| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | #define pr_fmt(fmt) "prime numbers: " fmt "\n" | 
 | 2 |  | 
 | 3 | #include <linux/module.h> | 
 | 4 | #include <linux/mutex.h> | 
 | 5 | #include <linux/prime_numbers.h> | 
 | 6 | #include <linux/slab.h> | 
 | 7 |  | 
 | 8 | #define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long)) | 
 | 9 |  | 
 | 10 | struct primes { | 
 | 11 | 	struct rcu_head rcu; | 
 | 12 | 	unsigned long last, sz; | 
 | 13 | 	unsigned long primes[]; | 
 | 14 | }; | 
 | 15 |  | 
 | 16 | #if BITS_PER_LONG == 64 | 
 | 17 | static const struct primes small_primes = { | 
 | 18 | 	.last = 61, | 
 | 19 | 	.sz = 64, | 
 | 20 | 	.primes = { | 
 | 21 | 		BIT(2) | | 
 | 22 | 		BIT(3) | | 
 | 23 | 		BIT(5) | | 
 | 24 | 		BIT(7) | | 
 | 25 | 		BIT(11) | | 
 | 26 | 		BIT(13) | | 
 | 27 | 		BIT(17) | | 
 | 28 | 		BIT(19) | | 
 | 29 | 		BIT(23) | | 
 | 30 | 		BIT(29) | | 
 | 31 | 		BIT(31) | | 
 | 32 | 		BIT(37) | | 
 | 33 | 		BIT(41) | | 
 | 34 | 		BIT(43) | | 
 | 35 | 		BIT(47) | | 
 | 36 | 		BIT(53) | | 
 | 37 | 		BIT(59) | | 
 | 38 | 		BIT(61) | 
 | 39 | 	} | 
 | 40 | }; | 
 | 41 | #elif BITS_PER_LONG == 32 | 
 | 42 | static const struct primes small_primes = { | 
 | 43 | 	.last = 31, | 
 | 44 | 	.sz = 32, | 
 | 45 | 	.primes = { | 
 | 46 | 		BIT(2) | | 
 | 47 | 		BIT(3) | | 
 | 48 | 		BIT(5) | | 
 | 49 | 		BIT(7) | | 
 | 50 | 		BIT(11) | | 
 | 51 | 		BIT(13) | | 
 | 52 | 		BIT(17) | | 
 | 53 | 		BIT(19) | | 
 | 54 | 		BIT(23) | | 
 | 55 | 		BIT(29) | | 
 | 56 | 		BIT(31) | 
 | 57 | 	} | 
 | 58 | }; | 
 | 59 | #else | 
 | 60 | #error "unhandled BITS_PER_LONG" | 
 | 61 | #endif | 
 | 62 |  | 
 | 63 | static DEFINE_MUTEX(lock); | 
 | 64 | static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes); | 
 | 65 |  | 
 | 66 | static unsigned long selftest_max; | 
 | 67 |  | 
 | 68 | static bool slow_is_prime_number(unsigned long x) | 
 | 69 | { | 
 | 70 | 	unsigned long y = int_sqrt(x); | 
 | 71 |  | 
 | 72 | 	while (y > 1) { | 
 | 73 | 		if ((x % y) == 0) | 
 | 74 | 			break; | 
 | 75 | 		y--; | 
 | 76 | 	} | 
 | 77 |  | 
 | 78 | 	return y == 1; | 
 | 79 | } | 
 | 80 |  | 
 | 81 | static unsigned long slow_next_prime_number(unsigned long x) | 
 | 82 | { | 
 | 83 | 	while (x < ULONG_MAX && !slow_is_prime_number(++x)) | 
 | 84 | 		; | 
 | 85 |  | 
 | 86 | 	return x; | 
 | 87 | } | 
 | 88 |  | 
 | 89 | static unsigned long clear_multiples(unsigned long x, | 
 | 90 | 				     unsigned long *p, | 
 | 91 | 				     unsigned long start, | 
 | 92 | 				     unsigned long end) | 
 | 93 | { | 
 | 94 | 	unsigned long m; | 
 | 95 |  | 
 | 96 | 	m = 2 * x; | 
 | 97 | 	if (m < start) | 
 | 98 | 		m = roundup(start, x); | 
 | 99 |  | 
 | 100 | 	while (m < end) { | 
 | 101 | 		__clear_bit(m, p); | 
 | 102 | 		m += x; | 
 | 103 | 	} | 
 | 104 |  | 
 | 105 | 	return x; | 
 | 106 | } | 
 | 107 |  | 
 | 108 | static bool expand_to_next_prime(unsigned long x) | 
 | 109 | { | 
 | 110 | 	const struct primes *p; | 
 | 111 | 	struct primes *new; | 
 | 112 | 	unsigned long sz, y; | 
 | 113 |  | 
 | 114 | 	/* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3, | 
 | 115 | 	 * there is always at least one prime p between n and 2n - 2. | 
 | 116 | 	 * Equivalently, if n > 1, then there is always at least one prime p | 
 | 117 | 	 * such that n < p < 2n. | 
 | 118 | 	 * | 
 | 119 | 	 * http://mathworld.wolfram.com/BertrandsPostulate.html | 
 | 120 | 	 * https://en.wikipedia.org/wiki/Bertrand's_postulate | 
 | 121 | 	 */ | 
 | 122 | 	sz = 2 * x; | 
 | 123 | 	if (sz < x) | 
 | 124 | 		return false; | 
 | 125 |  | 
 | 126 | 	sz = round_up(sz, BITS_PER_LONG); | 
 | 127 | 	new = kmalloc(sizeof(*new) + bitmap_size(sz), | 
 | 128 | 		      GFP_KERNEL | __GFP_NOWARN); | 
 | 129 | 	if (!new) | 
 | 130 | 		return false; | 
 | 131 |  | 
 | 132 | 	mutex_lock(&lock); | 
 | 133 | 	p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); | 
 | 134 | 	if (x < p->last) { | 
 | 135 | 		kfree(new); | 
 | 136 | 		goto unlock; | 
 | 137 | 	} | 
 | 138 |  | 
 | 139 | 	/* Where memory permits, track the primes using the | 
 | 140 | 	 * Sieve of Eratosthenes. The sieve is to remove all multiples of known | 
 | 141 | 	 * primes from the set, what remains in the set is therefore prime. | 
 | 142 | 	 */ | 
 | 143 | 	bitmap_fill(new->primes, sz); | 
 | 144 | 	bitmap_copy(new->primes, p->primes, p->sz); | 
 | 145 | 	for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1)) | 
 | 146 | 		new->last = clear_multiples(y, new->primes, p->sz, sz); | 
 | 147 | 	new->sz = sz; | 
 | 148 |  | 
 | 149 | 	BUG_ON(new->last <= x); | 
 | 150 |  | 
 | 151 | 	rcu_assign_pointer(primes, new); | 
 | 152 | 	if (p != &small_primes) | 
 | 153 | 		kfree_rcu((struct primes *)p, rcu); | 
 | 154 |  | 
 | 155 | unlock: | 
 | 156 | 	mutex_unlock(&lock); | 
 | 157 | 	return true; | 
 | 158 | } | 
 | 159 |  | 
 | 160 | static void free_primes(void) | 
 | 161 | { | 
 | 162 | 	const struct primes *p; | 
 | 163 |  | 
 | 164 | 	mutex_lock(&lock); | 
 | 165 | 	p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); | 
 | 166 | 	if (p != &small_primes) { | 
 | 167 | 		rcu_assign_pointer(primes, &small_primes); | 
 | 168 | 		kfree_rcu((struct primes *)p, rcu); | 
 | 169 | 	} | 
 | 170 | 	mutex_unlock(&lock); | 
 | 171 | } | 
 | 172 |  | 
 | 173 | /** | 
 | 174 |  * next_prime_number - return the next prime number | 
 | 175 |  * @x: the starting point for searching to test | 
 | 176 |  * | 
 | 177 |  * A prime number is an integer greater than 1 that is only divisible by | 
 | 178 |  * itself and 1.  The set of prime numbers is computed using the Sieve of | 
 | 179 |  * Eratoshenes (on finding a prime, all multiples of that prime are removed | 
 | 180 |  * from the set) enabling a fast lookup of the next prime number larger than | 
 | 181 |  * @x. If the sieve fails (memory limitation), the search falls back to using | 
 | 182 |  * slow trial-divison, up to the value of ULONG_MAX (which is reported as the | 
 | 183 |  * final prime as a sentinel). | 
 | 184 |  * | 
 | 185 |  * Returns: the next prime number larger than @x | 
 | 186 |  */ | 
 | 187 | unsigned long next_prime_number(unsigned long x) | 
 | 188 | { | 
 | 189 | 	const struct primes *p; | 
 | 190 |  | 
 | 191 | 	rcu_read_lock(); | 
 | 192 | 	p = rcu_dereference(primes); | 
 | 193 | 	while (x >= p->last) { | 
 | 194 | 		rcu_read_unlock(); | 
 | 195 |  | 
 | 196 | 		if (!expand_to_next_prime(x)) | 
 | 197 | 			return slow_next_prime_number(x); | 
 | 198 |  | 
 | 199 | 		rcu_read_lock(); | 
 | 200 | 		p = rcu_dereference(primes); | 
 | 201 | 	} | 
 | 202 | 	x = find_next_bit(p->primes, p->last, x + 1); | 
 | 203 | 	rcu_read_unlock(); | 
 | 204 |  | 
 | 205 | 	return x; | 
 | 206 | } | 
 | 207 | EXPORT_SYMBOL(next_prime_number); | 
 | 208 |  | 
 | 209 | /** | 
 | 210 |  * is_prime_number - test whether the given number is prime | 
 | 211 |  * @x: the number to test | 
 | 212 |  * | 
 | 213 |  * A prime number is an integer greater than 1 that is only divisible by | 
 | 214 |  * itself and 1. Internally a cache of prime numbers is kept (to speed up | 
 | 215 |  * searching for sequential primes, see next_prime_number()), but if the number | 
 | 216 |  * falls outside of that cache, its primality is tested using trial-divison. | 
 | 217 |  * | 
 | 218 |  * Returns: true if @x is prime, false for composite numbers. | 
 | 219 |  */ | 
 | 220 | bool is_prime_number(unsigned long x) | 
 | 221 | { | 
 | 222 | 	const struct primes *p; | 
 | 223 | 	bool result; | 
 | 224 |  | 
 | 225 | 	rcu_read_lock(); | 
 | 226 | 	p = rcu_dereference(primes); | 
 | 227 | 	while (x >= p->sz) { | 
 | 228 | 		rcu_read_unlock(); | 
 | 229 |  | 
 | 230 | 		if (!expand_to_next_prime(x)) | 
 | 231 | 			return slow_is_prime_number(x); | 
 | 232 |  | 
 | 233 | 		rcu_read_lock(); | 
 | 234 | 		p = rcu_dereference(primes); | 
 | 235 | 	} | 
 | 236 | 	result = test_bit(x, p->primes); | 
 | 237 | 	rcu_read_unlock(); | 
 | 238 |  | 
 | 239 | 	return result; | 
 | 240 | } | 
 | 241 | EXPORT_SYMBOL(is_prime_number); | 
 | 242 |  | 
 | 243 | static void dump_primes(void) | 
 | 244 | { | 
 | 245 | 	const struct primes *p; | 
 | 246 | 	char *buf; | 
 | 247 |  | 
 | 248 | 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
 | 249 |  | 
 | 250 | 	rcu_read_lock(); | 
 | 251 | 	p = rcu_dereference(primes); | 
 | 252 |  | 
 | 253 | 	if (buf) | 
 | 254 | 		bitmap_print_to_pagebuf(true, buf, p->primes, p->sz); | 
 | 255 | 	pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s", | 
 | 256 | 		p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf); | 
 | 257 |  | 
 | 258 | 	rcu_read_unlock(); | 
 | 259 |  | 
 | 260 | 	kfree(buf); | 
 | 261 | } | 
 | 262 |  | 
 | 263 | static int selftest(unsigned long max) | 
 | 264 | { | 
 | 265 | 	unsigned long x, last; | 
 | 266 |  | 
 | 267 | 	if (!max) | 
 | 268 | 		return 0; | 
 | 269 |  | 
 | 270 | 	for (last = 0, x = 2; x < max; x++) { | 
 | 271 | 		bool slow = slow_is_prime_number(x); | 
 | 272 | 		bool fast = is_prime_number(x); | 
 | 273 |  | 
 | 274 | 		if (slow != fast) { | 
 | 275 | 			pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!", | 
 | 276 | 			       x, slow ? "yes" : "no", fast ? "yes" : "no"); | 
 | 277 | 			goto err; | 
 | 278 | 		} | 
 | 279 |  | 
 | 280 | 		if (!slow) | 
 | 281 | 			continue; | 
 | 282 |  | 
 | 283 | 		if (next_prime_number(last) != x) { | 
 | 284 | 			pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu", | 
 | 285 | 			       last, x, next_prime_number(last)); | 
 | 286 | 			goto err; | 
 | 287 | 		} | 
 | 288 | 		last = x; | 
 | 289 | 	} | 
 | 290 |  | 
 | 291 | 	pr_info("selftest(%lu) passed, last prime was %lu", x, last); | 
 | 292 | 	return 0; | 
 | 293 |  | 
 | 294 | err: | 
 | 295 | 	dump_primes(); | 
 | 296 | 	return -EINVAL; | 
 | 297 | } | 
 | 298 |  | 
 | 299 | static int __init primes_init(void) | 
 | 300 | { | 
 | 301 | 	return selftest(selftest_max); | 
 | 302 | } | 
 | 303 |  | 
 | 304 | static void __exit primes_exit(void) | 
 | 305 | { | 
 | 306 | 	free_primes(); | 
 | 307 | } | 
 | 308 |  | 
 | 309 | module_init(primes_init); | 
 | 310 | module_exit(primes_exit); | 
 | 311 |  | 
 | 312 | module_param_named(selftest, selftest_max, ulong, 0400); | 
 | 313 |  | 
 | 314 | MODULE_AUTHOR("Intel Corporation"); | 
 | 315 | MODULE_LICENSE("GPL"); |