | 
 | 832 | 	 */ | 
 | 833 | 	error = xfs_rtmount_init(mp); | 
 | 834 | 	if (error) { | 
 | 835 | 		xfs_warn(mp, "RT mount failed"); | 
 | 836 | 		goto out_remove_uuid; | 
 | 837 | 	} | 
 | 838 |  | 
 | 839 | 	/* | 
 | 840 | 	 *  Copies the low order bits of the timestamp and the randomly | 
 | 841 | 	 *  set "sequence" number out of a UUID. | 
 | 842 | 	 */ | 
 | 843 | 	mp->m_fixedfsid[0] = | 
 | 844 | 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | | 
 | 845 | 		 get_unaligned_be16(&sbp->sb_uuid.b[4]); | 
 | 846 | 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); | 
 | 847 |  | 
 | 848 | 	error = xfs_da_mount(mp); | 
 | 849 | 	if (error) { | 
 | 850 | 		xfs_warn(mp, "Failed dir/attr init: %d", error); | 
 | 851 | 		goto out_remove_uuid; | 
 | 852 | 	} | 
 | 853 |  | 
 | 854 | 	/* | 
 | 855 | 	 * Initialize the precomputed transaction reservations values. | 
 | 856 | 	 */ | 
 | 857 | 	xfs_trans_init(mp); | 
 | 858 |  | 
 | 859 | 	/* | 
 | 860 | 	 * Allocate and initialize the per-ag data. | 
 | 861 | 	 */ | 
 | 862 | 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); | 
 | 863 | 	if (error) { | 
 | 864 | 		xfs_warn(mp, "Failed per-ag init: %d", error); | 
 | 865 | 		goto out_free_dir; | 
 | 866 | 	} | 
 | 867 |  | 
 | 868 | 	if (!sbp->sb_logblocks) { | 
 | 869 | 		xfs_warn(mp, "no log defined"); | 
 | 870 | 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); | 
 | 871 | 		error = -EFSCORRUPTED; | 
 | 872 | 		goto out_free_perag; | 
 | 873 | 	} | 
 | 874 |  | 
 | 875 | 	/* | 
 | 876 | 	 * Log's mount-time initialization. The first part of recovery can place | 
 | 877 | 	 * some items on the AIL, to be handled when recovery is finished or | 
 | 878 | 	 * cancelled. | 
 | 879 | 	 */ | 
 | 880 | 	error = xfs_log_mount(mp, mp->m_logdev_targp, | 
 | 881 | 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), | 
 | 882 | 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); | 
 | 883 | 	if (error) { | 
 | 884 | 		xfs_warn(mp, "log mount failed"); | 
 | 885 | 		goto out_fail_wait; | 
 | 886 | 	} | 
 | 887 |  | 
 | 888 | 	/* Make sure the summary counts are ok. */ | 
 | 889 | 	error = xfs_check_summary_counts(mp); | 
 | 890 | 	if (error) | 
 | 891 | 		goto out_log_dealloc; | 
 | 892 |  | 
 | 893 | 	/* | 
 | 894 | 	 * Get and sanity-check the root inode. | 
 | 895 | 	 * Save the pointer to it in the mount structure. | 
 | 896 | 	 */ | 
 | 897 | 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, | 
 | 898 | 			 XFS_ILOCK_EXCL, &rip); | 
 | 899 | 	if (error) { | 
 | 900 | 		xfs_warn(mp, | 
 | 901 | 			"Failed to read root inode 0x%llx, error %d", | 
 | 902 | 			sbp->sb_rootino, -error); | 
 | 903 | 		goto out_log_dealloc; | 
 | 904 | 	} | 
 | 905 |  | 
 | 906 | 	ASSERT(rip != NULL); | 
 | 907 |  | 
 | 908 | 	if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) { | 
 | 909 | 		xfs_warn(mp, "corrupted root inode %llu: not a directory", | 
 | 910 | 			(unsigned long long)rip->i_ino); | 
 | 911 | 		xfs_iunlock(rip, XFS_ILOCK_EXCL); | 
 | 912 | 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, | 
 | 913 | 				 mp); | 
 | 914 | 		error = -EFSCORRUPTED; | 
 | 915 | 		goto out_rele_rip; | 
 | 916 | 	} | 
 | 917 | 	mp->m_rootip = rip;	/* save it */ | 
 | 918 |  | 
 | 919 | 	xfs_iunlock(rip, XFS_ILOCK_EXCL); | 
 | 920 |  | 
 | 921 | 	/* | 
 | 922 | 	 * Initialize realtime inode pointers in the mount structure | 
 | 923 | 	 */ | 
 | 924 | 	error = xfs_rtmount_inodes(mp); | 
 | 925 | 	if (error) { | 
 | 926 | 		/* | 
 | 927 | 		 * Free up the root inode. | 
 | 928 | 		 */ | 
 | 929 | 		xfs_warn(mp, "failed to read RT inodes"); | 
 | 930 | 		goto out_rele_rip; | 
 | 931 | 	} | 
 | 932 |  | 
 | 933 | 	/* | 
 | 934 | 	 * If this is a read-only mount defer the superblock updates until | 
 | 935 | 	 * the next remount into writeable mode.  Otherwise we would never | 
 | 936 | 	 * perform the update e.g. for the root filesystem. | 
 | 937 | 	 */ | 
 | 938 | 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { | 
 | 939 | 		error = xfs_sync_sb(mp, false); | 
 | 940 | 		if (error) { | 
 | 941 | 			xfs_warn(mp, "failed to write sb changes"); | 
 | 942 | 			goto out_rtunmount; | 
 | 943 | 		} | 
 | 944 | 	} | 
 | 945 |  | 
 | 946 | 	/* | 
 | 947 | 	 * Initialise the XFS quota management subsystem for this mount | 
 | 948 | 	 */ | 
 | 949 | 	if (XFS_IS_QUOTA_RUNNING(mp)) { | 
 | 950 | 		error = xfs_qm_newmount(mp, "amount, "aflags); | 
 | 951 | 		if (error) | 
 | 952 | 			goto out_rtunmount; | 
 | 953 | 	} else { | 
 | 954 | 		ASSERT(!XFS_IS_QUOTA_ON(mp)); | 
 | 955 |  | 
 | 956 | 		/* | 
 | 957 | 		 * If a file system had quotas running earlier, but decided to | 
 | 958 | 		 * mount without -o uquota/pquota/gquota options, revoke the | 
 | 959 | 		 * quotachecked license. | 
 | 960 | 		 */ | 
 | 961 | 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { | 
 | 962 | 			xfs_notice(mp, "resetting quota flags"); | 
 | 963 | 			error = xfs_mount_reset_sbqflags(mp); | 
 | 964 | 			if (error) | 
 | 965 | 				goto out_rtunmount; | 
 | 966 | 		} | 
 | 967 | 	} | 
 | 968 |  | 
 | 969 | 	/* | 
 | 970 | 	 * Finish recovering the file system.  This part needed to be delayed | 
 | 971 | 	 * until after the root and real-time bitmap inodes were consistently | 
 | 972 | 	 * read in. | 
 | 973 | 	 */ | 
 | 974 | 	error = xfs_log_mount_finish(mp); | 
 | 975 | 	if (error) { | 
 | 976 | 		xfs_warn(mp, "log mount finish failed"); | 
 | 977 | 		goto out_rtunmount; | 
 | 978 | 	} | 
 | 979 |  | 
 | 980 | 	/* | 
 | 981 | 	 * Now the log is fully replayed, we can transition to full read-only | 
 | 982 | 	 * mode for read-only mounts. This will sync all the metadata and clean | 
 | 983 | 	 * the log so that the recovery we just performed does not have to be | 
 | 984 | 	 * replayed again on the next mount. | 
 | 985 | 	 * | 
 | 986 | 	 * We use the same quiesce mechanism as the rw->ro remount, as they are | 
 | 987 | 	 * semantically identical operations. | 
 | 988 | 	 */ | 
 | 989 | 	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == | 
 | 990 | 							XFS_MOUNT_RDONLY) { | 
 | 991 | 		xfs_quiesce_attr(mp); | 
 | 992 | 	} | 
 | 993 |  | 
 | 994 | 	/* | 
 | 995 | 	 * Complete the quota initialisation, post-log-replay component. | 
 | 996 | 	 */ | 
 | 997 | 	if (quotamount) { | 
 | 998 | 		ASSERT(mp->m_qflags == 0); | 
 | 999 | 		mp->m_qflags = quotaflags; | 
 | 1000 |  | 
 | 1001 | 		xfs_qm_mount_quotas(mp); | 
 | 1002 | 	} | 
 | 1003 |  | 
 | 1004 | 	/* | 
 | 1005 | 	 * Now we are mounted, reserve a small amount of unused space for | 
 | 1006 | 	 * privileged transactions. This is needed so that transaction | 
 | 1007 | 	 * space required for critical operations can dip into this pool | 
 | 1008 | 	 * when at ENOSPC. This is needed for operations like create with | 
 | 1009 | 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations | 
 | 1010 | 	 * are not allowed to use this reserved space. | 
 | 1011 | 	 * | 
 | 1012 | 	 * This may drive us straight to ENOSPC on mount, but that implies | 
 | 1013 | 	 * we were already there on the last unmount. Warn if this occurs. | 
 | 1014 | 	 */ | 
 | 1015 | 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { | 
 | 1016 | 		resblks = xfs_default_resblks(mp); | 
 | 1017 | 		error = xfs_reserve_blocks(mp, &resblks, NULL); | 
 | 1018 | 		if (error) | 
 | 1019 | 			xfs_warn(mp, | 
 | 1020 | 	"Unable to allocate reserve blocks. Continuing without reserve pool."); | 
 | 1021 |  | 
 | 1022 | 		/* Recover any CoW blocks that never got remapped. */ | 
 | 1023 | 		error = xfs_reflink_recover_cow(mp); | 
 | 1024 | 		if (error) { | 
 | 1025 | 			xfs_err(mp, | 
 | 1026 | 	"Error %d recovering leftover CoW allocations.", error); | 
 | 1027 | 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); | 
 | 1028 | 			goto out_quota; | 
 | 1029 | 		} | 
 | 1030 |  | 
 | 1031 | 		/* Reserve AG blocks for future btree expansion. */ | 
 | 1032 | 		error = xfs_fs_reserve_ag_blocks(mp); | 
 | 1033 | 		if (error && error != -ENOSPC) | 
 | 1034 | 			goto out_agresv; | 
 | 1035 | 	} | 
 | 1036 |  | 
 | 1037 | 	return 0; | 
 | 1038 |  | 
 | 1039 |  out_agresv: | 
 | 1040 | 	xfs_fs_unreserve_ag_blocks(mp); | 
 | 1041 |  out_quota: | 
 | 1042 | 	xfs_qm_unmount_quotas(mp); | 
 | 1043 |  out_rtunmount: | 
 | 1044 | 	xfs_rtunmount_inodes(mp); | 
 | 1045 |  out_rele_rip: | 
 | 1046 | 	xfs_irele(rip); | 
 | 1047 | 	/* Clean out dquots that might be in memory after quotacheck. */ | 
 | 1048 | 	xfs_qm_unmount(mp); | 
 | 1049 | 	/* | 
 | 1050 | 	 * Cancel all delayed reclaim work and reclaim the inodes directly. | 
 | 1051 | 	 * We have to do this /after/ rtunmount and qm_unmount because those | 
 | 1052 | 	 * two will have scheduled delayed reclaim for the rt/quota inodes. | 
 | 1053 | 	 * | 
 | 1054 | 	 * This is slightly different from the unmountfs call sequence | 
 | 1055 | 	 * because we could be tearing down a partially set up mount.  In | 
 | 1056 | 	 * particular, if log_mount_finish fails we bail out without calling | 
 | 1057 | 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the | 
 | 1058 | 	 * quota inodes. | 
 | 1059 | 	 */ | 
 | 1060 | 	cancel_delayed_work_sync(&mp->m_reclaim_work); | 
 | 1061 | 	xfs_reclaim_inodes(mp, SYNC_WAIT); | 
 | 1062 |  out_log_dealloc: | 
 | 1063 | 	mp->m_flags |= XFS_MOUNT_UNMOUNTING; | 
 | 1064 | 	xfs_log_mount_cancel(mp); | 
 | 1065 |  out_fail_wait: | 
 | 1066 | 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) | 
 | 1067 | 		xfs_wait_buftarg(mp->m_logdev_targp); | 
 | 1068 | 	xfs_wait_buftarg(mp->m_ddev_targp); | 
 | 1069 |  out_free_perag: | 
 | 1070 | 	xfs_free_perag(mp); | 
 | 1071 |  out_free_dir: | 
 | 1072 | 	xfs_da_unmount(mp); | 
 | 1073 |  out_remove_uuid: | 
 | 1074 | 	xfs_uuid_unmount(mp); | 
 | 1075 |  out_remove_errortag: | 
 | 1076 | 	xfs_errortag_del(mp); | 
 | 1077 |  out_remove_error_sysfs: | 
 | 1078 | 	xfs_error_sysfs_del(mp); | 
 | 1079 |  out_del_stats: | 
 | 1080 | 	xfs_sysfs_del(&mp->m_stats.xs_kobj); | 
 | 1081 |  out_remove_sysfs: | 
 | 1082 | 	xfs_sysfs_del(&mp->m_kobj); | 
 | 1083 |  out: | 
 | 1084 | 	return error; | 
 | 1085 | } | 
 | 1086 |  | 
 | 1087 | /* | 
 | 1088 |  * This flushes out the inodes,dquots and the superblock, unmounts the | 
 | 1089 |  * log and makes sure that incore structures are freed. | 
 | 1090 |  */ | 
 | 1091 | void | 
 | 1092 | xfs_unmountfs( | 
 | 1093 | 	struct xfs_mount	*mp) | 
 | 1094 | { | 
 | 1095 | 	uint64_t		resblks; | 
 | 1096 | 	int			error; | 
 | 1097 |  | 
 | 1098 | 	xfs_icache_disable_reclaim(mp); | 
 | 1099 | 	xfs_fs_unreserve_ag_blocks(mp); | 
 | 1100 | 	xfs_qm_unmount_quotas(mp); | 
 | 1101 | 	xfs_rtunmount_inodes(mp); | 
 | 1102 | 	xfs_irele(mp->m_rootip); | 
 | 1103 |  | 
 | 1104 | 	/* | 
 | 1105 | 	 * We can potentially deadlock here if we have an inode cluster | 
 | 1106 | 	 * that has been freed has its buffer still pinned in memory because | 
 | 1107 | 	 * the transaction is still sitting in a iclog. The stale inodes | 
 | 1108 | 	 * on that buffer will have their flush locks held until the | 
 | 1109 | 	 * transaction hits the disk and the callbacks run. the inode | 
 | 1110 | 	 * flush takes the flush lock unconditionally and with nothing to | 
 | 1111 | 	 * push out the iclog we will never get that unlocked. hence we | 
 | 1112 | 	 * need to force the log first. | 
 | 1113 | 	 */ | 
 | 1114 | 	xfs_log_force(mp, XFS_LOG_SYNC); | 
 | 1115 |  | 
 | 1116 | 	/* | 
 | 1117 | 	 * Wait for all busy extents to be freed, including completion of | 
 | 1118 | 	 * any discard operation. | 
 | 1119 | 	 */ | 
 | 1120 | 	xfs_extent_busy_wait_all(mp); | 
 | 1121 | 	flush_workqueue(xfs_discard_wq); | 
 | 1122 |  | 
 | 1123 | 	/* | 
 | 1124 | 	 * We now need to tell the world we are unmounting. This will allow | 
 | 1125 | 	 * us to detect that the filesystem is going away and we should error | 
 | 1126 | 	 * out anything that we have been retrying in the background. This will | 
 | 1127 | 	 * prevent neverending retries in AIL pushing from hanging the unmount. | 
 | 1128 | 	 */ | 
 | 1129 | 	mp->m_flags |= XFS_MOUNT_UNMOUNTING; | 
 | 1130 |  | 
 | 1131 | 	/* | 
 | 1132 | 	 * Flush all pending changes from the AIL. | 
 | 1133 | 	 */ | 
 | 1134 | 	xfs_ail_push_all_sync(mp->m_ail); | 
 | 1135 |  | 
 | 1136 | 	/* | 
 | 1137 | 	 * And reclaim all inodes.  At this point there should be no dirty | 
 | 1138 | 	 * inodes and none should be pinned or locked, but use synchronous | 
 | 1139 | 	 * reclaim just to be sure. We can stop background inode reclaim | 
 | 1140 | 	 * here as well if it is still running. | 
 | 1141 | 	 */ | 
 | 1142 | 	cancel_delayed_work_sync(&mp->m_reclaim_work); | 
 | 1143 | 	xfs_reclaim_inodes(mp, SYNC_WAIT); | 
 | 1144 |  | 
 | 1145 | 	xfs_qm_unmount(mp); | 
 | 1146 |  | 
 | 1147 | 	/* | 
 | 1148 | 	 * Unreserve any blocks we have so that when we unmount we don't account | 
 | 1149 | 	 * the reserved free space as used. This is really only necessary for | 
 | 1150 | 	 * lazy superblock counting because it trusts the incore superblock | 
 | 1151 | 	 * counters to be absolutely correct on clean unmount. | 
 | 1152 | 	 * | 
 | 1153 | 	 * We don't bother correcting this elsewhere for lazy superblock | 
 | 1154 | 	 * counting because on mount of an unclean filesystem we reconstruct the | 
 | 1155 | 	 * correct counter value and this is irrelevant. | 
 | 1156 | 	 * | 
 | 1157 | 	 * For non-lazy counter filesystems, this doesn't matter at all because | 
 | 1158 | 	 * we only every apply deltas to the superblock and hence the incore | 
 | 1159 | 	 * value does not matter.... | 
 | 1160 | 	 */ | 
 | 1161 | 	resblks = 0; | 
 | 1162 | 	error = xfs_reserve_blocks(mp, &resblks, NULL); | 
 | 1163 | 	if (error) | 
 | 1164 | 		xfs_warn(mp, "Unable to free reserved block pool. " | 
 | 1165 | 				"Freespace may not be correct on next mount."); | 
 | 1166 |  | 
 | 1167 | 	error = xfs_log_sbcount(mp); | 
 | 1168 | 	if (error) | 
 | 1169 | 		xfs_warn(mp, "Unable to update superblock counters. " | 
 | 1170 | 				"Freespace may not be correct on next mount."); | 
 | 1171 |  | 
 | 1172 |  | 
 | 1173 | 	xfs_log_unmount(mp); | 
 | 1174 | 	xfs_da_unmount(mp); | 
 | 1175 | 	xfs_uuid_unmount(mp); | 
 | 1176 |  | 
 | 1177 | #if defined(DEBUG) | 
 | 1178 | 	xfs_errortag_clearall(mp); | 
 | 1179 | #endif | 
 | 1180 | 	xfs_free_perag(mp); | 
 | 1181 |  | 
 | 1182 | 	xfs_errortag_del(mp); | 
 | 1183 | 	xfs_error_sysfs_del(mp); | 
 | 1184 | 	xfs_sysfs_del(&mp->m_stats.xs_kobj); | 
 | 1185 | 	xfs_sysfs_del(&mp->m_kobj); | 
 | 1186 | } | 
 | 1187 |  | 
 | 1188 | /* | 
 | 1189 |  * Determine whether modifications can proceed. The caller specifies the minimum | 
 | 1190 |  * freeze level for which modifications should not be allowed. This allows | 
 | 1191 |  * certain operations to proceed while the freeze sequence is in progress, if | 
 | 1192 |  * necessary. | 
 | 1193 |  */ | 
 | 1194 | bool | 
 | 1195 | xfs_fs_writable( | 
 | 1196 | 	struct xfs_mount	*mp, | 
 | 1197 | 	int			level) | 
 | 1198 | { | 
 | 1199 | 	ASSERT(level > SB_UNFROZEN); | 
 | 1200 | 	if ((mp->m_super->s_writers.frozen >= level) || | 
 | 1201 | 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) | 
 | 1202 | 		return false; | 
 | 1203 |  | 
 | 1204 | 	return true; | 
 | 1205 | } | 
 | 1206 |  | 
 | 1207 | /* | 
 | 1208 |  * xfs_log_sbcount | 
 | 1209 |  * | 
 | 1210 |  * Sync the superblock counters to disk. | 
 | 1211 |  * | 
 | 1212 |  * Note this code can be called during the process of freezing, so we use the | 
 | 1213 |  * transaction allocator that does not block when the transaction subsystem is | 
 | 1214 |  * in its frozen state. | 
 | 1215 |  */ | 
 | 1216 | int | 
 | 1217 | xfs_log_sbcount(xfs_mount_t *mp) | 
 | 1218 | { | 
 | 1219 | 	/* allow this to proceed during the freeze sequence... */ | 
 | 1220 | 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) | 
 | 1221 | 		return 0; | 
 | 1222 |  | 
 | 1223 | 	/* | 
 | 1224 | 	 * we don't need to do this if we are updating the superblock | 
 | 1225 | 	 * counters on every modification. | 
 | 1226 | 	 */ | 
 | 1227 | 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) | 
 | 1228 | 		return 0; | 
 | 1229 |  | 
 | 1230 | 	return xfs_sync_sb(mp, true); | 
 | 1231 | } | 
 | 1232 |  | 
 | 1233 | /* | 
 | 1234 |  * Deltas for the inode count are +/-64, hence we use a large batch size | 
 | 1235 |  * of 128 so we don't need to take the counter lock on every update. | 
 | 1236 |  */ | 
 | 1237 | #define XFS_ICOUNT_BATCH	128 | 
 | 1238 | int | 
 | 1239 | xfs_mod_icount( | 
 | 1240 | 	struct xfs_mount	*mp, | 
 | 1241 | 	int64_t			delta) | 
 | 1242 | { | 
 | 1243 | 	percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH); | 
 | 1244 | 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { | 
 | 1245 | 		ASSERT(0); | 
 | 1246 | 		percpu_counter_add(&mp->m_icount, -delta); | 
 | 1247 | 		return -EINVAL; | 
 | 1248 | 	} | 
 | 1249 | 	return 0; | 
 | 1250 | } | 
 | 1251 |  | 
 | 1252 | int | 
 | 1253 | xfs_mod_ifree( | 
 | 1254 | 	struct xfs_mount	*mp, | 
 | 1255 | 	int64_t			delta) | 
 | 1256 | { | 
 | 1257 | 	percpu_counter_add(&mp->m_ifree, delta); | 
 | 1258 | 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { | 
 | 1259 | 		ASSERT(0); | 
 | 1260 | 		percpu_counter_add(&mp->m_ifree, -delta); | 
 | 1261 | 		return -EINVAL; | 
 | 1262 | 	} | 
 | 1263 | 	return 0; | 
 | 1264 | } | 
 | 1265 |  | 
 | 1266 | /* | 
 | 1267 |  * Deltas for the block count can vary from 1 to very large, but lock contention | 
 | 1268 |  * only occurs on frequent small block count updates such as in the delayed | 
 | 1269 |  * allocation path for buffered writes (page a time updates). Hence we set | 
 | 1270 |  * a large batch count (1024) to minimise global counter updates except when | 
 | 1271 |  * we get near to ENOSPC and we have to be very accurate with our updates. | 
 | 1272 |  */ | 
 | 1273 | #define XFS_FDBLOCKS_BATCH	1024 | 
 | 1274 | int | 
 | 1275 | xfs_mod_fdblocks( | 
 | 1276 | 	struct xfs_mount	*mp, | 
 | 1277 | 	int64_t			delta, | 
 | 1278 | 	bool			rsvd) | 
 | 1279 | { | 
 | 1280 | 	int64_t			lcounter; | 
 | 1281 | 	long long		res_used; | 
 | 1282 | 	s32			batch; | 
 | 1283 |  | 
 | 1284 | 	if (delta > 0) { | 
 | 1285 | 		/* | 
 | 1286 | 		 * If the reserve pool is depleted, put blocks back into it | 
 | 1287 | 		 * first. Most of the time the pool is full. | 
 | 1288 | 		 */ | 
 | 1289 | 		if (likely(mp->m_resblks == mp->m_resblks_avail)) { | 
 | 1290 | 			percpu_counter_add(&mp->m_fdblocks, delta); | 
 | 1291 | 			return 0; | 
 | 1292 | 		} | 
 | 1293 |  | 
 | 1294 | 		spin_lock(&mp->m_sb_lock); | 
 | 1295 | 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); | 
 | 1296 |  | 
 | 1297 | 		if (res_used > delta) { | 
 | 1298 | 			mp->m_resblks_avail += delta; | 
 | 1299 | 		} else { | 
 | 1300 | 			delta -= res_used; | 
 | 1301 | 			mp->m_resblks_avail = mp->m_resblks; | 
 | 1302 | 			percpu_counter_add(&mp->m_fdblocks, delta); | 
 | 1303 | 		} | 
 | 1304 | 		spin_unlock(&mp->m_sb_lock); | 
 | 1305 | 		return 0; | 
 | 1306 | 	} | 
 | 1307 |  | 
 | 1308 | 	/* | 
 | 1309 | 	 * Taking blocks away, need to be more accurate the closer we | 
 | 1310 | 	 * are to zero. | 
 | 1311 | 	 * | 
 | 1312 | 	 * If the counter has a value of less than 2 * max batch size, | 
 | 1313 | 	 * then make everything serialise as we are real close to | 
 | 1314 | 	 * ENOSPC. | 
 | 1315 | 	 */ | 
 | 1316 | 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, | 
 | 1317 | 				     XFS_FDBLOCKS_BATCH) < 0) | 
 | 1318 | 		batch = 1; | 
 | 1319 | 	else | 
 | 1320 | 		batch = XFS_FDBLOCKS_BATCH; | 
 | 1321 |  | 
 | 1322 | 	percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); | 
 | 1323 | 	if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, | 
 | 1324 | 				     XFS_FDBLOCKS_BATCH) >= 0) { | 
 | 1325 | 		/* we had space! */ | 
 | 1326 | 		return 0; | 
 | 1327 | 	} | 
 | 1328 |  | 
 | 1329 | 	/* | 
 | 1330 | 	 * lock up the sb for dipping into reserves before releasing the space | 
 | 1331 | 	 * that took us to ENOSPC. | 
 | 1332 | 	 */ | 
 | 1333 | 	spin_lock(&mp->m_sb_lock); | 
 | 1334 | 	percpu_counter_add(&mp->m_fdblocks, -delta); | 
 | 1335 | 	if (!rsvd) | 
 | 1336 | 		goto fdblocks_enospc; | 
 | 1337 |  | 
 | 1338 | 	lcounter = (long long)mp->m_resblks_avail + delta; | 
 | 1339 | 	if (lcounter >= 0) { | 
 | 1340 | 		mp->m_resblks_avail = lcounter; | 
 | 1341 | 		spin_unlock(&mp->m_sb_lock); | 
 | 1342 | 		return 0; | 
 | 1343 | 	} | 
 | 1344 | 	printk_once(KERN_WARNING | 
 | 1345 | 		"Filesystem \"%s\": reserve blocks depleted! " | 
 | 1346 | 		"Consider increasing reserve pool size.", | 
 | 1347 | 		mp->m_fsname); | 
 | 1348 | fdblocks_enospc: | 
 | 1349 | 	spin_unlock(&mp->m_sb_lock); | 
 | 1350 | 	return -ENOSPC; | 
 | 1351 | } | 
 | 1352 |  | 
 | 1353 | int | 
 | 1354 | xfs_mod_frextents( | 
 | 1355 | 	struct xfs_mount	*mp, | 
 | 1356 | 	int64_t			delta) | 
 | 1357 | { | 
 | 1358 | 	int64_t			lcounter; | 
 | 1359 | 	int			ret = 0; | 
 | 1360 |  | 
 | 1361 | 	spin_lock(&mp->m_sb_lock); | 
 | 1362 | 	lcounter = mp->m_sb.sb_frextents + delta; | 
 | 1363 | 	if (lcounter < 0) | 
 | 1364 | 		ret = -ENOSPC; | 
 | 1365 | 	else | 
 | 1366 | 		mp->m_sb.sb_frextents = lcounter; | 
 | 1367 | 	spin_unlock(&mp->m_sb_lock); | 
 | 1368 | 	return ret; | 
 | 1369 | } | 
 | 1370 |  | 
 | 1371 | /* | 
 | 1372 |  * xfs_getsb() is called to obtain the buffer for the superblock. | 
 | 1373 |  * The buffer is returned locked and read in from disk. | 
 | 1374 |  * The buffer should be released with a call to xfs_brelse(). | 
 | 1375 |  * | 
 | 1376 |  * If the flags parameter is BUF_TRYLOCK, then we'll only return | 
 | 1377 |  * the superblock buffer if it can be locked without sleeping. | 
 | 1378 |  * If it can't then we'll return NULL. | 
 | 1379 |  */ | 
 | 1380 | struct xfs_buf * | 
 | 1381 | xfs_getsb( | 
 | 1382 | 	struct xfs_mount	*mp, | 
 | 1383 | 	int			flags) | 
 | 1384 | { | 
 | 1385 | 	struct xfs_buf		*bp = mp->m_sb_bp; | 
 | 1386 |  | 
 | 1387 | 	if (!xfs_buf_trylock(bp)) { | 
 | 1388 | 		if (flags & XBF_TRYLOCK) | 
 | 1389 | 			return NULL; | 
 | 1390 | 		xfs_buf_lock(bp); | 
 | 1391 | 	} | 
 | 1392 |  | 
 | 1393 | 	xfs_buf_hold(bp); | 
 | 1394 | 	ASSERT(bp->b_flags & XBF_DONE); | 
 | 1395 | 	return bp; | 
 | 1396 | } | 
 | 1397 |  | 
 | 1398 | /* | 
 | 1399 |  * Used to free the superblock along various error paths. | 
 | 1400 |  */ | 
 | 1401 | void | 
 | 1402 | xfs_freesb( | 
 | 1403 | 	struct xfs_mount	*mp) | 
 | 1404 | { | 
 | 1405 | 	struct xfs_buf		*bp = mp->m_sb_bp; | 
 | 1406 |  | 
 | 1407 | 	xfs_buf_lock(bp); | 
 | 1408 | 	mp->m_sb_bp = NULL; | 
 | 1409 | 	xfs_buf_relse(bp); | 
 | 1410 | } | 
 | 1411 |  | 
 | 1412 | /* | 
 | 1413 |  * If the underlying (data/log/rt) device is readonly, there are some | 
 | 1414 |  * operations that cannot proceed. | 
 | 1415 |  */ | 
 | 1416 | int | 
 | 1417 | xfs_dev_is_read_only( | 
 | 1418 | 	struct xfs_mount	*mp, | 
 | 1419 | 	char			*message) | 
 | 1420 | { | 
 | 1421 | 	if (xfs_readonly_buftarg(mp->m_ddev_targp) || | 
 | 1422 | 	    xfs_readonly_buftarg(mp->m_logdev_targp) || | 
 | 1423 | 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { | 
 | 1424 | 		xfs_notice(mp, "%s required on read-only device.", message); | 
 | 1425 | 		xfs_notice(mp, "write access unavailable, cannot proceed."); | 
 | 1426 | 		return -EROFS; | 
 | 1427 | 	} | 
 | 1428 | 	return 0; | 
 | 1429 | } | 
 | 1430 |  | 
 | 1431 | /* Force the summary counters to be recalculated at next mount. */ | 
 | 1432 | void | 
 | 1433 | xfs_force_summary_recalc( | 
 | 1434 | 	struct xfs_mount	*mp) | 
 | 1435 | { | 
 | 1436 | 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) | 
 | 1437 | 		return; | 
 | 1438 |  | 
 | 1439 | 	spin_lock(&mp->m_sb_lock); | 
 | 1440 | 	mp->m_flags |= XFS_MOUNT_BAD_SUMMARY; | 
 | 1441 | 	spin_unlock(&mp->m_sb_lock); | 
 | 1442 | } |