| xj | b04a402 | 2021-11-25 15:01:52 +0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * Scalar fixed time AES core transform | 
|  | 3 | * | 
|  | 4 | * Copyright (C) 2017 Linaro Ltd <ard.biesheuvel@linaro.org> | 
|  | 5 | * | 
|  | 6 | * This program is free software; you can redistribute it and/or modify | 
|  | 7 | * it under the terms of the GNU General Public License version 2 as | 
|  | 8 | * published by the Free Software Foundation. | 
|  | 9 | */ | 
|  | 10 |  | 
|  | 11 | #include <crypto/aes.h> | 
|  | 12 | #include <linux/crypto.h> | 
|  | 13 | #include <linux/module.h> | 
|  | 14 | #include <asm/unaligned.h> | 
|  | 15 |  | 
|  | 16 | /* | 
|  | 17 | * Emit the sbox as volatile const to prevent the compiler from doing | 
|  | 18 | * constant folding on sbox references involving fixed indexes. | 
|  | 19 | */ | 
|  | 20 | static volatile const u8 __cacheline_aligned __aesti_sbox[] = { | 
|  | 21 | 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, | 
|  | 22 | 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, | 
|  | 23 | 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, | 
|  | 24 | 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, | 
|  | 25 | 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, | 
|  | 26 | 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, | 
|  | 27 | 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, | 
|  | 28 | 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, | 
|  | 29 | 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, | 
|  | 30 | 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, | 
|  | 31 | 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, | 
|  | 32 | 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, | 
|  | 33 | 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, | 
|  | 34 | 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, | 
|  | 35 | 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, | 
|  | 36 | 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, | 
|  | 37 | 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, | 
|  | 38 | 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, | 
|  | 39 | 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, | 
|  | 40 | 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, | 
|  | 41 | 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, | 
|  | 42 | 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, | 
|  | 43 | 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, | 
|  | 44 | 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, | 
|  | 45 | 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, | 
|  | 46 | 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, | 
|  | 47 | 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, | 
|  | 48 | 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, | 
|  | 49 | 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, | 
|  | 50 | 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, | 
|  | 51 | 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, | 
|  | 52 | 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16, | 
|  | 53 | }; | 
|  | 54 |  | 
|  | 55 | static volatile const u8 __cacheline_aligned __aesti_inv_sbox[] = { | 
|  | 56 | 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, | 
|  | 57 | 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, | 
|  | 58 | 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, | 
|  | 59 | 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, | 
|  | 60 | 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, | 
|  | 61 | 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, | 
|  | 62 | 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, | 
|  | 63 | 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, | 
|  | 64 | 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, | 
|  | 65 | 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, | 
|  | 66 | 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, | 
|  | 67 | 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, | 
|  | 68 | 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, | 
|  | 69 | 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, | 
|  | 70 | 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, | 
|  | 71 | 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, | 
|  | 72 | 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, | 
|  | 73 | 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, | 
|  | 74 | 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, | 
|  | 75 | 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, | 
|  | 76 | 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, | 
|  | 77 | 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, | 
|  | 78 | 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, | 
|  | 79 | 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, | 
|  | 80 | 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, | 
|  | 81 | 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, | 
|  | 82 | 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, | 
|  | 83 | 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, | 
|  | 84 | 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, | 
|  | 85 | 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, | 
|  | 86 | 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, | 
|  | 87 | 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d, | 
|  | 88 | }; | 
|  | 89 |  | 
|  | 90 | static u32 mul_by_x(u32 w) | 
|  | 91 | { | 
|  | 92 | u32 x = w & 0x7f7f7f7f; | 
|  | 93 | u32 y = w & 0x80808080; | 
|  | 94 |  | 
|  | 95 | /* multiply by polynomial 'x' (0b10) in GF(2^8) */ | 
|  | 96 | return (x << 1) ^ (y >> 7) * 0x1b; | 
|  | 97 | } | 
|  | 98 |  | 
|  | 99 | static u32 mul_by_x2(u32 w) | 
|  | 100 | { | 
|  | 101 | u32 x = w & 0x3f3f3f3f; | 
|  | 102 | u32 y = w & 0x80808080; | 
|  | 103 | u32 z = w & 0x40404040; | 
|  | 104 |  | 
|  | 105 | /* multiply by polynomial 'x^2' (0b100) in GF(2^8) */ | 
|  | 106 | return (x << 2) ^ (y >> 7) * 0x36 ^ (z >> 6) * 0x1b; | 
|  | 107 | } | 
|  | 108 |  | 
|  | 109 | static u32 mix_columns(u32 x) | 
|  | 110 | { | 
|  | 111 | /* | 
|  | 112 | * Perform the following matrix multiplication in GF(2^8) | 
|  | 113 | * | 
|  | 114 | * | 0x2 0x3 0x1 0x1 |   | x[0] | | 
|  | 115 | * | 0x1 0x2 0x3 0x1 |   | x[1] | | 
|  | 116 | * | 0x1 0x1 0x2 0x3 | x | x[2] | | 
|  | 117 | * | 0x3 0x1 0x1 0x2 |   | x[3] | | 
|  | 118 | */ | 
|  | 119 | u32 y = mul_by_x(x) ^ ror32(x, 16); | 
|  | 120 |  | 
|  | 121 | return y ^ ror32(x ^ y, 8); | 
|  | 122 | } | 
|  | 123 |  | 
|  | 124 | static u32 inv_mix_columns(u32 x) | 
|  | 125 | { | 
|  | 126 | /* | 
|  | 127 | * Perform the following matrix multiplication in GF(2^8) | 
|  | 128 | * | 
|  | 129 | * | 0xe 0xb 0xd 0x9 |   | x[0] | | 
|  | 130 | * | 0x9 0xe 0xb 0xd |   | x[1] | | 
|  | 131 | * | 0xd 0x9 0xe 0xb | x | x[2] | | 
|  | 132 | * | 0xb 0xd 0x9 0xe |   | x[3] | | 
|  | 133 | * | 
|  | 134 | * which can conveniently be reduced to | 
|  | 135 | * | 
|  | 136 | * | 0x2 0x3 0x1 0x1 |   | 0x5 0x0 0x4 0x0 |   | x[0] | | 
|  | 137 | * | 0x1 0x2 0x3 0x1 |   | 0x0 0x5 0x0 0x4 |   | x[1] | | 
|  | 138 | * | 0x1 0x1 0x2 0x3 | x | 0x4 0x0 0x5 0x0 | x | x[2] | | 
|  | 139 | * | 0x3 0x1 0x1 0x2 |   | 0x0 0x4 0x0 0x5 |   | x[3] | | 
|  | 140 | */ | 
|  | 141 | u32 y = mul_by_x2(x); | 
|  | 142 |  | 
|  | 143 | return mix_columns(x ^ y ^ ror32(y, 16)); | 
|  | 144 | } | 
|  | 145 |  | 
|  | 146 | static __always_inline u32 subshift(u32 in[], int pos) | 
|  | 147 | { | 
|  | 148 | return (__aesti_sbox[in[pos] & 0xff]) ^ | 
|  | 149 | (__aesti_sbox[(in[(pos + 1) % 4] >>  8) & 0xff] <<  8) ^ | 
|  | 150 | (__aesti_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^ | 
|  | 151 | (__aesti_sbox[(in[(pos + 3) % 4] >> 24) & 0xff] << 24); | 
|  | 152 | } | 
|  | 153 |  | 
|  | 154 | static __always_inline u32 inv_subshift(u32 in[], int pos) | 
|  | 155 | { | 
|  | 156 | return (__aesti_inv_sbox[in[pos] & 0xff]) ^ | 
|  | 157 | (__aesti_inv_sbox[(in[(pos + 3) % 4] >>  8) & 0xff] <<  8) ^ | 
|  | 158 | (__aesti_inv_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^ | 
|  | 159 | (__aesti_inv_sbox[(in[(pos + 1) % 4] >> 24) & 0xff] << 24); | 
|  | 160 | } | 
|  | 161 |  | 
|  | 162 | static u32 subw(u32 in) | 
|  | 163 | { | 
|  | 164 | return (__aesti_sbox[in & 0xff]) ^ | 
|  | 165 | (__aesti_sbox[(in >>  8) & 0xff] <<  8) ^ | 
|  | 166 | (__aesti_sbox[(in >> 16) & 0xff] << 16) ^ | 
|  | 167 | (__aesti_sbox[(in >> 24) & 0xff] << 24); | 
|  | 168 | } | 
|  | 169 |  | 
|  | 170 | static int aesti_expand_key(struct crypto_aes_ctx *ctx, const u8 *in_key, | 
|  | 171 | unsigned int key_len) | 
|  | 172 | { | 
|  | 173 | u32 kwords = key_len / sizeof(u32); | 
|  | 174 | u32 rc, i, j; | 
|  | 175 |  | 
|  | 176 | if (key_len != AES_KEYSIZE_128 && | 
|  | 177 | key_len != AES_KEYSIZE_192 && | 
|  | 178 | key_len != AES_KEYSIZE_256) | 
|  | 179 | return -EINVAL; | 
|  | 180 |  | 
|  | 181 | ctx->key_length = key_len; | 
|  | 182 |  | 
|  | 183 | for (i = 0; i < kwords; i++) | 
|  | 184 | ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32)); | 
|  | 185 |  | 
|  | 186 | for (i = 0, rc = 1; i < 10; i++, rc = mul_by_x(rc)) { | 
|  | 187 | u32 *rki = ctx->key_enc + (i * kwords); | 
|  | 188 | u32 *rko = rki + kwords; | 
|  | 189 |  | 
|  | 190 | rko[0] = ror32(subw(rki[kwords - 1]), 8) ^ rc ^ rki[0]; | 
|  | 191 | rko[1] = rko[0] ^ rki[1]; | 
|  | 192 | rko[2] = rko[1] ^ rki[2]; | 
|  | 193 | rko[3] = rko[2] ^ rki[3]; | 
|  | 194 |  | 
|  | 195 | if (key_len == 24) { | 
|  | 196 | if (i >= 7) | 
|  | 197 | break; | 
|  | 198 | rko[4] = rko[3] ^ rki[4]; | 
|  | 199 | rko[5] = rko[4] ^ rki[5]; | 
|  | 200 | } else if (key_len == 32) { | 
|  | 201 | if (i >= 6) | 
|  | 202 | break; | 
|  | 203 | rko[4] = subw(rko[3]) ^ rki[4]; | 
|  | 204 | rko[5] = rko[4] ^ rki[5]; | 
|  | 205 | rko[6] = rko[5] ^ rki[6]; | 
|  | 206 | rko[7] = rko[6] ^ rki[7]; | 
|  | 207 | } | 
|  | 208 | } | 
|  | 209 |  | 
|  | 210 | /* | 
|  | 211 | * Generate the decryption keys for the Equivalent Inverse Cipher. | 
|  | 212 | * This involves reversing the order of the round keys, and applying | 
|  | 213 | * the Inverse Mix Columns transformation to all but the first and | 
|  | 214 | * the last one. | 
|  | 215 | */ | 
|  | 216 | ctx->key_dec[0] = ctx->key_enc[key_len + 24]; | 
|  | 217 | ctx->key_dec[1] = ctx->key_enc[key_len + 25]; | 
|  | 218 | ctx->key_dec[2] = ctx->key_enc[key_len + 26]; | 
|  | 219 | ctx->key_dec[3] = ctx->key_enc[key_len + 27]; | 
|  | 220 |  | 
|  | 221 | for (i = 4, j = key_len + 20; j > 0; i += 4, j -= 4) { | 
|  | 222 | ctx->key_dec[i]     = inv_mix_columns(ctx->key_enc[j]); | 
|  | 223 | ctx->key_dec[i + 1] = inv_mix_columns(ctx->key_enc[j + 1]); | 
|  | 224 | ctx->key_dec[i + 2] = inv_mix_columns(ctx->key_enc[j + 2]); | 
|  | 225 | ctx->key_dec[i + 3] = inv_mix_columns(ctx->key_enc[j + 3]); | 
|  | 226 | } | 
|  | 227 |  | 
|  | 228 | ctx->key_dec[i]     = ctx->key_enc[0]; | 
|  | 229 | ctx->key_dec[i + 1] = ctx->key_enc[1]; | 
|  | 230 | ctx->key_dec[i + 2] = ctx->key_enc[2]; | 
|  | 231 | ctx->key_dec[i + 3] = ctx->key_enc[3]; | 
|  | 232 |  | 
|  | 233 | return 0; | 
|  | 234 | } | 
|  | 235 |  | 
|  | 236 | static int aesti_set_key(struct crypto_tfm *tfm, const u8 *in_key, | 
|  | 237 | unsigned int key_len) | 
|  | 238 | { | 
|  | 239 | struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | 240 | int err; | 
|  | 241 |  | 
|  | 242 | err = aesti_expand_key(ctx, in_key, key_len); | 
|  | 243 | if (err) | 
|  | 244 | return err; | 
|  | 245 |  | 
|  | 246 | /* | 
|  | 247 | * In order to force the compiler to emit data independent Sbox lookups | 
|  | 248 | * at the start of each block, xor the first round key with values at | 
|  | 249 | * fixed indexes in the Sbox. This will need to be repeated each time | 
|  | 250 | * the key is used, which will pull the entire Sbox into the D-cache | 
|  | 251 | * before any data dependent Sbox lookups are performed. | 
|  | 252 | */ | 
|  | 253 | ctx->key_enc[0] ^= __aesti_sbox[ 0] ^ __aesti_sbox[128]; | 
|  | 254 | ctx->key_enc[1] ^= __aesti_sbox[32] ^ __aesti_sbox[160]; | 
|  | 255 | ctx->key_enc[2] ^= __aesti_sbox[64] ^ __aesti_sbox[192]; | 
|  | 256 | ctx->key_enc[3] ^= __aesti_sbox[96] ^ __aesti_sbox[224]; | 
|  | 257 |  | 
|  | 258 | ctx->key_dec[0] ^= __aesti_inv_sbox[ 0] ^ __aesti_inv_sbox[128]; | 
|  | 259 | ctx->key_dec[1] ^= __aesti_inv_sbox[32] ^ __aesti_inv_sbox[160]; | 
|  | 260 | ctx->key_dec[2] ^= __aesti_inv_sbox[64] ^ __aesti_inv_sbox[192]; | 
|  | 261 | ctx->key_dec[3] ^= __aesti_inv_sbox[96] ^ __aesti_inv_sbox[224]; | 
|  | 262 |  | 
|  | 263 | return 0; | 
|  | 264 | } | 
|  | 265 |  | 
|  | 266 | static void aesti_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) | 
|  | 267 | { | 
|  | 268 | const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | 269 | const u32 *rkp = ctx->key_enc + 4; | 
|  | 270 | int rounds = 6 + ctx->key_length / 4; | 
|  | 271 | u32 st0[4], st1[4]; | 
|  | 272 | unsigned long flags; | 
|  | 273 | int round; | 
|  | 274 |  | 
|  | 275 | st0[0] = ctx->key_enc[0] ^ get_unaligned_le32(in); | 
|  | 276 | st0[1] = ctx->key_enc[1] ^ get_unaligned_le32(in + 4); | 
|  | 277 | st0[2] = ctx->key_enc[2] ^ get_unaligned_le32(in + 8); | 
|  | 278 | st0[3] = ctx->key_enc[3] ^ get_unaligned_le32(in + 12); | 
|  | 279 |  | 
|  | 280 | /* | 
|  | 281 | * Temporarily disable interrupts to avoid races where cachelines are | 
|  | 282 | * evicted when the CPU is interrupted to do something else. | 
|  | 283 | */ | 
|  | 284 | local_irq_save(flags); | 
|  | 285 |  | 
|  | 286 | st0[0] ^= __aesti_sbox[ 0] ^ __aesti_sbox[128]; | 
|  | 287 | st0[1] ^= __aesti_sbox[32] ^ __aesti_sbox[160]; | 
|  | 288 | st0[2] ^= __aesti_sbox[64] ^ __aesti_sbox[192]; | 
|  | 289 | st0[3] ^= __aesti_sbox[96] ^ __aesti_sbox[224]; | 
|  | 290 |  | 
|  | 291 | for (round = 0;; round += 2, rkp += 8) { | 
|  | 292 | st1[0] = mix_columns(subshift(st0, 0)) ^ rkp[0]; | 
|  | 293 | st1[1] = mix_columns(subshift(st0, 1)) ^ rkp[1]; | 
|  | 294 | st1[2] = mix_columns(subshift(st0, 2)) ^ rkp[2]; | 
|  | 295 | st1[3] = mix_columns(subshift(st0, 3)) ^ rkp[3]; | 
|  | 296 |  | 
|  | 297 | if (round == rounds - 2) | 
|  | 298 | break; | 
|  | 299 |  | 
|  | 300 | st0[0] = mix_columns(subshift(st1, 0)) ^ rkp[4]; | 
|  | 301 | st0[1] = mix_columns(subshift(st1, 1)) ^ rkp[5]; | 
|  | 302 | st0[2] = mix_columns(subshift(st1, 2)) ^ rkp[6]; | 
|  | 303 | st0[3] = mix_columns(subshift(st1, 3)) ^ rkp[7]; | 
|  | 304 | } | 
|  | 305 |  | 
|  | 306 | put_unaligned_le32(subshift(st1, 0) ^ rkp[4], out); | 
|  | 307 | put_unaligned_le32(subshift(st1, 1) ^ rkp[5], out + 4); | 
|  | 308 | put_unaligned_le32(subshift(st1, 2) ^ rkp[6], out + 8); | 
|  | 309 | put_unaligned_le32(subshift(st1, 3) ^ rkp[7], out + 12); | 
|  | 310 |  | 
|  | 311 | local_irq_restore(flags); | 
|  | 312 | } | 
|  | 313 |  | 
|  | 314 | static void aesti_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) | 
|  | 315 | { | 
|  | 316 | const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | 317 | const u32 *rkp = ctx->key_dec + 4; | 
|  | 318 | int rounds = 6 + ctx->key_length / 4; | 
|  | 319 | u32 st0[4], st1[4]; | 
|  | 320 | unsigned long flags; | 
|  | 321 | int round; | 
|  | 322 |  | 
|  | 323 | st0[0] = ctx->key_dec[0] ^ get_unaligned_le32(in); | 
|  | 324 | st0[1] = ctx->key_dec[1] ^ get_unaligned_le32(in + 4); | 
|  | 325 | st0[2] = ctx->key_dec[2] ^ get_unaligned_le32(in + 8); | 
|  | 326 | st0[3] = ctx->key_dec[3] ^ get_unaligned_le32(in + 12); | 
|  | 327 |  | 
|  | 328 | /* | 
|  | 329 | * Temporarily disable interrupts to avoid races where cachelines are | 
|  | 330 | * evicted when the CPU is interrupted to do something else. | 
|  | 331 | */ | 
|  | 332 | local_irq_save(flags); | 
|  | 333 |  | 
|  | 334 | st0[0] ^= __aesti_inv_sbox[ 0] ^ __aesti_inv_sbox[128]; | 
|  | 335 | st0[1] ^= __aesti_inv_sbox[32] ^ __aesti_inv_sbox[160]; | 
|  | 336 | st0[2] ^= __aesti_inv_sbox[64] ^ __aesti_inv_sbox[192]; | 
|  | 337 | st0[3] ^= __aesti_inv_sbox[96] ^ __aesti_inv_sbox[224]; | 
|  | 338 |  | 
|  | 339 | for (round = 0;; round += 2, rkp += 8) { | 
|  | 340 | st1[0] = inv_mix_columns(inv_subshift(st0, 0)) ^ rkp[0]; | 
|  | 341 | st1[1] = inv_mix_columns(inv_subshift(st0, 1)) ^ rkp[1]; | 
|  | 342 | st1[2] = inv_mix_columns(inv_subshift(st0, 2)) ^ rkp[2]; | 
|  | 343 | st1[3] = inv_mix_columns(inv_subshift(st0, 3)) ^ rkp[3]; | 
|  | 344 |  | 
|  | 345 | if (round == rounds - 2) | 
|  | 346 | break; | 
|  | 347 |  | 
|  | 348 | st0[0] = inv_mix_columns(inv_subshift(st1, 0)) ^ rkp[4]; | 
|  | 349 | st0[1] = inv_mix_columns(inv_subshift(st1, 1)) ^ rkp[5]; | 
|  | 350 | st0[2] = inv_mix_columns(inv_subshift(st1, 2)) ^ rkp[6]; | 
|  | 351 | st0[3] = inv_mix_columns(inv_subshift(st1, 3)) ^ rkp[7]; | 
|  | 352 | } | 
|  | 353 |  | 
|  | 354 | put_unaligned_le32(inv_subshift(st1, 0) ^ rkp[4], out); | 
|  | 355 | put_unaligned_le32(inv_subshift(st1, 1) ^ rkp[5], out + 4); | 
|  | 356 | put_unaligned_le32(inv_subshift(st1, 2) ^ rkp[6], out + 8); | 
|  | 357 | put_unaligned_le32(inv_subshift(st1, 3) ^ rkp[7], out + 12); | 
|  | 358 |  | 
|  | 359 | local_irq_restore(flags); | 
|  | 360 | } | 
|  | 361 |  | 
|  | 362 | static struct crypto_alg aes_alg = { | 
|  | 363 | .cra_name			= "aes", | 
|  | 364 | .cra_driver_name		= "aes-fixed-time", | 
|  | 365 | .cra_priority			= 100 + 1, | 
|  | 366 | .cra_flags			= CRYPTO_ALG_TYPE_CIPHER, | 
|  | 367 | .cra_blocksize			= AES_BLOCK_SIZE, | 
|  | 368 | .cra_ctxsize			= sizeof(struct crypto_aes_ctx), | 
|  | 369 | .cra_module			= THIS_MODULE, | 
|  | 370 |  | 
|  | 371 | .cra_cipher.cia_min_keysize	= AES_MIN_KEY_SIZE, | 
|  | 372 | .cra_cipher.cia_max_keysize	= AES_MAX_KEY_SIZE, | 
|  | 373 | .cra_cipher.cia_setkey		= aesti_set_key, | 
|  | 374 | .cra_cipher.cia_encrypt		= aesti_encrypt, | 
|  | 375 | .cra_cipher.cia_decrypt		= aesti_decrypt | 
|  | 376 | }; | 
|  | 377 |  | 
|  | 378 | static int __init aes_init(void) | 
|  | 379 | { | 
|  | 380 | return crypto_register_alg(&aes_alg); | 
|  | 381 | } | 
|  | 382 |  | 
|  | 383 | static void __exit aes_fini(void) | 
|  | 384 | { | 
|  | 385 | crypto_unregister_alg(&aes_alg); | 
|  | 386 | } | 
|  | 387 |  | 
|  | 388 | module_init(aes_init); | 
|  | 389 | module_exit(aes_fini); | 
|  | 390 |  | 
|  | 391 | MODULE_DESCRIPTION("Generic fixed time AES"); | 
|  | 392 | MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); | 
|  | 393 | MODULE_LICENSE("GPL v2"); |